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Streszczenie

Zrozumienie samoorganizacji w układach biologicznych wciąż stanowi wyzwa-

nie dla współczesnej nauki. Rozwój eksperymentalnych technik biofizyki oraz

postęp w dziedzinie miękkiej materii skondensowanej dostarczył szeregu nowych

narzędzi umożliwiających głębszą analizę tego zagadnienia. W niniejszej pracy

zostanie przedyskutowane zarówno pochodzenie przestrzennie skorelowanej dy-

namiki układów modelowych, jak i efekty będące konsekwencją takich korela-

cji. Skorelowanie przestrzenne napotyka się w mikro-przepływach cytoplazmy,

w pobliżu przejść fazowych oraz w fazie szklistej, a także w samoorganizujących

się mieszaninach dwuskładnikowych. Ten ostatni przypadek został wybrany

jako archetypiczny model pochodzenia korelacji przestrzennych, w którym je-

den typ cząstek kontroluje samoorganizację drugiego typu cząstek. Obecność

cząstek otoczenia wprowadza tzw. efektywne oddziaływania między samoorga-

nizującymi się cząstkami. Równocześnie samoorganizacja może być rozumiana

jako efekt wynikający z kolektywnego zachowania cząstek otoczenia.

W niniejszej pracy wprowadzam nową teorię efektywnych oddziaływań, prze-

chodząc z klasycznego opisu w zmiennych położenia i pędów do formalizmu

funkcjonału liczby obsadzeń. Istniejące teorie dla układów koloidalnych były

jak dotąd nakierowane na uzyskiwanie dokładnych wyników numerycznych.

W odróżnieniu od nich, nowa teoria pozwala otrzymywać wyniki analityczne

dla szerokiej gamy modeli. W pracy przedstawiam szczegółowe wyprowadzenie

nowego formalizmu, jak i dyskutuję jego ograniczenia. Przedstawiony jest rów-

nież szereg zastosowań, które obejmują: cząstki naładowane w obecności jonów,

mieszaniny cząstek oddziałujących potencjałami Yukawy, mieszaniny polime-

rów oraz mieszaniny dużych i małych cząstek opisanych odpychającym rdze-

niem oraz przyciągającym lub odpychającym oddziaływaniem długo-zasięgo-

wym. W tym ostatnim modelu analitycznie odtwarzam efekty „przyciągania



przez odpychanie” oraz „odpychania przez przyciąganie”. Efekty te przewidy-

wano jak dotąd jedyni na podstawie symulacji. Zaproponowany formalizm po-

zwala także wyprowadzić ścisły związek między efektywnymi oddziaływaniami

a korelacjami przestrzennymi w szumie termicznym.

Kolejna grupa wyników prezentuje wpływ szumu skorelowanego przestrzen-

nie na dynamikę modelowego łańcuch polimerowego. Jako wprowadzenie oma-

wiam metody numerycznego rozwiązywania równań Langevina oraz generacji

skorelowanych zmiennych Gaussowskich. Model polimeru oparty jest o od-

działywania harmoniczne między kolejnymi węzłami oraz globalny potencjał

Lennarda-Jonesa przypisany każdemu węzłowi, aby zapewnić efekty wykluczo-

nej objętości. Wprowadzone są również harmoniczne oddziaływanie między

co drugim węzłem, co wymusza preferencję dla konformacji o kształcie piły.

Wpływ korelacji przestrzennych w szumie na dynamikę jest znaczący i objawia

się synchronizacją ruchu węzłów oraz ogólnym usztywnieniem struktury, widocz-

nym w funkcjach korelacji długości segmentów i kątów między nimi. Widoczny

jest również efekt „spontanicznego rozprostowywania”, tzn. polimer preferuje

konformacje zlinearyzowane. Efekt ten tłumaczony jest akumulacją lokalnie

rozciągniętych fragmentów, których relaksacja jest utrudniona w obecności prze-

strzennych korelacji.

Ostatni problem analizowany w tej pracy dotyczy nie-Gaussowskich łańcu-

chów polimerowych, opisywanych rozkładami alfa-stabilnymi. Taka nietypowa

statystyka w zachowaniu łańcucha może być wywołana opisanym powyżej efek-

tem spontanicznego rozprostowywania. Inne przykłady to także częściowo nie-

uporządkowane białka oraz polimery zaadsorbowane do powierzchni. W tym

ostatnim przypadku skalowanie promienia żyracji w kierunku równoległym do

powierzchni zmienia się od przypadku Gaussowskiego dla silnej adsorpcji do

przypadku ciężko-ogonowego dla słabej adsorpcji. Dla omawianego modelu

możliwe jest obliczenie rozkładu położeń końców łańcucha, rozkładu węzłów

w funkcji odległości od środka masy łańcucha oraz potencjału oddziaływania

między dwoma łańcuchami. Wyniki te są analityczne i przyjmują zamkniętą

postać w przestrzeni Fouriera. Używając wprowadzonej w tej pracy metody



obliczania efektywnych oddziaływań możliwe jest również przeanalizowanie za-

chowania mieszanin dwuskładnikowych, złożonych z łańcuchów alfa-stabilnych.

Jako główny wynik otrzymujemy tu uogólnienie warunku na rozkład spinodalny

mieszaniny, znanego dotąd jedynie dla cząstek Gaussowskich. W szczególności

możliwe jest zastosowanie tego wyniku do przewidywania warunków na sepa-

rację powierzchniową w trakcie adsorpcji z jednorodnego lub niejednorodnego

roztworu.



Abstract

The understanding of self-organization in biological systems imposes a long last-

ing challenge. The development of biophysical experimental techniques and the

progress in the field of soft matter has provided new tools and theories to address

this problem. In this thesis the origin and consequences of spatially correlated

dynamics in molecular systems are discussed. The spatially correlated dynam-

ics is encountered in cytoplasmic micro-flows, in the near-phase transition and

glassy systems and in the self-organizing binary mixtures. This last case is cho-

sen as the archetypical model for the spatially correlated phenomena, in which

one species of particles is utilized to control the behavior of the second species.

The presence of the second species introduces the additional ’effective interac-

tions’ between the particles of the first species, but it is also a manifestation of

collective dynamics in the motion of the second species.

In this thesis a new theory of effective interactions is introduced, which is

based on translating the classical momentum-position representation of partition

function into the occupation number functional formalism. While the existing

methods for binary systems provide excellent numerical results, the new theory

is versatile and robust in delivering analytical results. We provide a detailed

derivation of the new method as well as a discussion of its validity. Several

applications are proposed, which are: mixtures of charged spheres and ions,

mixtures of Yukawa particles and binary mixtures of particles described with

repulsive core and attractive or repulsive Yukawa tail. For this last type of parti-

cles the new method analytically reproduces the ’attraction-through-repulsion’

and ’repulsion-through-attraction’ effects, which have been previously observed

in simulations. The formalism of occupation number functional can be also

conveniently applied to establish the relation between effective interactions and

the spatial correlations in the thermal noise.



Another part of our research is focused on the influence of spatially corre-

lated disturbances on the dynamics of a model polymeric chain. The methods

for simulating the Langevin equations with spatially correlated Gaussian noise

are discussed first. The polymeric chain is based on the bead-spring model

with the global Lennard-Jones potential for every bead providing the excluded

volume effects and the second-nearest neighbor harmonic interaction stimulat-

ing saw-like conformations. The influence of spatial correlations in the noise

on the chain dynamics is significant. The beads motion synchronizes and the

chain structure is more persistent. However, we also observe the spontaneous

unfolding effect, i. e. the chain prefers linearized conformations. This effect

is explained as the accumulation of local frustrations, stimulated by random

driving but conserved by the presence of spatial correlations.

In the last part of our research we propose the model of non-Gaussian poly-

meric chains, described by the alpha-stable distributions. This model is inspired

by the aforementioned unfolding effect, but such heavy tailed distributions are

also encountered in disordered proteins and for adsorbed polymers. In this

last case, the gyration radius parallel to the surface obeys the statistics, which

depends on the adsorption strength and varies from the Gaussian distribution

for strong adsorption to the heavy-tailed distribution for weak adsorption. In

our model we derive the analytical expressions for the end-to-end distance, the

distribution of nodes around the mass center and the coarse-grained interac-

tion potential between two chains. These results are closed-form in the Fourier

space. Finally, using our theory of effective interactions, we analyze the stability

of binary mixtures composed of alpha-stable chains, which leads to the general-

ization of spinodal decomposition condition previously known for the Gaussian

particles. In particular, we address the problem of on-surface versus in the bulk

separation.
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Content and reading

This thesis consists of the present introductory article as well as four published

papers, which contain a selection of problems related to the origin and conse-

quences of spatially correlated behavior. These papers read:

• [A1]: Analytical theory of effective interactions in binary colloidal systems

of soft particles, M. Majka, P.F. Góra, Phys. Rev. E, 90, 3, 032303 (2014)

• [A2]: Polymer unfolding and motion synchronization induced by spatially

correlated noise, M. Majka, P.F. Góra, Phys. Rev. E, 86, 5, 051122 (2012)

• [A3]: Reinterpreting polymer unfolding effect induced by spatially corre-

lated noise, Acta Phys. Pol. B, 44, 5, 1099 (2013)

• [A4]: Non-Gaussian polymers described by alpha-stable chain statistics:

model, effective interactions in binary mixtures and application to on-

surface separation, Phys. Rev. E, 91, 5, 052602 (2015)

The detailed discussion and summary of these publications is included in Sec-

tion 5 of this introductory article. They are presented according to their logical

succession, rather than in chronological order. The main part of this introduc-

tion is designed to motivate our research, to show the explicit links between

its different aspects and to put it in the broader perspective of biological self-

organization. A significant part of our research is focused on the dynamics of

a system driven by the stochastic but spatially correlated force. In this in-

troduction we also present a few physical realizations of such system. This

includes cytoplasmic micro-flows, glassy and near-phase transition systems and

multicomponent mixtures.

The introduction is organized as follows. In Section 1 we discuss the general

importance of soft matter physics for molecular biophysics. In Section 2 the

concept of spatial correlations for one-component systems is formalized and

presented in the context of systems exhibiting strong spatial correlations, such

as near-phase transition and glassy systems. Further, in Section 3, we proceed to
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the multicomponent systems and examine the effective interactions as a source

of spatial organization. In this section we also discuss the biological meaning

of effective interaction. In Section 4 we provide unpublished results formally

linking the effective interactions and spatial correlations in the multicomponent

systems. As mentioned before, in Section 5 we summarize the papers [A1]-[A4].

Once again, we would like to emphasize that these articles are the integral part

of this thesis and they include the main body of results.
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1 Introduction

1.1 Challenges of molecular biophysics

Although the extremely fine spatio-temporal organization is the essence of bio-

logical life, both order and disorder are its necessary ingredients. At the molec-

ular level, chaos is inevitable, which became evident at the advent of atom-

istic hypothesis and the arrival of statistical physics. Observation of what is

now known as the Brownian motion provided the first insight into the world of

molecular unrest, in which the energy of every particle fluctuates and the mag-

nitude of these fluctuations grows with the temperature in the system. However,

this molecular chaos is not merely a destructive factor, which has to be over-

come for the purpose of organization. It is a manifestation of subtle statistical

laws, on the flip side of which there exist such phenomena as phase transitions,

interactions of entropic origin and collective dynamics. All of them can substan-

tially promote or prevent the spatial organization and provide numerous control

mechanisms over a system.

The question of how the complex behavior of a living system arise from

the low-level physical laws is the fundamental problem for biophysics. From

this perspective, biophysics is a branch of science which fits into the conceptual

framework presented in the famous article ’More is different’ [1], i.e. the fairly

complete understanding of physical laws on the molecular level gives little in-

tuition about the many-particle system as a whole. Unfortunately, the variety

of processes and dependencies in a real biological system is so enormous that

addressing its unique physics is particularly difficult. Typically, many processes

are based on the ’specific interactions’, i.e. a certain particle can chemically

bind only to a specific place. While the understanding of a specific binding

mechanisms is challenging on its own, it is not solely their chemistry that mat-

ters. The biological system also depends on the fine tuning of time scales, local

availability of substrates and the efficiency of their transport. All of these as-

pects are intimately related to the environment in which the process occurs and
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might be regulated in, both, the specific and non-specific way. The latter case

is especially interesting for physicists, since this is where the general principles

characteristic of molecular biological systems manifest. However, the depen-

dence on environment is also what makes this unique physics so challenging,

since it cannot be easily separated from the properties of the entire system.

1.2 Experimental perspective

From this perspective, two strategies are adequate to address the challenges

of molecular biophysics. One strategy is to focus on the in vivo experiments.

Indeed, it was not until the arrival of fluorescent microscopy [2] and optical

tweezers technology [3] that physicists gained tools for the quantitative and

qualitative analysis of molecular organization in biological systems. A rapid

development of the imaging techniques has led to important advances. One is

a discovery that the passive diffusion in cells has often the anomalous character,

e.g. the mean square displacement grows sub-linearly in time [4]. The evidence

for this behavior is abundant e.g. for cytoplasm [5, 6, 7], membranes [8, 9],

chromatin [10] and even at the protein domain level [11]. On the other hand,

some researchers point to the fact that the viscosity of a crowded environment

’perceived’ by a diffusing particle is strongly dependent on the size of this particle

[12, 13], thus the character of diffusion changes over the growing length-scale.

Another group of recent results focuses on the visualization of cytoplasm

flows in the entire cell. It has been shown that the long-term (’determinis-

tic’) component of theses flows is correlated with the cytoskeleton structure and

mainly caused by the collective activity of molecular motors [14]. However, it

has been recently established that not only are motors responsible for long-term

flows, but also for the most of the random disturbances [15]. I.e. the cyto-

plasm, at least at the length scale of 50 nm (the probe size applied in [15]), is

constantly stirred as the side effect of the active transport and this influence

is much stronger than the thermal noise, which can induce sub-diffusion only.

Since the random micro-flows are spatially extensive entities, one can conclude
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that the noise in the intracellular environment is essentially characterized by

distinct spatial correlations, i.e. a group of particles within certain correlation

length experience the same random forcing. These findings are particularly in-

teresting for this thesis, because they suggest that in the bio-molecular context

a stochastic force in the Langevin dynamics should be enriched with spatial

correlations. Indeed, as we show in [A2], this modification can lead to some

non-trivial consequences.

1.3 Soft matter perspective

The other strategy to address the challenges of molecular biophysics stems from

the soft matter physics and it is focused on designing and understanding more

and more complicated model systems. Soft matter physics deals with the class of

systems which, in room temperature (≈ 300K), is characterized by the interac-

tions of a magnitude comparable to the energy of thermal fluctuations [19]. This

means that such systems can be easily deformed by shear stress. However, this

also results in a rich phase behavior, since a minor change to thermodynamical

parameters or interactions is usually enough to establish a new thermodynamical

state. The research on the self-organization in colloidal systems is a significant

sub-discipline of soft matter, with multiple applications. These include industry

and medicine, but it is also important for e.g. protein crystallization [16, 17]

and wet nano-technology [18].

Soft matter physics provides the theoretical and experimental framework

to analyze the behavior of complex fluids. One of the most significant break-

throughs in this context is the idea of effective interactions [19, 20]. These

interactions arise on the statistical basis in multicomponent systems and they

result from the presence of more than one type of particles. In fact, in their

simplest realizations they are a straightforward manifestation that ’more is dif-

ferent’. The first theory of effective interactions has been formulated in 50’ by

Asakura and Oosawa [21, 22] and in the context of polymers by Vrij [23], who

considered the excluded volume effects in the hard sphere systems. Several other
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analytically solvable systems has been identified since then (e.g. Derjaguin-

Landau-Verwey-Overbeek (DLVO) theory of ionic fluids [24], polymer mixtures

or polymer-wall interactions [20]), but this problem is usually addressed numer-

ically via specialized methods originating from Mayer bond expansion [25, 26],

Density Functional Theory and closure relation techniques [27]. Presently, all

of these approaches constitute a well-developed theoretical framework, which is

highly successful in predicting the characteristics of various systems, e.g. phase

behavior in hard spheres mixtures [26], freezing in the systems of Yukawa par-

ticles [28], effective interactions in the mixtures of hard spheres interacting via

Yukawa potentials [29] or in the polymer blends [30] and many more. However,

this theoretical framework is primarily designed for numerical calculations and,

usually, it gives little insight into how and why certain microscopic potentials

lead to the predicted behavior. Another problem is that one has to choose a par-

ticular closure relation and the choice between its different variants is to some

extent arbitrary. Finally, its computational implementation is technically de-

manding, so it is difficult to apply it as a part of high-level modeling. For these

reasons, an analytical yet versatile theory, which could reproduce the sought

phenomena in at least qualitative way is of considerable interest.

Effective interactions are directly responsible for the behavior of binary mix-

tures, which ranges from ’stabilized colloids’, in which both phases are well-

dispersed, to self-organization, in which two phases separate [20]. Since effec-

tive interactions are sensitive to minor changes in the composition of a mixture,

they provide a very flexible mechanism of control over self-organization. In the

biological context, their significance has been recognized relatively recently, e.g.

in the excluded volume effects as a factor promoting ordering and aggregation of

intracellular structures [31], as a factor affecting the organization of chromatin

in nuclei [31, 32] (especially in the chromosome formation [33]) or as a driving

force behind local phase separation in cytoplasm [34]. In fact, one can expect

that effective interactions are ubiquitous in the intracellular environment and

should be involved in much of the ‘nonspecific’ physics regulating the efficiency
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of many processes. This makes their better analytical understanding even more

desired.

1.4 Spatial correlations: deterministic vs. stochastic pic-

ture

In qualitative terms, the self-organization phenomena in a multicomponent sys-

tem can be understood both deterministically and stochastically. In the deter-

ministic picture, one focuses solely on the self-organizing particles and eliminates

the environment particles by replacing their influence with the effective interac-

tions. This is deterministic in the sense that the evolution of the system obeys

the principles of the one-component case, but with modified potentials. The

change in the interaction is responsible for any qualitatively new behavior of

the system.

From the microscopic perspective the self-organizing particles undergo a dif-

fusive motion driven by collisions with environment particles. These collisions,

the thermal noise, are stochastic in their nature. When there is no microscopic

attraction between self-organizing particles (e.g. the hard-sphere case), the sole

reason why two particles do not diffuse away from each other is that they expe-

rience the same random forcing. This means that in the self-organizing systems

the thermal noise is expected to be characterized by spatial correlations i.e. it

should act in a similar manner over a certain length-scale. This constitutes the

stochastic picture of spatial organization.

This deterministic vs. stochastic picture allows us to divide the interpreta-

tion of spatially correlated phenomena into two categories. On the one hand, it

is related to the spatial ordering itself, i.e. one species of particles distributes

itself in a volume in some correlated manner. On the other hand, these are the

spatial correlations in the influence of environment on some subsystem. Since

these interpretations are two facets of the same phenomenon, one might expect

that it should be possible to link them formally. Indeed, in the later part of this

introduction we will argue that this two ideas are intimately related.
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1.5 What is this thesis about?

The complete theoretical description of the biological spatio-temporal organiza-

tion in its entire complexity is still a hopeless task. Most often, we are limited

to either very general ideas, which are non-productive in the quantitative sense

or to partial, specific results for highly simplified models. For this reason, it

is of utmost importance to systematically develop the microscopic theories and

extend the range of their applicability. Indeed, in this thesis we attempt to es-

tablish a formalism which is derived from the first principles and which can be

conveniently applied to model the spatially correlated phenomena. In the pre-

ceding sections we have signalized the two fields in which certain development

is desired. One problem is the inclusion of spatial correlations in the stochastic

dynamics and the other is the versatile analytical tool to predict the effective

interactions. Throughout this thesis we propose solutions to both of these chal-

lenges and show the relation between them. Our ideas are included in the four

papers:

• Analytical theory of effective interactions in binary colloidal system of soft

particles [A1] This is the main article, which introduces a new theory of

effective interactions based on path-integral approach, in which we are

able to identify the single, closed-form formula relating microscopic inter-

actions to the effective potential. In [A1] we provide the derivation as well

as the selection of applications. This includes a comparison to well-known

systems (polymer blends, DLVO theory) and the systems previously un-

solved (the mixtures of Yukawa particles with repulsive cores).

• Polymer unfolding and motion synchronization induced by spatially corre-

lated noise [A2] In this article we analyze the effects of spatially correlated

noise on the model polymer chain. The results are numerical and indicate

that spatial correlations in noise can substantially affect the system at

many levels, including the preference for non-equilibrium conformations.
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• Reinterpreting polymer unfolding effect induced by spatially correlated noise

[A3] This paper provides additional insight into to effect of unfolding pre-

sented in [A2].

• Non-Gaussian polymers described by alpha-stable chain statistics: model,

effective interactions in binary mixtures and application to on-surface sep-

aration [A4] This article presents the application of our theoretical tools

to a new model of polymers based on the non-Gaussian statistics. Such

statistics can result from the presence of spatial correlations in the en-

vironment, presence of domains in the chain or adsorption to a surface.

Applying the methods developed in the previous articles we are able to ad-

dress the problem of the on-surface separation in adsorption from a binary

mixture.

These results cover a wide spectrum of phenomena related to the spatial corre-

lations and their application. Additionally, in Section 4 we provide the unpub-

lished result on the correspondence between spatial correlations and effective

interactions to emphasize the link between our research included in papers [A1]

and [A2].

2 Spatial correlations in one component systems

2.1 Correlation function

In this section the formal definition of the spatial correlation function is pro-

vided. Let us consider a system consisting of N particles, which have a mass

m and interact via a pair potential U(|ri − rj |). The volume of the system

reads Ω and the temperature is T . We denote β = (kBT )
−1, where kB is the

Boltzmann constant. We are interested in the spatial correlations of a certain

quantity φ(ri) which is dependent on the position of particles ri. We expect

that the spatial correlation function of φ(ri) reads:

〈φ(ri)φ(rj)〉 = f(|ri − rj |) (1)
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where 〈.〉 denotes the average over the ensemble. Limiting our considerations

to the equilibrium case, we can interpret the average as taken with respect to

the probability function arising from the partition function. For this system,

the partition function in the standard position-momentum variables and with

momenta integrated out, reads:

Ξ =
zN

N !

∫
Ω

{dr} exp

−β

1

2

N∑
k,l
k 6=l

U(|rk − rl|)


 (2)

where {dr} denotes the integration with respect to every rk and:

z =

(
2πm

βh2

)D/2

(3)

From Ξ it follows that the marginal probability distribution for a pair i-j is

given by:

P (ri, rj) =
zN

N !Ξ

∫
Ω

{dr}i,j exp

−β

1

2

N∑
k,l
k 6=l

U(|rk − rl|)


 (4)

where {dr}i,j denotes the integration with respect to every rk except for k = i, j.

Then, the correlation function can be expressed as:

〈φ(ri)φ(ri +∆r)〉 =
∫
Ω

driφ(ri)φ(ri +∆r)P (ri, ri +∆r) (5)

From (4) and (5) it is clear that the shape of potential U has a strong influence

on the spatial correlation function. However, the exact form of the correlation

function might be highly non-intuitive and look considerably different in var-

ious regimes of thermodynamical parameters. A main reason for that is the

possibility of phase transitions, embedded in the partition function.

2.2 Phase transitions and glassy state

The higher organization in one component system can be obtained via globally

changing thermodynamical parameters such as temperature, volume or pressure.
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This can lead to the phase transition in which the scale-free behavior occurs [35],

manifested by the power-law type correlation function:

〈φ(0)φ(∆r)〉 ∝ 1

∆rD−2+η
(6)

where φ(r) is the order parameter, D is the system dimension and η is the critical

exponent. Whenever the physics of the system can be formulated in terms

of the Ginzburg-Landau meta-model, the methods of renormalization group

techniques can be applied to obtain the analytical results. While fascinating

on its own, the physics of phase transitions is not in the main scope of this

thesis. A comprehensive introduction to the topic can be found in [35]. For the

discussion of fluid oriented techniques such as half-analytical methods based on

the Meyer bond expansion, Density Functional Theory and integral equations

techniques see [27].

In the context of paper [A2], we are interested in the systems in which

the spatially correlated noise can be identified. We have already mentioned the

micro-flows as a possible realization of such ’noise’ and the near-phase transition

systems are another example. However, while for phase transitions the long

range-correlations are available in the relatively narrow range of parameters,

there exists another state of matter which is less elusive, but exhibits equally

interesting properties. This is the glassy state, which, among many surprising

features, is characterized by the strong spatial correlations in its dynamics.

Since the theoretical description of glasses is still not complete, we will discuss

them here in a greater detail.

The glassy state occurs in the supercooled fluids or in the highly packed

systems and exhibits a behavior known as ’jammed mechanics’ [36]. In contrast

to the crystallization, which occurs at the volume fraction of packing equal to

0.494 and results in the increased molecular order, the glassy state requires the

volume fraction of at least 0.58 [37, 38] and it is highly disordered. The glassy

state is characterized by an extreme rise in viscosity (e.g. by 14 orders of magni-

tude) and a dramatic slow down of dynamics, with typical relaxation timescale

of the order of 100 s [36]. From the molecular perspective, there appear a rise in
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the number of collectively rearranging particles. This parameter increases from

approximately 1 in the liquid state to the 4-10 in the glassy state [39], which

has been measured via impedance spectroscopy. Another characteristic is the

correlation length. While it is possible to measure it indirectly via calorimetry

or NMR techniques [41], the relatively recent application of confocal microscopy

allowed a direct measurement, resulting in the correlation length equal to 2-4

diameters of particles.

Although the correlation length can be determined on its own, its response

to the variation of thermodynamical parameters does not match the phase tran-

sition picture [36]. The problem of what is the order parameter for the glassy

transition and whether it exists is open, but an interesting proposition has been

recently given by Mosayebi et all. in [40]. In their approach, based on the

technique known as affine structure analysis, a random configuration of parti-

cles Xq at certain volume packing is generated and then refined by the energy

minimization algorithm to obtain a configuration X. Another step is to disturb

the configuration X with the affine transformation to obtain a structure Xd.

Finally, the structure Xdq is determined, such that the energy minimization of

Xdq results in Xd. Analyzing the statistical differences between non-minimized

structures Xq and Xdq it is possible to determine a ’static correlation’ length

which has a scale-free behavior and diverges in a finite critical temperature.

As we have already mentioned, the glassy state is characterized by the well-

pronounced spatial correlation function. Most knowledge regarding this func-

tion comes from simulations. In particular, Doliwa and Heuer report that the

correlation function has an exponential form [42]:

〈φ(0)φ(∆r)〉 ∝ exp

(
−∆r

ξφ

)
(7)

where φ can be assigned to velocity or the direction of motion and ξφ is the corre-

lation length. The exponential prediction for correlation functions is confirmed

by confocal microscopy experiments [38], especially when a long relaxation time

of a sample is applied. Interestingly, both simulations [42] and experiment [38]

indicate the oscillating behavior in the correlation functions, which is not well
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understood. The cooperative rearrangement and persistent spatial correlations

indicate the cluster formation, which has been also studied numerically e.g. in

references [43] and [44].

Summarizing this section, it should be clear now that both in the near-

crystallization conditions and in the glassy state, the system acts in a spatially

correlated manner. This means that any finite-size sub-system submerged in

such environment is affected by the spatially correlated disturbance. In many

model systems the correlations in noise can transfer into the behavior of the

system [45]. Our results from [A2] indicate that, indeed, in the glassy state the

dynamics of a subsystem can be strongly modified by the collective behavior.

3 Spatial correlations in multicomponent sys-

tems

3.1 Effective interactions in binary systems

Let us now get back to the relation between interactions and the spatial cor-

relation function and focus our attention on the binary systems, i.e. systems

which consist of two types of particles. The multicomponent systems are of

primary interest for this thesis, because they provide a flexible mechanism of

spatial organization different from the phase transitions. The central concept

for this mechanism are the interactions of statistical origin, known as effective

interactions.

We consider the system in which there are two species of particles. The po-

sitions for the first species (also called ’distinguished’ or ’observed’) are denoted

with Ri and for the second species (referred to as ’depletant’ or ’environment’)

with ri. Assuming that there are microscopic interactions between particles

of the same type as well as the cross-species interactions, the total partition
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function of the system reads:

Ξtot =
zN1
1

N1!

∫
Ω

{dR} exp

−β

1

2

N1∑
k,l
k 6=l

URR(|Rk −Rl| −
1

β
ln Ξ)


 (8)

where URR is the interaction between the particles of the first species and Ξ is

the partition function containing the second species and cross interactions:

Ξ =
zN2
2

N2!

∫
Ω

{dr} exp

−β

 N1∑
k

N2∑
i

U(|Rk − ri|+
1

2

N2∑
i,j
i 6=j

V (|rj − ri|)


 (9)

Here, V denotes the interaction between the particles of the second species and

U denotes the cross-interaction between species. As previously:

zi =

(
2πmi

βh2

)D/2

(10)

From (8) one can notice that the expression:

Ueff = − 1

β
ln Ξ (11)

acts as an additional potential. Indeed, this is the formal definition of effective

interactions [19], which is the force of entropic origin arising from the presence

of additional particle species.

In the one component system the only way to control the spatial organiza-

tion requires the variation of thermodynamical parameters in order to induce

a phase transition. This also imposes a demand that the system is abundant

enough so the statistical mechanics applies and collective phenomena can oc-

cur. Obviously, the multicomponent systems can also undergo phase transition,

leading to a possibly more complex phases than in the one-component case.

However, in a multicomponent system the effective interactions provide a con-

trol mechanism over spatial organization, which does not resort to the variation

of thermodynamical parameters.

The effective interactions depend on the microscopic potentials U and V ,

and these potentials are determined by the physical characteristic of particles,
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be it their elasticity, charge, polarity etc. Therefore, replacing or modifying

particles belonging to the second species results in the effective interactions

being altered and this affects the behavior of the first species. In particular,

this means there is no need to modify the global thermodynamical parameters

such as temperature or pressure in order to increase or decrease organization.

Another advantage of this mechanism is that the first species does not have to

be abundant anymore. For example, in the system which consists of only two

particles of the first kind, one can obtain the exact result for the correlation

function of their positions, which reads:

〈R(R+∆R)〉 = exp (−β(URR(∆R) + Ueff (∆R)))

(∫
Ω

dRR(R+∆R)
)

(12)

Indeed, this shows that a properly designed effective potential can drive the self

assembly of even low-abundant particles. This is especially interesting in the

biological context.

3.2 Biological meaning

In in vivo experiments one deals with effective dynamics almost exclusively.

The reason is that one cannot dye every particle in the biological system, let

alone register its trajectory. This makes the effective interactions important in

principle. However, the equilibrium theory of effective interaction by no means

can be directly applied to the highly non-equilibrium intracellular environment.

Nevertheless, basing on certain field-theoretical formulations of non-equilibrium

thermodynamics (e.g. [46]), one might expect that it applies at least locally.

For this reason let us speculate on several processes in which the effective inter-

actions can affect the biological systems.

As we have already mentioned, obtaining a higher organization by the means

of phase transitions requires both the abundance of particles and the ability to

globally vary thermodynamical parameters. None of these is readily available

for a cell. While the overall packing in the cellular environment is high, the

concentrations of specific compounds are not. As pointed out by Bustamante
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[47], in bacteria they are usually as low as single molecules. Another issue is that

the requirement to maintain the physiological conditions makes the significant

variation of temperature, pressure or volume unfavorable. On the other hand,

a cell is well equipped to modify its chemical composition. As we have discussed,

changing the composition affects the effective interactions and provide a valuable

mechanism of self-organization.

The typical problem of molecular biology is the formation of complexes and

aggregates. Let us consider two particles which can bind chemically. To form

a bond, these particles has to position in a specific spatial configuration. Incor-

porating the effective interaction into this picture has some dire consequences.

First of all, effective interactions introduce an additional potential which can

be attractive. This means that whenever two parts of a complex exploring ran-

domly the available volume come close enough to feel the effective potential,

their diffusion is no longer that of the free particles. Effective interaction can

bind them non-specifically, sometimes with energy higher than thermal fluctua-

tions. This means that particles can be trapped in the vicinity of each other for

a significantly longer time than the overall characteristic timescale of diffusion.

Finally, the non-specific binding due to the effective interactions provides the

additional time for the rotational diffusion to find configuration required for

chemical binding.

Another aspect of complex formation is the time required to find the other

particle. The binding by effective interactions means that it is not necessary

to exactly find the surface of the other particle, but it is enough to get in the

range of this interaction. While for the hard sphere model this additional range

is as small as the size of depletant particles, for the electrostatic interactions

this can be significantly larger. In [A1], we show that the range of interaction

can be larger than the radius of a particle. This means that in many situations

two parts of a complex seek for an object which is considerably bigger that the

molecule itself. Although this effect strongly depends on the interaction type,

the described mechanism can potentially enhance the search process.
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Yet another influence is that the effective interactions provide not only the

particle-particle interactions, but it may also result in the affinity to the sur-

faces. This can also affect the complex formation, since the bigger particles

might tend to reach a surface first (be it cell membrane or the surface of an or-

ganelle) and then seek each other diffusively taking the advantage of the reduced

dimensionality and the mechanisms described in the two previous paragraphs.

However, it should be mentioned that the surfaces in the cellular environment

are highly functionalized with proteins and receptors and this can seriously af-

fect the particle-surface affinity of entropic origin.

Finally, the effective interactions might contribute to the sub-diffusive be-

havior. The sub-diffusion appears for particles which combine free diffusion

and trapping. When the effective interaction can bind a particle with the en-

ergy comparable to the fluctuation magnitude, this satisfies the aforementioned

situation. From this perspective, the effective interactions can enhance the sub-

diffusive character of the transport in cytoplasm.

4 Spatial correlations in the thermal noise

4.1 Effective interactions from the stochastic perspective

We have discussed the effective interactions from the perspective of observed

species, in the spirit of ’deterministic’ interpretation. However, while the effec-

tive interactions enter the partition function like a regular potential, their origin

is purely stochastic. This means that they should not be perceived as a direct

force between two distinguished particles, but rather as an effect of collective

and spatially correlated motion of the environment particles. This is what we

have called the ’stochastic’ picture and in this section we will make the rela-

tion between the spatial correlations in thermal noise and effective interactions

explicit. However, since the thermal noise is closely related to the concept of

Langevin equation, let us briefly discuss its nuances.
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In its standard form (altough including the inertial terms), the Langevin-

type equation for a set of N1 particles reads:

m1R̈i + γṘi +

N1∑
j 6=i

Fi(Ri −Rj) = ξi(t) (13)

In this notation Fi(Ri − Rj) denotes all inter-particle forces which we would

like to include in the dynamics. ξi is the stochastic force experienced by the

i-th particle and in the standard approach it is assumed that:

〈
ξi(t) · ξj(t′)

〉
∝ δijδ(t− t′) (14)

so there are no temporal nor spatial correlations in this force. The friction term

γṘi is determined by the Stokes law. The attempts to justify Langevin equa-

tions on the microscopic basis has led to the discovery of Generalized Langevin

Equations (GLE), in which the temporal correlations in stochastic force are

accompanied by the memory kernel in the friction term [24, 11]. Since GLE

are capable of describing sub-diffusion [11], enormous effort has been put into

understanding the relation between GLE and other formalisms leading to sub-

diffusion, e.g. Continuous Time Random Walks and fractional Fokker-Planck

equations [4]. On the other hand, relatively little work has been devoted to

the presence of spatial correlations in the noise. This problem occurred in the

context of the diffusion in plasma [48, 49] and for the problem of spatial confine-

ment [50], yet it has been addressed only from the perspective of a single particle.

No systematic treatment of multi-particle systems is known to the present au-

thor. While the spatial correlations in the noise could possibly demand some

currently unknown form of friction, which would account for collectivity and

self-organization, in this thesis (and especially in paper [A2]) we restrict ourself

to the Stokes law. Nevertheless, we are aware that the friction which should

accompany the spatially correlated noise is an open problem.

Let us focus now on the equilibrium systems, in which the temporal correla-

tion is negligible because the probability distribution for any physical value has

achieved a steady state. ξi mimics the interaction with environment, so it can
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be interpreted as the sum of forces acting on the particle in a given moment:

ξi =

N2∑
j

∇RiU(|Ri − rj |) = ξ(Ri) (15)

It is possible now to interpret the noise correlation function
〈
ξ(Ri)ξj(Rj)

〉
as

the average with respect to the probability distribution derived from Ξtot as

in (8). This reads:

〈ξ(Ri) · ξ(Ri +∆R)〉 =
∫
Ω

dRi

∫
Ω

{dr}P (Ri,Ri +∆R, r1, . . . , rN2
)×

×

 N2∑
j

∇RiU(|Ri − rj |)

 ·

 N2∑
j′

∇RiU(|Ri +∆R− rj′ |)

 (16)

where:

P (Ri,Rj , r1, . . . , rN2
) =

zN1
1 zN2

2

ΞtotN1!N2!

∫
Ω

{dR}i,j×

exp

−β

1

2

N1∑
k,k′

k 6=k′

URR(|Rk −Rk′ |) +
N1,N2∑
k,l

U(|Rk − rl|) +
1

2

N2∑
l,l′

l 6=l′

V (|rl − rl′ |)




(17)

The equations (16) and (17) constitute the formal definition of noise corre-

lation function. Unfortunately, it is not possible to proceed with calculations

for the current form of this equation. Its structure is complicated by the fact

that we express the partition function in terms of space-momentum coordinates.

However, there exists a much more convenient representation, which allows us

to calculate the desired correlation function.

4.2 Occupation number functional formalism

We will now use the occupation number functional, the formalism which we

meticulously introduce in paper [A1]. While in this section we restrict our

considerations to the canonical ensemble, in [A1] we use the grand canonical

ensemble. For the current derivation, the differences are irrelevant.
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We introduce a field α(r) which provides the number of environment particles

in a certain position r. Let us remind that the total number of environment

particles reads N2, and the total number of distinguished particles reads N1.

What follows:

N2 =

∫
Ω

drα(r) (18)

The environment-environment interaction and cross-species interaction can be

translated in the following way:

N2∑
i,j

V (|ri − rj |) =
∫∫

Ω

drdr′α(r)α(r′)V (|r− r′|) (19)

N1∑
i

N2∑
j

U(|Ri − rj |) =
∫
Ω

drα(r)U(|Ri − r|) (20)

Now, we propose to treat the partition function of environment particles as the

path integral with respect to the every physically meaningful field α(r), namely:

Ξ =
z̃N2
2

N2!

∫
D[α] exp (−βH) =

z̃N2
2

N2!

∫
D[α]×

× exp

(
−β

(
N1∑
k

∫
Ω

drα(r)U(|Rk − r|) + 1

2

∫∫
Ω

drdr′α(r)α(r′)V (|r− r′|)

))
(21)

Here
∫
D[α] stands for the path integral measure. In [A1] we discuss the sub-

tleties of
∫
D[α] in detail. In (21) we modify z2 in the following way:

z̃2 =

(
2πm2

βh2

)D/2

eβV (0) (22)

This compensates for abandoning the i 6= j restriction in (19). Further, we can

apply α(r) to translate ξ(Ri):

ξ(Ri) =

∫
Ω

drα(r)∇Ri
U(|Ri − r|) (23)

In the light of (23), one can notice that:

∇Ri
exp

(
−β

(
N1∑
k

∫
Ω

drα(r)U(|Rk − r|)

))
=

= −βξ(Ri) exp

(
−β

(
N1∑
k

∫
Ω

drα(r)U(|Rk − r|)

)) (24)
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For shorter notation we will use:

HRR =
1

2

N1∑
k,k′

k 6=k′

URR(|Rk −Rk′ |) (25)

From the path integral formulation (21) and identity (24), it follows that the

noise correlation function reads:

〈ξ(Ri) · ξ(Rj)〉 =
zN1
1 z̃N2

2

N1!N2!Ξtot

∫
Ω

{dR}je−βHRR

∫
D[α]ξ(Ri) · ξ(Rj)e

−βH

=
zN1
1 z̃N2

2

N1!N2!Ξtotβ2

∫
Ω

{dR}je−βHRR∇Ri
· ∇Rj

Ξ

(26)

Knowing the relation (11) between Ξ and the effective potential Ueff , one can

write:

〈ξ(Ri) · ξ(Rj)〉 =
zN1
1 z̃N2

2

N1!N2!Ξtotβ2

∫
Ω

{dR}je−βHRR∇Ri
· ∇Rj

e−βUeff (27)

Further, in this integral we can move ∇Ri
from the second factor to the first,

so:

〈ξ(Ri) · ξ(Rj)〉 = − zN1
1 z̃N2

2

N1!N2!Ξtotβ2

∫
Ω

{dR}j∇Rie
−βHRR · ∇Rje

−βUeff (28)

This result can be finally rewritten in a more compact form:

〈ξ(Ri) · ξ(Rj)〉 = −〈FRR,i(Ri) · Feff,j(Rj)〉 (29)

where FRR,i(Ri) = −∇Ri
HRR and Feff,j(Rj) = −∇Rj

Ueff . This establishes

the formal relation between effective interactions and spatial correlations in

thermal noise.

5 Included papers: summary and comments

5.1 Analytical theory of effective interactions in binary

colloidal systems of soft particles

Up to now, it should be clear that the understanding of effective interactions

in binary mixtures is a crucial problem. Although the general expression for
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effective interactions is given by (11), it is ineffective. In [A1] we introduce

a new analytical method of calculating the effective interactions, which is al-

ternative to standard techniques. The entire approach is based on translating

the Hamiltonian of the system from the momentum-position variables into the

occupation field α(r). The interactions are translated according to equations

(18)-(20). Similarly to (21), one can translate the grand partition function of

the system from the space-momentum problem into the path integral over every

possible field α(r). Replacing the problem of space-momentum integrals with

path integral is similar to the approach of Density Functional Theory. However,

we do not resort to the functional differentials and Mayer bond expansion in

order to calculate the correlation function, as the standard approach goes. In-

stead, we employ the phonon-theory methods expanding α(r) into its Fourier

modes and interpreting the path integrals as an integral over these mods. This

approach allows us to identify the following expression for effective interactions:

Ueff (Ri −Rj) = − 1

(2π)D

∫
Ω̃

dkeik·(Ri−Rj)
|U(k)|2

V(k)
(30)

where:

U(k) =
∫
Ω

dreik·rU(r)

V(k) =
∫
Ω

dreik·rV (r)

are Fourier transforms of the microscopic potentials. The formula (30) is the

most significant outcome from the proposed formalism and it is central for this

thesis.

The status of formula (30) requires a comment. The path integrals should

be performed over all physically meaningful fields α(r), but it is difficult to ex-

press a non-negative field in terms of its Fourier modes. While our approach

simplifies the integrands, it comes at the cost of complicated integration lim-

its. Nevertheless, the formula (30) is factored out before any approximation to

calculate the integrals is applied, so we expect (30) to act as an zeroth-order

theory. In fact, one can see that some important modifications are embedded in
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the neglected part, since the shape of (30) does not depend on the temperature

nor concentrations and these parameters appear in our estimates of corrections.

On the other hand, (30) leads to some non-trivial potential shapes, and, as we

show, despite all its downsides, it is surprisingly robust in producing meaningful

results.

Once the formula (30) is established, we employ it to predict the effective in-

teractions in several systems. The first system is a classical problem of charged

hard spheres in the presence of ions. We model this situation using Coulomb po-

tentials for electrostatic interactions and step function for the excluded regions.

Applying the formula (30) we predict that effective interactions counterbalance

Coulomb repulsion, so the total interaction between two spheres is described

by the Yukawa potential. This result fully agrees with the standard model

for this problem, which is known as Derjaguin-Landau-Verwey-Overbeek theory

and predicts the effect of charge screening.

Another class of systems is the binary mixture of particles described solely by

Yukawa potentials. Also in this case it is possible to predict the effective inter-

actions analytically. Our results indicate that it is possible to obtain a variety of

effective interactions ranging from attractive to repulsive. Although this model

is too simplified to describe particles in the solution, we draw a connection with

the phase separation in plasma research.

Yet another model is aimed at describing a binary system of particles which

consist of a hard sphere core and the Yukawa interaction tail. As discussed ear-

lier, this type of particles is a reliable model of charged particles in the screening

ionic solution. In this case we consider a binary mixture of particles which differ

in their size and the sign of interaction. In [29] such binary systems have been

simulated allowing either attractive, repulsive or no interaction tail. In general,

nine possible combinations of interactions are possible and a variety of possible

effective interactions is revealed. In particular, the repulsive big-small interac-

tion induces attractive effective interaction, while the attractive big-small po-

tential results in the effective repulsion. For big-small interaction reduced to the

hard sphere case, the effective interaction depends on the sign of small-small in-
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teraction tail. Applying (30), we analytically predict the expression for effective

interactions, albeit using two Yukawa potentials, one for the core of a particle

and the other one for the interaction tail. Despite this modification, we succeed

in qualitatively reproducing the effective interactions in terms of their sign and

range for almost every case. The best agreement is achieved for the ’attraction-

through-repulsion’ case, while for the ’repulsion-through-attraction’ our model

does not reproduce a higher order oscillatory structure. It is not clear whether

this discrepancy is the result of approximations in (30) or replacing the hard

sphere potential with its soft substitute. Nevertheless, it should be emphasized

that this model has not been solved analytically before and our results are in

satisfying qualitative agreement with simulations.

Finally, we discuss the systems of Gaussian particles, which are a well estab-

lished model for polymers in the semi-dilute regime. We predict the effective

interaction to be also a rescaled Gaussian potential, although always attractive.

Using this result we examine the condition for polymer separation in binary

mixture, assuming that the separation occurs when the total interaction be-

tween bigger particles is also attractive. This happens whenever the effective

interaction prevails over the microscopic repulsion, which is dependent on the

system parameters, most notably on the ratio of gyration radii. Finally, we are

able to obtain an analytical prediction for the phase separation condition.

The formula given in the article is comparable to the spinodal decomposition

condition for Gaussian particles [51, 52]. However, the result included in [A1]

contains a mistake due to an inconsistent choice of 2π factor in the Fourier

transform of potentials. In fact, after refinement, the obtained result turns out

to be exactly the same as the spinodal decomposition condition from [51, 52]

and [A4].

Summarizing the analyzed examples, our model provides a sufficient and

unified approach to analytically reproduce the specific features of systems as

different as polymers and charged particle mixtures. The results are generally

comparable to the mean-field approach. However, it should be pointed out that

the mean-field nature is already embedded e.g. in the Gaussian and Yukawa
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microscopic potentials, since they are derived from a lower-level theories. On

the other hand, the ’renormalized’ nature of these microscopic potentials means

that they already include thermodynamical parameters. This is the advantage

which remedies the fact that (30) lacks a dependence on these parameters.

Having this in mind, the presented theory could be applied in the high-level

modeling, since its analyticity makes it possible to avoid extensive numerical

calculations usually necessary to determine effective interactions.

5.2 Polymer unfolding and motion synchronization induced

by spatially correlated noise

In the second article we explore the possibility of enhancing the molecular mod-

eling by the inclusion of spatially correlated effects from the environment. As

we have already discussed, the spatial correlations in thermal noise appear in

the multicomponent systems, as well as in the cytoplasmic micro-flows and in

the glassy state. The formula (27) relates effective interaction and the noise

correlation function.

Langevin equations, in which a stochastic force mimics the collisions with

environment particles, is a convenient tool in the molecular dynamics simula-

tions. In the standard approach, this stochastic term is non-correlated, either

spatially or temporally. While there is an ongoing interest in the generalized

Langevin equations, in which the temporally correlated noise is accompanied

by the friction memory kernel [11], little work has been done to understand the

effects of spatial correlations in the thermal noise. In this paper, we propose to

model the collective, spatially correlated behavior of environment via the ap-

plication of spatially correlated noise in the Langevin dynamics. The equations

of motion for observed particles has the general form of (13), but the noise

term ξ is a random correlated Gaussian variable. However, for the purpose of

this article we limit our considerations to the two dimensional systems and the
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following correlation function:

〈ξx(ri(t))ξx(rj(t′))〉 = 〈ξy(ri(t))ξy(rj(t′)〉 =

=
2kBTγ

m
exp

(
−|ri − rj |

λ

)
δ(t− t′)

(31)

For the simplicity of the generation procedure, we assume no correlations be-

tween different directions, so 〈ξx(ri(t))ξy(rj(t′))〉 = 0. The generated noise

tends to form clusters of vectors characterized by a similar length and direction

within the range of λ, but their pattern changes with every iteration.

The system that becomes a subject to the spatially correlated disturbance

is a 2D polymeric chain. The chain model is based on the bead-spring approach

(harmonic potential between nearest neighbors), but with two significant mod-

ification. One difference is the inclusion of a global Lennard-Jones potential for

each bead, which introduces the excluded volumes effects. The other modifica-

tion is the harmonic potential between second nearest neighbors, which results

in the saw-like conformations minimizing the energy of the chain. In the intro-

ductory part of the article we analyze the energy landscape for a single bead

in the relation to the position of its four nearest neighbors. This allows us to

conveniently represent the conformational space both for the relaxed and the

locally stretched geometry.

The presence of spatial correlations in the noise leads to a remarkable change

in the system dynamics. First, we introduce a measure of synchronization to

show that the spatial correlations induce the synchronization of beads motion,

i.e. the velocity vectors of beads within the correlation length are similar. This

is further confirmed by the investigation of time correlation functions for angles

between segments (ψ) and for the length of the segments. There is a significant

rise in these time correlation functions, which indicates that the shape of chain

is more persistent than in the presence of non-correlated noise.

In the thermodynamical perspective, the spatially correlated noise attenu-

ates the effect of increased temperature. Generally, as the magnitude of the

noise grows, the angular degrees of freedom are released and the distribution

of angles Φ(ψ) evolves from a double-peaked shape to the mono-peaked. How-
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ever, in the presence of non-zero spatial correlations, this transition requires

remarkably higher temperature, once again making the chain geometry more

persistent.

All these observations are somewhat expected, since the spatially correlated

noise provides a fairly uniform forcing over the correlation length. However,

the distribution Φ(ψ) allows us to observe one more effect. This is the sponta-

neous unfolding, manifested by the narrowing of Φ(ψ), as the noise correlation

length grows. This means that in the presence of non-zero spatial correlations

more elongated conformations are preferred. This is an interesting result, since

linearized structures are neither energetically optimal nor they minimize the

polymer entropy. This means that the spatially correlated noise can induce and

support the non-equilibrium state of the system. In [A2] we attempt to explain

the unfolding effect from the perspective of beads mobility. However, our addi-

tional studies over the distribution of linearized fragments suggested a different

explanation, and this is included in the paper [A3].

Although limited to the specific case, our results show that the spatial corre-

lations in the behavior of environment can effectively transfer into the dynamics

of the observed subsystem. As such, they provide another tool of system control

at the molecular level. While introducing the spatial correlations via the noise

term requires more computational effort than the standard Langevin dynam-

ics, it can be applied instead of full-scale molecular simulations. This approach

is especially tempting whenever the correlation function is already known, e.g.

from experiments.

5.3 Reinterpreting polymer unfolding effect induced by

spatially correlated noise

This paper compliments the publication [A2] and it is focused on analyzing

the spontaneous unfolding effect more thoroughly. The narrowing of the dis-

tribution Φ(ψ) indicates that a significant number of segments tend to form

a linearized structure. Comparing the angles between subsequent segments we
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introduce a measure indicating whether this pair of segments can be treated

as linearized. Further, we gather the data regarding the average abundance

of linearized fragments containing different numbers of segments, for a range

of temperatures and correlation lengths in the noise. These data indicate that

the spontaneous unfolding effect is mainly based on the short, 2-3 segment long

linearized fragments.

This fact suggests the following interpretation. Let us consider a single

instance of time. The spatially correlated noise provides little relative forcing

below correlation length λ, i.e. it can move the beads within the range of λ as

a one group. Nevertheless, on the length-scale greater than λ these groups move

in an uncorrelated manner, so at several sites the chain becomes stretched (at

least three beads in line). In the following moment, the spatially correlated noise

imposes a new pattern of forces and it is probable that the stretched fragments

are now moved as a one entity, while the new frustrated sites are generated.

This process leads to the accumulation of linearized fragments and, globally,

to the chain unfolding. One can also notice that the reduction in the relative

forcing at the length-scale below λ hinders the relaxation processes.

The methodology applied in this paper provides us insight into the statistics

describing the chain. This will become important in the context of next paper

in which we are interested in the statistics of long fragments.

5.4 Non-Gaussian polymers described by alpha-stable chain

statistics: model, applications and effective interac-

tions in binary mixtures

In the last paper included in this thesis we apply the tools developed in the

previous articles to introduce the model of non-Gaussian polymeric chain and

its applications to the on-surface separation.

The Gaussian chain is the elementary model of a polymer, in which the

geometry of a chain is equivalent to the trajectory of a Brownian particle. This

model is based on the Gaussian statistics, which makes it possible to calculate an
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entire hierarchy of analytical results. In particular, this includes the distribution

of segments around the mass center of the chain, the coarse-grained interaction

potential between two chains and the condition for spinodal separation in binary

mixtures. Most of these results are obtained thanks to the fact that the Gaussian

distribution is stable.

In this paper we propose to extend the approach known from the Gaus-

sian chain theory to the wider class of alpha-stable distributions. In this case,

the geometry of a chain can be interpreted as a result of diffusion including

Levy flights and the relevant statistics have the asymptotic form of a power-

law. Thanks to the alpha-stability we are able to recreate the results listed

in the previous paragraph, obtaining the analytical formulas which are closed-

form in the Fourier space. Most notably, we predict the generalized spinodal

decomposition condition:

ε̃ >

(
4gα

(1 + gα)2

)D/(2α)

(32)

where α is the characteristic exponent of the distribution, D is the system

dimensionality, g is the ratio of gyration radii and ε̃ is the common energy scale of

particle interactions. This result is calculated with the aid of formula (30), which

is particularly suitable to handle interactions characterized by a well-defined

Fourier transform. For α = 2 and D = 3 the generalized condition becomes the

spinodal decomposition condition for Gaussian particles, which can be found in

literature [51, 52].

While the idea of alpha-stable polymeric chains might seem impractical,

a few physical situations in which this model is relevant, are discussed in the

article. In particular, we provide our simulations of polymeric chain under the

spatially correlated noise, as one example. The simulations are performed in

the same manner as in [A2], but we replace the exponential correlation function

with the power-law function. Using the methodology from [A3], we analyze the

distribution of n-segment long linearized fragments to show the effect of spatial

correlations on the chain. However, in this case we are explicitly interested in

the very long (up to 50 segments) linearized fragments. The distribution widens
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due to the unfolding effect [A2] and gradually approaches a shape that can be

modeled with a heavy-tailed alpha-stable distributions.

Another context is provided by the process of polymer adsorption. As dis-

cussed by Bouchad and Daoud [53], the radius of polymeric chain in the direction

parallel to the surface can be modeled with random walk and it is dependent

on the strength of adsorption. In the strong adsorption limit this radius is gov-

erned by the Gaussian statistics. However, in the weak adsorption limit, this

distribution becomes of a power-law type, with characteristic exponent α = 1.

This behavior can be conveniently modeled by an alpha-stable distribution.

In the final part of our article, we analyze the separation in binary mixture

of polymers, considering ’on surface’ versus ’in the bulk’ separation. The two

species of particles can differ both in the number of segments and in their persis-

tence length. Knowing that the statistical characteristics of adsorbed polymers

(D = 2, α = 1 or α = 2) are different from the case of freely floating particles

(purely Gaussian case, D = 3, α = 2), we compare the generalized spinodal de-

composition condition for both situations. In the case of strong adsorption limit,

three scenarios are possible. These are: (a) homogeneous mixing in both phases,

(b) simultaneous separation in the bulk and on the surface and (c) separation on

the surface coexisting with homogeneous solution. In the weak adsorption limit

these three scenarios occur for slightly different parameters, but there is also

one additional scenario. Namely, it is possible that there occurs (d) demixing

in the bulk, while the coverage on the surface is still homogeneous.

In summary, the theoretical concept of non-Gaussian polymers leads to the

practical problem of surface coverage. This issue is important from both exper-

imental and industrial point of view. Our model provides an insight into the

entropic aspect of phase separation. One should remember, however, that this

picture can be strongly modified by the properties of a surface and the inclusion

of an adsorption mechanism.
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6 Final remarks

In this thesis, the spatially correlated phenomena have been discussed, with

emphasis on their formal origin and their impact on the behavior of a system.

Spatial correlations are related to the multicomponent mixtures and to the prob-

lem of effective interactions. The new, analytical theory of effective interactions

is proposed and a formal link between spatial correlations and effective inter-

actions is established. The proposed theory proves itself as a versatile tool,

efficient in the modeling of both ionic and polymeric systems. It also provides

a convenient framework for the analysis of molecular systems with new inter-

action types, such as non-Gaussian polymers, and provides an insight into the

spinodal decomposition of their mixtures. The influence of spatial correlations

on the dynamics of a polymeric chain is also investigated in this thesis. Although

restricted to a single model system, our results indicate that spatial correlations

can significantly affect the system, leading to a quantitatively new behavior,

e.g. spontaneous unfolding. While the presented approach is still not directly

applicable to the highly non-equilibrium systems, it forms a foundation for fur-

ther development. In particular, the analytical theory of effective interactions

could be further applied to the high level modeling of complex bio-molecular

systems such as membranes, chromatin etc., provided that adequate models of

microscopic interactions could be established.

A few unexplored areas open in the context of this thesis. One problem is

the more precise treatment of effective interactions, in order to include temper-

ature and density effects. While the presented theory seems to be a reasonable

starting point, some vital modifications are still necessary to obtain even wider

applicability and firmer foundation for our results. Especially, the mechanism of

phase transitions should be incorporated into our approach. Another interest-

ing problem is the formal derivation of Generalized Langeving Equations with

spatially correlated noise. While the link between statistical mechanics and

the spatial correlations in the stochastic force has been signalized, the problem

of friction in such systems is an open challenge. In the light of our findings,
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the theory of such Langevin equations appears as an attractive field of future

research, providing a further insight into the dynamics of self-organization.
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Phys. Rev. Lett., 111, 8, 088101 (2013)

[35] J. J. Binney et al., The Theory of Critical Phenomena (Oxford University

Press, Oxford, 1992).

[36] L. Berthier, G. Biroli, Rev. Mod. Phys., 83, 2, 587 (2011)

[37] P. N. Pusey, W. van Megen, Phys. Rev. Lett. 59, 18, 2083 (1987)

[38] E. R. Weeks, J. C. Crocker, D. A. Weitz J. Phys.: Condens. Matter, 19,

205131 (2007)

[39] C. Dalle-Ferrier, C. Thibierge, C. Alba-Simionesco, L. Berthier, G. Biroli,
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While density functional theory with integral equations techniques are very efficient tools in the numerical
analysis of complex fluids, analytical insight into the phenomenon of effective interactions is still limited.
In this paper, we propose a theory of binary systems that results in a relatively simple analytical expression
combining arbitrary microscopic potentials into effective interaction. The derivation is based on translating a
many-particle Hamiltonian including particle-depletant and depletant-depletant interactions into the occupation
field language, which turns the partition function into multiple Gaussian integrals, regardless of what microscopic
potentials are chosen. As a result, we calculate the effective Hamiltonian and discuss when our formula is
a dominant contribution to the effective interactions. Our theory allows us to analytically reproduce several
important characteristics of systems under scrutiny. In particular, we analyze the following: the effective attraction
as a demixing factor in the binary systems of Gaussian particles, the screening of charged spheres by ions,
which proves equivalent to Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, effective interactions in the
binary mixtures of Yukawa particles, and the system of particles consisting of both a repulsive core and an
attractive/repulsive Yukawa interaction tail. For this last case, we reproduce the “attraction-through-repulsion”
and “repulsion-through-attraction” effects previously observed in simulations.

DOI: 10.1103/PhysRevE.90.032303 PACS number(s): 82.70.Dd, 89.75.Fb, 61.20.−p

I. INTRODUCTION

Effective interactions are of fundamental interest in the field
of soft matter physics [1], especially in colloid studies. Their
significance is enormous because they are essential for spon-
taneous self-organization, and they play a key role in polymer
studies [1] as well as gel- and glass-forming research [2,3].
They are also important for molecular biophysics [4] and
find multiple applications in nanotechnology [5]. Qualitatively
similar phenomena of size separation are also encountered in
vibrated granular matter research [6,7].

A comprehensive introduction to the contemporary theories
of effective interactions can be found in [1,8,9]. The first
successful description of effective interactions dates back
to the research of Asakura and Oosawa [10,11], and later
on to the work of Vrij [12]. Their approach, which was
based on the consideration of excluded volume, is still used
today, especially for nonspherical particles (e.g., [13,14]).
At the advent of optical tweezers technology [15], effective
interactions became accessible for direct measurements [16],
which sparked a new interest in the systems for which the
Asakura-Oosawa model proved insufficient.

One reason for violating the predictions of the Asakura-
Oosawa model is that at high volume fraction packing, the
system approaches a glassy transition, experiencing jammed
dynamics. This is observed both experimentally [3,17,18]
and via simulations [19–21]. On the other hand, systems
with nontrivial or long-range interactions can be constructed.
This includes charged particles [22], polymer-coated parti-
cles interacting via mushroom-like potentials [23], or poly-
mer coils, which behave like soft, Gaussian-profiled parti-
cles [24]. The molecular-dynamics simulations for various
combinations of repulsions and attractions have also shown
that unexpected effects can be encountered, e.g., effective

*maciej.majka@uj.edu.pl

repulsion arising from attractive microscopic potentials
or effective attraction induced by repulsive microscopic
potentials [25].

A general theory capable of handling these phenomena
has been proposed by Dijkstra et al. [26]. In their approach,
a partition function for the system with arbitrarily chosen
particle-depletant and depletant-depletant interaction is sys-
tematically expanded in terms of Mayer bond functions [1,8].
While this expansion is exact in principle, it is usually chal-
lenging to include high-order terms due to their mathematical
form and nonperturbative character. Approximated techniques
also exist based on integral equations, closure relations, and
utilizing various density correlation functions [1,8]. Both
tools have become a standard in the field, allowing the ef-
ficient numerical analysis of various systems, e.g., [24,27,28].
However, the analytical form of effective interactions is
known only for several model systems (see [9] for review),
and similar results for complex fluids are rather scarce
(e.g., [29,30]).

While it is notoriously challenging to predict the ef-
fective interactions from arbitrary microscopic potentials,
a simplified, tough analytical theory could find multiple
applications in colloid research, e.g., in high-level solution
design or in the context of Langevin dynamics simulation
(e.g., [31–34]). In this paper, we propose such a theory,
which offers both generality and comprehensible analytical
form.

We consider a binary system of spherically symmetric
particles with arbitrarily chosen microscopic potentials. In
our approach, we introduce the so-called occupation func-
tional (representing a number of particles at every position)
and translate the semi-grand-canonical ensemble into the
path-integral problem related to this functional. Regardless
of microscopic potentials, this method turns the partition
function into multiple Gaussian integrals. There are two major
advantages of this transformation. On the one hand, we are able
to identify and factorize a closed-form formula contributing to

1539-3755/2014/90(3)/032303(14) 032303-1 ©2014 American Physical Society



M. MAJKA AND P. F. GÓRA PHYSICAL REVIEW E 90, 032303 (2014)

effective interactions, which is exact. On the other hand, we
can approximate the effective Hamiltonian in order to identify
further contributions and propose the criteria under which the
exact part is dominant.

In our model, similar to [1] and [26], we consider two
distinct species of particles in the D-dimensional volume
� = LD . The system has temperature T , and we will denote
β = (kBT )−1, where kB is the Boltzmann constant. We will
also use h to denote the Planck constant. In the system,
there are N1 particles of the first kind, and we denote the
position and momentum of the ith particle with Ri and
Pi , respectively. The microscopic potential between these
particles reads URR(|Ri − Rj |), and effective interaction will
be derived for this species. The second species, identified as
depletant, consists of N2 particles, which interact via potential
V (|ri − rj |), and their positions and momenta are denoted
by ri and pi . We will use the grand-canonical ensemble for
depletant particles, so we associate a chemical potential μ

with this species. Both types of particles cross-interact via the
potential U (|Ri − rj |). The masses of colloid and depletant
particles are m1 and m2, respectively. The total Hamiltonian
of the system in its initial form has three contributions:

Htot = HRR + HrR + Hrr, (1)

where

HRR =
N1∑
i

P2
i

2m1
+ 1

2

N1∑
i,j

i �=j

URR(|Ri − Rj |), (2)

HrR =
N1∑
i

N2∑
j

U (|Ri − rj |), (3)

Hrr =
N2∑
i

p2
i

2m2
+ 1

2

N2∑
i,j

i �=j

V (|ri − rj |). (4)

Let us introduce a pair of Fourier transforms:

U(k) =
∫

�

dr eik·rU (r),

V(k) =
∫

�

dr eik·rV (r).

We will show that effective interaction between a pair of
colloid particles positioned at Ri and Rj has the following
contribution:

Ueff(Ri − Rj ) = − 1

(2π )D

∫
�̃

dk eik·(Ri−Rj ) |U(k)|2
V(k)

. (5)

This result is exact and sufficient to analytically reproduce
many important characteristics of binary mixtures. This
includes demixing of Gaussian particles, screening of charge
in the system of charged spheres and ions, and “attraction-
through-repulsion”/“repulsion-through-attraction” effects for
particles characterized by a Yukawa interaction tail and a
repulsive core. All of these effects were observed previously
in simulations or described with various theories, but our
approach provides a common framework for all of them,
and our predictions are at least in qualitative agreement with
existing results. By calculating the approximated form of

the effective Hamiltonian, we will also show that there are
other sources of effective interactions, and we will propose a
criterion under which Ueff(Ri − Rj ) is dominant.

The paper is organized as follows: In Secs. II A–II C, we
introduce our framework of occupation functional, in Sec. II D
the formula for Ueff(Ri − Rj ) is derived, in Sec. II E the
approximated partition functions is calculated, and Sec. II F
concludes with the effective Hamiltonian and the accuracy
of our model. The assumptions and caveats regarding the
derivation are summarized in Sec. II G. Section III contains
examples of applications for our theory. These includes the
binary mixtures of Gaussian particles (Sec. III B), charged
spheres in the presence of ions (Sec. III C), mixtures of Yukawa
particles (Sec. III D), and mixtures of Yukawa particles with
impenetrable cores (Sec. III E).

II. MODEL DERIVATION

A. System partition function

To begin the derivation of our model, we have to specify
the partition function of the system. Our aim is to apply a
new way to integrate out the depletant degrees of freedom. As
a result, the effective Hamiltonian will be derived from the
remaining expression. The initial Hamiltonian Htot is defined
by Eqs. (1)–(4). For this Hamiltonian, we introduce the mixed
ensemble �tot, which is the grand-canonical ensemble for the
depletant and the canonical ensemble for colloid particles.
Written in standard space-momentum coordinates {Pi ,Ri}N1

and {pi ,ri}N2 , the mixed ensemble can be regrouped in the
following manner:

�tot =
N1∏
i

∫
dPidRi

exp
(−β(HRR − 1

β
ln �)

)
N1!hDN1

, (6)

where

Heff = HRR − 1

β
ln � (7)

is the effective Hamiltonian for the first species of particles,
and

� =
+∞∑
N2=0

∫
dpidri

exp[−β(HrR + Hrr − μN2)]

N2!hDN2
. (8)

According to [1], the term

U tot
eff = − 1

β
ln � (9)

acts as an additional potential, and this is the source of effective
interactions. Therefore, calculating � is of central interest for
us.

First, it is feasible to rewrite Hrr in the following manner:

Hrr =
N2∑
i

p2
i

2m2
+ 1

2

N2∑
i,j

V (|ri − rj |) − N2

2
V (0), (10)

which explicitly introduces V (0). Another step is to integrate
out depletant momenta pj , which allows us to rearrange � into
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the form

� =
∑
N2

1

LDN2

N2∏
j

∫
drj

exp[−β(H − μ̃N2)]

�(N2 + 1)
, (11)

where �(· · · ) is the Euler Gamma function replacing the
factorial, and

H = 1

2

N2∑
i,j

V (|ri − rj |) +
N1∑
i

N2∑
j

U (|Ri − rj |), (12)

μ̃ = μ + 1

2
V (0) + D

2β
ln

2πL2m2

βh2
. (13)

The partition function � given in the form (11) is ready to be
translated into the occupation field representation.

B. Occupation field representation

Let us consider a scalar field that assigns the number of
depletant particles α(r) at certain position r to this position.
The total number of depletant particles in the system reads

N2 =
∫

�

drα(r). (14)

If α(r) particles occupy a position r and α(r′) particles occupy
position r′, then the energy of interaction between the sites r
and r′ is equal to α(r)α(r′)V (|r − r′|). Therefore, we can use
α(r) to translate interaction terms in the following manner:

N2∑
i,j

V (|ri − rj |) =
∫∫

�

dr dr′α(r)α(r′)V (|r − r′|), (15)

N1∑
i

N2∑
j

U (|Ri − rj |) =
N1∑
i

∫
�

dr α(r)U (|Ri − r|). (16)

In principle, α(r) takes only discrete values 0,1,2, . . . , but we
will allow it to vary continuously.

The formulas (14)–(16) suggest that we can understand H
and N2 as the functionals of α(r). In turn, we could replace
the multiple integrations in (11) with a functional integral with
respect to α(r), namely

� →
∫

D[α]
exp[−β(H − μ̃N2)]

�(N2 + 1)
. (17)

The path integral can be specified as the integral with
respect to the Fourier series coefficients of α(r) [35]:

α(r) = 1

�

∑
n∈ZD

ane
i 2π

L
n·r. (18)

Here n is a D-dimensional vector, whose components vary
discretely from −∞ to +∞. Therefore, we shall denote the
set of index vectors n with ZD . The Fourier series expansion
of α(r) requires us to assume periodic boundary conditions.
Since the field α(r) is real, the symmetry a−n = a∗

n is also
required. The a0 coefficient has a special interpretation:

a0 =
∫

�

dr α(r) = N2. (19)

Additionally, we have to assume that potentials U (r) and V (r)
are also periodic over length L, which should be of little
influence if the range of those potentials is much shorter than
L. If so, then the Fourier series expansion (18) simplifies the
interaction terms:∫∫

�

dr dr′α(r)α(r′)V (|r − r′|) = 1

�

∑
n∈ZD

|an|2Vn, (20)

N1∑
i

∫
�

dr α(r)U (|Ri − r|) = 1

�

∑
n∈ZD

an

∑
i

U (i)
n , (21)

where

Vn =
∫

�

dr ei 2π
L

n·rV (r), (22)

U (i)
n =

∫
�

dr ei 2π
L

n·rU (|Ri − r|). (23)

From these formulas, it follows that

H − μ̃N2 = 1

2�

∑
n∈ZD

|an|2Vn

+ 1

�

∑
n∈ZD

an

(∑
i

U (i)
n − μ̃�δn,0

)
, (24)

which can be further rearranged into

H − μ̃N2 =
∑

n∈ZD

Vn

2�

∣∣∣∣∣an +
∑

i U
(i)
−n − μ̃�δn,0

Vn

∣∣∣∣∣
2

−
∑

n∈ZD

∣∣∑
i U

(i)
n − μ̃�δn,0

∣∣2

2�Vn
, (25)

and finally the path integral is specified as

� =
∏

n∈ZD

∫
dan

exp[−β(H − μ̃N2)]

�(a0 + 1)
. (26)

In the above formula, we intentionally omit writing the limits
of integration since they need to be discussed in greater detail
in the following section.

C. Non-negative fields from Fourier modes

In principle, the occupation field α(r) should be non-
negative. Unfortunately, a field constructed according to (18)
from the arbitrarily chosen values of an does not necessarily
meet this requirement. However, it is always true that a0 � 0,
since it is the number of depletant particles. Therefore, for any
values of an �=0 we can choose a0 such that α(r) is non-negative.
More precisely, we can write

α̃(r) =
∑

n∈ZD\0

ane
i 2π

L
n·r, (27)

where \0 indicates the exclusion of a0. α̃(r) is a real function
and, necessarily, ∫

�

dr α̃(r) = 0. (28)
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This property means that α̃(r) has to take both negative and
non-negative values for different r, so integral (28) is 0.
Therefore, there must exist a global minimum of α̃(r), and
α̃(r) is negative in this minimum. Finally, for

a0 � M = −minr[α̃(r)], (29)

the occupation field α(r) is non-negative. Here, we denote the
global minimum of α̃(r) with respect to r by minr [α̃(r)]. The
limit M can be also rewritten in the following form:

M = −
∑

n∈ZD\0

ane
i 2π

L
n·r(an), (30)

where r(an) is the position of the global minimum as a function
of an. Formally, r(an) can be determined from the equation

∇r

∑
n∈ZD\0

ane
i 2π

L
n·r = 0. (31)

Concluding this section, we can choose the limits of
integration for an �=0 as ±∞ and the limits for a0 as [M, + ∞).
However, M is now a function of an �=0, which fixes the order
of integrals in (26). Let us combine (25) and (26) to write �

in the following form:

� = e−β	
∏

n∈ZD\0

InI0(M), (32)

in which

	 = −
∑

n∈ZD

∣∣∑
i U

(i)
n − μ̃�δn,0

∣∣2

2�Vn
(33)

and

In �=0 =
∫ +∞

−∞
dan exp

(
−βVn

2�

∣∣∣∣an +
∑

i U
(i)
−n

Vn

∣∣∣∣
2)

, (34)

I0(M) =
∫ +∞

M

da0

exp
(− βV0

2�

∣∣a0 +
∑

i U
(i)
0 −μ̃�

V0

∣∣2)
�(a0 + 1)

. (35)

For the sake of more compact notation, we will denote

cn =
∑

i U
(i)
−n − μ̃�δ0n

Vn
, γn = βVn

2�
. (36)

D. The effective interaction

In this section, we will identify the exact part of effective
interactions. We substitute now (32) into the formula for U tot

eff ,
namely

U tot
eff = − 1

β
ln � = 	 − 1

β
ln

⎛
⎝ ∏

n∈ZD\0

InI0(M)

⎞
⎠ . (37)

We will show that 	 gives rise to the effective interaction
Ueff(|Ri − Rj |). Expanding (33) and taking advantage of the
Kronecker δ, we arrive at

	 = −
∑
i �=j

∑
n∈ZD

U (i)
n U (j )

−n

2�Vn
−

∑
i

∑
n∈ZD

∣∣U (i)
n

∣∣2

2�Vn

+ 2μ̃
∑

i U
(i)
0 − μ̃2�

2V0
. (38)

To process the three terms in 	, one can notice that

U (i)
n =

∫
�

dr ei 2π
L

n·rU (|Ri − r|)

= ei 2π
L

n·Ri

∫
�i

dr ei 2π
L

n·rU (r)

= ei 2π
L

n·RiU
(

2π

L
n
)

. (39)

Here �i is a volume shifted by Ri . In the continuous limit of
huge volume L → +∞, we can substitute k = 2π

L
n, so

U (i)
n → eik·RiU(k). (40)

Further,
∑

n → �
(2π)D

∫
�̃

and �i → �, so U(k) becomes
a Fourier transform of U (r). Similar considerations allow
us to transform Vn into V(k). Finally, in the continuous
limit,

−
∑

n∈ZD

U (i)
n U (j )

−n

�Vn
→ − 1

(2π )D

∫
�̃

dk eik·(Ri−Rj ) |U(k)|2
V(k)

= Ueff(Ri − Ri). (41)

Formula (41) constitutes the main result of this paper,
which is the expression for the effective interaction between
two particles. Having established this result, it follows
that

−
∑

i

∑
n∈ZD

∣∣U (i)
n

∣∣2

�Vn
→

∑
i

Ueff(0) = N1Ueff(0) (42)

and

2μ̃
∑

i U
(i)
0 − μ̃2�

2V0
→ 2μ̃N1U(0) − �μ̃2

2V(0)
. (43)

In summary, we conclude that the general form of 	 reads

	=1

2

N1∑
i �=j

Ueff(Ri − Rj ) + N1

2
Ueff(0) + 2μ̃N1U(0) − �μ̃2

2V(0)
.

(44)

Immediately one can recognize that we have obtained the
effective interaction between every pair of particles, which
is expected for the multiparticle system. This result is exact
up to the approximations required to introduce the occupation
number functional.

E. Approximated calculation of ln
∏

In I0(M)

Having found 	, we would also like to calculate the∏
InI0(M) to obtain the effective Hamiltonian. However, this

can be completed only via certain approximations.
First of all, let us recall that, according to (35), I0(M)

reads

I0(M) =
∫ +∞

M

da0
e−γ0(a0+c0)2

�(a0 + 1)
.

In principle M is non-negative, and for such an argument
I0(M) is a decreasing function, reaching asymptotically 0
in the limit of M → +∞. I0(M) can have a well-defined
kink at M = −c0, provided that c0 < 0 and γ0 	 1. We will
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approximate now I0(M) up to first order in the logarithmic
derivative, namely

I0(M) = exp

(
ln I0(0) + I ′

0(0)

I0(0)
M + · · ·

)

 I0(0)e

I ′
0(0)

I0(0) M.

(45)

This is accurate provided that there is no kink for M ∈ [0, +
∞), which requires that c0 > 0. For more compact notation,
we denote

I0 = I ′
0(0)

I0(0)
. (46)

Under approximation (45) and using expansion (30) for M ,
we can write∏

n∈ZD\0

InI0(M) ≈
∏

n∈ZD\0

∫ +∞

−∞
danI0(0)

× exp
(−γn|an + cn|2 − I0ane

i 2π
L

n·r(an)
)
. (47)

This expression is still dependent on r(an), which is an implicit
function of an. To proceed, we will approximate r(an) by a
constant value. One can notice that the quadratic term in (47)
has the extreme value for an = −cn, and we expect that the
integral (47) is dominated by the contribution from an ≈ −cn.
Let us transform the integration variables,

�an = an + cn, (48)

and approximate M in the vicinity of cn up to first order in
�an:

−
∑

n∈ZD\0

ane
i 2π

L
n·r(an) 


∑
n∈ZD\0

(cn − �an)ei 2π
L

n·r(cn). (49)

Now, (47) turns into∏
n∈ZD\0

InI0(M) ≈
∏

n∈ZD\0

exp
(
I0cne

i 2π
L

n·r(cn))I0(0)

×
∫ +∞

−∞
d�an exp

(−γn|�an|2 − I0�ane
i 2π

L
n·r(cn)

)
.

(50)

We can rearrange the quadratic expression in the exponent
of (50),∑

n∈ZD\0

γn|�an|2 + I0

∑
n∈ZD\0

�ane
i 2π

L
n·r(cn)

=
∑

n∈ZD\0

γn

∣∣∣∣�an + I0
e−i 2π

L
n·r(cn)

2γn

∣∣∣∣
2

−
∑

n∈ZD\0

I2
0

4γn
. (51)

Finally, since the integration variable �an is complex, we
introduce its polar parametrization:

ρne
±ıφn = �a±n + I0

e∓i 2π
L

n·r(cn)

2γ±n
. (52)

Once (51) and (52) are applied to (50), the integrations
can be performed, provided that all Re(γn) > 0. The result

reads

ln
∏

n∈ZD\0

InI0(M) ≈ ln I0(0) +
∑

n∈ZD\0

ln
π

γn

+ I0

∑
n∈ZD\0

cne
i 2π

L
n·r(cn) +

∑
n∈ZD\0

I2
0

4γn
. (53)

F. Effective Hamiltonian and model accuracy

Let us summarize the two preceding sections. Getting back
to the formula (7), the effective Hamiltonian of the entire
system reads

Heff = HRR + 	 − 1

β
ln

∏
n∈ZD\0

InI0(M).

Turning (53) into its continuous form, we obtain the final
expression for the effective Hamiltonian:

Heff ≈ HRR + 	 − 1

β

(
�

(2π )D

∫
�̃

dk ln
π

γ (k)

+ I0�

(2π )D

N1∑
i

∫
�̃

dk eik·(rmin−Ri )
U(k)

V(k)
− N1I0U(0)

V(0)

+ I2
0�

4(2π )D

∫
�̃

dk
1

γ (k)
− I2

0

4γ (0)
+ ln

γ (0)I0(0)

π

)
, (54)

where rmin is the global minimum, found from the equation

∇r

N1∑
i

∫
�̃

dkeik·(r−Ri )
U(k)

V(k)
= 0. (55)

Furthermore, according to (44), the exact part of Heff reads

	 = 1

2

N1∑
i �=j

Ueff(Ri − Rj ) + N1

2
Ueff(0) + 2μ̃N1U(0) − �μ̃2

2V(0)
,

where the effective interaction Ueff(Ri − Rj ) is defined
by (41).

Let us scrutinize the following term from Heff:

�Ueff = 1

β

I0�

(2π )D

N1∑
i

∫
�̃

dk eik·(rmin−Ri )
U(k)

V(k)
. (56)

First of all, this term is an explicit function of Ri , which
is in stark contrast to the Mayer bond expansion, in which
such terms are excluded. This exclusion is motivated by the
conservation of energy when the entire system is translated [1].
However, in our case, the global translation Ri → Ri + δ

yields rmin → rmin + δ, thus (56) is, in fact, translationally
invariant.

Secondly, one can notice that since rmin is a function of
Ri itself, there is possibly an additional effective interaction
embedded in �Ueff. Therefore, Ueff(Ri − Rj ) is the dominant
source of effective interactions provided that

Ueff(Ri − Rj ) 	 �Ueff. (57)

Whether this relation is satisfied depends on both thermody-
namic parameters and the choice of microscopic potentials,
which makes it difficult to analyze in a general case. However,
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if this relation is seriously violated, one might attempt to
estimate the influence of �Ueff on effective interactions from
the following reasoning:

|�Ueff| <
1

β

I0�

(2π )D

∫
�̃

dk

√√√√∣∣∣∣∣
N1∑
i

eik·(rmin−Ri )
U(k)

V(k)

∣∣∣∣∣
2

= N
1/2
1

β

I0�

(2π )D

∫
�̃

dk

∣∣∣∣U(k)

V(k)

∣∣∣∣
√√√√1 +

N1∑
i �=j

eik·(Rj −Ri )

N1


 1

β

I0�

(2π )D

(
N

1/2
1

∫
�̃

dk

∣∣∣∣U(k)

V(k)

∣∣∣∣
+ 1

2N
1/2
1

N1∑
i �=j

∫
�̃

dk eik·(Rj −Ri )

∣∣∣∣U(k)

V(k)

∣∣∣∣
⎞
⎠ . (58)

This formula also predicts the effective interactions, though
we expect it to be overestimated in this case.

G. Caveats

Throughout the derivation section, we introduced numerous
concepts, assumptions, and approximations. We would like to
list these now and discuss their validity.

One general concern is related to path integrals. We allow
α(r) to vary continuously, while the number of particles at
every position should be integer. This means that the discretely
varying trajectories, which are physically meaningful, are
given infinitesimally small statistical weights. This might
result in losing some important characteristics, similarly to
the Bose-Einstein condensation, which is lost if the discrete
partition function is replaced with the continuous one without
proper care [40]. This problem has yet to be investigated.

Further, let us explicitly recall that the total effective
potential has two parts, 	 and − 1

β
ln

∏
n∈ZD\0 InI0(M). While

we show in Sec. III that 	 is enough to reproduce many desired
characteristics of effective interactions, there is no guarantee
that the other part can be neglected in particular conditions.
This is caused by the approximations applied in Sec. II E.
The logarithmic expansion (45) in M is accurate provided that
c0 > 0, or, explicitly,

N1U(0) > μ̃�. (59)

Satisfying this relation requires a high N1 in a small volume �,
but there is a risk of falling into the range of thermodynamic
parameters relevant for a crystal or glassy state. Alternatively,
the concentration of depletant might be low, which should
entail low μ̃, but the exact dependence of μ̃ on average N2 is as
difficult to establish as Heff. If (59) is not satisfied (so c0 < 0),
then (45) works well for M < −c0, but it loses accuracy for
M > −c0. Another issue is the expansion (49), linearizing
M in the vicinity of cn. Since each In �=0 is the integral of a
Gaussian centered at cn, this expansion is justified, but the
control over its accuracy is lost as the width of the Gaussian
grows. Unfortunately, this is exactly the case for high-order
In, since we expect γn → 0 for large n.

Yet another concern is whether the depletant-depletant
potential can have a negative or partially negative Fourier
transform. Since each In �=0 is the Gaussian integral, it would be

divergent for Vn < 0, hence
∏

InI0(M) → +∞. In this case,
Heff given by (54) is meaningless, but we will argue that 	

might still provide some useful information. In general, it is
true that

ln InI0(M) � ln InI0(0) =
∑

n∈ZD\0

ln In + ln I0(0). (60)

Now, let us consider an observable O(Ri ,Pi) and its average,

Ō =
∫

dPidRiO(Ri ,Pi) exp(−βHeff)∫
dPidRi exp(−βHeff)

. (61)

We can use (60) to approximate Heff, namely

Heff ≈ HRR + 	 − 1

β

∑
n∈ZD\0

ln In − 1

β
ln I0(0). (62)

From (34) it follows that In is independent from Ri for the
properly shifted integration variable. Applying (62) to (61),
one can see that

Ō =
∫

dPidRiO(Ri ,Pi) exp[−β(HRR + 	)]∫
dPidRi exp[−β(HRR + 	)]

, (63)

which is independent from divergent In. This reasoning,
although not very rigorous, suggests that 	 and Ueff(Ri − Rj )
might work for potentials with partially negative V(k) and can
be useful in determining the mean values.

Finally, there are several concerns related to 	 itself.
One thing is that we resort to the continuous representation
of discrete expressions, though we expect � to be finite.
This is physically reasonable provided that the range of
microscopic potentials is much smaller than the system size
L. Another issue is that we require microscopic potentials
V (r) and U (r) to possess their Fourier transforms. This rules
out such useful potentials as Lennard-Jones or polynomial
potentials. Moreover, since (41) has the form of an inverse
Fourier transform, the integrand must be “well-behaving,” i.e.,
convergent for k → +∞ and without any essential singular-
ities. Although in particular situations certain mathematical
tricks and approximations can be applied to circumvent such
problems, these are the reasons why (41) is not a directly
applicable “silver bullet” formula.

III. APPLICATIONS

A. Systems under scrutiny

In this section, we apply Ueff(Ri − Rj ) given by (41)
to analyze effective interactions in various systems. First,
we analyze the mixtures of Gaussian particles, predicting
effective interactions and analyzing effective attraction as a
driving force behind demixing (Sec. III B). Another example
are screening effects in the system of charged hard spheres
and ions which agree with the Derjaguin-Landau-Verwey-
Overbeek (DLVO) potential (Sec. III C). Yet another example
is the effective interaction in a binary mixture of Yukawa
particles (Sec. III D). Finally, we scrutinize the mixture of
particles that have both a Yukawa interaction tail and a
repulsive core, in which case we qualitatively reproduce the
effects of “attraction-through-repulsion”/“repulsion-through-
attraction” and compare our results to simulations (Sec. III E).
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B. Gaussian particles and demixing of binary mixtures

Particles interacting via the Gaussian potential are a typical
example of soft particles, and they can be analyzed within our
framework. We will take advantage of the fact that the Fourier
transform of the Gaussian potential is also a Gaussian function:

G(r) = εe
− 1

2
r2

σ2 , G(k) = ε(2π )D/2σDe− 1
2 k2σ 2

. (64)

The Gaussian potential has been identified as the accu-
rate approximation of the interaction between two isolated
polymers in a good solvent, both for identical [24] and
nonidentical [36] chains. Therefore, the Gaussian-core model
is a well established coarse-grained description of polymer
solutions [1] both in the homogeneous and the nonhomoge-
neous case [37]. In particular, it has been found that the binary
mixtures of Gaussian particles can undergo size separation
transition [37,38], similarly to polymer blends.

In our model, we assume the binary mixture of different-
sized Gaussian particles and assign index 1 to big-small
interaction and 2 to small-small interaction. Then, the effective
interaction, according to (41), reads

Ueff(�R) = − 1

(2π )D

∫
�̃

dk eik·�R |G1(k)|2
G2(k)

= −ε2
1

ε2

σ 2D
1

(2π )D/2σD
2

e−�R2/(4σ 2
1 −2σ 2

2 )(
2σ 2

1 − σ 2
2

)D/2 . (65)

Ueff(�R) proves to be a renormalized Gaussian, but, since
εi > 0, it is always negative. Examples of this interaction are
presented in Fig. 1.

Result (65) suggests that the total interaction between
bigger particles [i.e., URR(�R) + Ueff(�R)] can include an
attractive tail, provided that for a certain choice of parameters
there exist such �R that the effective interaction prevails
over URR(�R). It is possible that such a tail could drive the
separation process. Let the interaction between bigger particles
read

URR(�R) = G0(�R) = ε0e
− 1

2
�R2

σ2
0 . (66)

FIG. 1. (Color online) Effective interaction between Gaussian
particles, according to formula (65). σ1 is the unit length, and the
scaling reads βε2

1/ε2 = 1. Ueff is a negative Gaussian function for
every σ2.

The attractive tail will be present if the following inequality
has a solution in �R:

G0(�R) + Ueff(�R) < 0, (67)

which can be reduced to

�R2

(
1

4σ 2
1 − 2σ 2

2

− 1

2σ 2
0

)

< ln

(
ε2

1

ε0ε2

σ 2D
1

(2π )D/2σD
2

1(
2σ 2

1 − σ 2
2

)D/2

)
. (68)

This relation can be simplified further by assuming that
σ 2

1 = (σ 2
0 + σ 2

2 )/2 and σ2 = cσ0, where c is the proportionality
constant. Under such a choice of parameters, the right-
hand side of (68) becomes identically 0, so the inequality
reads

0 < ln

(
ε̃2 (1 + c2)D

(2π )D/2cD

)
, (69)

where ε̃ = ε1/
√

ε0ε2 is a common energy scale. In Fig. 2,
we have presented a region on the ε̃-c plane where (69) is
satisfied for D = 3. For comparison, in Fig. 2 we also plot
the classical mean-field condition for spinodal separation of
Gaussian particles, which reads [37,38]

ε̃ >

(
2c

1 + c2

)3/2

. (70)

Figure 2 illustrates a general qualitative agreement be-
tween the mean-field condition (70) and our condition (69),
especially in terms of shape and the asymptotic behavior
(c → 0 and c 	 1) of the mixing region. However, our

FIG. 2. Effective attraction in binary mixtures of Gaussian
particles as a driving force behind phase separation. This plot
visualizes inequality (69) for D = 3, where ε̃ = ε1/

√
ε0ε2 and

c = σ2/σ0. Shaded region—total interaction is purely repulsive,
no driving force for de-mixing. Plain region—total interaction has
an attractive tail stimulating demixing. The dashed line illustrates
mean-field condition (70) for spinodal decomposition in the Gaussian
mixture.
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theory systematically overshoots the mean-field behavior,
with the highest discrepancy at c ≈ 1. This means that the
condition of attractive tail in total interaction leads to a
broader region of mixing than the mean-field approach, which
requires a higher sized ratio c or energy scale ε̃ to obtain the
separation.

C. Coulomb potential and charged sphere screening effects

In this example, we will examine the effective interaction
between two charged hard spheres in the presence of ions. The
dimensionality of the system is D = 3. Assigning index i = 1
for sphere-ion interaction and i = 2 for ion-ion interaction, we
assume that every microscopic potential in this system consists
of the hard-sphere (HS) potential and the Coulomb long-range
interaction:

Ui(r) = UHS,i(r) + VC,i(r), (71)

where

UHS,i(r) = ci�(r − 2σi), VC,i(r) = εi

r
. (72)

�(r − 2σi) is the Heaviside step function, the radius of the
sphere reads σ0, the ionic radius is denoted by σ2 and σ1 =
(σ0 + σ2)/2, and ci and εi are scaling constants.

The Fourier transform of the Coulomb potential can be
calculated from its relation to the Yukawa potential:

VC,i(r) = εi

r
= lim

λ→0

εie
−λr

r
. (73)

Since the Fourier transform of the Yukawa potential
is 4π/(k2 + λ2), then the sought-after Fourier transform
reads

VC,i(k) = 4πεi

k2
. (74)

The Fourier transform of UHS,i(r) can be calculated
directly,

UHS,i(k) = 4πci

sin 2σik − 2σik cos 2σik

k3
. (75)

This representation is adequate for sphere-ion interaction, but
for ion-ion interaction we can simplify it significantly. Since
σ2 is the lowest length scale in the system, only k up to the
order of 1/σ2 carries physically important information. In this
range, we can approximate sin 2kσ2 
 2kσ2 and cos 2kσ2 

1 − 2k2σ 2

2 , so

UHS,2(k) 
 16πc2σ
3
2 . (76)

We would obtain a similar result by modeling the ion core with
the Dirac-δ(r) potential, which indicates that (76) is, in fact,
the pointlike approximation of UHS,2(r).

Having established both transforms, (41) can be applied
and, after careful calculations, we obtain

Ueff(�R) = − 1

(2π )3

∫
�̃

dk eik·�R |UHS,1(k) + VC,1(k)|2
UHS,2(k) + VC,2(k)

= −ε2
1

ε2

1

�R
+ C0

e− κeff
2 �R

�R
. (77)

This result consists of Coulomb-like and Yukawa-like terms,
and it is valid for �R > 4σ1. The constants read

κeff =
√

ε2

c2σ
3
2

, (78)

C0 = c2σ
3
2

ε2
2

(ε1κeff − 2c1σ1κeff cosh σ1κeff + 2c1 sinh σ1κeff)
2.

(79)

Let us further specify our system by assuming that the
charge of a single sphere reads Q and the charge of an ion is
q. Then

ε1 = qQ

4πε
, ε2 = q2

4πε
,

ε2
1

ε2
= Q2

4πε
, (80)

where ε is the electrostatic permittivity of the system. Since
all spheres have the same charge, there is also a microscopic
repulsion present, which, for �R 	 2σ0, can be treated as a
Coulomb potential:

URR(�R) = Q2

4πε�R
. (81)

Calculating the total sphere-sphere interaction, we obtain

Utot(�R) = URR(�R) + Ueff(�R) = C0
e− κeff

2 �R

�R
. (82)

One can immediately see that the Coulomb term from (77)
cancels the long-range repulsion URR(�R), thus the to-
tal interaction consists solely of the Yukawa term. This
term has the same functional form as the DLVO poten-
tial [9] in the Debye-Hückel (DH) approximation, which
reads [22,39]

UDLVO(�R) = CDLVO
e−κDH�R

�R
, (83)

where

κ2
DH = β

4π

ε
(n1Q

2 + n2q
2), CDLVO = Q2e2σ0κDH

ε(1 + 2σ0κDH)2
,

with n1, n2 the number densities of spheres and ions,
respectively.

In our model, we expect that ci 	 kBT , so UHS,i(r) acts as
an impenetrable core, but these core constants are not defined
otherwise. However, by comparing (82) and (83),

2κDH = κeff,

C0 = CDLVO,
(84)

we can relate ci to the DLVO parameters:

c2 = ε2

4κ2
DHσ 3

2

,

c1 = κDH(ε1 ± √
ε2|CDLVO|)

2σ1κDH cosh 2σ1κDH − sinh 2σ1κDH
,

(85)

where the sign is chosen so c1 > 0. This choice of c1 and
c2 tunes (82) to become exactly the DLVO interaction (83).
In [22], Crocker and Grier have measured κ−1

DH = 161 nm for
polystyrene sulfate spheres of radius σ0 = 32 nm and charge
Q = 1991e. Assuming σ2 = 0.1 nm and q = −e, one can
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calculate that βc1 
 13 and βc2 
 1013 for T = 298 K. This
is in agreement with our expectation that ci 	 kBT .

In conclusion, our model based on the formula (41) proves
to be equivalent to the DLVO potential, which has been shown
to accurately describe screening effects for the charged spheres
in colloidal solution [22].

D. Yukawa particles

As discussed in the preceding section, the Yukawa potential
is an accurate model for charged particles in solution. Since
this potential is also tractable in terms of its Fourier transform,
analyzing the binary mixture of Yukawa particles is another
interesting example for our theory. For D = 3, the Yukawa
potential Y (r) and its Fourier transform read

Y (r) = εσ
e−κ(r−σ )

r
, Y(k) = 4πεσeκσ

k2 + κ2
. (86)

Let us consider a system composed of Yukawa particles,
where σ1,ε1,κ1 describe particle-depletant interaction Y1(r),
and depletant-depletant interaction Y2(r) depends on σ2,ε2,κ2.
Then, the effective interaction can be calculated analytically
from (41), namely

Ueff(�R) = − 1

(2π )3

∫
�̃

dk eik·�R |Y1(k)|2
Y2(k)

= −ε2
1σ

2
1

ε2σ2
e−κ1(�R−2σ1)−κ2σ2

(
1

�R
− κ2

1 − κ2
2

2κ1

)
.

(87)

A graphical representation of (87) for various parameters is
shown in Fig. 3. In general, for ε2 > 0 the particular profiles of
effective interaction are strongly dependent on parameters and
can vary from purely attractive to strongly repulsive. When
the range of interaction is of the order of particle radius
(κi 
 σ−1

i ), the effective interaction is attractive (curves 1–3
in Fig. 3) and its range increases with the downturn in the
depletant radius. In fact, this range is surprisingly long, namely
for σ2/σ1 = 0.25 the interaction is significant over a range
of 5σ1 (curve 1, Fig. 3). This is in stark contrast with the

FIG. 3. (Color online) Effective potential for a binary mixture of
Yukawa particles, according to formula (87), for which βε2

1/ε2 = 1,
and σ2 and κi are given in units [σ1] and [σ−1

1 ], respectively. Curves
1–3: growing depletion attraction for decreasing size of depletant
particles, κi = σ−1

i , to match the size of the particle. Curves 4–6: for
higher values of κ1, a κ2-dependent energy barrier appears.

Asakura-Oosawa model for HS of radii σ1 and σ2, where
the interaction would cease over a range of σ1 + σ2 [16].
Another interesting characteristic of Ueff for Yukawa particles
appears when κ1 is increased, in which case a repulsive barrier
emerges. This barrier grows as the range of depletant-depletant
interaction increases (curves 4–6, Fig. 3). Apparently, possible
energetic advantages of lower Y1(r) cannot dominate the
depletant-depletant repulsion. Finally, if we assume ε2 < 0,
the global sign of Ueff(�R) is inversed, leading to repulsion-
through-attraction effects.

Summarizing, this relatively simple model indicates possi-
ble self-organization of Yukawa particles, although analytical
calculations analogous to Gaussian particles cannot be easily
completed here. Nevertheless, phase separation in binary
Yukawa systems has been encountered in simulations [41]
and also in the context of plasma research, e.g., [42,43].

E. Particles with a repulsive core and a Yukawa interaction tail

The pure Yukawa potential suffers from the lack of a
repulsive core independent from the interaction tail, so a
realistic description of colloid particles requires a more
complicated potential. In [25], Louis et al. simulated a binary
system consisting of HS particles with Yukawa interaction
tails, both as depletant and colloid particles. The potential
applied in [25] reads

+∞ if r < σi,

εiσi

r
e−κi (r−σi ) if r � σi,

(88)

where index i denotes big-small or small-small potential, σi

is the size of the particle core, and εi is the energy scale.
Reference [25] reports that the sign of the big-small interaction
tail is decisive for the effective interaction being attractive or
repulsive. In particular, the repulsive tail results in effective
attraction in the system, while the attractive tail induces
“repulsion-through-attraction.” Within our framework, we are
able to qualitatively reproduce these two effects with an
analytical formula.

We propose to model both the hard core and interaction tail
of a single particle with two Yukawa potentials, namely

Y HS
i (r) = ciσi

r
e−λi (r−σi ) + tiσi

r
e−κi (r−σi ), (89)

where index i = 1 denotes particle-depletant interaction and
i = 2 denotes depletant-depletant interaction. For λi > κi , the
first term becomes a repulsive core, while the second term
can now be either repulsive or attractive, depending on ti . To
allow a direct comparison between our results and [25], we
would like to control the attractive tail of Y HS

i (r) with the
depth of its minimum εi . Thus, for εi < 0 we have determined
ti numerically from the following equations:

d
dr

Y HS
i (r)

∣∣
r=r0

= 0,

Y HS
i (r0) = εi .

(90)

In the case of a repulsive tail, we have assumed ti = εi � 0.
The Fourier transform of Y HS

i (r) is simply a sum of twoY(k)
for relevant parameters. Therefore, the effective interaction
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reads

Ueff(�R) = − 1

(2π )3

∫
�̃

dk eik·�R |YHS
1 (k)|2
YHS

2 (k)

= − 2

π

σ 2
1

σ2

∫ +∞

0
dk

k sin �Rk

�R

(
k2 + κ2

2

)(
k2 + λ2

2

)
(
k2 + λ2

1

)2(
k2 + κ2

1

)2

×
[
c1e

σ1λ1
(
k2 + κ2

1

) + t1e
κ1σ1

(
k2 + λ2

1

)]2[
c2eσ2λ2

(
k2 + κ2

2

) + t2eκ2σ2
(
k2 + λ2

2

)] .

(91)

The integrand in the above expression is an even function,
and the degree of polynomial expression in the denominator
is higher than that in the numerator, so this integral can be
calculated analytically, thanks to the residue theorem. Due to
its length and complexity, we discuss the full formula in the
Appendix.

The core parameters ci and λi cannot be determined from
first principles, and our initial experience with (91) has shown
that the exact shape of interactions obtained from our model
is very sensitive to these parameters. It is also usually possible
to find the parameters that differ by many orders of magnitude
but lead to similar results. Therefore, in order to determine the

physically reasonable range of core parameters, we have fitted
our model to the simulation data from [25]. In [25], the values
of potential parameters read σ1 = 0.6σ0, σ2 = 0.2σ0, κ1 =
6/σ0, and κ2 = 15/σ0, where σ0 is the radius of the bigger par-
ticle. The simulations have been performed for nine combina-
tions of tail parameters, namely for βε1 equal to −0.82, 0, and
0.82, and for βε2 set to 0, 2.99, and −0.996. We read the data
from Fig. 6 in [25] with the resolution of 25 points per curve
and fit them using the quasi-Newton algorithm with a con-
straint ci > 0. The constraint is applied to prevent the tendency
of the algorithm to find the unphysical values of parameters.

To fit the data, we should find four core parameters ci

and λi for each choice of ε1 and ε2. However, the algorithm
usually could not achieve convergence if λ1 and λ2 have been
varied. Therefore, we have chosen λ1 = 3κ1 and λ2 = 2.4κ2

and kept these values constant for all curves, fitting solely c1

and c2. For such a choice of λi , the microscopic potentials
Y HS

i (�R) are relatively soft-core, but this choice improved the
quality of fits for all ε2 �= 0 cases, with the error of c1 up to
15% (except for case 3, which was 44%) and the errors of
c2 lower than 0.0002%. However, extreme errors (higher than
500%) are encountered for all ε2 = 0 cases (plots 1, 4, and 7,
Fig. 4), though the algorithm achieved convergence even in this
situation. These errors might arise from the fact that we fit the

FIG. 4. (Color online) Model (91) (dashed black line) fitted to simulation data (red solid line) from [25]. In all cases, core exponents
read λ1 = 3κ1 and λ2 = 2.4κ2; ci are determined from the fitting procedure. Insets: a comparison between potential wells resulting from the
fitting procedure and the hard-core potentials applied in [25]; gray, small-small interaction; black, big-small interaction; dashed lines, soft-core
potential generated with λi and ci ; solid lines, referential hard-core potential from [25].
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essentially soft-core model to the data that are directly affected
by the hard-core potential. In the absence of mitigating effects
from the tail, our model becomes highly sensitive to λi , though
no such problem is encountered for ε1 = 0. While increasing
λi might improve those three fits, we have decided to keep
common λi for all examples, to allow as much comparison
between them as possible.

The data from simulations and our fits are presented in
Fig. 4. In general, our model is capable of reproducing all types
of effective interactions found in [25] in terms of their sign
and range. In particular, our model reproduces the “attraction-
though-repulsion” effect for ε1 > 0 (plots 4–6, Fig. 4) and
the “repulsion-through-attraction” effect for ε1 < 0 (plots 7–9,
Fig. 4). In the former case, our model exhibits a general
tendency to predict a shallower effective potential than in the
simulations. However, in the latter case of ε1 < 0 our model
evidently lacks the oscillatory behavior which is manifested
in the simulations. This is also a problem for the ε1 = 0,
ε2 = 2.99 case (plot 2, Fig. 4), which is entirely dominated by
the oscillations, and, to a lesser extent, for the pure hard-sphere
case (ε1 = 0, ε2 = 0, plot 1, Fig. 4). In all of these examples,
our model can be applied only qualitatively, whenever the
oscillations can be treated as a higher-order effect. In the insets
of Fig. 4, there are also microscopic potential wells presented,
generated according to fitted parameters, and compared to
the HS potentials applied in the simulations. As expected,
the highest discrepancies occur for ε1 < 0, most likely due
to the lack of oscillations. The other examples show agreement
in the shape of the interaction tail, though for εi = 0 a
compensating softening of the core occurs.

In principle, varying solely ε1 and ε2 should be enough
to explain the differences in effective interaction for a
common set of core parameters. Taking the suggestion from
the previously fitted parameters, we have chosen λ1 = 5

3κ1,
λ2 = 32

15κ2, βc1 = 1, and βc2 = 2.2. The results are shown
in Fig. 5. For such a choice of parameters, the core part of
the microscopic potential is even softer than before, but now

our model simultaneously reproduces eight out of nine types
of simulated effective interactions, in terms of their energy
scale, range, and sign. As before, our predictions lack the
oscillations for ε1 < 0, which is one group of results (curves
7–9, Fig. 5). In this case, our predictions might be treated
only as a crude approximation. Another group is the effective
attraction for ε1 > 0 (curves 4–6, Fig. 5). In this group, our
predictions vary more uniformly with changing ε2 than in the
simulations, and our effective potential is usually stronger for
�R/σ0 close to 1, but sooner becomes flat. Yet another group
is formed by ε1 = 0 results. The sole qualitative disagreement
occurs for the ε1 = 0, ε2 = 2.99 case (curve 2, Fig. 5),
which is predicted as attractive, but the simulations show its
mainly oscillatory behavior. In the remaining cases of ε1 = 0,
ε2 = 0 and ε1 = 0, ε2 = −0.996 (curves 1 and 2, Fig. 5),
the predicted range of interaction is slightly longer than in
simulations.

In summary, (91) qualitatively reproduces most of the ex-
pected effective interaction characteristics. The discrepancies
between our model and simulations might originate from both
the application of soft-core potentials and the fact that 	 is
only a part of the total effective interaction. In the Appendix,
we comment briefly on the possibility of generating oscillatory
behavior from (91).

IV. FINAL REMARKS

In this paper, we have proposed an occupation number
functional as a tool to describe binary colloidal systems. This
functional is an alternative to the Asakura-Oosawa approach,
density functional theory, and closure relations. In Sec. III, we
have shown that with the aid of our formalism, we are able
to reproduce analytically the important features of systems
ranging from Gaussian particle mixtures to Yukawa particle
mixtures. Our theory proved to be a versatile qualitative
tool, which supports our proposition that Ueff(Ri − Rj ) can
be the dominant source of effective interactions. While the

FIG. 5. (Color online) Effective interaction in the binary mixture of particles consisting of a repulsive core and a Yukawa interaction
tail. Left: effective interaction generated from formula (91) for soft-core particles. Right: effective interaction measured in the simulations
of hard-core particles, reprinted from [25]. σ0 is the radius of bigger particles, σ1 = 0.6σ0, σ2 = 0.2σ0, κ1 = 6/σ0, and κ2 = 15/σ0. Core
parameters for all curves: λ1 = 5

3 κ1, λ2 = 32
15 κ2, βc1 = 1, and βc2 = 2.2. Curves 1–3: for ε1 = 0, the behavior of Ueff depends on the sign of

ε2. Curves 4–6: for ε1 > 0, Ueff is attractive. Curves 7–9: for ε1 < 0, Ueff is repulsive.
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framework we propose is currently far less developed and
not as accurate as other approaches in the field, it provides
a more direct insight into how effective interactions arise
from microscopic potentials. We have provided a discussion
on the assumptions and approximations that determine the
limits of applicability for our theory. Further development
of the occupation number functional approach might include
reproducing thermodynamics of binary systems or relating this

model to spatiotemporal correlations in noise in a Langevin-
like description.
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APPENDIX: FULL FORMULA FOR THE EFFECTIVE INTERACTION OF PARTICLES WITH A REPULSIVE
CORE AND A YUKAWA INTERACTION TAIL

In this appendix, we present the full analytic formula for effective interaction given by (91):

Ueff(�R) = − 1

(2π )3

∫
�̃

dk eik·�R

∣∣YHS
1 (k)

∣∣2

YHS
2 (k)

= − 2

π

σ 2
1

σ2

∫ +∞

0
dk

k sin �Rk

�R

(
k2 + κ2

2

)(
k2 + λ2

2

)
(
k2 + λ2

1)2
(
k2 + κ2

1

)2

[
c1e

σ1λ1
(
k2 + κ2

1

) + t1e
κ1σ1

(
k2 + λ2

1

)]2[
c2eσ2λ2

(
k2 + κ2

2

) + t2eκ2σ2
(
k2 + λ2

2

)]
.

(A1)

The integrand is the even function of k, and the nominator has lower order than the denominator, so this integral can be calculated
via residue theorem. The integrand has four poles:

k1 = iλ1, (A2)

k2 = iκ1, (A3)

k3,± = ±i

√
c2κ

2
2 eσ2λ2 + t2λ

2
2e

σ2κ2

c2eλ2σ2 + t2eκ2σ2
. (A4)

k1 and k2 lie in the upper complex half-plane. k3,± can be either purely imaginary, in which case only k3,+ lies in the upper
complex half-plane, or purely real, in which case both k3,+ and k3,− lie on the real axis. For three imaginary poles, the result of
integration reads

Ueff(�R) = 2πi[Res(k1) + Res(k2) + Res(k3,+)], (A5)

where

2πi Res(k1) = σ 2
1

σ2
c1e

λ1(σ1−�R)
{
4t1λ1e

κ1σ1
(
κ2

2 − λ2
1

)(
λ2

2 − λ2
1

)[
c2e

λ2σ2
(
κ2

2 − λ2
1

) − t2e
κ2σ2

(
λ2
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In the case of real k3,±, the contribution 2πi Res(k3,+) must be replaced with
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. (A9)

In general, the obtained formula for (A5) is a combination of Yukawa-like and exponential functions. Looking at the final
expressions from the perspective of λ1 and λ2, one can see that there are several exponent terms that differ in their characteristic
“length scale,” some of them even divergent for growing λi . This explains the sensitivity of the model to core parameters, and
it is probably the reason for the numerical difficulties encountered in the fitting procedure when λi are varied.

Interestingly, the contribution (A9) might introduce oscillatory behavior, which is apparently missing in Sec. III E. However,

this contribution appears for − κ2
2

λ2
2
c2e

σ2(κ2−λ2) > t2 > −c2e
σ2(κ2−λ2), which means that t2 must be negative. In our model,

t2 < 0 requires ε2 < 0 [by (90)], so only cases 3, 6, and 9 from Fig. 4 could be affected by oscillations from (A9).
This means that in the discussed model, it is not possible to choose the core parameters that provide oscillations in
cases 2, 7, and 8 from Fig. 4. Therefore, this effect is most likely embedded in the neglected part of the effective
interaction.
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Polymer unfolding and motion synchronization induced by spatially correlated noise
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The problem of a spatially correlated noise affecting a complex system is studied in this paper. We present a
comprehensive analysis of a two-dimensional model polymer chain, driven by the spatially correlated Gaussian
noise, for which we have varied the amplitude and the correlation length. The chain model is based on a
bead-spring approach, enriched with a global Lennard-Jones potential and angular interactions. We show that
spatial correlations in the noise inhibit the chain geometry dynamics, enhancing the preservation of the polymer
shape. This is supported by the analysis of correlation functions of both the module length and angles between
neighboring modules, which have been measured for the noise amplitude ranging over three orders of magnitude.
Moreover, we have observed the correlation length dependent bead motion synchronization and the spontaneous
polymer unfolding, resulting from an interplay between chain potentials and the spatially structured noise.

DOI: 10.1103/PhysRevE.86.051122 PACS number(s): 05.40.Ca, 36.20.−r, 61.43.Fs, 87.15.A−

I. INTRODUCTION

The understanding of diffusion in complex media is crucial
for both modeling conformation transitions in biomolecules
and intracellular transport. It is also well known that vari-
ous systems organize spontaneously in response to random
forcing [1] and that the introduction of temporal correlations
into the noise can lead to synchronization effects [2]. A
well-established framework to simulate these phenomena
is provided by Langevin equations, which introduce the
concept of stochastic force mimicking the molecular collisions
[3]. An important advance in this formalism has been the
introduction of the generalized Langevin equation (GLE),
which reproduces the anomalous diffusion thanks to the
time-correlated stochastic force and the corresponding integral
memory kernel, which represents the friction [4]. Recently,
Kou [4] derived the GLE from a microscopic model of
a particle coupled to a large number of oscillators, thus
showing that the particle-environment interaction is essential
for the occurrence of temporal correlations in thermal noise.
However, it is remarkable that this theory explains solely the
temporal aspect of diffusion, while little work has been done to
understand its spatial counterpart. This has led us to investigate
the problem of a spatially correlated noise affecting a complex
system.

The collective media behavior, which is random but charac-
terized by a certain correlation length λ, occurs at a length scale
of micrometers in the context of hydrodynamic interactions,
e.g., in colloid sedimentation [5,6] or in the study of active
particle motion [7]. However, the spatial correlations at the
lower length scale play a fundamental role in the theory of
phase transitions [8], among which the liquid-glass transition
is of special interest. During this transition, the particles
suffer a dramatic drop of mobility without the emergence of
structural ordering [9]. This phenomenon has been intensively
researched for the past two decades, and according to extensive
simulations [10,11], it is characterized by the occurrence of
spatial correlations in the particles’ motion [11], which is
recognized as the formation of different-sized clusters [10,12].

*maciej.majka@uj.edu.pl

Choosing a single moment in time, one could interpret these
clusters as a source of a disturbance which is random at the
large length scale (�λ) but ordered at the length scale of λ.
Figure 1 illustrates this idea. The temporal evolution of this
system is still indeterministic, as it “randomly reorders.” We
propose that this behavior could be imitated by the spatially
correlated noise, which is affecting a subsystem, in our case,
a model two-dimensional polymeric chain.

We have simulated the chain based on the bead-spring
approach under the forcing of spatially correlated Gaussian
noise (SCGN) for which we have varied the correlation
length and the amplitude. Our previous findings regarding the
stiffening of the chain under the SCGN, shown with the aid of
the reduced dynamics, have been published in [13]. However,
our further investigation into this system, which involves the
extension of the parameters’ range and the measurements of
chain characteristics, has revealed several new effects, namely,
bead motion synchronization, increased time correlation of
both module length and angles between modules, the inhibition
of the average module length growth, and, most notably,
the chain unfolding induced by the increased correlation
length.

Our simulations are related to the actual physical situation
by the choice of λ. Unfortunately, currently, there are few ex-
perimentally accessible quantities that describe the collective
molecular behavior in the vicinity of the glass transition and
can be measured for the variety of temperatures [14]. One of
these parameters is the number of cooperatively rearranging
molecules [15], which has been reported to increase from 1 in
the liquid phase to approximately 10 in the glass phase [15].
Additionally, these results are qualitatively similar for the
different chemical compounds [15]. On the other hand, the
direct measurements of the correlation length are scarce and
limited to a specific experimental setup, as, e.g. in [16], which
reports λ to be of the order of two to four molecule diameters.
These measurements suggest that λ covering up to five chain
nodes is physically meaningful.

This paper has following structure: in Sec. II the methods
of the SCGN generation are introduced, and in Sec. III we
propose the equations of motion and the correlation function.
In Sec. IV we present our polymer model, and Sec. V briefly
discusses simulation methods. Sections VI to IX present the

051122-11539-3755/2012/86(5)/051122(8) ©2012 American Physical Society
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FIG. 1. Spatially correlated random vectors with correlation
length λ, generated on a regular network. For λ = 0 the pattern is
entirely random, but for λ = 20 the ordered clusters can be noticed.

results regarding each effect with an interpretation, and in
Sec. X we summarize our findings.

II. MULTIPLE CORRELATED GAUSSIAN VARIABLES

The generation of multiple correlated Gaussian variables
is a central problem in the simulation of SCGN driven
systems; therefore we shall outline here the basic algorithm.
Let’s assume that we have two real vectors of random,
zero-mean Gaussian variables, namely, �ξT = (ξ1, . . . ,ξN ) and
�ηT = (η1, . . . ,ηN ), whose components satisfy the following
correlation relations:

〈ξiξj 〉 = Sij , (1)

〈ηiηj 〉 = δij . (2)

Here, δij denotes the Kronecker delta, and Sij are elements of
the correlation matrix, defined as

〈�ξ �ξT 〉 = Ŝ. (3)

The matrix Ŝ is symmetric and positively definite [17], so it is
suitable for Cholesky decomposition [18], which factorizes Ŝ

into a lower triangular matrix L̂ and its transposition:

Ŝ = L̂L̂T . (4)

The vector of correlated variables �ξ is related to the uncorre-
lated vector �η via a linear transformation [19]:

�ξ = L̂�η. (5)

This means that, given a correlation matrix, one can generate
the correlated Gaussian vector �ξ simply by sampling N times
the normal distribution to obtain the components of �η and then
performing the transformation (5).

III. EQUATIONS OF MOTION AND
CORRELATION FUNCTION

Our system is equivalent to an ordered set of N interacting
material points on a plane, enumerated by the index i. The
position of the ith point (or bead, as we will refer to it in the
following) is �ri

T = (xi,yi). In order to simulate the trajectory
{�ri(t)}N of the whole system, we have to solve numerically a

set of 2N stochastic equations of motion:

mẍi + γ ẋi + ∂xi
U = ξx(�ri),

(6)
mÿi + γ ẏi + ∂yi

U = ξy(�ri).

Here, U is the potential energy of the system, which we will
discuss in detail in the next section. �ξ (�ri)T = [ξx(�ri),ξy(�ri)]
is the two-dimensional SCGN, m is a bead mass, and γ is a
friction constant. In the absence of a more relevant theory, we
have applied the simplest friction model and have chosen γ

to be constant. The differential equations (6) are, in principle,
of second order, which we preserve for generality, but in the
course of our simulations we have overdamped the system by
choosing γ to be large enough.

We assume that the correlation function Sij of stochastic
forces acting on beads i and j should depend only on a
relative distance between these beads, which is rij = |�ri − �rj |.
Additionally, we assume that there are no cross correlations
between the x and y components, which allows us to reduce
the correlation relations to the form

〈ξx(�ri)ξx( �rj )〉 = 〈ξy(�ri)ξy( �rj )〉 = S(rij ),

〈ξx(�ri)ξy( �rj )〉 = 0. (7)

It should be emphasized that the correlation matrix Ŝ is
a dynamical object and evolves in t as the relative distances
rij (t) do. The conditions (7) suggest the following procedure
to integrate Eqs. (6): once all beads’ positions { �ri(t)}N at
some moment t are determined, we can calculate the N × N

correlation matrix and its Cholesky decomposition L̂; next,
according to (5), we shall use L̂ and two different �η to obtain
{ξx(�ri)}N and {ξy(�ri)}N . Finally, we can use them to perform
an integration step, which gives { �ri(t + �t)}N . The repeated
Cholesky decompositions are the most computationally expan-
sive part of our simulations, as the computational complexity
of this decomposition is O(N3) [18].

Along with conditions (7), we assume that the correlation
function Sij is characterized by the correlation length λ, and
it reproduces the standard Brownian diffusion for λ → 0 [20],
so

S(ri(t),rj (t ′)) λ→0= 2kBT γ

m
δ(t − t ′). (8)

In the above formula kB denotes the Boltzmann constant and
T is temperature. Taking into account (7) and (8), we chose
the exponentially decaying spatial correlation function, which
resembles the displacement correlation function from [11] and
[16]. We also neglect the temporal correlations, as we are
interested in the effects of the purely spatially structured noise.
Finally, the spatiotemporal correlation function reads

S(ri(t),rj (t ′)) = σ
γ

m
e− |�ri−�rj |

λ δ(t − t ′), (9)

where σ = 2kBT denotes the noise amplitude and we will
refer to it as temperature, as it is proportional to the actual
physical temperature.

In order to illustrate how the spatial correlations affect
the noise pattern, we have applied (5) and (9) to generate
the random vectors on a regular network. A snapshot of
this simulation is presented in Fig. 1. One can easily notice
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clusters of correlated vectors; however, this pattern changes
dramatically for every new generation.

IV. THE MODEL OF A POLYMER CHAIN

The polymeric chain is an archetype of many biomolecules;
thus we have chosen it as a test object for our simulation. Our
model is based on the bead-spring approach, in which i and
i + 1 beads interact with a harmonic potential:

UR =
N−1∑
i=1

1

2
k1(|�ri+1 − �ri | − d0)2. (10)

Every bead is also the source of the Lennard-Jones type
interaction, which provides the excluded volume effect and

FIG. 2. The energetic landscape for a single bead interacting
with its four nearest neighbors. The potential parameters are chosen
according to Table I. (a) The distance |�rj+1 − �rj−1| = l0, and j1 and
j2 enumerate two possible positions of the j th bead that minimize the
potential energy. U (0,0) is the height of the energy barrier, and Umin

is the depth of the minimum. (b) The distance |�rj+1 − �rj−1| = 1.25l0,
and j1 and j2 merge into a single minimum as the energy barrier
disappears.

TABLE I. The parameters of the system chosen for simulation.

N k1 d0 k2 l0 ε σLJ γ m

128 7 7 2 11 1 3 20 1

an interaction between the distant tails of the chain:

ULJ =
N∑
i,j

ε

(
σ 12

LJ

|�ri − �rj |12
− σ 6

LJ

|�ri − �rj |6
)

. (11)

Finally, we introduce a harmonic interaction between beads i

and i + 2 which resembles angular interactions:

Uψ =
N−2∑
i=1

1

2
k2(|�ri+2 − �ri | − l0)2. (12)

The total potential energy U is equal to

U = UR + Uψ + ULJ . (13)

For ε = 0 (no ULJ contribution) the potential energy is
minimized when the beads’ positions satisfy

|�ri+1 − �ri | = d0, |�ri+2 − �ri | = l0. (14)

In this case, all of the minimum energy conformations
are equienergetic. In fact, unless l0 > 2d0, once �r1 and �r2

are chosen to satisfy |�r2 − �r1| = d0, the third bead can be
positioned in two ways, so the relation |�r3 − �r1| = l0 is also
fulfilled. Successively applying the conditions (14) to the
following beads, one can build numerous minimum energy
geometries. When ULJ �= 0, the energetic structure of the
chain becomes more complex, but if d0 > σLJ and ε 	
k1, the Lennard-Jones contribution becomes a perturbation.
However, the ULJ influence makes the structures no longer
equienergetic.

When the chain’s energy is not minimized, the dynamical
topography of the potential energy surface depends on both
potentials’ parameters and the local geometry of the chain. An
effective way to represent snapshots of this energy landscape
for a single bead is to take into account its four nearest
neighbors. An example of such a landscape is reproduced
in Fig. 2(a). We have chosen the values of potential energy
parameters (Table I) such that the double-minimum structure
is distinct and holds for a wide range of local conformations.
However, this structure is extremely sensitive to a single
parameter, which is the distance lj = |�rj+1 − �rj−1|. Whenever
lj > 2d0, the two minima tend to merge rapidly into a single
one, positioned in line with beads j − 1 and j + 1. This
is reproduced in Fig. 2(b). This fact significantly affects
the high temperature dynamics of the chain, as is show in
Sec. IX.

V. SIMULATION

Applying the classical Runge-Kutta method modified for
stochastic differential equations [21], we have simulated the
system described by Eqs. (6) with the potential (13) and the
parameters from Table I. The number of beads has been set to
N = 128, the bead’s mass has been chosen as m = 1, and the
friction coefficient γ has been set to 20, which overdamped
the system.
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In our research, we have explored three regimes of
temperature. First, we have varied the noise amplitude σ from
0 to 20 units with an interval of 1 unit, and we have increased
the correlation length λ from 0 to 20 with an interval of 5
units. In the second regime, we have increased σ from 25 to
250 with an interval of 25 units, and in the third regime we have
explored the region from 300 to 1000 units with an interval of
100 units. For the second and the third regimes we have varied
λ from 0 to 50 with an interval of 10 units. For each pair of
λ and σ we have performed 64 runs, starting from different
initial positions. The initial coordinates have been chosen so
that the distance between nearest neighbors is equal to d0, but
the angle between modules has been chosen randomly from
π/2 to 3π/2.

The integration step has been set to 1/128 time unit, and
each simulation lasted 2148 time units. The data for the
first 100 units have been rejected due to system thermaliza-
tion. If not stated otherwise, the data have been collected
once per time unit. We have gathered the data regarding
bead synchronization, module length, and the angle between
modules.

VI. THE BEAD MOTION SYNCHRONIZATION

The introduction of the spatial correlations into the noise
implies that, at a length scale comparable to the correlation
length λ, the stochastic force vectors have similar direction
and value. Therefore, one could expect that the motion of
beads with a relative distance lower than λ will synchronize.
This prediction has been fully confirmed.

As the measure of synchronization at a particular moment
t , we have chosen the normalized product of two beads’
velocities, distanced by n nodes, which has been averaged

along the chain:

Kn(t) = 1

(N − n)

N−n∑
i=1

�vi · �vi+n

vivi+n

= 〈cos θi,i+n〉. (15)

Here θi,i+n is an angle between velocity vectors of the ith and
(i + n)th beads. For each run, we have gathered Kn(t), which
was time averaged to obtain the synchronization factor Kn.
The maximal value of Kn = 1 indicates a fully synchronized
motion, while Kn = 0 implies the opposite.

We have gathered the data for n ranging from 1 to 9. A
representative sample of our results is show in Fig. 3. The rise
in the synchronization factor Kn along with increasing λ and
σ = const is evident. Conversely, the level of synchronization
is almost constant for λ = const and varying amplitude, which
is valid even for temperatures below σ = 5. For every n, the
factor Kn grows from 0 for λ = 0 to the maximal observed
value for λ = 50, which is approximately 0.8 for n = 1 and
0.3 for n = 9.

A further insight into the synchronization comes from the
rearrangement of data, so Kn is represented as a function of n,
with λ and T being parameters. Figure 4 shows the qualitative
similarity between these data for two extreme temperatures
(σ = 1 and σ = 1000). To obtain a quantitative measure of
the decrease in synchronization with the rise in n, we have
fitted our data with the exponential decay model:

Kn = Aλe
−Bλn. (16)

This model proved to be an accurate description of data, as
the coefficient of determination R2 exceeded 0.99 for all fits,
except those with λ = 0, for which Bλ=0 has no physical
meaning.

In Fig. 5, we have juxtaposed the values of Bλ for σ � 25,
at which temperature the behavior of the chain is noise

FIG. 3. The synchronization factor Kn for n = 1,4,8 as a function of the correlation length λ and the noise amplitude σ . Each column
contains the data for the same n in (top) the high temperature regime and (bottom) the low temperature regime.
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FIG. 4. The synchronization factor Kn for two extreme values of
temperature as a function of the beads’ distance n. The data have been
fitted with the model: Kn = Aλe

−Bλn.

dominated. According to Fig. 5, the value of Bλ is mainly
determined by λ and decreases when the temperature grows by
two orders of magnitude. However, for λ � 30 this fall is rather
insignificant; thus, we conclude that the noise correlation
length is the primary factor that influences the effective range
of synchronization along the chain.

VII. BEAD MOTION CORRELATION

The other quantities that are also affected by the presence
of spatial correlations in noise are the time correlation of the
module length and the time correlation of the angles between
neighboring modules. These two characteristics describe the
time evolution of the chain geometry.

By a module we understand two neighboring beads, so the
length of the j th module, at certain moment t , is defined as

dj (t) = |�rj (t) − �rj−1(t)|. (17)

The angle between two neighboring modules is defined by the
positions of the three following beads:

ψj (t) = ∠[�rj−1(t),�rj (t),�rj+1(t)]. (18)

With the beginning at the center of the coordinate system,
vectors �ri are equivalent to the coordinates on a plane; thus

FIG. 5. The synchronization decay factor Bλ as a function of
temperature for σ � 25.

they are applied in the above definition. Additionally, one has
to remember that the angle ψj is directed and varies from 0◦
to 360◦ (with 180◦ indicating that three beads are exactly in
line), so the angles have to be measured in a unified way along
the whole chain, conserving the initial numeration of beads.

The time correlation function of angles has been calculated
in a following way:

Cψ (τ ) = 1

Cψ

T∑
k=0

N−1∑
j=2

[ψj (tk + τ ) − 〈ψ〉][ψj (tk) − 〈ψ〉].

(19)

Here, we introduce the additional summation over j due to the
fact that we have N − 2 angles for a single moment t , which
allows us to increase statistics and obtain a correlation measure
for a whole chain, rather than a single site. The normalization
factor Cψ has been chosen as

Cψ =
T∑

k=0

N−1∑
j=2

[ψj (tk) − 〈ψ〉]2, (20)

which means that Cψ (0) = 1. Finally, 〈ψ〉 reads

〈ψ〉 = 1

T (N − 2)

T∑
k=0

N−1∑
j=2

ψj (tk). (21)

In a strict analogy to the angle correlation function Cψ (τ ), we
can define the module length correlation function Cd (τ ):

Cd (τ ) = 1

Cd

T∑
k=0

N∑
j=2

[dj (tk + τ ) − 〈d〉][dj (tk) − 〈d〉]. (22)

Cd and 〈d〉 are defined similarly to their angle counterparts.
An example of collected data is presented in Fig. 6. In the

high temperature regime (approximately for σ > 200), both
Cψ (τ ) and Cd (τ ) are positive functions, asymptotically falling
from 1 to 0, which is typical of stochastic motion. However,
they differ significantly in the low temperature regime. While
Cψ (τ ) preserves its high temperature profile (but with values
much closer to 1), Cd (τ ) resembles a linear function, falling
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FIG. 6. A representative selection of the module length correlation functions Cd (τ ) and the correlation functions of the angles between
neighboring modules Cψ (τ ). Profiles have been fitted with the function aτα + c.

below 0 with the increase in τ . This long-term behavior of
the low-temperature Cd (τ ) indicates the domination of the
deterministic motion in this temperature regime. In the context
of the energetic landscape, introduced in Sec. IV, we can
suppose that the beads are trapped at the bottom of their
potential energy wells and perform the damped oscillations,
slightly perturbed by the noise. Apparently, while the bead
motion makes dj oscillate, it barely affects the angles, so
the values of Cψ (τ ) are relatively close to 1. Additionally,
the comparison between Cψ (τ ) and Cd (τ ) suggests that the
module length behavior evolves from deterministic into purely
stochastic as the temperature grows, while ψj (t) is of a
stochastic nature for all σ .

In order to measure the influence of σ and the noise
correlation length λ on Cψ (τ ) and Cd (τ ), we have fitted the
profile functions with the following model:

C(τ ) = aτα + c. (23)

Despite the inaccuracy for τ → 0 and a divergence in the
low-temperature regime, the power function model provides
quantitative information on the σ and λ dependencies, thanks
to the α parameter. The values of αd and αψ plotted against σ

and λ are shown in Fig. 7. As expected, for all values of σ and
λ, α is negative and tends to 0 with the decrease in temperature.
However, for constant λ, αψ decreases at a similar pace with the

FIG. 7. The exponents (a) αd and (b) αψ resulting from fitting the
power function to correlation profiles Cd (τ ) and Cψ (τ ).

growth of σ , while αd varies slowly for most of the temperature
range but jumps rapidly below σ = 100.

The increase in the noise correlation length λ affects both
αd and αψ in a similar way, namely, the larger λ is, the lower
the |α| obtained is. This means that the correlation functions
Cψ (τ ) and Cd (τ ) decrease at a slower rate, so dj (t) and ψj (t)
vary less rapidly over time. Therefore, the dynamics of the
chain’s shape becomes attenuated, and a current conformation
is preserved longer.

VIII. MODULE LENGTH DISTRIBUTION

We have also investigated the marginal distribution �(d) of
the module length d and its temperature evolution, with and
without spatial correlations in noise. Taking into account that
dj (t) may express an oscillatory behavior, we have reduced
the time interval between data acquisitions to 1/4 of a time
unit to avoid synchronization effects. The spatial resolution of
histograms has been set to 0.21 length unit.

The profile of �(d) proved to be a single peaked distribution,
concentrated in the vicinity of its mean, with slight, but
noticeable, asymmetry. Therefore, in order to describe �(d)
we have calculated its first moment, second central moment
(presented in Fig. 8), and the skewness.

FIG. 8. Statistical characteristics of the module length distribu-
tion �(d) as functions of the noise correlation length λ and the
temperature σ : (a) the mean module length 〈d〉 and (b) the variance
of �(d).
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The skewness grows with σ from 0 to approximately 0.6
and saturates at this value. Fortunately, the asymmetry proved
to be small enough, so the other parameters are still physically
meaningful. The dispersion of distribution �(d) grows with
increasing σ [Fig. 8(b)], which is expected diffusive behavior,
but the mean distance 〈d〉 also tends to grow [Fig. 8(a)], starting
from 〈d〉 ≈ d0. This fact, along with the nonzero skewness,
indicates that the underlying potential is asymmetric, and,
indeed, the presence of the repulsive Lennard-Jones core
provides the reflective barrier preventing two neighboring
beads from closing up. Conversely, the lengthening of dj is
still possible as the energy well is not as steep for dj > d0 as
in the opposite situation.

The spatial correlations in noise play an inhibitory role
for the process of the temperature dependent broadening
of �(d). Here λ �= 0 slows down the growth of both 〈d〉
and the dispersion of �(d). This effect can be explained
by the following reasoning. When a thermal bath imposes
noncorrelated, stochastic forces on beads j and j + 1, this
commonly results in a nonzero relative force stretching (or
shrinking) the module. However, when the noise is spatially
correlated, stochastic forces applied to beads become similar
at the length scale of λ, which significantly reduces the relative
forcing, and in turn, d is less affected by the noise.

IX. POLYMER UNFOLDING

The most unexpected effect that stems from the presence
of the spatial correlations in the noise is the spontaneous
linearization of the chain. Having defined angles ψj (t) in (18),
we have been able to obtain a marginal distribution of angles
�(ψ) depending on temperature σ and correlation length λ.
Similar to the previous section, the data have been collected
every 1/4 of a time unit, with the resolution of the histogram
set to 1◦. The representative selection covering the entire range
of tested parameters is presented in Fig. 9.

The temperature evolution of distribution �(ψ) gives
an insight into how the angular degrees of freedom are
freed with the rise in temperature. Let us analyze the λ =
0 case first. For low temperatures (σ < 10) we obtain a
symmetric bimodal distribution, which is in accordance with
the predictions of the double-minimum energetic landscape.
However, for extremely low temperatures (σ < 3) one can
see four distinct peaks, which indicates that, probably, there
are two additional minima. We can suppose that they are
shallow, as they disappear quickly with the rise in σ . For
temperatures from σ = 5 to σ = 13 the increased penetration
of the energy barrier region is noticeable, and the third
peak appears exactly at ψ = 180◦. At σ = 13 the two peaks
indicating energy minimums can no longer be distinguished,
and from then on, the shape of the distribution gradually
transforms from a bell-like curve into a triangle profile,
which is completed approximately for σ = 100. After that,
the distribution broadens systematically with the increase in
temperature.

The introduction of λ �= 0 affects �(ψ) in a subtle, but
remarkable, way. In the low noise regime (σ < 25) the increase
in λ retards the temperature evolution of �(ψ), so the bimodal
profile is preserved in a wider interval of σ . However, when σ

exceeds 50, the profile transforms into a heavy-tailed peaked

FIG. 9. The temperature evolution of angle distribution �(ψ) for
noise correlation length λ = 0, λ = 20, and λ = 40.
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FIG. 10. The dispersion of distribution �(ψ) as a function of the
noise correlation length λ and the temperature σ .

distribution, much more concentrated in the vicinity of ψ =
180◦ than in the case of λ = 0. The dispersion of �(ψ) is
a measure of this effect, which shows that the higher λ is,
the lower the value of �(ψ)’s second central moment is. This
indicates the linearization of the chain and thus its unfolding.
This is illustrated in Fig. 10.

The single-peaked distribution with 〈ψ〉 = 180◦ indirectly
suggests that for high temperatures the system selects the
single-minimum energetic configuration similar to the one
shown in Fig. 2(b) rather than the double-minimum landscape
in Fig. 2(a). Knowing that the growth of the distance lj =
|�rj+1 − �rj−1| is a crucial factor in the merging of energetic
minima, we can suppose that lj is subject to interplay similar
to dj , namely, the repulsive cores do not allow beads j − 1 and
j + 1 to close up, while the stretching of lj is still possible.

With sufficiently high noise, this asymmetry could lead to the
rise in 〈l〉 and the domination of the single-minimum potential
topology. This transition seems inherent to the system, and
it is present regardless of the spatial correlations in noise.
Nevertheless, once the single-minimum state prevails, the bead
can explore the well, provided there is enough relative forcing,
and for λ �= 0 this forcing drops dramatically. As a result,
despite the high noise amplitude, the bead is trapped near the
minimum, so the angles between modules cannot vary as much
as in the noncorrelated case. This leads to a narrowing of �(ψ)
around ψj = 180◦.

X. SUMMARY

Summarizing our research, the most salient conclusion one
can draw is that spatial correlations in thermal noise have
an overall inhibitory effect on the system. This manifests
in the general attenuation of the chain geometry dynamics
both in the time domain, where the polymer tends to preserve
its current shape, and in the temperature domain, where the
evolution of the statistical chain properties is retarded. It is
also in agreement with our previous findings that the presence
of nonzero correlations reduced the ability of the chain to
transfer between different conformations [13].

Such a behavior is not a surprise, as we can perceive the
introduction of the spatial correlations into the thermal bath
as a freezing of environment, and in the limit λ → +∞, this
should also lead to the complete attenuation of the system
dynamics. In this context, it is not solely the temperature
of the thermal bath that influences the system behavior but
also the structure of the environment. Our approach, which
decouples the temperature from the environmental correlation
length, allows for more plasticity than the explicit simulation
of thermal bath particles but requires proper scaling to avoid
unphysical situations.
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This paper provides additional insight into the effect of spontaneous un-
folding of the model polymeric chain driven by spatially correlated noise,
described in M. Majka, P.F. Góra, Phys. Rev. E86, 051122 (2012). We
examine the statistical data on the linearized chain substructures to find
that the global unfolding effect arises mainly from the cumulation of short,
2-segment-long fragments, scattered along the chain. This supports an al-
ternative view of spatially correlated noise as both the source of disturbance
and the conformation preserving factor.
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1. Introduction

Noise induced phenomena e.g. spontaneous ordering induced by white
noise [1] or the system synchronization induced by colored noise [2] are of
great concern for contemporary research. However, while the white noise and
Langevin dynamics are standard tools in complex system simulations [1] and
also the time-correlated noise combined with Generalized Langevin Equa-
tions becomes increasingly popular in applications [3], little research has
been devoted to the spatially correlated noise.

The spatially correlated noise is a disturbance which is random at large
length-scale, but ordered at the length-scale of correlation length λ. This
kind of disturbance forms a space pattern which can evolve over time in
a completely random or temporally correlated manner, tough preserving a
certain ordering below the length λ. Such noise is designed to resemble

∗ Presented at the XXV Marian Smoluchowski Symposium on Statistical Physics,
“Fluctuation Relations in Nonequilibrium Regime”, Kraków, Poland, September
10–13, 2012.

(1099)
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a collectively acting heat-bath affecting a sub-system of interest with pos-
sible application to soft matter simulations. Random, yet spatially corre-
lated phenomena are encountered especially in the research on glass-forming
[4–6], active particles swimming [7, 8] and sedimentation in crowded solu-
tions [9, 10].

Our main results regarding the influence of spatially correlated noise
on the model two dimensional polymeric chain has been already published
in [11] and [12]. The paper [11] is a primary reading which provides the most
complete introduction to the topic as well as full support for our findings,
and we shall relate to this article repeatedly in the present work. Thus, it is
preferable that the Reader will familiarize himself with [11] before proceed-
ing. Nevertheless, we should present here a brief summarization of the most
important notions from [11] to facilitate the reading.

We have examined a two dimensional polymer chain model based on
the bead-spring approach with the nearest neighbor, angular and excluded
volume interactions. The position of ith bead has been simulated according
to the equations of motion{

mẍi + γẋ+ ∂xiU = ξx (~ri, t) ,

mÿi + γẏ + ∂yiU = ξy (~ri, t) .
(1)

Herem is a bead mass, γ is a friction constant and U is total potential energy
(to be specified in Section 2). While we have kept inertial terms in (1) for
the sake of numerical accuracy, the constants were chosen so γ/m = 20,
which was enough to over-damp the system. ~ξ(~r, t) denotes the spatially
correlated Gaussian noise, whose correlation function reads

〈ξx (~ri, t2) ξx (~rj , t1)〉 = 〈ξy (~ri, t2) ξy (~rj , t1)〉 = σ
γ

m
e−
|~ri−~rj|

λ δ(t2 − t1) , (2)

〈ξx (~ri, t2) ξy (~rj , t1)〉 = 0 . (3)

Here, σ is temperature and λ is a correlation length.
We have found that the presence of spatial correlations in the noise

results in several measurable effects, which are: chain stiffening (discussed
comprehensively in [12]), the synchronization of beads motion, increased
time correlation of segments lengths and angles between segments, and the
spontaneous unfolding of the chain [11].

The effect of spontaneous unfolding is of special interest in this paper,
and we would like to discuss it now in a greater detail. In [11], we have
presented the distribution of angles between neighboring polymer segments
(defined by equation (10), Section 2) for a range of temperatures and corre-
lation lengths. For sufficiently high temperatures, these data proved to be
single peaked distributions, symmetric around their mean values. The peak
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in probability is associated with neighboring segments lying exactly in line,
yet these distributions are broad and, especially for the uncorrelated noise,
the raise in σ increases the variance of distribution. Having introduced spa-
tial correlations into noise, the distributions become remarkably narrower
and, for constant temperature, the longer correlation length is, the lower
is the variance. In the range of correlation lengths which we have tested
(approximately from 1 to 7 segment equilibrium lengths), this fall of vari-
ance seems to asymptotically approach certain minimal, yet non-zero, value.
Additionally, for constant and non-zero correlation length, the temperature
dependent growth of variance is significantly mitigated in comparison to the
uncorrelated case.

From the preceding description, one can conclude that neighboring seg-
ments tends to linearize, yet the distribution of angles gives no information
what structures prevail in the chain geometry to give rise to this effect, and,
especially, how long those linearized fragments are. We will elaborate on
this in Section 3. In Section 4, we will outline a new interpretation of the
unfolding effect, alternative to one given in [11]. However, first, we would
like to present our polymer model in Section 2.

2. Polymer chain model

Our polymer chain model consists of N interacting material points
(beads) for which we have applied the Langevin dynamics. The beads in-
teract via three kinds of potential that form a bead-spring model enriched
with angular and excluded volume interactions. The total potential energy
of the system reads

U = UR + Uψ + ULJ . (4)

UR is the nearest neighbor interaction, which resembles bonds, and it is
defined by

UR =

N−1∑
i=1

1
2k1 (|~ri+1 − ~ri| − d0)2 . (5)

Here, ~ri is a position of the ith bead and d0 is an equilibrium segment length.
The angular interaction Uψ is modeled with the second nearest neighbor
interaction, which is

Uψ =
N−2∑
i=1

1
2k2 (|~ri+2 − ~ri| − l0)2 . (6)

In this case, l0 defines the preferable distance between ith and i+2nd bead,
and to ensure a saw-like chain conformation, it should be satisfied that [11]

l0 < 2d0 . (7)
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Finally, we introduce the global Lennard–Jones interaction ULJ

ULJ =
N∑
i,j

ε

(
σ12LJ

|~ri − ~rj |12
−

σ6LJ
|~ri − ~rj |6

)
. (8)

This interaction brings in the effect of excluded volume thanks to its repul-
sive core (its diameter is proportional to σLJ) and provides the attraction
whenever the distant parts of chain close up. Parameters k1, k2 and ε are
scaling constants and their exact values used in simulations are gathered in
Table I.

TABLE I

The parameters of the system chosen for simulations. These parameters provided
the saw-like chain conformation, presence of repulsive core for each bead and the
over-damping of beads’ motion.

N k1 d0 k2 l0 ε σLJ γ m

128 7 7 2 11 1 3 20 1

For the detailed discussion of the minimal energy structures, a single
bead energy landscape and a chain geometry dynamics, please see [11], but
here we would like to outline only the most important facts. A single bead
moves in a potential well determined by the positions of its neighboring
beads. For parameters chosen according to Table I, this well has most often
a double minimum, so there are two possible positions of a bead relative to
the rest of the chain that minimize the bead’s energy. Both, the depth of each
minimum and their exact positions change as the local geometry evolves, yet
the double-well landscape is predominant and fairly invulnerable to changing
angles between segments. However, this double-well structure is extremely
sensitive to the increase in distance between the nearest neighbors of the
bead. Such stretching causes the two minima to merge rapidly into one,
which is positioned in line with the nearest neighbors. This is seen as a local
frustration of the chain, because the minimal energy structures never tend
to linearize.

In [11], the conformational dynamics of chain is examined primarily with
two parameters, namely the length of the segment

dj(t) = |~rj(t)− ~rj−1(t)| (9)

and the angle between neighboring segments, which has been obtained from
positions ~rj of the three following beads

ψj = ∠ (~rj−1, ~rj , ~rj+1) . (10)
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This angle is directed, varies from 0 to 360◦ and it is always measured
with respect to certain initial numeration of beads. It is also scaled, so
ψj = 180◦ indicates three beads being exactly in-line. We have found that for
parameters from Table I and low (3 < σ < 12) uncorrelated noise, the system
prefers the saw-like conformation, with dj ≈ d0. For such σ, the distribution
of angles ψj is symmetric, double peaked, with one peak approximately at
110◦ and the other at 250◦. This is consistent with the double-well picture,
described in the previous paragraph. With the rise in temperature above
σ = 13, the two peaks melt down and the third peak appears exactly at
ψj = 180◦. This process is gradually retarded with the rise in noise’s spatial
correlation length, e.g. for λ = 50 the single peaked distribution appears as
late as for σ > 25. From now on, the distribution of ψj evolves as described
in the introductory section, giving rise to the effect of unfolding.

In general, the prevalence of mono-peaked ψj distributions can be ex-
plained by the presence of repulsive Lennard–Jones cores. The rise in tem-
perature increases the mobility of beads, but such cores prevent beads from
closing up. Effectively, average distances between beads tend to grow and
many sites along the chain suffer frustration, which means that these sites
are govern by the single-minimum energy landscape. In other words, the
random disturbance can much easier stretch the system than squeeze it.
While such mechanism could be accepted for the uncorrelated noise, which
provides relative forcing at all length-scales, it is not clear why it should be
also valid for the spatially correlated noise, which introduces low relative
forcing below correlation length. Namely, the ability of noise to compress
or extend the system at the length-scale of λ is remarkably reduced, and, in
fact, in [11], it has been shown that spatial correlations mitigate the growth
in average distances. Therefore, for λ 6= 0 the chain should be less affected
by the noise, but ψj indicates the opposite. In order to explain this con-
tradiction, we would like to provide another data, regarding the length of
linearized fragments and their distribution along the chain.

3. Chain substructures

Having determined ψj angles in one particular moment, it is also possible
to count the lengths of linearized fragments of the chain. Two neighboring
segments are treated as linearized if the angle between them satisfies ψj ∈
[160◦, 200◦]. The length of a linearized fragment is defined as the number n
of following beads that sequentially fulfill the given criterion. Scanning along
the chain, a single segment is assigned to the longest linearized fragment it
belongs to. Repeating the scans for different moments leads to the statistics
of such fragments’ lengths. A single, non-linearized segment is taken as the
fragment with n = 1, so only fragments with n ≥ 2 are truly indicating
linearization.
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We have conducted simulations for σ ranging from 1 to 1000 and λ from
0 to 50. In the range 1 ≤ σ ≤ 20, with the temperature increment equal 1,
we have varied λ from 0 to 20 by 5 units. For 25 ≤ σ ≤ 250, the σ increment
was 25 and in the interval 300 ≤ σ ≤ 1000 the increment was equal 100. For
these two temperature ranges, the correlation length has been varied by 10
from 0 to 50. For each pair of σ and λ, we have performed 64 runs, from
which the statistics has been averaged out. During each run, which lasted
218 steps, we have measured statistics every 32 steps. There have been also
100×27 initial steps for system thermalization, during which there has been
no acquisition of data.

We have collected data regarding the abundance of n-segment-long lin-
earized fragments in the form of a histogram. The value Pn of the nth bin
estimates the probability that a single segment belongs to an n-segment-
long linearized fragment, with P1 occupied by non-linearized segments. For

Fig. 1. The comparison of histograms Pn for temperatures 25 ≤ σ ≤ 1000 and
correlation lengths 0 ≤ λ ≤ 50. Data from simulations (black dots) has been
fitted with exponential decay function (solid line). With increasing σ histograms
approach exponential distribution.
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selected temperatures, these data are presented in Fig. 1. Histograms have
been fitted with an exponential decay function

p(n) = A exp

(
−n− 1

κ

)
. (11)

This model proved to fit the data exceptionally well for λ = 0 and λ = 10
with σ > 75, but for lower temperatures fits became inaccurate. This is also
the problem for larger λ, for which fits seem to gradually improve with the
rise in σ, yet this process is spanned over even larger temperature interval
(see Fig. 1). The general trend of Pn is to exceed the values predicted with
p(n), thus the exponential decay model is a lower boundary approximation
at best. Nevertheless, Fig. 1 suggests that exponential distribution is correct
at least in the large temperature limit. The retardation of the temperature
dependent evolution has been also described in [11], regarding the angles
distributions, thus it is no surprise to encounter it in the current dataset.

Despite discussed limitations, the model (11) provides a reasonable ap-
proximation for n = 1, 2, 3-long fragments, which are the most abundant.
Parameter κ from equation (11) indicates overall trend in the linearization
effect, and its relative error has been lower that 5% for all fitted curves.
In Fig. 2, we have visualized κ with respect to the correlation length and
temperature. In general, the behavior of κ is complicated, yet for σ > 300,
it is evidently growing with the rise in λ from approximately 0.7 to 1.6.
This is clear indication that the participation of short, linearized structures
is λ dependent and increases with the growing correlation length.

Fig. 2. Decay constant κ (see equation (11)) as a function of temperature σ and
correlation length λ. For σ > 300, the κ is growing with λ, which reflects the
increasing linearization of the chain.
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We have also compared Pn for n = 2, 3, 4 in relation to λ and σ (Fig. 3).
Typically, for σ > 300 and λ ≥ 10, P2 exceeds 0.16, P3 is approximately
equal to 0.1 and P4 reaches 0.06, which means that 2 to 4 long fragments
are dominant structures and usually contain around 30% of segment popu-
lation. In general, from 15% to 45% of segments form linearized structures,
so fragments which are even longer than 4 are also present, yet significantly
less abundant (e.g. P6 is always smaller than 0.01) and they are not vital
for the unfolding effect. Additionally, knowing that two linear fragments are
separated by at least one non-linearized segment, we can suppose that the
linearized fragments are distributed along the chain more or less uniformly.
This means that the unfolding effect is a global process occurring parallel at
multiple sites and based mainly on the short linear substructures.

Fig. 3. Pn is a probability that a given chain segment belongs to an n-long linearized
segment. Above, a comparison between P2, P3 and P4 showing the abundance of
these structures and their dependence on temperature σ and correlation length λ.

4. Reinterpretation of chain unfolding

Now, we would like to propose a reinterpretation of the chain unfolding
process. As it has been stated in Section 2, local linearization indicates the
single minimum energy landscape and can be interpreted as a frustration.
The spatially correlated noise provides low relative forcing at the distances
below λ, and, indeed, it does not directly affect the low-level structure itself.
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However, the fragments of chain which are larger than λ can move in an
uncorrelated manner. As a result of this incoherent motion, there appear
frustrated sites, and they should occur randomly and uniformly along the
chain. The exact positions of these frustrated sites depend only on the
random realization of spatial noise pattern at certain time moment. Yet,
this pattern evolves rapidly, so a single site that has been once frustrated
can found itself in the middle of region which is not affected by the noise,
because of spatial correlations. In this case, the lack of relative forcing
hinders a local relaxation process, and so frustration is stabilized. In turn,
frustrated sites are accumulated along the chain, which is manifested as the
unfolding effect. Therefore, the interplay between frustrated sites production
and the shape preserving influence of spatially correlated noise could be a
main source of the unfolding effect. Such notion is in agreement with our
data, both those presented in [11] and those discussed in previous section.
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Non-Gaussian polymers described by alpha-stable chain statistics: Model, effective interactions
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The Gaussian chain model is the classical description of a polymeric chain, which provides analytical results
regarding end-to-end distance, the distribution of segments around the mass center of a chain, coarse-grained
interactions between two chains and effective interactions in binary mixtures. This hierarchy of results can be
calculated thanks to the α stability of the Gaussian distribution. In this paper we show that it is possible to
generalize the model of Gaussian chain to the entire class of α-stable distributions, obtaining the analogous
hierarchy of results expressed by the analytical closed-form formulas in the Fourier space. This allows us to
establish the α-stable chain model. We begin with reviewing the applications of Levy flights in the context
of polymer sciences, which include: chains described by the heavy-tailed distributions of persistence length;
polymers adsorbed to the surface; and the chains driven by a noise with power-law spatial correlations. Further, we
derive the distribution of segments around the mass center of the α-stable chain and construct the coarse-grained
interaction potential between two chains. These results are employed to discuss the model of binary mixture
consisting of the α-stable chains. In what follows, we establish the spinodal decomposition condition generalized
to the mixtures of the α-stable polymers. This condition is further applied to compare the on-surface phase
separation of adsorbed polymers (which are known to be described with heavy-tailed statistics) with the phase
separation condition in the bulk. Finally, we predict the four different scenarios of simultaneous mixing and
demixing in the two- and three-dimensional systems.
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I. INTRODUCTION

While the theory of Flory provides an accurate description
of the ideal polymeric chains [1], factors such as complex
environment interactions, adsorption, or designed chemical
composition can lead to significant deviations from this model.
The Flory approach is based on the Gaussian chain model,
in which the conformation of a chain is equivalent to the
trajectory of a particle undergoing the thermal Brownian
motion [1]. In this model the chain is characterized by the
Gaussian distribution of the nearest-neighbor distances, a fact
that leads to the entire hierarchy of analytical results. In partic-
ular, the Gaussian shape propagates to such characteristics as
end-to-end distance distribution [1], distribution of segments
around the mass center of the chain [2], and the coarse-grained
interaction potential between two chains in terms of the
distance between their mass centers [3]. Deriving all of these
characteristics is possible due to a single fact: the Gaussian
distribution is α stable. Since there exists the entire class
of α-stable, heavy-tailed distributions [4], this suggests that
a natural and equally prolific generalization of the Gaussian
chain model can be based on the α-stable distributions. Indeed,
in this paper we discuss the α-stable chain model and calculate
all of the characteristics analogous to the Gaussian model.

The first goal of this paper is to establish the physical
context in which the α-stable distributions are relevant for
the polymer sciences. Since the application of α-stable
distributions (or Levy walks and Levy flights) in this context is
not an entirely new concept, in Sec. II we review the relevant
literature. In addition, we provide our own simulations of a

*maciej.majka@uj.edu.pl

model polymeric chain under the spatially correlated noise,
which establish another context for our considerations.

The main part of this paper is focused on deriving and
analyzing the different aspects of the α-stable chain model. In
Sec. III we introduce the model itself. The distribution of nodes
around the mass center of a chain is calculated in Appendix. In
Sec. IV the coarse-grained model of interaction between two
chains is established. All of these results are analytical and
closed form in the Fourier space.

Another goal of this paper is to analyze the stability of
binary mixtures composed of the α-stable chains. Under-
standing the behavior of binary mixtures is a vital problem
in industry, medicine, wet nanotechnology, and biophysics.
Usually, this problem is considered in the framework of
spinodal decomposition. In this approach the local extremes
of the free-energy functional are identified with respect to
the thermodynamical parameters. While the local minima
are associated with stable thermodynamic phases, which are
insensitive to the fluctuations of parameters, the local maxima
indicate the phase transitions. This method was successfully
applied to find the decomposition condition in the mixtures of
Gaussian particles [5,6], namely, there exists a well defined
region of mixing and demixing, dependent on the proportion
of gyration radii.

From the microscopic perspective, the stability of solution
is governed by effective interactions [7], whose prediction is
a classical problem of soft matter physics [8]. In the context
of binary mixtures of Gaussian particles, Bolhuis et al. found
via simulations that the interaction between particles of one
species has also a Gaussian profile, but with an addition of a
shallow attractive tail [9]. Similar results were predicted half
analytically via closure-relations techniques in Refs. [10,11].
On the other hand, a simpler, but entirely analytical method
has been recently proposed in Ref. [12] by the authors of

1539-3755/2015/91(5)/052602(10) 052602-1 ©2015 American Physical Society
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this paper. Therein, we have studied the stability of Gaussian
particles mixtures and our results proved similar to the
spinodal decomposition analysis [5,6]. Since our methodology
from Ref. [12] can be conveniently extended to the particles
described with the α-stable profiles, we apply this approach
in the current paper. As the main result of Sec. V, we generalize
the spinodal decomposition condition for Gaussian particles to
the entire class of particles based on the α-stable distributions.
We discuss the validity of our methodology in Sec. VI.

Finally, in Sec. VII we employ the results regarding phase
separation in binary mixtures to analyze the phase separation of
adsorbed polymers versus their behavior in the bulk. As a result
we predict the parameters for which the different combinations
of simultaneous mixing or demixing on the surface and in the
bulk can be achieved.

II. LEVY FLIGHTS IN POLYMER SCIENCES

Except for the Gaussian case, the asymptotic behavior of
the α-stable distributions is of the power-law type ∝ 1/rα+1

[4], where α ∈ [0,2] is the characteristic exponent of the
distribution. A random walk characterized by such a heavy-
tailed distribution of steps is known as a Levy flight. It is
usually difficult to interpret Levy flights in physical terms,
therefore let us discuss three situations justifying such statistics
in the context of polymers.

The first scenario can be related to the non-Gaussian
distribution of segment persistence lengths. The Gaussian
chain model is usually derived from a discrete model, in which
all segments have the same persistence length [1]. However, it
can be also seen as the model for a chain made of unequal
segments, whose persistence lengths follow the Gaussian
distribution. This can be further generalized to the α-stable
distribution, the idea suggested by Moon and Nakanishi in
Ref. [13]. They proposed the Levy walk chain model, based
on the formalism of turbulent flows [14] and calculated
Flory exponents for this model. While no direct experimental
confirmation of this idea is known to the present authors, non-
Gaussian persistence length distribution might be the result
of the varying chemical composition of a chain. For example,
the DNA double strand is characterized by the persistence
length much greater than a single base pair [15], but also
certain sequences of chemical monomers can assemble into
relatively long and stable structures of significant persistence
length, such as protein domains [16]. A possible realization of
such Levy flights could be the intrinsically disordered proteins,
in which second-order structural motifs such as α helices
coexist with disordered loops [17,18]. However, it should be
mentioned that some numerical experiments on the structure
of partially unfolded proteins indicate that Gaussian statistics
is rather robust [19].

Another scenario is similar to the problem of a tracer, which
mixes one- and three-dimensional diffusion. Such motion has
been observed experimentally in DNA-binding proteins [20]
and its simulations revealed the heavy-tailed distributions of
steps along the polymer in certain configurations [21]. This
behavior can be efficiently modeled with Levy flights [22].
In the context of polymers, we consider the adsorption of
a chain to the surface. This problem was first analyzed by
de Gennes from the scaling perspective in Refs. [23,24].

FIG. 1. (Color online) Top: schematic representation of a poly-
mer adsorbed to the surface, dots indicate the adsorbed segments.
Bottom: planar trajectories connecting the subsequent adsorbed
segments. (a) In the strong adsorption regime freely-diffusing loops
are short and subsequent adsorbed nodes are found close to each
other. The radius of gyration parallel to the surface scale as Rg,|| ∝
N 3/4 [25]. (b) In the weak adsorption limit the long, freely diffusing
loops are numerous and introduce Levy flights into the planar
trajectory. Rg,|| scales as ∝ N 3/5 [25].

For the intermediate attraction strength, only some fraction
of segments is attached to the surface, while the loops that
connect those segments diffuse into the bulk. Considering the
projection of the chain on the surface, it has been argued
by Bouchaud and Daoud [25] that the planar trajectory
connecting adsorbed nodes can be modeled as Levy flights,
since the subsequent adsorbed segments connected by a loop
can be found at abnormally long distances. The schematic
representation of a polymer in the strong versus the weak
adsorption limit is shown in Fig. 1. Bouchaud and Daoud
predict that for an adsorbed polymer its gyration radius parallel
to the surface scales as Rg,|| ∝ N3/4 for the strong adsorption
and Rg,|| ∝ N3/5 for the weak adsorption [25]. Within the
Flory-type theory for Levy flights discussed in Ref. [25],
the latter translates into the characteristic exponent of the
distribution α = 1 and the former demands α = 2. This means
that while in the strong adsorption regime the Levy flights and
the Gaussian statistics are equivalent, for the weak adsorption
limit Rg,|| should be modeled with power-law distributions.

One final interpretation can be related to the situation
in which a polymer experiences a random, though spatially
correlated, behavior of surrounding environment. Such condi-
tions occur in the glassy state, in which the correlations are
exponential [26–28], or near crystallization, in which case the
scale-free behavior results in the power-law correlations [29].
In Ref. [30] we have simulated a two-dimensional model
polymeric chain driven by the spatially correlated noise and
observed the effect of spontaneous chain unfolding, i.e.,
a significant number of segments tends to form linearized
structures, scattered along the chain. As we have shown in
Ref. [31], this effect was mainly due to the short (2–3 segments)
structures, but structures up to 50 segments were also observed.
Such elongated fragments may act as Levy flights, provided
that their distribution is wide enough.

052602-2



NON-GAUSSIAN POLYMERS DESCRIBED BY ALPHA- . . . PHYSICAL REVIEW E 91, 052602 (2015)

The model from Ref. [30] consisted of a bead-spring chain
with a global Lennard-Jones potential assigned to each bead
and a second-nearest-neighbor harmonic interaction to induce
nonlinear conformations. The system was driven by the noise
ξ , whose spatial correlation function read:

〈ξ (r)ξ (r + �r)〉 ∝ exp(−|�r|/λ). (1)

For the purpose of the current paper we have repeated
the simulations from Ref. [30], replacing the exponential
correlations in the noise with a heavy-tailed function, based
on the Cauchy distribution, namely:

〈ξ (r)ξ (r + �r)〉 ∝ 1/[1 + (|�r|/λ)2]. (2)

The data regarding the linearized fragments has been gather
in the same fashion as in Ref. [31]. To improve statistics, the
single set of parameters was simulated 128 times, otherwise,
the details of the simulations remained the same as in Refs. [30]
and [31]. In Fig. 2, we include the representative probability
distributions Sn of finding the n-segments-long structure in the
chain geometry. The data has been gathered from the regime
of noise-dominated dynamics. With the growing correlation
length λ the distribution Sn gradually develops a linear region
in the log-log plot. For λ � 40, where relevant, we have
fitted Sn for n > 17 with a power-law model Sn = cn−(α+1).
We obtain α ranging from 1.18 ± 0.39 to 2.44 ± 0.54, with
the relative error typically at the level of 20–30 %. The
uncertainty intervals for these values of α overlap with the
interval α ∈ [0,2], which is expected for the asymptotic
behavior of the α-stable distributions [4]. For comparison, the
data have been also fitted with the exponential decay model

Sn = ae−n/b. While both the linear and exponential fit describe
the tail part of Sn similarly well (in both cases R2 � 0.8) and,
most probably, even for λ = 50 the distribution Sn eventually
develops the exponential decay for n � 50, a power-law-like
region suggests that in the special conditions of long-range
spatial correlations the α-stable distributions might be a more
relevant description of the chain statistics than the Gaussian
distribution. For comparison we also include in Fig. 2 the data
from Ref. [30], which preserve the exponential form in the
entire range of parameters.

III. α-STABLE CHAIN MODEL

In the Gaussian chain model, the geometry of a chain is
described as a random walk trajectory, in which the distribution
of the distances between nearest neighbors is Gaussian,
namely [1]:

G(|ri+1 − ri |) =
(

2πb2

D

)−D/2

exp

(
−D(ri+1 − ri)2

2b2

)
.

(3)
Here, D is the dimension of the system, b is usually interpreted
as the length of a segment and ri is the vector position of ith
node. The characteristic function of G reads:

φG(k) = exp

(
−2b2

D
k2

)
. (4)

Let us now consider the generalization of G(|ri+1 − ri |)
to the α-stable distribution P (|ri+1 − ri |). The multivariate
α-stable distributions are defined in terms of their charac-
teristic functions, which can be written in the following
parametrization [4]:

φ(k) =
exp

(
−

∫
SD

|k · s|α
(

1 − isgn(k · s) tan
πα

2

)
�(ds) + ik · μ

)
for α �= 1

exp

(
−

∫
SD

|k · s|
(

1 + isgn(k · s)
2 ln k · s

π

)
�(ds) + ik · μ

)
for α = 1.

(5)

In the above definition �(ds) stands for the spectral measure
defined on the D-dimensional unit sphere SD , k · s denotes
the scalar product, and μ is the vector of mean values.
Since we are interested in the spherically symmetric distri-
butions, we choose the uniform spectral measure �(ds) =
const. [32]. Under such choice, and assuming μ = 0, the
general parametrization can be simplified to the following
form:

φ(k) = exp (−ckα) , (6)

where k = |k| and c is a constant. Eq. (4) is a special case of
φ(k), and our choice of c should agree with φG(k) for α = 2.
Therefore, we postulate that c reads:

c = 2bα

D
(7)

and, finally, the nearest-neighbor spatial distribution in the
α-stable chain model reads:

P (|ri+1 − ri |)

= 1

(2π )D

∫
dk exp

(
ik · (ri+1 − ri) − 2

D
bαkα

)
. (8)

Having established the nearest-neighbor spatial distribution
P (|ri+1 − ri |), we can calculate such distribution for any pair
of segments, namely:

P (|ri − rj |)

=
∫

dri+1 . . .

∫
drj−1

j∏
n=i+1

P (|rn − rn−1|)

= 1

(2π )D

∫
dk exp

(
ik · (ri − rj ) − 2

D
|i − j |bαkα

)
,

(9)
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FIG. 2. The probability distribution Sn of finding the n-segment-long linearized fragment in a chain driven by the spatially correlated
noise. Each plot represents the results for noise amplitude 2kT and correlation length λ. Triangles: exponential noise correlation function
〈ξ (r)ξ (r + �r)〉 ∝ exp(−|�r|/λ); dots: Cauchy noise correlation function 〈ξ (r)ξ (r + �r)〉 ∝ 1/[1 + (|�r|/λ)2]. The tail behavior (n � 17)
has been fitted with exponential decay model Sn = ce−n/bi (dashed lines) with bi given on the plot. For λ � 40 the data has been also fitted
with power law Sn = cn−(α+1) for n � 17, indicating the power-law asymptotic behavior.

where we made use of α stability. For α = 2 this for-
mula comes down to the well known result for Gaussian
chain [1]:

G(|ri − rj |) =
(

2π |i − j |b2

D

)−D/2

exp

(
−D(ri − rj )2

2|i − j |b2

)
.

(10)

It is also possible to calculate α = 1 case explicitly:

Pα=1,D=3(|ri − rj |) = 16π |i − j |
3

1( 4|i−j |2
9 + r2

)2 . (11)

In particular, taking as i and j the first and the last
segment respectively, we obtain the end-to-end distance
distribution.

A classical problem in polymer physics is to predict the
scaling behavior of radius of gyration Rg with the growing
N . In order to do so, we will calculate Rg using a method
mentioned in Ref. [13], namely Rg = 〈rα〉1/α , where 〈.〉

denotes the average:

Rg =
[

1

(2π )D

∫
drrα

∫
dk exp

(
ik · r − 2N

D
bαkα

)]1/α

= b

(
2N

D

)1/α

×
(

1

(2π )D

∫
dr′r ′α

∫
dk′ exp(ik′ · r′ − k′α)

)1/α

.

(12)

This result is obtained via the change of variables k′ =
b(2N/D)1/αk and r′ = b−1(2N/D)−1/αr, which completely
factors the dependence on b and N out of the integral.
Therefore, the scaling reads Rg ∝ bN1/α .

While this scaling seems reasonable for α � 1, it becomes
questionable for 0 < α < 1, for which the scaling exponent of
N becomes greater than 1. On the one hand, the examples from
Sec. II use α � 1 almost exclusively. In particular, Moon and
Nakanishi in Ref. [13] introduce their more complicated Levy
walk model to avoid α < 1 problem and, in their approach,
the scaling exponent of N is always lower than 1. On the other
hand, Bouchaud and Daoud in Ref. [25] systematically discuss
every possible value of α, pointing out that for α < 1 the Flory
correction from the self-avoiding nodes becomes irrelevant. In

052602-4



NON-GAUSSIAN POLYMERS DESCRIBED BY ALPHA- . . . PHYSICAL REVIEW E 91, 052602 (2015)

conclusion, while α < 1 seems physically unlikely, with so
little literature on the subject it cannot be rejected at this point.

Finally, with P (|ri+1 − ri |) at our disposal, we can calculate
the distribution of nodes around the mass center of the
chain. This derivation is highly technical, so we include it
in Appendix and here we discuss the final result only. In the
limit of huge number of nodes N , the sought distribution reads:

PCM(|r − R|) = 1

(2π )D

∫ 1

0
dq

∫
dk exp

[
ik · (r − R)

− 2Nbαkα

D(α + 1)
((1 − q)α+1 + qα+1)

]
, (13)

where R is the mass center. While this expression is exact, the
integral with respect to q makes it unwieldy. We can simplify
it by resorting to the integral mean value theorem. Namely,
there exists such q0 ∈ [0,1], that:

PCM(|r − R|) = 1

(2π )D

∫
dk exp

[
ik0 · (r − R)

− 2Nbαkα

D(α + 1)

(
(1 − q0)α+1 + qα+1

0

)]
. (14)

On the other hand, since the integrand of (13) is a peak function
of q with maximum at q = 1/2, this value contributes the most
to the integral. For this reason, we will approximate (14) by
imposing q0 = 1/2. This results in the characteristic function
of PCM(|r − R|) in a form exp(−c(α)kα), where:

c(α) = 2N

D(α + 1)

(
b

2

)α

. (15)

IV. COARSE-GRAINED INTERACTION BETWEEN TWO
NON-GAUSSIAN POLYMERS

Having established PCM(|r − R|) for a single chain, we can
calculate the coarse-grained interaction between two chains
in terms of the distance between their mass centers. From
now on, the lower index numerates the type of particle, so
PCM,i(|r − Ri |) describes an ith type of chain characterized
by Ni segments, constant bi and exponent αi . We can follow
the reasoning of Flory and Krigbaum [3] and assume that the
systems suffers an energetic penalty εij if a segment belonging
to one chain invades a small volume in the vicinity of a segment
belonging to the other chain. For a single site r, the probability
of such event is proportional to PCM,i(|r − Ri |)PCM,j (|r −
Rj |)dr. Therefore, the entire interaction reads:

Vij (|Ri − Rj |) = εij c̃ij

∫
drPCM,i(|r − Ri |)PCM,j (|r − Rj |)

= εij c̃ij

(2π )D

∫
dk exp[ik · (Ri − Rj )

− ci(αi)k
αi − cj (αj )kαj ]. (16)

Assuming that εij has a dimension of energy, it is necessary
to introduce an additional constant c̃ij , which has a dimension
of volume. We can deduce this constant from the case of αi =
αj = 2, for which we obtain the following universal Gaussian
potential [8] and its Fourier transform:

V (r) = ε exp

(
− r2

4c

)
V(k) = ε (4πc)D/2 e−ck2

. (17)

When ε is independent from N , this potential is perceived
as an accurate and reliable model for interaction of identical
chains [8,9]. Comparing (17) to (16), one can see that
c = ci(2) + cj (2) and hence c̃ij = (4πc)D/2. This can be
generalized for αi = αj = α by:

c̃ij = {4π [ci(α) + cj (α)]}D/α. (18)

For the case of αi �= αj the constant c̃ij cannot be uniquely
deduced from the dimensional analysis, thus we will restrict
our further considerations to the potentials with common α.

V. EFFECTIVE INTERACTIONS AND MIXTURE
STABILITY

Once Vij has been found, we can analyze the interactions in
binary mixtures. The system is described by three microscopic
potentials in the form (16), where V11 and V22 are the internal
interactions of each species and V12 is the cross-species
interaction. When the behavior of one species in a mixture
is considered, the presence of the other species modifies the
microscopic interaction [7,8]. The additional potential, known
as the effective interaction, is of entropic origin [7,8] and it is
a key factor in controlling mixture stability and demixing. The
prediction of effective interactions from arbitrary microscopic
potentials is usually a challenging numerical task, but in our
previous work [12] we have proposed a simple analytical
method, suitable for soft interactions. According to Ref. [12],
the effective interaction can be estimated by:

Ueff(�R) = − 1

(2π )D

∫
	̃

dkeik·�R |V12(k)|2
V22(k)

, (19)

where Vij (k) = ∫
dr exp(ik · r)Vij (r) is a Fourier transform

of relevant Vij (r) and 	̃ is the volume in the reciprocal space.
Substituting (16) with relevant constants given by (18) into the
expression for effective interactions, one obtains:

Ueff(�R) = − 1

(2π )D
ε2

12

ε22

(4π )D/α[c1(α) + c2(α)]2D/α

[2c2(α)]D/α

×
∫

	̃

dkeik·�R−2c1(α)kα

. (20)

The total interaction for the first species in the mixture reads:

Utot(�R) = V11(�R) + Ueff(�R) (21)

or explicitly:

Utot(r)

=
(

ε11 [8πc1(α)]D/α − ε2
12

ε22

(4π )D/α[c1(α) + c2(α)]2D/α

[2c2(α)]D/α

)

× 1

(2π )D

∫
	̃

dkeik·�R−2c1(α)kα

. (22)
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One can see that Utot(�R) and V11(�R) have the same
shape, up to the scaling factor S:

S = ε11 [8πc1(α)]D/α − ε2
12

ε22

(4π )D/α[c1(α) + c2(α)]2D/α

[2c2(α)]D/α
.

(23)

S has a complicated form and it can take both the negative and
positive values, depending on the parameters. The change in
the sign of the total interaction indicates a remarkable change
in the behavior of the system. Namely, for S > 0 the total
interaction between the particles of the first species is purely
repulsive, which means that these particles will disperse in the
volume. Conversely, for S < 0, the first species of particles
interacts via attractive potential, which results in the clustering
of these particles and demixing in the system. Equating S to
0, the condition for demixing reads:

ε11ε22

ε2
21

<

(
[c1(α) + c2(α)]2

4c1(α)c2(α)

)D/α

. (24)

Let us now analyze the condition (24) and introduce a
common energy scale:

ε̃ = ε12√
ε11ε22

(25)

and:

g =
(

c1(α)

c2(α)

)1/α

= b1

b2

(
N1

N2

)1/α

(26)

for which condition (24) can be reduced to:

ε̃ >

(
4gα

(1 + gα)2

)D/(2α)

. (27)

Recalling the equation (12) for the radius of gyration Rg , one
can see that for the chains characterized by the distributions
sharing the same α, the parameter g becomes the ratio of Rg:

g = Rg,1

Rg,2
. (28)

For α = 2 and D = 3 the condition (24) becomes exactly the
spinodal decomposition condition for Gaussian particles, as
given in Ref. [5] and [6], namely:

ε̃ >

(
2g

1 + g2

)3/2

. (29)

Therefore, the condition (27) is a direct generalization of the
spinodal decomposition to the systems of particles described
with α-stable distributions.

The condition (27) is plotted in Fig. 3. For every pair of g

and α its value varies from 0 to 1. In the entire range of α, the
region of mixing (below the surface) preserves the features of
the Gaussian case, namely it falls rapidly to 0 for g � 1,
reaches the single maximum at g = 1, and asymptotically
decreases to 0 for g � 1. However, as α decreases to 0
the mixing region for g � 1 becomes wider, asymptotically
reaching the region defined by ε̃ > 1. This means that the
gyration radius ratio g becomes less and less relevant for the
mixing of chains characterized by very wide distributions. The
changes in the mixing region shape are much more pronounced
for α < 1.

FIG. 3. (Color online) The spinodal decomposition condi-
tion (27) for the binary systems of particles described with the
α-stable statistics as a function of gyration radii ratio g = Rg,1/Rg,2

and the distribution exponent α for D = 3 dimensional system.
ε̃ = ε12/

√
ε11ε22 is the common energy scale. In the region above

the plotted surface the binary system undergoes demixing due to the
prevalence of the attractive effective interactions, in the region below
the surface the effective interaction is repulsive and the system is
homogeneous.

VI. DISCUSSION

It is known that the spinodal decomposition condition for
Gaussian particles leads to the predictions on mixture separa-
tion, which are qualitatively and quantitatively comparable to
the more advanced methods [6]. Thus, a similar efficiency can
be expected from (27), at least for α mildly deviating from 2.
However, some possible issues should be mentioned.

The fact that the total interaction (21) can become entirely
negative is unrealistic. This evident problem is mitigated by
the fact that the energy density of a pair interaction behaves
as Utot(r)rD−1dr . Therefore, rD−1 factor suppresses the lack
of repulsive core at short distances and amplifies the influence
of the attractive tail. The unrealistic shape of Utot is also a
consequence of the way the potential Vij (r) given by (16)
is constructed. This potential is mean field in its nature and
its width is governed by the constant ci(α) + cj (α). In the
context of Gaussian particles, while the dominant shape of
the interaction between two separate chains is agreed to be
Gaussian [9,33], there is an open problem of whether there are
additional components [33] or how the width of such Gaussian
is related to the gyration radii of the component chains [5]. A
similar problem is relevant in our case and the choice of the
width constant different from ci(α) + cj (α) might result in a
more realistic shape of Utot

VII. PHASE SEPARATION IN THE ADSORPTION
OF GAUSSIAN PARTICLES TO THE SURFACE

The result (27) is particularly interesting in the context of
the already mentioned work of Bouchaud and Daoud [25],
where the gyration radius parallel to the surface is calculated
for an adsorbed polymer. As mentioned in Sec. II, the
characteristic exponent for the distribution on the surface reads
αss = 2 in the strong adsorption limit and αws = 1 in the weak
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FIG. 4. (Color online) Schematic representation of four mixing
and demixing scenarios in the binary system consisting of a solution
and an adsorbing surface. In the bulk polymers follow the Gaussian
statistics (αb = 2, Db = 3). On the surface (Ds = 2) polymers are
described either by αss = 2 in the strong adsorption limit or αws = 1
for the weak adsorption.

adsorption limit [25]. Considering the adsorption from the
binary mixture, (27) provides the condition for homogeneous
versus inhomogeneous adsorption, i.e., the ratio of gyration
radii parallel to the surface (Rg,||) decides whether both species
cover the surface in a homogeneous manner or they separate
into the islands consisting of the particles of the same type. On
the other hand (27) allows us to compare for which parameters
the separation on the surface and in the bulk coappear.

Let us consider a simple binary system in which the
behavior of chains in the bulk (Db = 3, αb = 2) is Gaussian,
but on the surface it is characterized by Ds = 2 and αss or αws .
The types of particles differ by the number of monomers Ni

and their persistence length bi . The condition (27) reads:

ε̃ >

⎛
⎜⎝ 4

(
b1
b2

)αx
N1
N2[

1 +
(

b1
b2

)αx
N1
N2

]2

⎞
⎟⎠

Dy

2αx

= fx,y . (30)

In the strong adsorption limit it is always true that fss,s �
fb,b for any b1/b2 and N1/N2. Therefore, assuming that
in this system ε̃ is the same on the surface and in the
bulk, three scenarios of mixing or demixing are allowed.
First, for (a) [Fig. 4(a)] fss,s � fb,b � ε̃ the solution in the
bulk is homogeneous and so is the coverage of the surface.
Conversely, for (b) [Fig. 4(b)] ε̃ � fss,s � fb,b the separation
is simultaneous on the surface and in the bulk. Finally, for
(c) [Fig. 4(c)] fss,s � ε̃ � fb,b demixing in the bulk occurs,
but the surface coverage is still homogeneous. The schematic
representation of scenarios (a)–(c) is shown in Fig. 4.

In the weak adsorption limit (αws = 1), the situation is
more complicated because both fws,s � fb,b and fws,s � fb,b

are possible, depending on b1/b2 and N1/N2. Replacing fss,s

by fws,s in the inequalities from the previous paragraph one ob-
tains the conditions for separation scenarios (a)–(c) in the weak
adsorption limit. However, there exists the additional region
in which it is possible that (d) [Fig. 4(d)] fb,b � ε̃ � fws,s .

FIG. 5. The exemplary comparison of the phase separation
conditions on the surface in the weak adsorption limit (fws,s , solid
line) and in the bulk (fb,b, dashed line) for the binary system of
Gaussian polymers characterized by the persistence length ratio
b1/b2 = 0.1. fws,s and fb,b are defined by (30). fws,s and fb,b divide
the plot into four regions: (a) simultaneous mixing on the surface and
in the bulk, (b) simultaneous demixing on the surface and in the bulk,
(c) mixing on the surface, demixing in the bulk, (d) demixing on the
surface, mixing in the bulk.

In this region the separation on the surface occurs, while
the solution in the bulk is still homogeneous (see Fig. 4).
In Fig. 5 the exemplary phase separation diagram for the weak
adsorption limit and b1/b2 = 0.1 is presented, which contains
all of the phase separation scenarios (a)–(d). Figure 6 shows
the difference fws,s − fb,b, which indicates where scenarios
(c) and (d) are allowed. In particular, for b1/b2 → 0 and
b1/b2 � 1 the scenario (d) becomes almost inaccessible, while
it is allowed in the vicinity of b1/b2 � 1.

These considerations show that the behavior of a mixture
can be designed by the choice of b1/b2 (which is dependent
on the chemical composition) and N1/N2. However, our
predictions can be affected by a few additional effects. In
general, there are two main factors that determine the behavior
of the system as a whole. On the one hand, the system
tends to minimize its energy, so the details of adsorption
mechanism (e.g., binding energy, a preference for a certain
type of particles, adsorption rate, etc.) are important. Since
our model is valid for thermodynamic equilibrium, the sur-
face binding should not be significantly stronger than other
interactions, to allow equilibration. On the other hand, the
system globally maximizes its entropy, which includes the
on-surface and in-the-bulk contributions. However, there is
also the bulk-surface component, i.e., the bigger particles can
decrease their excluded volume in the vicinity of a wall,
hence they experience the entropy-driven affinity to the flat
surface [7,34]. This effect is not included in our model. One
would generally expect the increased concentration of bigger
particles in the near-surface region and a reduced availability
of smaller particles. Indeed, for the hard-sphere mixtures this
effect depends on the concentration of smaller particles and
it precedes the in-bulk clustering [34], which can be also
expected for polymers. It is not clear, however, whether this
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FIG. 6. (Color online) The density plot of the difference fws,s −
fb,b as a function of persistence length ratio b1/b2 and the ratio of
monomer numbers N1/N2. fws,s − fb,b indicates which surface/bulk
demixing scenarios are allowed (see Sec. VII and Fig. 5 for explana-
tion). White meshed region: fws,s − fb,b < 0 indicates scenario (d)
allowed (demixing on the surface, mixing in the bulk), complement
region: fws,s−fb,b > 0 scenario (c) allowed (mixing on the surface,
demixing in the bulk).

effect can be strong enough to result in the complete coating
of the surface with bigger particles.

In conclusion, the full theory should also include both the
detailed adsorption mechanism and the surface affinity. How-
ever, our model is potentially valid in the semidilute regime for
adsorption strength comparable to entropic interactions and
in the systems in which the surface effects are a significant
contribution to the entropy of the entire system.

VIII. SUMMARY

In summary, in this paper we have presented the gen-
eralization of the results known from the Gaussian chain
theory to the particles described with the α-stable distributions.
As expected, it is possible to obtain a similar hierarchy of
analytical results ranging from end-to-end distribution up to
the effective interactions in binary mixtures. Typically for
α-stable distributions, we obtained the closed-form formulas
in the Fourier space. Our theory also allows us to generalize
the spinodal decomposition condition from Gaussian particles
to the α-stable particles. This can be readily applied to the
problem of mixing or demixing of adsorbed polymers, as we
also show. Our results might be further utilized in the context
of Levy flights applications reviewed in Sec. II.

APPENDIX: DISTRIBUTION OF SEGMENTS AROUND
THE CENTER OF MASS

In this Appendix we derive the distribution of segments
around the mass center of a chain. Let us consider an

N -segments-long chain, described by the nearest-neighbor
probability given by (8). The position of the mass center reads:

R = 1

N

N∑
i=1

ri . (A1)

The probability that each segment occupies its position ri

under condition that the mass center is positioned at R reads:

P (r1, . . . ,rN |R) =
N−1∏
i=1

P (|ri+1 − ri |)δ
(

R − 1

N

N∑
i=1

ri

)
.

(A2)

From this expression we can calculate the probability of
finding j th segment at some position relative to the mass
center:

P (|rj − R|) =
∫

dr1 . . .

∫
drj−1

∫
drj+1 . . .

∫
drN

×
N−1∏
i=1

P (|ri+1 − ri |)δ
(

R − 1

N

N∑
i=1

ri

)
.

(A3)

The integrals in the above expression can be done particularly
easily, if we switch to relative variables:

�ri−j = ri − ri−1 for i > j

�ri−j = ri−1 − ri for i < j,
(A4)

which allows us to express ri as:

ri = rj +
N−i∑
n=1

�r+n for N � i > j

ri = rj +
j−i∑
n=1

�r−n for 1 � i < j.

(A5)

In these coordinates the position of mass center reads:

1

N

N∑
i=1

ri = rj +
N−j∑
n=1

N − j − n + 1

N
�r+n

+
j−1∑
n=1

j − n

N
�r−n. (A6)

The change of variables (A4) is linear and its Jacobian is equal
to 1, so applying the new coordinates to (A3), we obtain:

P (|rj − R|) =
N−j∏
n=−j

n �=0

∫
d�rnP (�rn)

×δ

(
R − rj +

N−j∑
n=1

N − j − n + 1

N
�r+n

+
j−1∑
n=1

j − n

N
�r−n

)
. (A7)
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The following step is to express P (�rn) in (A7) in terms of its
characteristic function (8):

P (|rj − R|) = 1

(2π )ND

N−j∏
n=−j

n �=0

∫
d�rn

∫
dkne

ikn·�rnφ(kn)

×
∫

dk0 exp

(
ik0 · (R − rj )

+ i

N−j∑
n=1

N − j − n + 1

N
k0 · �r+n

+i

j−1∑
n=1

j − n

N
k0 · �r−n

)
. (A8)

Further, we integrate out every component of �r±n, which
introduces multiple Dirac-δ functions:

P (|rj − R|)

= 1

(2π )D

=
∫

dk0

[
N−j∏
n=1

∫
dk+nφ(k+n)

× δ

(
k+n − N − j − n + 1

N
k0

) ]

×
[

j−1∏
n=1

∫
dk−nφ(k−n)δ

(
k−n − j − n

N
k0

)]
eik0·(R−rj )

= 1

(2π )D

∫
dk0

[
N−j∏
n=1

φ

(
N − j − n + 1

N
k0

)]

×
[

j−1∏
n=1

φ

(
j − n

N
k0

)]
eik0·(R−rj ). (A9)

At this point we apply the explicit form of φ(k), so the final
expression for P (|rj − R|) reads:

P (|rj − R|) = 1

(2π )D

∫
dk0 exp

{
ik0 · (R − rj )

−2bα

D

[
N−j∑
n=1

(
N − j − n + 1

N

)α

+
j−1∑
n=1

(
j − n

N

)α
]

kα
0

}
. (A10)

Expression (A10) gives the probability of finding j th segment
in the vicinity of mass center, so the probability of finding any
segment reads:

PCM(|r − R|) = 1

N

N∑
j=1

P (|rj − R|), (A11)

where the factor 1/N provides normalization. Let us assume
now that N is a large number, so both n/N = q and j/N = q ′
can be treated as continuous variables, hence we can simplify:

N−j∑
n=1

(
N − j − n + 1

N

)α

→ N

∫ 1−q ′

0
dq(1 − q ′ − q)α

= N

α + 1
(1 − q ′)α+1 (A12)

j−1∑
n=1

(
j − n

N

)α

→ N

∫ q ′

0
dq(q ′ − q)α = N

α + 1
q ′α+1.

(A13)

The final expression for the distribution of any segment around
the mass center reads:

PCM(|r − R|) = 1

(2π )D

∫ 1

0
dq ′

∫
dk0 exp

[
ik0 · (r − R)

− 2Nbαkα
0

D(α + 1)
((1 − q ′)α+1 + q ′α+1)

]
.

(A14)

[1] I. Teraoka, Polymer solutions: an Introduction to Physical
Properties (Wiley, New York, 2002).

[2] P. Debye and F. Bueche, J. Chem. Phys. 20, 1337 (1952).
[3] P. J. Flory and W. R. Krigbaum, J. Chem. Phys. 18, 1086

(1950).
[4] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian

Random Processes: Stochastic Models with Infinite Variance
(Chapman and Hall, New York, 1994).

[5] A. A. Louis, P. G. Bolhuis, and J. P. Hansen, Phys. Rev. E 62,
7961 (2000).

[6] R. Finken, J. P. Hansen, and A. A. Louis, J. Stat. Phys. 110, 1015
(2003).

[7] H. N. W. Lekkerkerker and R. Tuinier, Colloids and the
Depletion Interaction (Springer, London, 2011).

[8] C. N. Likos, Phys. Rep. 348, 267 (2001).

[9] P. G. Bolhuis, A. A. Louis, J. P. Hansen, and E. J. Meijer,
J. Chem. Phys. 114, 4296 (2001).

[10] G. Yatsenko, E. J. Sambriski, M. A. Nemirovskaya, and
M. Guenza, Phys. Rev. Lett. 93, 257803 (2004).

[11] J. McCarty, I. Y. Lyubimov, and M. G. Guenza, Macromolecules
43, 3964 (2010).
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