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Abstract

The thesis undertakes an attempt to solve the problems of cos-
mological constant as well as of coincidence in the models in
which dark energy is described by a running cosmological con-
stant. Three reasons to possibly underlie the constant’s change-
ability are considered: dark energy’s decay, di�usion between dark
energy and dark matter, and modi�ed gravity. It aims also to pro-
vide a parametric form of density of dark energy for the models
that involve a running cosmological constant, which would de-
scribe in�ation in the early Universe.

The principal method used in my investigations was the dy-
namical analysis. The cosmological equations were accordingly
recast as a dynamical system, which enabled me to draw up the
relevant phase portrait, much useful in considering the possible
evolutionary paths of the Universe.

The cosmological models were estimated by taking into ac-
count a number of astronomical data, such as observations of type
Ia supernovae, cosmic microwave background, baryon acoustic
oscillations, measurements of the Hubble function for galaxies,
and the Alcock-Paczynski test.

The results of my investigations have been published in eleven
papers.

Keywords: cosmology, dark energy, dark matter
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Streszczenie

Rozprawa podejmuje próbę rozwiązania problemu stałej kos-
mologicznej i problemu koincydencji w modelach kosmologicz-
nych, gdzie ciemna energia jest opisywana zmienną stałą kosmo-
logiczną. Są rozważane trzy możliwe przyczyny zmienności stałej
kosmologicznej: rozpadająca się ciemna energia, dyfuzja pomię-
dzy ciemną materią a ciemną energią oraz zmody�kowana gra-
witacja. Celem jest także wprowadzenie parametryzacji gęstości
ciemnej energii w podejściu ze zmienną stałą kosmologiczną,
która opisuje in�ację we wczesnymWszechświecie.

Najważniejsząmetodą użytą w tych badaniach była analiza dy-
namiczna. Równania kosmologiczne były przepisane do postaci
układu dynamicznego, który umożliwiał narysowanie odpowied-
niego portretu fazowego przydatnego przy badaniu możliwych
ścieżek ewolucji Wszechświata.

Modele kosmologiczne były estymowane z uwzględnieniem
obserwacji astronomicznych takich jak: obserwacje supernowych
typu Ia, mikrofalowego promieniowania tła, barionowych oscylacji
akustycznych, pomiarów wartości funkcji Hubble’a dla galaktyk i
testu Alcocka-Paczyńskiego.

Wyniki badań zostały zamieszczone w jedenastu opublikowa-
nych pracach.

Słowa kluczowe: kosmologia, ciemna energia, ciemna materia
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Chapter 1

Introduction

Themain aimof the thesis is to address the following question: can
the cosmological constant problem and the coincidence prob-
lem be solved? In the investigations, it is assumed that the cos-
mological constant evolves in time.

The cosmological constant problem is a consequence of inter-
preting dark energy as a vacuum energy. The presently observed
value of the constant is by 120 orders of magnitude smaller than
the value resulting from quantum physics [1].

The coincidence problem [2] consists in �nding an explanation
why the cosmological constant has the same order of magnitude
as the energy density of matter today.

Another goal of the dissertation is to provide a description of
in�ation in the early Universe involving an assumption of the
running cosmological constant.

For the purpose of proving the main thesis of my dissertation
that the running cosmological constant is actually able to ex-
plain the cosmological problems, three hypotheses concerning
the cosmological constant’s changebility are put forward:

• it is a consequence of the decay of metastable dark energy,

• it is a result of di�usion interaction of dark energywith darkmat-
ter,

• it is an intrinsic attribute of dark energy in the Starobinskymodel
using the Palatini formalism.

We neglected the in�uence of radiation on the evolution of the
Universe. The baryonic matter is treated as dust (the equation of
state is pm = 0, where pm is the pressure of matter) in our pa-
pers. Throughout the thesis, dark matter is generally treated as
dust too. It was assumed that dark energy has the equation of
state pde = −ρde, where pde is the pressure and ρde is the energy
density. In most cases, we do not take into account the curvature
e�ect in the cosmological equations. In the thesis, the following
convention is used: c = 8πG = 1.
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One of the models investigated is one with a decaying meta-
stable dark energy. The vacuum energy decay was considered in
the following papers: [3, 4, 5, 6, 7, 8]. It is assumed that the process
of dark energy decay is a transition the false vacuum state to the
true vacuum. The Fock–Krylov theory of quantum unstable states
is applied here [5]. Next, the Breit-Wigner energy distribution func-
tion is used for the model of the quantum unstable systems [9]. In
this context, we examined the radioactive-like model of the decay
of the false vacuum. The late-time approximation of this model
are also considered (Λ(t) = Λbare + α2

t2
). It assumes an interaction in

the dark sector (i.e. dark matter and dark energy). The models are
analysed also by the statistical analysis methods.

Another model investigated in the thesis is one with a di�usion
between dark matter and dark energy. The natural result of this
interaction is a modi�cation of the standard scale law of the dark
matter energy density. This model is also statistically analysed us-
ing astronomical data.

The third one is the Starobinsky cosmological model in the
Palatini formalism, which we examined in both the Jordan and Ein-
stein frames, looking for di�erences between them by the dynam-
ical methods. In the case of the Einstein frame, themodel belongs
to the class involving an interaction between dark matter and dark
energy. The special point of these investigations is to search for
singularities within the models, while the models’ �tting is done
through statistical analysis.

The important method of investigation of the evolution of the
Universe consists inmaking conclusions on the basis of phase por-
traits. Accordingly, we recast cosmological equations into the form
of the dynamical system, which allows for drawing the phase por-
trait. The analysis of trajectories that represent the particular paths
of the evolution of the Universe as well as critical points gives us
the most interesting scenarios of the evolution of the Universe.
Such a method can be helpful in solving of the problems of the
cosmological constant and of coincidence.

The methods of dynamical analysis are used in most of my pa-
pers, while my main article on dynamical systems in cosmology is
Eur.Phys.J. C76 (2016) no. 11, 606 [10], dealing with the dynamics of
cosmological models in the di�erent parametrization of the run-
ning cosmological constant. In this paper, �ve classes of models
are investigated:

• Λ(H)CDM, where H is the Hubble constant,

• Λ(a), where a is the scale factor,

• Λ(R)CDM, where R is the Ricci scalar,
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• Λ(φ) with di�usion, where φ is a scalar �eld,

• Λ(X), where X = 1
2
gαβ∇α∇βφ is a kinetic part of density of the

scalar �eld.

The structure of the thesis is as follows. The statistical analysis
used in my papers is described in Chap. 2. In Chap. 3, models with
decaying dark energy andmy papers pertaining to this subject are
contemplated. In Chap. 4, themodel with di�usion in the dark sec-
tor and my papers about this model are considered. In Chap. 5,
my paper Eur.Phys.J. C76 (2016) no. 11, 606 [10] is discussed. The
Starobinsky cosmological model in the Palatini formalism and my
papers on this model are discussed in Chap. 6. The conclusions of
the thesis are provided in Chap. 7.
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Chapter 2

Statistical analysis of
cosmological models

The cosmological models considered in the thesis are analysed
by the statistical methods in order to �nd the best �t for the values
of parameters and their errors. In the statistical analysis, I used
my own CosmoDarkBox script for estimating model parameters.
In order to �nd errors of the best �t, this code uses theMonte-Carlo
methods — the Metropolis-Hastings algorithm [11, 12].

For the purpose of statistical analysis in my papers, I used the
following astronomical data:

• supernovae of type Ia (SNIa; Union 2.11 dataset [13]),

• Baryon Acoustic Oscillations (BAO) data from:

– Sloan Digital Sky Survey Release 7 (SDSS DR7)2 dataset at
z = 0.275 [14],

– 6dF Galaxy Redshift Survey3 measurements at redshift z =

0.1 [15],
– WiggleZ4 measurements at redshift z = 0.44, 0.60, 0.73 [16],

• measurements of the Hubble parameter H(z) of galaxies [17,
18, 19],

• the Alcock-Paczynski test [20, 21] (AP; data from [22, 23, 24, 25,
26, 27, 28, 29, 30])

• measurements of Cosmic Microwave Background (CMB) and
lensing by Planck satellite5 [31] and low ` polarization from
WMAP.

The overall likelihood function is expressed by the following
formula:

Ltot = LSNIaLBAOLAPLH(z)LCMB+lensing, (2.1)

1 http://supernova.lbl.gov/union/
2 https://classic.sdss.org/dr7/
3 http://www.6dfgs.net
4 http://wigglez.swin.edu.au/site/
5 https://www.esa.int/Our_Activities/Space_Science/Planck

http://supernova.lbl.gov/union/
https://classic.sdss.org/dr7/
http://www.6dfgs.net
http://wigglez.swin.edu.au/site/
https://www.esa.int/Our_Activities/Space_Science/Planck
http://supernova.lbl.gov/union/
https://classic.sdss.org/dr7/
http://www.6dfgs.net
http://wigglez.swin.edu.au/site/
https://www.esa.int/Our_Activities/Space_Science/Planck
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where the likelihood functions LSNIa, LBAO, LAP, LH(z), LCMB+lensing are
for SNIa, BAO, AP, measurements of H(z) and CMB respectively,
which are de�ned in the following way:

LSNIa = exp

[
−1

2
[A−B2/C + log(C/(2π))]

]
, (2.2)

whereA = (µobs−µth)C−1(µobs−µth),B = C−1(µobs−µth),C = TrC−1

and C is a covariancematrix for SNIa, µobs is the observed distance
modulus and µth is the theoretical distance modulus,

LBAO = exp

[
−1

2

(
dobs − rs(zd)

DV (z)

)
C−1

(
dobs − rs(zd)

DV (z)

)]
, (2.3)

where rs(zd) is the sound horizon in the drag epoch [32, 33], 1/dobs

is the observed value of the acoustic-scale distance ratio,

DV =
(

(1 + z2)D2
A(z) cz

H(z)

)1/3

, where DA is the angular diameter

distance,

LH(z) = exp

[
−1

2

N∑

i=1

(
H(zi)

obs −H(zi)
th

σi

)2
]
, (2.4)

where σ is the measurement error,

LAP = exp

[
−1

2

N∑

i=1

(
AP (zi)

obs − AP (zi)
th

σi

)2
]
, (2.5)

where AP (z)th ≡ H(z)
z

∫ z
0

dz′
H(z′) and AP (zi)

obs are observational data
and

LCMB+lensing = exp

[
−1

2
(xth − xobs)C−1(xth − xobs)

]
, (2.6)

where C is the covariance matrix with the errors, x is a vector of
the acoustic scale lA, the shift parameter R and Ωb,0, where lA =
π

rs(z∗)
c
∫ z∗

0
dz′
H(z′) , R =

√
Ωm,0H2

0

∫ z∗
0

dz′
H(z′) , and Ωb,0 = ρb,0

3H2
0
, where z∗ is

the redshift in the recombination epoch [32], rs is the sound hori-
zon, ρb,0 is the present value of the energy density of baryonicmat-
ter,H0 is the present value of the Hubble function, and Ωm,0 = ρm,0

3H2
0
,

where ρm,0 is the present value of the energy density of matter.
InmypaperPhys.DarkUniv. 15 (2017) 96-104, the likelihood func-

tion for CMB is given by

LCMB = exp


−1

2

N∑

i=1

(
DTT
`,th(`i)−DTT

`,obs(`i)

σi

)2

 , (2.7)
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where DTT
` (`) is the value of the temperature power spectrum of

CMB and ` is a multipole. The temperature power spectrum is de-
termined for ` in the interval of 〈30, 2508〉.

In my analysis of cosmological models, I used the Akaike infor-
mation criterion (AIC) and the Bayesian information criterion (BIC)
[34, 35]:

AIC = −2 lnL+ 2d, (2.8)

BIC = −2 lnL+ d lnn, (2.9)

where L is the value of the likelihood function in the best �t, d is the
number of model parameters, and n is the number of data points
involved in the estimation.
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Chapter 3

Cosmology with decay of
metastable dark energy

3.1 Decay of metastable dark energy from
quantum vacuum

This section is based on Eur.Phys.J. C77 (2017) no. 6, 357 [36] and Eur.Phys.J. C77 (2017) no. 12, 902 [37].

The quantum unstable systems are characterized by their survival
probability (decay law). The survival probabilityP(t) of a state |φ〉 of
vacuum equals P(t) = |A(t)|2, where A(t) is the probability ampli-
tude (A(t) = 〈φ|φ(t)〉) and |φ(t)〉 is the solution of the Schrödinger
equation:

i~
∂

∂t
|φ(t)〉 = H|φ(t)〉, (3.1)

where H is the Hamiltonian. The amplitude A(t) can be expressed
as the following Fourier integral:

A(t) ≡ A(t− t0) =

∫ ∞

Emin

ω(E) e−
i
~ E (t− t0) dE, (3.2)

where ω(E) > 0 (see: [5, 6, 7]).
From the Schrödinger equation (3.1), we can obtain that:

i~
∂

∂t
〈φ|φ(t)〉 = 〈φ|H|φ(t)〉. (3.3)

This relation gives us the amplitude A(t) as a solution of the fol-
lowing equation:

i~
∂A(t)

∂t
= h(t)A(t), (3.4)

where

h(t) =
〈φ|H|φ(t)〉
A(t)

≡ i~
A(t)

∂A(t)

∂t
(3.5)
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and h(t) is the e�ective Hamiltonian. In result, we get:

h(t) = Eφ(t)− i

2
Γ φ(t), (3.6)

where Eφ(t) = < [h(t)], Γφ(t) = −2= [h(t)] are the instantaneous
energy (mass)Eφ(t) and the instantaneous decay rate Γφ(t) [38, 39,
40]. We interpret the expression Γφ(t) = −2= [h(t)] as the decay
rate, because it satis�es the de�nition of the decay rate used in
quantum theory: Γφ(t)

~
def
= − 1

P(t)
∂P(t)
∂t

.
From the form of the e�ective Hamiltonian h(t), we get the fol-

lowing solutions of Eq. (3.4):

A(t) = e−i
t
~ h(t) ≡ e−i

t
~ (Eφ(t)− i

2
Γφ(t)), (3.7)

where h(t) is the average e�ective Hamiltonian h(t) for the time

interval [0, t]: h(t)
def
= 1

t

∫ t
0
h(x) dx (averages Eφ(t), Γφ(t) are de�ned

analogously).
We assume that ω(E) is given in the Breit-Wigner (BW) form:

ω(E) ≡ ωBW(E)
def
= N

2π
Θ(E − Emin)

Γ0

(E−E0)2+(
Γ0
2

)2
, where N is a nor-

malization constant and Θ(E) = 1 for E ≥ 0 and Θ(E) = 0 for
E < 0. E0 is the energy of the system, Γ0 is a decay rate, while Emin

is theminimal energy of the system. Inserting ωBW (E) into formula
(3.2), we get:

A(t) = A(t− t0) =
N

2π
e−

i
~E0t Iβ

(
Γ0(t− t0)

~

)
, (3.8)

where

Iβ(τ)
def
=

∫ ∞

−β

1

η2 + 1
4

e−iητ dη. (3.9)

Here τ = Γ0(t−t0)
~ and β = E0−Emin

Γ0
> 0. It is assumed that t0 = 0.

Using A(t), as given by Eqs (3.8), and the e�ective Hamiltonian
(3.5), we �nd the Breit-Wigner model as:

h(t) = E0 + Γ0

Jβ(Γ0t
~ )

Iβ(Γ0t
~ )

, (3.10)

where

Jβ(τ) =

∫ ∞

−β

x

x2 + 1
4

e−ixτ dx. (3.11)

In result, the instantaneous energyEφ(t) has the following form:

Eφ(t) = < [h(t)] = E0 + Γ0<
[
Jβ(Γ0t

~ )

Iβ(Γ0t
~ )

]
. (3.12)
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The simplest way to extend the classical model of the decay:

ρde(t) = ρde(t0) × exp [−Γ (t − t0 )] ≡ ρde(t − t0 ) (3.13)

is to replace the classical decay rate Γ by the decay rate Γφ(t)/~
appearing in quantum theoretical considerations. In consequence,
we get:

ρ̇de(t) = − 1

~
Γφ(t) ρde(t) (3.14)

instead of the classical fundamental equation of the radioactive
decay theory.

Ultimately, the formula for the decay is:

ρde(t) = ρde(t0) × exp

[
− t
~

Γφ(t)

]

≡ ρde(t0) × exp

[
−1

~

∫ t

t0

Γφ(x) dx

]
. (3.15)

This relation, superseding the classic decay formula, contains
quantum corrections resulting from the use of the quantum theory
decay rate. Using (3.8), we can rewrite the relation (3.15) as:

ρde(t) ≡ N2

4π2
ρde(t0)

∣∣∣∣Iβ
(

Γ0(t− t0)

~

)∣∣∣∣
2

. (3.16)

The model can be expressed in a more general form of the en-
ergy density:

ρ̃de(t) = ρde(t)− ρbare, (3.17)

where ρbare = const is theminimal value of the dark energy density.
When t→∞, the density ρde(t) tends to ρbare.

3.2 Late-time approximation of decaying
metastable dark energy

This section is based on JCAP 1510 (2015) no. 10, 066 [41] and Phys.Dark Univ. 15 (2017) 96-104 [42].

We investigated the late-time approximation of themodelwith de-
caying dark energy as the Λ(t)CDMmodel, where Λ(t) = Λbare+ α2

t2
,

where α is a model parameter. We assume that α2 > 0 or α2 < 0.
α can be imaginary. This parametrization of dark energy is a late-
time approximation of Eq. (3.16). This model is an example of the
model involving interaction between dark matter and dark energy.
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In result, we get the following Friedmann equation:

3H(t)2 = ρm(t) + Λbare +
α2

t2
. (3.18)

Due to the assumption that the energy-momentum tensor for
all �uids satis�es the conservation condition:

Tαβ;α = 0, (3.19)

we get the conservation equation:

ρ̇m + 3Hρm = −dΛ

dt
. (3.20)

This form of the conservation equation guarantees that the inter-
action in the dark sector is actual.

From Eqs (3.18) and (3.20), we obtain that:

Ḣ = −1

2
ρm. (3.21)

This equation can be rewritten as:

Ḣ =
1

2

(
Λbare +

α2

t2
− 3H(t)2

)
. (3.22)

The above formula has the following solution:

h(t) =
1− 2n

3H0t
+
√

ΩΛ,0

In−1

(
3
√

ΩΛ,0H0

2
t

)

In

(
3
√

ΩΛ,0H0

2
t

) , (3.23)

where h = H
H0
, H0 is the present value of the Hubble constant,

ΩΛ,0 = Λbare
3H2

0
, In is the modi�ed Bessel function of the �rst kind, and

n = 1
2

√
1 + 9Ωα2,0T

2
0H

2
0 , where Ωα2,0 = α2

3H2
0T

2
0
and T0 is the present

age of the Universe.
The formula for the scale factor a can be derived from the

Eq. (3.23) and after the calculations we get:

a(t) = C

[
√
t

(
In

(
3
√

ΩΛ,0H0

2
t

))] 2
3

. (3.24)

Constant C is equal to
[√

T 0

(
In

(
3
√

ΩΛ,0H0

2
T0

))]− 2
3

, as it is

assumed that a(T0) = 1. Since a(t) function is monotonic, one can
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obtain formula for t(a) function from Eq. (3.24):

t(a) =
2

3i
√

ΩΛ,0H0

S−1
n− 1

2




√
3π
√

ΩΛ,0H0i
n+1/2

2

( a
C

) 3
2


 , (3.25)

where Sn(x) is a Riccati-Bessel function Sn(x) =
√

πx
2
Jn+ 1

2
(x). Jn is

the Bessel function of the �rst kind.
As the formula for H(t) is known, the equation for ρm can be

derived from Eqs (3.18) and (3.23):

ρm(t) = −3H2
0

[
ΩΛ,0 +

Ωα2,0T
2
0

t2
−

−




1− 2n

3H0t
+
√

ΩΛ,0

In−1

(
3
√

ΩΛ,0H0

2
t

)

In

(
3
√

ΩΛ,0H0

2
t

)




2

 . (3.26)

Since we assume the interaction is between dark matter and
dark energyonly, the energydensity of baryonicmatter ρb(t) scales
as a−3. In result, we get

ρm(t) = ρdm(t) + ρb(t) = ρdm(t) + ρb,0a(t)−3, (3.27)

where ρb,0 is the present value the energy density of baryonicmat-
ter.

From Eqs (3.24), (3.26) and (3.27), we can obtain a formula for
the energy density of dark matter ρdm(t):

ρdm(t) = −3H2
0

[
ΩΛ,0 +

Ωα2,0T
2
0

t2
−

−




1− 2n

3H0t
+
√

ΩΛ,0

In−1

(
3
√

ΩΛ,0H0

2
t

)

In

(
3
√

ΩΛ,0H0

2
t

)




2



− ρb,0C−3

[
√
t

(
In

(
3
√

ΩΛ,0H0

2
t

))]−2

. (3.28)
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3.3 Model testing

This section is based on JCAP 1510 (2015) no. 10, 066 [41].

The paper [41] concerns the cosmological model with the follow-
ing parametrization of the dark energy: ρde = Λbare + α2

t2
. In particu-

lar, we investigated the behaviour of the jerk using Sahni et al. [43,
44, 45] Om(z) diagnostic test. We also performed the dynamical
and statistical analysis of the model.

From the Eqs (3.23) and (3.24), we �nd that the jerk function is
given by the following equation:

j =
1

H(t)3a(t)

[
d3a(t)

dt3

]
=

1− 3Ωα,0T
2
0

H0t3




1− 2n

3H0t
+
√

ΩΛ,0

In−1

(
3
√

ΩΛ,0H0

2
t

)

In

(
3
√

ΩΛ,0H0

2
t

)




−3

. (3.29)

In the present epoch, the jerk function is given by

j0 = 1− 3Ωα,0

H0T0

, (3.30)

where T0 is the present age of the Universe.
The evolution of the jerk function is shown in Fig. 5 in JCAP 1510

(2015) no. 10, 066 [41].
The Om(z) diagnostic test measures the deviation from the

ΛCDM model (Om(z) = Ωm for ΛCDM model). The function Om(z)

is Om(z) = h2(x)−1
x3−1

, where x = 1 + z. For our model, it has the fol-
lowing form:

Om(t) =
(

1−2n
3H0t

+
√

ΩΛ,0

In−1

(
3
√

ΩΛ,0H0
2

t

)

In

(
3
√

ΩΛ,0H0
2

t

)

)2

− 1

([√
T 0

(
In

(
3
√

ΩΛ,0H0

2
T0

))]2 [√
t

(
In

(
3
√

ΩΛ,0H0

2
t

))]−2
)
− 1

.

(3.31)

The evolution of the Om(z) function is shown in Fig. 6 in JCAP
1510 (2015) no. 10, 066 [41].

The behaviour of the jerk andOm(z) function provides a test for
the deviation from the ΛCDMmodel. These tests tools commonly
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used to indicate variability of dark energy in time.
After recating the cosmological equations (3.18) and (3.20) to

the form of the dynamical system we have:

X ′ = −3X + 3X2 + 2
√

3α2Z3, (3.32)

Y ′ =
3

2
XY, (3.33)

Z ′ = −
√

3Z2 +
3

2
ZX, (3.34)

where
X =

ρm
3H2

(3.35)

and the squares of Y and Z are equal to:

Y 2 =
Λbare

3H2
, Z2 =

1

3H2t2
(3.36)

and ′ ≡ d
d ln a

. The critical points of the system (3.32)-(3.35) are col-
lected in Table 1 in JCAP 1510 (2015) no. 10, 066 [41].

In the statistical analysis of the model parameters, we have
used the SNIa [13], BAO (SDSS DR7 data) [14], CMB and lensing ob-
servations [31], measurements of H(z) [17, 18, 19] and the Alcock-
Paczyński test [22, 23, 24, 25, 26, 27, 28, 29, 30]. The value of the
best �t and errors are given in Table 2 and 3 in JCAP 1510 (2015)
no. 10, 066 [41]. The analysis shows that the model with negative
values of the α2 parameter is more favoured than onewith positive
values.

3.4 Modi�ed scaling law of matter density

This section is based on Phys.Dark Univ. 15 (2017) 96-104 [42].

In the paper [42], we consider the cosmological model with the
parametrization of the dark energy ρde = Λbare + α2

t2
. We check how

this parametrization modi�ed the scaling law of the energy den-
sity of matter and dark matter. The cosmological equations (3.18)
and (3.20) give us the formula for the energy density ofmatter (see
Eq. (3.26)). We can rewrite Eq. (3.26) as:

ρm = ρm,0a
−3+δ̄(t), (3.37)

where δ̄ = 1
log a

∫
δ(t)d log a, where δ(t) = 2α2

t3H(t)ρm(t)
. The evolution of

δ̄(t) function is presented in Fig. 5 in Phys.Dark Univ. 15 (2017) 96-
104 [42]. If δ(t) is constant, then we get that δ̄(t) is constant too. In
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this case, Eq. (3.37) is given by:

ρm = ρm,0a
−3+δ. (3.38)

When δ(t) is a constant, then also:

a = a0t
2

3−δ (3.39)

and
ρm = ρm,0a

−3+δ
0 t−2. (3.40)

For the early Universe, δ(t) function can be approximated as:

δ(t) =
9α2

(
√

1 + 3α2 + 1)2
. (3.41)

We can use the same approach in the case of dark matter ρdm
rewriting Eq. (3.28) as:

ρdm = ρdm,0a
−3+λ(t), (3.42)

where λ(t) = 1
log a(t)

log
Ωm,0aδ̄(t)−Ωb,0

Ωm,0−Ωb,0
. For the early Universe, λ(t) =

const. In result, ρdm = ρdm,0a
−3+λ. The evolution of λ(t) function is

presented in Fig. 6 in Phys.Dark Univ. 15 (2017) 96-104 [42].
The statistical analysis in this paper is based on the astronom-

ical observations, such as SNIa [13], BAO [14, 15, 16], observations
of the temperature power spectrum of CMB [31], measurements
of H(z) [17, 18, 19] and the Alcock-Paczyński test [22, 23, 24, 25,
26, 27, 28, 29, 30]. The value of the best �t and errors are given
in Table 1 in Phys.Dark Univ. 15 (2017) 96-104 [42]. We obtain the
decay of particles of dark matter rather than their creation. The
AIC criterion favours this model just very weakly in comparison to
the ΛCDM model, while the BIC criterion supports positively the
ΛCDMmodel. However, this is not su��cient for rejecting it.

3.5 Cosmological implications of transition
from false to true vacuum state

This section is based on Eur.Phys.J. C77 (2017) no. 6, 357 [36].

In the paper [36], we investigate a cosmological model with de-
caying metastable dark energy. Here, the model of the decaying
metastable dark energy is provided by quantum mechanics. The
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parametrization of dark energy is given by Eq. (3.12). Replacing en-
ergy by the density of energy in Eq. (3.12), we obtain:

ρde = Λbare + ER

[
1 +

α

1− α<
(
J(t)

I(t)

)]
, (3.43)

where ER = E0−Λbare and α is a model parameter, which belongs
to the interval 〈0, 1). The functions I(t) and J(t) are:

J(t) =

∫ ∞

− 1−α
α

η

η2 + 1
4

e−iητdη

=
1

2
e−τ/2

(
−2iπ + eτE1

([
1

2
− i(1− α)

α

]
τ

)

+E1

([
−1

2
− i(1− α)

α

]
τ

))
(3.44)

and I(t) can be expressed as:

I(t) =

∫ ∞

− 1−α
α

1

η2 + 1
4

e−iητdη

= 2πe−τ/2

(
1 +

i

2π

(
−eτE1

([
1

2
− i(1− α)

α

]
τ

)

+E1

([
−1

2
− i(1− α)

α

]
τ

)))
, (3.45)

where τ = α(E0−Λbare)
~(1−α)

V0t and V0 is the volume of sphere of radius,
which is equal to the Planck length. The function E1 is the expo-
nential integral E1(z) =

∫∞
z

e−x
x
dx.

As this model involves interactions between dark matter and
dark energy, we have the following cosmological equations:

3H2 = 3

(
ȧ

a

)2

= ρtot = ρb + ρdm + ρde, (3.46)

ρ̇b = −3Hρb, (3.47)

ρ̇dm = −3Hρdm +Q (3.48)

and
ρ̇de = −Q, (3.49)

where ρb is the density of baryonic matter and Q = −dρde
dt

is the
interaction between dark matter and dark energy, which actually
consists energy transfer. If Q > 0, then energy �ows from dark
energy to dark matter, while if Q < 0, then energy �ows from dark
matter to dark energy.
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In thismodel, there occurs an intermediate phaseof oscillations
of the dark energy density between the phases of constant dark
energy. We found also amechanism to cause jumping of the value
of energy density of dark energy from the initial value of E0 (E0 =

10120) to present value of the cosmological constant.
The oscillations appear when 0 < α < 0.4. Their number, pe-

riod, and amplitude, as well as the duration of this intermediate
phase, decrease when α parameter grows. For α > 0.4, the oscil-
lations disappear altogether.

In the statistical analysis, we use the astronomical observations
such as the supernovae of type Ia (SNIa) [13], BAO [14, 15, 16], mea-
surements of H(z) for galaxies [17, 18, 19], the Alcock-Paczyński
test [22, 23, 24, 25, 26, 27, 28, 29, 30] and the measurements CMB
[31]. The analysis showed us that independently of the values of
the parameters α and E0, we obtain the present value of the en-
ergy density of the dark energy. The value of the best �t and errors
are given in Table 1 in Eur.Phys.J. C77 (2017) no. 6, 357 [36].

3.6 Radioactive-like decay of metastable
dark energy

This section is based on Eur.Phys.J. C77 (2017) no. 12, 902 [37].

In the paper [37], we consider the model with the radioactive-like
decay ofmetastable dark energy. The cosmological equations are:

3H2 = ρm + ρde, (3.50)

ρ̇m = −3Hρm − ρ̇de, (3.51)

where the density of dark energy ρde is parametrized as follows:

ρde(t) = ρbare + ε

∣∣∣∣Iβ
(

Γ0t

~

)∣∣∣∣
2

, (3.52)

where Iβ(τ) is de�ned as

Iβ(τ) =

∫ ∞

−β

1

η2 + 1
4

e−iητ dη, (3.53)

where τ = Γ0t
~ . The parameter ε ≡ ε(β) = ρde(0)−ρbare

|Iβ(0)|2 measures the

deviation from the ΛCDMmodel (Iβ(0) ≡ 2π
N

= π + 2 arctan(2β) and
β > 0), β is equal to E0−Emin

Γ0
> 0, while the parameters E0 and Γ0
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correspond to the energy of the system in the unstable state and
its decay rate at the exponential (or canonical) regime of the decay
process.

For t > tL = ~
Γ0

2β

β2+ 1
4

[46], the approximation of (3.52) is given in

the following form:

ρde(t) ≈ ρbare+

ε

(
4π2e−

Γ0
~ t +

4πe−
Γ0
2~ t sin

(
β Γ0

~ t
)

(
1
4

+ β2
)

Γ0

~ t
+

1
((

1
4

+ β2
)

Γ0

~ t
)2

)
. (3.54)

For the late time, Eq. (3.54) can be approximated as:

ρde(t) ≈ ρbare +
ε

((
1
4

+ β2
)

Γ0

~

)2

1

t2
. (3.55)

If we use formula (3.54), the Friedmann equation (3.50) is:

3H2 = ρtot = ρB + ρDM + ρbare + ρrad.dec + ρdam.osc + ρpow.law, (3.56)

where ρrad.dec = 4π2εe−
Γ0
~ t is the radioactive-like decay dark energy,

ρdam.osc =
4πεe−

Γ0
2~ t sin(β Γ0

~ t)
( 1

4
+β2)Γ0

~ t
is the damping oscillating dark energy

and ρpow.law = ε

(( 1
4

+β2)Γ0
~ t)

2 is the power-law dark energy. The ra-

dioactive type of decay dominates up to 2.2× 104T0.
We performed also statistical analysis using the following as-

tronomical observations: supernovae of type Ia (SNIa, Union 2.1
dataset [13]), BAO data (Sloan Digital Sky Survey Release 7 (SDSS
DR7)) dataset at z = 0.275 [14], 6dF Galaxy Redshift Survey mea-
surements at redshift z = 0.1 [15], WiggleZ measurements at red-
shift z = 0.44, 0.60, 0.73 [16]), measurements of the Hubble param-
eter H(z) of galaxies [17, 18, 19], the Alcock-Paczynski test [20, 21]
(data from [22, 23, 24, 25, 26, 27, 28, 29, 30]) andmeasurements of
CMB and lensing [31]. The value of the best �t and errors are given
in Table 1 in Eur.Phys.J. C77 (2017) no. 12, 902 [37].

We found that the decay half-life time T1/2 of dark energy is
8503 Gyr ≈ 616 × T0 and the radioactive type of decay is the most
e�ective mechanism of decaying metastable dark energy.

3.7 Main results

Themodel with decaying dark energy belongs to the class involv-
ing interaction in the dark sector. For the late-time approximation
of the model (α2/t2), the deviation from the standard scale law of
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the energy density of dark matter is noticeable. However, the pro-
duction of dark matter is no longer an e�ective process. Note that
this modi�cation for the early Universe is independent on time.
From the statistical analysis, we get for α2/t2 model the decay of
particles of dark matter instead of the creation of one.

The analysis indicates also that the present value of dark en-
ergy is not sensitive to the value of α and E0 parameters.

This model can solve the cosmological constant problem, be-
cause it involves the mechanism of jumping from the initial value
of dark energy E0 = 10120 to the present value of the cosmological
constant.

The characteristic feature of the model are oscillations of the
density of dark energy occuring for 0 < α < 0.4.

The radioactive-like decaying model of dark energy for the
late-time Universe (t = 2T0) has three di�erent forms of decay
of dark energy: radioactive, damping oscillating, and power-law.
In the beginning, the radioactive type of decay dominates up to
2.2×104 T0. After the radioactive type of decay, damping oscillating
type of decay appears, which is later superseded by a power-law
type of decay (1/t2).
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Chapter 4

Di�usion dark matter-dark
energy interaction model

4.1 Relativistic di�usion interacting of dark
matter with dark energy

This section is based on JCAP 1607 (2016) no. 07, 024 [47] and Phys.Rev. D94 (2016) no. 4, 043521 [48].

We consider a particular model of energy-momentum exchange
between dark matter and dark energy, where baryonic matter is
preserved. In this approach, it is assumed that the total number
of particles is conserved and the relativistic version of the energy-
momentum tensor:

T µν = (ρ+ p)uµuν − gµνp. (4.1)

In this model, the energy-momentum tensor consists of two
parts:

T µν = T µνde + T µνm , (4.2)

where T µνde is the energy-momentum tensor for dark energy and
T µνm is the energy-momentum tensor for matter.

We assume the conservation of the total energy momentum in
the following form:

−∇µT
µν
de = ∇µT

µν
m ≡ 3κ2Jν , (4.3)

where κ2 is the di�usion constant and Jν is the current which de-
scribes a �ow of particles.

This model provides that the dark matter is transferred by a dif-
fusionmechanism in an environment corresponding to the perfect
�uid, while predicting a unique di�usion which is relativistically in-
variant and preserves the massm of a particle [49].
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The Friedmann equation is given here as:

3H2 = ρb + ρdm + ρde, (4.4)

where ρb is the density of baryonicmatter, ρdm is the density of dark
matter, ρde is the density of dark energy, and ρm = ρb + ρdm. The
densities ρm and ρde are given by:

ρm = ρb,0a
−3 + ρdm,0a

−3 + γ(t− t0)a−3, (4.5)

ρde = ρde(0)− γ
∫ t

a−3dt, (4.6)

where γ is a positive model parameter.
If we choose t0 as zero, thenwe get amodi�ed scale law for the

energy density of dark matter:

ρdm = ρdm,0a
−3 + γta−3. (4.7)

The current Jµ is conserved [50, 51, 52]. In result, we get:

∇µJ
µ = 0. (4.8)

For the FRWmetric from the above equation, we obtain:

J0 = γ/3κ2a−3. (4.9)

From Eq. (4.3), we get the following conservation equations:

ρ̇m = −3Hρm + γa−3, (4.10)

ρ̇de = −γa−3, (4.11)

where we assume that the equation of state for dark energy is
pde = −ρde and for matter is pm = 0. Here, ′ ≡ d

dt
.

Thismodel of di�usion interaction in the dark sector is free from
the di�culties a�icting Alho et al.’s models with di�usion [53]. It
involves no non-physical trajectories crossing the boundary set
ρm = 0.
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4.2 Di�usive DM-DE interaction:
coincidence problem

This section is based on Phys.Rev. D94 (2016) no. 4, 043521 [48].

In the paper [48], we recast cosmological equations of the di�u-
sion cosmological model as a dynamical system. By inserting Eqs
(4.5) and (4.6) into the Friedman equation (4.4), we get:

3H2 = ρb,0a
−3 + ρdm,0a

−3 + γ(t− t0)a−3 + ρde(0)− γ
∫ t

a−3dt. (4.12)

Now let x = Ωm, y = Ωde, δ = γa−3

Hρm
and ′ ≡ d

d ln a
is a di�eren-

tiation with respect to the reparametrized time ln a(t). Equations
(4.10), (4.11) and (4.12) can be rewritten as the dynamical system in
variables x, y and z with respect to time ln a(t). Thus we get the
following dynamical system:

x′ = x(−3 + δ + 3x), (4.13)

y′ = x(−δ + 3y), (4.14)

δ′ = δ(−δ +
3

2
x). (4.15)

From Eq. (4.12), we have that ρm
3H2 + ρde

3H2 = 1. In result, we get that
x+ y = 1. Accordingly, dynamical system (4.13)-(4.15) is reduced to
a two-dimension dynamical system.

In order to analyse this system in the in�nity, we use the rewrit-
ten forms of Eqs (4.13) and (4.15) in variables

X =
x√

x2 + δ2
, ∆ =

δ√
x2 + δ2

. (4.16)

Ultimately, we get the following dynamical system:

X ′ = X

[
−∆2

(
3

2
X −∆

)
+ (1−X2)(3X + ∆− 3

√
1−X2 −∆2)

]
,

(4.17)

∆′ = ∆

[
(1−∆2)

(
3

2
X −∆

)
−X2(3X + ∆− 3

√
1−X2 −∆2)

]
,

(4.18)

where ′ ≡
√

1−X2 −∆2 d
d ln a(t)

. The critical points of the system
(4.17) and (4.18) are collected in Table I in Phys.Rev. D94 (2016) no. 4,
043521 [48].
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We considered also the case when the equations of state for
baryonic and dark matter and dark energy are in a generalized
form:

pde = wρde, (4.19)

pdm = w̃ρdm, (4.20)

pb = 0, (4.21)

wherew and w̃ are constant coe�cients for dark energy andmatter
respectively.

Now the continuity equations are:

ρ̇dm = −3(1 + w̃)Hρdm + γa−3, (4.22)

ρ̇de = −3(1 + w)Hρde − γa−3, (4.23)

ρ̇b = −3Hρb. (4.24)

From the above equations and Eq. (4.10), we get the following
dynamical system in the analogous way like (4.13)-(4.15):

dx

d ln a
= 3x

[
(1 + w̃)(x− 1) + (1 + w)y +

z

3

]
, (4.25)

dy

d ln a
= 3y[(1 + w)(y − 1) + (1 + w̃)x]− xz, (4.26)

dz

d ln a
= z

[
3w̃ − z +

3

2
[(1 + w̃)x+ (1 + w)y]

]
. (4.27)

As x + y = 1, the above system is reduced to a two-dimensional
one. The critical points of this model are collected in Table II in
Phys.Rev. D94 (2016) no. 4, 043521 [48]. The critical point {x0 =

− 1+3w
3(w̃−w)

, z0 = 1 + 3w̃} represents a scaling solution ρdm = ρde, thus
providing a mechanism to solve the coincidence problem.

We considered the special case of Eqs (4.25) and (4.27) when
dark matter is relativistic (w̃ = 1/3) and w = −1. Then they simplify
to the following form:

x′ = x(−4 + z + 4x), (4.28)

z′ = z(1− z + 2x). (4.29)
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For the purpose of examining Eqs (4.28) and (4.29) in the in�nity,
we choose variables X = x√

x2+δ2 , ∆ = δ√
x2+δ2 . Thus we get:

X ′ = X

[
−∆2

(√
1−X2 −∆2 +

3

2
X −∆

)
+

(1−X2)(3X + ∆− 4
√

1−X2 −∆2)

]
, (4.30)

∆′ = ∆

[
(1−∆2)

(√
1−X2 −∆2 +

3

2
X −∆

)
−

X2(3X + ∆− 4
√

1−X2 −∆2)

]
, (4.31)

where ′ ≡
√

1−X2 −∆2 d
dτ
.

The critical points of system (4.30)-(4.31) are collected in Ta-
ble III in Phys.Rev. D94 (2016) no. 4, 043521 [48].

4.3 Di�usive DM-DE interaction:
non-relativistic case and statistical analysis

This section is based on JCAP 1607 (2016) no. 07, 024 [47].

In the paper [47], we examine two cases of the di�usion interaction
in the dark sector: relativistic and non-relativistic. The relativistic
case was considered in the previous sections. The other one uses
the non-relativistic limit of the above energy-momentum tensor:

ρdm = T̃ 00 =
√
g(2π)−3

∫
dp p0Ω = g−

1
2Zm+

√
g(2π)−3

∫
dp

a2p2

2m
Ω

≡ Zma−3 + a−2ρnr, (4.32)

where

ρnr =
√
g(2π)−3

∫
dp Ωa4 p2

2m
, (4.33)

where Ω is the concentration of mass, p is the momentum and m
is the mass of the particle of dark matter. The constant Z is given
by:

Z ≡ γ

3κ2
= g

∫
dp

(2π)3
Ω, (4.34)

where κ2 is the di�usion constant.
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In this case, the conservation equation for dark matter is:

ρ̇dm + 5Hρdm = 3Zκ2a−3 + 2ZmHa−3. (4.35)

Let

x =
ρdm
3H2

, y =
ρde
3H2

, u =
(2Zm)a−3

ρdm
δ =

γa−3

Hρdm
(4.36)

and τ = ln a is a reparametized time. Then we get the following
dynamical system:

x′ = x

(
−5 + δ + u− 2

Ḣ

H2

)
, (4.37)

y′ = −x(δ + u)− 2y
Ḣ

H2
, (4.38)

u′ = u(2− δ − u), (4.39)

δ′ = δ

(
2− δ − u− Ḣ

H2

)
, (4.40)

where ′ ≡ d
dτ
and Ḣ

H2 = −1
2
x(5− u).

Since Ωdm + Ωde = 1 we have x + y = 1. In e�ect, the above
dynamical system reduces to a three-dimensional dynamical sys-
tem. The system (4.37)-(4.40) has the invariant submanifold { Ḣ

H2 =

0} determined by the equations x = 0 or u = 5. Its other subman-
ifold is δ = 0. For this invariant submanifold, the system reduces
to

x′ = x(u+ 5(x− 1)− xu), (4.41)

u′ = u(2− u). (4.42)

In the statistical analysis of the model parameters of relativis-
tic and non-relativistic case, we used the following astronomical
observations: supernovae of type Ia (SNIa, Union 2.1 dataset [13]),
BAO data [14, 15, 16], measurements of the Hubble parameterH(z)

of galaxies [17, 18, 19], the Alcock-Paczynski test [20, 21] (data from
[22, 23, 24, 25, 26, 27, 28, 29, 30]) and measurements of CMB and
lensing [31]. The value of the best �t and errors are given in Table 3
and 4 in JCAP 1607 (2016) no. 07, 024 [47]. The BIC criterion gives
a strong evidence in favour of the ΛCDM model in comparison to
these models. However, this is not su�cient for rejecting of the
di�usion models.
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Chapter 5

Dynamical system approach
to running Λ cosmological
models

This chapter is based on Eur.Phys.J. C76 (2016) no. 11, 606 [10].

In the paper [10], we investigate cosmological models in which the
cosmological constant term is a time-dependent function, exam-
ining the following parametrization of cosmological parameter Λ:
Λ(H), Λ(a) as well as three covariant ones: Λ(R), Λ(φ) – cosmolo-
gies with di�usion, and Λ(X), where X = 1

2
gαβ∇α∇βφ is the kinetic

part of density of the scalar �eld. We also considered an emer-
gent relation Λ(a) obtained from the behaviour of trajectories in a
neighbourhood of an invariant submanifold. In the thesis, we limit
to Λ(H), Λ(R), Λ(X), and Λ(a).

5.1 Λ(H)CDM cosmologies

We take the parametrization Λ(H) in the form of the Taylor series:

Λ(H) =
∞∑

n=1

1

n!

dn

dHn
Λ(H)|0Hn =

∞∑

n=1

αnH
n. (5.1)

Here, a re�ection symmetry H → −H is additionally assumed.
Only terms of type H2n in the above expansion series have this
symmetry, thus [54]:

Λ(H) = Λbare + α2H
2 + α4H

4 + · · · . (5.2)
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The cosmological equations with the parametrization Λ(H) are:

Ḣ = −H2 − 1

6
ρm +

1

3
Λ(H), (5.3)

ρ̇m = −3Hρm − Λ′(H)

(
−H2 − 1

6
ρm +

Λ(H)

3

)
. (5.4)

Let x = H2, y = ρm and τ = ln a is a new parametrization of time.
Then system (5.3)-(5.4) gives the following dynamical system:

x′ ≡ dx

d ln a
= 2

[
−x− 1

6
y +

1

3
(Λ + α2x+ α4x

2 + · · · )
]
, (5.5)

y′ ≡ dy

d ln a
= −3y − 1

3
(α2 + 2α4x+ · · · )

×
[
−x− 1

6
y +

1

3
(Λ + α2x+ α4 + · · · )

]
. (5.6)

As 3H2 = ρm + Λ(H), we get an additional equation:

y − 3x = −(Λ + α2x+ α4x
2 + · · · ). (5.7)

This equation lets us reduce the system (5.5)-(5.6) to one dimen-
sion.

After cutting the second term out of the series (5.2) we get the
following equations:

dx

dτ
= x(α2 − 3) + Λ, (5.8)

y = (3− α2)x− Λ. (5.9)

The system has the critical point:

x0 =
Λ

3− α2

, y = 0. (5.10)

Now we introduce a new variable x→ X = x− x0, obtaining

dX

dτ
= (α2 − 3)X. (5.11)

The above equation has an exact solution in the form:

X = X0e
τ(α2−3) = X0a

−3+α2 , (5.12)

which can be interpreted as the Alcaniz-Lima solution [55]:

x = H2 =
ρ̃m,0

3
a−3+α2 +

ρΛ,0

3
, (5.13)
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where ρ̃m,0 = 3
3−α2

ρm,0. This constitutes the scaling solution ρΛ(a) ∼
ρm(a), which provides a way to solve the coincidence problem.

5.2 Λ(R)CDM cosmologies

We investigate the parametrization ofΛ(R) in the form ρΛ = −α
2
R =

3α(Ḣ + 2H2 + k
a2 ) [56], where k = −1, 0, +1, getting the following

cosmological equations:

Ḣ = −H2 − 1

6
(ρm + ρΛ), (5.14)

ρ̇ = −3Hρm (5.15)

with the �rst integral of the form

H2 =
1

3

(
−3k

a2
+

2

2− αρm,0a
−3 + f0a

2 1−2α
α

)
, (5.16)

where f0 is an integration constant.
We can rewrite the above equations as a dynamical system in

the variables a, x = ȧ

ȧ = x, (5.17)

ẋ = −Ωm,0
1

2− αa
−2+

+

(
1

α
− 1

)(
ΩΛ,0 − Ωm,0

α

2− α

)
a

2
α
−3. (5.18)

We can analyse the system (5.17)-(5.18) in the in�nity, using vari-
ables A = 1

a
, X = x

a
. Then we get the following dynamical system:

Ȧ = −XA, (5.19)

Ẋ = A3
[
− Ωm,0

1

2− α
+

(
1− α
α

)(
ΩΛ,0 − Ωm,0

α

2− α

)
A

α−2
α

]
−X2. (5.20)

We can use also the Poincaré sphere to investigate critical
points at the in�nity. If we take B = a√

1+a2+x2 , Y = x√
1+a2+x2 , then
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we obtain a dynamical system in the following form:

B′ = Y B2(1−B2)

−BY
[
− Ωm,0

1

2− α(1−B2 − Y 2)3/2

+

(
1− α
α

)(
ΩΛ,0 − Ωm,0

α

2− α

)
B−1+2/α

× (1−B2 − Y 2)2−1/α
]
, (5.21)

Y ′ =
[
− Ωm,0

1

2− α(1−B2 − Y 2)3/2

+

(
1− α
α

)(
ΩΛ,0 − Ωm,0

α

2− α

)
B−1+2/α

(1−B2 − Y 2)2−1/α
]
(1− Y 2)− Y 2B3, (5.22)

where ′ ≡ B2 d
dt
.

5.3 Non-canonical scalar �eld cosmology

The dark energy can be also parameterized by a non-canonical
scalar �eld φ [57]. In the canonical scalar �eld approach, the pres-
sure pφ is given by the formula pφ = φ̇2

2
−V (φ), where ˙≡ d

dt
and V (φ)

is the potential of the scalar �eld. In the non-canonical scalar �eld,

the pressure is described by the formula pφ =
(
φ̇2

2

)α
−V (φ), where

α is a parameter. Note that when α is equal to 1, then the pres-
sure of the non-canonical scalar �eld corresponds to the canonical
case.

The cosmological equations for this model are the Friedmann
equation:

3H2 = ρm + (2α− 1)

(
φ̇2

2

)α

+ V (φ)− 3k

a2
, (5.23)

where k = −1, 0, +1 and the Klein-Gordon equation:

φ̈+
3Hφ̇

2α− 1
+

(
V ′(φ)

α(2α− 1)

)(
2

φ̇2

)α−1

= 0. (5.24)

The above equations can be rewritten as a dynamical system. We
choose a and x = ȧ as variables, obtaining from Eqs (5.23) and
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(5.24):

a′ = xa2, (5.25)

x′ = −ρm,0

6
− α + 1

3
a

3
1−2α +

Λ

3
a3, (5.26)

where ′ ≡ a2 d
dt
.

For the purpose of analysing critical points in the in�nity, we
choose the coordinates: A = 1

a
, X = x

a
and B = a

x
, Y = 1

x
.

The dynamical system for variables A and X is:

A′ = −XA2, (5.27)

X ′ = A4

(
−ρm,0

6
− α + 1

3
A

3
2α−1

)
+ A

(
Λ

3
−X2

)
, (5.28)

where ′ ≡ A d
dt
. We can then obtain the following dynamical system

based on variables B and Y :

Ḃ = BY

[
B +

(
ρ

6
Y 3 +

α + 1

3
B

3
1−2αY

6α
2α−1 − Λ

3
B3

)]
, (5.29)

Ẏ = Y 2

(
ρ

6
Y 3 +

α + 1

3
B

3
1−2αY

6α
2α−1 − Λ

3
B3

)
, (5.30)

where ˙≡ B2Y d
dt
.

5.4 Cosmology with emergent Λ(a)

relation

We consider cosmology with a scalar �eld which is non-minimally
coupled to gravity. In this case, the cosmological equations are:

φ̈+ 3Hφ̇+ ξRφ+ V ′(φ) = 0, (5.31)

where ′ ≡ d
dφ
, φ is a scalar �eld, V (φ) is a potential of the scalar �eld

and
3H2 = ρm +

1

2
φ̇2 + 3ξH2φ2 + 6ξHφφ̇+ V (φ) (5.32)

and
ρ̇m = −3Hρm. (5.33)

We introduce the following variables [58]:

x ≡ φ̇√
6H

, y ≡
√
V (φ)√
3H

, z ≡ φ√
6
. (5.34)
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In result, we get:

(
H

H0

)2

= Ωφ + Ωm = (1− 6ξ)x2 + y2 + 6ξ(x+ z)2 + Ωm,0a
−3. (5.35)

Our aim is to generalize the ΛCDMmodel by including a contri-
bution beyond Λbare in the above equation. In our further analysis
we will call it ‘the emergent Λ term’. Thus,

ΩΛ,emergent = (1− 6ξ)x2 + y2 + 6ξ(x+ z)2. (5.36)

The dynamical system which describes the evolution in phase
space has the form:

dx

d(ln a)
=
dx

dτ
= −3x− 12ξz +

1

2
λy2 − (x+ 6ξz)

Ḣ

H2
, (5.37)

dy

d(ln a)
=
dy

dτ
= −1

2
λxy − y Ḣ

H2
, (5.38)

dz

d(ln a)
=
dz

dτ
= x, (5.39)

dλ

d(ln a)
=
dλ

dτ
= −λ2(Γ(λ)− 1)x, (5.40)

where Γ = V ′′(φ)V (φ)
V ′2(φ)

, λ ≡ −
√

6V
′(φ)
V (φ)

and

Ḣ

H2
=

1

H2

[
−1

2
(ρφ + pφ)− 1

2
ρm,0a

−3

]

=
1

6ξz2(1− 6ξ)− 1

[
−12ξ(1− 6ξ)z2 − 3ξλy2z

+
3

2
(1− 6ξ)x2 + 3ξ(x+ z)2 +

3

2
− 3

2
y2

]
. (5.41)

For the sake of illustrating the emergent Λ(a) relation, we con-
sider two cosmologies for which we derive Λ = Λ(a): V = const or
λ = 0, if ξ = 0 (minimal coupling), and V = const, if ξ = 1

6
(conformal

coupling). For the above cases, the system (5.37)-(5.40) reduces to

dx

d(ln a)
=
dx

dτ
= −3x− x Ḣ

H2
, (5.42)

dy

d(ln a)
=
dy

dτ
= −y Ḣ

H2
, (5.43)

dz

d(ln a)
=
dz

dτ
= x, (5.44)
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where

Ḣ

H2
= −3

2
x2 − 3

2
+

3

2
y2 (5.45)

and

dx

dτ
= −3x− 2z − Ḣ

H2
(x+ z), (5.46)

dy

dτ
= −y Ḣ

H2
, (5.47)

dz

dτ
= x, (5.48)

where
Ḣ

H2
= −1

2
(x+ z)2 − 3

2
+

3

2
y2. (5.49)

For theminimal coupling case (ξ = 0, V = const), the dynamical
system (5.42)-(5.44) is expressed by:

dx

d(ln a)
=
dx

dτ
= −3x, (5.50)

dy

d(ln a)
=
dy

dτ
= 0, (5.51)

dz

d(ln a)
=
dz

dτ
= x, (5.52)

with the condition

0 = x2 − y2 + 1. (5.53)

The solution of the above system is x = C1a
−3, y = const and

z = −1
3
C1a

−3 + C2.
Accordingly, ΩΛ,emergent for this case is:

ΩΛ,emergent = ΩΛ,emergent,0a
−6 + ΩΛ,0. (5.54)

For the conformal coupling case, the system (5.42)-(5.44) is:

dx

dτ
= −3x− 2z, (5.55)

dy

dτ
= 0 ⇒ y = const, (5.56)

dz

dτ
= x (5.57)
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with the condition

0 = (x+ z)2 − 3y2 + 3. (5.58)

The solution of the above dynamical system is x = −2C1a
−2 −

C2a
−1, y = const and z = C1a

−2 + C2a
−1.

In consequence, ΩΛ,emergent is:

ΩΛ,emergent = ΩΛ,0 + ΩΛ,emergent,0a
−4. (5.59)

The model with ξ = 1/6 (conformal coupling) and V = const
involves the early constant ratio dark energy Ωde = const during
the radiation epoch. In this case, we can use the fractional early
dark energy parameter Ωe

d = 1 − Ωm
Ωtot

, where Ωtot is the sum of the
densities of bothmatter and dark energy [59, 60]. For the fractional
early dark energy parameter, there is a strong observational upper
limit (Ωe

d < 0.0036) [31]. Accordingly, we obtain the following limit on
the running Λ parameter in the present epoch: Ωem,0 < 3.19× 10−7.
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Chapter 6

Starobinsky cosmological
model in Palatini formalism

6.1 Palatini formalism in Jordan frame

This section is based on Eur.Phys.J. C77 (2017) no. 6, 406 [61], Eur.Phys.J. C77 (2017) no. 9, 603 [62],

Eur.Phys.J. C78 (2018) no. 3, 249 [63], and Phys.Rev. D97 (2018) 103524 [64].

In this section, we consider the Starobinsky cosmological model
(f(R) = R + γR2) in the Palatini formalism. This model can be for-
mulated either in the Jordan frame or in the Einstein frame.

First, the model will be considered in the Jordan frame. Then
its action has the following form:

S = Sg + Sm =
1

2

∫ √−gf(R̂)d4x+ Sm, (6.1)

where R̂ = gµνR̂µν(Γ) is the generalized Ricci scalar and R̂µν(Γ) is
the Ricci tensor of a torsionless connection Γ [65, 66]. Since we
assume that the equation of state for matter is given in the form
p = p(ρ), the action for matter Sm is [67]:

Sm =

∫
−√−gρ

(
1 +

∫
p(ρ)

ρ2
dρ

)
d4x. (6.2)

After varying Eq. (6.1) with respect to themetric gµν and the con-
nection Γ, we get the equations of motion:

f ′(R̂)R̂µν −
1

2
f(R̂)gµν = Tµν , (6.3)

∇̂α(
√−gf ′(R̂)gµν) = 0, (6.4)

where ∇̂α is the covariant derivative obtained with respect to the
connection Γ and Tµν = − 2√−g

δLm
δgµν

is the energy-momentum tensor
for which ∇µTµν = 0.
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The structural equation is obtained from the trace of Eq. (6.3)
as:

f ′(R̂)R̂− 2f(R̂) = T. (6.5)

For the Starobinsky model’s case, Eq. (6.5) simpli�es to

− R̂ = T. (6.6)

Aswe consider the perfect �uid, the energy-momentum tensor
is given by:

T µν = diag(−ρ, p, p, p), (6.7)

where p is the pressure of matter. In this case, the equation of state
has the form p = wρ, where w is a constant, which equals zero for
dust, 1/3 for radiation and −1 for dark energy. The trace of the
energy-momentum tensor is:

T =
∑

i

ρi,0(3wi − 1)a(t)−3(1+wi). (6.8)

Since∇µTµν = 0, the density of matter ρ is equal to ρm,0a
−3(1+w). For

the case of dust, we get ρ = ρm,0a
−3 and for the case of radiation

ρ = ρm,0a
−4.

We assume that matter has the form of dust and dark energy is
described by the cosmological constant Λ, so the trace of the ten-
sor energy-momentum T is ρm,0a

−3 + Λ. In consequence, Eq. (6.6)
gives the relation between the Ricci scalar R̂ and the scale factor
a:

R̂ = ρm,0a
−3 + 4Λ. (6.9)

In the Palatini formalism in the Jordan frame for the FRWmetric,
we get the Friedmann equation from Eq. (6.3):

H2

H2
0

=
b2

(
b+ d

2

)2

[
Ωγ(Ωm,0a

−3 + ΩΛ,0)2 (K − 3)(K + 1)

2b

+(Ωm,0a
−3 + ΩΛ,0) +

Ωr,0a
−4

b
+ Ωk

]
, (6.10)

where Ωk = − k
H2

0a
2 , Ωr,0 = ρr,0

3H2
0
, Ωm,0 = ρm,0

3H2
0
, ΩΛ,0 = Λ

3H2
0
, Ωγ = 3γH2

0 ,

K =
3ΩΛ,0

(Ωm,0a−3+ΩΛ,0)
, b = f ′(R̂) = 1 + 2Ωγ(Ωm,0a

−3 + 4ΩΛ,0), d = 1
H
db
dt

=

−2Ωγ(Ωm,0a
−3 + ΩΛ,0)(3 −K), H0 is the Hubble constant, ρr,0 is the

present value of the energy density of radiation and ρm,0 is the
present value of the density of matter.

As ∇µTµν = 0, we get the following continuity equation:

ρ̇m = −3Hρm. (6.11)
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When γ is zero, then the model is equivalent to the ΛCDM
model.

6.2 Palatini formalism in Einstein frame

This section is based on Eur.Phys.J. C77 (2017) no. 6, 406 [61], Eur.Phys.J. C77 (2017) no. 9, 603 [62],

Eur.Phys.J. C78 (2018) no. 3, 249 [63], and Phys.Rev. D97 (2018) 103524 [64].

In the Einstein frame, if f
′′
(R̂) 6= 0 the action (6.1) is equivalent to

the Palatini gravitational action [68]:

S(gµν ,Γ
λ
ρσ, χ) =

1

2

∫
d4x
√−g

(
f ′(χ)(R̂− χ) + f(χ)

)
+ Sm(gµν , ψ).

(6.12)
Now we can introduce a new scalar �eld Φ = f ′(χ), where χ = R̂.
In this case action (6.12) is given by:

S(gµν ,Γ
λ
ρσ,Φ) =

1

2

∫
d4x
√−g

(
ΦR̂− U(Φ)

)
+ Sm(gµν , ψ). (6.13)

Here, the function U(Φ) is a potential of the form:

Uf (Φ) ≡ U(Φ) = χ(Φ)Φ− f(χ(Φ)), (6.14)

where Φ = df(χ)
dχ

and R̂ ≡ χ = dU(Φ)
dΦ

.
After varying the action (6.13) with respect of the metric gµν and

the connection Γ, we get

Φ

(
R̂µν −

1

2
gµνR̂

)
+

1

2
gµνU(Φ)− Tµν = 0, (6.15)

∇̂α(
√−gΦgµν) = 0. (6.16)

From Eq. (6.16), we get the connection Γ̂ for the new metric
ḡµν = Φgµν . A new structural equation can be obtained from the
trace of Eq. (6.15):

2U(Φ)− U ′(Φ)Φ = T. (6.17)

Let R̂µν = R̄µν , R̄ = ḡµνR̄µν = Φ−1R̂ and ḡµνR̄ = gµνR̂. Then
Eq. (6.15) is:

R̄µν −
1

2
ḡµνR̄ = T̄µν −

1

2
ḡµνŪ(Φ), (6.18)

where Ū(φ) = U(φ)/Φ2 and T̄µν = Φ−1Tµν . Because R̂ ≡ χ = dU(Φ)
dΦ

then
ΦR̄− (Φ2 Ū(Φ))′ = 0. (6.19)
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From Eq. (6.18), we get a new structural equation:

ΦŪ ′(Φ) + T̄ = 0. (6.20)

In this parametrization, the action (6.13) has the following form:

S(ḡµν ,Φ) =
1

2κ

∫
d4x
√−ḡ

(
R̄− Ū(Φ)

)
+ Sm(Φ−1ḡµν , ψ), (6.21)

where

T̄ µν = − 2√−ḡ
δ

δḡµν
Sm = (ρ̄+ p̄)ūµūν + p̄ḡµν = Φ−3T µν , (6.22)

and ūµ = Φ−
1
2uµ, ρ̄ = Φ−2ρ, p̄ = Φ−2p, T̄µν = Φ−1Tµν , T̄ = Φ−2T [69,

70].
As we use a new metric ḡµν , the FRW line element has a new

form:
ds̄2 = dt̄2 − ā2(t)

[
dr2 + r2(dθ2 + sin2 θdφ2)

]
, (6.23)

where the new cosmological time dt̄ = Φ(t)
1
2dt and the new scale

factor ā(t̄) = Φ(t̄)
1
2a(t̄).

We assume the barotropic matter (p = wρ). Accordingly, the
cosmological equations are:

3H̄2 = ρ̄Φ + ρ̄m, (6.24)

6
¨̄a

ā
= 2ρ̄Φ − ρ̄m(1 + 3w), (6.25)

where ρ̄Φ = 1
2
Ū(Φ), ρ̄m = ρ0ā

−3(1+w)Φ
1
2

(3w−1) and w = p̄m/ρ̄m. In this
case, the conservation equation is:

˙̄ρm + 3H̄ρ̄m(1 + w) = − ˙̄ρΦ. (6.26)

The Starobinsky model (f(R̂) = R̂ + γR̂) in cosmology yields
the potential Ū in the form:

Ū(Φ) =

(
1

4γ
+ 2Λ

)
1

Φ2
− 1

2γ

1

Φ
+

1

4γ
. (6.27)

From Eq. (6.20), we can obtain the scalar �eld Φ(ā) as:

Φ(a) = 1− 8γΛ + 2γρm + 8γpm (6.28)

or
Φ(ā) = 1− 8γΛ + (2γρ̄m + 8γp̄m)Φ2(ā). (6.29)
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Ultimately, Φ is dependent on ρ̄m:

Φ(ā) =
1 +

√
1− 8γ(ρ̄m + 4p̄m)(1− 8γΛ)

4γ(ρ̄m + 4p̄m)
(6.30)

or

Φ(ā) =
1−

√
1− 8γ(ρ̄m + 4p̄m)(1− 8γΛ)

4γ(ρ̄m + 4p̄m)
. (6.31)

We can obtain the Friedmann equation in form 3H̄(R̂)2 fromEqs
(6.20) and (6.24), getting:

3H̄(R̂)2 = ρ̄m(R̂) +
Ū(R̂)

2
+ Λ =

R̂(2 + γR̂)

2
(

1 + 2γR̂
)2 − 3Λ. (6.32)

6.3 Starobinsky cosmological model in
Palatini formalism: dynamical system
approach

This section is based on Eur.Phys.J. C77 (2017) no. 6, 406 [61].

In the paper [61], we consider singularities that can appear in the
Starobinsky cosmological model in the Palatini formalism. Inves-
tigating it in the Einstein frame, we found in�ation in the model
when matter is negligible in comparison to ρ̄Φ = Ū

2
and the value

of γ parameter is close to zero. Moreover, when number of e-folds
is equal to 60, then the value of γ parameter is 1.16× 10−69 s2.

We investigate also singularities in the Jordan frame, introduc-
ing the classi�cation of singularities in FRWcosmology and reduc-
ing dynamics to the dynamical system of the Newtonian type. This
classi�cation is given in terms of the geometry of a potential V (a)

if this potential has a pole.
In the standard cosmology, the potential V (a) is expressed by

the following equation:

ȧ2 = −2V (a), (6.33)

where V (a) = −ρ(a)a2

6
. In consequence, we obtain that:

ä = −∂V (a)

∂a
. (6.34)
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This leads to the following dynamical system:

ȧ = x, (6.35)

ẋ = −∂V (a)

∂a
. (6.36)

In our model, Eq. (6.10) can be rewritten analogically as a dy-
namical system (6.35)-(6.36):

a′ = x, (6.37)

x′ = −∂V (a)

∂a
, (6.38)

where V = −a2

2

(
ΩγΩ

2
ch

(K−3)(K+1)
2b

+ Ωch + Ωk

)
and ′ ≡ d

dσ
=

b+ d
2

H0b
d
dt
is

a new parametrization of time.
We treat the abovedynamical systemas a sewndynamical sys-

tem [71, 72]. Accordingly, we consider two cases. The �rst one is
for a < asing and the second one is for a > asing, where asing is the
value of the scale factor in the singularity.

For a < asing, the dynamical system (6.37)-(6.38) can be rewrit-
ten as:

a′ = x, (6.39)

x′ = −∂V1(a)

∂a
, (6.40)

where V1 = V (−η(a − asing) + 1) and η(a) denotes the Heaviside
function.

For a > asing, we get:
a′ = x, (6.41)

x′ = −∂V2(a)

∂a
, (6.42)

where V2 = V η(a− asing).
In the Starobinsky cosmological model in Palatini formalism in

the Jordan frame, we found two new types of singularities of a �-
nite scale factor. The �rst type is the sewn freeze singularity, for
which the Hubble function H , pressure p and energy density ρ are
divergent. It appears when γ parameter has a positive value. The
second type is the sewn typical singularity, for which the Hubble
function and energy density ρ are �nite and Ḣ and pressure p are
divergent. It appears when γ parameter has a negative value. At
the sewn singularity which is of a �nite scale factor type, the singu-
larity in the past meets the singularity in the future. In the Jordan
frame, the phase portrait is topologically equivalent to the phase
portrait of the ΛCDMmodel for the positive γ parameter.



43

In order to estimate this model through statistical analysis, we
used 580 supernovae of type Ia [13], BAO [14, 15, 16], measure-
ments of H(z) for galaxies [17, 18, 19], Alcock-Paczyński test [22,
23, 24, 25, 26, 27, 28, 29, 30], measurements of CMB and lensing
by Planck, and low ` by WMAP [31] �nding that the best �t value
of Ωγ = 3γH2

0 is 9.70 × 10−11. The BIC criterion gives a strong evi-
dence in favour of the ΛCDM model in comparison to this model.
However, we are not able to reject it.

6.4 Extended Starobinsky cosmological
model in Palatini formalism

This section is based on Eur.Phys.J. C77 (2017) no. 9, 603 [62].

In the paper [62], we consider the FRW cosmological model for
f(R) = R+ γR2 + δR3 gravity within the Jordan and Einstein frame
in the Palatini formalism. We investigate singularities in this model
anddemonstrate how theStarobinskymodel ismodi�edby adding
a new term in f(R) formula.

By adding of δR̂3 in f(R̂) expression in the Jordan frame case,
the Friedmann formula (6.10) is modi�ed as follows:

H2

H2
0

=
b2

(
b+ d

2

)2 ×
[

ΩR

2b

[
Ωγ(ΩR − 4Ωtot)

+ 2ΩδΩR(ΩR − 3Ωtot))

]
+ Ωtot + Ωk

]
, (6.43)

where

Ωtot = Ωm,0a
−3 + ΩΛ,0, (6.44)

b = f ′(R̂) = 1 + ΩR [2Ωγ + 3ΩδΩR] , (6.45)

d =
1

H

db

dt
= 6

Ωγ + 3ΩδΩR

3ΩδΩ2
R − 1

[
ΩR(1− ΩδΩ

2
R)− 4ΩΛ,0

]
, (6.46)

Ωγ = 3γH2
0 , (6.47)

Ωδ = 9δH4
0 , (6.48)

ΩR =
R̂

3H2
0

. (6.49)
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In the case of the Einstein frame when we insert δR̂3 in f(R̂)

formula, the potential function (6.27) is substituted by:

Ū(R̂) =
R̂2(γ + 2δR̂)

(
1 + 2γR̂ + 3δR̂2

)2 . (6.50)

In consequence, the Friedmann equation is modi�ed to the
form:

3H̄2 = ρ̄m(R̂) +
Ū(R̂)

2
+ Λ =

R̂(2 + γR̂)

2
(

1 + 2γR̂ + 3δR̂2
)2 − 3Λ. (6.51)

A major qualitative change in the model occurs after inserting
δR̂3 into the f(R̂) formula in the Jordan frame. In this case, some
additional singularities appear in the model. For example, in the
case when γ parameter is positive and δ parameter is negative, an
additional sewn freeze singularity and a typical sudden singularity
appear during the evolution of the Universe.

6.5 In�ation in Starobinsky cosmological
model in Palatini formalism

This section is based on Eur.Phys.J. C78 (2018) no. 3, 249 [63].

The main aim of the paper [63] is the analysis of in�ation in the
Starobinsky cosmological model in Palatini formalism within the
Einstein frame. We found that in�ation appears when matter is
negligible with comparison to the ρ̄Φ = Ū

2
. The evolution of the

Universe during in�ation in this model consists of four phases:

• In the �rst phase, matter is negligible and the density of matter
grows due to the interaction between matter and the dark en-
ergy. In the in�ation process, the production of matter disturbs
in�ation beginning from the point when matter can no longer
be neglected. In consequence, in the �rst phase in�ation be-
comes unstable and the second phase sets in.

• During the second phase, the e�ects of matter are not negligi-
ble and the density of matter grows further.

• In the third phase, the density of matter decreases but is still
not negligible. During the second and third phases the process
of in�ationary behaviour of the Universe is terminated.
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• In the fourth phase, the e�ects ofmatter becomenegligible and
so in�ation reappears. During that phase, the Universe follows
the ΛCDMmodel.

In the �rst and fourth phase ρΦ has constant values:

ρ̄Φ =
1− 16γΛ +

√
1− 32γΛ

16γ
(6.52)

in the �rst phase and

ρ̄Φ =
1− 16γΛ−√1− 32γΛ

16γ
(6.53)

in the last phase.
If we assume that N ∈ 〈50, 60〉 [73], then γ parameter belongs

to the interval 〈1.16× 10−69 s2Mpc2

km2 , 1.67× 10−69 s2Mpc2

km2 〉.

6.6 Einstein frame vs Jordan frame

This section is based on Phys.Rev. D97 (2018) 103524 [64].

In the paper [64], we consider di�erences in the Einstein and Jor-
dan frames as applied to the Starobinsky cosmological model in
Palatini formalism, �nding that the topological
structures of the phase space depend on the choice of the frame.

In the case of the Einstein frame, H̄ and R̂were chosen as vari-
ables of the dynamical system. Eqs (6.24) and (6.26) can be then
rewritten as a dynamical system:

˙̄H(t̄) =
1

6 (1 + 2γR̂(t̄))2

(
6Λ− 6H̄(t̄)2(1 + 2γR̂(t̄))2 + R̂(t̄)(−1 + 24γΛ + γ(1 + 24γΛ)R̂(t̄))

)
,

(6.54)

˙̂
R(t̄) = −3H̄(t̄)(1 + 2γR̂(t̄))

(1− γR̂(t̄))(
4Λ + R̂(t̄)

(
−1 + 16γΛ + 16γ2ΛR̂(t̄)

))
, (6.55)

where ˙≡ d
dt̄
.

In the Jordan frame case, Eqs (6.10) and (6.11) can be rewritten
as
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Ḣ(t) = −1

6

[
6
(
2Λ +H(t)2

)
+ R̂(t) +

18(1 + 8γΛ) (Λ−H(t)2)

−1− 12γΛ + γR̂(t)

−18(1 + 8γΛ)H(t)2

1 + 2γR̂(t)

]
, (6.56)

˙̂
R(t) = −3H(t)(R̂(t)− 4Λ), (6.57)

where ˙≡ d
dt
.

In this paper, we consider the behaviour of the trajectories in the
phase portrait for both the frameswhen γ parameter has a positive
value and �nd that the di�erent types of singularities appear in the
models. In the Jordan frame, the sewn freeze singularity appears
beyond the Big Bang, while in the Einstein frame, the freeze sin-
gularity is substituted by the generalized sudden singularity and
there is a bounce instead of the Big Bang. In consequence, the
models in both the frames are not qualitatively equivalent to the
ΛCDM model. The main result of this paper consists in showing
that the models in the Jordan and Einstein frame are not equiva-
lent due to the di�erent types of singularities included in them.
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Chapter 7

Conclusions

The main aim of the thesis is to point out that the running cos-
mological constant can solve two major problems of present cos-
mology. We consider many types of cosmological models, such
as models with f(R) gravity, di�usion in the dark sector, decaying
dark energy, and with the di�erent parametrization of the density
of dark energy, in an attempt to address the cosmological constant
problem and the coincidence problem.

The conclusions related to decay of metastable dark energy
are:

• From statistical analysis, we get that the present value of den-
sity dark energy is independent of themodel parameters α and
E0.

• This model provides the mechanism of jumping from the ini-
tial value of dark energy E0 = 10120 to the present value of the
cosmological constant.

• The oscillation of dark energy density occurs for 0 < α < 0.4.

• In the radioactive-like decaymodel of dark energy, for the late-
time Universe (t = 2T0), there are three di�erent forms of de-
caying: radioactive, damping oscillating, and power-law type.

• In the radioactive-like decay model of dark energy, this type of
decay dominates to 2.2× 104T0.

• In the radioactive-like decay model of dark energy, after the
radioactive type of decay the damping oscillating type sets in,
which later is replaced by the power-law decay (1/t2).

• In the model of 1/t2 type of decay of dark energy, there is in-
teraction in the dark sector, which modi�es the standard scale
law of dark matter: ρdm = ρdm,0a(t)−3+λ(t).

• For the early Universe, the λ(t) function can be regarded as a
constant.
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• In the model of 1/t2 type of decay of dark energy, statistical
analysis favours the negative value of α2 parameter. In result,
we get the decay of particles of dark matter.

The conclusions related to the di�usion dark matter-dark en-
ergy interaction model are:

• In this model, the standard scale law of energy density of dark
matter is modi�ed to ρdm = ρdm,0a(t)−3 + γta(t)−3.

• This model is free from the di�culties present in Alho et al.’s
models with di�usion [53], since there are not any non-physical
trajectories crossing the boundary set ρm = 0.

• This model involves a mechanism solving the coincidence
problem.

The conclusions of this thesis related to the dynamical system
approach to the running Λ are:

• In Λ(H) cosmology, the Alcaniz and Lima’s solution represents
the scaling type ρΛ(a) ∼ ρm(a) [55].

• Trajectorieswithin the phase space forwhich ρΛ(a) ∼ ρm(a) rep-
resent scaling solutions, which could solve the cosmic coinci-
dence problem.

• The non-covariant Λ(a) parametrization can be obtained from
the covariant action for the scalar �eld as an emergent parame-
trization.

• We have found a strong evidence for tuning Λ term in Λ(a) cos-
mology: ΩΛ,0 < 3.19× 10−7.

The conclusions related to the Starobinsky cosmological
model in the Palatini formalism are:

• In the Einstein frame, there occurs interaction between dark
matter and dark energy, as contrary to the Jordan frame.

• In the Jordan frame, new types of singularities appear, such as
a sewn freeze singularity for the positive value of γ and a sewn
typical sudden singularity for the negative value of γ.

• In the Jordan frame, the phase portrait is topologically equiva-
lent to the phase portrait of the ΛCDMmodel for the positive γ
parameter.

• In the Einstein frame, in the case when matter is negligible as
compared to dark energy, in�ation sets in when model param-
eter γ is close to zero (γ ≈ 1.16× 10−69 s2).
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• In the Einstein frame, for the positive value of γ, there is a gen-
eralized sudden singularity instead of the Big Bang.

• The phase portraits in the Einstein frame and the Jordan frame
are not equivalent, which leads to the lack of physical equiva-
lence of the model considered within these frames.

• The extension of Starobinskymodel f(R) = R+γR2 +δR3 in the
Jordan frame can generate an additional sewn freeze singular-
ity and a typical sudden singularity instead of the Big Bang.

One interesting phenomenon to appear often in the models
considered in the thesis, is the interaction between dark energy
and dark matter, which can be treated as an energy transfer in the
dark sector. Its obvious e�ect is amodi�cation of the standard scal-
ing law of the energy density of dark matter (ρdm(t) = ρdm,0a(t)−3).
From observations, in the model of 1/t2 type of decay of dark en-
ergy, we have a transfer energy from the dark matter to dark en-
ergy sector. Such amechanism is at work in the Starobinskymodel
in the Palatini formalism within the Einstein frame, the di�usion
dark matter-dark energy interaction model as well as in the de-
caying dark energy model.

A plausible solution of the problem of the cosmological con-
stant is the model with decaying metastable dark energy, which
o�ers the mechanism decreasing the value of dark energy in the
early Universe (ρde = 10120) to its present value. In this case, the
transition consists in an onset of oscillation behaviour of the den-
sity of dark energy.

The phenomenon of in�ation in the evolution of the Universe is
given by the Starobinskymodel in the Palatini formalismwithin the
Einstein frame, which determines in�ation when matter is negligi-
ble as compared to the density of dark energy. Its characteristic
feature is the creation of matter throughout process of in�ation.

The statistical analysis indicates that noneof the three hypothe-
ses put forward in the Introduction cannot be rejected. Accord-
ingly, while abiding by the validity of the main thesis of this dis-
sertation (see Introduction), we are not in a position to tell deci-
sively which of the mechanisms considered here actually under-
lies changeability of the cosmological constant.
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Abstract. We study dynamics of Λ(t) cosmological models which are a natural generalization
of the standard cosmological model (the ΛCDM model). We consider a class of models: the

ones with a prescribed form of Λ(t) = Λbare + α2

t2
. This type of a Λ(t) parametrization

is motivated by different cosmological approaches. We interpret the model with running
Lambda (Λ(t)) as a special model of an interacting cosmology with the interaction term
−dΛ(t)/dt in which energy transfer is between dark matter and dark energy sectors. For the
Λ(t) cosmology with a prescribed form of Λ(t) we have found the exact solution in the form
of Bessel functions. Our model shows that fractional density of dark energy Ωe is constant
and close to zero during the early evolution of the universe.

We have also constrained the model parameters for this class of models using the as-
tronomical data such as SNIa data, BAO, CMB, measurements of H(z) and the Alcock-
Paczyński test. In this context we formulate a simple criterion of variability of Λ with
respect to t in terms of variability of the jerk or sign of estimator (1 − Ωm,0 − ΩΛ,0). The
case study of our model enable us to find an upper limit α2 < 0.012 (2σ C.L.) describing
the variation from the cosmological constant while the LCDM model seems to be consistent
with various data.
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1 Introduction

The standard cosmological model describes the matter content of the Universe comprising
the cold dust matter (baryonic matter and dark matter) which satisfies the equation of
state for dust p = 0. In turn, dark energy is described in terms of an effective parameter
(the cosmological constant) which should be treated as the best ‘economical’ (as only one
parameter used to describe the whole dark sector) description of the cause that the Universe
expansion accelerates in the current epoch.

The natural interpretation of the cosmological constant arises as an effect of quantum
vacuum energy. Since this form of energy should be independent of the reference frame it must
be proportional to the only ‘invariant’ second order metric tensor gµν , i.e. Tµν = ρvacgµν . If
we include the conservation condition which for the cosmological model with the Robertson-
Walker (R-W) symmetry assumes the form

ρ̇ = −3H(ρ + p), (1.1)

then we obtain that ρvac = const = Λ and pvac = −Λ, H = d
dt(ln a) is the Hubble parameter,

where ρ is total energy density, p is total pressure, an overdot denotes differentiation with
respect to the cosmological time t; we use a natural system of units in which 8πG = c = 1.

If we interpret the cosmological constant Λ as a vacuum energy, then there is a difference
between its today value required to explain observations of type Ia supernovae (SNIa) and
the value of ρvac estimated from effective field theory. The former is smaller by a factor of
10−120. This discrepancy is called the cosmological constant problem.

To achieve the conservation of energy-momentum tensor (divergence of energy-
momentum tensor Tµν is vanishing) different descriptions of dark energy sector have been
proposed. In the simplest case the time cosmological term Λ(t) is shifted to the right-hand
side and treated as a source of gravity. Such an approach is called a Λ(t)CDM cosmology.

In this paper we assume ρ = ρm + ρde where ρm is a density of matter and ρde is
the density of dark energy. We also assume ρm = ρb + ρdm, and pm = pb + pdm, where
ρb = ρb,0a(t)−3 and pb = 0 are a density and a pressure of baryonic matter, ρdm and pdm = 0
are a density and a pressure of dark matter, a(t) is the scale factor. The state equation
for dark energy is assumed as pde = −ρde. In this case the conservation condition has the
following form

ρ̇dm + 3Hρdm = Q, (1.2)

ρ̇b + 3Hρb = 0 (1.3)
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and

ρ̇de = −Q, (1.4)

where Q describes an interaction between dark matter and dark energy and this case is
expressed by Q = −Λ̇. The conservation condition can be rewritten in the form

ρ̇m = −3Hρm − Λ̇, (1.5)

where ρm and pm are energy density and pressure of matter.

Pani et al. considered the energy-momentum tensor which ensures the covariantness of
general relativity [1]. An alternative approach is to postulate the scalar field φ with the
potential V (φ) for this model [2] which guarantee that model is covariance.

We consider a model with a parametrization of Λ following the rule

Λ(t) = Λbare +
α2

t2
, (1.6)

where α2 is a real constant; Λbare is a constant and ρvac = Λ. This model belongs to a
larger class of cosmological models with interaction. In this case the interaction term is
Q = −dΛ/dt. In this model the interaction is between dark matter and dark energy. This
model belongs to a class of models so-called early constant dark energy during the matter
dominating stage.

If we replace the cosmological time t by the Hubble scale time in eq. (1.6), then we
obtain the Λ(H) parametrization which is based on Lima at al. [3–5].

We estimate the value of the parameter α2 as well as the other models parameters from
available astronomical data. This class of models is compared with the standard cosmological
model (the ΛCDM model).

Let us enumerate motivations for introducing form (1.6) of parametrization of dark
energy.

1. The parametrization of dark energy can be derived from the quantum mechanics which
describes how decaying false vacuum states changes in time. It can be shown that at the
late time it can be identified as the cosmological constant which is time dependent and
changes following the rule (1.6) and parameter α2 is small and constitutes a leading term
for long-term behaviour in power series of energy density of decaying vacuum [2, 6–8].

2. A new model of agegraphic dark energy [9, 10] based on some quantum arguments that
the energy density of metric fluctuation of the Minkowski spacetime is proportional to
1
t2

and and it also motivated Károlyházy uncertainty relation [11]. If we identify the
time scale as the age of the Universe T , then we obtain that the agegraphic dark energy
is ρq ∝ 1

T 2 .

3. In the de Sitter universe there is a possibility to define in the framework of general rel-
ativity length and time scales Λ(t) = 3

r2Λ(t)
= 3

c2t2Λ(t)
[12]. Otherwise, any cosmological

length scale or time scale can determined the relation Λ(t). Chen et al. [12] demon-
strated how holographic [13, 14] and agegraphic dark energy conceptions can be unified
in the framework of interacting cosmology in which the interacting term is Q = −ρ̇Λ.
The variational approach to an interacting quintessence model was recently considered
by Böhmer et al. [15].
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4. Ringermacher and Mead [16] considered dark matter as a perfect fluid satisfying the
equation of state p = −1

3ρ. The energy density of such fluid mimicking dark matter

effects varies like 1
t2

rather than Ωdark
a3

as in the standard cosmological model.

5. Haba has discussed recently cosmological models of general relativity in which a source
of gravity (right-hand sides of the Einstein equations) is a sum of the energy-momentum
of particles and the cosmological term describing a dissipation of energy-momentum.
He obtained a cosmological model with the cosmological term decaying as 1/t2 [17, 18].

2 Exact solutions for Λ(t)CDM cosmology with Λ(t) = Λ + α2

t2

For the parametrization of Λ(t) (1.6) it is possible to obtain exact solutions and discuss
cosmological implications of this generalized standard cosmological model. We show that a
deviation of this model from the ΛCDM model can be probed by a measurement of a jerk.

We start from the Friedmann first integral in the FRW cosmology with Λ(t) = Λbare+
α2

t2
,

where t is the cosmological time and α2 is either positive or negative,

3H(t)2 = ρm(t) + Λbare +
α2

t2
(2.1)

and the conservation condition

ρ̇m(t) = −3H(t)ρm(t) − d(Λbare + α2

t2
)

dt
. (2.2)

Equation (2.1) can be rewritten in the dimensionless parameters

Ωm,0 =
ρm,0

3H2
0

, ΩΛ,0 =
Λbare

3H2
0

, Ωα,0 =
α2

3H2
0T

2
0

, (2.3)

where T0 is the present age of the Universe, i.e. T0 =
∫ T0

0 dt =
∫ a0
0

da
Ha , and quantities labeled

by index ‘0’ are defined at the present epoch for which a0 = 1. Then equation (2.1) has the
following form

H(t)2

H2
0

= Ωm(t) + ΩΛ,0 + Ωα,0
T 2
0

t2
, (2.4)

where Ωm(t)=Ωb,0a(t)−3+Ωdm,0f(t) and f(T0)=1. At present, equation (2.4) is expressed by

1 = Ωm,0 + ΩΛ,0 + Ωα,0. (2.5)

After differentiation of both sides of (2.1) with respect to t we obtain

6H(t)Ḣ(t) = ρ̇m(t) +
d(Λbare + α2

t2
)

dt
. (2.6)

Equation (2.6) can be simplified with the help of (2.2). Then we obtain

Ḣ(t) = −ρm(t)

2
. (2.7)

After substitution of (2.1) to (2.7) we obtain

Ḣ(t) =
1

2

(
Λbare +

α2

t2
− 3H(t)2

)
. (2.8)
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Equation (2.8) can be rewritten in the dimensionless parameters. Then we obtain

ḣ(t) =
3H0

2

(
ΩΛ,0 +

Ωα,0T
2
0

t2
− h(t)2

)
, (2.9)

where h(t) = H(t)
H0

.
The general solution of equation (2.9) has the following form

h(t) =
2

3H0

d

dt
log

[
√
t

(
C1Yn

(
3
√

−ΩΛ,0H0

2
t

)
+ Jn

(
3
√

−ΩΛ,0H0

2
t

))]
, (2.10)

where C1 is a constant, an Jn(x) and Yn(x) are Bessel functions of the first and second kind,
the index n of these functions is given in terms of Ωα,0, H0 and T0, n = 1

2

√
1 + 9Ωα,0T 2

0H
2
0 .

We can rewrite (2.10) to the form

h(t) =
2

3H0

d

dt
log

[
√
t

(
D1Yn

(
3
√

−ΩΛ,0H0

2
t

)
+ D2Jn

(
3
√

−ΩΛ,0H0

2
t

))]
. (2.11)

For the correspondence with the ΛCDM model (α2 = 0) we choose D1 = 0. Then solu-
tion (2.11) is given by the formula

h(t) =
2

3H0

d

dt
log

[
√
t

(
In

(
3
√

ΩΛ,0H0

2
t

))]
, (2.12)

where In(x) is the modified Bessel function. Solution (2.12) can be rewritten to the following
form

h(t) =
1 − 2n

3H0t
+
√

ΩΛ,0

In−1

(
3
√

ΩΛ,0H0

2 t

)

In

(
3
√

ΩΛ,0H0

2 t

) . (2.13)

Because H(t) = d
dt ln a, then it is easy to obtain the scale factor from (2.12) in the form

a(t) = C2

[
√
t

(
In

(
3
√

ΩΛ,0H0

2
t

))] 2
3

. (2.14)

The diagram of a(t) is presented in figure 1.
We obtain a formula for ρm(t) from (2.7), (2.9) and (2.12)

ρm = −3H2
0


ΩΛ,0 +

Ωα,0T
2
0

t2
−
(

2

3H0

d

dt
log

[
√
t

(
In

(
3
√

ΩΛ,0H0

2
t

))])2

 (2.15)

or in an equivalent form

ρm = −3H2
0


ΩΛ,0 +

Ωα,0T
2
0

t2
−




1 − 2n

3H0t
+
√

ΩΛ,0

In−1

(
3
√

ΩΛ,0H0

2 t

)

In

(
3
√

ΩΛ,0H0

2 t

)




2

 . (2.16)
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The diagrams of ρm(t) and ρm(a) are presented in figure 2 and 3. In comparison, the diagram
of ρde(t) is demonstrated in figure 4. The dark matter is expressed by

ρdm = ρm − ρb,0a
−3. (2.17)

If we use formulas (2.14) and (2.16) in equation (2.17) then we get

ρdm = −3H2
0


ΩΛ,0 +

Ωα,0T
2
0

t2
−




1 − 2n

3H0t
+
√

ΩΛ,0

In−1

(
3
√

ΩΛ,0H0

2 t

)

In

(
3
√

ΩΛ,0H0

2 t

)




2



− ρb,0C
−3
2

[
√
t

(
In

(
3
√

ΩΛ,0H0

2
t

))]−2

. (2.18)

The ΛCDM model can be obtained in the limit Ωα,0 = 0. Then index n = 1
2 and

I 1
2
(x) =

√
2
πx sinh(x). Finally the solution (2.12) reduces to

h(t) =
2

3H0

d

dt
log

[
sinh

(
3
√

ΩΛ,0H0

2
t

)]
. (2.19)

Equation (2.19) can be rewritten to the equivalent form

h(t) =
√

ΩΛ,0 coth

(
3
√

ΩΛ,0H0

2
t

)
. (2.20)

In the special case the solution of (2.9) for ΩΛ,0 = 0 has the following form

h(t) =
1

3Ht

[
1 +

√
1 + 9H2

0Ωα,0T 2
0

(
1 − C1

t
√

1+9H2
0Ωα,0T 2

0 + C1

)]
. (2.21)

For the correspondence with the CDM model we choose C1 = 0. Then equation (2.21) is
simplified to

h(t) =
1

3H0t

[
1 +

√
1 + 9H2

0Ωα,0T 2
0

]
. (2.22)

From equation (2.22) we can obtain an expression for the scale factor

a(t) = C2t
1
3

(
1+

√
1+9H2

0Ωα,0T 2
0

)
. (2.23)

If we know an exact solution for the scale factor a(t) it will be possible to calculate a
dimensionless parameter called a jerk related with a third order time derivative of the scale
factor

j =
1

H(t)3a(t)

[
d3a(t)

dt3

]
. (2.24)

After some calculations we obtain the third order time derivative of the scale factor in the form

...
a =

3H2
0 ȧ

2

(
ΩΛ,0 +

Ωα,0T
2
0

t2
− h2

)
+

3H2
0a

2

(
−2Ωα,0T

2
0

t3
− 2hḣ

)
+H2

0 ȧh
2 + 2H2

0ahḣ. (2.25)
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aHtL

Figure 1. Diagram of the scale factor a(t) for three cases. The top function is for α2 = −0.2, the
middle function represents the ΛCDM model and the bottom function is for α2 = 0.2. We assume
that H0 = 68.27 km/(s Mpc) and Ωm = 0.35. Time t is expressed in a unit (100 s Mpc/km).

0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

2

4

6

8

10
ΡmHtL

Figure 2. Diagram of the energy density ρm(t) for three cases. The top function is for α2 = 0.2, the
middle function represents the ΛCDM model and the bottom function is for α2 = −0.2. We assume
that H0 = 68.27km/(s Mpc) and Ωm,0 = 0.35. Time t is expressed in unit (100 s Mpc/km). We
assume 8πG = 1 and we choose for ρm a unit (km/(100 s Mpc))2.

A substitution of the expression h(t) from (2.9) gives us the exact formula for the jerk as a
function of the cosmological time t

j(t) = 1 − 3Ωα,0T
2
0

H0t3




1 − 2n

3H0t
+
√

ΩΛ,0

In−1

(
3
√

ΩΛ,0H0

2 t

)

In

(
3
√

ΩΛ,0H0

2 t

)




−3

. (2.26)
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
a0
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ΡmHaL

Figure 3. Diagram of the energy density ρm(a) for three cases. The top function is for α2 = −0.2,
the middle function represents the ΛCDM model and the bottom function is for α2 = 0.2. We assume
that H0 = 68.27km/(s Mpc) and Ωm,0 = 0.35. We assume 8πG = 1 and we choose for ρm a unit
(km/(100 s Mpc))2.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ΡdeHtL

Figure 4. Diagram of the energy density ρde(t) for three cases. The top function is for α2 = 0.05,
the middle function represents the ΛCDM model and the bottom function is for α2 = −0.05. We
assume that H0 = 68.27km/(s Mpc) and Ωm,0 = 0.35. Time t is expressed in unit (100 s Mpc/km).
We assume 8πG = 1 and we choose for ρde a unit (km/(100 s Mpc))2.

The jerk calculated for t = T0, i.e. for the present epoch is given by formula

j0 = 1 − 3Ωα,0

H0T0
. (2.27)

The diagram of j(z) is presented in figure 5. One can see the jerk can be treated as a tool
for detection the variability of dark energy.

From the exact solution (2.26) one can see that the deviation of the generalized model
from the ΛCDM model is given by time dependent contribution to the jerk because for the

– 7 –
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
z0.0

0.2
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1.4

jHzL

Figure 5. Diagram of j(z) for H0 = 68.27 km/(s Mpc) and Ωm,0 = 0.35. The top function is
for α2 = −0.05, the middle function represents the ΛCDM model and the bottom function is for
α2 = 0.05.

0 1 2 3 4 5
z0.20

0.25

0.30

0.35

0.40

0.45

0.50
OmHzL

Figure 6. Diagram of Om(z) for H0 = 68.27 km/(s Mpc) and Ωm,0 = 0.35. The top function is
for α2 = −0.05, the middle function represents the ΛCDM model and the bottom function is for
α2 = 0.05.

ΛCDM model it is equal one. Therefore if we can detect from the astronomical observations
the time variability of the jerk it will be a simple diagnostic of decaying vacuum. If Ωα,0 is
non-zero this means that Ωm,0 + ΩΛ,0 < 1. Note that

Ωα,0 = 1 − Ωm,0 − ΩΛ,0 =
α2

3H2
0T

2
0

. (2.28)

Because T0 ≤ 1
H0

, i.e. H2
0T

2
0 ≤ 1 and α2 = 3H2

0T
2
0 Ωα,0, i.e.

α2

3
≤ Ωα,0 (2.29)

and from the estimation of Ωα,0 one can obtain an upper limit on α2

3 .

– 8 –



J
C
A
P
1
0
(
2
0
1
5
)
0
6
6

From the value of the jerk for the current epoch (see formula (2.27)) there comes also
the limit values of the jerk

1 − 3Ωα,0 ≤ j0 ≤ 1, for α2 > 0 (2.30)

and

1 ≤ j0 ≤ 1 − 3Ωα,0, for α2 < 0. (2.31)

Sahni et al. [19–21] proposed in the context of testing and comparison of alternatives
for the ΛCDM model Om(z) diagnostic test

Om(z) =
h2(x) − 1

x3 − 1
, (2.32)

where x = 1 + z. While this parameter is constant for the ΛCDM model, Om(x) = Ωm,0 for
any deviation from zero would discard the ΛCDM model for the description of the cosmic
evolution of the current Universe for low z. But Om(z) diagnostic test is not constant for high
z because ΛCDM model should respect radiation for high z. Note that if the radiation density
is included then the behavior of Om(z) will be different for the case of matter and cosmological
constant. For high redshift the contribution from radiation density will dominate. In our
paper matter and energy density is present at very beginning and effect of radiation density
is not included because of complexity of analytical calculations. Therefore our comparison
of a jerk and Om(z) is not valid for high redshift. Let us note that in our case Om(x) is not
constant and evolves with the cosmological time as

Om(t) =


1−2n

3H0t
+
√

ΩΛ,0

In−1

(
3
√

ΩΛ,0H0
2

t

)

In

(
3
√

ΩΛ,0H0
2

t

)




2

− 1

([√
T 0

(
In

(
3
√

ΩΛ,0H0

2 T0

))]2 [√
t

(
In

(
3
√

ΩΛ,0H0

2 t

))]−2
)

− 1

. (2.33)

The diagram of Om(z) is presented in figure 6. From comparison of figures 5 and 6 one can
observe two alternative ways of the detection of the variability of dark energy with respect
to time.

3 Dynamics of the generalized ΛCDM model

For a deeper analysis of dynamics it is useful to investigate how exact solutions (trajectories)
depend on initial conditions. The natural language for such a discussion is the phase space
which a space of all solutions for all admissible initial conditions.

Let us consider now the dynamics of the model under consideration as a dynamical
system. In this paper we consider the case of a positive cosmological constant Λbare > 0
and strictly positive energy density of matter ρm > 0. The first step in a formulation of the
dynamics in terms of a dynamical system is a choice of the state variables. Assume state
variables are as follows

x2 =
ρm

3H2
, y2 =

Λbare

3H2
, z2 =

1

3H2t2
. (3.1)

– 9 –
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We also choose a new time variable τ : τ = ln a; let a prime denotes the differentiation with
respect to the Hubble time τ . Then, we differentiate with respect to τ the expressions for
x2, y2 and z2 in (3.1) and obtain

2xx′ =
2xẋ

H
=

ρ̇m
3H3

− 2ρmḢ

3H4
, (3.2)

2yy′ =
2yẏ

H
= −2ΛbareḢ

3H4
, (3.3)

2zz′ =
2zż

H
= − 2

3H3t3
− 2Ḣ

3H4t2
. (3.4)

Due to relation (2.2) the expression for ρ̇m can be replaced by −3Hρm + 2α2

t3
and then with

the help of (2.7) Ḣ can be replaced by −ρm
2 . As a consequence we obtain the set of equations

2xx′ = − ρm
H2

+
2α2

3H3t3
+

2ρ2m
6H4

, (3.5)

2yy′ =
2Λbareρm

6H4
, (3.6)

2zz′ = − 2

3H3t3
+

2ρm
6H4t2

. (3.7)

After returning to the original variables x, y, z we obtain the system

x′ = −3

2
x +

√
3α2 z

3

x
+

3

2
x3, (3.8)

y′ =
3

2
x2y, (3.9)

z′ = −
√

3z2 +
3

2
x2z. (3.10)

Note that the right-hand side of (3.8) is not defined on the plane x = 0. All state variables
are constrained by the condition x2 + y2 + z2 = 1, i.e. phase space is a surface of a three-
dimensional sphere.

We regularize system (3.8)–(3.10) in such a way that its right-hand sides are in a polyno-
mial form. For this purpose we introduce new state variables X,Y, Z : X = x2, Y = y, Z = z.
Note that transformation x → X is not a diffeomorphism on the line x = 0. Then sys-
tem (3.8)–(3.10) represents the dynamical system with smooth right-hand side functions,
namely

X ′ = −3X + 3X2 + 2
√

3α2Z3, (3.11)

Y ′ =
3

2
XY, (3.12)

Z ′ = −
√

3Z2 +
3

2
ZX, (3.13)

where the phase space is restricted by the condition

X + Y 2 + α2Z2 = 1. (3.14)

The critical points of the system (3.11)–(3.13), their type and dominant contribution in the
energy constraint X + Y 2 + α2Z2 = 1 are presented in table 1.

– 10 –



J
C
A
P
1
0
(
2
0
1
5
)
0
6
6

No position of critical point type dominant contribution in (3.14)

1 X0 = 0, Y0 = 1, Z0 = 0 stable node Λ dominant state in

the future (de Sitter)

2 X0 = 1, Y0 = 0, Z0 = 0 unstable node matter dominant state in

the past (Einstein-de Sitter)

3 X0 = 2
3α2 (−1 +

√
1 + 3α2) saddle both decaying vacuum effects

Y0 = 0 and matter effects

Z0 = 1√
3α2 (−1 +

√
1 + 3α2) are dominating in the past

Table 1. The critical points of the system (3.11)–(3.13), their type and dominant contribution in the
energy constraint X + Y 2 + α2Z2 = 1.

-1 -0.5 0 0.5 1 1.5 2
X

-1

-0.5

0

0.5

1

1.5

Z 1 2

3

-1 -0.5 0 0.5 1 1.5 2
X

-1

-0.5

0

0.5

1

1.5

Z

Figure 7. The phase portrait for dynamical system (3.11)–(3.13) for real α and H > 0. The grey
domain represents non-physical solutions. The phase portrait is organized by three critical points: the
de Sitter universe represented by a stable node (point 1), the Einstein-de Sitter universe represented
by an unstable node (point 2) and the generalization of Einstein-de Sitter represented by a saddle
(point 3).

System (3.11)–(3.13) is three-dimensional but it has invariant submanifolds Y = 0 and
Z = 0. The behavior of trajectories on the invariant submanifold Y = 0 describes fully the
global dynamic. The phase portraits on the plane (X,Z) are presented in figures 7 and 8.
Because of the constraint Y 2 = 1 − X − α2Z2 the physical trajectories lie in the region
Y 2 ≥ 0. Beyond this region is situated a non-physical region (the shaded region in figures 7
and 8). The boundary of the physical region is determined by a parabola X = 1 −α2Z2 and
a line X = 0.
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Figure 8. The phase portrait for dynamical system (3.11)–(3.13) for imaginary α and H > 0. The
grey domain represents non-physical solutions. The phase portrait is organized by two critical points:
the de Sitter universe represented by a stable node (point 1) and the Einstein-de Sitter universe
represented by an unstable node (point 2).

All critical points lie on this boundary. From the physical point of view they represent
asymptotic states of system (3.11)–(3.13) which are started at τ → −∞ and reach the critical
points at τ = +∞. The critical point marked as (1) represents the de Sitter universe and
is a stable node. It is a global attractor for trajectories from its neighborhood. The critical
point (2) is an unstable node and it represents the CDM model.

The novelty on the phase portrait is the presence of critical point (3). It is of saddle

type. A this critical point ρm = 2
√
1+3α2−1

α2 H2 and Ht = α2√
1+3α2−1

i.e., it represents a

universe dominated by both decaying vacuum and matter.

The de Sitter state (critical point 1) is connected by an outcoming separatrix with the
saddle (point 3). The second separatrix gets in the saddle (point 3) and gets out from the
Einstein-de Sitter state (point 2). The other trajectories in a non-shaded region start from
the Einstein-de Sitter state and finish in the de Sitter state. In all cases the time flows from
τ = −∞ (a = 0) to τ = +∞ (a = +∞). At the critical point (3) the decaying Λ and matter
play important role and cannot be neglected. At this critical point scale factor a and ρm

behaves like: a ∝ t
α2√

1+3α2−1 , H = α2√
1+3α2−1

t−1 and ρm = 2α2√
1+3α2−1

t−2.

This critical point exist only if α 6= 0. If α → 0 then it coincides with the CDM
universe. This critical point represents a new generalized CDM model in which ρm = 4

3 t
−2

and a(t) ∝ t
2
3 in the early universe.
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Figure 9. Diagram of δ(t). The top function represents the evolution of δ assuming the best fit of
H0 = 68.27 km/(s Mpc) and right boundary values of 95% C.L. for Ωm,0 = 0.2416, Ωα = 0.0039, the
middle function represents the best fit for all parameters. The top function represents the evolution
of δ assuming the best of H0 = 68.27 km/(s Mpc) and the left boundary values of 95% C.L. for
Ωm,0 = 0.3542, Ωα,0 = −0.0056. On the t-axis we use a unit times 100 Mpc s/km. See also table 2.

If the function

δ = −
dΛ(t)
dt

Hρm
=

2α2

t3

Hρm
= − α2

3
2 t

3H3
0


1−2n

3H0t
+
√

ΩΛ,0

In−1

(
3
√

ΩΛ,0H0
2

t

)

In

(
3
√

ΩΛ,0H0
2

t

)




× (3.15)

×


ΩΛ,0 +

Ωα,0T
2
0

t2
−




1 − 2n

3H0t
+
√

ΩΛ,0

In−1

(
3
√

ΩΛ,0H0

2 t

)

In

(
3
√

ΩΛ,0H0

2 t

)




2



−1

is slowly changing then
ρm = ρm,0a

−3+δ(t). (3.16)

Let δ(t) = δ = const then ρm = ρm,0a
−3+δ. If t → ∞ then δ(t) → const. At the critical point

(3) δ(t) = δ = (
√

1 + 3α2 − 1)2/α2. The diagram of δ(t) is presented in figure 9.
Some interesting interpretation of our postulated Λ(t) relation can be derive if we apply

Starobinsky’s argument [22] that ρφ after some averaging over time in the interval ∆t ≫ m−1

assumes the following form in the quintessence epoch

ρφ = V0 + Aa−3. (3.17)

Therefore in the matter dominating phase we obtain the Λ(t) parametrization (1.6).
Finally the model involved belongs to the class of models with so called early dark energy
constant in which Ωde = const ≡ Ωe during the matter dominated stage (the same refers to
the radiation dominated stage, too, but with a different value of Ωe).

If δ ≪ 1 for the fractional density of dark energy Ωe [23, 24] it assumes in the interme-
diate domain of the universe the following form

1 − Ωe(a(t)) =
Ωm,0T

2
0 t

−2

Ωm,0T 2
0 t

−2 + ΩΛ,0 + ΩαT 2
0 t

−2
. (3.18)
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Figure 10. Diagram of 1−Ωe(log(a)) which is a share of energy density of matter in the total energy
density. The function represents the evolution of 1 − Ωe for H0 = 68.27 km/(s Mpc), Ωm,0 = 0.35
and Ωα,0 = 0.05. The present epoch is at log(a) = 0. For negative values of log(a) we have past
evolution of 1 − Ωe(log(a)) with a constant phase of the fractional density of dark energy Ωe at the
early universe (Ωe is small and close to zero). For positive values of log(a) we have future evolution of
1 − Ωe(log(a)) with a constant phase of the fractional density of dark energy Ωe at the late universe
(Ωe is big and close to one). Between these two constant phases there is an intermediate phase of
changing 1 − Ωe(log(a)) in which we are living.

In the early universe this value is constant

Ωe =
Ωα,0

Ωm,0 + Ωα,0
. (3.19)

Therefore for a small value of Ωα,0, Ωe is obtained as Ωe =
Ωα,0

Ωm,0 .

Hojjati et al. [25] found the fraction in total density contributed by early dark energy
which is approximately equavalent to Ωe.

In our model the exact form of Ωe(t) is

Ωe(t) =
ΩΛ,0 +

Ωα,0T 2
0

t2
1−2n

3H0t
+
√

ΩΛ,0

In−1

(
3
√

ΩΛ,0H0
2

t

)

In

(
3
√

ΩΛ,0H0
2

t

)




2 . (3.20)

The evolution of fractional density of dark energy Ωe has a shape of the “logistic” curve. For
convenience, the diagram 1 − Ωe(log(a)) is presented in figure 10.

There is another interesting approach to running cosmologies, proposed by Starobin-
sky [26]. In this approach (the bottom up), the universe in the quintessence epoch is described
by a scalar field minimally coupled to gravity with some self-interacting potential. He pro-
posed the reconstruction of this potential from the evolution of the scalar perturbation (or
also luminosity function) in dust like matter component.

Masso et al. [27] discussed some aspects of contribution to the dark energy density of
coherent scalar field oscillation in the potential. They obtained using the analytical method
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of adiabatic invariance that for a quadratic potential the energy density ρφ evolves as a−3

and a quartic potential V (φ) ≈ φ4 evolves like for the radiation matter a−4. Therefore if we
add Λbare to the potential in a matter (or radiation) dominating universe ρφ = Λ(t).

4 Statistical analysis of the model

In this section we present a statistical analysis of the model parameters using the SNIa, BAO,
CMB observations, measurements of H(z) and the Alcock-Paczyński test.

First, we use the Union 2.1 sample of 580 supernovae [28]. For the SNIa data we have
the following likelihood function

lnLSNIa = −1

2

N∑

i=1

(
µobs
i − µth

i

σi

)2

, (4.1)

where the summing is over the SNIa sample; the distance modulus µobs = m − M (where
m is the apparent magnitude and M is the absolute magnitude of SNIa stars) and µth =
5 log10DL + 25 (where the luminosity distance is DL = c(1 + z)

∫ z
0

dz′
H(z) and σ is the uncer-

tainties.
We use the BAO (baryon acoustic oscillation) data which were taken from the Sloan

Digital Sky Survey Release 7 (SDSS DR7) dataset which consists of 893 319 galaxies [29].
The likelihood function is given by

lnLBAO = −1

2

(
rs(zd)
DV (z) − d(z)

)2

σ2
, (4.2)

where rs(zd) is the sound horizon at the drag epoch and z = 0.275, d(z) = 0.1390, σ =
0.0037 [30].

The next likelihood function encompasses the Planck observations of cosmic microwave
background (CMB) radiation [31], the information on lensing from the Planck and low-ℓ
polarization from the WMAP and has the form

lnLCMB+lensing+WP = −1

2

∑

ij

(xthi − xobsi )C−1(xth − xobs), (4.3)

where C is the covariance matrix with the errors, x is a vector of the acoustic scale lA, the
shift parameter R and Ωbh

2 where

lA =
π

rs(z∗)
c

∫ z∗

0

dz′

H(z′)
, (4.4)

R =
√

Ωm,0H2
0

∫ z∗

0

dz′

H(z′)
, (4.5)

where z∗ is the recombination redshift and rs is the sound horizon.
The idea of the Alcock-Paczyński test is the comparison of the radial and tangential

size of an object, which is isotropic in the correct choice of model [32, 33]. The likelihood
function is independent of the parameter H0 and has the following form

lnLAP = −1

2

∑

i

(
AP th(zi) − AP obs(zi)

)2

σ2
, (4.6)

where AP (z)th ≡ H(z)
z

∫ z
0

dz′
H(z′) and AP (zi)

obs are observational data [34–42].
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At the end it is also valuable to add the constraints on the Hubble parameter, i.e.
H(z = 0) ≡ H0.

Data of H(z) for samples of different galaxies were also used [43–45].

lnLH(z) = −1

2

N∑

i=1

(
H(zi)

obs − H(zi)
th

σi

)2

. (4.7)

The final likelihood function for the observational Hubble function is

Ltot = LSNIaLBAOLCMB+lensing+WPLAPLH(z). (4.8)

To estimate the model parameters we use our own code CosmoDarkBox implementing
the Metropolis-Hastings algorithm [46, 47]. We use the dynamical system formulation of
model to obtain the likelihood function [30, 48].

We use observation data of 580 supernovae of type Ia, selected subsets of the data points
of Hubble function, the measurements of BAO from SDSS DR7. We also use data for the
application of the Alcock-Paczyński test 18 observational points. At last, we estimated model
parameters with CMB data from Planck, low- ℓ polarization from WMAP and lensing from
Planck. To estimate the model parameters we chose interval (64.00, 74.00) for H0 and (0.21,
0.37) for Ωm,0. The values of estimated parameters for α2 from the interval (−0.05, 0.05) are
shown in table 2 and for positive α2 from the interval (0.00, 0.05) are shown in table 3. The
best fit for model with α2 from the interval (−0.05, 0.05) is in the part of likelihood function
where α2 is negative.

If it is chosen the lower limit of the interval of α2 larger than the value of the best fit
then the best fit of the model for the new interval is equal the value of the lower limit of this
interval. A consequence is the lower limit of the error is equal zero for α2. So the specific
values of the best fit and errors of Ωα,0, α2 and j0 in table 3 are a result of the choice of
limits of the interval of α2.

To illustrate the results of statistical analysis the diagrams of PDF are shown in
figures 11, 12 and 13. In turn figures 14 and 15 shown the likelihood function with 68%
and 95% confidence level projection on the (Ωα,0, Ωm,0) plane and the (Ωα,0, H0) plane,
respectively.

5 Conclusion

The aim of the paper was to study the dynamics of the emerging Λ(t)CDM cosmological
models. In the study of dynamics we find exact solutions and use dynamical system methods
for the analysis of dependence of solutions on initial conditions. In the latter evolutional paths
of cosmological model are represented by trajectories in the phase space. Due to geometrical
visualization of dynamics we have the space of all solutions and can discuss their stability.
We are looking for such trajectories for which the ΛCDM model is a global attractor in the
phase space.

We study in details dynamics of cosmological model with the prescribed form of Λ(t) =

Λbare+
α2

t2
, where Λbare is a positive constant and α2 is either positive or negative. We calculate

exact solutions for the scale factor and subsequently calculate the jerk. It is demonstrated
that this parameter is time dependent if and only if the effects of time contribution to Λ(t)
are non-zero. We propose the measurement of the jerk as a diagnostic of decaying Λ, i.e.
Λ̇ < 0. Due to analysis of dynamics in the phase space we have found an interesting solution
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2.´10-25

2.5´10-25

Ltot

Figure 11. Diagram of PDF for parameter H0 in units km/(100 s Mpc) obtained as an intersection
of a likelihood function. Two planes of intersection likelihood function are Ωm,0 = 0.2938 and Ωα,0 =
−0.0006.

-0.004 -0.002 0.000 0.002 0.004
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2.´10-25

2.5´10-25

Ltot

Figure 12. Diagram of PDF for parameter Ωα,0 obtained as an intersection of a likelihood function.
Two planes of intersection likelihood function are Ωm,0 = 0.2938 and H0 = 68.27 km/(s Mpc).

in the phase space, a saddle critical point, at which ρm(t) scales like t−2. This solution was
recently proposed by Ringermacher and Mead [16] as a description characteristic for the dark
matter evolution.

From the phase portrait we derive the generic scenario for an evolution of cosmological
models with such a form of the dark energy parametrization. Trajectories start from initial
singularity (the Einstein-de Sitter model) and then go in vicinity of the saddle point where
they spend a lot of time and then go to the de Sitter state. It is a typical behavior for all
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Figure 13. Diagram of PDF for parameter Ωm,0 obtained as an intersection of a likelihood function.
Two planes of intersection likelihood function are Ωα,0 = −0.0006 and H0 = 68.27 km/(s Mpc).
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Figure 14. The likelihood function of two model parameters (Ωα,0,Ωm,0) with the marked 68% and
95% confidence levels. The value of Hubble constant is estimated from the data as best fit value
H0 = 68.27 km/(s Mpc) and then the diagram of likelihood function is obtained for this value.
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Figure 15. The likelihood function of two model parameters (Ωα,0, H0) with the marked 68% and
95% confidence levels. The value of Ωm,0 constant is estimated from the data as best fit value
Ωm,0 = 0.2938 and then the diagram of likelihood function is obtained for this value.

parameter best fit 68% CL 95% CL

H0 68.27 km/(s Mpc)
+0.96

−1.07

+1.67

−1.68

Ωm,0 0.2938
+0.0355

−0.0325

+0.0604

−0.0522

Ωα,0 -0.0006
+0.0031

−0.0030

+0.0045

−0.0050

j0 1.002
+0.010

−0.008

+0.016

−0.013

α2 -0.002
+0.010

−0.007

+0.014

−0.012

Table 2. The best fit and errors for the estimated model with α2 from the interval (−0.05, 0.05).

generic trajectories in the phase space. The new critical point is emerging in the phase space
due to the effect of a time dependence of the cosmological constant. If α2 ≤ 0 then this point
is absent (it is gluing with the critical point representing the Einstein-de Sitter model).

– 19 –



J
C
A
P
1
0
(
2
0
1
5
)
0
6
6

parameter best fit 68% CL 95% CL

H0 68.38 km/(s Mpc)
+0.97

−0.97

+1.16

−1.16

Ωm,0 0.2877
+0.0198

−0.0242

+0.0331

−0.0442

Ωα,0 0.0000
+0.0025

−0.0000

+0.0038

−0.0000

j0 1.000
+0.000

−0.008

+0.000

−0.011

α2 0.000
+0.008

−0.000

+0.012

−0.000

Table 3. The best fit and errors for the estimated model with positive α2 from the interval (0.00, 0.05).

We also tested this model using astronomical data. Statistical estimations show that
the model fits to data as well as the standard cosmological model (the ΛCDM model). In any
case the value of α2 = 0 belongs to the confidence interval for the estimated parameter α2 we
cannot reject that α2 6= 0. Only if we find the best fit value α2 with the error of the one order
less than this value the problem of α2

estimated 6= α2
0 6= 0 could be solvable. We can obtain the

limits on the value of parameter α2 and −0.009 < α2 = 3H2
0T

2
0 (1 − Ωm,0 − ΩΛ,0) < 0.008 (for

68% C.L.) and −0.014 < α2 < 0.012 (for 95% C.L.).
In papers of Doran and Robbers [23] and Pettorino et al. [24] there are limits on frac-

tional dark energy at early time. Recently Ade et al. [49] have found Ωe < 0.0036. It is
interesting that they have obtained a similar limit to our limit on Ωα < 0.0038 in the other
parametrization of dark energy.

Note that if we apply Starobinsky’s idea the parameter α2 can be constrained through
Ωe measurement. This parameter measures amount of dark energy at the early evolution
of the Universe. If Ωe is different from zero then we obtain value information about this
alternative evolutional scenarios which are consistent with the present epoch.

In our case Ωe =
Ωα,0

Ωm,0
=

α2

3H2
0T2

0
Ωm,0

< 0.0036 and therefore α2 < 3H2
0T

2
0 Ωm,0Ωe. If we put

Ωm,0 = 0.25 and H2
0T

2
0 = 1 then we obtain α2 < 3

4Ωe = 0.0027.
Finally we obtain a stronger limit for α2 then in table 3. However, note that this esti-

mation is model dependent (it is assumed Starobinsky’s argument). note that the case study
of our model fully confirm existence of phase during the early universe at which fractional
energy density of dark energy is constant (see figure 10 and eq. (3.20)).

Acknowledgments

The work was supported by the grant NCN DEC-2013/09/B/ST2/03455. We are very grate-
ful of prof. A. Borowiec, Z. Haba, A. Krawiec and K. Urbanowski for stimulating discussion
and remarks. Especially I would like to thank S. Odintsov and V. Oikonomou for discussion
of the problem of a covariance of the vacuum. We also thank referees for their remarks,
especially for indicating the possibility of estimation α2 from measurement of the fractional
dark energy density Ωe.

– 20 –



J
C
A
P
1
0
(
2
0
1
5
)
0
6
6

References

[1] P. Pani, T.P. Sotiriou and D. Vernieri, Gravity with Auxiliary Fields,
Phys. Rev. D 88 (2013) 121502 [arXiv:1306.1835] [INSPIRE].

[2] M. Szyd lowski, Cosmological model with decaying vacuum energy from quantum mechanics,
Phys. Rev. D 91 (2015) 123538 [arXiv:1502.04737] [INSPIRE].

[3] J.A.S. Lima, Thermodynamics of decaying vacuum cosmologies, Phys. Rev. D 54 (1996) 2571
[gr-qc/9605055] [INSPIRE].

[4] J.A.S. Lima, E.L.D. Perico and G.J.M. Zilioti, Decaying vacuum inflationary cosmologies:
Searching for a complete scenario including curvature effects,
Int. J. Mod. Phys. D 24 (2015) 1541006 [arXiv:1502.01913] [INSPIRE].

[5] E.L.D. Perico, J.A.S. Lima, S. Basilakos and J. Solà, Complete Cosmic History with a
dynamical Λ = Λ(H) term, Phys. Rev. D 88 (2013) 063531 [arXiv:1306.0591] [INSPIRE].

[6] M. Szyd lowski, A. Stachowski and K. Urbanowski, Cosmology with a Decaying Vacuum Energy
Parametrization Derived from Quantum Mechanics, J. Phys. Conf. Ser. 626 (2015) 012033
[arXiv:1502.04471] [INSPIRE].
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a b s t r a c t

We investigate the dynamics of the generalized ΛCDM model, which the Λ term is running with the
cosmological time. On the example of themodelΛ(t) = Λbare+

α2

t2
we show the existence of amechanism

of the modification of the scaling law for energy density of dark matter: ρdm ∝ a−3+λ(t). We use an
approach developed by Urbanowski in which properties of unstable vacuum states are analyzed from
the point of view of the quantum theory of unstable states. We discuss the evolution of Λ(t) term and
pointed out that during the cosmic evolution there is a long phase in which this term is approximately
constant. We also present the statistical analysis of both the Λ(t)CDM model with dark energy and
decaying dark matter and the ΛCDM standard cosmological model. We use data such as Planck, SNIa,
BAO, H(z) and AP test. While for the former we find the best fit value of the parameter Ωα2,0 is negative
(energy transfer is from the dark matter to dark energy sector) and the parameter Ωα2,0 belongs to the
interval (−0.000040, −0.000383) at 2-σ level. The decaying darkmatter causes to lowering amass of dark
matter particles which are lighter than CDM particles and remain relativistic. The rate of the process of
decaying matter is estimated. Our model is consistent with the decaying mechanism producing unstable
particles (e.g. sterile neutrinos) for which α2 is negative.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In cosmology, the standard cosmological model (ΛCDMmodel)
is an effective theory which well describes the current Universe in
the accelerating phase of the expansion. All the astronomical ob-
servations of supernovae SNIa andmeasurements of CMB favor this
model over the alternatives but we are still looking for theoretical
models to dethrone the ΛCDM model.

On the other hand the ΛCDM model has serious problems
like the cosmological constant problem or the coincidence prob-
lem which are open and waiting for a solution. Among different
propositions, it is an idea of introducing the running cosmological
term [1]. The most popular way of introducing a dynamical form
of the cosmological term is a parametrization by the scalar field,
i.e. Λ ≡ Λ(φ) or the Ricci scalar, i.e. Λ ≡ Λ(R), where R is
the Ricci scalar. Recently an interesting approach toward a unified
description of both dark matter and dark energy was developed
by consideration non-canonical Lagrangian for the scalar field L =

Xα
− Λ, where X = φ̇2/2 is a kinetic part of the scalar field en-

ergy [2] (see also [3]). In the both mentioned cases, the covariance

* Corresponding author at: Astronomical Observatory, Jagiellonian University,
Orla 171, 30-244 Kraków, Poland.

E-mail addresses: marek.szydlowski@uj.edu.pl (M. Szydłowski),
aleksander.stachowski@uj.edu.pl (A. Stachowski).

of field equation is not violated and Λ ≡ Λ(t) relation emerges
from covariant theories.

Two elements appear in the ΛCDMmodel, namely dark matter
and dark energy. The main aim of observational cosmology is to
constrain the density parameters for dark energy as well as dark
matter. In the testing of the ΛCDM model, the idea of dark energy
is usually separated from the dark matter problem. The latter is
considered as the explanation of flat galactic curves. Of course the
conception of dark matter is also needed for the consistency of the
model of cosmological structures but the hypothesis of dark energy
and dark matter should be tested not as a isolated hypothesis.

In this paper, we explore the Λ(t)CDM model with Λ(t) =

Λbare +
α2

t2
, where t is the cosmological time for which we know an

exact solution [1]. It is interesting that this type of aΛ(t) relation is
supported by the non-critical string theory consideration [4]. This
enables us to show the nontrivial interactions between the sectors
of dark matter and dark energy. It would be demonstrated that
the model, which is under consideration, constitutes the special
case of models with the interaction [1] term Q = −

dΛ(t)
dt . We

will be demonstrated that the time dependence of the Λ term is
responsible for themodification of the standard scaling law of dark
matter ρdm = ρdm,0a−3, where a is the scale factor [1]. Wang and
Meng [5] developed a phenomenological approach which is based
on themodifiedmatter scaling relation ρm = ρm,0a−3+δ , where δ is

http://dx.doi.org/10.1016/j.dark.2017.01.002
2212-6864/© 2017 Elsevier B.V. All rights reserved.
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the parameter which measures a deviation from the standard case
of cold dark matter (CDM).

The both effect of the decaying Λ term and the modification
of the scaling relation are strictly related in our model. One can
obtain that CDM particles dilute more slowly in comparison to the
standard relation ρm ∝ a−3 in this model. The coupling parameter
δ is also a subject of testing using astronomical data [6–8].

Parametrization of dark energy in the form 1/t2 was used by
many authors in different contexts. From the dimensional consid-
erations, it is always possible to write Λ in terms of the Planck en-
ergy density as a dimensionless quantity [9,10]: Λ ≈ ρPl(tPl/tH)α ,
where tPl =

√
h̄G
c5

and tH = H−1 are the Planck time and Hubble

time, respectively, and ρPl =
c5

h̄G2
is the Planck energy density. For

the case of α = 2, which gives the right value of Λ at the present
epoch, we get Λ = H2 [11]. He noted that such a parametrization
of Λ is invoked to solve the cosmological constant problem, and is
consistent with Mach’s idea.

Vishwakarma also studied the magnitude–redshift relation for
the type Ia supernovae data and the angular size–redshift relation
for the updated compact radio sources data [12].

Note that for a power law type of the scale factor a(t) = tα both
parametrizations of Λ ∼ H2 and Λ ∼ t−2 correspond. The scaling
evolution of the cosmological constantwas investigated by Shapiro
and Sola [13].

Lopez and Nanopoulos noted that this ansatz, which is similar
to Λ =

ΛPl
(a/ℓPl)−2 ∝ a−2, where ℓPl is the Planck length, gives to

Λ ∝ 1/t2 [4].
In this paper, due to it is known the exact solutions of ourmodel

it is possible to check how it works the model and one can strictly
constrain the model parameters [1].

We estimate the value of λ(t) : ρdm = ρdm,0a−3+λ(t) where
ρdm is energy density of darkmatter.We use the astronomical data
which is consisted of SNIa, BAO, H(z), the AP test, Planck data.

We also analyze the model under considerations in details. In
this analysis the model with Λ(t) = Λbare +

α2

t2
is our case study.

For thismodelwe show the termsλ(t), δ(t) are slow-changingwith
respect to the cosmological time and it justified to treat them as
constants.

The organization of the text is following. In Section 2, we
present the model with Λ(t) = Λbare +

α2

t2
and its interpretation

in the perfect fluid cosmology. In Section 3, it is demonstrated how
Λ(t)CDM cosmologies can be interpolated as interacting cosmolo-
gies with the interacting term Q = −

dΛ(t)
dt [14]. In Section 4, we

present some results of the statistical estimations of the model
parameters obtained from some astronomical data. Finally the
conclusion are presented in Section 5.

2. Λ(t)CDM cosmology with Λ = Λbare +
α2

t2

Let us consider about the flat cosmological model with ho-
mogeneity and isotropy (the Robertson–Walker symmetry). The
source of gravity is in the time dependent cosmological term and
matter is in the form of a perfect fluid with energy density ρm =

ρm(t), where t is the cosmological time. The cosmic evolution is
determined by the Einstein equations which admit the Friedmann
first integral in the form

3H2(t) = ρm(t) + Λbare +
α2

t2
, (1)

where H(t) =
d log a
dt is the Hubble function and a(t) is the scale

factor and α2
∈ R is a real dimensionless parameter. The sign

of α2 depends of the type of particle and the distribution of their
energy. In the generic case the Breit–Wigner distribution gives rise
the negative sign of α2 [15–18]. Note that this parametrization is

distinguished by a dimensional analysis because a dimension ofH2

should coincidewith a dimension of a time dependent part ofΛ(t).
It is assumed that the energy–momentum tensor for all fluids

in the form of perfect fluid satisfies the conservation condition

Tαβ

;α = 0, (2)

where Tαβ
= Tαβ

m + Λ(t)gαβ . The consequence of this relation is
that

ρ̇m + 3Hρm = −
dΛ
dt

. (3)

The cosmic evolution is governed by the second order acceleration
equation

Ḣ = −H2
−

1
6
(ρeff + 3peff), (4)

where ρeff and peff are effective energy density of all fluids and
pressure respectively. In the model under the consideration we
have

ρeff = ρm + ρΛ, (5)

peff = pm − ρΛ, (6)

where pm = 0, ρΛ = Λbare +
α2

t2
and α2 is a real number.

For this case the exact solution of (1) and (3) for the Hubble
parameter h ≡

H
H0

can be obtained in terms of modified Bessel
functions of the first kind

h(t) =
1 − 2n
3H0t

+
√

ΩΛ,0

In−1

(
3
√

ΩΛ,0H0
2 t

)
In

(
3
√

ΩΛ,0H0
2 t

) (7)

whereH0 is the present value of theHubble constant,ΩΛ,0 =
Λbare
3H2

0
,

Ωα2,0 =
α2

3H2
0 T

2
0
, T0 is the present age of theUniverse T0 =

∫ T0
0 dt and

n =
1
2

√
1 + 9Ωα2,0T

2
0H

2
0 is the index of the Bessel function. From

(7), the expression for the scale factor can be obtained in the simple
form

a(t) = C2

[
√
t

(
In

(
3
√

ΩΛ,0H0

2
t

))] 2
3

. (8)

The inverse formula for t(a) is given by

t(a) =
2

3i
√

ΩΛ,0H0
S−1
n− 1

2

⎛⎝
√
3π
√

ΩΛ,0H0in+1/2

2

(
a
C2

) 3
2

⎞⎠ , (9)

where Sn(x) is a Riccati–Bessel function Sn(x) =
√

πx
2 Jn+ 1

2
(x).

Finally the exact formula for total mass ρm(t) = ρdm(t) + ρb(t)
is given in the form

ρm = −3H2
0

⎡⎢⎢⎢⎣ΩΛ,0 +
Ωα2,0T

2
0

t2

−

⎛⎜⎜⎝1 − 2n
3H0t

+
√

ΩΛ,0

In−1

(
3
√

ΩΛ,0H0
2 t

)
In

(
3
√

ΩΛ,0H0
2 t

)
⎞⎟⎟⎠

2⎤⎥⎥⎥⎦ . (10)

The diagram of ρdm, ρde and ρdm(log(a))
ρde(log(a))

as a function of log a
obtained for low z data is presented in Figs. 1–3. Note that at the
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Fig. 1. A diagram of the evolution of ρdm(log(a)). The bottom thick line represents
the evolution of λ(log(a)) for H0 = 67.83 km/(s Mpc), Ωm,0 = 0.2875 and
Ωα2,0 = −0.000040. The top thick line represents the evolution of λ(log(a)) for
H0 = 68.94 km/(s Mpc), Ωm,0 = 0.2922 and Ωα2,0 = −0.000383. The medium
line represents the best fit (see Table 1). The gray region is the 2σ uncertainties. We
assumed 8πG = 1 and we choose 1002km2/(Mpc2s2) as a unit of ρdm(log(a)).

Fig. 2. A diagram of the evolution of ρde(log(a)). The top thick line represents
the evolution of ρde(log(a)) for H0 = 67.62 km/(s Mpc), Ωm,0 = 0.2888 and
Ωα2,0 = −0.000143. The bottom thick line represents the evolution of ρde(log(a))
for H0 = 68.97 km/(s Mpc), Ωm,0 = 0.2896 and Ωα2,0 = −0.000218. The medium
line represents the best fit (see Table 1). The gray region is the 2σ uncertainties. We
assumed 8πG = 1 and we choose 1002km2/(Mpc2s2) as a unit of ρde(log(a)).

Fig. 3. A diagram of the evolution of ρdm(log(a))
ρde(log(a))

. The bottom thick line represents
the evolution of λ(log(a)) for H0 = 67.83 km/(s Mpc), Ωm,0 = 0.2875 and
Ωα2,0 = −0.000040. The top thick line represents the evolution of λ(log(a)) for
H0 = 68.94 km/(sMpc),Ωm,0 = 0.2922 andΩα2,0 = −0.000383. Themedium line
represents the best fit (see Table 1). The gray region is the 2σ uncertainties.

present epoch (log(a) = 0) both energy densities of dark matter
and dark energy are of the same order (Fig. 2).

While the relation Λ = Λ(t) violates the covariance of the
general relativity Lagrangian, it can be simply demonstrated that
such a relation can emerge from the covariant theory of the perfect
fluid.

The action of general relativity for a perfect fluid has the follow-
ing form

S =

∫
√

−g(R + Lm)d4x, (11)

where R is the Ricci scalar, Lm = −ρ

(
1 +

∫ p(ρ)
ρ2 dρ

)
[19] and gµν

is themetric tensor. The signature of gµν is chosen as (+, −, −, −).
For the Friedmann–Lemaitre–Robertson–Walker (FLRW) met-

ric without the curvature the Ricci scalar is expressed by R =

−6
(

ä
a +

ȧ2

a2

)
. The Einstein equations are consequence of the vari-

ation of the LagrangianLwith respect to themetric tensor gµν . The
Einstein equations for dust and a minimal coupling scalar field are
the following

3H2
= ρ (12)

and
ä
a

= −
1
6
(ρ + 3p). (13)

We rewrite ρ as ρ = ρm + ρde and we assume the equation of
state for ρm as pm = 0 and for ρde as pde = −ρde. In consequence
p = pde = −ρde.

The conservation equation is in the form

ρ̇ + 3H(ρ + p) = ρ̇m + ρ̇de + 3Hρm = 0. (14)

Because in our case dρde
dt = −

2α2

t3
then the conservation equation

can be rewritten as two equations

ρ̇m + 3Hρm = Q (15)

and

ρ̇de = −Q , (16)

where the expression Q =
2α2

t3
describes an interaction between

ρm and ρde.
From Eq. (10) we can obtain a formula for ρ = ρm + ρde as

ρ = 3H2
0

⎛⎜⎜⎝1 − 2n
3H0t

+
√

ΩΛ,0

In−1

(
3
√

ΩΛ,0H0
2 t

)
In

(
3
√

ΩΛ,0H0
2 t

)
⎞⎟⎟⎠

2

. (17)

Formula (17) guarantees that H2
≥ 0 for every value of the

cosmological time t .
From p = pde = −ρde = −Λbare−

α2

t2
we can obtain the formula

t(p)

t =

√
−

α2

p + 3H2
0ΩΛ

. (18)

From (17) and (18) we have a formula for ρ(p)

ρ = 3H2
0

⎛⎜⎜⎝ 1 − 2n

3H0

√
−

α2

p+3H2
0ΩΛ

+
√

ΩΛ,0

In−1

(
3
√

ΩΛ,0H0
2

√
−

α2

p+3H2
0ΩΛ

)
In

(
3
√

ΩΛ,0H0
2

√
−

α2

p+3H2
0ΩΛ

)
⎞⎟⎟⎠

2

. (19)
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Because the above function is strictly monotonic we have the spe-
cific equation of state in the form p(ρ). We can use this formula for
the equation of state inLm. In consequence our theory is equivalent
to the covariant theorywith the perfect fluid, which is described by
the equation of state (19). Note that formally one can always find
Lagrangian if ρ depends on t because if a(t) is reversible function it
is possible from inverse relation obtain t = t(a) and consequently
ρ(t(a)) and p = p(ρ) which we put into Lagrangian.

However, more natural, covariant interpretation of our model
than the perfect fluid interpretation is a model with a diffuse
dark matter–dark energy interaction [20–22]. In these models the
Einstein equations and equations of current density Jµ are the
following

Rµν −
1
2
gµνR + Λ(t)gµν = Tµν, (20)

∇µTµν
= σ Jν, (21)

∇µJµ = 0, (22)

where Rµν is the Riemann tensor, R is the Ricci scalar, gµν is the
metric tensor, Tµν is the energy–momentum tensor and σ is a
positive parameter. From the Bianchi identity∇

µ
(
Rµν −

1
2gµνR

)
=

0, Eqs. (20) and (21) we have the following formula for Λ(t)

∇µΛ(t) = σ Jµ. (23)

We assume that the matter is a perfect fluid. Then the energy–
momentum tensor is described by the following formula

Tµν = ρuµuν + p
(
gµν + uµuν

)
, (24)

where ρ is density of the matter, p is pressure of the matter and uµ

is the 4-velocity. We assume also the form of Jµ as

Jµ = Quµ
= −

dΛ(t)
dt

uµ, (25)

where Q has the interpretation as the interaction between dark
matter and dark energy.

Under above considerations Eq. (21) is expressed by the follow-
ing formula

∇µ(ρuµ) + p∇µuµ
= −σ

dΛ(t)
dt

uµ. (26)

We assume that they are symmetric forces in the fluid so uµ
=

(1, 0, 0, 0). Than J0 = Q .
For the FLRW metric equations (20), (21), (26) and (23) for the

flat universe are reduced to

3H2
= ρ + Λ(t), (27)

ρ̇ + 3H(ρ + p) = −σ
dΛ(t)
dt

. (28)

Because we assume that matter is the dust, and the parameter σ is
equal one then the conservation equation has the following form

ρ̇ + 3Hρ = −
dΛ(t)
dt

. (29)

3. How Λ(t)CDM model modifies the scaling relation for dark
matter

The existence of dark matter in the Universe is motivated by
modern astrophysical observations as well as cosmological ob-
servations. From observations of rotation curves of spiral galax-
ies, masses of infracluster gas, gravitational lensing of clusters of
galaxies to cosmological observations of the cosmic microwave
background anisotropy and large scale structures we obtain strong
evidences of dark matter.

Because models of nucleosynthesis in the early Universe are
strongly restricted by the fraction of baryons, we conclude that the
nature of darkmatter cannot be baryonicmatter. On the other hand
we imagine that particles of dark matter form a part of standard
model (SM) of particles physics. There aremany candidates for par-
ticles of darkmatter, e.g.WIMPs. Lately sterile neutrinos have been
also postulated in this context [23,24]. The interesting approach
is a search of photon emission from the decay or the annihilation
of dark matter particles through the astrophysical observations
of X-ray regions [25–27]. For example the radiatively decaying
darkmatter particles as sterile neutrinos have been searched using
X-ray observations [28].

Let us consider the ΛCDM model which describes a homoge-
neous and isotropic universe which consists of baryonic and dark
matter and dark energy. Let us assume an interaction in the dark
sectors. Then the conservation equations have the following form

ρ̇b + 3Hρb = 0, (30)
ρ̇dm + 3Hρdm = Q , (31)
ρ̇de + 3Hρde = −Q , (32)

whereρb is baryonicmatter density,ρdm is darkmatter density and
ρde is dark energy density [14]. Q describes the interaction in the
dark sector.

Let ρm = ρb + ρdm then (30) and (31) give

ρ̇m + 3Hρm = Q . (33)

For model with Λ(t) = Λbare +
α2

t2
the conservation equation has

the form ρ̇m +3Hρm = −
dΛ(t)
dt . So this model can be interpreted as

the special case of model with the interacting in the dark sectors.
In this model Q = −

dΛ(t)
dt =

2α2

t3
.

Eq. (33) for Q =
2α2

t3
can be rewritten as ρ̇m + 3Hρm =

Hρm
2α2

t3Hρm
or

dρm

ρm
=

da
a

(
−3 +

2α2

t3Hρm

)
. (34)

The solution of Eq. (34) is

ρm = ρm,0a−3+δ̄(t), (35)

where δ̄ =
1

log a

∫
δ(t)d log a, where δ(t) =

2α2

t3H(t)ρm(t)
. Q can be

written as Q = δ(t)Hρm. The evolution of δ(log(a)) and δ̄(log(a)),
which is obtained for low z data, is presented in Figs. 4 and 5. One
can observe that δ̄(t) and δ(t) is constant since the initial singularity
to the present epoch.

If δ(t) is a slowly changing function than δ̄(t) = δ(t) = δ and
(35) has the following form

ρm = ρm,0a−3+δ. (36)

In this case Q = δHρm.
The early time approximation for δ(t) is

δ(t) =
9α2

(
√
1 + 3α2 + 1)2

. (37)

If δ(t) = δ = const we can easily find that

a = a0t
2

3−δ (38)

and

ρm = ρm,0a−3+δ
0 t−2. (39)

Because for the early time universe, Λbare is neglected, we get the
following relation for the early time universe

ρm

ρde
=

ρm,0a−3+δ
0

α2 . (40)
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Fig. 4. A diagram of the evolution of δ(log(a)). The top thick line represents the
evolution of λ(log(a)) for H0 = 67.83 km/(s Mpc), Ωm,0 = 0.2875 and Ωα2,0 =

−0.000040. The bottom thick line represents the evolution of λ(log(a)) for H0 =

68.94 km/(s Mpc), Ωm,0 = 0.2922 and Ωα2,0 = −0.000383. The medium line
represents the best fit (see Table 1). The gray region is the 2σ uncertainties.

Fig. 5. A diagram of the evolution of δ̄(log(a)). The top thick line represents the
evolution of λ(log(a)) for H0 = 67.83 km/(s Mpc), Ωm,0 = 0.2875 and Ωα2,0 =

−0.000040. The bottom thick line represents the evolution of λ(log(a)) for H0 =

68.94 km/(s Mpc), Ωm,0 = 0.2922 and Ωα2,0 = −0.000383. The medium line
represents the best fit (see Table 1). The gray region is the 2σ uncertainties. Note
that if ρdm = 0 for α2 < 0, i.e. whole dark matter decays then we have the ΛCDM
model with baryonic matter.

We can rewrite ρdm as

ρdm = ρdm,0a−3+λ(a), (41)

where λ(t) =
1

log a log
Ωm,0aδ̄(t)

−Ωb,0
Ωm,0−Ωb,0

. For the present epoch we can
approximate λ(t) as λ(t) = λ = const. So in the present epoch
ρdm = ρdm,0a−3+λ. In the consequence, the Friedmann equation
can be written as 3H2

= ρb,0a−3
+ ρdm,0a−3+λ

+ Λbare +
α2

t2
. The

evolution ofλ(log(a)), which is obtained for low z data, is presented
in Fig. 6. One can observe that λ(t) is constant since the initial
singularity to the present epoch.

Following Amendola and others [29–31] the mass of dark par-
ticles can be parametrized by the scale factor as

m(a) = m0 exp
∫ a

κ(a′)d(log a′), (42)

where m0 is representing of mass of dark matter, κ =
d logm
d log a .

We consider the mass m(a) as an effective mass of particles in a
comoving volume.

In Amendola et al. [29] the parameter κ(a) is assumed as a
constant. This simplifying assumption has a physical justification
as it will be demonstrated in the further dynamical analysis of
the model with decaying dark matter. Eq. (42) can be simply

Fig. 6. A diagram of the evolution of λ(log(a)). The top thick line represents the
evolution of λ(log(a)) for H0 = 67.83 km/(s Mpc), Ωm,0 = 0.2875 and Ωα2,0 =

−0.000040. The bottom thick line represents the evolution of λ(log(a)) for H0 =

68.94 km/(s Mpc), Ωm,0 = 0.2922 and Ωα2,0 = −0.000383. The medium line
represents the best fit (see Table 1). The gray region is the 2σ uncertainties.

obtained from (41) because e = a
1

log a and m(a) = a3ρ(a). Then
λ(a) =

1
log(a)

∫ a
κ(a′)d(log a′). For illustration the rate of darkmatter

decaying process it would be useful to define the parameter β

β = 2
δ−3
2λ . (43)

If λ(a) = const then Eq. (42) has the equivalent form m(t) =

m0aλ
0 exp

(
−

log 2 log t
logβ

)
, where β = 2

δ−3
2λ .

Let consider the number of darkmatter particlesN(t) where t is
the cosmological time. Than a half of the number of these particle
N(t)/2 is reached at the moment of time βt .

In Fig. 3 one can see that a quotient ρdm/ρde decreases with the
scale factor and remains of the same order for today (log a = 0).

Note that the effect of the modification of the scaling law is
ρdm ∝ a−3+λ, then this effect of the nonconservative energy
momentum tensor is mimicking the effect of the conservative
energy momentum tensor with the perfect fluid with the energy
density ρeff and the pressure

peff = −
λ

3
ρeff. (44)

Let D(t) be the first order perturbation of the density of the
matter ρm. The equation for evolution of D(t) has the following
form [32]

d2D(t)
dt2

+

(
2H(t) +

Q (t)
ρm(t)

)
dD(t)
dt

−

(
ρm(t)
2

− 2H(t)
Q (t)
ρm(t)

−
d
dt

[
Q (t)
ρm(t)

])
D(t) = 0. (45)

Because δ(t) for the early time universe is a constant, we can
use Eq. (36) as an approximation of the behavior of ρm in the early
time universe. In this case Eq. (45) has the following form

d2D(t)
dt2

+
d1
t

dD(t)
dt

+
d2
t2

D(t) = 0, (46)

where d1 =
2Ω

α2,0
Ωm,0

+
4

3−δ
and d2 =

2(1+δ)
3−δ

Ω
α2,0

Ωm,0
−

3
2H

2T 2
0 Ωm,0. The

solution of Eq. (46) is given by the formula

D(t) = C1t
1
2

(
1−d1−

√
1−4d2−2d1+d21

)

+ C2t
1
2

(
1−d1+

√
1−4d2−2d1+d21

)
. (47)

If we put the best fit as values of parameters in (47) then we get

D(t) = C1t−0.83
+ C2t0.50. (48)
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Fig. 7. A diagram of the evolution of the decreasing mode D1(t)/D1(T0) of the
function D(t) with the best fit values of parameters. The time is expressed by
Mpc s/(100 km) unit.

The first term of the right-hand side of Eq. (48) represents the
decreasing mode D1(t) and its evolution is presented in Fig. 7. The
second term represents the growing mode D2(t) and the evolution
of this mode is presented in Fig. 8.

4. Statistical analysis of the model

In this section, we present a statistical analysis of the model
parameters such as H0, Ωdm,0 and λ0. We are using the SNIa,
BAO, CMB observations, measurements ofH(z) for galaxies and the
Alcock–Paczynski test.

We use the data from Union 2.1 which is the sample of 580
supernovae [33]. The likelihood function for SNIa is

log LSNIa = −
1
2
[A − B2/C + log(C/(2π ))], (49)

where A = (µobs − µth)C−1(µobs − µth), B = C−1(µobs − µth),
C = trC−1 and C is a covariance matrix for SNIa. The distance
modulus is µobs

= m − M (where m is the apparent magnitude
andM is the absolute magnitude of SNIa) and µth

= 5log10DL +25
(where the luminosity distance is DL = c(1 + z)

∫ z
0

dz′
H(z) ).

We use Sloan Digital Sky Survey Release 7 (SDSS DR7) dataset
at z = 0.275 [34], 6dF Galaxy Redshift Survey measurements
at redshift z = 0.1 [35], and WiggleZ measurements at redshift
z = 0.44, 0.60, 0.73 [36]. The likelihood function is given by

log LBAO = −
1
2

(
dobs

−
rs(zd)
DV (z)

)
C−1

(
dobs

−
rs(zd)
DV (z)

)
, (50)

where rs(zd) is the sound horizon at the drag epoch [37,38].
The likelihood function for the Planck observations of cosmic

microwave background (CMB) radiation [39] has the form

log LCMB = −
1
2

∑
i

(
DTT

ℓ,th(ℓi) − DTT
ℓ,obs(ℓi)

)2
σ 2 , (51)

where DTT
ℓ (ℓ) is the value of the temperature power spectrum of

CMB, ℓ is multipole. In this statistical analysis, the temperature
power spectrum is for ℓ in the interval ⟨30, 2508⟩.

The likelihood function for the Alcock–Paczynski test [40,41]
has the following form

log LAP = −
1
2

∑
i

(
AP th(zi) − APobs(zi)

)2
σ 2 . (52)

where AP(z)th ≡
H(z)
z

∫ z
0

dz′
H(z′) and AP(zi)obs are observational

data [42–50].

Fig. 8. A diagram of the evolution of the growingmode D2(t)/D2(T0) of the function
D(t)with the best fit values of parameters. The time is expressed byMpc s/(100 km)
unit.

Table 1
The best fit and errors for the estimated model for Planck + SNIa + BAO +

H(z) + AP test with H0 from the interval (65.0, 71.0) km/(Mpc s), Ωdm,0 from the
interval (0.20, 0.36), Ωα2,0 from the interval (−0.005, 0.005) and λ0 from the in-
terval (−0.025, 0.010) Ωb,0 is assumed as 0.048468. The value of χ2 for the best
fit is equal 2332.25, the value of AIC is equal 2338.25 and BIC is equal 2356.37. In
comparison with this model, the χ2 of the best fit of the ΛCDM model is equal
2335.18, AIC is equal 2339.18 and BIC is equal 2351.26.

Parameter Best fit 68% CL 95% CL

H0 68.38 +0.37 +0.59
−0.42 −0.76

Ωdm,0 0.2420 +0.0020 +0.0030
−0.0018 −0.0029

Ωα2,0 −0.000210 +0.000100 +0.000170
−0.000107 −0.000173

λ0 −0.00169 +0.00080 +0.00136
−0.00084 −0.00135

We are using some data of H(z) of different galaxies from
[51–53] and the likelihood function is

log LH(z) = −
1
2

N∑
i=1

(
H(zi)obs − H(zi)th

σi

)2

. (53)

The final likelihood function is

Ltot = LCMBLSNIaLBAOLAPLH(z). (54)

We use our own code CosmoDarkBox in estimation of the
model parameters. The code uses the Metropolis–Hastings algo-
rithm [54,55] and the dynamical system to obtain the likelihood
function.

The results of statistical analysis are represented in Table 1.
Figs. 9 and 10 where it is shown the likelihood function with 68%
and 95% confidence level projection on the (Ωdm,0, λ0) plane and
the (H0, λ0) plane, respectively. Diagram of the temperature power
spectrum for the best fit values is presented in Fig. 11.

We can use some information criteria in scientific practice to
choose the best model. One of information criteria is the Akaike
information criterion (AIC), which is given by

AIC = −2 ln L + 2d, (55)

where L is the maximum of the likelihood function and d is the
number of model parameters. For our model the parameter d is
equal three becausewe estimate three parameters such asH0,Ωdm
and Ωα2,0. It is one more parameter than for the ΛCDM model.
Model which is the best approximation to the truth from the set
under consideration has the smallest value of the AIC quantity. It is



102 M. Szydłowski, A. Stachowski / Physics of the Dark Universe 15 (2017) 96–104

Fig. 9. The intersection of the likelihood function of two model parameters (H0 ,
λ0) with the marked 68% and 95% confidence levels for Planck + SNIa + BAO +

H(z) + AP test. The value of Hubble constant is estimated from the data as the best
fit of value Ωdm,0 = 0.2420 and then the diagram of likelihood function is obtained
for this value. We choose 100 km/s Mpc as a unit of H0 .

Fig. 10. The intersection of the likelihood function of twomodel parameters (Ωdm,0 ,
λ0) with themarked 68% and 95% confidence levels for Planck+ SNIa+ BAO+H(z)
+ AP test. The value of the Hubble constant is estimated from the data as the best
fit of value H0 = 68.38 km/(s Mpc) and then the diagram of likelihood function is
obtained for this value.

convenient to evaluate the differences between the AIC quantities
computed for the rest of models from our set and the AIC for the
best one. Those differences ∆AIC

∆AICi = AICi − AICmin (56)

are easy to interpret and allow a quick ‘‘strength of evidence’’ for
the model considered with respect to the best one. In our case the

Fig. 11. Diagram of the temperature power spectrum of CMB for the best fit values
(red line). The error bars from the Planck data are presented by blue color. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

value of ∆AICi is equal 0.93. The AIC favors very weakly our model
in comparison to the ΛCDMmodel.

We also use BIC (Bayesian information criterion) which is de-
fined as

BIC = −2 ln L + d ln n, (57)

where n is the number of data points [56]. In our case n = 3101.
For theΛCDMmodel we obtain BIC0 = 2351.26 and for our model
BIC1 = 2356.37. Given a simple relation between the Bayes factor
and the BIC

2 ln B01 = −(BIC0 − BIC1) = ∆BIC01 (58)

we obtain the difference between the BIC1 for our model and
BIC0 for the ΛCDM model is equal 5.11. We use the scale for
interpretation of the twice natural logarithm of the Bayes factor
proposed by Kass and Raftery [57]. Because the ∆BIC01 is between
2 and 6 it is a positive evidence in favor of the ΛCDMmodel.

From the statistical analysis we get that the model with the
negative value of α2 at 2-σ level, which means that dark matter
particles decay.

5. Conclusions

The main goal of the paper was to investigate in details the
dynamic of the model with matter and the running cosmological
constant term with respect to the cosmological time. It was as-
sumed that baryonic matter satisfies the equation of state for dust
(i.e. is non-relativistic). We were interested how the running Λ(t)
influences on the scaling relation for energy density ρdm. We have
found the deviation from standard scaling a−3 for this relation. We
explained the source of this deviation showing that ρdm decreases
more rapidly or slowly like a−3+δ due to the energy transfer from
dark matter to dark energy sector or in the opposite direction. The
direction of the energy transfer crucially depends on the sign of α2

constant in the model under consideration.
The value of α2 can be theoretically calculated in the quantum

formalism developed by Urbanowski and collaborators [15–18].
In their paper it was proposed a quantummechanical effect which
can be responsible for emission X or γ rays by charged unsta-
ble particles at sufficiently late times. The sign of α2 constant
is obtained from the analysis of the survival amplitude. In these
calculations, the crucial role plays the Breit–Wigner distribution
function which gives rise to a negative sign of the α2 constant. For
typical particles, decaying processes are describing through this
distribution function.
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From the cosmological point of view it is interesting that fluc-
tuations of instantaneous energy of these unstable particles, which
together with other stable particles form dark matter, can be
manifested as fluctuations of the velocity of these particles [17].
As the result this effect may cause the emission of the electromag-
netic radiation from radio up to ultra-high frequencies by unstable
particles including the unstable components of dark matter. In
the context of astrophysics important stays information can be
obtained from the observation of X-rays or γ -rays. FromX-ray CCD
instruments, dark matter is searched in keV energy for looking for
the non-baryonic X-ray signature [28].

On the other hand the α2 constant is a dimensionless model
parameter which value can be estimated from some astronomical
data. Our estimations favor the negative α2 constant, i.e. it is
favored the decaying vacuum of dark matter particles and the
radiative nature of the energy transfer to dark energy sector.

The survival amplitude of unstable particles is well described
by the Breit–Wigner energy distribution function [17]. So it is very
probable that the survival amplitude of the unstable components
of the sterile neutrino sector is also described sufficiently well
by this distribution function. Such a distribution function leads
to negative α2 [58]. The negative sign of the α2 constant offers a
new insight into the cosmological constant problem because the
running Λ is the growing function of the cosmological time with
asymptotic Λbare at t → ∞. Therefore, the problem of different
values of Λ at the early time universe and at the present epoch is
solved by our model.

In our paper we have also found the physical background of the
relation ρdm ∝ a−3+λ, where λ = const, plays an important role.
Our observational analysis of the evolution this parameter during
the cosmic evolution indicates that such an ansatz has a strongly
physical justification.

In interacting cosmology the interacting term which is postu-
lated in different physical forms is interpreted as a kind of non-
gravitational interactions in the dark sector. We suggest that this
interaction has the radiation nature and can be rather interpreted
following the Urbanowski and Raczynska idea as a possible emis-
sion of cosmic X and γ rays by unstable particles [17] including
unstable particles forming dark matter.

It is still an open discussion about the nature of dark matter:
cold or warm dark matter [59]. Our results showed that in the
model of dark matter decay dark matter particle being lighter than
CDMparticles. Therefore particles ofwarmdarkmatter remain rel-
ativistic longer during the cosmic evolution at the early universe.
Our model is consistent with a conception of mixed dark matter
(MDM) which is also called hot+cold dark matter [60,61].

In the investigating dynamics of the interacting cosmology
the corresponding dynamical systems, which are determining the
evolutional paths, are not closed until one specify the form of the
interacting term Q . Usually this form is postulated as a specific
function of the Hubble parameter, energy density of matter or
scalar field or their time derivatives [62–65]. Our model with
decaying dark matter favors the choice of the interacting term in
the form Q ∝ Hρm.

The statistical analysis favored the model with the negative
value of α2 (the model with decaying dark matter particles). How-
ever there is a positive evidence in favor of the ΛCDMmodel with
respect to the ourmodel based on twice natural logarithm of Bayes
factor calculated as the difference of BIC for both models.
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Abstract We study cosmology with running dark energy.
The energy density of dark energy is obtained from the quan-
tum process of transition from the false vacuum state to the
true vacuum state. We use the Breit–Wigner energy distri-
bution function to model the quantum unstable systems and
obtain the energy density of the dark energy parametrization
ρde(t). We also use Krauss and Dent’s idea linking proper-
ties of the quantum mechanical decay of unstable states with
the properties of the observed Universe. In the cosmological
model with this parametrization there is an energy transfer
between dark matter and dark energy. The intensity of this
process, measured by a parameter α, distinguishes two sce-
narios. As the Universe starts from the false vacuum state,
for the small value of α (0 < α < 0.4) it goes through an
intermediate oscillatory (quantum) regime of the density of
dark energy, while for α > 0.4 the density of the dark energy
jumps down. In both cases the present value of the density of
dark energy is reached. From a statistical analysis we find this
model to be in good agreement with the astronomical data
and practically indistinguishable from the �CDM model.

1 Introduction

The standard cosmological model (�CDM model), which
describes the Universe, is the one most favored by astro-
nomical observations such as supernovae of type Ia or mea-
surements of CMB. In the �CDM model, the dark matter is
treated as dust and dark energy has the form of the cosmo-
logical constant �bare. We are looking for an alternative for
the �CDM model by a modification of the dark energy term.

a e-mail: aleksander.stachowski@uj.edu.pl
b e-mail: marek.szydlowski@uj.edu.pl
c e-mail: K.Urbanowski@if.uz.zgora.pl

The standard cosmological model possesses the six
parameters: the density of baryons �bh2, the density of cold
dark matter �dmh2, the angular diameter of sound horizon at
last scattering θ , the optical depth due to the reionization τR,
the slope of the primordial power spectrum of fluctuations
ns, and the amplitude of the primordial power spectrum As,
where h = H0 (100 km s−1 Mpc−1).

From the methodological point of view, the standard cos-
mological model plays the role of an effective theory, which
very well describes properties of the current Universe with-
out explaining the nature of two components of the model:
the dark energy and the dark matter. The nature of both com-
ponents of the Universe has been unknown up to now but we
describe these in terms of some useful fiction, the cosmolog-
ical constant and the cold dark matter, which is a kind of a
dust perfect fluid.

In this paper we concentrate on the interpretation of dark
energy in terms of running cosmological constant rather than
in terms of the pure cosmological constant parameter (�bare

in our approach). It is a consequence of some problems with
the interpretation of the pure cosmological constant, namely:

1. One cannot explain why the cosmological constant is not
large.

2. One does not know why it is not just equal zero.
3. One cannot explain why energy densities of both dark

energy and dark matter, expressed in terms of dimen-
sionless density parameters, are comparable in the cur-
rent epoch (cosmic coincidence problem).

In our proposition of the explanation of these problems
with the cosmological constant parameter, we base our ideas
on the theories of the cosmological constant in which the vac-
uum energy is fixed by the fundamental theory [1]. Extend-
ing the �CDM model beyond the classical regime, we apply
quantum mechanics as a fundamental theory, which deter-
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mines cosmological parameters and we explain how cosmo-
logical parameters vary during the cosmic evolution.

The cosmological constant is the source of two problems
in modern cosmology. The first problem is the cosmological
constant problem, which is consequence of the interpretation
of dark energy as a vacuum energy. The observed present
value of the cosmological constant is 120 orders of mag-
nitude smaller than we expect from quantum physics. The
second problem is the coincidence problem. If we assume
that the dark energy is always constant, then the �CDM
model cannot explain why the cosmological constant has the
same order of magnitude as the density of matter today. If the
model belongs to the class of running dark energy cosmolo-
gies then the first problem of cosmological constant can be
solved.

This question seems to be crucial in contemporary physics
because its solution would certainly mean a very crucial
step forward in our attempts to understand physics from the
boundary of particle physics and cosmology. A discussion as
regards the cosmological constant problem can be found in
Refs. [1–16].

In our model, the influence of running dark energy densi-
ties of both visible and invisible matter is very small. Thus we
share Weinberg’s opinion, according to which looking for a
solution of the coincidence problem, we should consider the
anthropic principle. According to Weinberg’s argument, no
observers at all should be in the Universe if the cosmological
constant was even three orders of magnitude larger than it is
now.

Coleman et al. [17–19] discussed the instability of a phys-
ical system, which is not at an absolute energy minimum, and
which is separated from the minimum by an effective poten-
tial barrier. They showed that if the early Universe is too
cold to activate the energy transition to the minimum energy
state, then a quantum decay, from the false vacuum to the
true vacuum, is still possible through a barrier penetration
via macroscopic quantum tunneling.

The discovery of the Higgs-like resonance at 125–126
GeV [20–23] caused a discussion as regards the instability
of the false vacuum. If we assume that the Standard Model
well describes the evolution of the Universe up to the Planck
epoch, then a Higgs mass mh < 126GeV causes the elec-
troweak vacuum to be in a metastable state [21]. In conse-
quence the instability of the Higgs vacuum should be consid-
ered in the cosmological models of the early time Universe.

The idea that properties of the quantum mechanical decay
process of metastable states can help to understand the prop-
erties of the observed Universe was formulated in [24–26]. It
is because the decay of the false vacuum is a quantum decay
process [17–19]. This means that the state vector correspond-
ing to the false vacuum is a quantum unstable (or metastable)
state. Therefore all general properties of quantum unstable
systems must also occur in the case of such a quantum unsta-

ble state as the false vacuum and, as a consequence, models
of quantum unstable systems can be used to analyze proper-
ties of the systems of which the time evolution starts from
the false vacuum state. Note that Landim and Abdalla built
a model of metastable dark energy, in which the observed
vacuum energy is the value of the scalar potential at the false
vacuum [27].

In this paper, we assume the Breit–Wigner energy distri-
bution function, which is very often used to model unstable
quantum systems, as a model of the process of the energy
transition from the false vacuum to the true vacuum. In con-
sequence the parametrization of the dark energy is given by
formula

ρde = E0 + ER
α

1 − α
�

(
J (t)

I (t)

)
, (1)

where α and ER are model parameters describing the varia-
tion from the standard cosmological model. The values of the
parameter α belong to interval 〈0, 1). Note that if the param-
eter α or ER is equal to zero, then the model is equivalent to
the �CDM model.

Let �bare = E0 − ER; then Eq. (1) can be rewritten in the
equivalent form

ρde = �bare + ER

[
1 + α

1 − α
�

(
J (t)

I (t)

)]
. (2)

Here the units 8πG = c = 1 are used.
The functions J (t) and I (t) are defined by the following

expressions:

J (t) =
∫ ∞

− 1−α
α

η

η2 + 1
4

e−iητ dη, (3)

I (t) =
∫ ∞

− 1−α
α

1

η2 + 1
4

e−iητ dη. (4)

The integrals J (t) and I (t) can be expressed by the exact
solutions of these integrals. The formula for J (t) is the fol-
lowing expression:

J (τ ) = 1

2
e−τ/2

(
−2iπ + eτ E1

([
1

2
− i(1 − α)

α

]
τ

)

+ E1

([
−1

2
− i(1 − α)

α

]
τ

))
(5)

and I (t) is expressed by

I (τ ) = 2πe−τ/2
(

1 + i

2π

(
−eτ E1

([
1

2
− i(1 − α)

α

]
τ

)

+ E1

([
−1

2
− i(1 − α)

α

]
τ

)))
, (6)

where τ = α(E0−�bare)
h̄(1−α)

V0t and V0 is the volume of the Uni-
verse in the Planck epoch. In this paper we assume that
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V0 = 1. The function E1(z) is called the exponential inte-
gral and is defined by the formula: E1(z) = ∫ ∞

z
e−x

x dx (see
[28,29]).

2 Preliminaries: unstable states

As mentioned in Sect. 1 we will use the parametrization of the
dark energy transition from the false vacuum state to the true
vacuum state following from the quantum properties of such
a process. This process is a quantum decay process, so we
need quantities characterizing decay processes of quantum
unstable systems. The main information as regards properties
of quantum unstable systems is contained in their decay law,
that is, in their survival probability. So if one knows that
the system is in the initial unstable state |φ〉 ∈ H (H is the
Hilbert space of states of the considered system), which was
prepared at the initial instant t0 = 0, then one can calculate
its survival probability (the decay law), P(t), of the unstable
state |φ〉 decaying in vacuum, which equals

P(t) = |A(t)|2, (7)

where A(t) is the probability amplitude of finding the system
at time t in the rest frame O0 in the initial unstable state |φ〉,

A(t) = 〈φ|φ(t)〉, (8)

and |φ(t)〉 is the solution of the Schrödinger equation for the
initial condition |φ(0)〉 = |φ〉, which has the following form:

i h̄
∂

∂t
|φ(t)〉 = H|φ(t)〉. (9)

Here |φ〉, |φ(t)〉 ∈ H, and H is the total self-adjoint Hamilto-
nian for the system considered. The spectrum of H is assumed
to be bounded from below, Emin > −∞ is the lower bound
of the spectrum σc(H) = [Emin,+∞) of H). Using the basis
in H built from normalized eigenvectors |E〉, E ∈ σc(H) of
H and expanding |φ〉 in terms of these eigenvectors one can
express the amplitude A(t) as the following Fourier integral:

A(t) ≡
∫ ∞

Emin

ω(E) e−
i
h̄ E t dE, (10)

where ω(E) > 0 (see [30–32]).
So the amplitude A(t) and, thus, the decay law P(t) of the

unstable state |φ〉 are completely determined by the density
of the energy distribution ω(E) for the system in this state
[30,31]; see also [32–39] (this approach is also applicable in
Quantum Field Theory models [40,41]).

Note that in fact the amplitude A(t) contains informa-
tion as regards the decay law Pφ(t) of the state |φ〉, that
is, as regards the decay rate �0

φ of this state, as well as the

energy E0
φ of the system in this state. This information can be

extracted from A(t). It can be done using the rigorous equa-
tion governing the time evolution in the subspace of unstable
states, H‖ 	 |φ〉‖ ≡ |φ〉. Such an equation follows from the
Schrödinger equation (9) for the total state space H.

The use of the Schrödinger equation (9) allows one to find
that within the problem considered

i h̄
∂

∂t
〈φ|φ(t)〉 = 〈φ|H|φ(t)〉. (11)

This relation leads to the conclusion that the amplitude A(t)
satisfies the following equation:

i h̄
∂A(t)

∂t
= h(t) A(t), (12)

where

h(t) = 〈φ|H|φ(t)〉
A(t)

, (13)

and h(t) is the effective Hamiltonian governing the time evo-
lution in the subspace of unstable states H‖ = PH, where
P = |φ〉〈φ| (see [42] and also [43,44] and the references
therein). The subspace H 
 H‖ = H⊥ ≡ QH is the sub-
space of decay products. Here Q = I − P. We have the
following equivalent formula for h(t) [42–44]:

h(t) ≡ i h̄

A(t)

∂A(t)

∂t
. (14)

One meets the effective Hamiltonian h(t) when one starts
with the Schrödinger equation for the total state space H and
looks for the rigorous evolution equation for a distinguished
subspace of states H|| ⊂ H [39,42]. In general h(t) is a
complex function of time and in the case of H‖ is dimension
two or more the effective Hamiltonian governing the time
evolution in such a subspace it is a non-hermitian matrix H‖
or non-hermitian operator. We have

h(t) = Eφ(t) − i

2
�φ(t), (15)

and

Eφ(t) = � [h(t)], �φ(t) = −2  [h(t)], (16)

are the instantaneous energy (mass) Eφ(t) and the instanta-
neous decay rate, �φ(t) [42–44]. Here � (z) and  (z) denote
the real and imaginary parts of z, respectively. Equations (12),
(14) and (16) are convenient when the density ω(E) is given
and one wants to find the instantaneous energy Eφ(t) and
decay rate �φ(t): Inserting ω(E) into (10) one obtains the
amplitude A(t) and then using (14) one finds h(t) and thus
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Eφ(t) and �φ(t). The simplest choice is to take ω(E) in the
Breit–Wigner form,

ω(E) ≡ ωBW(E)
def= N

2π

�0�(E − Emin)

(E − E0)2 + (�0
2 )2

, (17)

where N is a normalization constant and �(E) = 1 for
E ≥ 0 and �(E) = 0 for E < 0. The parameters E0 and �0

correspond to the energy of the system in the unstable state
and its decay rate at the exponential (or canonical) regime of
the decay process. Emin is the minimal (the lowest) energy of
the system. Inserting ωBW (E) into Eq. (10) for the amplitude
A(t) after some algebra one finds that

A(t) = N

2π
e−

i
h̄ E0t Iβ

(
�0t

h̄

)
, (18)

where

Iβ(τ )
def=

∫ ∞

−β

1

η2 + 1
4

e−iητ dη. (19)

Here τ = �0t
h̄ ≡ t

τ0
, τ0 is the lifetime and β = E0−Emin

�0
. The

integral Iβ(t) can be expressed in terms of special functions
as follows:

Iβ(τ ) = 2πe− τ
2 + i

{
e− τ

2 E1

(
− i

(
β − i

2

)
τ
)

−e+ τ
2 E1

(
− i

(
β + i

2

)
τ
)}

, (20)

where E1(z) denotes the integral–exponential function
defined according to [28,29] (z is a complex number).

Next using this A(t) given by Eqs. (18), (19) and (14),
defining the effective Hamiltonian hφ(t), one finds that
within the Breit–Wigner model considered

h(t) = i h̄
1

A(t)

∂A(t)

∂t
= E0 + �0

Jβ(�0t
h̄ )

Iβ(�0t
h̄ )

, (21)

where

Jβ(τ ) =
∫ ∞

−β

x

x2 + 1
4

e−i xτ dx . (22)

It is important to be aware of the following problem: Namely
from the definition of Jβ(τ ) one can conclude that Jβ(0)

is undefined (limτ→0 Jβ(τ ) = ∞). This is because within
the model defined by the Breit–Wigner distribution of the
energy density, ωBW (E), the expectation value of H, that is,
〈φ|H|φ〉, is not finite. So all the considerations based on the
use of Jβ(τ ) are valid only for τ > 0.

Note that simply

Jβ(τ ) ≡ i
∂ Iβ(τ )

∂τ
, (23)

which allows one to find analytical form of Jβ(τ ) having
such a form for Iβ(τ ).

We need to know the energy of the system in the unstable
state |φ〉 considered. The instantaneous energy Eφ(t) of the
system in the unstable state |φ〉 is given by Eq. (16). So within
the Breit–Wigner model one finds that

Eφ(t) = E0 + �0 �
[
Jβ(�0t

h̄ )

Iβ(�0t
h̄ )

]
, (24)

or, equivalently,

κ(t)
def= Eφ(t) − Emin

E0 − Emin
= 1 + 1

β
�

[
Jβ(�0t

h̄ )

Iβ(�0t
h̄ )

]
. (25)

(This relation, i.e. κ(t), was studied, for example in [45,46].)
It is relatively simple to find asymptotic expressions Iβτ

and Jβ(τ ) for τ → ∞ directly from (19) and (22), using, e.g.,
the method of integration by parts. We have, for τ → ∞,

Iβ(τ ) � i

τ

eiβτ

β2 + 1
4

{
−1 + 2β

β2 + 1
4

i

τ

+
[

2

β2 + 1
4

− 8β2

(β2 + 1
4 )2

] (
i

τ

)2

+ · · ·
}

(26)

and

Jβ(τ ) � i

τ

eiβτ

β2 + 1
4

{
β +

[
1 − 2β2

β2 + 1
4

]
i

τ

+ β

β2 + 1
4

[
8β2

β2 + 1
4

− 6

] (
i

τ

)2

+ · · ·
}

. (27)

These two last asymptotic expressions allow one to find for
τ → ∞ the asymptotic form of the ratio Jβ(τ )

Iβ(τ )
used in Eqs.

(21), (24) and (25); it has a much simpler form than the
asymptotic expansions for Iβ(τ ) and Jβ(τ ). One finds that,
for τ → ∞,

Jβ(τ )

Iβ(τ )
� −β − i

τ
− 2β

β2 + 1
4

1

τ 2 + · · · . (28)

Starting from this asymptotic expression and Eq. (24) or mak-
ing use of the asymptotic expansion of E1(z) [29] and (20),

E1(z) |z|→∞ ∼ e−z

z

(
1 − 1

z
+ 2

z2 − · · ·
)

, (29)

where | arg z| < 3
2π , one finds, e.g., that, for t → ∞,

Eφ(t) t→∞ � Emin − 2
E0 − Emin

| h0
φ − Emin | 2

(
h̄

t

)2

, (30)
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where h0
φ = E0 − i

2�0. This last relation is valid for t >

T , where T denotes the cross-over time, i.e. the time when
exponential and late time inverse power law contributions to
the survival amplitude begin to be comparable.

Some cosmological scenarios predict the possibility of
decay of the Standard Model vacuum at an inflationary stage
of the evolution of the Universe (see, e.g., [47] and also [48]
and the references therein) or earlier. Of course this decay-
ing Standard Model vacuum is described by the quantum
state corresponding to a local minimum of the energy den-
sity, which is not the absolute minimum of the energy density
of the system considered (see, e.g., Fig. 1). The scenario in
which false vacuum may decay at the inflationary stage of
the Universe corresponds with the hypothesis analyzed by
Krauss and Dent [24,25]. Namely in the mentioned papers the
hypothesis that some false vacuum regions do survive well
up to the cross-over time T or later was considered where T
is the same cross-over time as is considered within the theory
of evolving in time quantum unstable systems. The fact that
the decay of the false vacuum is a quantum decay process
means that the state vector corresponding to the false vac-
uum is a quantum unstable (or metastable) state. Therefore
all the general properties of quantum unstable systems must
also occur in the case of such a quantum unstable state as the
false vacuum. This applies in particular to such properties
as late time deviations from the exponential decay law and
properties of the energy E false

0 (t) of the system in the quan-
tum false vacuum state at late times t > T . In [49] it was
pointed out that the energy of those false vacuum regions
which survived up to T and much later differs from E false

0
[49].

So within the cosmological scenario in which the decay of
a false vacuum is assumed the unstable state |φ〉 corresponds
to the false vacuum state: |φ〉 = |0〉false. Then |0〉true is the
true vacuum state, that is, the state corresponding to the true
minimal energy. In such a case E0 → E false

0 is the energy
of a state corresponding to the false vacuum measured at
the canonical decay time (the exponential decay regime) and
E true

0 is the energy of true vacuum (i.e., the true ground state
of the system), so E true

0 ≡ Emin. The corresponding quantum
mechanical process looks as shown in Fig. 1.

If one wants to generalize the above results, obtained on
the basis of quantum mechanics, to quantum field theory
one should take into account among others a volume fac-
tor so that survival probabilities per unit volume should be
considered and similarly the energies and the decay rate,
E �→ ρ(E) = E

V0
, �0 �→ γ = �0

V0
, where V0 = V (t0) is

the volume of the considered system at the initial instant t0,
when the time evolution starts. The volume V0 is used in these
considerations because the initial unstable state |φ〉 ≡ |0〉false

at t = t0 = 0 is expanded into eigenvectors |E〉 of H at this
initial instant t0 (where E ∈ σc(H)) and then this expansion
is used to find the density of the energy distribution ω(E).

Fig. 1 Transition of the system from the false vacuum state |0〉false to
the true ground state of the system, i.e. the true vacuum state |0〉true.
The states |0〉false and |0〉true correspond to the local minimum and to
the true lowest minimum of the potential V (ϕ) of the scalar field ϕ,
respectively

It is easy to see that the mentioned changes E �→ E
V0

and

�0 �→ �0
V0

do not change the integrals Iβ(t) and Jβ(t) and Eq.

(25). Similarly in such a situation the parameter β = E0−Emin
�0

does not change. This means that Eqs. (24), (25), (30) can be
replaced by the corresponding relations for the densities ρde

or � (see, e.g., [45,51,52]). Within such an approach E(t)
corresponds to the running cosmological constant �(t) and
Emin to the �bare. The parametrization used in next sections
is based on Eqs. (24) and (25). The integrals (3), (4) intro-
duced in Sect. 1 are obtained from (22) and (19) replacing
β by 1−α

α
. Similarly solutions (5) and (6) correspond to (20)

and to the function Jβ(τ ) obtained from (20) using (23).

3 Cosmological equations with

ρde = �bare + ER

[
1 + α

1−α
�

(
J(t)
I (t)

)]

The cosmological model with the parametrization of the dark
energy (1), belonging to the class of parametrizations pro-
posed in [45] after putting ER = E0 − �bare, assumes the
following form of ρde (we use units 8πG = c = 1):

ρde = �bare + ER

[
1 + α

1 − α
�

(
J (t)

I (t)

)]
. (31)

It can be introduced as the covariant theory from the follow-
ing action:

S =
∫ √−g(R + Lm) d4x, (32)

where R is the Ricci scalar, Lm is the Lagrangian for the
barotropic fluid and gμν is the metric tensor. We assume the
signature of the metric tensor to be (+,−,−,−) and, for
simplicity, we assume that the constant curvature is zero (the
flat model). The Ricci scalar for the Friedmann–Lemaitre–
Robertson–Walker (FLRW) metric is represented by the fol-
lowing formula:
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R = −6

[
ä

a
+

(
ȧ

a

)2
]

(33)

where a dot means differentiation with respect to the cosmo-
logical time t .

The Lagrangian for the barotropic fluid is expressed by
the formula

Lm = −ρtot

(
1 +

∫
ptot(ρtot)

ρ2
tot

dρtot

)
, (34)

where ρtot is the total density of fluid and ptot(ρtot) is the
total pressure of fluid [53]. We assume that this fluid consists
of three components: the baryonic matter ρb, the dark matter
ρdm and the dark energy ρde. We treat the baryonic matter
and the dark matter like dust. In consequence the equations of
state for them are the following: pb(ρb) = 0 and pdm(ρdm) =
0. The equation of state for the dark energy is assumed in the
form pde(ρde) = −ρde.

Of course, the total density is expressed by ρtot = ρb +
ρdm + ρde and the total pressure is expressed by ptot(ρtot) =
pde(ρde) = −ρde.

We can find the Einstein equations using the method of
calculus of variations by variation of the action (32) by the
metric gμν . Then we get two equations: the Friedmann equa-
tion

3H2 = 3
ȧ

a

2

= ρtot = ρb + ρdm + ρde, (35)

where H = ȧ
a is the Hubble function, and the acceleration

equation

ä

a
= −1

6
(ρtot + 3ptot(ρtot)) = ρb + ρdm − 2ρde. (36)

From Eqs. (35) and (36) we can get the conservation equa-
tion

ρ̇tot = −3H(ρtot + ptot(ρtot)). (37)

The above equation can be rewritten as

ρ̇m = −3Hρm − ρ̇de, (38)

where ρm = ρb + ρdm.
Let Q be the interaction between the dark matter and the

dark energy. Then Eq. (38) is equivalent to the following
equations:

ρ̇b = −3Hρb, (39)

ρ̇dm = −3Hρdm + Q, (40)

and

ρ̇de = −Q, (41)

where the interaction Q is defined by Eq. (41). The inter-
action between the dark matter and the dark energy can be
interpreted as the energy transfer in the dark sector. If Q > 0
then the energy flow is from the dark energy to the dark mat-
ter. If Q < 0 then the energy flow is from the dark matter to
the dark energy.

For the description of the evolution of the Universe it is
necessary to use the Friedmann equation (35) and the con-
servation equation (38). These formulas can be rewritten in
terms of dimensionless parameters. Let �m = ρm

3H2
0

and

�de = ρde

3H2
0

, where H0 is the present value of the Hubble

function. Then from Eqs. (35) and (38), we get

H2

H2
0

= �m + �de (42)

and

�̇m = −3H�m − �̇de. (43)

The above equations are sufficient to find the behavior of the
matter, the dark energy, the Hubble function and the scale
factor as a function of cosmological time. We cannot find
the exact solutions because these equations are too compli-
cated. In this case we should search for numerical solutions.
The behavior of the dark energy is presented in Figs. 2 and
3. Figure 2 shows the diagram of the dependence �de(τ )

with respect of the rescaled time τ for α = 10−105 and
E0

3H2
0

= 10120. On the diagram we can see that the start value

of the dark energy density, which is equal to �de ≈ 10120,
is reduced to the present value of the dark energy density,
which is �de ≈ 0.7. This final value of �de does not depend
on the values of the parameters α and E0

3H2
0

. Therefore, this

mechanism makes an attempt of solving the cosmological

960 970 980 990 1000 1010

4 10120

2 10120

2 10120

4 10120
de

τ

τ

Fig. 2 The dependence �de(τ ) for α = 10−105 and E0
3H2

0
= 10120. The

rescaled time τ is given in units of [1.3 × 10−40s]
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996 998 1000 1002 1004 1006 1008 1010
τ

1 10118

5 10117

5 10117

1 10118
de τ

Fig. 3 The dependence �de(τ ) during the intermediate phase of
damped oscillations for α = 10−105 and E0

3H2
0

= 10120. The rescaled

time τ is given in units of [1.3 × 10−40s]

constant problem. For late time, dark energy can be treated
as the cosmological constant. The characteristic of the inter-
mediate oscillatory regime is depending on the parameter
α. With the increasing value of α the number of oscilla-
tions, their amplitude, their period as well as the length of
this regime decreases. If α > 0.4 then oscillations begin to
disappear and the value of �de jumps to the constant value
of 0.7.

Figure 3 shows the diagram of the dependence �de(τ )

during the intermediate phase of damped oscillations with
respect of the time τ for α = 10−105 and E0

3H2
0

= 10120. Note

that the dark energy oscillates and the amplitude of the oscil-
lations decreases with time. In consequence the dark energy
can be treated as the cosmological constant after the inter-
mediate phase of oscillations. Figure 4 shows the diagrams
of the dependence �de(τ ) with respect of the time τ for dif-
ferent values of α (α = 0.2, 0.4, 0.8) and E0

3H2
0

= 10120.

This figure presents how the evolution of �de(τ ) is depen-
dent on the parameter α. Note that the oscillations disappear
for α > 0.4.

In general, if α decreases then the times when oscillatory
regime takes place increase. This means that passage from
the very high energies to the extremely small energies, which
takes place at the oscillatory regime, moves in the direction
of increasing time with decreasing α and for a suitable small
value of α this oscillatory regime can occur at relatively late
times.

Figure 5 presents the evolution of d�de
dτ

. The evolu-
tion of matter is demonstrated in Fig. 6 and the Hubble
function is presented in Fig. 7. The diagram of the scale
factor with respect to the cosmological time is presented
in Fig. 8.

We have τ = α(E0−�bare)
h̄(1−α)

V0t ; therefore if the value
of the parameter α increases then the damping of oscilla-
tions should also be increased. In the limiting case, if α is
equal zero then we get the �CDM model. This last conclu-
sion can easily be drawn analyzing the late time properties
of ρde.

5 10 15 20 25 30

4 10120

2 10120

2 10120

4 10120
de

5 10 15 20 25 30

4 10120

2 10120

2 10120

4 10120
de

5 10 15 20 25 30

4 10120

2 10120

2 10120

4 10120
de

τ

τ τ

τ

τ

τ

Fig. 4 The dependence �de(τ ) for α = 0.2 (left figure) and α = 0.4
(medium figure) and α = 0.8 (right figure) and E0

3H2
0

= 10120. The

rescaled time τ for the left figure is given in units of [5.3×10−145s], for
the center figure is given in units of [2.0 × 10−145s] and for the right
figure is given in units of [3.3 × 10−146s]

960 970 980 990 1000 1010

1 10226

5 10225

5 10225

1 10226

d de

d

τ

τ

Fig. 5 The dependence d�de
dτ

(τ ) for α = 10−105 and E0
3H2

0
= 10120.

Note that, for negative value of d�de
dτ

, the energy is transferred from

the dark energy to the dark matter and for the positive value of d�de
dτ

,
the energy is transfered from the dark matter to the dark energy. The
rescaled time τ is given in unit [1.3 × 10−40s]

960 970 980 990 1000 1010

1.02

1.04

1.06

1.08

dm

dm 1000

τ

τ

Fig. 6 The dependence �dm for α = 10−105 and E0
3H2

0
= 10120. We

include the influence of the radiation for the evolution of the matter.
Note that the dark energy has a negligible influence on the evolution of
the matter. The rescaled time τ is given in units of [1.3 × 10−40s]

For the late time, τ → ∞, according to Eq. (28), the
parametrization of dark energy (31) can be approximated by
the following expression:

ρde = �bare − 2ER
α2

(1 − α)2 + α2

4

1

τ 2 + · · · . (44)

From this relation the important observation follows: For
any α > 0 the �CDM model is the limiting case, when
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960 970 980 990 1000 1010

1.01

1.02

1.03

1.04

H

H 1000

τ

τ

Fig. 7 The dependence H(τ ) for α = 10−105 and E0
3H2

0
= 10120.

We include influence of the radiation for the evolution of the Hubble
function. Note that dark energy has a negligible influence on the evo-
lution of the Hubble function. The rescaled time τ is given in units of
[1.3 × 10−40s]

960 970 980 990 1000 1010

0.980

0.985

0.990

0.995

1.000

1.005

a

a 1000

τ

τ

Fig. 8 The dependence a(τ ) for α = 10−105 and E0
3H2

0
= 10120. We

include the influence of the radiation on the evolution of the scale factor.
Note that dark energy has negligible influence on the evolution of the
scale factor. The rescaled time τ is given in units of [1.3 × 10−40s]

τ → ∞, of our model. So for very, very late times the results
obtained within our model and within the �CDM model
have to coincide. This parametrization of the dark energy
was considered in [52,54,55].

The dark energy is significantly lower than the energy
density of matter in the early Universe, which has the conse-
quence that the transfer to the dark sector is negligible (see
Fig. 5). Our model makes an attempt of solving the cosmo-
logical constant problem. In general, the amplitude of oscil-
lations of the dark energy decreases with time.

Thus for the late time Universe, oscillations are negligi-
ble and the dark energy has the form of the cosmological
constant.

The conservation equation for the dark energy (41) can be
rewritten as

ρ̇de = −3H(ρde + pde), (45)

10 20 30 40

20

10

10

20
w

τ

τ

Fig. 9 The typical dependence w(τ). This example is for α = 0.09
and E0

3H2
0

= 10120. Note that after the intermediate phase of oscillations,

the function w(τ) can be treated as a constant, which is equal to −1.
The rescaled time τ is given in units of [1.3 × 10−144s]

where pde is an effective pressure of the dark energy. In this
case the equation of state for the dark energy is expressed by
the following formula:

pde = w(t)ρde, (46)

where the function w(t) is given by the expression

w(t) = −1− ρ̇de√
3
√

ρm + ρdeρde
= −1− 1

3H

d ln ρde

dt
. (47)

The diagram of coefficient equation of state w(t) is presented
in Fig. 9. The function w(t), for the late time, is a constant
and equals −1, which means that it describes the cosmolog-
ical constant parameter. Note that the function w(t) is also
equal −1, which means that ρde is constant as a consequence
of the conservation condition (transfer between the sectors is
negligible). Therefore, the energy transfer is an effective pro-
cess only during the intermediate oscillation period (quantum
regime).

Let ρde � ρm. Then our model predicts inflation. The
formula for the e-foldings N = Hinit(tfin − tinit) (see [56])
becomes the following expression for our model:

N =
√

E0

3
(tfin − tinit), (48)

where tinit ≈ 0 and tfin is the time of appearing of the interme-
diate phase of oscillations. Figure 10 presents the evolution
of the scale factor a with respect to the cosmological time
during inflation.

4 Statistical analysis

To estimate the model parameters we use the astronomical
observations such as the supernovae of type Ia (SNIa), BAO,
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0 1. 10 44 2. 10 44 3. 10 44 4. 10 44 5. 10 44
t

0.2

0.4

0.6

0.8

1.0
a t

Fig. 10 The dependence a(t) for E0
3H2

0
= 2 ∗ 10125. We assume that

ρde � ρm and the intermediate phase of oscillations is after the Planck
epoch. Note that, for the above assumptions, inflation appears after the
Planck epoch. The characteristic number of e-foldings of this inflation
is equal to 53 here. The cosmological time t is given in seconds

measurements of H(z) for galaxies, the Alcock–Paczyński
test and the measurements CMB.

The data of supernovae of type Ia, which were used in
this paper, are taken from the Union 2.1 dataset [57]. In this
context we use the following likelihood function:

ln LSNIa = −1

2
[A − B2/C + log(C/(2π))], (49)

where A = (μobs − μth)C−1(μobs − μth), B = C−1(μobs −
μth), C = TrC−1 and C is a covariance matrix for SNIa.
The observer distance modulus μobs is defined by the for-
mula μobs = m − M (where m is the apparent magnitude
and M is the absolute magnitude of SNIa). The theoretical
distance modulus is given by μth = 5 log10 DL + 25 (where
the luminosity distance is DL = c(1 + z)

∫ z
0

dz′
H(z) ).

We use the following BAO data: Sloan Digital Sky Survey
Release 7 (SDSS DR7) dataset at z = 0.275 [58], 6dF Galaxy
Redshift Survey measurements at redshift z = 0.1 [59], and
WiggleZ measurements at redshift z = 0.44, 0.60, 0.73 [60].
The likelihood function is defined by the expression

ln LBAO = −1

2

(
dobs − rs(zd)

DV (z)

)
C−1

(
dobs − rs(zd)

DV (z)

)
,

(50)

where rs(zd) is the sound horizon at the drag epoch [61,62].
Measurements of the Hubble parameter H(z) of galaxies

were taken from [63–65]. The likelihood function is given
by the following formula:

ln LH(z) = −1

2

N∑
i=1

(
H(zi )obs − H(zi )th

σi

)2

. (51)

The likelihood function for the Alcock–Paczynski test [66,
67] has the following form:

ln L AP = −1

2

∑
i

(
APth(zi ) − APobs(zi )

)2

σ 2 , (52)

where AP(z)th ≡ H(z)
z

∫ z
0

dz′
H(z′) and AP(zi )obs are observa-

tional data [68–76].
In this paper, the likelihood function for the measurements

of CMB [77] and lensing by Planck, and low-� polarization
from the WMAP (WP), has the following form:

ln LCMB+lensing = −1

2
(xth − xobs)C−1(xth − xobs), (53)

where C is the covariance matrix with the errors, x is a vector
of the acoustic scale lA, the shift parameter R and�bh2 where

lA = π

rs(z∗)
c
∫ z∗

0

dz′

H(z′)
(54)

R =
√

�m,0H2
0

∫ z∗

0

dz′

H(z′)
, (55)

where z∗ is the redshift of the epoch of the recombination
[61].

In this paper, the final formula for the likelihood function
is given in the following form:

L tot = LSNIaLBAOLAPLH(z)LCMB+lensing. (56)

The statistical analysis was done by our own code Cos-
moDarkBox. This code uses the Metropolis–Hastings algo-
rithm [78,79].

We estimated four cosmological parameters: H0, �m,0, α

and the parameter E0. Our statistical results are completed in
Table 1. We present intersections of the likelihood function
with 68 and 95% confidence level projections in Figs. 11,
12, 13 and 14. PDF diagrams for α and E0

3H2
0

are presented in

Figs. 15 and 16.
The values of the likelihood function are not always sen-

sitive to changing of the parameters α and E0. The possible
changing of the values of the likelihood function are beyond

Table 1 The best fit and errors for the estimated model for SNIa + BAO
+ H(z) + AP + CMB test with H0 from the interval (66.0, 72.0), �m,0
from the interval (0.27, 0.34). �b,0 is assumed as 0.048468

Parameter Best fit 68% CL 95% CL

H0 68.82 km/(s Mpc)
+0.61
−0.55

+0.98
−0.92

�m,0 0.3009
+0.0079
−0.0084

+0.0133
−0.0134
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0.0 0.2 0.4 0.6 0.8 1.0
0.298

0.299

0.300

0.301

0.302

0.303

α

m
,0

Fig. 11 The intersection of the likelihood function of two model
parameters (�m,0, α), with the marked 68 and 95% confidence levels.

The plane of the intersection is the best fit of H0 (H0 = 68.82
[

km
s×Mpc

]
).

We assumed that E0/(3H2
0 ) is equal to 10120, but changing of the value

of E0/(3H2
0 ) does not influence the results. Note that the values of the

likelihood function are not sensitive to changing of the parameter α

0.675 0.680 0.685 0.690 0.695 0.700 0.705

0.28

0.29

0.30

0.31

0.32

H0
100 km

sMpc

m
,0

Fig. 12 The intersection of the likelihood function of two model
parameters (�m,0, H0), with the marked 68 and 95% confidence levels.
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the capabilities of numerical methods. This fact can be inter-
preted as the lack of sensitivity of the present evolution of
the Universe for changing of the parameters α and E0. The
best fit values of H0 and �m for our model are equivalent of
the best fit values for the �CDM model.

5 Conclusion

The main goal of our paper was to analyze the cosmological
model with the running dark energy as well as the dark matter
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[
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s×Mpc

]
).

We assumed that α is equal to 0.1, but changing of the value of α does
not influence the results. Note that the values of the likelihood function
are not sensitive to changing of E0

3H2
0

and the baryonic matter in the form of dust. We considered
the evolution of the dark energy using the fact that the decay
of a false vacuum to the true vacuum is a quantum decay
process. From the cosmological point of view this model
was formulated in terms of the cosmological model with the
interaction between dark matter and dark energy.
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We detected the intermediate phase of oscillations between
phases of constant dark energy. The preceding phase has
ρde = E0 and the following phase has ρde = �bare. Defin-
ing this class of models parametrized with α (the devia-
tion from the �CDM model) we have found two different
types of dynamical behavior. Independently of 0 < α < 1
there is a universal mechanism of jumping of the value
of energy density of dark energy from the initial value of
E0 = 10120 to the present value of the cosmological constant
of 0.7.

During this epoch there is the oscillatory behavior of
energy density of dark energy as well as its coefficient equa-
tion of state. In this intermediate regime the amplitude of the

oscillations increases, then there is a jump down followed by
the decreasing oscillations. This kind of oscillation appears
for 0 < α < 0.4. The number, period and amplitude of
oscillations as well as the length of this intermediate regime
decreases as the parameter α grows. For α > 0.4 the oscil-
lations disappear and only the jump down of energy density
of dark energy remains. The jump down mechanism is inde-
pendent from the value of the parameter α, which leads to
solving the cosmological constant problem.

In the early Universe the energy density of dark energy
is significantly lower than the energy density of dark matter,
therefore the change of energy density of the dark matter,
which is caused by energy transfer in the dark sector, is neg-
ligible.

While our model makes an attempt of an explanation of the
cosmological constant problem, the coincidence problem is
still open as we forced the model to have an exit on the present
value of the cosmological constant. In the early Universe, the
dark energy oscillates. But the amplitude of the oscillations
decreases with time. In consequence, for the late time Uni-
verse, oscillations are negligible and the dark energy can be
described as the cosmological constant. Unfortunately our
model cannot explain why the present value of dark energy
and matter are comparable.

From the statistical analysis of the model we found that
the model is generic in the sense that independently from the
values of the parameters α and E0 we can obtain the present
value of the energy density of the dark energy. Therefore, the
�CDM model is an attractor which all models with different
values of parameters α and E0 can reach. The final interval of
evolution for which we have data at our disposal is identical
for a whole class of models, therefore it is impossible to find
best-fitted values of the model parameters and indicate one
particular model (degeneration problem).

As should be expected it is difficult to discriminate the
parameters of the early state of the Universe as there is no
data for very high redshift. In Figs. 15 and 16 the likelihood
functions for parameters of interest are flat, so there is no
best fit value. That is why we take calibrated values of these
parameters for further analysis in this paper. We assume that
the false vacuum energy is 10120 as is indicated from the
quantum field theory. On the other hand the parameter α

should be chosen to get the decaying process of false vacuum
to take place after the Planck era.
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Abstract We derive the Shafieloo, Hazra, Sahni and
Starobinsky (SHSS) phenomenological formula for the
radioactive-like decay of metastable dark energy directly
from the principles of quantum mechanics. To this aim we
use the Fock–Krylov theory of quantum unstable states. We
obtain deeper insight on the decay process as having three
basic phases: the phase of radioactive decay, the next phase
of damping oscillations, and finally the phase of power-law
decay. We consider the cosmological model with matter and
dark energy in the form of decaying metastable dark energy
and study its dynamics in the framework of non-conservative
cosmology with an interacting term determined by the run-
ning cosmological parameter. We study the cosmological
implications of metastable dark energy and estimate the char-
acteristic time of ending of the radioactive-like decay epoch
to be 2.2 × 104 of the present age of the Universe. We also
confront the model with astronomical data which show that
the model is in good agreement with the observations. Our
general conclusion is that we are living in the epoch of the
radioactive-like decay of metastable dark energy which is a
relict of the quantum age of the Universe.

1 Introduction

We follow Krauss and Dent’s paper and apply the Fock–
Krylov theory of unstable quantum states to analyze a cos-
mological scenario with decaying dark energy [1–5]. For
this purpose we extend the Shafieloo, Hazra, Sahni and
Starobinsky (SHSS) model of metastable dark energy with
radioactive-like decay [6] and we give physical motivation
arising directly from quantum mechanics for phenomenolog-

a e-mail: marek.szydlowski@uj.edu.pl
b e-mail: aleksander.stachowski@doctoral.uj.edu.pl
c e-mail: K.Urbanowski@if.uz.zgora.pl

ical formulas for SHSS model of the dark energy. We replace
the radioactive, classical physics constant decay rate by the
decay rate derived using the Fock–Krylov theory of unstable
quantum states.

As a result we obtain a logistic-type radiative decay of
dark energy, which is followed by the much slower decay
process than the radioactive one, known as the quantum Zeno
effect. Within such an approach we find the energy of the
system in the unstable state and the decay rate. The rigorous
results show that these quantities both are time dependent. We
find the exact analytical expression for them assuming that
the density of the energy distribution, ω(E), in the unstable
state has the Breit–Wigner form. Using these results we also
find the late times asymptotic expressions of these quantities.
Then we assume that the dark energy density decays and that
this is a quantum process. Starting from these assumptions
we use the derived decay rate to analyze the decay process
of the dark energy density.

We study the cosmological implications of the derived
formula for decaying dark energy in the framework of flat
FRW cosmology. We find an extension of the standard cos-
mological model in the form of an interacting cosmology in
which the energy-momentum tensor is not conserved due to
the interaction between the dark energy and dark matter by
energy transfer.

We consider the problem if the decay of the running
lambda term can solve the cosmological constant problem
and how it can modify the canonical scaling law of energy
density for dark matter. We also test the model by astronom-
ical observations.

Our statistical analysis gives the best fit values of the den-
sity parameters for each component of the decaying vacuum
of the dark energy. Testing the model with observational data
we have found that dark energy can decay in three distin-
guished ways: exponentially, by damping oscillation and in
power-law decay. We show that the main contribution to the
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decay of the metastable vacuum is the dark energy decay of
an exponential type and this type of decay dominates up to
2.2 × 104T0, where T0 is the present age of the Universe.
Our calculations show that the exponential decay has only
an intermediate character and will be replaced in the future
evolution of the Universe by an oscillation decay and decay
of 1/t2 type. From the estimation of the model parameters
we see that the decay half life should be much larger than the
age of the Universe.

Today modern cosmology has the methodological status
of some effective theory, which is described very well by cur-
rent astronomical observations in terms of dark matter and
dark energy. However, there are many open problems related
to the unknown nature of dark energy. The cosmological
parameter is a good effective description of the accelerating
phase of the current Universe, but we do not understand why
the today value of this parameter is so small in comparison
with its value in the early Universe.

We look for an alternative cosmological model to super-
sede the ΛCDM model, the present standard cosmological
model. Our main motivation is to check if the model consid-
ered in the next sections is able to solve the cosmological con-
stant problem. In this paper, we consider the case when the
cosmological constant parameter results from the assumption
that the vacuum energy is given by the fundamental theory
[7].

We assume quantum mechanics as a fundamental theory,
which determines the cosmological parameters and explain
how the cosmological parameters change during the cosmic
evolution. The discussion of the cosmological constant prob-
lem is included in Refs. [7–20].

Krauss and Dent [1] analyzed the properties of the false
vacuum state form the point of view of the quantum theory
of decay processes. They assumed that the decay process of
metastable vacuum is a quantum decay process realized as
the transition from the state corresponding to the metastable
(false) vacuum state to the state corresponding to the low-
est energy of the Universe (that is, to the true vacuum state)
and thus that this process can be described using the stan-
dard quantum formalism usually used to describe the decay
of excited atomic levels or unstable particles. They used the
Fock–Krylov theory of unstable quantum states [2–5]. One
of the famous results of this theory is the proof that unsta-
ble quantum systems cannot decay exponentially at very late
times and that in such a late time regime any decay process
must run slower than any exponentially decreasing function
of time [4]. Model calculations show that survival probability
exhibits inverse power-law behavior at these times. Krauss
and Dent [1] analyzing a false vacuum decay pointed out that
in eternal inflation, many false vacuum regions can survive
up to much later than the times when the exponential decay
law holds. They formulated the hypothesis that some false
vacuum regions survive well up to the cross-over time T or

later, where the cross-over time, T , is the time when con-
tributions of the exponential and late time non-exponential
parts of the survival probability are of the same order. They
gave a simple explanation of such an effect. It may occur
even though the regions of false vacua by assumption should
decay exponentially, and gravitational effects force space in
a region that has not decayed yet to grow exponentially fast.
Such a cosmological scenario may be realized if the lifetime
of the metastable vacuum state or the dark energy density is
much, much shorter than the age of the Universe. It should
be of order of times of the age of the inflationary stage of the
Universe.

The possibility that our Universe (or some regions in our
Universe) were able to survive up to times longer that the
cross-over time T should be considered seriously was con-
cluded by Krauss and Dent’s analysis [1]. This is impossible
within the standard approach of calculations of the decay rate
Γ for the decaying vacuum state [21–25]. Calculations per-
formed within this standard approach cannot lead to a correct
description of the evolution of the Universe with false vac-
uum in all cases when the lifetime of the false vacuum state is
so short that its survival probability exhibits an inverse power-
law behavior at times comparable with the age of the Uni-
verse. This conclusion is valid not only when the dark energy
density and its late time properties are related to the transi-
tion of the Universe from the false vacuum state to the true
vacuum, but also when the dark energy is formed by unstable
”dark particles”. In both cases the decay of the dark energy
density is the quantum decay process and only the formalism
based on the Fock–Krylov theory of unstable quantum states
and used by Krauss and Dent [1] is able to describe correctly
such a situation. Note that Landim and Abdalla built a model
of metastable dark energy, in which the observed vacuum
energy is the value of the scalar potential at the false vacuum
[26].

Models with metastable dark energy have recently been
discussed in the context of the explanation of the H0 ten-
sion problem [27]. Our model is a quantum generaliza-
tion of Shafieloo et al.’s model [6] and contains a phase of
radioactive-like decay valid in the context of solving this
problem. Shafieloo et al. considered three different ways of
dark energy decay. In our paper, we investigate the second
way of the decay into dark matter. The models of the decay
of the dark energy analyzed in [6] can be a useful tool for
numerically testing decay processes discussed in [1] and for
analyzing the properties of the decaying dark energy at times
t > T . Namely, Shafieloo et al. [6] analyzed the properties
of the model of the time evolution of the dark energy. Their
model assumes a “radioactive decay” scheme for decaying
dark energy in which the present value of the dark energy
density, ρDE(t0), is related to its value at an earlier instant of
time, ρDE(t), by
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ρDE(t) = ρDE(t0) × exp [−Γ (t − t0)] ≡ ρDE(t − t0), (1)

where the only free parameter is the decay rate Γ . Shafieloo
et al. [6] derived this equation from the fundamental equation
of the theory of radioactive decays,

ρ̇DE(t) = −Γ ρDE(t) (2)

(see Eqs. (2.1) and (2.2) in [6]). These equations are known
from the Rutherford theory of the decay of radioactive ele-
ments. Rutherford deriving these equations assumed that the
number decaying radioactive elements at a given instant of
time is proportional to a number of these elements at this
moment of time [28–31] as in Eq. (2). So the Rutherford
equations and thus also Eqs. (1)–(2) are the classical physics
equations.

In the context of Eqs. (1)–(2) one may ask what ρDE(t)
is built from that decays according to radioactive decay law?
For physicists the only reasonable explanation for this prob-
lem is the assumption that ρDE(t) describes the energy of an
extremely huge number of particles occupying a volume V0

at the initial instant of time t0 and decaying at later times.
Of course when such particles can be considered as classi-
cal particles, then this process can be described using the
classical radioactive decay law. Unfortunately the process of
the creation of the Universe is not a classical physics pro-
cess, but it is a quantum process and particles or states of
the system created during such a process exhibit quantum
properties and are subject to the laws of quantum physics.
The same concerns ρDE(t) generated by quantum fluctua-
tions or excitations of a quantum scalar field, which can be
described as excited metastable states of this field and the
process of their decay is a quantum process. Therefore, as a
quantum decay process it exhibits at late times completely
different properties than the classical radioactive decay pro-
cess, as pointed out by Krauss and Dent. Simply, if ρDE(t)
is related to the extremely huge number of metastable states
(excitations of the scalar field or its fluctuations) generated
at t0 in a volume V0, it is very likely that many of them can
be found undecayed at times longer than the cross-over time
T . All this suggests that Eqs. (1) and (2) may not be used
when one wants to describe such a processes.

It seems that a reasonable way to make these equations
suitable for description of quantum decay processes is to
replace the quantity (the decay rate) Γ appearing in Eqs. (1)
and (2) by a corresponding decay rate derived using the quan-
tum theory of unstable systems. The decay rate Γ used in
Eqs. (1) and (2) is constant in time but the decay rate derived
within the quantum theory is constant to a very good approx-
imation only at the so-called “canonical decay regime” of
times t (that is, when the quantum decay law has the expo-
nential form, i.e. when t < T ) and at times t much later
than T it tends to zero as 1/t when time t tends to infin-

ity (see, e.g., [32]). This means that the decay process of
an unstable quantum system is slower and slower for suf-
ficiently late time, which was also pointed out in [1]. This
and other properties of the quantum decay process seem to
be important when considering the cosmological inflation-
ary and late time (much later than the inflationary regime of
times) processes including transition processes of the dark
energy density from its early time extremely large values to
its present small value. Therefore we need quantities charac-
terizing the decay processes of unstable quantum systems.

The paper is organized as follows. Section 2 contains a
brief introduction to the problems of unstable states and a
description of quantities characterizing such states, which are
used in the next sections. In Sect. 3 we analyze a possibility
to describe metastable dark energy considering it as an unsta-
ble quantum system. Section 4 contains a discussion of the
cosmological equations with decaying dark energy accord-
ing to the quantum mechanical decay law, and the results of
the numerical calculations are presented in graphical form.
In Sect. 5 we present a statistical analysis. Section 6 contains
the conclusions.

2 Preliminaries: unstable quantum states

The properties of unstable quantum systems are character-
ized by their survival probability (decay law). The survival
probability can be found knowing the initial unstable state
|φ〉 ∈ H (H is the Hilbert space of states of the consid-
ered system) of the quantum system, which was prepared
at the initial instant t0. The survival probability, P(t), of
this state |φ〉 decaying in vacuum equals P(t) = |A(t)|2,
where A(t) is the probability amplitude of finding the sys-
tem at the time t in the rest frame O0 in the initial unstable
state |φ〉, A(t) = 〈φ|φ(t)〉. Here |φ(t)〉 is the solution of the
Schrödinger equation for the initial condition |φ(t0)〉 = |φ〉,
which has the following form:

i h̄
∂

∂t
|φ(t)〉 = H|φ(t)〉. (3)

Here |φ〉, |φ(t)〉 ∈ H, and H denotes the total self-adjoint
Hamiltonian for the system considered. The spectrum of H is
assumed to be bounded from below: Emin > −∞ is the lower
bound of the spectrum σc(H) = [Emin,+∞) of H). Using
the basis in H built from normalized eigenvectors |E〉, E ∈
σc(H) of H and using the expansion of |φ〉 in this basis one can
express the amplitude A(t) as the following Fourier integral:

A(t) ≡ A(t − t0) =
∫ ∞

Emin

ω(E) e−
i
h̄ E (t − t0) dE, (4)

where ω(E) = ω(E)∗ and ω(E) > 0 (see [2,3,5]). Note
that from the normalization condition P(0) ≡ |A(0)|2 = 1
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it follows that
∫ ∞
Emin

ω(E) dE = 1, which means that in the
case of unstable states ω(E) is an absolutely integrable func-
tion. The consequence of this property is the conclusion fol-
lowing from the Riemann–Lebesgue lemma: we need to have
|A(t)| → 0 as t → ∞. All these properties are the essence of
the so-called Fock–Krylov theory of unstable states [2,3,5].
So within this approach the amplitude A(t), and thus the
decay law P(t) of the unstable state |φ〉, are completely
determined by the density of the energy distribution ω(E)

for the system in this state [2,3] (see also [4,5,33–37]. (This
approach is also applicable in quantum field theory models
[38,39].)

Note that in fact the amplitude A(t) contains informa-
tion as regards the decay law P(t) of the state |φ〉, that is,
as regards the decay rate Γφ of this state, as well as the
energy Eφ of the system in this state. This information can be
extracted from A(t). It can be done using the rigorous equa-
tion governing the time evolution in the subspace of unstable
states, H‖ 
 |φ〉‖ ≡ |φ〉. Such an equation follows from the
Schrödinger equation (3) for the total state space H.

Using the Schrödinger equation (3) one finds that for the
problem considered

i h̄
∂

∂t
〈φ|φ(t)〉 = 〈φ|H|φ(t)〉. (5)

From this relation one can conclude that the amplitude A(t)
satisfies the following equation:

i h̄
∂A(t)

∂t
= h(t) A(t), (6)

where

h(t) = 〈φ|H|φ(t)〉
A(t)

≡ i h̄

A(t)

∂A(t)

∂t
(7)

and h(t) is the effective Hamiltonian governing the time evo-
lution in the subspace of unstable states H‖ = PH, where
P = |φ〉〈φ| (see [32] and also [41,42] and the references
therein). The subspace H�H‖ = H⊥ ≡ QH is the subspace
of decay products. Here Q = I − P. One meets the effec-
tive Hamiltonian h(t) when one starts with the Schrödinger
equation for the total state space H and looks for the rigor-
ous evolution equation for a distinguished subspace of states
H|| ⊂ H [32,37]. In general, h(t) is a complex function of
time and in the case of H‖ of dimension two or more the
effective Hamiltonian governing the time evolution in such a
subspace it is a non-hermitian matrix H‖ or a non-hermitian
operator. We have

h(t) = Eφ(t) − i

2
Γφ(t), (8)

and Eφ(t) = � [h(t)] and Γφ(t) = −2 � [h(t)], are the
instantaneous energy (mass) Eφ(t) and the instantaneous
decay rate, Γφ(t) [32,41,42]. (Here � (z) and � (z) denote
the real and imaginary parts of z, respectively.) The quantity
Γφ(t) = −2 � [h(t)] is interpreted as the decay rate because
it satisfies the definition of the decay rate used in quantum

theory: Γφ(t)
h̄

def= − 1
P(t)

∂P(t)
∂t . Using (7) it is easy to check

that

Γφ(t)

h̄
≡ − 1

P(t)

∂P(t)

∂t
= − 1

|A(t)|2
∂|A(t)|2

∂t

≡ − 2

h̄
� [h(t)]. (9)

The use of the effective Hamiltonian h(t) leads to the
following form of the solutions of Eq. (6):

A(t) = e−i t
h̄ h(t) ≡ e

−i t
h̄

(
Eφ(t) − i

2Γφ(t)
)
, (10)

where h(t) is the average effective Hamiltonian h(t) for

the time interval [0, t]: h(t)
def= 1

t

∫ t
0 h(x) dx (averages

Eφ(t), Γφ(t) are defined analogously). Within a rigorous
treatment of the problem it is straightforward to show that
the basic assumptions of the quantum theory guarantee that
(see, e.g. [32])

lim
t→∞ Γφ(t) = 0 and lim

t→∞ Γφ(t) = 0. (11)

These results are rigorous. For Eφ(t) one can show that
limt→∞ Eφ(t) = Emin (see [43]).

Equations (6) and (7) are convenient when the den-
sity ω(E) is given and one wants to find the instanta-
neous energy Eφ(t) and decay rate Γφ(t): Inserting ω(E)

into (4) one obtains the amplitude A(t) and then using
(7) one finds the h(t) and thus Eφ(t) and Γφ(t). In the
general case the density ω(E) possesses properties anal-
ogous to the scattering amplitude, i.e., it can be decom-
posed into a threshold factor, a pole-function P(E) with
a simple pole and a smooth form factor F(E). We have
ω(E) = Θ(E − Emin) (E − Emin)

αl P(E) F(E), where αl
depends on the angular momentum l through αl = α+ l (see
Eq. (6.1) in [5]), 0 ≤ α < 1) and Θ(E) is a step function:
Θ(E) = 0 for E ≤ 0 and Θ(E) = 1 for E > 0.
The simplest choice is to take α = 0, l = 0, F(E) = 1
and to assume that P(E) has the Breit–Wigner (BW) form
of the energy distribution density. (The mentioned Breit–
Wigner distribution was found when the cross-section of
slow neutrons was analyzed [44].) It turns out that the decay
curves obtained in this simplest case are very similar in
form to the curves calculated for the above described more
general ω(E) (see [33] and the analysis in [5]). So to find
the most typical properties of the decay process it is suf-
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ficient to make the relevant calculations for ω(E) mod-
eled by the Breit–Wigner distribution of the energy density:

ω(E) ≡ ωBW(E)
def= N

2π
Θ(E−Emin)

Γ0

(E−E0)2+(
Γ0
2 )2

, where

N is a normalization constant. The parameters E0 and Γ0 cor-
respond to the energy of the system in the unstable state and
its decay rate at the exponential (or canonical) regime of the
decay process. Emin is the minimal (the lowest) energy of
the system. Inserting ωBW(E) into Eq. (4) for the amplitude
A(t) after some algebra one finds that

A(t) = A(t − t0) = N

2π
e−

i
h̄ E0t Iβ

(
Γ0(t − t0)

h̄

)
, (12)

where

Iβ(τ )
def=

∫ ∞

−β

1

η2 + 1
4

e−iητ dη. (13)

Here τ = Γ0(t−t0)
h̄ ≡ t−t0

τ0
, τ0 is the lifetime, τ0 = h̄

Γ0
, and

β = E0−Emin
Γ0

> 0. (The integral Iβ(τ ) can be expressed
in terms of the integral–exponential function [40–42]; for a
definition, see [45,46].)

Note that the more convenient is to use t ′ = (t − t0) in
(12), (13) or (4) and in a formula of this type, or to assume
that t0 = 0 in all formulas of this type, because this does not
change the results of calculations but makes them easier. So
from this point on we will assume that t0 = 0.

Next using this A(t) given by Eqs. (12), (13) and Eq. (7)
defining the effective Hamiltonian hφ(t) one finds that within
the Breit–Wigner (BW) model considered

h(t) = E0 + Γ0

Jβ
(

Γ0t
h̄

)

Iβ
(

Γ0t
h̄

) , (14)

where

Jβ(τ ) =
∫ ∞

−β

x

x2 + 1
4

e−i xτ dx . (15)

Working within the BW model and using Jβ(τ ) one should
remember that Jβ(0) is undefined (limτ→0 Jβ(τ ) = ∞).
Simply within the model defined by the Breit–Wigner distri-
bution of the energy density, ωBW(E), the expectation value
of H, that is, 〈φ|H|φ〉, is not finite. So the whole consideration
based on the use of Jβ(τ ) is valid only for τ > 0.

It is relatively simple to find the analytical form of Jβ(τ )

using the following identity:

Jβ(τ ) ≡ i
∂ Iβ(τ )

∂τ
. (16)

We need to know the energy of the system in the unstable
state |φ〉 considered and its decay rate. The instantaneous

energy Eφ(t) of the system in the unstable state |φ〉 has the
following form within the BW model considered:

Eφ(t) = � [h(t)] = E0 + Γ0 �
⎡
⎣ Jβ

(
Γ0t
h̄

)

Iβ
(

Γ0t
h̄

)
⎤
⎦ , (17)

whereas the instantaneous decay rate looks as follows:

Γφ(τ) = −2� [h(t)] = − 2 Γ0 �
[
Jβ(τ )

Iβ(τ )

]

≡ − 2 Γ0 �
⎡
⎣ Jβ

(
Γ0t
h̄

)

Iβ
(

Γ0t
h̄

)
⎤
⎦ . (18)

It is relatively simple to find the asymptotic expressions
Iβτ and Jβ(τ ) for τ → ∞ directly from (13) and (15) using,
e.g., the method of integration by parts. We have for τ → ∞

Iβ(τ ) � i

τ

eiβτ

β2 + 1
4

{
− 1 + 2β

β2 + 1
4

i

τ

+
[

2

β2 + 1
4

− 8β2

(
β2 + 1

4

)2

] (
i

τ

)2

+ · · ·
}

(19)

and

Jβ(τ ) � i

τ

eiβτ

β2 + 1
4

{
β +

[
1 − 2β2

β2 + 1
4

]
i

τ

+ β

β2 + 1
4

[
8β2

β2 + 1
4

− 6

] (
i

τ

)2

+ · · ·
}
. (20)

These two last asymptotic expressions allow one to find for
τ → ∞ the asymptotic form of the ratio Jβ(τ )

Iβ(τ )
used in Eqs.

(14), (17) and (18), having a much simpler form than asymp-
totic expansions for Iβ(τ ) and Jβ(τ ). One finds that, for
τ → ∞,

Jβ(τ )

Iβ(τ )
� −β − i

τ
− 2β

β2 + 1
4

1

τ 2 + · · · . (21)

Starting from this asymptotic expression and Eq. (17) one
finds, e.g. that, for t → ∞,

Eφ(t)| t→∞ � Emin − 2
E0 − Emin∣∣∣ h0
φ − Emin

∣∣∣ 2

(
h̄

t

)2

, (22)

where h0
φ = E0 − i

2Γ0, and

Γφ(t)| t→∞ � 2Γ0
1

τ
+ · · · = 2

h̄

t
+ · · · . (23)

The last two relations are valid for t > T , where T denotes
the cross-over time, i.e. the time when exponential and late
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time inverse power-law contributions to the survival ampli-
tude become comparable.

3 Metastable dark energy with a decay law from
quantum mechanics

Note that the model described by Eqs. (1)–(2) is the classi-
cal physics model and therefore it cannot be applied directly
when one would like to follow Krauss and Dent and to con-
sider the decay of the dark energy density ρDE(t) as the
quantum decay process. For example, the late time effects
discussed in [1] can never occur in the SHSS model. The
simplest way to extend models considered in [6] so that they
might be used to describe the decay of ρDE(t) as a quantum
process seems to be a replacement of the classical decay rate
Γ in Eqs. (1), (2) by the decay rate Γφ(t)/h̄ appearing in the
quantum theoretical considerations. It is because the classical
decay rate Γclass = Γ corresponds to the quantum physics
decay rate Γquant = Γφ(t) divided by h̄ (that is, to Γφ(t)/h̄)
and using Γφ(t) one can insert it into Eq. (2) to obtain

ρ̇DE(t) = − 1

h̄
Γφ(t) ρDE(t), (24)

instead of the classical fundamental equation of the radioac-
tive decays theory. In fact this equation is a simple improve-
ment of models discussed in [6], and it can be considered as
the use of quantum corrections in the models mentioned. In
such a case Eq. (1) takes the following form:

ρDE(t) = ρDE(t0) × exp

[
− t

h̄
Γφ(t)

]
(25)

≡ ρDE(t0) × exp

[
− 1

h̄

∫ t

t0
Γφ(x) dx

]
, (26)

where Γφ(t) is given by Eq. (18) and Γφ(t)
def= 1

t

∫ t
t0

Γφ(x)dx
is the average decay rate for the time interval [0, t]. These
relations, replacing Eq. (1), contain quantum corrections con-
nected with the use of the quantum theory decay rate.

Note that using the identity (9) and Eq. (12) one can rewrite
Eq. (26) as follows:

ρDE(t) ≡ N 2

4π2 ρDE(t0)

∣∣∣∣Iβ
(

Γ0(t − t0)

h̄

)∣∣∣∣
2

, (27)

which can make simpler numerical calculations.
Now in order to obtain analytical or numerical results hav-

ing Eqs. (24)–(26) one needs a quantum mechanical model
of the decay process, that is, one needs ω(E) (see (4)). We
begin our considerations using the Breit–Wigner model ana-
lyzed in the previous section. Inserting Γφ(t) given by (18)
into Eq. (24), or Eqs. (25) and (26) we can analyze the decay

process of ρDE(t). One can notice that performing the calcu-
lations, e.g. using the Breit–Wigner model, it is more conve-
nient to use Eq. (27) with Iβ(t) given by Eq. (13) than using
Eqs. (25) and (26) with Γφ(t) given by Eq. (18).

Note that one of the parameters appearing in the quantum
mechanical formula (18) for Γφ(t) is Γ0. This parameter can
be eliminated if we notice that β = E0−Emin

Γ0
> 0. Hence

Γ0 ≡ E0−Emin
β

, and therefore one can rewrite (18) as

Γφ(τ) = −2
E0 − Emin

β
�

[
Jβ(τ )

Iβ(τ )

]
, (28)

or

Γφ(τ) = −2
E0
V0

− Emin
V0

β
V0 �

[
Jβ(τ )

Iβ(τ )

]
, (29)

where V0 is the volume of the system at t = t0. We have E0
V0

=
ρ
q f t
DE

def= ρ0
DE and Emin

V0
= ρbare, (where ρ

q f t
DE is the energy

density calculated using quantum field theory methods), so
Eq. (29) can be rewritten as follows:

Γφ(τ) = −2
ρ0

DE − ρbare

β
V0 �

[
Jβ(τ )

Iβ(τ )

]
. (30)

The parameter τ used in (28)–(30) denotes time t measured
in lifetimes as mentioned after Eq. (13): τ = t

τ0
. Using the

parameter β the lifetime τ0 can be expressed as follows: τ0 =
β

ρ0
DE−ρbare

h̄
V0

.

The asymptotic form (23) indicates one of the main dif-
ferences between the SHSS model and our improvement of
this model. Namely, from Eq. (1) it follows that

lim
t→∞ ρDE(t) = 0. (31)

From (1) one sees that ρDE(t) is an exponentially decreasing
function of time.

It is interesting to consider a more general form of the
energy density,

ρ̃DE(t) = ρDE(t) − ρbare, (32)

where ρbare = const is the minimal value of the dark energy
density. Inserting the density ρ̃DE(t) into Eq. (1) one con-
cludes that ρDE(t) tends to ρbare exponentially fast as t → ∞.

Let us see now what happens when we insert ρ̃DE(t) into
our Eq. (24) and consider only the asymptotic behavior of
ρDE(t) for times t ≥ T0 � T . In such a case inserting the
late time asymptotic expression of Eq. (23) into Eq. (24) one
finds for very late times t > T0 that

ln
ρ̃DE(t)

ρ̃DE(T0)
= ln

( t

T0

)−2
, (33)
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that is, for t > T0 � T ,

ρDE(t) � ρbare + D
1

t2 , (34)

where D = const. Note that the same result follows directly
from (27) when one inserts there A(t) given by Eq. (12)
and uses the asymptotic expression of Eq. (19) for Iβ(τ ),
which shows that our approach is self-consistent. The result
(34) means that quantum corrections do not allow ρDE(t) to
tend to ρbare exponentially fast when t → ∞, but ρDE(t)
must tend to ρbare as 1/t2, for t → ∞, which is in the
full agreement with our earlier results, presented, e.g., in
[20,47–50]. So in fact, as one can see, the SSHS model is the
classical physics approximation of the model discussed in our
papers mentioned, where the cosmological parametrization
resulting from the quantum mechanical treatment of unstable
systems was used.

4 Cosmological equations

We introduce our model as the covariant theory with the inter-
action term [51]. We consider the flat cosmological model
(the constant curvature is equal zero).

The total density of energy consists of the baryonic matter
ρB, the dark matter ρDM and the dark energy ρDE. We assume,
for the baryonic matter and the dark matter, the equation
of state for dust (pB(ρB) = 0 and pDM(ρDM) = 0). Also
we consider the equation of state for the dark energy to be
pDE(ρDE) = −ρDE.

The cosmological equations such as the Friedmann and
acceleration equations are found by the variation action by
the metric gμν [51]. In consequence we get the equations

3H2 = 3
ȧ

a

2

= ρtot = ρB + ρDM + ρDE (35)

and

ä

a
= −1

6
(ρtot + 3ptot(ρtot)) = ρB + ρDM − 2ρDE, (36)

where H = ȧ
a is the Hubble function. Here, we assume

8πG = c = 1.
Equations (35) and (36) give the conservation equation in

the following form:

ρ̇tot = −3H (ρtot + ptot(ρtot)) (37)

or in the equivalent form

ρ̇M = −3HρM − ρ̇DE, (38)

where ρM = ρB + ρDM.

0.8 1.0 1.2 1.4 1.6 1.8 2.0
t

1.00

1.02

1.04

1.06

1.08

DE t

bare

Fig. 1 The dependence ρDE(t) [from Eq. (40)]. For illustration we put
β = 800, Γ0 = 20h̄ and ε = 1000ρbare. The qualitative behavior of
ρDE does not depend on ε. The units of time t are determined by the
choice of units of Γ0 because Γ0t

h̄ is dimensionless

Let Q denote the interaction term. Equation (38) can be
rewritten as

ρ̇b = −3HρB, ρ̇DM = −3HρDM + Q and ρ̇DE = −Q.

(39)

If Q > 0 then the energy flows from the dark energy sector
to the dark matter sector. If Q < 0 then the energy flows
from the dark matter sector to the dark energy sector.

Figure 1 shows the diagrams of the evolution of ρDE(t).
Note that the oscillatory phase appears in the evolution of
ρDE(t). Figure 2 presents the evolution of the Γ̄φ(t). At the
initial period we obtain a logistic-type decay of dark energy.
The period when Γ̄φ(t) grows to a plateau is characteristic
for the so-called Zeno time [52]. It increases slowly about
0.0004 (the slope of this curve is 0.0001) with the cosmic
time t in the interval (0, 4). Then in the interval (4, 30000) it
becomes strictly constant. This behavior justifies a radioac-
tive approximation given in Ref. [6]. For the late time, Γ̄φ(t)
approaches zero.

Using (27) we get the final formula for ρDE(t),

ρDE(t) = ρbare + ε

∣∣∣∣Iβ
(

Γ0t

h̄

)∣∣∣∣
2

, (40)

where ε ≡ ε(β) = ρDE(0)−ρbare

|Iβ(0)|2 measures the deviation from

the ΛCDM model (Iβ(0) ≡ 2π
N = π + 2 arctan(2β) and

β > 0).
The canonical scaling law for cold dark matter should be

modified. In this case

ρDM = ρDM,0a
−3+δ, (41)
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Fig. 2 The dependence Γ̄φ(t) for the best fit values (see Table 1). The
upper panel presents the evolution of Γ̄φ(t) for the early Universe and
the present epoch. The lower panel presents evolution of Γ̄φ(t) for the

late time Universe. The cosmological time t is expressed in s×Mpc
100 km . In

these units, the age of the Universe is equal 1.41 s×Mpc
100 km

0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

0.6912

0.6913

0.6914

0.6915

0.6916

Fig. 3 The dependence ρDE(t) (from Eq. (40)) for the best fit value of
model parameter (see Table 1). The cosmological time t is expressed
in s×Mpc

100 km . The present epoch is for t = 1.41 s×Mpc
100 km . Note that, in the

Planck epoch, the value of ρDE(tPl)

3H2
0

is equal to 0.6916

where δ = 1
ln a

∫ Q
HρDM

d ln a. The dependence ρDE(t) [from
Eq. (40)] for the best fit value of model parameter (see
Table 1) is presented in Fig. 3 and the evolution of δ(t) is
shown in Fig. 4.

Assuming that β > 0 one obtains for t > tL = h̄
Γ0

2β

β2+ 1
4

(see [40]) the approximation of (40) in the following form:

ρDE(t) ≈ ρbare

+ε

⎛
⎜⎝4π2e− Γ0

h̄ t +
4πe− Γ0

2h̄ t sin
(
β Γ0

h̄ t
)

( 1
4 + β2

)
Γ0
h̄ t

+ 1(( 1
4 + β2

)
Γ0
h̄ t

)2

⎞
⎟⎠ .

(42)

For the best fit value (see Table 1) tL ≈ 2T0.
From Eq. (42), it results that, for the late time, the behavior

of dark energy can be described by the following formula:

ρDE(t) ≈ ρbare + ε(( 1
4 + β2

)
Γ0
h̄

)2

1

t2 . (43)

This case was considered in [53,54].
If we use Eq. (42) in the Friedmann equation (35), we get

3H2 = ρtot = ρB + ρDM + ρbare + ρrad.dec.

+ρdam.osc. + ρpow.law, (44)

where ρrad.dec. = 4π2εe− Γ0
h̄ t is the radioactive-like decay

part of the dark energy, ρdam.osc. = 4πεe
− Γ0

2h̄ t
sin

(
β

Γ0
h̄ t

)
(

1
4 +β2

)
Γ0
h̄ t

rep-

resents the damping oscillations part of the dark energy and
ρpow.law = ε((

1
4 +β2

)
Γ0
h̄ t

)2 represents the power-law part of the

dark energy. Using dimensionless parameters, Ωi = ρi
3H2

0
,

where H0 is the present value of the Hubble constant, Eq.
(44) can be rewritten as

H2

H2
0

= ΩB +ΩDM +Ωbare +Ωrad.dec. +Ωdam.osc. +Ωpow.law.

(45)

If the radioactive-like decay dominates then one can define
the e-folding time λ and half life time T1/2 = λ ln 2 = h̄ ln 2

Γ0
.

The evolution of Ωrad.dec., Ωdam.osc., Ωpow.law with respect
to time, for the best fit value (see Table 1), is presented in
Fig. 5.

In the moment when the period of the radioactive-like
decay Tend rad.dec. finishes, the value of ρrad.dec. is equal to the
value of ρdam.osc.. It leads us to the condition

4π2εe− Γ0
h̄ t =

4πεe− Γ0
2h̄ t sin

(
β Γ0

h̄ t
)

( 1
4 + β2

)
Γ0
h̄ t

, (46)

or, after simplifying,

πe− Γ0
2h̄ t =

sin
(
β Γ0

h̄ t
)

( 1
4 + β2

)
Γ0
h̄ t

. (47)
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Fig. 4 A diagram of the evolution of δ(z), where z is redshift. For
illustration we put β = 800, Γ0 = 20h̄ and ε = 1000ρbare. The function
δ(z) reaches the maximum for z = z0, which is a solution of equation
δ(z0) = Q(z0)

H(z0)ρDM(z0)

Equation (47) has infinitely many solutions but Tend rad.dec. is
equal to the least positive real solution of (47) because the
period of the radioactive-like decay is before the period of
the damping oscillation decay.

Searching for the value of Tend rad.dec. can be simplified by
using of the upper envelope of oscillations of ρdam.osc., which
is given by

eupper(t) = 4πεe− Γ0
2h̄ t( 1

4 + β2
)

Γ0
h̄ t

. (48)

Then we get an approximation of Eq. (47) in the form
ρrad.dec. = eupper or after simplifying

πe− Γ0
2h̄ t = 1( 1

4 + β2
)

Γ0
h̄ t

. (49)

The solution of Eq. (49) gives us the approximated value of
Tend rad.dec..

Note that a solution of Eq. (49) cannot be less than the
value of Tend rad.dec. having subtracted the value of one period
of oscillation of ρdam.osc. (i.e., Tdam.osc. = 2π h̄

βΓ0
) and cannot

be greater than the value of Tend rad.dec.. In consequence for
β > 29, the error of the approximation is less than 1%. The
dependence Tend rad.dec.(β) is presented in Fig. 6.

From the statistical analysis (see Sect. 5), we have the best
fit values of Γ0/h̄ = 0.00115 and β = 1

α
− 1 = 799 (see

Table 1) and Eq. (49) gives Tend rad.dec. = 2.2×104 T0, where
T0 is the present age of the Universe.

5 Statistical analysis

In our statistical analysis, we used the following astro-
nomical data: supernovae of type Ia (SNIa) (Union 2.1

4 6 8 10 t

0.434

0.435

0.436

0.437

rad.dec t

4 6 8 10 t

0.00004

0.00002

0.00002

0.00004

0.00006

0.00008
dam.osc. t

4 6 8 10 t

1. 10 9

2. 10 9

3. 10 9

4. 10 9

paw.law. t

Fig. 5 The dependence Ωrad.dec., Ωdam.osc., Ωpow.law with respect to
the cosmological time t for the best fit value of model parameter (see
Table 1). The cosmological time t is expressed in s×Mpc

100 km . In these units,

the present epoch is for t = 1.41 s×Mpc
100 km . Let us note that while the density

parameters do not change practically during the cosmic evolution for
the cases shown in the upper and middle panels, the density parameters
are lowered by many orders of magnitude for the case presented in the
lower panel [20]

dataset [55]), BAO data (Sloan Digital Sky Survey Release
7 (SDSS DR7) dataset at z = 0.275 [56], 6dF Galaxy Red-
shift Survey measurements at redshift z = 0.1 [57], and
WiggleZ measurements at redshift z = 0.44, 0.60, 0.73
[58]), measurements of the Hubble parameter H(z) of
galaxies [59–61], the Alcock–Paczynski test (AP)[62,63]
(data from [64–72].) and measurements of CMB by Planck
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15000

20000

Tend rad.dec

β

Fig. 6 A diagram presents a dependence Tend rad.dec.(β) given by
Eq. (49) for β > 29. For illustration we put the best fit value of Γ0
(see Table 1). The values of Tend rad.dec. are expressed in terms of the
present age of the Universe T0

[73]. The equation for the likelihood function is given
by

L tot = LSNIaLBAOLAPLH(z)LCMB. (50)

The likelihood function for SNIa has the form

LSNIa = exp

[
−1

2
[A − B2/C + log(C/(2π))]

]
, (51)

where A = (μobs − μth)C−1(μobs − μth), B = C−1(μobs −
μth),C = Tr C−1 and C is a covariance matrix for SNIa, μobs

is the observer distance modulus and μth is the theoretical
distance modulus.

The likelihood function for BAO is described by the equa-
tion

LBAO = exp

[
−1

2

(
dobs − rs(zd)

DV (z)

)
C−1

(
dobs − rs(zd)

DV (z)

)]
,

(52)

where rs(zd) is the sound horizon at the drag epoch [74,75].
The likelihood function

LH(z) = exp

[
−1

2

N∑
i=1

(
H(zi )obs − H(zi )th

σi

)2
]

(53)

is for measurements of the Hubble parameter H(z) of galax-
ies.

The likelihood function for AP is given by

LAP(z) = exp

[
−1

2

N∑
i=1

(
AP(zi )obs − AP(zi )th

σi

)2

]
]

,

(54)
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Fig. 7 Diagram of the temperature power spectrum of CMB for the
best fit values (red line). The error bars from the Planck data are pre-
sented by the color blue

Table 1 The best fit and errors for the estimated model with α from the
interval (00.0, 0.033), Γ0/h̄ from the interval (0.00 100 km

s×Mpc , 0.036 100 km
s×Mpc )

and ε/3H2
0 from the interval (0.00, 0.0175). We assumed that Ωb,0 =

0.048468, H0 = 67.74 km
s×Mpc and Ωm,0 = 0.3089. In the table, the

values of Γ0/h̄ are expressed in 100 km
s×Mpc . Because α = 1

1+β
, the best fit

value of β parameter is equal to 799

Parameter Best fit 68% CL 95% CL

α 0.00125 + 0.00104 + 0.01777

−0.00125 −0.00125

Γ0/h̄ 0.00115 + 0.00209 + 0.2123

−0.00115 −0.00115

ε/3H2
0 0.0111 + 0.0064 + 0.0064

−0.0083 −0.0093

where AP(z)th ≡ H(z)
z

∫ z
0

dz′
H(z′) and AP(zi )obs are obser-

vational data. The likelihood function for CMB is given by

LCMB = exp

[
−1

2
(xth − xobs)C−1(xth − xobs)

]
, (55)

where C is the covariance matrix with the errors, x is a vector
of the acoustic scale lA, the shift parameter R andΩbh2 where

lA = π
rs(z∗)c

∫ z∗
0

dz′
H(z′) and R =

√
Ωm,0H2

0

∫ z∗
0

dz′
H(z′) , where

z∗ is the redshift of the epoch of the recombination [74].
In this paper, we used our own code CosmoDarkBox in

the estimation of the model parameters. Our code uses the
Metropolis–Hastings algorithm [76,77].

In the statistical analysis, we estimated three model param-
eters: α = 1

1+β
, Γ0, ε/3H2

0 . Our statistical results are com-

pletely presented in Table 1. The diagram of the temperature
power spectrum for the best fit values is presented in Fig. 7.
Therefore the radioactive type of decay gives the most effec-
tive mechanism of the decaying metastable dark energy. We
estimated also that the decay half life time T1/2 of dark energy
is equal to 8503 Gyr ≈ 616 × T0.
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6 Discussion and conclusions

The main aim of this paper was to study the implication of
the derived form of the running dark energy. In our approach
the formula for the parametrization of this dark energy is
derived directly from quantum mechanics rather than being
postulated in a phenomenological way. The evolution sce-
nario of dark energy contains three different phases: a phase
of radioactive-like decay in the early Universe, a phase of
damping oscillations and finally a phase of the power-law
type of decay.

We investigated the cosmological evolution caused by
such a variability of dark energy and matter. The dynamics
of the model is governed by a cosmological dynamical sys-
tem with an interacting term because the energy-momentum
tensor is not conserved in this case.

Using results of the investigation of variability of dark
energy with the cosmological time, we analyzed the issue of
whether the problem of the cosmological constant could be
solved within the considered model based on the assump-
tion that the decay process of the dark energy is the quan-
tum decay process having the same form as the decay pro-
cess of the unstable quantum systems or not. For simplic-
ity it was assumed that this decay process is determined by
Eq. (4) with the distribution of the energy density ω(E) in
the unstable quantum state having the Breit–Wigner form
ω(E) = ωBW(E). We show that within such a model dark
energy decays and then the canonical scaling law for cold
dark matter a−3 should be modified. Unfortunately, from our
analysis it follows that within the considered model, where
ω(E) = ωBW(E) and the assumptions leading to estimations
presented in Table 1 are used, there is a very small difference
between ρDE(0) and ρDE(T0), which cannot be considered
as a solution of the cosmological constant problem. On the
other hand one cannot exclude that ω(E) has such a form as
will lead by (4), for such a decay law, to ρDE(0) � ρDE(T0)

for suitably chosen parameters of the model.
Using astronomical data we tested the model and see that it

is in good agreement with the data. Our estimation also shows
that the fraction of all components of the dynamical dark
energy in the whole dark energy is larger than the contribution
of the cosmological constant term.

In our model it is calculated that the Λ term has a dynami-
cal nature as a consequence of a decaying of the dark energy.
In consequence the conservation of the energy-momentum
tensor (EMT) is violated. Recently, Josset and Perez [51]
have demonstrated the model in which the violation of EMT
can be achieved in the context of the unimodular gravity and
how it leads to the emergence of the effective cosmological
constant in Einstein’s equations. In our approach the viola-
tion of the conservation of EMT is rather a consequence of
the quantum mechanical nature of the metastable vacuum,
rather than a modification of the gravity theory.

In our approach the concrete form of the decaying dark
energy is derived directly from a quantum mechanical consid-
eration of unstable states. We obtain a more complex form of
decaying dark energy in which we have found a radioactive
type of its decay. We also estimated the model parameters
as well as fractions of three different forms of decaying:
radioactive type, damping oscillating type and power-law
type. From the astronomical data we see that the radioac-
tive type of decay is favored and 44% of the energy budget
of the Universe corresponds with a radioactive-like decay.

In our paper we investigate the second way of the decay
of dark energy into dark matter from the three different ways
of dark energy decay considered by Shafieloo et al. [6]. They
proposed a class of metastable dark energy models in which
dark energy decays according to the radioactive law. They
assumed a phenomenological form of the decay, studying
observational constraints for the cosmological model. In our
paper, it is derived directly from quantum mechanics. Our
results are complementary to their results because they jus-
tify the phenomenological choice of the exponential decay as
a major mechanism of dark energy decay. Moreover, our cal-
culation of the decay half life is in agreement with Shafieloo
et al.’s calculation. We see that the radioactive-like decay
dominates up to 2.2 × 104T0. Our calculations show that the
radioactive-like decay has only an intermediate character and
will be replaced in the future evolution of the Universe by an
oscillation decay and then decay of 1/t2 type.

One of the differences between our approach and the the-
ory developed by Shafieloo et al. is that they consider only
decay of the dark energy into dark constituents assuming that
the decay rate Γ of the dark energy is constant and depends
only on its internal composition. The latter assumption is
approximately true only if one considers decay processes as
classical physics processes. The detailed analysis of decay
processes of unstable quantum systems shows that the basic
principles of the quantum theory do not allow them to be
described by an exponential decay law at very late times as
well as at initial stage of the decay process (see, e.g., [5] and
the references therein, or [78]) and that the decay law can be
described by the exponentially decreasing function of time
only at “canonical decay regime” of the decay process, that is,
at intermediate times (at times longer than the initial stage of
the evolution of the unstable quantum system and shorter than
the cross-over time T ). These properties of quantum decay
processes mean that in general the decay rate cannot be con-
stant in time, Γ = Γ (t) �= const (see, e.g., [32,37,42,78]),
and at the “canonical decay” stage Γ (t) � Γ0, to a very good
approximation.

These properties of the decay rate were used in our paper.
The advantage of the use of the decay rate following from
the quantum properties of the decaying systems is that such
an approach allows one to describe correctly the initial stage
of the dark energy decay process, and at very late times.
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It is impossible to realize this within the approach used by
Shafieloo et al. Moreover, the use of Γ = const may lead to
the results which need not be correct. The example of such
a situation is the analysis performed in Appendix A, Sec-
tion A1, of Ref. [6], where the authors considered the case
Γ t � 1 and then applied the results obtained within such
an assumption for the analysis of properties of their Model I.
Namely, there are many reasons for drawing the conclusion
that the decay of the dark energy must be a quantum decay
process (see the discussion in Sect. 1) and that it cannot be a
classical physics process. So when one wants to describe
the early stage of the decay process of the dark energy,
which mathematically can be expressed by the assumption
that Γ t � 1 one should not use a relation of the type (1) but
the relation

ρDE(t) = ρDE(0) |A(t)|2, (56)

resulting from the quantum mechanical treatment of the
decay process. Instead of considering the relation of this type,
the authors of [6] used Eq. (1), which leads to Eq. (A1) in [6]
for Γ t � 1, that is, to

ρDE = ε0e
−Γ t � ε0(1 − Γ t) (57)

(ε0 is defined in [6]), which is mathematically correct but
it is not correct when one considers the decay of the dark
energy as a quantum process. In the case of a quantum decay
process one should use a relation of the type (56) and the
approximate form of |A(t)|2 for very short times. In such a
case (see, e.g. [5,32])

|A(t)|2 � 1 − d2 t2, for t → 0, (58)

where d = const and it does not depend on Γ . Therefore we
should have

ρDE(t) � ρDE(0) (1 − d2 t2), for t → 0, (59)

for short times t , when the decay of the dark energy is a
quantum decay process. The difference between Eqs. (57)
(i.e., (A1) in [6]) and (59) is dramatic (the use ε0 in (57)
and ρDE(0) in (59) is not the point). The problem is that
the authors of [6]) use their result (A1) (that is, Eq. (57)) in
Eq. (A2) and then all considerations related to their Model I
in Section A I of Appendix A are founded on Eqs. (A1) and
(A2). This means that the conclusions drawn in [6] (based on
the analysis performed in Sect. A I of Appendix A) may not
reflect real properties of the decaying dark energy. It should
be noted that our analysis performed in this paper is free of
this defect.

Note also that Shafieloo et al. [6] considered only the
decays of the dark energy into dark components: dark mat-

ter and dark radiation, whereas we consider the general case
(that is, in our approach the decay of the dark energy into a
visible baryonic matter is also admissible, which cannot be
excluded in the light of the recently reported discovery of
baryonic spindles linking galaxies [79–81]).
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1 Introduction

In spite of an excellent agreement of the ΛCDM model with observational data some basic
assumptions of this model need justification. There are some ingredients in the model which
could hardly be derived from a certain fundamental theory. The presence of dark energy
(DE)with its currently small value is difficult to explain in the standard model of elementary
particles [1]. Then, the relation of dark energy to the dark matter (DM) seems accidental
(coincidence problem). That these components are of the same order suggests that there may
be certain dynamical relation between them. We suggest a model describing an irreversible
flow of DE to DM. We assume that the total mass of the dark matter does not change. These
assumptions lead to the unique model of the DM-DE interaction.

The Einstein equations are

Rµν − 1

2
gµνR = Tµν , (1.1)

where Rµν is the Ricci tensor, gµν the metric and 8πG = c = ~ = 1, we can decompose the
right-hand sides of (1.1) as

Tµν = Tµνb + TµνR + Tµνde + Tµνdm, (1.2)

where the absence of an interaction between baryonic matter Tb, radiation TR and the dark
component means

∇µ(TµνR + Tµνb ) = 0. (1.3)

– 1 –
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The conservation of the total energy gives

∇µTµνde = −∇µTµνdm ≡ −3κ2Jν (1.4)

with a current Jν and a certain constant κ which can be calculated when the model of Tµνdm
is defined.

The relation between the non-conservation law (1.4) can explain the coincidence between
DM and DE densities as well as the relevance of the dark energy exactly at the present epoch.
We need a model for Tµνde and Tµνdm. We assume that the gain of energy of the dark matter
consisting of particles of mass m results from a diffusion in an environment described by an
ideal fluid. There is only one diffusion which is relativistic invariant and preserves the particle
mass m [2]. The corresponding energy-momentum satisfies the conservation law (1.4). The
current Jν in eq. (1.4) is conserved [3–5]

∇µJµ = 0. (1.5)

This is a realization of the conservation law of the total mass of the dark matter. In a
homogeneous universe the current conservation implies

J0 =
γ

3κ2
a−3, (1.6)

where a is the scale factor of an expanding metric and another constant γ.
In a homogeneous space-time we can represent the DM as well as DE energy-momentum

as the energy-momentum of an ideal fluid. The conservation law (1.4) leads to a particular
interaction among the fluids. An interaction which is a linear combination of the DM and DE
fluids has been discussed in [6]. Non-linear interactions are discussed in [7–10]. Our formula
for the DM dissipation (1.4) follows from the assumption that the dissipation results from a
relativistic motion in a DE fluid. It cannot be expressed as a polynomial formula in DM and
DE fluids as it is in the above mentioned references. Nevertheless, we are able to express the
dynamics of the model as a quadratic dynamical system what makes our approach similar to
that of refs. [7, 8, 10].

Methods of dynamical systems [11] have been recently used in a cosmological model with
diffusion described by a cosmological scalar field [12]. A similar analysis of the dynamics
has been also explored in the context of Bianchi cosmological models [13] as well as in a
description of non-homogeneous and anisotropic cosmological models [14]. In this paper we
intend to explore cosmological models as closed dynamical systems with matter (dark and
baryonic) and dark energy in the form of ideal fluids whose interaction is determined by the
current Jν (1.4). In contradistinction to above mentioned models our model does not contain
non-physical trajectories passing through ρm = 0 line [15].

The plan of the paper is the following. In section 2 we review the model of a relativistic
diffusion and explain eq. (1.4). In section 3 we derive exactly soluble limits relevant for
early and late universe. We discuss energy-momentum conservation and Einstein equations
in section 4. In section 5 we formulate the cosmological equations of section 4 as a closed
dynamical system. We determine its critical points and the phase portrait. In section 6 we
fit the parameters of the model to the observational data.

2 Relativistic diffusion

In this section we consider a Markovian approximation of an interaction of the system with
an environment which leads to the description of this interaction by a diffusion. We consider

– 2 –
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a relativistic generalization of the Krammers diffusion defined on the phase space. It is
determined in the unique way by the requirement that the diffusing particle moves on the
mass-shell (see [2, 16–18]).

Let us choose the contravariant spatial coordinates pj on the mass shell and define the
Riemannian metric

ds2 = gµνdp
µdpν = −Gjkdpjdpk,

where Greek indices µ, ν = 0, 1, 2, 3, Latin indices j, k =, 1, 2, 3 and p0 is expressed by pj from
p2 = m2. We have (we assumed that g0k = 0)

Gjk = −gjk + pjpkω
−2,

where
ω2 = m2 − gjkpjpk.

Then, the inverse matrix is
Gjk = −gjk +m−2pjpk.

Next,
G ≡ −det(Gjk) = −m2 det(gjk)ω

−2.

We define diffusion as a stochastic process generated by the Laplace-Beltrami operator
4m
H on the mass shell

4m
H =

1√
G
∂jG

jk
√
G∂k, (2.1)

where ∂j = ∂
∂pj

and G = det(Gjk) is the determinant of Gjk.
The transport equation for the diffusion generated by 4H reads

(pµ∂xµ − Γkµνp
µpν∂k)Ω = κ24m

HΩ, (2.2)

where Γkµν are the Christoffel symbols, ∂xµ are space-time derivatives and κ2 is the diffusion
constant.

Then, we can define the current

Jµ =
√
g

∫
dp

(2π)3
p−1

0 pµΩ, (2.3)

where g = |det[gµν ]| and the energy momentum

Tµνde =
√
g

∫
dp

(2π)3
p−1

0 pµpνΩ. (2.4)

It can be shown using eq. (2.2) that [3–5]

∇µTµνdm = 3κ2Jν (2.5)

and
∇µJµ = g−

1
2∂µ(g

1
2Jµ) = 0. (2.6)

Hence,

g−
1
2∂t(g

1
2J0) = −∂jJ j . (2.7)

This implies (1.6) if the metric is homogeneous and Ω does not depend on x. The constant
γ can be expressed from eq. (2.3) as

γ

3κ2
= g

∫
dp

(2π)3
Ω ≡ Z. (2.8)

– 3 –
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3 The limits ma → 0 and ma → ∞

Most of our subsequent results hold true for a general FWR metric

ds2 = gµνdx
µdxν = dt2 − a2hjkdx

jdxk, (3.1)

but for simplicity of our analysis we restrict ourselves to the flat space hjk = δjk. We rewrite
the diffusion equation in terms of the covariant momenta

qj = gijp
j (3.2)

Then, 4m
H in eq. (2.1) depends on

√
m2a2 + q2 and on a. The assumption q2 � m2a2 (high

energy approximation) is equivalent to the limit

m2a2 → 0. (3.3)

Let

ν =

∫
dt a (3.4)

Then, in the limit m2a2 → 0 and in a homogeneous universe (Ω independent of spatial
coordinates) we obtain

κ−2|q|∂νΩ = qiqj
∂2

∂qi∂qj
Ω + 3qj

∂

∂qj
Ω (3.5)

or in the original contravariant coordinates

aκ−2|p|
(
∂t − 2Hpj

∂

∂pj

)
Ω = pipj

∂2

∂pi∂pj
Ω + 3pj

∂

∂pj
.Ω (3.6)

If in
√
m2a2 + q2 we assume q2 � m2a2 (low energy approximation,i.e., we neglect q) then

in the limit

m2a2 →∞

eq. (2.2) simplifies to

m−1κ−2∂σΩ =
1

2
4qΩ, (3.7)

where

σ = 2

∫ t

t0

ds a2 (3.8)

and 4q is the Laplacian. This is the non-relativistic diffusion equation. In terms of the
original contravariant momenta eq. (3.7) takes the form

m−1a2κ−2

(
∂t − 2Hpj

∂

∂pj

)
Ω =

1

2
4pΩ. (3.9)

– 4 –
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4 Current conservation and Einstein equations

The energy-momentum (2.4) in a homogeneous space-time can be expressed as an energy-
momentum of a fluid

Tµν = (ρ+ p)uµuν − gµνp, (4.1)

where
gµνu

µuν = 1. (4.2)

The divergence equations (1.4) in the frame u = (1,0) takes the form

∂tρdm + 3H(1 + w̃)ρdm = γa−3, (4.3)

where
w̃ =

pdm
ρdm

.

We assume that the energy-momentum tensor of the dark energy has also the form of an
ideal fluid (4.1). Then, from eqs. (1.4) and (1.6)

∂tρde + 3H(1 + w)ρde = −γa−3. (4.4)

On the basis of observational data we choose w = −1 in eq. (4.4). In the diffusion model w̃
depends on time as follows from the formula

w̃ =
1

3

∫
dp

1

p0
a2p2Ωt

(∫
dpp0Ωt

)−1

=
1

3
− m2

3

∫
dp

1

p0
Ωt

(∫
dpp0Ωt

)−1
≡ 1− ω

3
. (4.5)

In an expansion in m we can apply the explicit solution [19] of eq. (3.6) (m = 0) and calculate

ω =
m2a2

6(T0 + κ2ν)
,

where T0 is a parameter which has the meaning of the temperature of the DM fluid at t = t0.
In the ultrarelativistic (massless) case (3.6) we have ω = 0, hence w̃ = 1

3 .
We can express the solution of eq. (4.3) as

ρdm(t) = ρdm(0)a−4 exp

(∫ t

t0

dτ Hω

)

+ γa−4 exp

(∫ t

t0

dτ Hω

)∫ t

t0

ds a(s) exp

(
−
∫ s

t0

dτ Hω

)
. (4.6)

For w = −1

ρde(t) = ρde(0)− γ
∫ t

t0

a−3(s) ds. (4.7)

We still consider the non-relativistic limit of the energy-momentum (2.4)

ρdm = T̃ 00 =
√
g(2π)−3

∫
dp p0Ω = g−

1
2Zm+

√
g(2π)−3

∫
dp

a2p2

2m
Ω

≡ Zma−3 + a−2ρnr, (4.8)

– 5 –
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where

ρnr =
√
g(2π)−3

∫
dp Ωa4 p2

2m
. (4.9)

Using the non-relativistic diffusion equation (3.9) we can show that ρnr satisfies the
non-conservation equation

∂ta
−2ρnr + 3H(1 + w̃nr)a

−2ρnr = γa−3, (4.10)

where w̃nr = 2
3 . The non-relativistic diffusive energy in eq. (4.8) is a sum of two terms

Zma−3 which describes a conservative non-relativistic total rest mass and a−2ρnr describing
the diffusive energy gained from the motion in an environment of the dark energy. The sum
of these energies satisfies the equation (which is not of the form) (1.4))

∂tρdm + 5Hρdm = 3Zκ2a−3 + 2ZmHa−3. (4.11)

The solution of eq. (4.10) is

ρ̃nr(t) = a−3

(
ρnr(0) +

1

2
γσ

)
, (4.12)

where σ is defined in eq. (3.8). As a consequence of eqs. (4.8), (4.10) and (1.4) the non-
relativistic dark energy satisfies the same eqs. (4.4) and (4.7) as the relativistic dark energy.

The Friedman equation in the FRW metric (3.1) with the dark matter, dark energy and
baryonic matter ρb reads

H2 =
1

3
(ρdm + ρde + ρb). (4.13)

By differentiation

Ḣ = −1

2

(
(1 + w̃)ρdm + ρb

)
. (4.14)

In eqs. (4.13)–(4.14) we should insert the general expressions for DM and DE. We need an
approximation for w̃(t). There we shall discuss approximations to eq. (4.6). In a subsequent
section we study the relativistic homogeneous dynamical system (4.3), (4.4) and (4.14) under
the assumption that w̃ is time independent. The non-relativistic (low z) approximation (4.8)
when inserted in eq. (4.13) gives the Friedmann equation

H2 =
1

3

(
a−5

(
ρdm(0) +

3

2
Zκ2σ

)
+ Zma−3 + ρb(0)a−3 + ρde(0) − 3Zκ2

∫ t

t0

ds a(s)−3

)
.

(4.15)

Eqs. (4.7), (4.11) and (4.15) form a system of ordinary differential equations which is ex-
pressed by means of new (energetic) variables into a quadratic dynamical system in the
next section.

5 Dynamical system approach to the DM-DE interaction

In this section we reduce the dynamics of the diffusive DM-DE interaction to the form of
autonomous dynamical system dx

dt = ẋ = f(x), where x is a state variable and t is time.
In this approach one describes the evolution of the diffusive DM-DE interaction in terms of
trajectories situated in a space of all states of the system, i.e., a phase space. This space

– 6 –
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possesses the geometric structure which is a visualization of a global dynamics, i.e. it is
the space of all evolutional paths of the physical system, which are admissible for all initial
conditions. The equivalence of phase portraits is established by means of a homeomorphism
(topological equivalence) which is mapping trajectories of the system while preserving their
orientation. The phase space is organized by critical points, which from the physical point of
view represent stationary states of the system. From the mathematical point of view they are
singular solutions of the system ẋ = f(x), where x ∈ Rn is a vector state, corresponding to
vanishing right-hand sides of the system, i.e. f = [f1(x), . . . , fn(x)] and ∀if i(x) = 0. The final
outcome of any dynamical system analysis is the phase portrait of the system from which one
can easily obtain the information about the stability and genericity of particular solutions.

The methods of dynamical systems [11], which enable us to investigate the dynamics
of the system without the knowledge of its exact solutions, have been recently applied in
a similar context of cosmological models with diffusion [12]. An analysis of cosmological
dynamics has also been explored in Bianchi cosmological models [13]. Some of these methods
are applicable to non-homogeneous and anisotropic cosmological models [14] as well. In
this paper we intend to explore an energy exchange in models describing matter (dark and
baryonic) and dark energy in the form of the cosmological ideal fluids. In contrast to Alho et
al. [12] our model does not contain non-physical trajectories passing through ρm = 0 line [15].

5.1 Cosmological models with constant equation of state for DM and cosmo-
logical constant — Dynamical system analysis

Let us consider the continuity equations for the model with w̃ = const and w = −1 (dark
energy in the form of the cosmological constant). The corresponding continuity equations
take the form (4.3)–(4.4)

a−3(w̃+1) d

dt
(ρdma

3(w̃+1)) = γa−3 > 0, (5.1)

dρde

dt
= −γa−3 < 0, (5.2)

where γ > 0. To formulate the dynamics in the form of a dynamical system, we rewrite in a
suitable way equation (5.1)

J =
dρdm/ρdm

da/a
≡ d ln ρdm

d(ln a)
= −3(1 + w̃) +

γa−3

Hρdm
. (5.3)

Next we define a dimensionless quantity, which measures the strength of the interaction

δ ≡ γa−3

Hρdm
. (5.4)

Clearly, in general δ is time dependent. Let us consider that δ = δ(a(t)). If this quantity is
constant during the cosmic evolution, then the solution of eq. (5.3) has a simple form

ρdm = ρdm,0a
−3(1+w̃)+δ. (5.5)

Our aim is to study the dynamics of the energy transfer from the DE to DM sector. The
corresponding system assumes the form of a three-dimensional dynamical system.

Recalling that 8πG = c = 1 we define

x ≡ ρdm

3H2
, y ≡ ρΛ

3H2
, (5.6)
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where H = d ln a
dt is the Hubble parameter and t is the cosmological time. The differentiation

with respect to the cosmological time t will be denoted by a dot (̇ ≡ d
dt). The variables x

and y have the meaning of dimensionless density parameters.
For simplicity of presentation it is assumed that FRW space is flat (zero curvature

in the Friedmann equations (4.13)). In this case the acceleration equation assumes the
following form

Ḣ = −1

2
(ρeff + peff), (5.7)

where ρeff = ρdm + ρde and peff = w̃ρdm− ρde are the effective energy density and pressure of
the matter filling the universe, w̃ = pdm

ρdm
.

Taking a natural logarithm of the state variables (5.6) and the interaction effect vari-
able (5.4) and performing the differentiation with respect to the cosmological time t we obtain

ẋ

x
=
ρ̇dm

ρdm
− 2

Ḣ

H
= −3H(1 + w̃) + δH − 2

Ḣ

H
, (5.8)

ẏ

y
=
ρ̇Λ

ρΛ
− 2

Ḣ

H
= −δHα− 2

Ḣ

H
, (5.9)

δ̇

δ
= −3H − Ḣ

H
− ρ̇dm

ρdm
= 3w̃H − δH − Ḣ

H
, (5.10)

where α = ρdm
ρΛ

.
It would be convenient to divide both sides of the system (5.8)–(5.10) by H and then

reparameterize the original time variable t following the rule

t→ τ = ln a. (5.11)

The differentiation with respect to the parameter τ will be denoted by a prime (′ ≡ d
dτ ).

Note that dτ
da = a−1 is a strictly monotonic function of the scale factor a.

After the time reparameterization (5.11) the system (5.8)-5.10 can be expressed as the
three-dimensional system of equations

x′ = x

(
−3(1 + w̃) + δ − 2

Ḣ

H2

)
, (5.12)

y′ = y

(
−δα− 2

Ḣ

H2

)
, (5.13)

δ′ = δ

(
3w̃ − δ − Ḣ

H2

)
, (5.14)

where Ḣ
H2 can be determined from the formula (5.7)

Ḣ = −1

2
(1 + w̃)ρdm = −3

2
(1 + w̃)H2x, (5.15)

i.e.,
Ḣ

H2
= −3

2
(1 + w̃)x. (5.16)

In this way the dynamics of the process of decaying cold dark matter satisfying the
equation of state pdm = w̃ρdm in the background of the flat FRW metric can be described by
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means of the dynamical system theory. The resulting three-dimensional dynamical system
has the form

x′ = x (−3(1 + w̃) + δ + 3(1 + w̃)x) , (5.17)

y′ = x (−δ + 3(1 + w̃)y) , (5.18)

δ′ = δ

(
3w̃ − δ +

3

2
(1 + w̃)x

)
, (5.19)

where α = x/y.
Note that the right-hand sides of the dynamical system (5.17)–(5.19) are of a polynomial

form. Therefore all methods of dynamical system analysis, especially analysis of the behavior
on the Poincaré sphere, can be adopted; both in a finite domain as well as at infinity. One

can see that the system (5.17)–(5.19) has as an invariant submanifold { Ḣ
H2 = 0}, the set

{x : x = 0}, corresponding to the case of the vanishing dark matter energy density.
Clearly, the system (5.17)–(5.19) has also an invariant submanifold {δ : δ = 0} cor-

responding to the case of the vanishing interacting term Q = δ as it appears in the
ΛCDM model.

Another interesting submanifold is the plane {y : y = δ
3(1+w̃)}.

5.2 Dynamics of the model for dust matter

Let w̃ be equal to zero. Then, the equation of state for matter is of the form of a dust.
Because x+ y = 1 (Ωdm + Ωde = 1) then the dynamical system (5.17)–(5.19) reduces to the
two-dimensional dynamical system in the following form

x′ = x (−3 + δ + 3x) , (5.20)

δ′ = δ

(
−δ +

3

2
x

)
. (5.21)

The phase portrait for the dynamical system (5.20)–(5.21) is presented in figure 1. On this
phase portrait the deS+ universe is a global attractor for expanding universes. On another
hand the critical point (3) is a global repeller representing the Einstein-de Sitter universe.
The saddle point is representing the static Einstein universe.

For the analysis of the behavior of trajectories at infinity we use the following sets of
two projective coordinates: x̃ = 1

x , δ̃ = δ
x and X̃ = x

δ , ∆̃ = 1
δ .

The dynamical system in variables x̃ and δ̃ covers the behavior of trajectories at infinity

x̃′ = x̃(3x̃− δ̃ − 3), (5.22)

δ̃′ = δ̃

(
3x̃− 2δ̃ − 3

2

)
, (5.23)

where ′ ≡ x̃ d
dτ . The phase portrait for the dynamical system (5.22)–(5.23) is presented in

figure 2.
The dynamical system for variables X̃ and ∆̃ is described by the following equations

X̃ ′ = X̃

(
−3∆̃ +

3

2
X̃ + 2

)
, (5.24)

∆̃′ = ∆̃

(
1− 3

2
X̃

)
, (5.25)
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No. critical point type of critical point type of universe

1 x = 0, δ = 0 saddle-node de Sitter universe without diffusion effect

2 x = 2/3, δ = 1 saddle scaling universe

(x̃ = 3/2, ũ = 3/2)

(X̃ = 2/3, Ũ = 1)

3 x = 1, δ = 0 unstable node Einstein-de Sitter universe without diffusion effect

(x̃ = 1, ũ = 0)

4 x̃ = 0, δ̃ = 0 stable node static universe

5 X̃ = 0, ∆̃ = −3/4 saddle static universe

6 X̃ = 0, ∆̃ = 0 unstable node de Sitter universe with diffusion effect

Table 1. Critical points for autonomous dynamical systems (5.20)–(5.21), (5.22)–(5.23), (5.24)–(5.25),
their type and cosmological interpretation.

where ′ ≡ ∆̃ d
dτ . The phase portrait for the dynamical system (5.24)–(5.25) is presented in

figure 3.

We use also the Poincaré sphere to analyze critical points in the infinity. We define
variables

X =
x√

1 + x2 + δ2
, ∆ =

δ√
1 + δ2 + x2

(5.26)

and in these variables the dynamical system has the following form

X ′ = X

[
−∆2

(
3

2
X −∆

)
+ (1−X2)(3X + ∆− 3

√
1−X2 −∆2)

]
, (5.27)

∆′ = ∆

[
(1−∆2)

(
3

2
X −∆

)
−X2(3X + ∆− 3

√
1−X2 −∆2)

]
, (5.28)

where ′ ≡
√

1−X2 −∆2 d
dτ . The phase portrait for the dynamical system (5.27)–(5.28) is

presented in figure 4. Critical points for autonomous dynamical systems (5.20)–(5.21), (5.22)–
(5.23), (5.24)–(5.25) are completed in table 1.

5.3 Dynamics of the model at the late time (ma → ∞)

As can be seen from eq. (4.8) the relativistic model of the dark matter consists of two fluids
first with w̃ = 0 and the second with w̃ = 2

3 . So, in the approximation ma→∞ and w = −1
we have according to eqs. (4.7), (4.11) and (4.15) the following DM and DE continuity
equations

ρ̇dm + 5ρdmH = γa−3 + 2ZmHa−3, (5.29)

ρ̇de = −γa−3. (5.30)

We define the variables

x =
ρdm

3H2
, y =

ρde

3H2
, u =

(2Zm)a−3

ρdm
and δ =

γa−3

Hρdm
. (5.31)
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If we use the variables (5.31) and time τ = ln a then we obtain the following dynamical
system

x′ = x

(
− 5 + δ + u− 2

Ḣ

H2

)
, (5.32)

y′ = −x(δ + u)− 2y
Ḣ

H2
, (5.33)

u′ = u(2− δ − u), (5.34)

δ′ = δ

(
2− δ − u− Ḣ

H2

)
, (5.35)

where ′ ≡ d
dτ and Ḣ

H2 = −1
2x(5− u). Because x+ y = 1 (Ωdm + Ωde = 1) then the dynamical

system (5.32)–(5.35) reduces to the three-dimensional dynamical system.

The dynamical system (5.32)–(5.35) has the invariant submanifold { Ḣ
H2 = 0}, which is

the set {x : x = 0} or {u : u = 5}. There is also an interesting submanifold δ = 0. On the
invariant submanifold δ = 0 the dynamical system (5.32)–(5.35) reduces to

x′ = x(u+ 5(x− 1)− xu), (5.36)

u′ = u(2− u). (5.37)

The phase portrait for the dynamical system (5.36)–(5.37) is presented in figure 5. Note
that critical point (1) is representing the deS+ universe without the diffusion effect. On the
other hand the de Sitter universe without diffusion is represented by saddle critical point.
Therefore the model with diffusion is generic in the class of all trajectories.

For the analysis the behavior of trajectories at infinity we use the following two sets of
projective coordinates: x̃ = 1

x , ũ = u
x and X̃ = x

u , Ũ = 1
u .

The dynamical system for variables x̃ and ũ is expressed by

x̃′ = x̃(5x̃(x̃− 1) + ũ(1− x̃)), (5.38)

ũ′ = ũ (x̃(7x̃− 5) + ũ(1− 2x̃) + ũ) , (5.39)

where ′ ≡ x̃2 d
dτ . The phase portrait for above dynamical system is presented in figure 6.

In comparison to the phase portrait in figure 5 a new critical point (5) is emerging. It is
representing the Einstein-de Sitter universe fully dominated by dark matter.

The dynamical system for variables X̃ and ∆̃ is described by the following equations

X̃ ′ = X̃
(
Ũ(2− 7Ũ) + X̃(5Ũ − 1)

)
, (5.40)

Ũ ′ = Ũ2
(

1− 2Ũ
)
, (5.41)

where ′ ≡ Ũ2 d
dτ . The phase portrait for the dynamical system (5.40)–(5.41) is presented in

figure 7. Note the de Sitter universe represented by critical point (1) which is a stationary
universe without effect of diffusion is a global attractor.

Critical points for autonomous dynamical systems (5.36)–(5.37), (5.38)–(5.39), (5.40)–
(5.41) are completed in table 2.

We apply also the Poincaré sphere to this system in order to analyze critical points at
infinity. We define the variables

X =
x√

1 + x2 + u2
, U =

u√
1 + x2 + u2

(5.42)
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No critical point type of critical point type of universe

1 x = 0, u = 0 saddle de Sitter universe without diffusion effect

2 x = 1, u = 2 saddle scaling universe

(x̃ = 1, ũ = 2)

(X̃ = 1/2, Ũ = 1/2)

3 x = 1, u = 0 unstable node Einstein-de Sitter universe without diffusion effect

(x̃ = 1, ũ = 0)

4 x = 0, u = 2 stable node de Sitter universe without diffusion effect

(X̃ = 0, Ũ = 1/2)

5 x̃ = 0, ũ = 0 stable node static universe

6 X̃ = 0, Ũ = 0 unstable node de Sitter universe without diffusion effect

Table 2. Critical points for autonomous dynamical systems (5.36)–(5.37), (5.38)–(5.39), (5.40)–(5.41),
their types and cosmological interpretations.
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Figure 1. A phase portrait for dynamical system (5.20)–(5.21). Critical point (1) (x = 0, δ = 0)
represents the de Sitter universe. Critical point (2) (x = 2/3, δ = 1) is a saddle and represents the
scaling universe. Critical point (3) (x = 1, δ = 0) is an unstable node and represents the Einstein-de
Sitter universe. The critical point (1) is a complex type of saddle-node.

In these variables the dynamical system has the following form

X ′ = X
[
U2
√

1−X2 − U2(U − 2
√

1−X2 − U2)

+ (1−X2)(
√

1−X2 − U2(5X + U)− 5(1−X2 − U2)−XU)
]
, (5.43)

U ′ = U
[
(1− U2)

√
1−X2 − U2(2

√
1−X2 − U2 − U)

− X2(
√

1−X2 − U2(5X + U)− 5(1−X2 − U2)−XU)
]
, (5.44)
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Figure 2. A phase portrait for dynamical system (5.22)–(5.23). Critical point (4) (x̃ = 0, δ̃ = 0) and
(5) (x̃ = 0, δ̃ = −3/4) and represents the static universe. Critical point (2) (x̃ = 3/2, δ̃ = 3/2) is a
saddle and represents the scaling universe. Critical point (3) (x̃ = 1, δ̃ = 0) is an unstable node and
represents the Einstein-de Sitter universe.

where ′ ≡ (1 − X2 − U2) d
dτ . The phase portrait for the dynamical system (5.43)–(5.44) is

presented in figure 8.

6 Statistical analysis

6.1 Introduction

In this section we use astronomical observations for low redshifts such as the SNIa, BAO,
measurements of H(z) for galaxies and the Alcock-Paczyński test. We do not use the obser-
vation for high redshifts such as CMB.

lnLSNIa = −1

2
[A−B2/C + ln(C/(2π))], (6.1)

where A = (µobs−µth)C−1(µobs−µth), B = C−1(µobs−µth), C = TrC−1 and C is a covariance
matrix for SNIa. The distance modulus is expressed by µobs = m − M (where m is the
apparent magnitude and M is the absolute magnitude of SNIa) and µth = 5 log10DL + 25
(where the luminosity distance is DL = c(1 + z)

∫ z
0

dz′
H(z)).

We also use BAO observations such as Sloan Digital Sky Survey Release 7 (SDSS DR7)
dataset at z = 0.275 [20], 6dF Galaxy Redshift Survey measurements at redshift z = 0.1 [21],
and WiggleZ measurements at redshift z = 0.44, 0.60, 0.73 [22]. The likelihood function is
expressed by the formula

lnLBAO = −1

2

(
dobs − rs(zd)

DV (z)

)
C−1

(
dobs − rs(zd)

DV (z)

)
, (6.2)

where rs(zd) is the sound horizon at the drag epoch [23].
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Figure 3. A phase portrait for dynamical system (5.24)–(5.25). Critical point (5) (X̃ = −4/3, ∆̃ = 0)
represents the static universe. Critical point (2) (X̃ = 2/3, ∆̃ = 1) is a saddle and represents the
scaling universe. Critical point (6) (X̃ = 0, ∆̃ = 0) is an unstable node and represents the de Sitter
universe. Note that if ∆̃ < 0 the arrow of time indicates how the scale factor is decreasing during the
evolution.

For the Alcock-Paczynski test [24, 25] we use the likelihood function

lnLAP = −1

2

∑

i

(
AP th(zi)−AP obs(zi)

)2

σ2
. (6.3)

where AP (z)th ≡ H(z)
z

∫ z
0

dz′
H(z′) and AP (zi)

obs are observational data [26–34].

In addition, we are applying measurements of the Hubble parameter H(z) of galaxies
from [35–37]. In this case the likelihood function is expressed by

lnLH(z) = −1

2

N∑

i=1

(
H(zi)

obs −H(zi)
th

σi

)2

. (6.4)

The final likelihood function is in the following form

Ltot = LSNIaLBAOLAPLH(z). (6.5)

We use our own code CosmoDarkBox to estimate the model parameters. This code
applies the Metropolis-Hastings algorithm [38, 39] and the dynamical system formulation of
model dynamics to obtain the likelihood function [23, 40]. The dynamical system formulation
of the cosmological dynamics developed in section 5 plays a crucial role in our method of
estimation. We solve the system numerically using the Monte Carlo method and than put
this solution to the corresponding expression for observables in our model.
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Figure 4. A phase portrait for dynamical system (5.27)–(5.28). Critical point (1) represents the de
Sitter universe. Critical point (2) is a saddle and represents the scaling universe. Critical point (3)
is an unstable node and represents the Einstein-de Sitter universe. Critical point (4) represents the
static universe. Critical point (5) represents the static universe. Critical point (6) is an unstable node
and represents the de Sitter universe. Note that if ∆ < 0 the arrow of time indicates how the scale
factor is decreasing during the evolution.

For comparison models with diffusion with the ΛCDM model, we use Bayesian infor-
mation criterion (BIC) [41, 42]. The BIC is defined as

BIC = −2 lnL+ j lnn, (6.6)

where L is the maximum of the likelihood function, j is the number of model parameters (in
this paper for our models j = 3 and for ΛCDM j = 2) and n is number of data points (in
this paper n = 622).

6.2 Model of DM-DE interaction and w̃ = 0

Let us consider the model of DM-DE interaction and with dark matter in the form of dust.
We present a statistical analysis of the model parameters such as H0, Ωdm,0 =

ρdm,0

3H2
0

, where

ρdm,0 is the present value of dark matter and Ωγ,0 = γ
3H2

0

∫ T
dt, where T is the present age

of the Universe. We must have Ωγ ≥ 0 because γ ≥ 0 for a diffusion.

The Friedmann equation for w̃ = 0 in terms of the present values of the density param-
eters takes the form

H2

H2
0

= Ωcm,0a
−3 +

Ωγ,0∫ T
dt
a−3

∫ t

dt+ Ωb,0a
−3 + Ωde(0)− Ω̄γ,0∫ T

a−3dt

∫ t

a−3dt, (6.7)
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Figure 5. A phase portrait for dynamical system (5.36)–(5.37). Critical point (1) (x = 0, u = 0)
represents the de Sitter universe without the diffusion effect. Critical point (2) (x = 1, u = 2) is a
saddle type and represents the scaling universe. Critical point (3) (x = 1, u = 0) is an unstable node
and represents the Einstein-de Sitter universe without the diffusion effect. The critical point (4) is
representing the Einstein-de Sitter without the diffusion effect.

where Ωcm,0 =
ρcm,0

3H2
0

, where ρcm,0 is the present value of the conservative part of dark matter,

which scales as a−3, Ω̄γ,0 = γ
3H2

0

∫ T
a−3 dt.

In these estimation we use formulation of dynamics in the form of a two-dimensional
non-autonomous system with the redshift variable z. This model possesses three parameters
γ, H0 and Ωm(z = 0) = Ωm,0

Ω′m =
3

1 + z
Ωm −

γ

3H3
0

P (1 + z)2,

P ′ = −3

2

1

1 + z
Ωm,0P

3, (6.8)

where P = H0
H and ′ ≡ z.

Statistical results are presented in table 3. Figure 9 shows the likelihood function with
68% and 95% confidence level projections on the plane (Ωdm,0, Ωγ). For this case the value
of reduced χ2 is equal 0.187767.

The value of BIC, for this model is equal BIC1=135.527. Because BIC for the ΛCDM
model is equal BICΛCDM=129.105, ∆BIC = BIC1 −BICΛCDM is equal 6.421. If that a value
of ∆BIC is more than 6, the evidence for the model is strong [42]. Consequently, the evidence
in favor of the ΛCDM model is strong in comparison to our model.
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Figure 6. A phase portrait for dynamical system (5.38)–(5.39). Critical point (5) (x̃ = 0, ũ = 0)
represents the static universe. Critical point (2) (x̃ = 1, ũ = 2) is a saddle and represents the
scaling universe. Critical point (3) (x̃ = 1, ũ = 0) is an unstable node and represents the Einstein-de
Sitter universe. Note that the Einstein-de Sitter universe is fully dominated by dark matter. It is an
attractor solution as well as the de Sitter which one can see in figure 5.

parameter best fit 68% CL 95% CL

H0 67.97 km/(s Mpc)
+0.75

−0.72

+1.57

−1.45

Ωdm,0 0.2658
+0.0223

−0.0208

+0.0485

−0.0415

Ωγ,0 0.0135
+0.0735

−0.0135

+0.1570

−0.0135

Table 3. The best fit and errors for the estimated model for SNIa+BAO+H(z)+AP test with H0

from the interval (65.0 (km/(s Mpc)), 71.0 (km/(s Mpc))), Ωdm,0 from the interval (0.25, 0.40), Ωγ,0
from the interval (0.00, 0.20) Ωb,0 is assumed as 0.048468. The value of reduced χ2 is equal 0.187767.

6.3 Model with DM-DE interaction for ma → ∞

Let us consider a late time behavior of the universe. For the case ma → ∞ we estimated
values of cosmological parameters such as Ωγ,0 = γ

3H2
0

∫ T
a2dt, ΩZm,0 = Zm

3H2
0
, H0 and γ. The

formula for the Friedmann equation in terms of the present values of the density parameters
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Figure 7. A phase portrait for dynamical system (5.40)–(5.41). Critical point (2) (X̃ = 1/2, Ũ = 1/2)
is a saddle and represents the scaling universe. Critical point (6) (X̃ = 0, Ũ = 0) is an unstable node
and represents the de Sitter universe. At this critical point the effect of diffusion are important.
On the other hand the critical point (6) is an unstable stationary solution in which the effect of the
non-zero term (Zm) vanishes.

is in the form

H2

H2
0

= Ωdm,0a
−5 +

Ωγ,0∫ T
a2dt

a−5

∫ t

a2dt+ ΩZma
−3 + Ωde(0)− Ω̄γ,0∫ T

a−3dt

∫ t

a−3dt, (6.9)

where Ω̄γ,0 = γ
3H2

0

∫ T
a−3dt and Ωdm,0 is the present value of the part of dark matter, which

scales as a−5.
The results of our analysis of the model are completed in table 4. Figure 10 shows the

likelihood function with the 68% and 95% confidence level projections on the plane (Ωdm,0,
Ωγ). For this case the value of reduced χ2 is equal 0.188201.

The value of BIC, for this model is equal BIC2=135.795 Because BIC for the ΛCDM
model is equal BICΛCDM = 129.105, ∆BIC = BIC2 − BICΛCDM is equal 6.690. If that a
value of ∆BIC is more than 6, the evidence for the model is strong [42]. Consequently, the
evidence in favor of the ΛCDM model is strong in comparison to our model.

We can compare the behavior of Ωde for our models with others models of the early dark
energy. In Doran and Robbers model [43] the fractional dark energy density is assumed as a
constant, which is different from zero, for the early time universe. This means that Ωde(z)
cannot be negligible for the early universe for this model. In our models, Ωde approaches
zero for the high redshifts (see figure 11) and Ωde is negligible for the early universe. In
consequence, we do not use the high redshift astronomical observations, such as CMB, to fit
values of model parameters for our models.
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Figure 8. A phase portrait for dynamical system (5.43)–(5.44). Critical point (1) represents the
de Sitter universe without the diffusion effect. Critical point (2) is a saddle type and represents the
scaling universe. Critical point (3) is an unstable node and represents the Einstein-de Sitter universe
without the diffusion effect. The critical point (4) is representing the Einstein-de Sitter with the
diffusion effect. Critical point (5) represents the static universe. Critical point (6) is an unstable node
and represents the de Sitter universe.

parameter best fit 68% CL 95% CL

H0 68.04
+0.73

−0.70

+1.27

−1.25

Ωγ,0 0.0106
+0.0082

−0.0106

+0.0137

−0.0106

ΩZm,0 0.2943
+0.0356

−0.0077

+0.0536

−0.0231

γ 0.0299
+0.2198

−0.0299

+0.4555

−0.0299

Table 4. The best fit and errors for the estimated model with w = 2/3 for SNIa+BAO+H(z)+AP
test with ΩZm,0 from the interval (0.22, 0.38), Ωγ,0 from the interval (0.0, 0.03), γ from the interval

(0.00(100 km/(s Mpc))
3
, 0.500(100 km/(s Mpc))

3
) and H0 from the interval (65.0 (km/(s Mpc)), 71.0

(km/(s Mpc))). Ωb,0 is assumed as 0.048468. The value of reduced χ2 is equal 0.188201.
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Figure 9. The intersection of the likelihood function of two model parameters (Ωdm,0, Ωγ,0), for the
case of the model of DM-DE interaction and w̃ = 0, with the marked 68% and 95% confidence levels
for SNIa+BAO+H(z)+AP test. Ωdm,0 is the present value of dark matter.
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Figure 10. The intersection of the likelihood function of two model parameters (ΩZm,0, Ωγ,0), for the
case of the model with DM-DE interaction for ma → ∞, with the marked 68% and 95% confidence
levels for SNIa+BAO+H(z)+AP test.

7 Conclusion

In this paper we studied the dynamics of DM-DE interaction with the relativistic diffusion
process. For this aim we used the dynamical system methods, which enable us to study
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H2(z)/H2
0

, where z is redshift,

Ωm,0f(z) = ρm(z)
3H2

0
and f(0) = 1, for the first model (blue line) and for the second model (red line).

We assume the best fit values of model parameters (see table 3 and 4). Note that, for the early
universe, for the both models, 1 − Ωde(z) is going to a constant (the horizontal asymptotics equals
one). This means, that Ωde(z) for the high redshifts is negligible.

all evolutional scenarios admissible for all initial conditions. We show that dynamics of our
model reduces to the three-dimensional dynamical system, which in order is investigated on
an invariant two-dimensional submanifold. From our dynamical analysis the dynamics is free
from the difficulties, which are present in Alho et al.’s models with diffusion [12], namely
there is no non-physical trajectories crossing the boundary set ρm = 0 [15].

The model is tested by astronomical data in two cases of dark matter in the domain of
low redshifts (SNIa, BAO, H(z) for galaxies and AP test).

In the model under consideration the energy density of dark matter is a growing function
with the cosmological time on the cost of dark energy sector. In the basic formulas on H2(z)
some additional terms appear related with the diffusion process itself. These contributions
can be interpreted as the running Lambda term (Ω̄γ,0 6= 0) and a correction to the standard
scaling law ∝ a−3 for dark matter. At the present epoch the value of the density parameter
related with the dark matter correction is about 1% of total energy budget.

In the first model it is assumed dark matter in the form of dust. The estimated values
of the model parameters are comparable with the parameters for the ΛCDM model and the
value of reduced chi-square of this model is 0.187767. We also studied the second model with
diffusion in a late time approximation: ma → ∞. The value of density parameter of Ωγ,0

related with diffusion is equal 0.0106. In this case the value of reduced chi-square is 0.188201.
For comparison, the value of reduced chi-square of the ΛCDM model is 0.187483.

The value of ∆BIC = BICi − BICΛCDM for the first model is 6.421 and for the second
model is equal 6.690. While the evidence is strong in favor of the ΛCDM model in comparison
to our model, our model cannot be rejected based on our statistical analysis.
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We study dynamics of cosmological models with diffusion effects modeling dark matter and dark energy
interactions. We show the simple model with diffusion between the cosmological constant sector and dark
matter, where the canonical scaling law of dark matter ðρdm;0a−3ðtÞÞ is modified by an additive ϵðtÞ ¼
γta−3ðtÞ to the form ρdm ¼ ρdm;0a−3ðtÞ þ ϵðtÞ. We reduced this model to the autonomous dynamical
system and investigate it using dynamical system methods. This system possesses a two-dimensional
invariant submanifold on which the dark matter-dark energy (DM-DE) interaction can be analyzed on the
phase plane. The state variables are density parameter for matter (dark and visible) and parameter δ
characterizing the rate of growth of energy transfer between the dark sectors. A corresponding dynamical
system belongs to a general class of jungle type of cosmologies represented by coupled cosmological
models in a Lotka-Volterra framework. We demonstrate that the de Sitter solution is a global attractor for all
trajectories in the phase space and there are two repellers: the Einstein-de Sitter universe and the de Sitter
universe state dominating by the diffusion effects. We distinguish in the phase space trajectories, which
become in good agreement with the data. They should intersect a rectangle with sides of
Ωm;0 ∈ ½0.2724; 0.3624�, δ ∈ ½0.0000; 0.0364� at the 95% CL. Our model could solve some of the puzzles
of the ΛCDM model, such as the coincidence and fine-tuning problems. In the context of the coincidence
problem, our model can explain the present ratio of ρm to ρde, which is equal 0.4576þ0.1109

−0.0831 at a 2σ
confidence level.

DOI: 10.1103/PhysRevD.94.043521

I. INTRODUCTION

Thanks to astronomical observations the modern cos-
mology has elaborated on the concept of the standard
cosmological model called the cold dark matter model with
the cosmological constant (ΛCDM model). From a meth-
odological point of view cosmology has achieved a similar
status as the particle physics with its standard model of
particles. The ΛCDM model acts as an effective theory
describing the Universe from redshift z ¼ 0 (today) to
z ¼ 109 (the epoch of primordial nucleosynthesis). In the
very structure of the ΛCDMmodel there are essentially two
components: matter (dark matter and baryonic matter) and
dark energy. It is assumed that the universe is spatially
homogeneous and isotropic, and that its evolution is
governed by Einstein field equations with the energy
momentum tensor for the ideal fluid satisfying the baro-
tropic equation of state p ¼ pðρÞ, where ρ is the energy
density of fluid. From the observational point of view it is
convenient to use dimensionless density parameters Ωi,

defined as the fractions of critical density 3H2
0 which

corresponds to a flat model. These parameters are observ-
ables which can be determined from astronomical obser-
vations [1]. In the ΛCDMmodel it is assumed that all fluids
are noninteracting.
The natural interpretation of the cosmological constant is

to treat it as the energy of the quantum vacuum [2]. The
cosmological model with the cosmological constant term
and pressureless matter fits well to the observation data of
measurements of SNIa luminosity distance as a function of
redshift [3] and observations microwave relic radiation
(WMAP, Planck). Measurements of large-scale structures
also remain consistent with the ΛCDM model. Although
the ΛCDM model describes well the present Universe the
nature of its basic constituents (dark energy and dark
energy) remains unknown. So dark energy and dark matter
are like some useful fictions in the terminology of Nancy
Cartwright [4]. Comparing the value of the cosmological
constant required us to explain the effect of the accelerated
expansion of the Universe observations of distant super-
novae type SNIa with the value of the cosmological
constant interpreted as the energy of the quantum vacuum,
we get the most incredible gap in history of physics
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ρvac=ρΛ ¼ 10143. In this context, the question is born why
the value of the cosmological constant is the small, why not
simply a zero? This is the known problem of the cosmo-
logical constant. In the model under consideration, the
comparison of ρvac=ρΛ still gives 83 orders of magnitude
from the measurement value because ρvac=ρΛ ≃ 1060.
Another problem related closely with the problem of the

cosmological constant is the coincidence problem [5]. This
problem is caused by the lack of explanation of why in
today’s era the density of dark matter and dark energy are
comparable although it is assumed that they have different
time of origin. In this paper we construct a cosmological
model in which it is assumed that the process of interaction
between sectors of dark matter and dark energy is con-
tinuous. Relativistic diffusion describes the transfer of
energy to the sector of dark matter. As a result, we go
beyond the standard model assuming from the outset that
dark matter and dark energy interact. This effect is
described by the running cosmological constant and the
modification of the standard scaling law of the dark matter
density.
If we assume that general relativity is an effective theory

which can be extrapolated to the Planck epoch, then the
interpretation of the cosmological constant parameter
appeared in the ΛCDM model as a vacuum energy seems
to be natural. By equating this density to the energy density
of the zero point energy that is left in a volume after
removing all particles, then we obtain that its value is about
120 orders of magnitude higher than the corresponding
value required for explanation of acceleration of the
Universe in the current epoch. In the Universe with such
a high value of cosmological constant (dark energy) we
have a rapid inflation and galaxies would have no time to
form. The lack of explanation of this difference is called the
cosmological constant problem.
Its solution can be possible if we can find some physical

mechanism lowering dramatically this value during the
cosmic evolution. Of course this process should be defined
in a covariant way following general relativity principles.
Our hypothesis is that diffusion cosmology can offer the

possibility of obtaining a low value of the cosmological
constant today because the effects of diffusion effectively
produce the running cosmological constant.
The first model with diffusion, dark matter-dark energy

(DM-DE) interaction was constructed by Calogero and
Velten [6–8]. In Calogero and Velten’s paper, dark matter is
modeled by dust matter and dark energy by the scalar field.
In Haba et al.’s approach [9], dark matter is modeled by a
coefficient of the equation of state w as a function of
redshift and dark energy assumes the form of the decaying
Λ parameter. In Calogero and Velten’s approach, the model
is based in a modification of the geometric side of
Einstein’s equations. Haba et al.’s approach is consistent
with general relativity at very beginning. Taking into
account the cosmological equations there is no difference

between these approaches if we replace ρdeðaÞ by ϕðtÞ
and w ¼ const.
We study how a value of effective running cosmo-

logical constant parameter changes during the cosmic
evolution and for late time is going to be a small
constant value.
From the astronomical observations of distant super-

novae SNIa and measurements of CMB by Planck, meas-
urement of BAO and other astronomical observations we
obtain that the present value of the energy densities of both
dark energy and dark matter are of the same order of
magnitude [10]. If we assume that the standard cosmo-
logical model (ΛCDM model) is an adequate way to
describe the cosmic evolution, then the value ρde=ρdm will
depend on the cosmological time or redshift and the
question arises: Why are two quantities with different time
of origin comparable at the present epoch? It is called the
cosmic coincidence problem.
We are looking for some physical relativistic mechanism

which gives rise to this coincidence observed for the current
Universe. In the opposite case very special initial conditions
are required for its realization (fine tuning problem). In the
framework of diffusion cosmology our investigation of
this problem shows that while the values of dark matter and
dark energy densities are comparable today they were
significantly different in the past history of the Universe.
Because the diffusion effects effectively act for fluids
which interact with each other during the cosmic evolution.
As a consequence dark energy is running and a canonical
rule of scaling dark matter ρdm proportional to a−3 is
adjusted.
The main aim of our paper is to demonstrate how the

coincidence problem can be naturally solved in the frame-
work of diffusion cosmology. The interacting dark energy
models have been considered by many authors in the
context of this problem. One of the reasons to study these
models is to solve the cosmic coincidence problem
[11–15]. To this aim different ad hoc proposed models
of an interacting term were postulated a priori. In these
models the covariance of general relativity is usually
violated and therefore they have limited application to
cosmology. In the present work we consider a unique
relativistic diffusion model where an interaction mecha-
nism is motivated physically.
In the study of evolutional scenarios of the model under

consideration we apply the dynamical systems methods
[16]. Our model belongs to a general class of jungle type of
cosmologies represented by coupled cosmological models
in a Lotka-Volterra framework [17].
The crucial role in the organization of the phase space

plays the critical point located inside the physical region.
The possible bifurcation of this point is studied in detail for
extracting variability of DE and DM density as the function
of the cosmological time. It is interesting that at this critical
point ρdm ∝ ρde (scaling type solution).
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II. FRIEDMANN EQUATION FOR DIFFUSION
INTERACTING OF DARK MATTER

WITH DARK ENERGY

Haba et al. postulated a particular model of an energy-
momentum exchange between DM and DE sectors, while a
baryonic sector was preserved [9]. In this approach, it is
assumed that the whole number of particles is conserved in
the dark sector. In this paper we reconsider this model in the
light of aforementioned cosmological problems.
We assume Einstein equations in the form

Rμν −
1

2
gμνR ¼ Tμν; ð1Þ

where gμν is the metric, Rμν is the Ricci tensor. In this paper
we use the natural units 8πG ¼ c ¼ 1.
Because of a cosmological application we assume that

the universe has topology R ×M3, where M3 is homo-
geneous and isotropic space. Then the spacetime metric
depends only on one function of the cosmic time t–the scale
factor aðtÞ. Additionally for simplicity we also assume
flatness (k ¼ 0) of sections t ¼ const. We decompose the
energy-momentum tensor on two parts

Tμν ¼ Tμν
de þ Tμν

m : ð2Þ

We assume the conservation of the total energy momen-
tum, which gives

−∇μT
μν
de ¼ ∇μT

μν
m ≡ 3κ2Jν; ð3Þ

where κ2 is the diffusion constant and Jν is the current,
which represents a flow of stream of particles.
We also assume that energy density of the dark matter

consisting of particles of mass m is transferred by a
diffusion mechanism in an environment described by a
perfect fluid. There is only unique diffusion which is
relativistic invariant and preserves the particle-mass m
[18]. The corresponding energy-momentum satisfies the
conservation law (3).
The Friedmann equation in the Friedmann-Robertson-

Walker (FRW) metric with baryonic matter, dark matter and
dark energy reads

3H2 ¼ ρb þ ρdm þ ρde; ð4Þ
where ρm and ρde are determined by relations

ρm ¼ ρb;0a−3 þ ρdm;0a−3 þ γðt − t0Þa−3; ð5Þ

ρde ¼ ρdeð0Þ − γ

Z
t
a−3dt: ð6Þ

The current Jμ in Eq. (3) is conserved [19–21]

∇μJμ ¼ 0: ð7Þ

The above conservation condition for the FRW metric
reduces to

J0 ¼ γ=3κ2a−3 ð8Þ

with a positive constant γ which can be computed from the
phase space distribution Ωðp; xÞ of diffusing particles [9].
The condition (3) after calculation of divergence reduces

to the continuity conditions for energy density of both
matter and dark energy

_ρm ¼ −3Hρm þ γa−3; ð9Þ

_ρde ¼ −γa−3; ð10Þ

where we assume the equation of state for dark energy as
pde ¼ −ρde and for matter as pm ¼ 0; a dot denotes
differentiation with respect to the cosmological time t.
Eq. (9) can be rewritten as

a−3
d
dt

ðρma3Þ ¼ γa−3⇔
d
dt

ðEÞ ¼ γ; ð11Þ

where E is the total energy of matter in the comoving
volume V ∼ a3. From relation (11), we can obtain that
E ¼ γðt − t0Þ.
In our paper [9] we considered one unique model of an

energy transfer from dark energy (DE) to dark matter (DM)
with the diffusive interaction in the dark sector where DE
and DM can be treated as ideal fluids. Particles are
scattering in an environment of other particles. If we
assume that the subsequent scattering events are indepen-
dent, the particle motion is described by a Markov process.
In order, the assumption that the energy of the particle
remains finite leads to the conclusion that the Markov
process must be a diffusion.
Therefore diffusion is in some sense unique because

there is only one diffusion which is relativistic invariant and
preserves the mass [18,22,23]. In consequence the inter-
action between DM and DE fluids is defined in a
unique way.

III. DIFFUSION COSMOLOGY

In the investigation, the dark energy and dark matter
interaction plays a role in the continuity equation. This
equation is a special case of jungle cosmological models
[17]. We assume that ρm ¼ ρb þ ρdm, where ρb is density of
baryonic matter and ρdm is density of dark matter. The
equation of state for dark energy is expressed by pde ¼
−ρde in our model, where pde is pressure of dark energy
and the equation of state for matter is given by pm ¼ 0,
where pm is pressure of matter.
The Friedmann equation is expressed in the following

form
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3H2 ¼ ρb;0a−3 þ ρdm;0a−3 þ γðt − t0Þa−3 þ ρdeð0Þ

− γ

Z
t
a−3dt; ð12Þ

where ρb;0a−3 ≡ ρb, ρdm;0a−3 þ γðt − t0Þa−3 ≡ ρdm,
ρdeð0Þ − γ

R
t a−3dt≡ ρde. From the Friedmann formula

we get a condition

1 ¼ Ωm þ Ωde; ð13Þ

where Ωm ¼ ρm
3H2 and Ωde ¼ ρde

3H2 are dimensionless density
parameters.
We can obtain Eqs. (9)–(12) in the form of the dynamical

system x0 ¼fxðx;y;δÞ, y0 ¼ fyðx; y; δÞ and δ0 ¼ fδðx; y; δÞ,
where x ¼ Ωm, y ¼ Ωde, δ ¼ γa−3

Hρm
and 0 ≡ d

d ln a is a differ-
entiation with respect to the reparametrized time ln aðtÞ.
For these variables, the dynamical system is in the
following form

x0 ¼ xð−3þ δþ 3xÞ; ð14Þ

y0 ¼ xð−δþ 3yÞ; ð15Þ

δ0 ¼ δ

�
−δþ 3

2
x

�
: ð16Þ

From Eq. (13), we have the following relation

xþ y ¼ 1: ð17Þ

Then dynamical system (14)–(16) is reduced to the two-
dimension dynamical system.

For analysis of the critical points in the infinity, we use
the Poincaré sphere. Let us introduce new variables in
which one can study dynamical behavior at infinity

X ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ δ2

p ; Δ ¼ δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ δ2

p : ð18Þ

For these variables we get the dynamical system

X0 ¼ X

�
−Δ2

�
3

2
X − Δ

�
þ ð1 − X2Þ

× ð3X þ Δ − 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − X2 − Δ2

p
Þ
�
; ð19Þ

Δ0 ¼ Δ
�
ð1 − Δ2Þ

�
3

2
X − Δ

�

− X2ð3X þ Δ − 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − X2 − Δ2

p
Þ
�
; ð20Þ

where 0≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−X2−Δ2

p
d
dτ. Critical points, for Eqs. (19)–(20),

are presented in Table I. The phase portrait for the dynamical
system (19)–(20) is presented in Fig. 1.
In the phase portrait there is an interesting class of

trajectories labeled as “I”, starting from the critical point 6
and approaching the de Sitter state. Because the diffusion
has the physical sense only for interval t > t0 the corre-
sponding cosmological solution should be cut off for any
t < t0 from the de-Sitter solution. Hence, we obtain that
aðt0Þ is a positive number, i.e., a solution which represents
the critical point (6) is nonsingular. All trajectories starting
from the de Sitter state can be treated as a models of an
extended idea of emergent cosmology [24] [25].

TABLE I. Critical points for dynamical system (19)–(20), their type and cosmological interpretation.

No. Critical point
Type of

critical point Type of universe
Dominating part

in the Friedmann equation HðtÞ aðtÞ
1 X0 ¼ 0,

Δ0 ¼ 0
Saddle de Sitter universe

without
diffusion effect

Cosmological constant HðtÞ ¼
ffiffiffiffiffiffiffi
Λbare
3

q
aðtÞ ∝ e

ffiffiffiffiffiffi
Λbare
3

p
t

2 X0 ¼
ffiffiffiffiffiffiffiffiffiffi
2=11

p
,

Δ0 ¼ 3=
ffiffiffiffiffi
22

p Saddle Scaling universe
(ρm ∝ ρde)

Matter and dark energy HðtÞ ¼ ðt − t0Þ−1 aðtÞ ∝ ðt − t0Þ

3 X0 ¼ 1=
ffiffiffi
2

p
,

Δ0 ¼ 0

Unstable
node

Einstein-de Sitter
universe

Matter HðtÞ ¼ 2
3
ðt − t0Þ−1 aðtÞ ∝ ðt − t0Þ2=3

4 X0 ¼ 1,
Δ0 ¼ 0

Stable node Static universe Matter and running
dark energy

HðtÞ ¼ 0 aðtÞ ¼ const

5 X0 ¼ 4=5,
Δ0 ¼ −3=5

Saddle Static universe Matter and running
dark energy

HðtÞ ¼ 0 aðtÞ ¼ const

6 X0 ¼ 0,
Δ0 ¼ 1

Unstable
node

de Sitter universe
with diffusion

effect

Running dark energy HðtÞ ¼
ffiffiffiffiffiffiffiffiffi
ρdeð0Þ

3

q
aðtÞ ∝ e

ffiffiffiffiffiffiffi
ρdeð0Þ

3

p
t

7 X0 ¼ 0,
Δ0 ¼ −1

Stable node de Sitter universe
with diffusion

effect

Running dark energy HðtÞ ¼ −
ffiffiffiffiffiffiffi
Λbare
3

q
aðtÞ ∝ e−

ffiffiffiffiffiffi
Λbare

3

p
t
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While in the standard emergent cosmology universe
is starting from the static Einstein model, trajectories of
type I are simple realization of extended idea of emergent
Universe in which Universe is starting rather from the
stationary state.
The results of our previous paper [9] show that the density

parameter for total (dark and visible) x and dimensionless
parameter δ are constrained to x ∈ ð0.2724; 0.3624Þ,
δ ∈ ð0.0000; 0.0364Þ at the 95% confidence level. This
domain is represented in the phase space by a shaded
rectangle. Only these trajectories which intersect this
domain are in good agreement with the observation at a
2σ confidence level. Therefore observation favored the
cosmological models starting from the Einstein-de Sitter
solution and going toward the de Sitter attractor (trajectory II
on the phase portrait).
Note that on the phase portrait there are trajectories

labeled as “I” starting from the de Sitter state and
approaching the de Sitter state at late times. They are
going toward a saddle point—representing a nonsingular
solution. However all these trajectories do not intersect
the rectangle and therefore they are not favored by
observation.

The saddle point in the phase space is representing the
Milne universe (see Table I). Therefore, the interacting
term is proportional to t−3 and consequently is of the form
ρdm ¼ Λbare þ α2t−2. The cosmological model with such a
parametrization of dark energy was studied by Szydlowski
and Stachowski [26,27].
Figures 2 and 3 present the evolution of dark matter ρdm

as a function of the cosmological time t for trajectories of
type II. The evolution of the cosmological time for matter is
determined by the following formula

ρmðtÞ ¼ ρm;0aðt − t0Þ−3 þ γðt − t0Þaðt − t0Þ−3: ð21Þ
The addictive form of the scaling relation for dark

matter (21) suggests that dark matter consists of two
components: the first term scaling like ρm;0aðtÞ−3 and

FIG. 1. Phase portrait of dynamical system x0 ¼ xðδþ 3x − 3Þ,
δ0 ¼ δð−δþ 3

2
xÞ, where x ¼ Ωm ¼ ρm

3H2, δ ¼ γa−3

Hρm
and 0≡ d

d ln a on
the Poincaré sphere coordinates are X ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þy2þz2
p ,

Δ ¼ δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2

p . Critical point (1) represents the de Sitter

universe—a global attractor for all physical trajectories. Critical
point (2) represents the scaling universe. Critical point
(3) represents the Einstein-de Sitter universe. Critical points
(4) and (5) represent the static universe. Critical point (6) repre-
sents the de Sitter universe. The gray region represents the
domain of the present value of X andΔ, which is distinguished by
astronomical data. Let us note trajectories lie in the domain with
Δ < 0 represent the contracting model but there is no symmetry
with respect to the Δ-axis. At critical point (6), energy density of
baryonic matter is negligible as well as density of dark matter and
only effects of the relativistic diffusion are important.

1.0 1.2 1.4 1.6 1.8
t

0.2

0.4

0.6

0.8

dm t

FIG. 3. The evolution of dark matter energy density for
trajectories of type II (for the best fitted values of model
parameter together with confidence level at 95% for the present
epoch). Dark matter ρdm is expressed in ½ 100 × km=ðsMpcÞ�2.
We choose ðsMpcÞ=ð100 × kmÞ as a unit of the cosmological
time t. The value of the age of the Universe for the best fit with
errors are presented by the dashed lines.

0.5 1.0 1.5 2.0 2.5 3.0
t

dm t

1

2

3

4

5

6

FIG. 2. The evolution of dark matter energy density for
trajectories of type II (for the best fitted values of model
parameter together with confidence level at 95%). Dark matter
ρdm is expressed in ½100 × km=ðs MpcÞ�2. We choose
ðsMpcÞ=ð100 × kmÞ as a unit of the cosmological time t.
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the second term scaling like γtaðtÞ−3. The latter describes
an amount of dark energy density which is transferred to
dark energy sector by the diffusion process. In the unit of
Ωtotal the canonically scaling dark matter is 25.23% while
transferred dark energy is about 1.35%. The amount of
transferred dark energy today is of the order γT where T is
the age of the Universe.
In consequence of Eq. (21), δðtÞ can be rewritten as

δðtÞ ¼ 1

Hðρm;0

γ þ t − t0Þ
: ð22Þ

Therefore at the present epoch we have

δðTÞ ¼ 1

H0ðρm;0

γ þ TÞ ; ð23Þ

where t0 ¼ 0 and t ¼ T is the present age of the Universe.

Note that while at late time δðtÞ ¼
ffiffiffi
3
Λ

q
1
t for small

time δðtÞ ¼ 3γ
2ρm;0

ðt − t0Þ.
If we give γ ¼ 0 in Eq. (21) then ρm is scaling in the

canonical way. From Eq. (21) one can simply obtain that
the density of dark matter is

ρdm ¼ ðρm;0 − ρb;0Þaðt − t0Þ−3 þ γðt − t0Þaðt − t0Þ−3:
ð24Þ

Note that the interval of the values of ρdm is ð0;þ∞Þ or
ð0; ρmax

dm Þ, which depends on a type of trajectory. The
evolution of the scale factor aðtÞ with respect to the
cosmological time, for trajectories of type II, is demon-
strated in Fig. 4. The function δðtÞ, for trajectories of
type II, is presented in Fig. 5 and the consideration for the
maximum of this function is in the form

�
ρm;0

γ
þ tmax

�
ρmðtmaxÞ ¼ 2HðtmaxÞ; ð25Þ

where tmax is corresponding to the value of the cosmo-
logical time at the maximum.
The Hubble function HðtÞ, for trajectories of type II, is

presented in Fig. 6. Note that the Hubble function in the late
time is constant. The evolution of ρde, for trajectories of
type II, is shown in Fig. 7 and for late time ρde is going
toward constant value. The evolution of Ωm=Ωde, for

t

a t

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

FIG. 4. Diagram of scale factor as a function of cosmological
time t for trajectories of type II (for the best fitted values of model
parameter together with confidence level at 95%). For the present
epochT aðTÞ ¼ 1. A universe is starting from the initial singularity
toward a de Sitter universe. This type of behavior is favored by the
observational data.We choose ðsMpcÞ=ð100 × kmÞ as a unit of the
cosmological time t.

2 4 6 8 10
t

0.1

0.2

0.3

0.4

0.5

t

FIG. 5. Evolution of dimensionless parameter δ of cosmologi-
cal time t for trajectories of type II (for the best fitted values of
model parameter together with confidence level at 95%). Note
that as trajectory in the phase space achieved the state of the
pericentrum located in the saddle point, this state is correspond-
ing on the diagram the maximum. Note that the existence of a
maximum value of δ parameter ðρm;0

γ þ tmax − t0ÞρmðtmaxÞ ¼
2HðtmaxÞ. For the late time δðtÞ function is decreasing function
of t and ρð∞Þ ¼ 0. We choose ðsMpcÞ=ð100 × kmÞ as a unit of
the cosmological time t.

0.5 1.0 1.5 2.0 2.5 3.0
t

0.5

1.0

1.5

2.0

2.5

H t

FIG. 6. Dependence of Hubble function of trajectories of type II
(for the best fitted values of model parameter together with
confidence level at 95%). For late times HðtÞ goes to constant
values (deSþ). The Hubble function HðtÞ is expressed in
½100 × km=ðsMpcÞ�. We choose ðsMpcÞ=ð100 × kmÞ as a unit
of the cosmological time t.
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0.5 1.0 1.5 2.0 2.5 3.0
t

0.94

0.96

0.98

1.00

1.02

1.04

1.06

de t

FIG. 7. The evolution of dark energy density for the best
fitted values of model parameter for trajectories of type II. Dark
energy ρde is expressed in ½100 × km=ðsMpcÞ�2. We choose
ðsMpcÞ=ð100 × kmÞ as a unit of the cosmological time t.

t

20

20

40

m t de t

0.2 0.4 0.6 0.8 1.0

FIG. 8. Diagram of relation Ωm=Ωde for trajectories of type II
(for the best fitted values of model parameter together with
confidence level at 95%). We choose ðsMpcÞ=ð100 × kmÞ as a
unit of the cosmological time t.

1.35 1.40 1.45 1.50
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m t de t

FIG. 9. Diagram of relation Ωm=Ωde for trajectories of type II
for the present epoch. Note that at the present epoch ρm;0 ∝ ρde;0
(therefore coincidence problem is solved). We choose
ðsMpcÞ=ð100 × kmÞ as a unit of the cosmological time t. The
value of the age of the Universe for the best fit with errors are
presented by the dashed lines.

0.5 1.0 1.5 2.0 2.5 3.0
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H t

FIG. 10. The relation of HðtÞ for typical trajectory of type I.
The HðtÞ function is expressed in ½100 × km=ðsMpcÞ�. Note that
Hð0Þ is finite therefore it is not a singularity. We choose
ðsMpcÞ=ð100 × kmÞ as a unit of the cosmological time t.

0.5 1.0 1.5 2.0 2.5 3.0
t

1

2

3

4

5

a t

FIG. 11. Diagram of aðtÞ for typical trajectory of type I. Note
that að0Þ is finite therefore it is not a singularity. We choose
ðsMpcÞ=ð100 × kmÞ as a unit of the cosmological time t.

t
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0.04

0.06

0.08

0.10

m t

0.5 1.0 1.5 2.0 2.5 3.0

FIG. 12. Diagram of ρmðtÞ for typical trajectory of type I.
Note that ρmð0Þ is equal zero therefore it is not a singularity.
Matter ρm is expressed in ½100 × km=ðsMpcÞ�2. We choose
ðsMpcÞ=ð100 × kmÞ as a unit of the cosmological time t.
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trajectories of type II, is demonstrated in Figs. 8 and 9.
For the trajectories of type I, the functions HðtÞ, aðtÞ, ρdm,
ρde, Ωm=Ωde and δðtÞ are presented in Figs. 10, 11, 12, 13,
14, 15. These figures show that there are two distinct
behaviors of trajectories of type I and II. While the
trajectory of type II represents a matter dominating model
with a singularity the trajectories of type I represents the
model without an initial singularity.

IV. GENERALIZED DIFFUSION COSMOLOGY

Dynamical system methods are especially suitable in
investigation of dynamics of both fluids, dark energy and
dark matter. Presented here the dynamical system approach
to the study of DM-DE interaction in diffusion cosmology
can be simply generalized to the case when both dark
energy and dark matter satisfy a general form of the
equation of state

pde ¼ wρde; ð26Þ

pdm ¼ ~wρdm; ð27Þ

pb ¼ 0; ð28Þ

where w and ~w are constant coefficients equation of state
for dark energy and matter respectively. Then the continuity
equations for baryonic and dark matter and dark energy are
presented by

_ρdm ¼ −3ð1þ ~wÞHρdm þ γa−3; ð29Þ

_ρde ¼ −3ð1þ wÞHρde − γa−3; ð30Þ

_ρb ¼ −3Hρb: ð31Þ

The corresponding dynamical system assumes the form
of a 3-dimensional autonomous dynamical system

dx
d ln a

¼ 3x
h
ð1þ ~wÞðx − 1Þ þ ð1þ wÞyþ z

3

i
; ð33Þ

dy
d ln a

¼ 3y½ð1þ wÞðy − 1Þ þ ð1þ ~wÞx� − xz; ð34Þ

dz
d ln a

¼ z
h
3 ~w − zþ 3

2
½ð1þ ~wÞxþ ð1þ wÞy�

i
; ð35Þ

where we choose state variables x ¼ Ωm, and y ¼ Ωde and
z ¼ δ like in a previously considered case.
Because 1 ¼ xþ y the above dynamical system

reduces to

dx
d ln a

¼ 3x
h
ð ~w − wÞðx − 1Þ þ z

3

i
; ð36Þ

0.5 1.0 1.5 2.0
t

0.8

0.9

1.0

1.1

1.2

1.3

1.4

de t

FIG. 13. Diagram of ρdeðtÞ for typical trajectory of type I.
Note that ρdeð0Þ is finite therefore it is not a singularity. Dark
energy ρde is expressed in ½100 × km=ðsMpcÞ�2. We choose
ðsMpcÞ=ð100 × kmÞ as a unit of the cosmological time t.

0.5 1.0 1.5 2.0 2.5 3.0
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0.08
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m t de t

FIG. 14. Diagram ofΩmðtÞ=ΩdeðtÞ for typical trajectory of type
I. We choose ðsMpcÞ=ð100 × kmÞ as a unit of the cosmological
time t.
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t
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t

FIG. 15. Diagram of δðtÞ for typical trajectory of type I. We
choose ðsMpcÞ=ð100 × kmÞ as a unit of the cosmological time t.
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dz
d lna

¼ z
h
3 ~w− zþ 3

2
½ð1þ ~wÞxþð1þwÞð1− xÞ�

i
: ð37Þ

Critical points of the dynamical system (36)–(37) are
completed in Table II. Especially there is an interesting
critical point inside the admissible region D¼fðx;zÞ∶x≥0;
z≥0g representing scaling solution: ρdm ∝ ρde. It is a
saddle fixed point in the phase space D. This critical point
is important in the context of the solution of the cosmic
coincidence problem as well as the scaling solution in the
context of the quintessence idea.
The above system possesses critical points on the planes

of the coordinate system or inside the phase space
D ¼ fðx; zÞ∶x; z ≥ 0g. Of course the system under con-
sideration is restricted to the submanifold xþ y ¼ 1,
because the constraint condition Ωm þ Ωde ¼ 1.
The behavior of trajectories of the dynamical system

(36)–(37) depends on the values of parameters w, ~w. By
choosing different values of these parameters one can study
how phase space structure changes under change of values
of parameters. The equivalence of the phase portraits is
established following homeomorphism preserving direc-
tion of time along the trajectories. If there exists a value of
parameter for which phase is not topologically equivalent,
then such value is the bifurcation value.
The stability of critical points depends on the lineariza-

tion matrix. At the critical point (3), the linearization matrix
has the following form

A ¼

0
BBB@

∂fxðx;zÞ∂x
���
x0;z0

∂fxðx;zÞ∂z
���
x0;z0

∂fzðx;zÞ∂x
���
x0;z0

∂fzðx;zÞ∂z
���
x0;z0

1
CCCA

¼
 

−1 − 3w 1þ3w
−3 ~wþ3w

3
2
ð1þ 3 ~wÞð ~w − wÞ −1 − 3 ~w

!
; ð38Þ

where fxðx; zÞ and fzðx; zÞ are the right sides of Eqs. (36)
and (37) and x0 and z0 are coordinates of critical point
(3) (see Table II).
The determinant of matrix (38) can be expressed by the

formula

detA ¼ 3

2
ð1þ 3 ~wÞð1þ 3wÞ ð39Þ

and the trace of matrix (38) is described by

trA ¼ −2 − 3ð ~wþ wÞ: ð40Þ

Therefore the critical point (3) is stable when wþ ~w >
−2=3.
The characteristic equation for matrix A at critical

point (3) is in the following form

λ2 − trAλþ detA ¼ λ2 þ ð2þ 3 ~wþ 3wÞλ

þ 3

2
ð1þ 3 ~wÞð1þ 3wÞ

¼ 0: ð41Þ

From the characteristic Eq. (41), we can obtain the
eigenvalues for critical point (3) (see Table II). In
Fig. 16 we demonstrate the stability of critical point (3),
depending on w and ~w.
The linearized Eqs. (36)–(37) at critical point (3) is given

by the following formulas

TABLE II. Critical points for dynamical system (36)–(37), their positions, types and cosmological interpretation.

No. Critical point Type of the universe

1 x0 ¼ 0, z0 ¼ 0 de Sitter universe without diffusion
2 x0 ¼ 1, z0 ¼ 0 Einstein-de Sitter
3 x0 ¼ − 1þ3w

3ð ~w−wÞ, z0 ¼ 1þ 3 ~w Scaling universe ðρm ∝ ρdeÞ
4 x0 ¼ 0, z0 ¼ 3=2ð1þ 2 ~wþ wÞ de Sitter universe with diffusion

FIG. 16. Diagram of stability of critical point (3), depending
on w and ~w. In the gray domains there is the focus type of
critical point and the boundaries of this domains is given
by the lines w ¼ 1

3
ð1þ 6 ~wþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−1þ 9 ~wð2þ 3 ~wÞp Þ and

w ¼ 1
3
ð1þ 6 ~w −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ 9 ~wð2þ 3 ~wÞp Þ. In the blue regions there

are the saddle type of critical point and is limited by lines w ¼
−1=3 and ~w ¼ −1=3. In the white top and bottom regions there
are the stable and unstable nodes, respectively.
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ðx − x0Þ0 ¼ A11ðx − x0Þ þ A12ðz − z0Þ

¼ ð−1 − 3wÞ
�
xþ 1þ 3w

3ð ~w − wÞ
�

þ
�

1þ 3w
−3 ~wþ 3w

�
ðz − 1 − 3 ~wÞ; ð42Þ

ðz − z0Þ0 ¼ A21ðx − x0Þ þ A22ðz − z0Þ

¼ 3

2
ð1þ 3 ~wÞð ~w − wÞ

�
xþ 1þ 3w

3ð ~w − wÞ
�

þ ð−1 − 3 ~wÞðz − 1 − 3 ~wÞ; ð43Þ

where x0 ¼ − 1þ3w
3ð ~w−wÞ and z0 ¼ 1þ 3 ~w. The solutions of the

above equations are presented by formulas

x ¼ C1að−2−3 ~w−3w−αÞ=2ðaα þ C2Þ −
1þ 3w
3ð ~w − wÞ ; ð44Þ

z ¼ C1

3ð ~w − wÞ
2þ 6w

að−2−3 ~w−3w−αÞ=2ðð3 ~w − 3w − αÞaα

þ C2ð3 ~w − 3wþ αÞÞ þ 1þ 3 ~w; ð45Þ

where α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ 9 ~w2 þ 9w2 − ð1þ 6 ~wÞð1þ 6wÞ

p
.

It is interesting to check how the structure of phase space
changes under changing coefficient equation of state for
dark matter from 0 (cold dark matter) to ~w ¼ 1=3 (hot dark
matter).
Results of dynamical investigation show that structure of

the phase space is preserved under changes of the model
parameter. Let us considered some details.

V. DIFFUSION COSMOLOGY WITH THE HOT
RELATIVISTIC DARK MATTER

In this section we consider the case with relativistic dark
matter ( ~w ¼ 1=3) and w ¼ −1. Then the equation of state
for dark matter is in the form pdm ¼ 1

3
ρdm, where pdm is the

pressure of dark matter. We get the following equations

x0 ¼ xð−4þ zþ 4xÞ; ð46Þ

z0 ¼ zð1 − zþ 2xÞ: ð47Þ

We can analyze the critical points in the infinity. In this
case we use the Poincaré sphere. Let X ¼ xffiffiffiffiffiffiffiffiffi

x2þδ2
p ,

Δ ¼ δffiffiffiffiffiffiffiffiffi
x2þδ2

p . For variables X and Δ, we get the dynamical

system

X0 ¼ X

�
−Δ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − X2 − Δ2

p
þ 3

2
X − Δ

�

þ ð1 − X2Þð3X þ Δ − 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − X2 − Δ2

p
Þ
�
; ð48Þ

Δ0 ¼ Δ
�
ð1 − Δ2Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − X2 − Δ2

p
þ 3

2
X − Δ

�

− X2ð3X þ Δ − 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − X2 − Δ2

p
Þ
�
; ð49Þ

where 0 ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − X2 − Δ2

p
d
dτ. Critical points, for the above

equation, are presented in Table III. The phase portrait for
the dynamical system (48)–(49) is demonstrated in Fig. 17.
It is interesting to see how different solutions with and

without an initial singularity are distributed in the phase
space. To answer this question it would be useful to
consider a phase space structure of the models under
consideration. For this aim we reduce the dynamics to
the form of an autonomous 2D dynamical system. In such a
system the state variables are dimensionless parameters: the
density parameter for radiation dark matter and the param-
eter δ characterizing the rate of energy transfer to the dark
matter sector.
The main advantage of visualization global dynamics on

the phase portrait is the possibility to see all solution of the
system admitted for all initial conditions. On the phase
portrait there is the geometric representation of evolutional
paths of both solution types. Critical points are representing
asymptotic states of the system, i.e. stationary states.
In order, trajectories joining different critical points are
representing the evolution of the system.
Similarly to dynamical investigations presented in our

previous paper [9] we added to the plane circle at infinity

TABLE III. Critical points for dynamical system (48)–(49), their type and cosmological interpretation.

No. Critical point Type of critical point Type of universe

1 X0 ¼ 0, Δ0 ¼ 0 Saddle de Sitter universe without diffusion effect
2 X0 ¼ 2=7, Δ0 ¼ 6=7 Saddle Scaling universe
3 X0 ¼ 4=5, Δ0 ¼ 0 Unstable node Einstein-de Sitter universe
4 X0 ¼ 1, Δ0 ¼ 0 Stable node Static universe
5 X0 ¼ 4=5, Δ0 ¼ −3=5 Saddle Static universe
6 X0 ¼ 0, Δ0 ¼ 1 Unstable node de Sitter universe with diffusion effect
7 X0 ¼ 0, Δ0 ¼ −1 Stable node de Sitter universe with diffusion effect
8 X0 ¼ 0, Δ0 ¼ 1=

ffiffiffi
2

p
Stable node de Sitter universe with diffusion effect
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via the construction of the Poincaré sphere. Hence we
obtain a compact phase space and consequently a global
phase portrait. In Fig. 17 we have identified linear solutions
without the initial singularity as the representing by saddle
critical point (2). In the phase portrait there are critical
points at a finite domain as well as located on the boundary
at infinity.
Note that the phase portrait has no symmetry with

respect to the x-axis. Critical point (6) is representing an
expanding stationary de Sitter type solution determined by
diffusion effects. We denote as typical trajectories starting
from this critical point and going toward the de Sitter empty
universe. These trajectories we called trajectories of type I.
In the phase portrait there are also present trajectories of
type II. These trajectories are starting from the Einstein-de
Sitter universe with the initial singularity and coming
toward the de Sitter universe labeled as critical point (8).
Looking at the phase portrait one can observe that

only critical points of type unstable and stable node
(global attractors and global repellers) and saddle appear
in the phase space. Therefore the model obtained is
structurally stable, i.e. any small change of its r.h.s does
not disturb the global phase portrait. Physically this means
that corresponding model is realistic. Mathematically this
fact has a nice interpretation in the context of the Peixoto

theorem [16] that they are generic in this sense because they
form open and dense subsets in the space of dynamical
systems on the plane.

VI. CONCLUSION

The standard cosmological model (ΛCDM model) is
widely accepted but it has still some problems, namely the
cosmological constant problem and the coincidence prob-
lem. In the standard cosmological model (ΛCDM model) it
is assumed that all fluids are noninteracting. In this paper
we construct a cosmological model in which it is assumed
that the process of interaction between sectors of dark
matter and dark energy is continuous. Relativistic diffusion
describes the transfer of energy to the sector of dark matter.
This effect is described by the running cosmological
constant and the modification of the standard scaling
law of the dark matter density to the form ρdm;0aðtÞ−3þ
γtaðtÞ−3. The dynamics of this model is studied for possible
explanations of cosmological puzzles: the cosmological
constant problem and the coincidence problem.
In the context of the coincidence problem, our model can

explain the present ratio of ρm to ρde, which is equal
0.4576þ0.1109

−0.0831 at a 2σ confidence level. In our model, the
canonical scaling law of dark matter ðρdm;0a−3ðtÞÞ is
modified by an additive ϵðtÞ ¼ γta−3ðtÞ to the form
ρdm ¼ ρdm;0a−3ðtÞ þ ϵðtÞ.
The analysis of the time dependence of density of dark

energy and dark matter, we conclude that the value of
effective energy of vacuum runs from an infinite value to a
constant value, and the delta amendment to the scaling law
goes from zero to zero and being different from zero in a
long intermediate period. This characteristic type of behav-
ior is controlled by the diffusion effect.
The paper presents a detailed study of the behavior of a

state of the system represented by the state variables ðx; δÞ.
In this context, it was natural to consider the diffusion
mechanism which controls the change of the ratio of both
energy densities and the very dynamics of this process
remains in analogy to the description of population changes
of competing species [17]. A crucial role plays the saddle
critical point Ha ¼ const, which is a scaling type of the
solution (ρm ∝ ρde). The position of this point cannot be
disturbed by a small perturbation (structurally stable point
as well as whole system).
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FIG. 17. Phase portrait of the dynamical system (36)–(37).
Note that trajectories for the Δ < 0 represent solutions with the
negative value of H. From the cosmological point of view
trajectories representing expanding models with Δ > 0 are
physical. Critical points (1) represents the de Sitter universe
without diffusion effect. Critical point (2) represents the scaling
universe. Critical point (3) represents the Einstein-de Sitter
universe. Critical points (4) and (5) represent the static universe.
Critical point (6) and (8) represent the de Sitter universe with
diffusion effect.
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Abstract We study the dynamics of cosmological models
with a time dependent cosmological term. We consider five
classes of models; two with the non-covariant parametriza-
tion of the cosmological term �: �(H)CDM cosmolo-
gies, �(a)CDM cosmologies, and three with the covariant
parametrization of �: �(R)CDM cosmologies, where R(t)
is the Ricci scalar, �(φ)-cosmologies with diffusion, �(X)-
cosmologies, where X = 1

2g
αβ∇α∇βφ is a kinetic part of

the density of the scalar field. We also consider the case of an
emergent �(a) relation obtained from the behaviour of tra-
jectories in a neighbourhood of an invariant submanifold. In
the study of the dynamics we used dynamical system methods
for investigating how an evolutionary scenario can depend
on the choice of special initial conditions. We show that the
methods of dynamical systems allow one to investigate all
admissible solutions of a running � cosmology for all initial
conditions. We interpret Alcaniz and Lima’s approach as a
scaling cosmology. We formulate the idea of an emergent
cosmological term derived directly from an approximation
of the exact dynamics. We show that some non-covariant
parametrization of the cosmological term like �(a), �(H)

gives rise to the non-physical behaviour of trajectories in the
phase space. This behaviour disappears if the term �(a) is
emergent from the covariant parametrization.

1 Introduction

Our understanding of the properties of the current uni-
verse is based on the assumption that gravitational inter-
actions, which are extrapolated at the cosmological scales,
are described successfully by the Einstein general relativ-
ity theory with the cosmological term �. If we assume that
the geometry of the universe is described by the Robertson–
Walker metric, i.e., the universe is spatially homogeneous and

a e-mail: aleksander.stachowski@uj.edu.pl
b e-mail: marek.szydlowski@uj.edu.pl

isotropic, then we obtain the model of the current universe
in the form of standard cosmological model (the �CDM
model). From the methodological point of view this model
plays the role of an effective theory which describes well the
current universe in the present accelerating epoch.

If we compare the �CDM model with the observational
data, then we find that more than 70% of the energy budget
is in the form of dark energy and well modelled in terms of
an effective parameter of the cosmological constant term.

If we assume that the SCM (standard cosmological model)
is an effective field theory which is valid up to a certain
cutoff of mass M , and if we extrapolate of the SCM up to the
Planck scale then we should have � ∼ 1. On the other hand
from the observations we find that both density parameters
��,0 = �

3H2
0

and �m,0 = ρm,0

3H2
0

are order one, which implies

� ∝ H2
0 ∼ 10−120. We assume the natural units G = c =

h̄ = 1 here.
In consequence we obtain the huge discrepancy between

the expected and observed values of the term �. It is just
what is called the cosmological constant problem requiring
the explanation why the cosmological constant assumes such
a small value today.

In this context an idea of a running cosmological con-
stant term appears. It was developed in a series of papers
by Shapiro et al. [1–4]. Shapiro and Solà [5] showed neither
there is the rigorous proof indicating that the cosmological
constant is running, nor there are strong arguments for a non-
running one. Therefore one can study different theoretical
possibilities of the running � term given in a phenomeno-
logical form and investigate cosmological implications of
such an assumption. Such models are a simple generaliza-
tion of the standard cosmological model in which the term
� is constant.

The corresponding form of the �(t) dependence can be
motivated by quantum field theory [5–7] or by some theoret-
ical motivations [8,9]. Padmanabhan [10] and Vishwakarma
[11] also suggested that � ∝ H2 from the dimensional con-
siderations.
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The relation �(t) is not given directly but through a
function which describes the evolution of the universe. One
can consider two classes of models with the non-covariant
parametrizations of the � term:

– the cosmological models in which dependence on time is
hidden and �(t) = �(H(t)) or �(t) = �(a(t)) depends
on the time through the Hubble parameter H(t) or scale
factor a(t),

and three classes of models with covariant parametrizations
of the � term:

– the Ricci scalar of the dark energy model, i.e., � = �(R),
– the parametrization of the � term through the scalar field

φ(t) with a self-interacting potential V (φ),
– as the special case of the previous one, the � term can

be parametrized by a kinetic part of the energy density of
the scalar field X = 1

2g
αβ∇α∇βφ.

Note that some parametrizations of the � term can also
arise from another theory beyond general relativity. For
example Shapiro and Solà [5] suggested that a solution,
which is derived from the form of ρ�(H) = ρ0

� + α(H2 −
H2

0 ) +O(H4), can be a solution of the fundamental general
relativity equations.

Another problem, which is related to the standard cosmo-
logical problem, is the problem of coincidence [12]. From the
cosmological data such as measurements of distant SNIa,
CMB, BAO and other astronomical observations, we find
that we live in the very special age of the universe when
ρ� ∼ ρdm ∼ ρb. The appearance of any epoch with this
coincidence is puzzling and we should explain why we live
in such a special epoch.

The appearance of scaling solutions in the phase space
suggests that in this model the problem of cosmic coincidence
can be solved because during the whole evolution ρ� ∼ ρm.

The motivation for studying cosmology with the decay-
ing vacuum comes from the solution of the cosmological con-
stant problem as well as the cosmic coincidence problem – the
main problems which standard cosmological model strug-
gles. In this context, different propositions of parametriza-
tion of the � term are postulated. As mentioned above both
the covariant contributions to the general relativity action
and others violate this covariance. We study cosmological
implications of such choices. And the methods of dynami-
cal systems will be used to help us to understand better the
dynamical aspects of this problem.

We are looking for such parametrizations of the � term
for which in the phase space the de Sitter stationary state is a
global attractor and a generic class of initial conditions gives
rise in this attractor. It is a consequence of the fact that we are

going toward a solution of the standard cosmological model
without an idea of the fine tuning.

The main aim of this paper is to study dynamics of the
cosmological models with the running cosmological term
and dust matter. We apply dynamical systems methods to
investigate theoretically possible dynamics of these mod-
els. The main advantage of these methods is the possibility
of studying all solutions (cosmological evolutionary scenar-
ios) for admissible initial conditions. The phase space is a
geometrization of the dynamics whose structure informs us
how generic are solutions with desired properties. In this
approach we are looking for attractor solutions in the phase
space representing generic solutions for the problem which
gives such a parametrization of �(t) which explain how the
value of cosmological term achieves a small value for the cur-
rent universe. We search for such an evolutionary scenario
for which the �bare is an attractor in the phase space.

The dynamics of both the above mentioned subclasses of
the �(t)CDM cosmologies is investigated by dynamical sys-
tem methods. Bonanno and Carloni have recently used these
methods to study the qualitative behaviour of FRW cosmolo-
gies with time-dependent vacuum energy on cosmological
scales [6]. Of course, the methods of dynamical systems are
not a way to solve problems of the cosmological constant. It
is only a useful tool for the visualization of the dynamics in a
geometrical way which can help us to better understand the
term � during the cosmic evolution.

We also develop the idea of an emergent relation �(a)

obtained from the behaviour of the trajectories of the dynam-
ical system near the invariant submanifold Ḣ

H2 = 0. By the
emerging of a running parametrization �(a) we understand
its derivation directly from the true dynamics. Therefore, the
corresponding parametrization is obtained from the entry of
trajectories in a de Sitter state.

Measurements of the cosmic microwave background
anisotropy are considered in the background of the �CDM
model and indicates that the cosmological spatial hypersur-
face of the FRW geometry is very close to flat [13,14]. On
the other hand, under of the assumption of flatness, the data
favour rather the time-independent dark energy [15].

It is well known that if a spatially curved time variable
dark energy model is used to analyse the CMB anisotropy
measurements then there is a degeneracy between the spatial
curvature and the parameters which govern the dark energy
time variability. For this reason it seems that an in-depth
analysis should be performed of the influence of curvature
effects on the dynamical scenarios of different cosmological
models.

For this aim we consider the following issues.

– We explore idea of the reducing dynamics to the form of
the 2D dynamical system of the Newtonian type as soon
as possible. In this system, the energy integral is related
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with the curvature index (or density parameter for the
curvature fluid) and therefore energy levels will deter-
mine evolutional paths in the configuration space. All
information, which is concerning these types of evolu-
tion, can be directly taken from the geometry of potential
function V (a) because the curvature effect of new types
of evolution emerges. For example we can obtain oscil-
lating models, models with bounce, oscillating models
without the initial and final singularity etc.

– From the cosmological point of view, it is interesting to
find in the phase space attractors, which position is caused
by curvature effects. In the generic case these attractors
lie on the invariant submanifold, which represents the
surface of the flat model. However, our dynamical analy-
sis gives us an opportunity to detect curvature attractors
beyond the invariant submanifold, which represents the
evolution of the flat models, which are studied in detail
by the phase portraits of the lower dimension.

2 �(H)CDM cosmologies as dynamical systems

From the theoretical point of view if we do not know the
exact form of the �(t) relation we study the dynamical prop-
erties of cosmological models in which the �-dependence
on the cosmological time t is through the Hubble parameter
or scale factor, i.e. �(t) = �(H(t)) or �(t) = �(a(t)). The
connection of such models with the mentioned ones in the
previous section will be demonstrated, in which the choice of
a �(t) form was motivated by physics. Cosmological models
with a quadratic �-dependence on the cosmological time are
revealed as a special solution in the phase space.

In the investigation of the dynamics of �(H) cosmologies
we apply the dynamical system methods [16]. We investigate
all solutions which are admissible for all physically admitted
initial conditions. The global characteristics of the dynam-
ics are given in the form of phase portraits, which reflect
the phase space structure of all solutions of the problem.
The phase space structure contains all information as regards
dependence of solutions on initial conditions, its stability,
genericity, etc. Then we can distinguish some generic (typ-
ical) cases as well as non-generic (fine-tuned) ones, which
physical realizations require a tuning of the initial conditions.
The methods of dynamical systems allow us to study the sta-
bility of the solutions in a simple way by investigation of te
linearization of the system around the non-degenerate critical
points of the system.

If the dynamical system is in the form ẋ ≡ dx
dt = f (x),

where x ∈ R
n and f is of class C∞, then the solution of this

system is a vector field x(t; x0) where x(t0) is a vector of
initial conditions. Beyond this regular solution there are sin-
gular ones. They are special and obtained from the condition
of vanishing of its right-hand sides.

The �(H)CDM cosmological models have recently been
investigated intensively in the contemporary cosmology [8,
17–19]. Among these class of models there is one with a
particular form of �(t) = � + αH2. It was studied in detail
in [17]. Its generalization to the relation of �(H) given in
the form of a Taylor series of the Hubble parameter can be
found in [20].

It is also interesting that motivations for studying such
a class of models can be taken from Urbanowski’s expan-
sion formula for decaying false vacuum energy, which can
be identified with the cosmological constant term [7]. It is
sufficient to interpret the time t in terms of the Hubble time
scale t = tH ≡ 1

H . Therefore, �(H)CDM cosmologies can
be understood as some kind of effective theories of the influ-
ence of vacuum decay in the universe [21]. This approach is
interesting especially in the context of both the dark energy
and the dark matter problem because the problem of cosmo-
logical constant cannot be investigated in isolation from the
problem of dark matter.

In �(H) cosmologies, in general, a scaling relation on
matter is modified and differs from the canonical relation
ρm=ρm,0a−3 in the �CDM model. The deviation from the
canonical relation here is characterized by a positive constant
ε such that ρm = ρm,0a−3+ε [22].

FRW cosmologies with a running cosmological term �(t)
such that ρvac = �(t) and pvac = −�(t) can be formulated
in the form of a non-autonomous dynamical system,

dH

dt
≡ Ḣ = −H2 − 1

6
(ρm + 3pm) + 1

3
�(t) (1)

dρm

dt
≡ ρ̇m = −3H(ρm + pm) − �̇, (2)

where ρm and pm are the energy density and the pressure of
matter, respectively, and a dot denotes differentiation with
respect to the cosmological time t . In this paper, we assume
that 8πG = c = 1. In this model the energy-momentum ten-
sor is not conserved because of the presence of an interaction
in both matter and dark energy sector. System (1)–(2) has a
first integral called the conservation condition in the form

ρm − 3H2 = −�(t). (3)

Note that the solution ρm = 0 is a solution of (2) only if
� = const. Of course system (1)–(2) does not form a closed
dynamical system, while a concrete form of the �(t) relation
is not postulated. Therefore, this cosmology belongs to a
more general class of models in which the energy-momentum
tensor of matter is not conserved.

Let us consider that both visible matter and dark matter
are given in the form of dust, i.e. pm = 0 and

�(t) = �(H(t)). (4)
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Due to the above simplifying assumption (4), system (1)–
(2) with the first integral in the form (3) assumes the form of
a two-dimensional closed dynamical system,

Ḣ = −H2 − 1

6
ρm + 1

3
�(t), (5)

ρ̇m = −3Hρm − �′(H)

(
−H2 − 1

6
ρm + �(H)

3

)
, (6)

where �′(H) = d�
dH and ρm − 3H2 = −�(H) are the first

integrals of system (5)–(6).
Let us consider �(H) given in the form of a Taylor series

with respect to the Hubble parameter H , i.e.

�(H) =
∞∑
n=1

1

n!
dn

dHn
�(H)|0Hn . (7)

We assume additionally that the model dynamics has a
reflection symmetry, H → −H , i.e., a(t) is a solution of the
system and a(−t) is also its solution. Therefore, only even
terms of type H2n are present in the expansion series (7).
Finally, we assume the following form of the energy density
parametrization through the Hubble parameter H [1]:

ρ�(H) = �bare + α2H
2 + α4H

4 + · · · . (8)

There are also some physical motivations for such a choice
of the �(H) parametrization (see [19]).

It would be useful for the further dynamical analysis of
the system under consideration to re-parametrize the time
variable

τ 
−→ τ = ln a (9)

and to rewrite the dynamical system (5)–(6) in the new vari-
ables

x = H2, y = ρm. (10)

Then we obtain the following dynamical system:

x ′ ≡ dx

d ln a
= 2

[
−x − 1

6
y + 1

3
(� + α2x + α4x

2 + · · · )
]

,

(11)

y′ ≡ dy

d ln a
= −3y − 1

3
(α2 + 2α4x + · · · )

×
[
−x − 1

6
y + 1

3
(� + α2x + α4 + · · · )

]

(12)

and

y − 3x = −(� + α2x + α4x
2 + · · · ) (13)

where instead of �bare we write simply �, which represents
a constant contribution to the �(H) given by the expansion
in the Taylor series (7).

Now, with the help of the first integral (13) we rewrite
system (11)–(12) to the new form

x ′ = 2

(
−x − 1

6
y + 3x − y

3

)
= −y, (14)

y′ = −3y − (α2 + 2α4x + · · · )3x − y

9
. (15)

Therefore, all trajectories of the system on the plane (x, y)
are determined by the first integral (13).

The dynamical system (11)–(12) in a finite domain has a
critical point of the one type: a stationary solution x = x0,
y = y0 = 0 representing a de Sitter universe. In the original
variables (H, ρm) we have two solutions: the stable expand-
ing de Sitter universe and the unstable contracting de Sitter
universe, both lying on the H axis. Note that if stationary
solutions exist then they always lie on the intersection of the
x axis (y = 0) with the trajectory of the flat model repre-
sented by the first integral (13), i.e., they are solutions of the
following polynomial equation:

x − 1

3
(� + α2x + α4x

2 + · · · ) = 0 (16)

and y = 0 (empty universe).
Note that the static critical point which represents the

static Einstein universe does not satisfy the first integral (13)
because both y and � are positive. Let us notice that if we
substitute y into (11) then the dynamics is reduced to a form
of a one-dimensional dynamical system,

dx

dτ
= −(3x − � − α2x − α4x

2 − · · · ). (17)

y = 3x − (� + α2x + α4x
2 + · · · ). (18)

Following the Hartmann–Grobman theorem [16] a system
in the neighbourhood of critical points is well approximated
by its linear part obtained by its linearization around this
critical point.

On the other hand, a linear part dominates for small x
in a right-hand side. Let us consider the dynamical system
(17) truncated on this linear contribution, then the Hartman–
Grobman theorem [16] guarantees us that the dynamical sys-
tem in a neighbourhood of the critical point is a good approx-
imation of the behaviour near the critical points. This system
has the simple form

dx

dτ
= x(α2 − 3) + �, (19)

y = (3 − α2)x − �. (20)

System (19)–(20) has the single critical point of the form

x0 = �

3 − α2
, y = 0. (21)
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It represents an empty de Sitter universe.
Let us now shift the position of this critical point to the

origin by introducing the new variable x → X = x − x0.
Then we obtain

dX

dτ
= (α2 − 3)X, (22)

which possesses the exact solution of the form

X = X0e
τ(α2−3) = X0a

−3+α2 , (23)

where α2 is constant. Of course this critical point is asymp-
totically stable if α2 < 3. The trajectories approaching this
critical point at τ = ln a → ∞ has the attractor solution
X = X0aα2−3 or x = X + x0, where x0 = �

3−α2
or X = 0

(see Fig. 1). This attractor solution is crucial for the construc-
tion of a new model of a decaying Lambda effect strictly
connected with the dark matter problem [9,21].

The solution (23) has a natural interpretation: in a neigh-
bourhood of a global attractor of system (17), trajecto-
ries behave as the universal solution, which motivates the
Alcaniz–Lima approach in which

x = H2 = ρ̃m,0

3
a−3+α2 + ρ�,0

3
, (24)

where ρ̃m,0 = 3
3−α2

ρm,0.
We can rewrite Eq. (1) as the Newtonian equation of

motion for a particle of unit mass moving in the potential
V (a)

ä = −∂V (a)

∂a
. (25)

In our case the potential V (a) is given in the following form:

V (a) = 1

2
(

�

3 − α2
− H2

0 )a−1+α2 − 1

2

�

3 − α2
a2. (26)

The first integral of (25) can be expressed by

ȧ2

2
+ V (a) = E = const, (27)

where E is the value of the energy level (for the positive
curvature E = −1/2, for the negative curvature E = 1/2 and
for the flat universe E = 0). Figure 2 presents the evolution
of V (a) for α2 = 0.1 and for α2 = 1.

In our case if we consider the curvature in the dynamical
analysis then we get new solutions for the positive curvature

1

X

Fig. 1 A one-dimensional phase portrait of the FRW model with � =
�(H). Note the existence of universal behaviour of the H2(a) relation
near the stable critical point (1) of the type of stable node. In a neighbour-
hood of this attractor we have the solution X = H2 − �

3−α2
= X0aα2−3

and ρm = (3−α2)H2 −� = X0aα2−3. Therefore both ρm and ρ� −�

are proportional (scaling solution)

0 1 2 3 4
a

1

0

1

2
Veff

0 1 2 3 4
a

1

0

1

2
Veff

Fig. 2 The potential Veff(a) for α2 = 0.1 (top diagram) and α2 = 1
(bottom diagram). The top dashed lines (Veff = 1/2) represent the
energy level, which corresponds with the negative curvature. The bot-
tom dashed lines (Veff = −1/2) represent the energy level, which corre-
sponds with the positive curvature. The middle dashed lines (Veff = 0)
represent the energy level, which corresponds with the flat universe. The
forbidden domain for the motion is colored. The maximum of the poten-
tial is corresponding to a static Einstein universe in the phase space. Note
that, for the case of positive curvature, the universe can oscillate with
the initial singularity (the left bottom part of the top diagram) or be a
universe with a bounce (the right bottom part of both diagrams)

such as the oscillating universe with the initial singularity
and the universe with the bounce. But if we perturb solutions
for the flat universe by a small spatial curvature then these
solutions do not change qualitatively (see Fig. 2).

3 �(a(t))CDM cosmologies as a dynamical system

In their construction many cosmological models of a decay-
ing � make the ansatz �(t) = �(a(t)). For a review of
different approaches in which ansatzes of this type appear,
see Table 1.

In this section, we would like to discuss some general
properties of the corresponding dynamical systems which
model a decaying � term. It would be convenient to introduce
the dynamical system in the state variables (H, ρ),
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Table 1 Different choices of the �(a) parametrization for different
cosmological models appearing in the literature

�(a) Parametrization References

� ∼ a−m [23,24]

� = M4
pl

( rpl
R

)n
[25]

� = c5

h̄G2

(
l pl
a

)n
[26]

ρ� = ρ̃v,0 + ερm,0
3−ε

a−3+ε [9]

ρde = a−(4+ 2
α

), α = 2(1 − �m,0 − ��,0) [27]

ρ� = 3α2M2
pa

−2
(

1+ 1
c

)
[28]

� = �pl

(a/ lpl)2 ∝ a−2 [29]

� = �1 + �2a−m [30]

Ḣ = −H2 − 1

6
ρm + �bare

3
+ �(a)

3
, (28)

ρ̇m = −3Hρm − d�

da
(Ha) (29)

or

dH2

d ln a
= 2

(
−H2 − 1

6
ρm + 1

3
�bare + 1

3
�(a)

)
, (30)

dρm

dτ
= dρm

d ln a
= −3ρm − a

d�

da
(31)

with the first integral of the form

ρm = 3H2 − �bare − �(a). (32)

As we have prescribed the form of the �(a) relation, we
can start the dynamical analysis with Eq. (28). It would be
convenient to rewrite it to the form of the acceleration equa-
tion, i.e.,

ä

a
= −1

6
ρm(a) + �bare

3
+ �(a)

3
, (33)

where ρm(a) is determined by Eq. (31) which is a linear
non-homogeneous differential equation which can be solved
analytically

dρm

dτ
= −3ρm − d�

dτ
(a) (34)

and

ρm = −
(∫ a

a3d�(a) + C

)
a−3 (35)

Equation (33) can be rewritten in an analogous form to
the Newtonian equation of motion for a particle of unit mass
moving in the potential V (a) (Eq. (25)), where

V (a) = 1

6
a−1

(∫ a

a3 d�

da
da + C

)
− �bare

6
a2 − 1

6
a2�(a).

(36)

The integration of the above function gives the form of
the potential.

Of course, Eq. (25) can be rewritten as the Newtonian
two-dimensional dynamical system

ȧ = p, ṗ = −∂V

∂a
, (37)

where the first integral has the form of Eq. (27). The integral
of energy (27) should be consistent with the first integral (32),
i.e.,

ρm + ρ� = 3H2, (38)

a−3
∫

a3�′(a)da + 3
ȧ2

a2 = �bare + �(a). (39)

Because the system under consideration is a conservative
system, centres or saddles can appear in the phase space. If
the potential function V (a) possesses a maximum, then in the
phase space we obtain a saddle type critical point. If V (a)

has a minimum, this point is a centre.
As an example of adopting the method of the effec-

tive potential, which is presented here, let us consider the
parametrization of �(a) like in the Alcaniz–Lima model of
decaying vacuum [9]. They assumed that energy density of
vacuum is of the form (see Table 1)

ρ� = ρv,0 + ερm,0

3 − ε
a−3+ε, (40)

where ρv,0 is vacuum energy ρm,0 is the energy density of
matter at the present moment for which we choose a = 1 =
a0. Because ρ̇vac < 0, i.e., the energy of vacuum is decaying,
from the conservation condition

ρ̇m = −3Hρm − ρ̇vac (41)

we obtain

ρ̇vac = −ρ̇m − 3Hρm = −ρm

(
ρ̇m

ρm
+ 3H

)
(42)

and the vacuum is decaying if

d ln ρm

d ln a
> −3. (43)

Let us notice that ρm = 0 is a solution of the system (41)
only if � is constant. It is a source of some difficulties in
the phase space because the trajectories can pass through the
line ρm = 0. As a consequence of decaying vacuum energy
density of matter will dilute more slowly compared to the
corresponding canonical relation in the �CDM model, i.e.,
the energy density of matter is scaling following the rule

ρm = ρm,0a
−3+ε, (44)

where ε > 0.
The dynamical system obtained from Eqs. (30)–(31) with

the parametrization (40) has the following form:

x ′ = −3x + (y − �)(3 − ε), (45)
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Fig. 3 A phase portrait for the dynamical system (45)–(46). The crit-
ical point (1) at x = 0, y = � is a stable node. It represents a de
Sitter universe. The red line represents the solutions of scaling type
y = ε

3−ε
x + �. The grey region represents a non-physical domain

excluded by the condition ρm = x > 0, ρ� = y > 0. Note that tra-
jectories approach the attractor along a straight line. Let us note the
existence of trajectories coming to the physical region from the non-
physical one. We treated this type of behaviour as a difficulty related
to an appearance of ghost trajectories, which emerges from the non-
physical region

y′ = −(y − �)(3 − ε), (46)

z′ = −z − x

6
+ y

3
, (47)

with the condition y = � + ε
3−ε

x , where x = ρm, y = ρ�,

z = H2 and ′ ≡ d
dτ

. The above dynamical system contains
the autonomous two-dimensional dynamical system (45)–
(46). Therefore this system has an invariant two-dimensional
submanifold. A phase portrait with this invariant submanifold
is demonstrated in Fig. 3.

For a deeper analysis of the system, the investigation of
trajectories at the circle x2 + y2 = ∞ at infinity is required.
For this aim the dynamical system (45)–(46) is rewritten in
projective coordinates. Two maps (X,Y ) and (X̃ , Ỹ ) cover
the circle at infinity. In the first map we use the following
projective coordinates: X = 1

x , Y = y
x and in the second one

X̃ = x
y , Ỹ = 1

y . System (45)–(46) rewritten in coordinates
X and Y has the following form:

X ′ = X ((Y − �X)(−3 + ε) + 3) , (48)

Y ′ = (Y + 1)(Y − �X)(−3 + ε) + 3Y (49)

and for variables X̃ , Ỹ , we obtain
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0.5

0

0.5
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Fig. 4 A phase portrait for the dynamical system (48)–(49). Both the
critical point (2) at the origin X = 0, Y = 0 and the critical point
(3) at X = 0, Y = ε

3−ε
present nodes. The red line represents the

solutions of a scaling type Y = ε
3−ε

+ �X . The grey region represents
a non-physical domain excluded by the condition X > 0, Y > 0

Table 2 Critical points for autonomous dynamical systems (45)–(46),
(48)–(49), (50)–(51), their eigenvalues and cosmological interpretation

No. Critical point Eigenvalues Type of
critical
point

Type of
universe

1 x = 0, y = � −3,−3 + ε Stable node de Sitter

2 X = 0, Y = 0 3, ε Unstable node Einstein–de
Sitter

3 X = 0, Y = ε
3−ε

3 − ε, −ε Saddle Scaling
universe

ρm Is
proportional
to ρ�

X̃ ′ = (1 + X̃)(1 − �Ỹ )(3 − ε) − 3X̃ , (50)

Ỹ ′ = Ỹ (1 − �Ỹ )(3 − ε). (51)

The phase portraits for dynamical systems (48)–(49) and
(50)–(51) are demonstrated in Figs. 4 and 5. The critical
points for the above dynamical system are presented in
Table 2 (Fig. 3, 4).

The reduction of the dynamics to the particle-like descrip-
tion with the effective potential enables us to treat the evolu-
tion of the universe in manners of classical mechanics. One
treats the scale factor as a positional variable and

Veff(a) = −ρeff(a)a2

6

= −1

6
a2

(
ρma

−3+ε + ρv,0 + ερm,0a−3+ε

3 − ε

)
, (52)

123



606 Page 8 of 21 Eur. Phys. J. C (2016) 76 :606

2 1 0 1 2 3
X

1.5

1

0.5

0

0.5

1

1.5

2

Y

2 1 0 1 2 3

2

1.5

1

0.5

0

0.5

1

1.5

3

1

Fig. 5 A phase portrait for the dynamical system (50)–(51). The criti-
cal point (1) at X̃ = 0, Ỹ = 1/� presents a stable node and the critical
point (3) is at X̃ = 3−ε

ε
, Ỹ = 0 presents a saddle type point. The red line

represents the solutions of a scaling type Ỹ =
(

1 − ε
3−ε

X̃
)

/�. The

grey region represents non-physical domain excluded by the condition
X̃ > 0, Ỹ > 0

where ρeff = ρm + ρvac(a) and

ȧ2

2
+ Veff = −k

2
. (53)

The motion of a particle (the universe, that is; it mimics a
unit-mass particle in that description) is restricted to the zero
energy level E = 0 (because we considered a flat model). The
evolutionary paths of the model can be directly determined
from the diagram of the effective potential Veff(a).

Figure 6 demonstrates the diagram Veff(a) for values
ε = 0.1 and 1. In general, for the phase portrait in the plane
(a, ȧ) the maximum of V (a) corresponds to the static Ein-
stein universe. This critical point is situated on the a-axis and
it is always of the saddle type. Of course, it is only admissible
for closed universes. In that case a minimum corresponds to
a critical point of a centre type. If we include the curvature
in the dynamical analysis then we get new solutions for the
positive curvature such as the oscillating universe with an
initial singularity and the universe with a bounce. But if we
perturb solutions for the flat universe by a small spatial cur-
vature then these solutions do not change qualitatively (see
Fig. 6).

The Alcaniz–Lima model behaves in the phase space
(a, ȧ) like the �CDM one [9]. Trajectories start from
(a, ȧ) = (0,∞) (corresponding to the big bang singularity),
approach the static universe and then evolve to infinity. Note
that if 0 < ε < 1 then dynamics is qualitatively equivalent
to the �CDM model.

The Eq. (29) can be written as

ρ̇m = −3Hρm − 3Hρmδ(t), (54)

0 1 2 3 4
a

1

0

1

2
Veff

0 1 2 3 4
a

1

0

1

2
Veff

Fig. 6 The potential Veff(a) for ε = 0.1 (top diagram) and for ε = 1
(bottom diagram). The top dashed lines (Veff = 1/2) represent the
energy level, which corresponds with the negative curvature. The bot-
tom dashed lines (Veff = −1/2) represent the energy level, which corre-
sponds with the positive curvature. The middle dashed lines (Veff = 0)
represent the energy level, which corresponds with the flat universe. The
colored region represents a forbidden domain for the motion. The shape
of diagram of the potential determines the phase space structure. The
maximum of the potential is corresponding to a static Einstein universe
in the phase space. Note that the universe with the positive curvature is
an oscillating universe with the initial singularity (the left bottom part
of the top diagram) or is a universe with a bounce (the right bottom part
of both diagrams)

where δ(t) = − 1
3ρm

d�
da a. Therefore,

ρ̇m = −3Hρm(1 + δ(t)), (55)

where −3Hρmδ(t) = d�
da Ha, i.e., δ(t) = − d�

da a
3ρm

∝ −ρ�

ρm
. If

δ(t) is a slowly changing function of time, i.e., δ(t) � δ then
(55) has the solution ρm = ρm,0a−3+δ .

4 �(R)CDM cosmologies as a dynamical system

The Ricci scalar dark energy idea has been recently consid-
ered in the context of the holographic principle [31]. In this
case dark energy can depend on time t through the Ricci

123



Eur. Phys. J. C (2016) 76 :606 Page 9 of 21 606

0 0.5 1 1.5 2
a

1.5

1

0.5

0

0.5

1

1.5

2

x

0 0.5 1 1.5 2

2

1.5

1

0.5

0

0.5

1

1.5

1

k 1

k 1

k 1

Fig. 7 A phase portrait for dynamical system (59)–(60) with α = 2/3.

The critical point (1), which is located on a-axis, (a =
√

3ρm,0
2ρ�−ρm,0

,
x = 0), is a saddle point and represents a static Einstein universe. The
red lines represent the trajectories of the flat universe. They separate the
regions in which closed and open models lie. In the region, at the right
from the critical point (1), bounded by the incoming separatrix from
above and the outgoing separatrix from below, trajectories are going
out from the contracting Milne solution, reaching the amin and coming
into the expanding Milne solution

scalar R(t), i.e., �(t) = �(R(t)). Such a choice does not
violate covariance of general relativity. A special case is the
parametrization ρ� = −α

2 R = 3α(Ḣ + 2H2 + k
a2 ) [27].

Then the cosmological equations are also formulated in the
form of a two-dimensional dynamical system,

Ḣ = −H2 − 1

6
(ρm + ρ�), (56)

ρ̇ = −3Hρm (57)

with the first integral of the form

H2 = 1

3

(
−3k

a2 + 2

2 − α
ρm,0a

−3 + f0a
2 1−2α

α

)
, (58)

where f0 is an integration constant.
From the above equations, we can obtain a dynamical

system in the state variables a, x = ȧ,

ȧ = x, (59)

ẋ = −�m,0
1

2 − α
a−2

+
(

1

α
− 1

) (
��,0 − �m,0

α

2 − α

)
a

2
α
−3. (60)

The phase portrait on the plane (a, x) is shown in Fig. 7.
In order to analyze the trajectories behaviour at infinity

we use the following sets of projective coordinates: A = 1
a ,

X = x
a .

The dynamical system for variables A and X is expressed
by

Ȧ = −X A, (61)

Ẋ = A3
[

− �m,0
1

2 − α

+
(

1 − α

α

)(
��,0 − �m,0

α

2 − α

)
A

α−2
α

]
− X2. (62)

We can use also the Poincaré sphere to identify the critical
points at infinity. We introduce the following new variables:
B = a√

1+a2+x2 , Y = x√
1+a2+x2 . In the variables (B, Y ), we

obtain a dynamical system of the form

B ′ = Y B2(1 − B2)

− BY
[

− �m,0
1

2 − α
(1 − B2 − Y 2)3/2

+
(

1 − α

α

) (
��,0 − �m,0

α

2 − α

)
B−1+2/α

× (1 − B2 − Y 2)2−1/α
]
, (63)

Y ′ =
[

− �m,0
1

2 − α
(1 − B2 − Y 2)3/2

+
(

1 − α

α

) (
��,0 − �m,0

α

2 − α

)
B−1+2/α

× (1 − B2 − Y 2)2−1/α
]
(1 − Y 2) − Y 2B3, (64)

where ′ ≡ B2 d
dt .

The phase portraits for the dynamical systems (61)–(62)
and (63)–(64) are demonstrated in Figs. 8 and 9, respectively.
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Fig. 8 A phase portrait for dynamical system (61)–(62) with α = 2/3.

The critical point (1) on the A-axis, (A =
√

2ρ�−ρm,0
3ρm,0

, X = 0), is a

saddle and represents a static Einstein universe. The red lines represent
the trajectories of a flat universe and they separate the regions in which
closed and open models lie. The critical point (2) is a degenerate point
at which the expanding and contracting Milne solutions are glued
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Fig. 9 A phase portrait for dynamical system (63)–(64) with α = 2/3.

The critical point (1) is at (B = 1/

√(
2ρ�−ρm,0

3ρm,0

)2 + 1, Y = 0) is a

saddle and represents a static Einstein universe. The critical point (2)
at the B-axis, Y = 0 is a stable node and represents a Milne universe.
The critical points (3) and (4) at (B = 0, Y = 1) and (B = 0, Y = −1)
are nodes and represent Einstein–de Sitter universes. The blue region
represents a physical domain restricted to B2 +Y 2 ≤ 0, B ≥ 0. The red
lines represent the flat universe and they separate the regions in which
closed and open models lie

If we include the curvature in the dynamical analysis then
we get new types of universes. In the phase space in the pos-
itive curvature domain, new trajectories appear which rep-
resent the oscillating universe with an initial singularity and
the universe with a bounce. For this model, the universe with
the bounce start from the Milne universe and is the universe
without the initial singularity. A similar situation holds for
many f (R) models, where the de Sitter universe is at the
infinite past. Non-singular solutions of this type were found
by Starobinsky [32].

5 Cosmology with emergent �(a) relation from exact
dynamics

In order to illustrate the idea of an emergent �(a) relation
let us consider cosmology with a scalar field which is non-
minimal coupled to gravity. For simplicity, without loss of
generality of our consideration, we assume that the non-
minimal coupling ξ is constant like the conformal coupling.
It is also assumed that dust matter, present in the model, does
not interact with the scalar field. Since we would like to nest
the �CDM model in our model we postulate that the potential
of the scalar field is constant. We also assume a flat geometry
with the R-W metric. The action for our model assumes the
following form:

S = Sg + Sφ + Sm, (65)

where

Sg + Sφ = 1

2

∫ √
g
(
R + gμν∂μφ∂νφ − ξ Rφ2

− 2V (φ)
)
d4x, (66)

Sm =
∫ √

gLmd4x, (67)

where the metric signature is (−,+,+,+), R = 6
(
ä
a + ȧ2

a2

)
is the Ricci scalar and the dot denotes the differentiation
with respect to the cosmological time t , i.e.,˙≡ d

dt and Lm =
−ρm

(
1 + ∫ pm(ρm)

ρ2
m

dρm

)
.

After skipping the full derivatives with respect to the time,
the equation of motion for the scalar field is obtained after
the variation over the scalar field and metric,

δS

δφ
= 0 ⇔ φ̈ + 3H φ̇ + ξ Rφ + V ′(φ) = 0, (68)

where ′ ≡ d
dφ

and

δS

δg
= 0 ⇔ E = 1

2
φ̇2 + 3ξH2φ2 + 6ξHφφ̇

+V (φ) − 3H2 ≡ 0. (69)

Additionally, from the conservation condition of the equa-
tion of state pm = pm(ρm) for the barotropic matter we have

ρ̇m = −3H(ρm + pm(ρm)). (70)

Because we assume dust matter (pm=0), Eq. (70) has a
simple scaling solution of the form

ρm = ρm,0a
−3, (71)

where a = a(t) is the scale factor from the R-W metric
ds2 = dt2 − a2(t)(dx2 + dy2 + dz2).

Analogously, the effects of the homogeneous scalar field
satisfy the conservation condition

ρ̇φ = −3H(ρφ + pφ), (72)

where

ρφ = 1

2
φ̇2 + V (φ) + 6ξHφφ̇ + 3ξH2φ2, (73)

pφ = 1

2
(1 − 4ξ)φ̇2 − V (φ) + 2ξHφφ̇ − 2ξ(1 − 6ξ)Ḣφ2

−3ξ(1 − 8ξ)H2φ2 + 2ξφV ′(φ). (74)

In the investigation of the dynamics it would be convenient
to introduce the so-called energetic state variables [33]

x ≡ φ̇√
6H

, y ≡
√
V (φ)√
3H

, z ≡ φ√
6
. (75)

The choice of such state variables (75) is suggested by the
energy constraint E = 0 (69).
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The energy constraint condition can be rewritten in terms
of dimensionless density parameters

�m + �φ = 1 (76)

then

�φ = 1 − �m = (1 − 6ξ)x2 + y2 + 6ξ(x + z)2

= 1 − �m,0a
−3 (77)

and the formula H(x, y, z, a) rewritten in the terms of state
variables x , y, z assumes the following form:

(
H

H0

)2

= �φ + �m

= (1 − 6ξ)x2 + y2 + 6ξ(x + z)2 + �m,0a
−3.

(78)

Equation (78) is crucial for the model testing and estima-
tion of the model parameters using astronomical data.

Because we try to generalize the�CDM model it is natural
to interpret the additional contribution beyond �bare as a
running � term in (78). In our further analysis we will called
this term ‘emergent � term’. Therefore,

��,emergent = (1 − 6ξ)x2 + y2 + 6ξ(x + z)2. (79)

Of course, state variables satisfy a set of the differential
equations in the consequence of Einstein equations. We try to
organize them in the form of autonomous differential equa-
tions, i.e., some dynamical system.

For this aim let us start from the acceleration equation,

Ḣ = −1

2
(ρeff + peff) = −3

2
H2(1 + weff), (80)

where ρeff and peff are the effective energy density and the
pressure, while weff = peff

ρeff
is an effective coefficient of equa-

tion of state. Moreover, ρeff = ρm + ρφ and peff = 0 + pφ .
The coefficient equation of state weff is given by the for-

mula

weff = 1

1 − 6ξ(1 − 6ξ)z2

×
[
(1 − 4ξ)x2 − y2(1 + 2ξλz) + 4ξ xz + 12ξ2z2

]
,

(81)

where λ ≡ −√
6 V ′(φ)
V (φ)

is related to geometry of the potential,

where ′ ≡ d
dφ

.
The dynamical system which describes the evolution in

the phase space is in the form

dx

d(ln a)
= dx

dτ
= −3x − 12ξ z + 1

2
λy2 − (x + 6ξ z)

Ḣ

H2 ,

(82)

dy

d(ln a)
= dy

dτ
= −1

2
λxy − y

Ḣ

H2 , (83)

dz

d(ln a)
= dz

dτ
= x, (84)

dλ

d(ln a)
= dλ

dτ
= −λ2(�(λ) − 1)x, (85)

where � = V ′′(φ)V (φ)

V ′2(φ)
and

Ḣ

H2 = 1

H2

[
−1

2
(ρφ + pφ) − 1

2
ρm,0a

−3
]

= 1

6ξ z2(1 − 6ξ) − 1

[
−12ξ(1 − 6ξ)z2 − 3ξλy2z

+3

2
(1 − 6ξ)x2 + 3ξ(x + z)2 + 3

2
− 3

2
y2

]
. (86)

Let us notice that the dynamical system (82)–(85) is closed
if we only we assume that � = �(λ).

From the form of system (82)–(85) one can observe that

it admits the invariant submanifold
{

Ḣ
H2 = 0

}
for which the

equation in the phase space is of the form

− 12ξ(1 − 6ξ)z2 − 3ξλy2z + 3

2
(1 − 6ξ)x2

+3ξ(x + z)2 + 3

2
− 3

2
y2 = 0. (87)

Therefore, there are no trajectories which intersect this
invariant surface in the phase space. From the physical point
of view the trajectories are stationary solutions and on this
invariant submanifold they satisfy the condition

Ḣ

H2 = 0 ⇔ −1

2
(ρφ + pφ) − 1

2
ρm,0a

−3 = 0. (88)

If we look at the trajectories in the whole phase in the
neighbourhood of this invariant submanifold, then we can
observe that they will be asymptotically reached at an infinite
value of time τ = ln a. They are tangent asymptotically
to this surface. Note that in many cases the system on this
invariant submanifolds can be solved and the exact solutions
can be obtained.

As an illustration of the idea of the emergent �(a) relation
we consider two cases of cosmologies for which we derive
� = �(a) formulae. Such parametrizations of �(a) arise if
we consider the behaviour of trajectories near the invariant
submanifold of dynamical systems

1. V = const or λ = 0, the case of minimal coupling,
ξ = 0;

2. V = const, the case of conformal coupling, ξ = 1
6 .
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In these cases the dynamical system (82)–(85) reduces to

dx

d(ln a)
= dx

dτ
= −3x − x

Ḣ

H2 , (89)

dy

d(ln a)
= dy

dτ
= −y

Ḣ

H2 , (90)

dz

d(ln a)
= dz

dτ
= x, (91)

where

Ḣ

H2 = −3

2
x2 − 3

2
+ 3

2
y2. (92)

and

dx

dτ
= −3x − 2z − Ḣ

H2 (x + z), (93)

dy

dτ
= −y

Ḣ

H2 , (94)

dz

dτ
= x, (95)

where

Ḣ

H2 = −1

2
(x + z)2 − 3

2
+ 3

2
y2. (96)

The dynamical system (93)–(95) can be rewritten using
the variables X = x + z, Y = y and Z = z. Then we get

dX

dτ
= −2X − Ḣ

H2 X, (97)

dY

dτ
= −Y

Ḣ

H2 , (98)

dZ

dτ
= X − Z , (99)

where

Ḣ

H2 = −1

2
X2 − 3

2
+ 3

2
Y 2. (100)

The next step in a realization of our idea of the emergent
� is to solve the dynamical system on invariant submanifold
and then to substitute this solution into Eq. (79).

For the first case (ξ = 0, V = const), the dynamical
system (89)–(91) has the following form:

dx

d(ln a)
= dx

dτ
= −3x, (101)

dy

d(ln a)
= dy

dτ
= 0, (102)

dz

d(ln a)
= dz

dτ
= x, (103)

with the condition

0 = x2 − y2 + 1. (104)

The solution of the dynamical system (101)–(103) is x =
C1a−3, y = const and z = − 1

3C1a−3 + C2.
The phase portraits and a list of critical points for the

dynamical system (89)–(91) is presented in Figs. 10, 11 and
Table 3, respectively. The critical point (1) represents the
matter dominating universe – an Einstein–de Sitter universe.

Finally, for first case ��,emergent is given as

��,emergent = ��,emergent,0a
−6 + ��,0. (105)

Now, let us concentrate on the second case (ξ = 1/6, V =
const). The system (93)–(95) assumes the following form:

dx

dτ
= −3x − 2z, (106)

dy

dτ
= 0 ⇒ y = const, (107)

dz

dτ
= x (108)

with the condition

0 = (x + z)2 − 3y2 + 3. (109)

The dynamical system (106)–(108) is linear and can be
simply integrated. The solution of the above equations are
x = −2C1a−2−C2a−1, y = const and z = C1a−2+C2a−1.

The phase portrait and critical points for the dynamical
system (93)–(95) are presented in Figs. 12, 13 and Table 4.
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Fig. 10 The phase portrait for autonomous dynamical system (89)–
(90). The critical point (1) represents a Einstein–de Sitter universe. The
critical points (4) and (5) represent a Zeldovich stiff matter universe. The
critical point (2) represents a contracting de Sitter universe. The critical
point (3) represents stable de Sitter universe. The de Sitter universe is

located on the invariant submanifold Ḣ
H2 = 0. The blue region presents

the physical region restricted by the condition x2 + y2 ≤ 1, which is a
consequence of �m ≥ 0
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3

2

1
x

y
z

Fig. 11 The phase portrait for dynamical system (89)–(91). The criti-
cal point (1) represents the Einstein–de Sitter universe. Note that time
dt = Hdτ is measured along trajectories, therefore in the region H < 0
(contracting model) time τ is reversed to the original time t . Hence, the
critical point (2) represents an unstable de Sitter universe. Point (3) is
opposite to the critical point (2) which represents a contracting de Sitter
universe. The de Sitter universe is located on the invariant submanifold
Ḣ
H2 = 0, which is an element of a cylinder and is presented by green
lines. The surface of the cylinder presents a boundary of the physical
region restricted by the condition x2 + y2 ≤ 1, which is a consequence
of �m ≥ 0

To illustrate the trajectories’ behaviour close to the invariant
submanifold (represented by the green lines) in the phase
portrait (13) we construct two-dimensional phase portraits;
see Fig. 14. In the latter trajectories reach the stationary states
along tangential vertical lines (green lines).

On invariant submanifold (109) the dynamical system
(106)–(108) reduces to

dx

dτ
= −x, (110)

dz

dτ
= −z. (111)

The solutions of (110)–(111) are x = C1a−1 and z = C2a−1.
Finally, we have

��,emergent = ��,0 + ��,emergent,0a
−4, (112)

i.e., the relation �(a) ∝ a−4 appears if we consider the
behaviour of trajectories in the neighbourhood of an unstable
de Sitter state Ḣ

H2 = 0. Therefore, the emergent term is of the
type ‘radiation’. In the scalar field cosmology there is a phase
of evolution during each effective coefficient e.o.s. is 1/3 like
for radiation. If we find a trajectory in a neighbourhood of a
saddle point then such a type of behaviour appears [33] (Fig.
14).

We can rewrite Eq. (86) as the Newtonian equation of
motion for a particle of unit mass moving in the potential
V (a) (Eq. (25)). On the invariant submanifold { Ḣ

H2 = 0} the
above equation gives the following form of the potential:

V (a) = −1

2
H2

0 a
2. (113)

Figure 15 presents the evolution of V (a). For the positive
curvature we get new solution which is the universe with the
bounce. If we perturb solutions for the flat universe by a small
negative spatial curvature then these solutions do not change
qualitatively (see Fig. 15). But for the positive curvature, we
always get the solutions, which represents the universe with
bounce.

6 How to constrain emergent running �(a)
cosmologies?

Dark energy can be divided into two classes: with or without
early dark energy [34]. Models without early dark energy
behave like the �CDM model in the early time universe.
For models with early dark energy, dark energy plays an
important role in evolution of early universe. The second type
models should have a scaling or attractor solution where the
fraction of dark energy follows the fraction of the dominant
matter or radiation component. In this case, we use the frac-
tional early dark energy parameter �e

d to measure a ratio of
dark energy to matter or radiation.

The model with ξ = 1/6 (conformal coupling) and
V = const belongs to a class of models with early con-
stant ratio dark energy in which �de=const during the radia-
tion dominated stage. In this case we can use the fractional

Table 3 The complete list of
critical points of the
autonomous dynamical system
(89)–(90) which are shown in
Figs. 10 and 11

Critical point Coordinates Eigenvalues Type of critical point Type of universe

1 x = 0, y = 0 3 −3 Saddle Einstein–de Sitter

2 x = 0, y = −1 −3,−3 Stable node Contracting de Sitter

3 x = 0, y = 1 −3,−3 Stable node de Sitter

4 x = 1, y = 0 3, 3 Unstable node Zeldovich stiff

Matter dominating

5 x = −1, y = 0 3, 3 Unstable node Zeldovich stiff

Matter dominating

Coordinates, eigenvalues of the critical point as well as its type and cosmological interpretation are given
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Fig. 12 The phase portrait for dynamical system (97)–(98). The criti-
cal point (1) represents a Einstein–de Sitter universe. The critical point
(4) and (5) represent Zeldovich stiff matter universes. The critical points
(2) represents a contracting de Sitter universe. The critical point (3) rep-
resents a stable de Sitter universe. The de Sitter universe is located on the
invariant submanifold Ḣ

H2 = 0. The blue region presents the physical

region restricted by the condition X2 +Y 2 ≤ 1, which is a consequence
of �m ≥ 0
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X
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Z

Fig. 13 The phase portrait for dynamical system (97)–(99). The crit-
ical point (1) represents an Einstein–de Sitter universe. Note that time
dτ = Hdt is measured along trajectories, therefore in the region H < 0
(contracting model) time τ is reversed to the original time t . Hence, the
critical point (2) represents an unstable de Sitter universe. Point (3) is
opposite to critical points (2) which represents a contracting de Sitter
universe. The de Sitter universe is located on the invariant submanifold
Ḣ
H2 = 0, which is the element of a cylinder and is presented by green
lines. The surface of the cylinder presents a boundary of the physical
region restricted by the condition X2 +Y 2 ≤ 1, which is a consequence
of �m ≥ 0

early dark energy parameter �e
d [34,35] which is constant

for models with constant dark energy in the early universe.
The fractional density of early dark energy is defined by the
expression �e

d = 1 − �m
�tot

, where �tot is the sum of dimen-
sionless density of matter and dark energy. In this case, there
exist strong observational upper limits on this quantity [14].

For this aim let us notice that during the ‘radiation’ epoch
we can apply this limit �e

d < 0.0036 [14] and

1 − �e
d = �m,0a−3 + �r,0a−4

�m,0a−3 + �r,0a−4 + ��,0 + �emergent,0a−4 .

(114)

Let us consider a radiation dominating phase a(t) ∝ t
1
2

(peff = 1
3ρeff) [33],

1 − �e
d = �m,0t−

3
2 + �r,0t−2

�m,0t−
3
2 + �r,0t−2 + ��,0 + �emergent,0t−2

at early universe� �r,0

�r,0 + �emergent,0
. (115)

�e
d at the early universe is constant and

�e
d = 1 − �r,0

�r,0 + �emergent,0
< 0.0036. (116)

From the above formula we get
�emergent,0

�r,0
< 0.003613. In

consequence we have a strict limit on a strength of the running
� parameter in the present epoch, �emergent,0 < 3.19×10−7.

7 Cosmology with non-canonical scalar field

The dark energy can also be parameterized in a covariant
way by a non-canonical scalar field φ [36]. The main dif-
ference between canonical and non-canonical description of
the scalar field is in the generalized form of the pressure pφ

of the scalar field. For the canonical scalar field, the pres-

sure pφ is expressed by the formula pφ = φ̇2

2 −V (φ), where
˙ ≡ d

dt and V (φ) is the potential of the scalar field. In the non-
canonical case, the pressure is described by the expression

pφ =
(

φ̇2

2

)α − V (φ), where α is an additional parameter.

If α is equal 1 then the pressure of the non-canonical scalar
field represents the canonical case.

The theory of the non-canonical scalar field is of course
a covariant formulation because this theory can be obtained
from the action, which is described by the following formula:

S =
∫ √−g

(
R +

(
φ̇2

2

)α

− V (φ) + Lm

)
d4x, (117)

where Lm is the Lagrangian for the matter. Note that if V (φ)

is constant then the model is equivalent to the model which
is filled with an ideal fluid with the equation of state p = wρ

(where w is determined by α) and the cosmological constant.
After variation of the LagrangianLwith respect to the metric
we get the Friedmann equations in the following form:

3H2 = ρm + (2α − 1)

(
φ̇2

2

)α

+ V (φ) − 3k

a2 , (118)
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Table 4 The list of critical
points for the autonomous
dynamical system (97)–(98)
which are shown in Fig. 12 and
13

Critical point Coordinates Eigenvalues Type of critical point Type of universe

1 X = 0, Y = 0 3/2, −1/2 Saddle Einstein–de Sitter

2 X = 0, Y = −1 −3,−2 Stable node Contracting de Sitter

3 X = 0, Y = 1 −3,−2 Stable node de Sitter

4 X = 1, Y = 0 1, 2 Unstable node Zeldovich stiff

Matter dominating

5 X = −1, Y = 0 1, 2 Unstable node Zeldovich stiff

Matter dominating

Coordinates, eigenvalues of the critical point as well as its type and cosmological interpretation are given
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Fig. 14 The phase portrait of the invariant submanifold X = 0 of the
dynamical system (97)–(99). The critical point (1) represents a Einstein–
de Sitter universe. The critical points (3) represents a stable de Sitter
universe. The critical point (2) represents a contracting de Sitter uni-
verse. Note that because of time parametrization dt = Hdτ in the
region X < 0, the cosmological time t is reversed. In consequence, the
critical point (2) is unstable. The de Sitter universe is located on the

invariant submanifold { Ḣ
H2 = 0}, which is represented by green verti-

cal lines. By identification of green lines of the phase portrait one can
represent the dynamics on the cylinder. The boundary of the physical
region is restricted by the condition Y 2 ≤ 1, which is a consequence
�m ≥ 0. Note that trajectories reach the de Sitter states along tangential
vertical lines

− 3
ä

a
= ρm

2
+ (α + 1)

(
φ̇2

2

)α

− V (φ). (119)

We obtain an additional equation of motion for a scalar
field after the variation of the Lagrangian L with respect to
the scalar field φ,

φ̈ + 3H φ̇

2α − 1
+

(
V ′(φ)

α(2α − 1)

) (
2

φ̇2

)α−1

= 0, (120)

where ′ ≡ d
dφ

.
For α = 1, Eqs. (118), (119) and (120) reduce to the case

of the canonical scalar field. For α = 0 we have the case

0 1 2 3 4
a

1

0

1

2
Veff

Fig. 15 The figure presents a potential Veff(a). Thetop dashed lines
(Veff = 1/2) represent the energy level, which corresponds with the
negative curvature. The bottom dashed lines (Veff = −1/2) represent
the energy level, which corresponds with the positive curvature. The
middle dashed lines (Veff = 0) represent the energy level, which corre-
sponds with the flat universe. The forbidden domain for the motion is
colored. Note that, for the case of the positive curvature, the universe is
with the bounce (the right bottom part of the diagram)

with the constant scalar field. The case α = 2 with the con-
stant potential V is interesting since the scalar field imitates
radiation because φ2α ∝ a−4 in the Friedmann equation.

For the constant potential V = �, Eq. (120) reduces to

φ̈ + 3H φ̇

2α − 1
= 0. (121)

Equation (121) has the following solution:

φ̇ = φ0a
−3

2α−1 . (122)

We can obtain from (118), (119) and (120) the dynamical
system for the non-canonical scalar field with the constant
potential in the variables a and x = ȧ,

a′ = xa2, (123)

x ′ = −ρm,0

6
− α + 1

3
a

3
1−2α + �

3
a3, (124)
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Fig. 16 A phase portrait for the dynamical system (123)–(124) for
example with α = 1/8. The red lines represent the flat universe and
these trajectories separates the regions in which closed and open models
lie. Note that all models independence on curvature are oscillating
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Fig. 17 A phase portrait for the dynamical system (125)–(126) with
α = 1/8 as an example. The red lines represent the flat universe and
these trajectories separates the regions in which closed and open models
lie

where ′ ≡ a2 d
dt . The phase portrait for the dynamical system

(123)–(124) is presented in Figs. 16 and 17.
The system (123)–(124) possesses critical points which

belong to two types:

1. static critical points x0 = 0,
2. non-static critical points a0 = 0 (Big Bang singularity).

If we assume the matter in the form of dust (p = 0) then
non-static critical points cannot exist at a finite domain of
the phase space. The Big Bang singularity corresponds to a
critical point at infinity.

Note that, if α > 1
2 , then the eigenvalues for the critical

point (a0, 0) are real and correspond to a saddle type of criti-
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Fig. 18 A phase portrait for the dynamical system (127)–(128) with
α = 1/8 as an example. The critical point (1) at the origin B = 0, Y = 0
presents a stable node and Einstein–de Sitter universe. The grey region
represents a non-physical domain excluded by the condition X̃ Ỹ > 0.
The red lines represent the flat universe and these trajectories separate
the regions in which closed and open models lie
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Fig. 19 A phase portrait for the dynamical system (123)–(124) with
α = 50 as an example. The critical point (1) is a saddle and represents
a static Einstein universe. The red lines represent the flat universe and
these trajectories separates the regions in which closed and open mod-
els lie. Note that all models have independence on curvature and are
oscillating

cal point. Therefore, for α > 1
2 the qualitative structure of the

phase space is topologically equivalent (by homeomorphism)
to the �CDM model. Hence, the phase space portrait is struc-
turally stable, i.e., it is not disturbed under small changes of
the right-hand side of the system.

For the analysis of the behaviour of trajectories at infinity
we use the following sets of projective coordinates:
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Fig. 20 A phase portrait for the dynamical system (125)–(126) with
α = 50 as an example. The critical point (1) is a saddle and represents
a static Einstein universe. The critical point (2) represents a stable de
Sitter universe. The critical point (3) represents a contracting de Sitter
universe. The red lines represent the flat universe and these trajectories
separate the regions in which closed and open models lie
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Fig. 21 A phase portrait for dynamical system (127)–(128) for exam-
ple with α = 50. The critical point (4) at the origin (B = 0, Y = 0)
is an unstable node and represents an Einstein–de Sitter universe. The
red lines represent the flat universe and these trajectories separate the
regions in which closed and open models lie

1. A = 1
a , X = x

a ,
2. B = a

x , Y = 1
x .

Two maps cover the behaviour of trajectories at the circle at
infinity.

The dynamical system for variables A and X is expressed
by

A′ = −X A2, (125)

X ′ = A4
(

−ρm,0

6
− α + 1

3
A

3
2α−1

)
+ A

(
�

3
− X2

)
,

(126)

where ′ ≡ A d
dt . The dynamical system for variables B and

Y is given by

Ḃ = BY

[
B +

(
ρ

6
Y 3 + α + 1

3
B

3
1−2α Y

6α
2α−1 − �

3
B3

)]
,

(127)

Ẏ = Y 2
(

ρ

6
Y 3 + α + 1

3
B

3
1−2α Y

6α
2α−1 − �

3
B3

)
, (128)

where˙≡ B2Y d
dt .

From the analysis of the dynamical system (127)–(128)
we find one critical point (B = 0, Y = 0) which repre-
sents the Einstein–de Sitter universe. The phase portraits for
dynamical system (125)–(126) and (127)–(128) are depicted
in Figs. 18, 19, 20, and 21.

Let us consider the curvature in the dynamical analysis.
Then in the phase space in the positive curvature domain, we
find new trajectories which represent an oscillating universe
with the initial singularity and a universe with a bounce (Figs.
17, 20, 21).

8 Cosmology with diffusion

The parametrization of dark energy can also be described in
terms of the scalar field φ [37,38]. As an example of such a
covariant parametrization of � let us consider cosmological
models with diffusion. In this case the Einstein equations and
equations of the current density Jμ are the following:

Rμν − 1

2
gμνR + φgμν = Tμν, (129)

∇μT
μν = σ J ν, (130)

∇μ J
μ = 0, (131)

where σ is a positive parameter.
From the Bianchi identity, ∇μ

(
Rμν − 1

2gμνR
) = 0, and

Eqs. (129) and (130) we get the following expression for
�(a(t)):

∇μφ = σ Jμ. (132)

We assume also that matter is a perfect fluid. Then the energy-
momentum tensor is expressed in the following form:

Tμν = ρuμuν + p
(
gμν + uμuν

)
, (133)

whereuμ is the 4-velocity and the current density is expressed
by

Jμ = nuμ. (134)

Under these considerations Eqs. (130), (132) and (131)
are described by the following expressions:

∇μ(ρuμ) + p∇μu
μ = σn, (135)

∇μ(nuμ) = 0, (136)
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Fig. 22 A phase portrait for the dynamical system (142)–(142). The
critical point (1) (x = 0, y = 0) is a stable node and represents the de
Sitter universe. The critical point (2) (x = 2/3, y = 2/3) is a saddle
and represents the Milne universe. The critical point (3) (x = 1, y = 0)
is an unstable node type and represents the Einstein–de Sitter universe.
Note the existence of trajectories crossing the boundary x = ρm = 0 in
a non-physical region
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Fig. 23 A phase portrait for the dynamical system (144)–(145). The
critical point (4) (X = 0, Y = 0) is a saddle and represents the static
universe. The critical point (2) (X = 3/2, Y = 1) is a saddle and
represents the Milne universe

and

∇μφ = σnuμ. (137)

We consider for simplicity the case of cosmological equa-
tions with the zero curvature. Equation (136) is now

n = n0a
−3. (138)

In this case we have the following cosmological equations:

3H2 = ρm + �(a(t)), (139)
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Fig. 24 A phase portrait for the dynamical system (146)–(147). The
blue region represents the physical domain. The critical points (5) and
(6) (X̃ = 0, Ỹ = 1) and (X̃ = 0, Ỹ = −1) represent the de Sitter
universe with diffusion. The blue region represents a physical domain
restricted by B2 + Y 2 ≤ 0, B ≥ 0

ρ̇m = −3Hρm + σn0a
−3, (140)

dφ

dt
= −σn0a

−3. (141)

If we choose the dimensionless state variables x = ρm
3H2

and y = σn0a−3

3H3 and the parametrization of time as ′ ≡ d
d ln a

then we get the following dynamical system:

x ′ = 3x(x − 1) + y, (142)

y′ = 3y(
3

2
x − 1). (143)

The phase portrait for (142)–(143) is demonstrated in Fig. 22.
The dynamical system (142)–(143) can be rewritten in the

projective variables for the analysis of critical points in infin-
ity. In this case we use the following projective coordinates:
X = 1

x , Y = y
x . For the new variables X and Y , we obtain

X ′ = X (X (3 − Y ) − 3) , (144)

Y ′ = Y

(
3

2
− XY

)
(145)

where ′ ≡ X d
d ln a .

We can use also the Poincaré sphere to search critical
points in infinity. We introduce the following new variables:
X̃ = x√

1+x2+y2
, Ỹ = y√

1+x2+y2
. In the variables X̃ , Ỹ , we

obtain the dynamical system of the form
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Fig. 25 The potential Veff(a) for a > 0.6 (top diagram) and for a <

0.6 (bottom diagram). The top dashed lines (Veff = 1/2) represent
the energy level, which corresponds with the negative curvature. The
bottom dashed lines (Veff = −1/2) represent the energy level, which
corresponds with the positive curvature. Themiddle dashed lines (Veff =
0) represent the energy level, which corresponds with the flat universe.
The forbidden domain for the motion is colored. Note that, for the case
of the positive curvature, the universe is oscillating (the left bottom part
of the top diagram) or is the universe with the bounce (the right bottom
part of both diagrams)

X̃ ′ = (1 − X̃2)(3X̃2 + (Ỹ − 3X̃)

√
1 − X̃2 − Ỹ 2)

− 3X̃ Ỹ 2
(

3

2
X̃ −

√
1 − X̃2 − Ỹ 2

)
, (146)

Ỹ ′ = −X̃ Ỹ (3X̃2 + (Ỹ − 3X̃)

√
1 − X̃2 − Ỹ 2)

+ 3(1 − Ỹ 2)Ỹ

(
3

2
X̃ −

√
1 − X̃2 − Ỹ 2

)
, (147)

where ′ ≡
√

1 − X̃2 − Ỹ 2 d
d ln a . The phase portraits for

(144)–(145) and (146)–(147) are demonstrated in Figs. 23
and 24.

We can rewrite Eqs. (139–141) as the Newtonian equation
of motion for a particle of unit mass moving in the potential
V (a) (Eq. (25)) for finding the potential V (a). The potential
V (a) has the following form:

V (a) = −1

2
H(a)2a2. (148)

Figure 25 presents the evolution of V (a). For the curvature
we get new solutions which are for a universe with a bounce
and an oscillating universe without the initial singularity.

9 Conclusion

In this paper we have studied the dynamics of cosmolog-
ical models with the running cosmological constant term
using the dynamical system methods. We considered dif-
ferent parametrizations of the � term which are used in the
cosmological applications. The most popular approaches are
to parametrize the � term through the scale factor a or the
Hubble parameter H . We considered cosmological models
for which the energy-momentum tensor of matter (we assume
dust matter) is not conserved. In this case there is an interac-
tion between both dark matter and dark energy sectors.

There is a class of parameterizations of the � term through
the Ricci scalar (or the trace of the energy-momentum ten-
sor), the energy density of the scalar field or their kinetic part,
and a scalar field φ minimally or non-minimally coupled to
gravity. These choices are consistent with the covariance of
general relativity.

We have discovered a new class of the emergent � param-
eterizations (in the case of �(a)) obtained directly from the
exact dynamics, which does not violate the covariance of
general relativity.

In consequence, the energy density deviates from the stan-
dard dilution. Due to decaying vacuum energy the standard
relation ρm ∝ a−3 is modified. From the cosmological point
of view this class of models is a special case of cosmology
with the interacting term Q = − d�

dt .
The main motivation for studying such models comes

from the solution of the cosmological constant problem,
i.e., explanations why the cosmological upper bound (ρ� �
10−47 GeV) dramatically differs from theoretical expecta-
tions (ρ� ∼ 1071GeV) by more than 100 orders of magni-
tude [39]. In this context the running � cosmology is some
phenomenological approach toward finding the relation �(t)
lowering the value of cosmological constant during the cos-
mic evolution.

In the study of the �(t)CDM cosmology different
parametrizations of the � term are postulated. Some of them
like �(φ), �(R) or �(tr Tμ

ν ), �(T ), where T = 1
2 φ̇2 are

consistent with the principle of covariance of general relativ-
ity. Others, like � = �(H), are motivated by the quantum
field theory.

We demonstrated that the parameterization � = �(a) can
be obtain from the exact dynamics of the cosmological mod-
els with scalar field and the potential by taking approximation
of trajectories in a neighbourhood of the invariant submani-
fold Ḣ

H2 of the original system. The trajectories approaching
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a stable de Sitter state are mimicking the effects of the run-
ning �(a) term. The arbitrary parametrizations of �(a), in
general, violate the covariance of general relativity. However,
some of them which emerge from the covariant theory are
an effective description of the behaviour of trajectories in the
neighbourhood of a stable de Sitter state.

In the paper we have studied the dynamics of these cos-
mological models in detail. We have examined the structure
of the phase space which is organized by critical points rep-
resenting stationary states, invariant manifolds, etc. We have
explored the dynamics at finite domains of the phase space
as well as at infinity using the projective coordinates.

The detailed results obtained from the dynamical system
analysis are as follows:

– We have found that Alcaniz and Lima’s solution in the
exploration of the conception of �(H) cosmology rep-
resents the scaling solution ρ�(a) ∼ ρm(a). For this
trajectory deS+ is a global attractor.

– The non-covariant �(a) parametrization can be obtained
from the covariant action for the scalar field as an emer-
gent parameterization.

– We have found strong evidence for the tuned-in � term
in the �(a) cosmology: ��,0 < 3.19 × 10−7. This limit
was obtained on the base of Ade et al.’s estimation of the
constant early dark energy fraction [14].

– We have shown that trajectories in the phase space for
which ρ� ∼ ρm represent scaling solutions.

Due to the dynamical system analysis we can reveal the
physical status of the Alcaniz–Lima ansatz in the �(H)

approach. From the point of view of dynamical system theory
this solution is a universal asymptote for trajectories which go
toward a global attractor, i.e. a de Sitter state. In this regime
both ρ� − �bare and ρm are proportional, i.e., it is a scaling
solution.

The detailed studies of the dynamics on the phase portraits
showed how ‘large’ is the class of running � cosmological
models for which the concordance �CDM model is a global
attractor.

We also demonstrated on the example of cosmological
models with non-minimal coupling constant and constant
potential that a running part of the � term can be constrained
by the Planck data. Applying the idea of constant early dark
energy fraction and Ade et al.’s bound we have found a con-
vincing constraint on the value of the running � term.

In the paper we considered some parametrization of the
� term, which violates the covariance of the Lagrangian like
�(H), �(a) parameterization but it is used as a some kind
of an effective description. In the phase space of cosmolog-
ical models with such a parametrization we observe some
difficulties which are manifested by trajectories crossing the
boundary line of zero energy density invariant submanifold.

It is a consequence of the fact that ρm = 0 is not a trajec-
tory of the dynamical system. On the other hand the �(a)

parametrization can emerge from the basic covariant theory
as some approximation of the true dynamics.

We illustrated such a possibility for the scalar field cos-
mology with a minimal and non-minimal coupling to gravity.
In the phase space of evolutionary scenarios the difficulties
disappear. Trajectories depart from the invariant submani-
fold Ḣ

H2 = 0 of the corresponding dynamical system and
this behaviour can be approximated by a running cosmolog-
ical term such as a slow roll parameter ε1 = Ḣ

H2 � 1.
We included the curvature in the dynamical analysis. In

the phase space in the positive curvature domain, we found
new trajectories which represent an oscillating universe with
the initial singularity and without the initial singularity and
a universe with a bounce. For models in this paper, pertur-
bations of the flat model, by the negative curvature, do not
change qualitatively this model in contrast to a closed model.
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Abstract We classify singularities in FRW cosmologies,
which dynamics can be reduced to the dynamical system of
the Newtonian type. This classification is performed in terms
of the geometry of a potential function if it has poles. At the
sewn singularity, which is of a finite scale factor type, the
singularity in the past meets the singularity in the future. We
show that such singularities appear in the Starobinsky model
in f (R̂) = R̂+γ R̂2 in the Palatini formalism, when dynam-
ics is determined by the corresponding piecewise-smooth
dynamical system. As an effect we obtain a degenerate sin-
gularity. Analytical calculations are given for the cosmolog-
ical model with matter and the cosmological constant. The
dynamics of model is also studied using dynamical system
methods. From the phase portraits we find generic evolution-
ary scenarios of the evolution of the universe. For this model,
the best fit value of �γ = 3γ H2

0 is equal 9.70 × 10−11. We
consider a model in both Jordan and Einstein frames. We
show that after transition to the Einstein frame we obtain both
the form of the potential of the scalar field and the decaying
Lambda term.

1 Introduction

The main aim of the paper is the construction of the Starobin-
sky model with a squared term R̂2 in the Palatini formal-
ism and the investigation of cosmological implications of
this model. In this model the inflation phase of evolution
of the universe can be obtained by the modification of gen-
eral relativity in the framework of f (R̂) modified gravity
theories [1]. In this context, historically the first theory of
inflation was proposed by Starobinsky [2]. In the original
Starobinsky model the term R2/6M2 was motivated by the
conformal anomaly in the quantum gravity. The problem of

a e-mail: aleksander.stachowski@uj.edu.pl
b e-mail: marek.szydlowski@uj.edu.pl
c e-mail: andrzej.borowiec@ift.uni.wroc.pl

inflation in an f (R) cosmological model is strictly related
with the choice of frames. The authors of [1] show that
CMB spectra in both Einstein and Jordan frames are dif-
ferent functions of the number of e-foldings until the end of
inflation.

Inflation is a hypothesis about the existence of a short
but very fast (of exponential type) accelerated growth of the
scale factor a(t) during the early evolution of the universe,
after the Big-Bang but before the radiation-dominated epoch
[3,4]. It implies ä(t) > 0. Irregularities in the early epoch
may lead to the formation of structures in the universe due
to the appearance of inflation.

Starobinsky [2] was the first who proposed a very simple
theoretical model with one parameter M (energy scale M)
of such inflation and which is in good agreement with astro-
nomical data and CMB observation. The Starobinsky model
is representing the simplest version of f (R) gravity theories
which have been developed considerably in the last decade
[1,5,6], whose extra term in the Lagrangian is quadratic in
the scalar curvature. This model predicts the value of spectral
index ns = 0.9603 ± 0.0073, at the 68% CL, with devia-
tion from scale-invariance of the primordial power spectrum
[7,8].

The Starobinsky model is also compatible with Planck
2015 data [9] and nicely predicts the number N = 50–60
e-folds between the start and the end of inflation [10].

It has been recently investigated some generalization of
the Starobinsky inflationary model with a polynomial form
of f (R) = R + R2

6M2 + λn
2n

Rn

(3M2)n−1 . It was demonstrated
that the slow-roll inflation can be achieved as long as the
dimensionless coupling λn is sufficiently small [11].

The Starobinsky model becomes generic because the
smallness of the dimensionless coupling constant λn does
not imply that fine-tuning is necessary [11]. The Starobinsky
model was developed in many papers [8,12–17].

In this paper we develop the idea of endogenous infla-
tion as an effect of modification of the FRW equation after
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the formulation of f (R) cosmological model in the Palatini
formalism.

We are looking for an inflation mechanism as a pure
dynamical mechanism driven by the presence of the addi-
tional term (square of the Ricci scalar) in the Lagrangian,
without necessity of the choice of a frame (Einstein vs. Jor-
dan frame) [16–18].

In modern cosmology, a most popular trend is to explain
the dark energy and the dark matter in terms of some sub-
stances, of which the nature is unknown up to now. Ein-
stein was representing the opposite relational point of view
on the description of gravity, in which all substantial forms
should be eliminated. Such a point of view is called anti-
substantialism. Extended f (R) gravity models [6,19] offer
intrinsic or geometric models of both dark matter and dark
energy—the key elements of Standard Cosmological Model.
Therefore, the Einstein idea of relational gravity, in which
dark matter and dark energy can be interpreted as geometric
objects, is naturally realized in f (R̂) extended gravity. The
methods of dynamical system in the context of investigation
dynamics of f (R) models are used since Carroll [19,20].

Unfortunately, the metric formulation of extended grav-
ity gives rise to fourth order field equations. To avoid this
difficulty, the Palatini formalism can be apply where both
the metric g and the symmetric connection � are assumed
to be independent dynamical variables. In consequence, one
gets a system of second order partial differential equations.
The Palatini approach reveals that the early universe inherits
properties of the global �CDM evolution.

The Palatini approach has become of some interest lately.
An excellent review of the Palatini f (R) theories can be
found in Olmo’s paper [21]. He has published many other
papers on this topic, namely, about the scalar–tensor repre-
sentation of the Palatini theories [22,23]. The other important
papers were on the existence of non-singular solutions in the
Palatini gravity [24,25]. Some more recent papers concen-
trate on studying black holes and their singularities in the
Palatini approach [26–30]. Other work which is important
to mention is Flanagan’s papers on the choice of a confor-
mal frame [31,32]. Pannia et al. considered the impact of the
Starobinsky model in compact stars [33].

In the Palatini gravity action for f (R̂)gravity is introduced
to be

S = Sg + Sm = 1

2

∫ √−g f (R̂)d4x + Sm, (1)

where R̂ = gμν R̂μν(�) is the generalized Ricci scalar and
R̂μν(�) is the Ricci tensor of a torsionless connection �. In
this paper, we assume that 8πG = c = 1. The equation
of motion obtained from the first order Palatini formalism
reduces to

f ′(R̂)R̂μν − 1

2
f (R̂)gμν = Tμν, (2)

∇̂α(
√−g f ′(R̂)gμν) = 0, (3)

whereTμν = − 2√−g
δLm
δgμν

is matter energy-momentum tensor,
i.e. one assumes that the matter minimally couples to the
metric. As a consequence the energy-momentum tensor is
conserved, i.e.: ∇μTμν = 0 [34]. In Eq. (3) ∇̂α means the
covariant derivative calculated with respect to �. In order to
solve Eq. (3) it is convenient to introduce a new metric,

√
hhμν = √−g f ′(R̂)gμν (4)

for which the connection � = �LC(h) is a Levi-Civita con-
nection. As a consequence in dim M = 4 one gets

hμν = f ′(R̂)gμν, (5)

i.e. both metrics are related by the conformal factor. For this
reason one should assume that the conformal factor f ′(R̂) �=
0, so it has strictly positive or negative values.

Taking the trace of (2), we obtain additional so called
structural equation

f ′(R̂)R̂ − 2 f (R̂) = T . (6)

where T = gμνTμν . Because of cosmological applications
we assume that the metric g is FRW metric

ds2 = −dt2+a2(t)

[
1

1 − kr2 dr2 + r2(dθ2 + sin2 θdφ2)

]
,

(7)

where a(t) is the scale factor, k is a constant of spatial curva-
ture (k = 0,±1), t is the cosmological time. For simplicity
of presentation we consider the flat model (k = 0).

As a source of gravity we assume a perfect fluid, with the
energy-momentum tensor

Tμ
ν = diag(−ρ, p, p, p), (8)

where p = wρ, w = const is a form of the equation of
state (w = 0 for dust and w = 1/3 for radiation). Formally,
effects of the spatial curvature can also be included into the
model by introducing a curvature fluid ρk = − k

2a
−2, with

the barotropic factor w = − 1
3 (pk = − 1

3ρk). From the con-
servation condition Tμ

ν;μ = 0 we obtain ρ = ρ0a−3(1+w).
Therefore the trace T reads

T =
∑
i

ρi,0(3wi − 1)a(t)−3(1+wi ). (9)
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In what follows we consider visible and dark matter ρm in
the form of dust w = 0, dark energy ρ� with w = −1 and
radiation ρr with w = 1/3.

Because a form of the function f (R̂) is unknown, one
needs to probe it via ensuing cosmological models. Here
we choose the simplest modification of the general relativity
Lagrangian,

f (R̂) = R̂ + γ R̂2, (10)

induced by the first three terms in the power series decompo-
sition of an arbitrary function f (R). In fact, since the terms
R̂n have different physical dimensions, i.e. [R̂n] �= [R̂m] for
n �= m, one should take instead the function R̂0 f (R̂/R̂0)

for constructing our Lagrangian, where R̂0 is a constant and
[R̂0] = [R̂]. In this case the power series expansion reads
R̂0 f (R̂/R̂0) = R̂0

∑
n=0 αn(R̂/R̂0)

n = ∑
n=0 α̃n R̂n , where

the coefficients αn are dimensionless, while [α̃n] = [R̂]1−n

are dimension full.
From the other hand the Lagrangian (10) can be viewed as

a simplest deviation, by the quadratic Starobinsky term, from
the Lagrangian R̂ which provides the standard cosmological
model a.k.a. �CDM model. A corresponding solution of the
structural equation (6)

R̂ = −T ≡ 4ρ�,0 + ρm,0a
−3. (11)

is, in fact, exactly the same as for the �CDM model, i.e.
with γ = 0. However, the Friedmann equation of the �CDM
model (with dust matter, dark energy and radiation)

H2 = 1

3

(
ρr,0a

−4 + ρm,0a
−3 + ρ�,0

)
(12)

is now hardly affected by the presence of quadratic term.
More exactly a counterpart of the above formula in the model
under consideration looks as follows:

H2

H2
0

= b2

(
b + d

2

)2

[
�γ (�m,0a

−3 + ��,0)
2

× (K − 3)(K + 1)

2b
+ (�m,0a

−3 + ��,0)

+ �r,0a−4

b
+ �k

]
, (13)

where

�k = − k

H2
0 a

2
, (14)

�r,0 = ρr,0

3H2
0

, (15)

�m,0 = ρm,0

3H2
0

, (16)

��,0 = ρ�,0

3H2
0

, (17)

K = 3��,0

(�m,0a−3 + ��,0)
, (18)

�γ = 3γ H2
0 , (19)

b = f ′(R̂) = 1 + 2�γ (�m,0a
−3 + 4��,0), (20)

d = 1

H

db

dt
= −2�γ (�m,0a

−3 + ��,0)(3 − K ) (21)

From the above one can check that the standard model (12)
can be reconstructed in the limit γ �→ 0. The study of this
generalized Friedmann equation is a main subject of our
research.

The paper is organized as follows. In Sect. 2, we consider
the Palatini approach in the Jordan and Einstein frame. In
Sect. 3, we present some generalities concerning dynami-
cal systems of Newtonian type, and their relations with the
Palatini–Starobinsky model. Section 4, is devoted to the clas-
sification of cosmological singularities with special attention
on Newtonian type systems represented by potential function
V (a). We adopt the Fernandes-Jambrina and Lazkoz classi-
fication of singularities [35] to these systems using the notion
of elasticity of the potential function with respect the scale
factor. In Sect. 5, we will analyze the singularities in the
Starobinsky model in the Palatini formalism. This system
requires the form of piecewise-smooth dynamical system.
Statistical analysis of the model is presented in Sect. 6. In
Sect. 7, we shall summarize obtained results and draw some
conclusions.

2 The Palatini approach in different frames (Jordan vs.
Einstein frame)

Because the effect of acceleration can depend on a choice of a
frame [36] this section is devoted to showing the existence of
the inflation effect if the model is considered in the Einstein
frame.

The action (1) is dynamically equivalent to the first order
Palatini gravitational action, provided that f

′′
(R̂) �= 0 [1,6,

17]

S(gμν, �
λ
ρσ , χ) = 1

2

∫
d4x

√−g
(
f ′(χ)(R̂ − χ) + f (χ)

)

+ Sm(gμν, ψ), (22)

Introducing a scalar field � = f ′(χ) and taking into account
the constraint χ = R̂, one gets the action (22) in the following
form:

S(gμν, �
λ
ρσ ,�) = 1

2

∫
d4x

√−g
(
�R̂ −U (�)

)

+ Sm(gμν, ψ), (23)
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where the potential U (�) is defined by

U f (�) ≡ U (�) = χ(�)� − f (χ(�)) (24)

with � = d f (χ)
dχ

and R̂ ≡ χ = dU (�)
d�

.
The Palatini variation of the action (23) gives rise to the

following equations of motion:

�

(
R̂μν − 1

2
gμν R̂

)
+ 1

2
gμνU (�) − Tμν = 0, (25a)

∇̂λ(
√−g�gμν) = 0, (25b)

R̂ −U ′(�) = 0. (25c)

Equation (25b) implies that the connection �̂ is a metric con-
nection for a new metric ḡμν = �gμν ; thus R̂μν = R̄μν, R̄ =
ḡμν R̄μν = �−1 R̂ and ḡμν R̄ = gμν R̂. The g-trace of (25a)
produces a new structural equation

2U (�) −U ′(�)� = T . (26)

Now Eqs. (25a) and (25c) take the following form:

R̄μν − 1

2
ḡμν R̄ = T̄μν − 1

2
ḡμνŪ (�), (27)

�R̄ − (�2 Ū (�))′ = 0, (28)

where we introduce Ū (φ) = U (φ)/�2, T̄μν = �−1Tμν and
the structural equation can be replaced by

� Ū ′(�) + T̄ = 0 . (29)

In this case, the action for the metric ḡμν and scalar field �

is given by

S(ḡμν,�)= 1

2

∫
d4x

√−ḡ
(
R̄ − Ū (�)

)+Sm(�−1ḡμν, ψ),

(30)

where we have to take into account a non-minimal coupling
between � and ḡμν

T̄μν =− 2√−ḡ

δ

δḡμν

Sm = (ρ̄+ p̄)ūμūν+ p̄ḡμν = �−3Tμν ,

(31)

ūμ = �− 1
2 uμ, ρ̄ = �−2ρ, p̄ = �−2 p, T̄μν =

�−1Tμν, T̄ = �−2T (see e.g. [17,37]).
In FRW case, one gets the metric ḡμν in the following

form:

ds̄2 = −dt̄2 + ā2(t)
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
, (32)

where dt̄ = �(t)
1
2 d t and new scale factor ā(t̄) =

�(t̄)
1
2 a(t̄). Ensuing cosmological equations (in the case of

the barotropic matter) are given by

3H̄2 = ρ̄� + ρ̄m, 6
¨̄a
ā

= 2ρ̄� − ρ̄m(1 + 3w) (33)

where

ρ̄� = 1

2
Ū (�), ρ̄m = ρ0ā

−3(1+w)�
1
2 (3w−1) (34)

and w = p̄m/ρ̄m = pm/ρm. In this case, the conservation
equations has the following form:

˙̄ρm + 3H̄ ρ̄m(1 + w) = − ˙̄ρ�. (35)

Let us consider the Starobinsky–Palatini model in the above
framework. The potential Ū is described by the following
formula:

Ū (�) = 2ρ̄�(�) =
(

1

4γ
+ 2λ

)
1

�2 − 1

2γ

1

�
+ 1

4γ
. (36)

Figure 1 presents the relation ρ̄�(�). Note that the func-
tion ρ̄� has the same shape like the Starobinsky potential.
The function ρ̄�(�) has the minimum for

�min = 1 + 8γ λ. (37)

In general, the scalar field �(ā) is given by (cf. (11))

� = 1 + 2γ R̂ = 1 + 8γ λ + 2γρm − 6γ pm . (38)

Because ρ̄m = �−2ρm, p̄m = �−2 pm , and taking into
account (34) one gets

2γ (1 − 3w)ρ0ā
−3(1+w)�

3
2 (w+1) − � + 1 + 8γ λ = 0. (39)

the algebraic equation determining the function �(ā) for a
given barotropic factor w. This provides an implicit depen-
dence �(ā). In order to get it more explicit one needs to solve
(39) for some interesting values w. For example in the case
of dust we obtain the third order polynomial equation(

1

2γ
+ 4�

)
y3 − 1

2γ
y + ρ0wā

−3 = 0

where y = �− 1
2 .

The evolution of �(ā), at the beginning of the inflation
epoch, is presented in Fig. 2.

For γ ≈ 0, the potential Ū can be approximated as Ū =
−ρ̄m+ 1

4γ
. In this case the Friedmann equation can be written

as

3H̄2 = ρ̄m

2
+ 1

8γ
. (40)
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Fig. 1 Illustration of the dependence ρ̄� of �. We assume that γ =
1.16 × 10−69 s2. ρ̄� is expressed in units of km2

s2Mpc2 . Note that this

potential has the same shape like the Starobinsky potential

1.0 0.5 0.5 1.0 1.5 2.0
ln a

5.0 107

1.0 108

1.5 108

2.0 108
ln a

Fig. 2 Illustration of the typical evolution of � with respect to ln(ā)

at the beginning of the inflation epoch. We assume that γ = 1.16 ×
10−69 s2 and ā0 = 1 at the beginning of the inflation epoch

In the case of ρ̄m = 0, ρ̄� is constant and the Friedmann
equation has the following form:

3H̄2 = 1

8γ
. (41)

In this model the inflation phenomenon appears when the
value of the parameter γ is close to zero and the matter ρ̄m is
negligible with comparison to ρ̄�. In this case the approxi-
mate number of e-foldings is given by the following formula:

N = Hinit(t̄fin − t̄init) = t̄fin − t̄init√
24γ

. (42)

The number of e-folds N should be equal 50 ∼ 60 in the
inflation epoch [10]. In this model we obtain N = 60, when
γ = 1.16×10−69 s2 and the timescale of the inflation is equal
10−32 s [38]. The relation between γ and the approximate
number of e-foldings N is presented in Fig. 3.

2. 10 67 4. 10 67 6. 10 67 8. 10 67 1. 10 66
γ

20

40

60

80

N

Fig. 3 The diagram of the relation between γ and the approximate
number of e-foldings N = H̄init(t̄fin − t̄init) from t̄init to t̄fin. We assume
that t̄fin − t̄init ≈ 10−32 s. The parameter γ is expressed in units of
s2. Note that the number of e-foldings grows when the parameter γ

decreases and N = 60 when γ = 1.16 × 10−69 s2

1.0 0.5 0.5 1.0 1.5 2.0
ln a

1 10105

2 10105

3 10105

4 10105

ρm ln a

Fig. 4 Illustration of the typical evolution of ρ̄m with respect to ln(ā)

at the beginning of the inflation epoch. We assume that γ = 1.16 ×
10−69 s2 and ā0 = 1 at the beginning of the inflation epoch. ρ̄m is

expressed in units of km2

s2Mpc2

The condition for appearing of the inflation is for the value
of the parameter γ to be close to zero, hence the influence of
the parameter λ on the evolution of the universe is negligible.

In Fig. 4 the typical evolution is demonstrated of ρ̄m(ā)

at the beginning of the inflation epoch. The typical evolution
of ρ̄�, at the beginning of the inflation epoch, is presented
in Fig. 5. Note that, for the late time universe, ρ̄� can be
approximated as a constant. Figure 6 presents the evolution
of the scale factor ā(t̄) during the inflation. Figure 7 shows
the Hubble function H̄ during the inflation epoch.

The conservation equation for ρ̄� can be written

˙̄ρ� = −3H̄(ρ̄� + p̄�), (43)

where p̄� is an effective pressure. In this case the equation
of state for the dark energy is expressed by the following
formula:
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ln a

3.080 10107

3.085 10107

3.090 10107

ρ ln a

Fig. 5 Illustration of the typical evolution of ρ̄φ with respect to ln(ā)

at the beginning of the inflation epoch. We assume that γ = 1.16 ×
10−69 s2 and ā0 = 1 at the beginning of the inflation epoch. ρ̄� is

expressed in units of km2

s2Mpc2 . Note that during the inflation ρ̄φ ≈ const
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Fig. 6 Illustration of the typical evolution of ā with respect to t̄ at
the beginning of the inflation epoch. We assume that γ = 1.16 ×
10−69 s2 and ā0 = 1 at the beginning of the inflation epoch. The time
t̄ is expressed in seconds

p̄� = w(a)ρ̄�, (44)

where the function w(a) is given by the expression

w(a) = −1 − ˙̄ρ�√
3
√

ρ̄m + ρ̄�ρ�

= −1 − 1

3H̄

d ln ρ�

dt̄
. (45)

The diagram of the coefficient of equation of state w(a),
at the beginning the inflation epoch, is presented in Fig. 8.
Note that the function w(a), for the late time, is a constant
and equal −1.

The action (23) can be rewritten in the Jordan frame
(gμν,�) as

S = 1

2k

∫
d4x

√−g

(
�R + 3

2�
∂μ�∂μ� −U (�)

)
,

(46)

1.0 0.5 0.5 1.0 1.5 2.0
ln a
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1.855 1053

1.860 1053

H ln a

Fig. 7 Illustration of the typical evolution of H̄ with respect to ln(ā)

at the beginning of the inflation epoch. We assume that γ = 1.16 ×
10−69 s2 and ā0 = 1 at the beginning of the inflation epoch. H̄ is
expressed in units of km

s Mpc . Note that, for the late time, H̄ can be treated
as a constant
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ln a

1.015

1.010

1.005

1.000

0.995

wφ ln a

Fig. 8 Illustration of the typical evolution of wφ with respect to ln(ā).
We assume that γ = 1.16 × 10−69 s2 and ā0 = 1 at the beginning of
the inflation epoch. Note that during the inflation wφ ≈ −1

where R is the metric Ricci scalar, � = f ′(R̂), R̂ = χ(�).
We obtain the Brans–Dicke action with the coupling

parameter ω = − 3
2 in the Jordan frame. The equations of

motion take the form

�

(
Rμν − 1

2
gμνR

)
− 3

4�
gμν∇σ �∇σ � + 3

2�
∇μ�∇ν�

+gμν�� − ∇μ∇ν� + 1

2
gμνU (φ) − κTμν = 0 , (47a)

R − 3

�
�� + 3

2�2 ∇μ�∇μ� − 1

2
U ′(�) = 0. (47b)

In this case the dynamics of the metric g is exactly the same as
described by the original Palatini equations (2)–(6). On cos-
mological grounds it means that the scale factor a(t) evolves
according to the Friedmann equation (13). It has recently
been shown that cosmological data favor the value ω ≈ −1
on the 3σ level [39].
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3 Singularities in cosmological dynamical systems of
Newtonian type

There is a class of cosmological models, of which the dynam-
ics can be reduced to a dynamical system of the Newtonian
type. Let consider a homogeneous and isotropic universe with
a spatially flat space-time metric of the form

ds2 = dt2 − a2(t)
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
, (48)

where a(t) is the scale factor and t is the cosmological time.
Let us consider the energy-momentum tensor Tμ

ν for the
perfect fluid with energy density ρ(t) and pressure p(t) as a
source of gravity. In this case the Einstein equations assume
the form of the Friedmann equations,

ρ = 3H2 = 3ȧ2

a2 , (49)

p = −2ä

a
− ȧ2

a2 , (50)

where dot denotes differentiation with respect to the cosmic
time t , H ≡ ȧ

a is the Hubble function. In our notation we use
the natural system of units in which 8πG = c = 1.

We assume ρ(t) = ρ(a(t)) as well as p(t) = p(a(t)),
i.e. both energy density and pressure depend on the cosmic
time through the scale factora(t). The conservation condition
Tμν

;μ = 0 reduces to

ρ̇ = −3H(ρ + p). (51)

It would be convenient to rewrite (49) in the equivalent form

ȧ2 = −2V (a), (52)

where

V (a) = −ρ(a)a2

6
. (53)

In (53) ρ(a) plays the model role of an effective energy den-
sity. For example for the standard cosmological model (12)

V = −ρeffa2

6
= −a2

6

(
ρm,0a

−3 + ρ�,0

)
, (54)

where ρeff = ρm + � and ρm = ρm,0a−3. Equation (50) is
equivalent to

ä

a
= −1

6
(ρ + 3p), (55)

which is called the acceleration equation. It is easily to check
that

ä = −∂V

∂a
, (56)

where V (a) is given by (53) provided that the conservation
equation (51) is fulfilled.

Due to Eq. (56) the evolution of the universe can be inter-
preted as the motion of a fictitious particle of unit mass in the
potential V (a). Here a(t) plays the role of a position vari-
able. The equation of motion (56) assumes a form analogous
to the Newtonian equation of motion.

If we know the form of the effective energy density then
we can construct the form of the potential V (a), which deter-
mines the whole dynamics in the phase space (a, ȧ). In this
space the Friedmann equation (52) plays the role of a first
integral and determines the phase space curves representing
the evolutionary paths of the cosmological models. The dia-
gram of the potential V (a) contains all information needed
to construction a phase space portrait. In this case the phase
space is two-dimensional,

{
(a, ȧ) : ȧ2

2
+ V (a) = −k

2

}
. (57)

In the general case of an arbitrary potential, the dynamical
system which describes the evolution of a universe takes the
form

ȧ = x, (58)

ẋ = −∂V (a)

∂a
. (59)

We shall study the system above using the theory of
piecewise-smooth dynamical systems. Therefore it is assu-
med that the potential function, except some isolated (singu-
lar) points, belongs to the class C2(R+).

The lines x2

2 + V (a) = − k
2 represent possible evolutions

of the universe for different initial conditions. Equations (58)
and (59) can be rewritten in terms of dimensionless variables
if we replace the effective energy density ρeff by the density
parameter:

�eff = ρeff

3H2
0

. (60)

Then

1

H2
0

ȧ2

2
= −�effa2

2
, (61)

d2a

dτ 2 = −∂ Ṽ

∂a
, (62)
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where t → τ = |H0|t and

Ṽ (a) = −�effa2

2
. (63)

Any cosmological model can be identified by its form of
the potential function V (a) depending on the scale factor a.
From the Newtonian form of the dynamical system (58)–(59)
one can see that all critical points correspond to vanishing of

r.h.s. of the dynamical system
(
x0 = 0,

∂V (a)
∂a |a=a0

)
. There-

fore all critical points are localized on the x-axis, i.e. they
represent a static universe.

Because of the Newtonian form of the dynamical system
the character of critical points is determined from the char-
acteristic equation of the form

a2 + det A|x0=0,
∂V (a)

∂a |a0 =0 = 0, (64)

where det A is the determinant of the linearization matrix
calculated at the critical points, i.e.

det A = ∂2V (a)

∂a2 |a0,
∂V (a)

∂a |a0 =0. (65)

From Eqs. (64) and (65) one can conclude that only admis-

sible critical points are of saddle type if ∂2V (a)

∂a2 |a=a0 < 0 or

of center type if ∂2V (a)

∂a2 |a=a0 > 0.
If the shape of the potential function is known (from

knowledge of the effective energy density), then it is pos-
sible to calculate the cosmological functions in exact form,

t =
∫ a da√−2V (a)

, (66)

H(a) = ±
√

−2V (a)

a2 , (67)

the deceleration parameter, the effective barotropic factor

q = −aä

ȧ2 = 1

2

d ln(−V )

d ln a
, (68)

weff(a(t)) = peff

ρeff
= −1

3

(
d ln(−V )

d ln a
+ 1

)
, (69)

the parameter of deviation from de Sitter universe [35]

h(t) ≡ −(q(t) + 1) = 1

2

d ln(−V )

d ln a
− 1 (70)

(note that if V (a) = −�a2

6 , h(t) = 0), the effective matter
density and pressure

ρeff = −6V (a)

a2 , (71)

peff = 2V (a)

a2

(
d ln(−V )

d ln a
+ 1

)
, (72)

and, finally, the Ricci scalar curvature for the FRW metric
(48),

R = 6V (a)

a2

(
d ln(−V )

d ln a
+ 2

)
. (73)

From the formulas above one can observe that the most of
them depend on the quantity

Iν(a) = d ln(−V )

d ln a
. (74)

This quantity measures the elasticity of the potential func-
tion, i.e. indicates how the potential V (a) changes if the scale
factor a changes. For example, for the de Sitter universe
−V (a) ∝ a2, the rate of growth of the potential is 2% as
the rate of growth of the scale factor is 1%.

In the classification of the cosmological singularities by
Fernandez-Jambrina and Lazkoz [35] a crucial role is played
by the parameter h(t). Note that in a cosmological sense this
parameter is

h(t) = 1

2
Iν(a) − 1. (75)

In this approach the classification of singularities is based
on generalized power and asymptotic expansion of the
barotropic index w in the equation of state (or equiva-
lently of the deceleration parameter q) in terms of the time
coordinate.

4 Degenerated singularities—new type (VI)
of singularity—sewn singularities

Recently, due to the discovery of an accelerated phase in the
expansion of our universe, many theoretical possibilities for
future singularities are seriously considered. If we assume
that the universe expands following the Friedmann equation,
then this phase of expansion is driven by dark energy—a
hypothetical fluid, which violates the strong energy condi-
tion. Many of the new types of singularities were classified
by Nojiri et al. [40]. Following their classification the type of
singularity depends on the singular behavior of the cosmo-
logical quantities like the scale factora, the Hubble parameter
H , the pressure p and the energy density ρ:

– Type 0: ‘Big crunch’. In this type, the scale factor a is
vanishing and there is blow-up of the Hubble parameter
H , energy density ρ and pressure p.
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– Type I: ‘Big rip’. In this type, the scale factor a, energy
density ρ and pressure p are blown up.

– Type II: ‘Sudden’. The scale factor a, energy density ρ

and Hubble parameter H are finite and Ḣ and the pressure
p are divergent.

– Type III: ‘Big freeze’. The scale factor a is finite and the
Hubble parameter H , energy density ρ and pressure p
are blown up [41] or divergent [42].

– Type IV. The scale factor a, Hubble parameter H , energy
density ρ, pressure p and Ḣ are finite but higher deriva-
tives of the scale factor a diverge.

– Type V. The scale factor a is finite but the energy density
ρ and pressure p vanish.

Following Królak [43], big rip and big crunch singularities
are strong whereas sudden, big freeze and type IV are weak
singularities.

In the model under consideration the potential function
and/or its derivative can diverge at isolated points (value
of the scale factor). Therefore the classification mentioned
before has application only for a single component of
piecewise-smooth potential. In our model the dynamical sys-
tem describing the evolution of a universe belongs to the
class of a piecewise-smooth dynamical systems. As a con-
sequence new types of singularities at finite scale factor as
can appear for which ∂V

∂a (as) does not exist (is not deter-
mined). This implies that the classification of singularities
should be extended to the case of non-isolated singulari-
ties.

Let us illustrate this idea on the example of a freeze singu-
larity in the Starobinsky model with the Palatini formalism
(previous section). Such a singularity has a complex charac-
ter and in analogy to the critical point we called it degenerate.
Formally it is composed of two types III singularities: one
in the future and another one in the past. If we consider the
evolution of the universe before this singularity we detect an
isolated singularity of type III in the future. Conversely if we
consider the evolution after the singularity, then going back
in time we meet a type III singularity in the past. Finally,
at the finite scale factor the two singularities will meet. For
a description of behavior near the singularity one considers
the t = t (a) relation. This relation has a horizontal inflection
point and it is natural to expand this relation in a Taylor series
near this point at which dt

da = 1
Ha is zero. For the freeze sin-

gularity, the scale factor remains constant as, ρ and H blow
up and ä is undefined. It this case, the degenerate singular-
ity of type III is called sewn (non-isolated) singularity. We,
therefore, obtain [44]

t − ts � ±1

2

d2t

da2 |a=asing(a − asing)
2. (76)

V a t 0.00001 0.00002 0.00003 0.00004
t

0.0015

0.0010

0.0005

0.0005

0.0010

a t

Fig. 9 Illustration of sewn freeze singularity, when the potential V (a)

has a pole

V a t

0.0004 0.0002 0.0002 0.0004
t

0.002

0.002

0.004

a t

Fig. 10 Illustration of a sewn sudden singularity. The model with neg-
ative �γ has a mirror symmetry with respect to the cosmological time.
Note that the spike on the diagram shows a discontinuity of the function
∂V
∂a . Note the existence of a bounce at t = 0

The above formula combines two types of behavior near the
freeze singularities in the future,

a − asing ∝ −(tsing − t)1/2 for t → tsing− (77)

and in the past

a − asing ∝ +(t − tsing)
1/2 for t → tsing+ . (78)

Figure 9 illustrates the behavior of the scale factor in cos-
mological time in neighborhood of a pole of the potential
function. Diagram of a(t) is constructed from the dynamics
in two disjoint region {a : a < as} and {a : a > as}. Figure 10
presents the behavior of the scale factor in the cosmological
time in a neighborhood of the sudden singularity.

In the model under consideration another type of sewn
singularity also appears. It is a composite singularity with
two sudden singularities glued at the bounce when a = amin.
In this singularity the potential itself is a continuous func-
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tion while its first derivative has a discontinuity. Therefore,
the corresponding dynamical system represents a piecewise-
smooth dynamical system.

The problem of C0 metric extension beyond the future
Cauchy horizon, when the second derivative of the metric is
inextendible, was discussed in work of Sbierski [45]. In the
context of FLRW cosmological models, Sbierski’s method-
ology was considered in [46].

5 Singularities in the Starobinsky model in the Palatini
formalism

In our model, one finds two types of singularities, which
are a consequence of the Palatini formalism: the freeze and
sudden singularity. The freeze singularity appears when the
multiplicative expression b

b+d/2 , in the Friedmann equation
(13), is equal to infinity. So we get a condition for the freeze
singularity: 2b+d = 0, which produces a pole in the potential
function. It appears that the sudden singularity appears in our
model when the multiplicative expression b

b+d/2 vanishes.
This condition is equivalent to the case b = 0.

The freeze singularity in our model is a solution of the
algebraic equation

2b + d = 0 ⇒ f (K ,��,0,�γ ) = 0 (79)

or

−3K − K

3�γ (�m + ��,0)��,0
+ 1 = 0, (80)

where K ∈ [0, 3).
The solution of the above equation is

Kfreeze = 1

3 + 1
3�γ (�m+��,0)��,0

. (81)

From Eq. (81), we can find an expression for a value of the
scale factor for the freeze singularity

afreeze =
(

1 − ��,0

8��,0 + 1
�γ (�m+��,0)

) 1
3

. (82)

The relation between afreeze and positive �γ is presented in
Fig. 11.

The sudden singularity appears when b = 0. This leaves
us with the following algebraic equation:

1 + 2�γ (�m,0a
−3 + ��,0)(K + 1) = 0. (83)

2. 10 10 4. 10 10 6. 10 10 8. 10 10 1. 10 9 γ

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

afsing

Fig. 11 Diagram of the relation between asing and positive �γ . Note
that in the limit �γ �→ 0 the singularity overlaps with a big-bang
singularity

1. 10 9 8. 10 10 6. 10 10 4. 10 10 2. 10 10 γ

0.0002

0.0004

0.0006

0.0008

asuddsing

Fig. 12 Diagram of the relation between asing and negative �γ . Note
that in the limit �γ �→ 0 the singularity overlaps with a big-bang
singularity

The above equation can be rewritten as

1 + 2�γ (�m,0a
−3 + 4��,0) = 0. (84)

From Eq. (84), we have the formula for the scale factor for a
sudden singularity,

asudden =
(

− 2�m,0
1

�γ
+ 8��,0

)1/3

, (85)

which, in fact, becomes a (degenerate) critical point and a
bounce at the same time. The relation between asing and neg-
ative �γ is presented in Fig. 12.

Let V = − a2

2

(
�γ �2

ch
(K−3)(K+1)

2b + �ch + �k

)
. We can

rewrite dynamical system (58)–(59) as

a′ = x, (86)

x ′ = −∂V (a)

∂a
, (87)
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Fig. 13 The figure represents the phase portrait of the system (86–87)
for positive �γ . The scale factor a is in the logarithmic scale. The red
trajectories represent the spatially flat universe. Trajectories under the
top red trajectory and below the bottom red trajectory represent models
with the negative spatial curvature. Trajectories between the top and
bottom red trajectory represent models with the positive spatial curva-
ture. The dashed line 2b+ d = 0 corresponds to the freeze singularity.
The critical points (1) and (2) present two static Einstein universes. The
phase portrait belongs to the class of sewn dynamical systems [49]

where ′ ≡ d
dσ

= b+ d
2

b
d

dτ
is a new parametrization of time.

We can treat the dynamical system (86)–(87) as a sewn
dynamical system [47,48]. In this case, we divide the phase
portrait into two parts: the first part is for a < asing and the
second part is for a > asing. Both parts are glued along the
singularity.

For a < asing, dynamical system (86)–(87) can be rewrit-
ten in the corresponding form,

a′ = x, (88)

x ′ = −∂V1(a)

∂a
, (89)

where V1 = V (−η(a−as)+1) and η(a) notes the Heaviside
function.

For a > asing, in an analogous way, we get the following
equations:

a′ = x, (90)

x ′ = −∂V2(a)

∂a
, (91)

where V2 = Vη(a − as). The phase portraits, for dynamical
system (86)–(87), are presented in Figs. 13 and 14. Figure

8 6 4 2 0 2 4
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k 1

Fig. 14 The phase portrait of the system (86)–(87) for negative �γ .
The scale factor a is in logarithmic scale. The red trajectories repre-
sent a spatially flat universe. Trajectories under the top red trajectory
and below the bottom red trajectory represent models with a negative
spatial curvature. Trajectories between the top and bottom red trajec-
tory represent models with the positive spatial curvature. The dashed
line b = 0 corresponds to the sudden singularity. The shaded region
represents trajectories with b < 0. If we assume that f ′(R) > 0 then
this region can be removed. The phase portrait possesses the symmetry
ȧ → −ȧ and in consequence this singularity presents a bounce. This
symmetry can be used to identify the corresponding points on the b-line.
The critical point (1) represents the static Einstein universe. The phase
portrait belongs to the class of sewn dynamical systems [49]

13 shows the phase portrait for positive �γ , while Fig. 14
shows the phase portrait for negative �γ .

In Fig. 13 there are two critical points labeled ‘1’ and ‘2’
at the finite domain. They are both saddle points. These crit-
ical points correspond to a maximum of the potential func-
tion. The saddle point ‘2’ possesses the homoclinic closed
orbit starting from it and returning to it. This orbit rep-
resents an emerging universe from the static Einstein uni-
verse and approaching it again. During the evolution this
universe (orbit) goes two times through the freeze singular-
ity. The region bounded by the homoclinic orbit contains
closed orbits representing the oscillating universes. A dia-
gram of the evolution of scale factor for closed orbit is pre-
sented by Fig. 15. It is also interesting that trajectories in
the neighborhood of straight vertical line of freeze singular-
ities undergo short time inflation x = const. The character-
istic number of e-foldings from tinit to tfin of this inflation
period N = Hinit(tfin − tinit) (see Eq. (3.13) in [1]) with
respect to �γ is shown in Fig. 16. This figure illustrates
the number of e-foldings is too small to obtain the inflation
effect.
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0.00055
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Fig. 15 Illustration of the evolution of a(σ ) for closed orbit which is
contained by the homoclinic orbit, where σ = b

b+ d
2
t is a reparametriza-

tion of time. We choose s×Mpc/(100×km) as a unit of σ
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Fig. 16 Diagram of the relation between positive �γ and the approx-
imate number of e-foldings N = Hinit(tfin − tinit) from tinit to tfin

6 Observations

In this paper we perform statistical analysis using the follow-
ing astronomical observations: observations of 580 super-
novae of type Ia, BAO, measurements of H(z) for galaxies,
Alcock–Paczyński test, measurements of CMB and lensing
by Planck and low � by WMAP.

The likelihood function for observations of supernovae of
type Ia [50] is given by the following expression:

ln LSNIa = −1

2
[A − B2/C + ln(C/(2π))], (92)

where A = (μobs − μth)C−1(μobs − μth), B = C−1(μobs −
μth), C = TrC−1 and C is a covariance matrix for obser-
vations of supernovae of type Ia. The distance modulus is
defined by the formula μobs = m−M (where m is the appar-
ent magnitude and M is the absolute magnitude of observa-
tions of supernovae of type Ia) and μth = 5 log10 DL + 25
(where the luminosity distance is DL = c(1 + z)

∫ z
0

dz′
H(z) ).

BAO observations such as Sloan Digital Sky Survey
Release 7 (SDSS DR7) dataset at z = 0.275 [51], 6dF Galaxy
Redshift Survey measurements at redshift z = 0.1 [52], and
WiggleZ measurements at redshift z = 0.44, 0.60, 0.73 [53]
have the following likelihood function:

ln LBAO = −1

2

(
dobs − rs(zd)

DV (z)

)
C−1

(
dobs − rs(zd)

DV (z)

)
,

(93)

where rs(zd) is the sound horizon at the drag epoch [54,55].
For the Alcock–Paczynski test [56,57] we used the fol-

lowing expression for the likelihood function:

ln L AP = −1

2

∑
i

(
AP th(zi ) − APobs(zi )

)2

σ 2 . (94)

where AP(z)th ≡ H(z)
z

∫ z
0

dz′
H(z′) and AP(zi )obs are observa-

tional data [58–66].
The likelihood function for measurements of the Hubble

parameter H(z) of galaxies from [67–69] is given by the
expression

ln LH(z) = −1

2

N∑
i=1

(
H(zi )obs − H(zi )th

σi

)2

. (95)

In this paper, we use the likelihood function for observations
of CMB [9] and lensing by Planck, and low-� polarization
from the WMAP (WP) in the following form:

ln LCMB+lensing = −1

2
(xth − xobs)C−1(xth − xobs), (96)

where C is the covariance matrix with the errors, x is a vector
of the acoustic scale lA, the shift parameter R and�bh2 where

lA = π

rs(z∗)
c
∫ z∗

0

dz′

H(z′)
(97)

R =
√

�m,0H2
0

∫ z∗

0

dz′

H(z′)
, (98)

where z∗ is the redshift of the epoch of the recombination
[54].

The total likelihood function is expressed in the following
form:

L tot = LSNIaLBAOLAPLH(z)LCMB+lensing. (99)

To estimate model parameters, we use our own code Cos-
moDarkBox. The Metropolis–Hastings algorithm [70,71] is
used in this code.
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Table 1 The best fit and errors for the estimated model for the posi-
tive �γ with �m,0 from the interval (0.27, 0.33), �γ from the interval
(0.0, 2.6 × 10−9) and H0 from the interval [66.0 (km/(s Mpc)), 70.0
(km/(s Mpc))]. �b,0 is assumed as 0.048468. The redshift of matter–

radiation equality is assumed as 3395. H0, in the table, is expressed in
km/(s Mpc). The value of reduced χ2 of the best fit of our model is
equal 0.187066 (for the �CDM model 0.186814)

Parameter Best fit 68% CL 95% CL

H0 68.10 +1.07 +1.55

−1.24 1.82

�m,0 0.3011 +0.0145 +0.0217

−0.0138 −0.0201

�γ 9.70 × 10−11 +1.3480 × 10−9 +2.2143 × 10−9

−9.70 × 10−11 −9.70 × 10−11

0.0 0.5 1.0 1.5 2.0

0.290

0.295

0.300

0.305

γ 109

m
,0

Fig. 17 The intersection of the likelihood functions of two model
parameters (�γ , �m,0) with the marked 68 and 95% confidence levels

Table 1 shows the values of parameters for the best fit with
errors. Figures 17 and 18 show the intersection of a likelihood
function with the 68 and 95% confidence level projections
on the (�γ , �m,0) and (�γ , H0) planes.

In this paper, we use the Bayesian information criterion
(BIC) [72,73], for comparison of our model with the �CDM
model. The expression for BIC is defined as

BIC = χ2 + j ln n, (100)

where χ2 is the value of χ2 in the best fit, j is the number of
model parameters (our model has three parameters, �CDM
model has two parameters) and n is the number of data points
(n = 625) which are used in the estimation.

For our model, the value of BIC is equal 135.668 and for
the �CDM model BIC�CDM = 129.261. So �BIC=BIC-
BIC�CDM is equal 6.407. The evidence for the model is

0.0 0.5 1.0 1.5 2.0 2.5

67.0

67.2

67.4

67.6

67.8

68.0

68.2

γ 109

H
0
km

s
M
pc

Fig. 18 The intersection of the likelihood functions of two model
parameters (�γ , H0) with the marked 68 and 95% confidence levels

strong [73] if �BIC is higher than 6. So, in comparison to our
model, the evidence in favor of the �CDM model is strong,
but we cannot absolutely reject our model.

7 Conclusions

In this paper, we demonstrated that evolution of the Starobin-
sky model with a quadratic term R2 gives rise to the descrip-
tion of dynamics in terms of piecewise-smooth dynamical
systems, i.e., systems whose the phase space is partitioned
into different regions, each of them associated to a different
smooth functional form of the system of a Newtonian type.
Different regions of the phase space correspond to different
forms of the potential separated by singularities of the type
of poles.

Our idea was to obtain inflation as an endogenous effect
of the dynamics in the Palatini formalism. While the effect of
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inflation appears in the model under consideration a sufficient
number of e-folds are not achieved and the additional effect
of amplification is required. Note that this type of inflation is
a realization of the idea of singular inflation [74–77]. In our
model inflation is driven by the freeze degenerate singularity
(the extension of a type III isolated singularity).

We show that the dynamics of the model can be analyzed
in terms of two-dimensional dynamical systems of the New-
tonian type. In this approach, in the diagram of the poten-
tial of a fictitious particle, the evolution of the universe con-
tains all information which is needed for an investigation of
singularities in the model. Note that they are not isolated
singularities which were classified into five types but rather
double singularities glued in one point of the evolution at
a = asing. Appearance of such types of singularities is typ-
ical for piecewise-smooth dynamics describing the model
evolution. We call this type sewn singularities in analogy to
sewn dynamical systems [78,79].

We investigated the model with f (R̂) = R̂+ γ R̂2, where
γ assumes the positive or negative values. While the dynam-
ics of this class of models depend crucially on the sign of the
parameter γ in the early universe for the late time we obtain
the behavior consistent with the �CDM model.

Note that in the model with positive γ , the phase space is a
sum of two disjoint domains which boundary represents the
double freeze singularity (cf. Fig. 13). In the first domain the
evolution starts from a big bang followed by the deceleration
phase; then it changes to acceleration (early acceleration ≡
inflation) after reaching a maximum of the potential function.
In the second domain, on the right from the vertical line of the
freeze singularity, the universe decelerates and after reaching
another maximum starts to accelerate again. This last eternal
acceleration corresponds to the present day epoch called the
dark energy domination epoch. Two phases of deceleration
and two phases of acceleration are key ingredients of our
model. While the first phase models a transition from the
matter domination epoch to inflation the second phase models
a transition from the second matter dominated epoch toward
the present day acceleration.

As De Felice and Tsujikawa have noted [1, p. 24] the appli-
cations of f (R) theories should be focused on construct of
viable cosmological models, for which a sequence of radi-
ation, matter and accelerating epochs is realized. All these
epochs are also presented in the model under consideration
but, for negative γ (negative squared M2 for the scalar field),
some difficulties appear in the interpretation of the phase
space domain {a : a < asing}. The size of this domain will
depend on the value of the parameter �γ and this domain
vanishes as we are going toward �γ equal zero.

On the other hand it is well known that violation of condi-
tion f ′′

R̂ R̂
> 0 gives rise to the negative values of M2. We do

not assume this condition but we require that f ′
R̂

> 0 to avoid
the appearance of ghosts (see Sect. 7.4 in [1]). In our case,

statistical analysis favors a model with f ′
R̂

> 0 (�γ > 0)

rather than a model with f ′
R̂

< 0 (�γ < 0). In other words,
statistical analysis favors the case without ghosts.

In order to obtain deeper insight into the model we have
also performed complementary investigations in the Einstein
frame. In this case we find that the model is reduced to the
FRW cosmological model with the selfinteracting scalar field
and the vanishing part of the kinetic energy. Therefore from
the Palatini formulation we obtain directly the form of the
potential and the (implicit) functional dependence between
the scalar field and the scale factor. Moreover, we obtain the
parametrization of the decaying cosmological constant.

Due to a time-dependent cosmological constant the model
evolution can be described in terms of an interaction between
the matter and the decaying lambda terms. We study how
the energy is transferred between the sectors and how the
standard scaling relation for matter is modified.

We pointed out that the consideration of the Starobinsky
model in the Einstein frame gives rise to new interesting
properties from the cosmological point of view; similar to
the original (metric) the Starobinsky model is very impor-
tant for the explanation of inflation. The model under the
consideration gives rise analogously to the running cosmo-
logical term. This fact seems to be interesting in the context
of an explanation of the cosmological constant problem.

Detailed conclusions coming from our analysis are the
following:

– We show that the interaction between two sectors: the
matter and the decaying vacuum, appears naturally in the
Einstein frame. For the model formulated in the Jordan
frame this interaction is absent.

– Inflation appears in our model formulated in the Einstein
frame, when the parameter γ is close to zero and the
density of matter is negligible in comparison to ρ̄�.

– In our model in the Einstein frame, the potential Ū (�)

has the same shape as the Starobinsky potential and has
the minimum for � = 1 + 8γ λ.

– While the freeze double singularities appear in our model
in the Jordan frame there are no such singularities in the
dynamics of the model in the Einstein frame.

– If �γ is small, then asing =
(

− 2�m,0
1

�γ
+8��,0

)1/3

for nega-

tive �γ and asing =
(

1−��,0

8��,0+ 1
�γ (�m+��,0)

) 1
3

for positive

�γ . These values define the natural scale at which singu-
larities appear in the model under consideration with the
negative or positive value of γ parameter. It seems to be
natural to identify this scale with a cut off at which the
model can be treated as some kind of effective theory.

– In both the cases of a negative and positive γ one deals
with a finite scale factor singularity. For negative γ it
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is a double sudden singularity which meets the future
singularity of a contracting model before the bounce with
the initial singularity in the expanding model. The sewn
evolutionary scenarios reveal the presence of a bounce
during the cosmic evolution.

– In the context of the Starobinsky model in the Palatini for-
malism we found a new type of double singularity beyond
the well-known classification of isolated singularities.

– The phase portrait for the model with a positive value
of γ is equivalent to the phase portrait of the �CDM
model (following dynamical system theory [80] equiva-
lence assumes the form of topological equivalence estab-
lished by a homeomorphism). There is only a quantitative
difference related with the presence of the non-isolated
freeze singularity. The scale of the appearance of this type
singularity can also be estimated and be cast in terms of
the redshift zfreeze = �

−1/3
γ .

– We estimated the model parameters using astronomical
data and conclude that positive �γ is favored by the best
fit value; still the model without R̂2 term is statistically
admitted.

In our model, the best fit value of �γ is equal 9.70 ×
10−11 and positive �γ parameter belongs to the interval
(0, 2.2143 × 10−9) at 2-σ level. This mean that the posi-
tive value of �γ is more favored by astronomical data than
the negative value of �γ . The difference between values of
BIC for our model and the �CDM model is equal 6.407.
So, in comparison to our model, the evidence in favor of the
�CDM model is strong. But one cannot absolutely reject the
model.

Note added in proof After completing the paper we found
a paper by Faraoni and Cardini where freeze singularities
have been analyzed in a different context, both from point
particle and cosmological perspectives [81].
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Abstract We consider FRW cosmology in f (R) = R +
γ R2 + δR3 modified framework. The Palatini approach
reduces its dynamics to the simple generalization of Fried-
mann equation. Thus we study the dynamics in two-
dimensional phase space with some details. After reformu-
lation of the model in the Einstein frame, it reduces to the
FRW cosmological model with a homogeneous scalar field
and vanishing kinetic energy term. This potential determines
the running cosmological constant term as a function of the
Ricci scalar. As a result we obtain the emergent dark energy
parametrization from the covariant theory. We study also sin-
gularities of the model and demonstrate that in the Einstein
frame some undesirable singularities disappear.

1 Introduction

A variety of explanations have been proposed for the acceler-
ating expansion of the universe at the current epoch. Among
them, the idea of positive cosmological constant �, as one
of the simplest candidates, seems to be viable. However,
it is only an economical description (with the help of one
free parameter) of observational facts rather than an effec-
tive explanation. The simplest alternative candidate for the
constant cosmological parameter being a key element in the
standard cosmological model (called �CDM model) is a
time-dependent (or running) cosmological term. It is crucial
for avoiding fine-tuning and coincidence problems [1,2].

It would be crucial to derive the dynamics of the run-
ning cosmological term as an emergent phenomenon from
a more fundamental theory, e.g., from string theory or from
the first principles of quantum mechanics [3]. In this context,

a e-mail: marek.szydlowski@uj.edu.pl
b e-mail: aleksander.stachowski@doctoral.uj.edu.pl
c e-mail: andrzej.borowiec@ift.uni.wroc.pl

it is important to formulate a dynamical cosmological term
without violating the covariance of the action. For exam-
ple, models with a slowly rolling homogeneous cosmologi-
cal scalar field provide a popular alternative to the standard
time-independent cosmological constant. We can study the
simultaneous evolution of the background expansion and an
evolution of the scalar field with the self-interacting potential
[4].

In this paper we are going to push forward the idea of the
emergent running cosmological term from a covariant the-
ory [5]. Parametrization of the cosmological term is derived
directly from a formulation of the model in the Einstein frame
by means of the Palatini variational approach. In analogy
with Starobinsky’s purely metric formulation [6], we obtain
the parametrization of the cosmological term directly from
the potential of the scalar field which appears after formula-
tion of the specific FRW model in the Einstein frame. As a
next step we investigate the dynamics of the model with such
a form of the dark energy.

In this letter, we demonstrate how f (R) model is modified
in the Palatini formulation. Our construction provides a sim-
ple model of an evolving dark energy (running cosmological
term) to explain a dynamical relaxation of the vacuum energy
(gravitational repulsive pressure) to a very small value today
(cosmological constant problem [7]). This model, when stud-
ied in the Einstein frame, leads also to a small deviation from
the w = −1 prediction of the non-running dark energy.

2 Cosmological equations for the polynomial f (R)

theory in the Palatini formalism

The Palatini gravity action for f (R̂) gravity is given by

S = Sg + Sm = 1

2

∫ √−g f (R̂)d4x + Sm, (1)
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where R̂ is the generalized Ricci scalar [8,9]. From the action
(1) we get

f ′(R̂)R̂(μν) − 1

2
f (R̂)gμν = Tμν, (2)

∇̂α

(√−g f ′(R̂)gμν
)

= 0, (3)

where Tμν is energy-momentum tensor and ∇̂α is the covari-
ant derivative calculated with respect to �.

If we take the trace of Eq. (2), we get a structural equation,
which is given by

f ′(R̂)R̂ − 2 f (R̂) = T, (4)

where T = gμνTμν . We assume the FRW metric in the fol-
lowing form:

ds2 = dt2 − a2(t)

[
1

1 − kr2 dr2 + r2(dθ2 + sin2 θdφ2)

]
,

(5)

where a(t) is the scale factor, k is a constant of spatial curva-
ture (k = 0,±1) and t is the cosmological time. Thereafter,
we assume the flat model (k = 0).

We assume the energy-momentum tensor for a perfect
fluid,

Tμ
ν = diag(−ρ, p, p, p), (6)

where p = wρ with w = const. The conservation condition
Tμ

ν;μ = 0 [10] gives

ρ̇m = −3(1 + w)Hρm, (7)

where H is the Hubble function and ρm is the density of
baryonic and dark matter which is assumed to be in the form
of dust (w = 0).

In our paper the function f (R̂) is assumed in the polyno-
mial form as

f (R̂) =
n∑

i=1

γi R̂
i , (8)

where γi are some dimensionful parameters.
Therefore, we introduce more convenient dimensionless

functions and parameters,

�R = R̂

3H2
0

, �γi = 3i−1γi H
2(i−1)
0 ,

�tot = �m,0a
−3 + ��,0, b = f ′(R̂) =

n∑
i=1

i�γi �
i−1
R ,

d = −3

(
n∑

i=1

(i − 2)�γi �
i−1
R + 4��

�R

)

×
∑n

i=1 i(i − 1)�γi �
i−1
R∑n

i=1 i(i − 2)�γi �
i−1
R

, (9)

where H0 is the present value of the Hubble function, �m,0 =
ρm,0

3H2
0

, ��,0 = ρ�,0

3H2
0

.1

For the function (8) the structural equation (4) is in the
following form:

n∑
i=1

(i − 2)�γi �
i
R = −�m − 4��. (10)

The Friedmann equation for the function (8) has the fol-
lowing form:

H2

H2
0

= b2

(
b + d

2

)2

[
1

2b

[ n∑
i=1

�γi �
i−1
R (�R − 2i�tot)

+�tot − 3��

]
+ �tot

]
. (11)

3 Singularities in the polynomial f (R) theory in the
Palatini formalism

The Friedmann equation (11) can be rewritten in the equiv-
alent form

a′2 = −2V (a), (12)

where ′ = d
dτ

= |b+d/2|
|b|

d
dt is a new parametrization of time

(this parametrization is not a diffeomorphism) and

V (a) = −H2
0 a

2

2

[
1

2b

[ n∑
i=1

�γi �
i−1
R (�R − 2i�tot)

+�tot − 3��

]
+ �tot

]
. (13)

The potential V (a) can be used to construction of a
phase space portrait. In this case the phase space is two-
dimensional,

{
(a, a′) : a′2

2
+ V (a) = −k

2

}
. (14)

1 For the sake of generality (following the standard cosmological
model) the presence of the cosmological constant is also assumed.
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Fig. 1 The phase portrait for system (15)–(16) with f (R̂) = R̂ +
γ R̂2 + δ R̂3, where γ = 10−6

(
s2 Mpc2

km2

)
and δ = −10−14

(
s4 Mpc4

km4

)
.

Critical points (1), (2), (3) and (4) represent the static Einstein universes.
Critical points (1) and (2) are of saddle type and critical points (3)
and (4) are of center type. The red dashed line presents the sudden
singularity. The black dashed lines present the freeze singularities. The
gray color marks the non-physical domain ( f ′(R) < 0). The red
trajectories represent the path of evolution for the flat universe. These
trajectories separate the domain with the negative curvature (k = −1)
from the domain with the positive curvature (k = +1). The scale factor
is expressed in a logarithmic scale

The dynamical system has the following form:

a′ = x, (15)

x ′ = −∂V (a)

∂a
. (16)

We assume that the potential function, except some isolated
(singular) points, belongs to the class C2(R+).

The example phase portraits for the dynamical system
(15)–(16) are presented in Figs. 1, 2 and 3.

The evolution of a universe can be treated as a motion
of a fictitious particle of unit mass in the potential V (a).
Here a(t) plays the role of a positional variable. Equation of
motion (16) assumes the form analogous to the Newtonian
equation of motion. In this case the lines x2

2 + V (a) = − k
2

represent possible evolutions of the universe for different
initial conditions.

In our model, there are two types of singularities: the
freeze and sudden singularities. They are a consequence of
the Palatini formalism. We get the freeze singularity when
b+ d/2 = 0. The sudden singularity appears when b = 0 or
b + d/2 is equal to infinity.

For the case when the positive part of f (R̂)dominates after
the domination of the negative part of f (R̂), it is possible that

2.75 2.5 2.25 2 1.75 1.5 1.25 1

a

0.05

0

0.05

0.1

x 23 4

Fig. 2 The zoomed region of Fig. 1. The behavior of trajectories in
the neighborhood of critical points (2), (3) and (4) which represent the
static Einstein universes. Critical point (2) is of saddle type and critical
points (3) and (4) are of center type. The black dashed lines present the
freeze singularities. The scale factor is expressed in a logarithmic scale.
The homoclinic orbits represent the bouncing models, which evolution
starts and ends at the Einstein universe (critical point 2). In the domain
bounded by the homoclinic orbits the oscillating models present cases
without the initial singularity
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1
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Fig. 3 The phase portrait for system (15)–(16) with f (R̂) = R̂ +
γ R̂ + δ R̂3, where γ = −10−6

(
s2 Mpc2

km2

)
and δ = −10−14

(
s4 Mpc4

km4

)
.

Critical point (1), which is of saddle type, represents the static Einstein
universe. The red dashed line presents the sudden singularity. The
gray color presents the non-physical domain ( f ′(R) < 0). The red
trajectories represent the path of evolution for the flat universe. These
trajectories separate the domain with the negative curvature (k = −1)
from the domain with the positive curvature (k = +1). The scale factor
is expressed in a logarithmic scale
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H a

Fig. 4 The evolution of the Hubble function for f (R̂) = R̂ + γ R̂2 +
δ R̂3, where γ = 10−6

(
s2 Mpc2

km2

)
and δ = −10−14

(
s4 Mpc4

km4

)
. The

black dashed lines present the freeze singularities. Note that the singu-
larity of the big bang type does not appear here. H(a) is expressed in
units of 100 km

s Mpc

0.1 0.2 0.3 0.4 0.5
a

0.5

1.0

1.5

b a
d a

2

Fig. 5 The evolution of b(a) + d(a)
2 . For values of the scale factor for

which the equation b(a) + d(a)
2 = 0 has roots, the freeze singularities

appear ( black dashed lines). This figure corresponds with Fig. 4

two freeze singularities appear. This situation is presented in
Fig. 4 for f (R̂) = R̂ + 10−2 R̂2 − 10−6 R̂3. In this case they
appear two freeze singularities and one sudden singularity.
The evolution of b(a) + d(a)

2 , which corresponds with Fig.
4, is presented in Fig. 5. Note that, for values of the scale
factor for which the function b(a)+ d(a)

2 has roots, the freeze
singularities appear. V (a) potential, which corresponds with
Fig. 4, is presented in Figs. 6 and 7.

4 Singularities in the Palatini f (R) = R + γ R2 + δR3

model

For the special case of polynomial f (R̂) = R̂+γ R̂2 + δ R̂3,
one gets the following structural equation:
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0.25

0.20
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0.05

V a

Fig. 6 The evolution of V (a). This figure corresponds with Fig. 4.
The black dashed lines present the freeze singularities. The potential is
regular at these singularities while its higher derivative blows up. The
pole of V (a) represents the sudden singularity. The potential V (a) is

expressed in units of 104 km2

s2Mpc2

0.10 0.12 0.14 0.16 0.18 0.20
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0.243
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0.241

0.240

0.239

0.238

V a

Fig. 7 The zoomed region of Fig. 6. The extrema of V (a) are pre-
sented. The black dashed lines represent the freeze singularities. The

potential V (a) is expressed in units of 104 km2

s2 Mpc2

�R − �δ�
3
R = �m + 4��, (17)

where �γ = 3γ H2
0 and �δ = 9δH4

0 .
The Friedmann equation takes the form

H2

H2
0

= b2

(
b + d

2

)2 ×
[
�R

2b

[
�γ (�R − 4�tot)

+ 2�δ�R(�R − 3�tot))

]
+ �tot + �k

]
, (18)

where

�tot = �m,0a
−3 + ��,0,

b = f ′(R̂) = 1 + �R[2�γ + 3�δ�R],
d = 1

H

db

dt
= 6

�γ + 3�δ�R

3�δ�
2
R − 1

[�R(1 − �δ�
2
R) − 4��,0].

(19)
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The condition for the appearance of the freeze singularity
is b + d

2 = 0 and in this case it has the form

3�γ �δ�
3
R + 9�δ�

2
R + (�γ − 36�δ��)�R − 12�γ �� − 1 = 0.

(20)

Equation (20) has the following solution:

�Rsing = �−1
γ

[
− 1 + r(�γ ,�δ,��)

921/3�δ

−21/3(−81�2
δ + 9�γ �δ(�γ − 36�δ��))

9r(�γ ,�δ,��)�δ

]
,

(21)

where
r(�γ ,�δ,��)

= 2[243�2
γ �2

δ (1 + 6�γ ��) − 729�3
δ (1 + 6�γ ��)

+(59049(�2
γ − 3�δ)

2�4
δ (1 + 6�γ ��)2

−(81�2
δ − 9�γ �δ(�γ − 36�δ��))3)1/2]1/3. (22)

For the sudden singularity the condition b = 0 provides
the equation

1 + �R[2�γ + 3�δ�R] = 0. (23)

which has the following solutions:

�Rsing =
−�γ ±

√
�2

γ − 3�δ

3�δ

. (24)

5 The Palatini approach in the Einstein frame

If f ′′(R̂) �= 0 then the action (1) can be rewritten in dynam-
ically equivalent form of the first order Palatini gravitational
action [11–13]

S(gμν, �
λ
ρσ , χ) = 1

2

∫
d4x

√−g( f ′(χ)(R̂ − χ) + f (χ))

+ Sm(gμν, ψ). (25)

The conditions that allow for the change of variables and lead
to Eq. (25) were discussed in the well-known paper of Olmo
[14], who clarified the issues raised by Faraoni [15].

Let � = f ′(χ) be a scalar field, where χ = R̂. Then the
action (25) takes the form

S(gμν, �
λ
ρσ ,�) = 1

2

∫
d4x

√−g(�R̂ −U (�))

+Sm(gμν, ψ), (26)

where the potential U (�) is given as

U f (�) ≡ U (�) = χ(�)� − f (χ(�)) (27)

with � = d f (χ)
dχ

and R̂ ≡ χ = dU (�)
d�

.

After the Palatini variation of the action (26) we get the
following equations of motion:

�

(
R̂μν − 1

2
gμν R̂

)
+ 1

2
gμνU (�) − Tμν = 0, (28a)

∇̂λ(
√−g�gμν) = 0, (28b)

R̂ −U ′(�) = 0. (28c)

As a consequence of (28b) the connection �̂ is a metric con-
nection for a new (conformally related) metric ḡμν = �gμν ;
thus R̂μν = R̄μν, R̄ = ḡμν R̄μν = �−1 R̂ and ḡμν R̄ =
gμν R̂. The g-trace of (28a) gives a new structural equation

2U (�) −U ′(�)� = T . (29)

Equations (28a) and (28c) can be rewritten in the following
form:

R̄μν − 1

2
ḡμν R̄ = T̄μν − 1

2
ḡμνŪ (�), (30)

�R̄ − (�2 Ū (�))′ = 0, (31)

where Ū (φ) = U (φ)/�2, T̄μν = �−1Tμν . In this case, the
structural equation is given by the following formula:

� Ū ′(�) + T̄ = 0. (32)

The action for the metric ḡμν and the scalar field � can be
recast into the Einstein frame form

S(ḡμν,�) = 1

2

∫
d4x

√−ḡ(R̄ − Ū (�)) + Sm(�−1ḡμν, ψ)

(33)

with non-minimal coupling between � and ḡμν

T̄μν = − 2√−ḡ

δ

δḡμν

Sm = (ρ̄+ p̄)ūμūν+ p̄ḡμν = �−3Tμν,

(34)

ūμ = �− 1
2 uμ, ρ̄ = �−2ρ, p̄ = �−2 p, T̄μν =

�−1Tμν, T̄ = �−2T (see e.g. [13,16]).
The metric ḡμν takes the standard FRW form

ds̄2 = −dt̄2 + ā2(t̄)[dr2 + r2(dθ2 + sin2 θdφ2)], (35)

where dt̄ = �(t)
1
2 dt and a new scale factor ā(t̄) =

�(t̄)
1
2 a(t̄). In the case of barotropic matter, the cosmological

equations are

3H̄2 = ρ̄� + ρ̄m, 6
¨̄a
ā

= 2ρ̄� − ρ̄m(1 + 3w) (36)
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where

ρ̄� = 1

2
Ū (�), ρ̄m = ρ0ā

−3(1+w)�
1
2 (3w−1) (37)

and w = p̄m/ρ̄m = pm/ρm. In this case, the conservation
equation has the following form:

˙̄ρm + 3H̄ ρ̄m(1 + w) = − ˙̄ρ�. (38)

Let us consider our Palatini model f (R̂) = ∑n
i=1 γi R̂i in

the Einstein frame, where γ1 = 1. The potential Ū is given
by the following formula:

Ū (R̂) = 2ρ̄�(R̂) =
∑n

i=1(i − 1)γi R̂i

(∑n
i=1 iγi R̂

i−1
)2 . (39)

The scalar field � can be parametrized by R̂ in the following
way:

�(R̂) = d f (R̂)

d R̂
=

n∑
i=1

iγi R̂
i−1. (40)

The relation between Ū and R̂ for the case f (R̂) = R̂ +
γ R̂2 + δ R̂3 is presented in Fig. 8.

In this frame, two scenarios of cosmic evolution may
appear. In the first one the evolution of the universe starts
from the generalized sudden singularity. The second case is
when it starts from the freeze singularity. The diagrams of
the corresponding Newtonian potentials V (ā) are presented
in Figs. 9 and 10. We can use the potential V (ā) to construct
phase space portraits analogous to the ones in Sect. 3 (see
Figs. 11, 12).

5 10 15 20 25
R

0.05

0.10

0.15

0.20

0.25

0.30

0.35
U R

Fig. 8 The evolution of Ū (R̂) in the Einstein frame in the case when the
evolution of the universe starts from the generalized sudden singularity.
For illustration it is assumed that f (R̂) = R̂ + γ R̂2 + δ R̂3, where

γ = 10−9
(

s2 Mpc2

km2

)
and δ = 10−13

(
s4 Mpc4

km4

)
. Ū (R̂) is expressed in

units of 104 km2

s2 Mpc2
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V a

Fig. 9 The evolution of V (ā) in the Einstein frame in the case when
the evolution of the universe starts from the generalized sudden singu-
larity. For illustration it is assumed that f (R̂) = R̂ + γ R̂2 + δ R̂3. This
figure corresponds to Fig. 11. The blue dashed line presents the gener-
alized sudden singularity. Note that the undesirable freeze singularity

disappears. The potential V (a) is expressed in units of 104 km2

s2 Mpc2

0.1 0.2 0.3 0.4 0.5 0.6 0.7
a

3.0

2.5

2.0

1.5

1.0

0.5

V a

Fig. 10 The evolution of V (ā) in the Einstein frame in the case when
the evolution of the universe starts from the freeze singularity. For illus-
tration it is assumed that f (R̂) = R̂ + γ R̂2 + δ R̂3. This figure corre-
sponds with Fig. 12. The blue dashed line presents the freeze singularity.

The potential V (a) is expressed in units of 104 km2

s2 Mpc2

The evolution of the scalar field potential Ū (t̄), which
plays a role of dynamical cosmological constant, is presented
in Fig. 13 for the case with the generalized sudden singularity.
Note that for the late time the potential Ū (t̄) is constant. The
evolution of Ū (t̄), for the case when the freeze singularity
appears, is presented in Fig. 14. For the late time the potential
Ū (ā) can be approximated by

Ū (ā) = γ R̂(ā)2

1 + 4γ R̂(ā)
= γ (4� + ρ̄m,0ā−3)2

1 + 4γ (4� + ρ̄m,0ā−3)
. (41)

From the structural equation (32) for f (R̂) = R̂+γ R̂2 +
δ R̂3 case, we get the parameterization of the dust matter
density with respect to R̂,
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Fig. 11 The phase portrait for system (15)–(16) in the Einstein frame
in the case when the evolution of the universe starts from the generalized
sudden singularity. For illustration it is assumed that f (R̂) = R̂+γ R̂2+
δ R̂3, where γ = 10−9

(
s2 Mpc2

km2

)
and δ = 10−13

(
s4 Mpc4

km4

)
. Critical

point (1) represents the static Einstein universe and is a saddle. The
black dashed line presents the generalized sudden singularity. The gray
color presents the non-physical domain (ā < ās). The red trajectories
represent the path of evolution for the flat universe. These trajectories
separate the domain with negative curvature (k = −1) from the domain
with positive curvature (k = +1). The scale factor is expressed in a
logarithmic scale

ρ̄m = R̂ − δ R̂3

(1 + 2γ R̂ + 3δ R̂2)2
− 4�. (42)

It is interesting that in the Einstein frame the interaction
between dark matter and dark energy naturally appears as
a physical phenomenon. This interaction modifies the origi-
nal scaling law for dust matter by a function ε(t̄). We have

ρ̄m = ρ̄m,0ā(t̄)−3+ε(t̄), (43)

where ε = 1
ln ā

∫ Q
H̄ ρ̄m

d ln ā and Q = − ˙̄ρφ = H̄(R̂) ×
×ρ̄m(R̂)

3R̂(γ+3δ R̂)(δ R̂2−1))

R̂(γ+3δ R̂(3+γ R̂))−1
for the case f (R̂) = R̂+ γ R̂2 +

δ R̂3. The evolution of ε(t̄) is presented in Fig. 15.

6 Conclusions

The main goal of the paper was to point out some advantages
of the formulation of Palatini FRW cosmology in the Einstein
frame. The most crucial one is that in the Einstein frame the
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Fig. 12 The phase portrait for system (15)–(16) in the Einstein frame
in the case when the evolution of the universe starts from the freeze
singularity. For illustration it is assumed that f (R̂) = R̂ + γ R̂2 + δ R̂3,

where γ = −10−9
(

s2 Mpc2

km2

)
and δ = −10−13

(
s4 Mpc4

km4

)
. Critical point

(1) represents the static Einstein universe and is a saddle. The black
dashed line presents the freeze singularity. The gray color presents
the non-physical domain (ā < ās). The red trajectories represent the
path of evolution for the flat universe. These trajectories separate the
domain with negative curvature (k = −1) from the domain with positive
curvature (k = +1). The scale factor is expressed in a logarithmic scale
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0.008
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U R t

Fig. 13 The evolution of Ū (R̂(t̄)) in the Einstein frame in the case
when the evolution of the universe starts from the generalized sudden
singularity. For illustration it is assumed that f (R̂) = R̂ + γ R̂2 + δ R̂3,

where γ = 10−9
(

s2 Mpc2

km2

)
and δ = 10−13

(
s4 Mpc4

km4

)
. Note that for the

late time the potential Ū (t̄) goes to a constant value at late time. Time is

expressed in unts of s Mpc
100 km and Ū (R̂(t̄)) is expressed in units of 104 km2

s2 Mpc2

parametrization of dark energy is uniquely determined. In
general it is obtained in the covariant form as a function of
the Ricci scalar.
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Fig. 14 The evolution of Ū (R̂(t̄)) in the Einstein frame in the case
when the evolution of the universe starts from the freeze singularity.
For illustration it is assumed that f (R̂) = R̂ + γ R̂2 + δ R̂3, where

γ = −10−9
(

s2 Mpc2

km2

)
and δ = −10−13

(
s4 Mpc4

km4

)
. Time is expressed

in units of s Mpc
100 km and Ū (R̂(t̄)) is expressed in units of 104 km2

s2 Mpc2
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Fig. 15 The evolution of ε(t̄) in the Einstein frame in the case when the
evolution of the universe starts from the generalized sudden singularity.
For illustration it is assumed that f (R̂) = R̂ + γ R̂2 + δ R̂3, where

γ = 10−9
(

s2 Mpc2

km2

)
and δ = 10−13

(
s4 Mpc4

km4

)
. Note that for the late

time ε(t̄) is constant. Time is expressed in units of s Mpc
100 km

It is well known that scalar–tensor theories of gravity can
be formulated both in the Jordan and in the Einstein frame.
These frames are conformally related [17]. We also know that
the formulations of a scalar–tensor theory in two different
conformal frames, although mathematically equivalent, are
physically inequivalent.

In recent years significant progress has been achieved in
the understanding of the geometric features of the Palatini
theories and the role of the choice of the frame [18,19]. In
particular, through the analysis of the tensorial perturbations,
it is shown that it is the auxiliary (conformal in this case)
metric, which determines the propagation of the gravitational
waves, while the geodesic motion of the particles is dictated
by the Jordan frame metric. A discussion, in this direction,

seems to be important as it would help to eliminate the need
to choose between the frames.

Faraoni and Gunzing gave a simple argument which favors
the Einstein frame over the Jordan frame: in the latter one
should potentially detect the time-dependent amplification
induced by gravitational waves [20].

An analogous problem has been detected in f (R) grav-
ity: the Jordan frames could be physically non-equivalent,
although they are connected by a conformal transforma-
tion [21,22]. In principle, there are two types of admissi-
ble arguments for favoring one frame over another: coming
from observations (for example astronomical observations)
or being of a theoretical nature (e.g. showing that some obsta-
cles or pathologies will vanish in the privileged frame).

From our investigation of the model in an Einstein frame
we found that some pathologies, like degenerate multiple
freeze singularities, [23] disappear in a generic case. The big
bang singularity is replaced by the singularity of a finite scale
factor. The subtle issue of what a singularity is in the con-
text of Palatini theories has been discussed in recent work by
Olmo et al. [24–26]. We are using singularities in a cosmo-
logical framework rather as a theoretical discriminator for the
optimal choice of the frame. We pointed out that the Einstein
frame is favored in this context.

Because the potential Ū (R̂(t̄)) is constant for the late time,
in the case when matter is negligible, the inflation appears
like in the case f (R̂) = R̂ + γ R̂2 [23].

There are also some other advantages when transforming
to an Einstein frame, namely that in this frame one naturally
obtains the formula for dynamical dark energy which is going
at late time toward the cosmological constant. It is important
that the corresponding parametrization of dark energy is not
postulated ad hoc but emerges from first principles – which
is the formulation of the problem in the Einstein frame. It
is important that the parametrization of dark energy (energy
density as well as pressure) in terms of the Ricci scalar is
given in a covariant form from the structure equation.

After a transition to the Einstein frame the model evolution
is governed by the Friedmann equation with two interacting
fluids: dark energy and dark matter. This interaction modifies
the standard scaling of the redshift relation for dark matter.
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Abstract In the framework of polynomial Palatini cosmol-
ogy, we investigate a simple cosmological homogeneous and
isotropic model with matter in the Einstein frame. We show
that in this model during cosmic evolution, early inflation
appears and the accelerating phase of the expansion for the
late times. In this frame we obtain the Friedmann equation
with matter and dark energy in the form of a scalar field with a
potential whose form is determined in a covariant way by the
Ricci scalar of the FRW metric. The energy density of mat-
ter and dark energy are also parameterized through the Ricci
scalar. Early inflation is obtained only for an infinitesimally
small fraction of energy density of matter. Between the mat-
ter and dark energy, there exists an interaction because the
dark energy is decaying. For the characterization of inflation
we calculate the slow roll parameters and the constant roll
parameter in terms of the Ricci scalar. We have found a char-
acteristic behavior of the time dependence of density of dark
energy on the cosmic time following the logistic-like curve
which interpolates two almost constant value phases. From
the required numbers of N -folds we have found a bound on
the model parameter.

1 Introduction

While current astronomical observations favour the standard
cosmological model [1], the ΛCDM model plays only the
role an effective theory of the Universe which offers rather the
description of the current properties of the Universe than its
explanations. The origin of properties of the current Universe
we should find in the very early Universe. In this context a
very simple inflation model was proposed by Starobinsky
in 1980 [2]. This model attracted attention of cosmologists
because it can explain some troubles of the ΛCDM model

a e-mail: marek.szydlowski@uj.edu.pl
b e-mail: aleksander.stachowski@doctoral.uj.edu.pl

in a very simple way. Moreover, this evolutionary scenario
is generic and emerged in cosmology in different contexts
[1]. In this model, the inflationary scenario of the Universe is
driven by the higher quadratic term in the action which takes

the form S = ∫ √−g
(
R + R2

6M2

)
d4x .

This model [3,4] predicts that the slow roll parameters
ns = 1 − 2

N and r = 12
N2 where N = 50 ∼ 60 is the number

of e-folds before the end of inflation, are in good agreement
with Planck 2015 data [1].

On the other hand, from the viewpoint of the complete
quantum theory of gravity, higher order corrections α′ =
1/M2

s to the Einstein–Hilbert action are always expected i.e.

S =
∫ √−g(R + c2α

′R2

+
∑

i=3

ciα
′i−1Ri

+ other higher derivative terms)d4x, (1)

where ci are the dimensionless couplings.
The higher derivative terms in the action may also origi-

nate from supergravity [5,6].
The problem of inflation in polynomial f (R) cosmology

was investigated in the metric formalism in [7], where the
spectral index and tensor-to-scalar ratio were calculated in
the f (R) inflation model.

In this paper we will phenomenologically investigate the
inflation model with a polynomial form of the potential in the
Palatini formalism in the Einstein frame [8,9]. For simplicity
we truncate a Taylor series on the term R3.

In the present paper we consider cosmological models of
modified gravity which are the polynomial extensions of the
Starobinsky model because our aim is to study how tuned
is this model and in consequence its prediction—inflation.
However, we must remember that the exact form of the func-
tion f (R) can be different from such a choice. In particu-
lar the adding of negative powers in a f (R) series is also
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very interesting [10]. The treating of the relation f (R) in the
form of a series with respect to R guarantees that it is simple
enough to handle it easily in the study of physical effects of
modified gravity [11]. On the other hand, the introduction of
negative powers of R may lead to instabilities [12].

Therefore, it is interesting to investigate some stable
isotropic cosmological models describing both inflation and
present acceleration in f (R) gravity. In this context the idea
of quintessential cosmology seems to be interesting [10,13].
In the metric approach a more complicated, non-polynomial
form of the function f (R) is required at low curvature [14].

The main aim of the paper is to investigate how rigid the
Starobinsky model of inflation is and if it can be disturbed by
switching higher order terms. Therefore, our study is moti-
vated by a stability investigation. If the Starobinsky model
is stable it is in some sense generic. The standard Starobin-
sky model of inflation is formulated in the background of a
metric formulation of f (R) modified gravity. In this paper
we formulate f (R) theory in the Palatini formalism which
gives us an equation of motion in the form of a second order
equation. The inflation similarly to the Starobinsky approach
is obtained after transition to the Einstein frame. We obtain
the form of the potential for the scalar field in the covariant
form directly parameterized by the Ricci scalar in the Palatini
formulation.

We investigate how the shape of the potential changes
under changing of the parameter which measures the fraction
of the higher order term in the assumed f (R) formula.

In modern cosmology, the Starobinsky model of inflation
plays a crucial role [2]. This model of the cosmic inflation is
considered as a source of the inflaton field—higher curvature
corrections with respect to the Ricci scalar R in the Einstein–
Hilbert action of gravity of the type R2.

The Starobinsky model seems to be distinguished among
different alternative models of inflation in predicting a low
value of the scalar-to-tensor ratio r ; namely, it predicts that
r ∼ 12/N 2, where N is the number of e-foldings during
inflation [15].

The Starobinsky model is also favoured by experimental
results [1,16–19] which give an upper bound on r around
the value of 0.1. What it is important from the observational
point of view the Starobinsky model is the model with the
highest Bayesian evidence [17]. It is characteristic that the
other types of models which also fit the data are actually
equivalent to the Starobinsky model during inflation [15].

From the methodological point of view it is important that
the Starobinsky model can be embedded in different domains
of fundamental physics. The situation is in some sense similar
to what happens in mathematics, where an important theorem
has many references to it in different areas of mathematics.
Here, one can distinguish embedding into the supergravity
[20,21] and embedding into the superstring theory [22–26].

In our paper we consider a new embedding of the Starobin-
sky model into cosmology of Palatini gravity. The emergence
of inflation will be demonstrated as an endogenous dynam-
ical effect in the Palatini formulation of gravity applied to
FRW cosmology.

2 Cosmological equations for the polynomial f (R̂)

theory in the Palatini formalism in the Einstein frame

In the Palatini formalism, the gravity action for f (R̂) gravity
has the following form:

S = Sg + Sm = 1

2

∫ √−g f (R̂)d4x + Sm, (2)

where R̂ is the generalized Ricci scalar R̂ = gμν R̂μν(Γ̂ ) in
the Palatini formalism [27,28]. In this approach the torsion-
less connection Γ̂ is treated as a variable independent of the
spacetime metric gμν and it is used to construct the Riemann
and Ricci tensor.

Let f ′′(R̂) �= 0. In this case, the action (2) has the equiv-
alent form [11,29,30]

S(gμν, Γ
λ
ρσ , χ) = 1

2

∫
d4x

√−g

(

f ′(χ)(R̂ − χ)

+ f (χ)

)

+ Sm(gμν, ψ). (3)

We introduce a scalar field Φ = f ′(χ), where χ = R̂. Then
the action (3) is given by the following form:

S(gμν, Γ
λ
ρσ ,Φ) = 1

2

∫
d4x

√−g
(
Φ R̂ −U (Φ)

)

+Sm(gμν, ψ), (4)

where the potential U (Φ) is defined as

U f (Φ) ≡ U (Φ) = χ(Φ)Φ − f (χ(Φ)) (5)

with Φ = d f (χ)
dχ

and R̂ ≡ χ = dU (Φ)
dΦ

.
The equations of motion are obtained after the Palatini

variation of the action (4),

Φ

(

R̂μν − 1

2
gμν R̂

)

+ 1

2
gμνU (Φ) − Tμν = 0, (6a)

∇̂λ(
√−gΦgμν) = 0, (6b)

R̂ −U ′(Φ) = 0. (6c)

From Eq. (6b) we see that a metric connection Γ̂ is a new
(conformally related) metric ḡμν = Φgμν ; thus R̂μν =
R̄μν, R̄ = ḡμν R̄μν = Φ−1 R̂ and ḡμν R̄ = gμν R̂. We can
obtain from the g-trace of Eq. (6a) a new structural equation,

2U (Φ) −U ′(Φ)Φ = T . (7)
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Let Ū (φ) = U (φ)/Φ2, T̄μν = Φ−1Tμν . Then Eq. (6a) and
(6c) can be rewritten in the following form:

R̄μν − 1

2
ḡμν R̄ = T̄μν − 1

2
ḡμνŪ (Φ), (8)

Φ R̄ − (Φ2 Ū (Φ))′ = 0, (9)

and we get the following structural equation:

Φ Ū ′(Φ) + T̄ = 0. (10)

In this case the action for the metric ḡμν and the scalar field
Φ has the following form in the Einstein frame:

S(ḡμν,Φ) = 1

2

∫
d4x

√−ḡ
(
R̄ − Ū (Φ)

)

+Sm(Φ−1ḡμν, ψ) (11)

with a non-minimal coupling between Φ and ḡμν ,

T̄μν = − 2√−ḡ

δ

δḡμν

Sm = (ρ̄ + p̄)ūμūν + p̄ḡμν

= Φ−3Tμν , (12)

ūμ = Φ− 1
2 uμ, ρ̄ = Φ−2ρ, p̄ = Φ−2 p, T̄μν =

Φ−1Tμν, T̄ = Φ−2T (see e.g. [30,31]).
We take the metric ḡμν in the standard form of the FRW

metric,

ds̄2 = −dt̄2 + ā2(t̄)
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
, (13)

where dt̄ = Φ(t)
1
2 dt and a new scale factor ā(t̄) =

Φ(t̄)
1
2 a(t̄). We assume the cosmological equations for the

barotropic matter in the following form:

3H̄2 = 3

( ˙̄a
ā

)2

= ρ̄Φ + ρ̄m + Λ, 6
¨̄a
ā

= 2ρ̄Φ − ρ̄m(1 + 3w) (14)

where

ρ̄Φ = 1

2
Ū (Φ), ρ̄m = ρ0ā

−3(1+w)Φ
1
2 (3w−1) (15)

and w = p̄m/ρ̄m = pm/ρm. The conservation equation has
the following form:

˙̄ρm + 3H̄ ρ̄m(1 + w) = − ˙̄ρΦ. (16)

In this paper, we consider the Palatini model, f (R̂) =∑n
i=1 γi R̂i , in the Einstein frame, where γ1 = 1. In this

case, the potential Ū is given by the following formula:

Ū (R̂) = 2ρ̄Φ(R̂) =
∑n

i=1(i − 1)γi R̂i

(∑n
i=1 iγi R̂

i−1
)2 (17)

and the scalar field Φ has the following form:

Φ(R̂) = d f (R̂)

d R̂
=

n∑

i=1

iγi R̂
i−1. (18)

3 Inflation in f (R̂) = R̂ + γ R̂2 + δ R̂3 theory in the
Palatini formalism in the Einstein frame

Let f (R̂) = R̂ + γ R̂2 + δ R̂3. For this case

Ū (R̂) = R̂2(γ + 2δ R̂)
(

1 + 2γ R̂ + 3δ R̂2
)2 (19)

and

Φ = 1 + 2γ R̂ + 3δ R̂2. (20)

For this parameterization, we can obtain, from the structural
equation (10), a parameterization of ρ̄m with respect to R̂,

ρ̄m(R̂) = R̂ − δ R̂3

(
1 + 2γ R̂ + 3δ R̂2

)2 − 4Λ. (21)

In consequence, the Friedmann equation is given by the fol-
lowing equation:

3H̄2 = ρ̄m(R̂) + Ū (R̂)

2
+ Λ

= R̂(2 + γ R̂)

2
(

1 + 2γ R̂ + 3δ R̂2
)2 − 3Λ. (22)

As a reminder, the Hubble function in the Einstein frame H̄
is defined by Eq. (14) and the generalized Ricci scalar in the
Palatini formalism is R̂ = gμν R̂μν(Γ̂ ).

In this model inflation appears when matter ρ̄m is negligi-
ble with comparison to ρ̄φ .

In the statistical analysis the slow roll parameters are help-
ful in the estimation of the model parameter in the inflation
period [1]. These parameters are defined as

ε = − Ḣ

H2 and η = 2ε − ε̇

2Hε
. (23)

In our model the slow roll parameters have the following
form in the case when δ = 0:

ε = 3

2

R̂ − 4Λ(1 + 2γ R̂)2

R̂ + γ
2 R̂

2 − 3Λ(1 + 2γ R̂)2
, (24)

η = 5 + 3

2(γ R̂ − 1)
+ R̂(1 + 2γ R̂)

6Λ(1 + 2γ R̂)2 − R̂(2 + γ R̂)
.

(25)
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From the Planck observations, we know the limits at a 2-
σ level of the values of the scalar spectral index ns and the
tensor-to-scalar ratio r (ns = 0.9667±0.0040 and r < 0.113
[1]). The relations between the scalar spectral index and the
tensor-to-scalar ratio and the slow roll parameters are the
following:

ns − 1 = −6ε + 2η and r = 16ε. (26)

Because the slow roll parameters ε and η cannot be treated
as constant parameters in our model (see Figs. 1 and 2), we
cannot use these parameters to find the restriction on the
parameter γ from astronomical observations [1].

For example, if we assume that Λ

3H2
0

= 0.6911, where

H0 = 67.74 km
s Mpc [1], then we get 3.277 × 10−6 s2Mpc2

km2 <

γ < 3.285 × 10−6 s2Mpc2

km2 , 0 < Ωm = ρ̄m
3H̄2 < 0.0047 and

ΩΦ = ρ̄Φ

3H̄2 ≈ 0.50. But this value of the parameter γ is too
large for explaining the present evolution of the Universe.
In consequence, the slow roll parameters are useless in the
estimation of the parameter γ .

The slow roll parameter approximation is more restrictive
than the constant roll condition [32,33]. The constant roll
condition has the following form:

β = Φ̈

H̄Φ̇
= const. (27)

When β 	 1 then we get the slow roll approximation.
In our case Φ̈

H̄Φ̇
is given by

Φ̈

H̄Φ̇
= 4 − 240γΛ + 2

1 − 24γΛ
− 192γ 2ΛR̂

+9(36γΛ − 1)

(γ R̂ − 1)2

+ 12Λ + 3(8γΛ − 1)R̂

(24γΛ − 1)
(

6Λ + R̂(24γΛ − 2 + γ (24γΛ − 1)R̂)
) ,

(28)

when δ = 0. Φ̈

H̄Φ̇
is not constant (see Fig. 3) at all times, but

beyond the logistic-like type transition it can be well approx-
imated by a constant value. At this intermediate interval the
effects of matter do not become negligible. The constant
roll inflation approximation is approximately valid beyond
a short time during which the effects of matter stay very
important (in consequence of the interaction between matter
and dark energy).

Figure 1 presents the evolution of ε with respect to the
cosmological time t̄ . We can see that ε is not a constant
function when matter is not negligible (see Fig. 4).

Figure 2 demonstrates the evolution of η with respect to
the cosmological time t̄ . Note that η is not a constant function
when matter is not negligible (see Fig. 4). The characteristic

1. 10 32 1.2 10 32 1.4 10 32 1.6 10 32 1.8 10 32
t

0.002

0.004

0.006

0.008

Fig. 1 The diagram presents the evolution of ε with respect to the
cosmological time t̄ . The time is expressed in seconds. The value of the

parameter γ is assumed as 3.277 × 10−6 s2Mpc2

km2 . We also assume that
Λ

3H2
0

= 0.6911, where H0 = 67.74 km
s Mpc . Note that ε is not a constant

function when matter is not negligible (see Fig. 4)

1.2 10 32 1.4 10 32 1.6 10 32 1.8 10 32
t

0.3

0.2

0.1

0.1

0.2

Fig. 2 The evolution of η with respect to the cosmological time t̄ . The
time is expressed in seconds. The value of the parameter γ is assumed

as 3.277 × 10−6 s2Mpc2

km2 . We also assume that Λ

3H2
0

= 0.6911, where

H0 = 67.74 km
s Mpc . Note that η is not a constant function when matter

is not negligible (see Fig. 4). It is interesting that the function η is of
logistic-like function type

attribute of the function η is the shape of the logistic-like
function.

Figure 3 presents the evolution of Φ̈

H̄Φ̇
with respect to

the cosmological time t̄ . It is important that Φ̈

H̄Φ̇
is not a

constant function when matter is not negligible (see Fig. 4).
It is interesting that the Φ̈

H̄Φ̇
function is of the logistic-like

function type.
Note that β = d ln Φ̇

d ln a = Φ̈

H̄Φ̇
measures the elasticity of Φ̇

with respect to the scale factor. When β is constant then

Φ̇ ∝ aβ. (29)

Therefore, if β is positive then Φ̇ is a growing function of the
scale factor. In the opposite case (β < 0) Φ̇ is an increasing
function of the scale factor and goes to zero for large values
of the scale factor.
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1.2 10 32 1.4 10 32 1.6 10 32 1.8 10 32
t

0.4

0.2

0.2

0.4

0.6

1

H

Fig. 3 The diagram presents the evolution of Φ̈

H̄Φ̇
with respect to the

cosmological time t̄ . The time is expressed in seconds. The value of the

parameter γ is assumed as 3.277 × 10−6 s2Mpc2

km2 . We also assume that
Λ

3H2
0

= 0.6911, where H0 = 67.74 km
s Mpc . Note that Φ̈

H̄Φ̇
is not a constant

function when matter is not negligible (see Fig. 4). It is interesting that
Φ̈

H̄Φ̇
function is of the logistic-like function type

The slow roll approximation is achieved in our model
when matter is negligible. Of course, the constant roll con-
dition is respected automatically.

The evolution of matter in the inflation period can be
divided into four phases. The first phase is when matter is
negligible and the density of ρ̄m increases by the interac-
tion with the potential ρ̄Φ . The second phase is when the
matter cannot be negligible and its density still increases. In
this phase the injection of matter is the most effective. After
achieving of the maximum of the density of ρ̄m the third
phase appears. In this phase matter still cannot be negligi-
ble but its density decreases. The last phase is when matter
density decreases and is negligible.

The evolution of matter in the inflation period is presented
in Fig. 4. We see all four phases of the evolution of matter.
The maximum is achieved when

R̂ = 1

2γ
. (30)

In the maximum, the value of ρ̄m is equal to 1
8γ

− 4Λ.

In detail, the behaviour of the potential function Ū (Φ)

depends on the form of f (R̂). For the polynomial form of
f (R̂), there are two cases. In the first case f (R̂) is in the
form f (R̂) = R̂ + γ R̂2. The typical behaviour of the poten-
tial Ū (Φ) for f (R̂) = R̂ + γ R̂2 is present in Fig. 5. The
characteristic attribute is a plateau for a large value of Φ like
for the Starobinsky potential [2]. In this case the formula for
the potential Ū (Φ) has the following form:

Ū (Φ) = γ

(
Φ − 1

2γΦ

)2

. (31)

1. 10 32 1.2 10 32 1.4 10 32 1.6 10 32 1.8 10 32
t

20

40

60

80

Fig. 4 The diagram presents the evolution of ρ̄m with respect to the cos-
mological time t̄ . The time is expressed in seconds and ρ̄m is expressed in

km2

s2Mpc2 . The value of the parameter γ is assumed as 3.277×10−6 s2Mpc2

km2 .

We also assume that Λ

3H2
0

= 0.6911, where H0 = 67.74 km
s Mpc . Note that

the maximum of this function is achieved when R̂ = 1
2γ

0 10 20 30 40 50 60

20000

40000

60000

80000
U

Fig. 5 The diagram presents the typical behaviour of the function
Ū (Φ) for the case f (R̂) = R̂ + γ R̂2. The potential Ū (Φ) is expressed

in km2

s2Mpc2 . Note that, for the large value of Φ, the function Ū (Φ) has

the plateau

The second case is when f (R̂) is of the form f (R̂) =
R̂ + γ R̂2 + ∑n

i=2 δi R̂i+1. Then the potential Ū (Φ) has no
plateau and decreases asymptotically to zero when Φ goes
to infinity. This situation is presented in Fig. 6. The formula
for the potential Ū (Φ) for f (R̂) = R̂ + γ R̂ + δ R̂2 has the
following form:

Ū (Φ)

=
(
γ −√

γ 2+3δ(Φ − 1)
)2 (

γ +2
√

γ 2 + 3δ(Φ − 1)
)

27δ2Φ2 .

(32)

In the context of inflation Ijjas et al. [34] pointed out the
problem with the desired plateau in the behaviour of the
potential of the scalar field. Such a choice seems to be unjus-
tified because it requires that the power series expansion of
potential U with respect to Φ is cancelled at a precise order
in Φ to make the plateau appear.
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Fig. 6 The diagram presents the typical behaviour of the function
Ū (Φ) for the case f (R̂) = R̂ + γ R̂2 + δ R̂2. The potential Ū (Φ)

is expressed in km2

s2Mpc2 . Note that, for a large value of Φ, the function

Ū (Φ) decreases asymptotically to zero

In agreement with Ijjas et al. we obtain the plateau of the
potential Ū (Φ) only when f (R̂) = R̂+γ R̂2. For the higher
order terms in the expansion of the f (R̂), i.e., R̂3 and higher,
the potential monotically decreases to zero.

Now, we consider in detail inflation in the two above-
mentioned cases with the potential expanded to second order
and third order with respect to Φ. In consequence, we study
whether the plateau is necessary for the appearance of infla-
tion in our model and whether inflation is possible for the
model with a cut-off in a higher order (R̂3 and higher) expan-
sion.

In the inflation period when the matter is negligible, the
Ricci scalar R̂ is constant. The evolution of the Ricci scalar
R̂ is presented in Fig. 7. We can see three phases of the evo-
lution of the Ricci scalar R̂. The first phase is when matter is
negligible and the density of ρ̄m is increased by an interaction
with the potential ρ̄Φ . Then the Ricci scalar R̂ is constant and
is described by the following formula when δ = 0:

R̂ = 1 − 16γΛ + √
1 − 32γΛ

32γ 2Λ
. (33)

The second phase is when the matter is not negligible. In this
case, the Ricci scalar R̂ decreases. The last phase is when
matter density decreases and is negligible. Then the Ricci
scalar R̂ is constant and is equal to

R̂ = 1 − 16γΛ − √
1 − 32γΛ

32γ 2Λ
, (34)

when δ = 0. The function which describes the evolution of
the Ricci scalar R̂ has the shape of a logistic-like function.

The evolution of ρ̄Φ , in the inflation period, similar qual-
itatively to the evolution of the Ricci scalar R̂. We can find
three phases. In the first phase, ρ̄Φ is constant and is equal to

1. 10 32 1.2 10 32 1.4 10 32 1.6 10 32 1.8 10 32
t

50000

100000

150000

R

Fig. 7 The diagram presents the evolution of the Ricci scalar R̂ with
respect to the cosmological time t̄ . The time is expressed in seconds and

the Ricci scalar R̂ is expressed in km2

s2Mpc2 . The value of the parameter

γ is assumed as 3.277 × 10−6 s2Mpc2

km2 . We also assume that Λ

3H2
0

=
0.6911, where H0 = 67.74 km

s Mpc . The transition phase is of logistic-like
behaviour and is strictly correlated with a peak of the matter density, as
shown in Fig. 4

ρ̄Φ = 1 − 16γΛ + √
1 − 32γΛ

16γ
(35)

and in the last phase when ρ̄Φ is also constant,

ρ̄Φ = 1 − 16γΛ − √
1 − 32γΛ

16γ
(36)

for δ = 0. The difference between ρ̄Φ in the first and in the
last phase is equal to

Δρ̄Φ =
√

1 − 32γΛ

8γ
≈ 1

8γ
. (37)

The evolution of ρ̄Φ is presented in Fig. 8. Our model predicts
a phase of the early constant dark energy which is correlated
with inflation [35,36].

When δ = 0 the number of e-folds in the first phase is
equal to

N = 1

4
√

3

√
1 + √

1 − 32γΛ

γ

(
t̄fin − t̄ini

) ≈ t̄fin − t̄ini

4
√

3γ
,

(38)

where t̄fin is the time of the end of inflation and t̄ini is the time
of the beginning of inflation. In the last phase

N = 1

4
√

3

√
1 − √

1 − 32γΛ

γ

(
t̄fin − t̄ini

)
. (39)

Figures 9 and 10 present the number of e-folds in the first
phase with respect to the parameters γ and δ. In our model,
inflation appears only when δ ≥ 0.
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1. 10 32 1.2 10 32 1.4 10 32 1.6 10 32 1.8 10 32
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Fig. 8 The diagram presents the evolution of ρ̄Φ with respect to
the cosmological time t̄ . The time is expressed in seconds and ρ̄Φ

is expressed in km2

s2Mpc2 . The value of the parameter γ is assumed as

3.277 × 10−6 s2Mpc2

km2 . We also assume that Λ

3H2
0

= 0.6911, where

H0 = 67.74 km
s Mpc . Note that ρ̄Φ is not a constant function when matter

is not negligible (see Fig. 4). It is interesting that the function ρ̄Φ is of
the logistic-like function type
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250
N

Fig. 9 The diagram presents the relation between the number of e-

folds N and the parameter γ . The parameter γ is given in s2Mpc2

km2 . We

assume that δ = 0 and the inflation time is of order 10−32s [38]

2. 10 139 4. 10 139 6. 10 139 8. 10 139 1. 10 138

45

50

55

N

Fig. 10 The diagram presents the relation between the number of e-

folds N and the parameter δ. The parameter δ is given in s4Mpc4

km4 . We

assume that γ = 1.16 × 10−69 s2Mpc2

km2 and the inflation time is of order

10−32s [38]

If we assume that the parameter δ is equal to zero and
N = 50–60 [37] and the inflation time is of order 10−32s

[38] then the parameter γ belongs to the interval (1.16 ×
10−69, 1.67 × 10−69). In consequence, the present value of
ρ̄Φ

3H2
0

belongs to the interval (3.41 × 10−61, 4.90 × 10−61).

This means that the running dark energy is negligible in the
present epoch and does not influence the acceleration of the
present Universe.

If the parameter δ �= 0 the number of e-folds is modi-
fied. For the parameter γ belonging to the interval (1.16 ×
10−69, 1.67×10−69), we get the number of e-folds N = 50–
60, when the value of δ parameter belongs to the interval
(0, 6.4 × 10−140).

4 Conclusions

We are looking for a cosmological model in which one can
see both the early inflation and the late times acceleration
phase of the expansion in a unique evolutional scenario. To
this aim we study the cosmological model of polynomial
f (R) gravity cut on the R3 term in the Palatini formalism in
the Einstein frame. This model can be treated as an exten-
sion of the Starobinsky model which is formulated in the
metric formalism. Our model is formulated in the Palatini
formalism, but it possesses analogous features and its main
advantage is simplicity. The model is reduced to the FRW
model with matter and dark energy in the form of the homo-
geneous scalar field. Both energy densities of the matter and
dark energy are determined by the Ricci scalar of the FRW
metric. Therefore they are given in the covariant way. In the
Einstein frame the energy density of the dark energy is fully
determined by the potential of the scalar field. Because the
density of dark energy is running, the interaction appears nat-
urally between the matter and dark energy which can also be
parametrized in a covariant way through the Ricci scalar. It
is interesting that in our model it is possible to achieve some
analytic formulae on the energy densities of dark energy and
dark matter.

While the Hilbert–Einstein action and the f (R)-action
can be related by a conformal transformation [39–41], the
corresponding equations are connected by the same transfor-
mation. This fact shows that the Einstein frame and the Jordan
frame are mathematically equivalent [42] but they could not
be physically equivalent as pointed out in several papers (see
e.g. [41,43,44]).

Our investigation confirms that theories equivalent math-
ematically on the classical level can be non-equivalent phys-
ically [45]. However, we observe in the context of our model
that the Einstein frame is privileged in this sense that some
strong singularities can be cured in the cosmological evolu-
tion [14]. A detailed discussion of the meaning of conformal
transformations is in [46].

In our model, we have found that the plateau of the poten-
tial Ū (Φ) is not necessary for the appearance of inflation
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[34]. In the expansion of the function f (R̂), the coefficient
δ of the term R̂3 affects the number of e-folds. The number
of e-folds decreases for δ > 0 with respect to the number of
e-folds obtained for the model with the f (R̂) expansion cut
off at a quadratic term. In our model, inflation appears only
when δ ≥ 0.

In the model if the matter is vanishing we obtain eternal
inflation following the stationary solution H = const. This
result is valid for the function f (R̂) given by the polyno-
mial form f (R̂) = R̂ + γ R̂2 + ∑n

i=2 δi R̂i+1. Only for an
infinitesimally small fraction of matter inflation take places.
The early inflation is studied in detail in terms of slow roll
parameters as well as using the conception of constant roll
inflation. We calculate the constant roll parameter β = d ln Φ̇

d ln a ,
which measures the elasticity of Φ̇ with respect to the scale
factor. We have found the characteristic type of the behaviour
of the parameter β following the logistic-like curve. One can
distinguish four different phases in the time behaviour of the
parameter β. In the first phase, the effects of matter are neg-
ligible but due to the interaction with the dark energy sector,
the energy density of matter grows. As inflation progresses,
matter is created, it disturbs the inflation phenomenon at the
point when matter cannot be neglected. In consequence the
first phase of inflation becomes unstable and the second phase
appears. During the second and third phase, the effects of
matter are not negligible. Finally, the fourth phase is char-
acterized by diminishing effects of matter and the constant
value of the Ricci scalar (and in consequence the constant
value of energy density). During this phase dark energy dom-
inates and the Universe behaves following the standard cos-
mological ΛCDM model.

Because the slow roll parameters are inadequate to con-
strain the model parameter we have found a bound on the
model parameter γ from the numbers of required N -folds.
If we assume that N = 50–60 [37] then the parameter γ

belongs to the interval (1.16 × 10−69, 1.67 × 10−69). For
this interval of the parameter γ , we get the number of e-folds
N = 50–60, when the value of the δ parameter belongs to
the interval (0, 6.4 × 10−140).
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We investigate cosmological dynamics based on fðRÞ gravity in the Palatini formulation. In this study,
we use the dynamical system methods. We show that the evolution of the Friedmann equation reduces to
the form of the piecewise smooth dynamical system. This system is reduced to a 2D dynamical system of
the Newtonian type. We demonstrate how the trajectories can be sewn to guarantee C0 extendibility of the
metric similarly as “Milne-like” Friedmann-Lemaître-Robertson-Walker spacetimes are C0-extendible. We
point out that importance of the dynamical system of the Newtonian type with nonsmooth right-hand sides
in the context of Palatini cosmology. In this framework, we can investigate singularities which appear in the
past and future of the cosmic evolution. We consider cosmological systems in both Einstein and Jordan
frames. We show that at each frame the topological structures of phase space are different.

DOI: 10.1103/PhysRevD.97.103524

I. INTRODUCTION

Extended fðRÞ gravity models [1–14] are intrinsic or
geometric models of both dark matter and dark energy.
Therefore, the idea of relational gravity, in which dark
matter and dark energy can be interpreted as geometric
objects, is naturally realized in fðRÞ extended gravity.
The metric formulation of the extended gravity model

gives the fourth order field equations, except for some
cases, namely the Lovelock family of Lagrangians, where
the field equations are second order [15]. This difficulty is
solved by the Palatini formalism where the metric g and
symmetric connection Γ are assumed to be independent
variables. In this case, we get a system of second order
partial differential equations [16]. This formalism also
yields vacuum general relativity equations [17].
They are many papers about the Palatini formalism. In

Olmo’s paper [16], a review of the Palatini fðRÞ theories
appears. Papers [18,19] are about the scalar-tensor repre-
sentation of the Palatini theories. Studies about the exist-
ence of nonsingular solutions in Palatini gravity are in
[20,21]. The papers [22–26] are about black holes and their
singularities in the Palatini approach. Studies about the
choice of a conformal frame in the Palatini gravity are in
[27,28]. Compact stars in the Starobinsky model are
discussed in [29].

Conformal transformations became interesting after the
formulation of Weyl’s theory [30] aimed at unifying
gravitation and electromagnetism. A conformally invariant
version of special relativity was formulated in [31–33].
Another example of the development of Weyl’s theory is
the self-consistent, scale-invariant theory of Canuto et al.
[34]. In this theory, the astronomical unit of length is related
to the atomic unit by a scalar function which depends on the
spacetime point. This theory contains a running cosmo-
logical “constant” ΛðtÞ ¼ Λ0

t2
0

t2.
Recently, the most significant and important achieve-

ments appear in the context of the understanding of the
Palatini theory and their application to the cosmological
problem description of the evolution of the Universe
[1,12,16,35–38]. If we consider Friedmann-Robertson-
Walker (FRW) cosmological models in the Palatini frame-
work in the Einstein frame, one can obtain the exact formula
for the running cosmological constant parameter [39].
Cosmology is the physics of theUniverse but in opposition

to the physical system; we do not know the initial conditions
for theUniverse. Therefore, to explain the current state of the
Universe we consider all admissible physically initial con-
ditions and study all evolutional paths for the evolution of the
Universe in the universal cosmological time.
For this investigation of dynamics, the tools of the

dynamical system theory are especially interesting.
Dynamical system methods in the context of investigation
dynamics of fðRÞ gravity models have been used since
Carroll [14,40]. The dynamical system is a system of
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differential equations which describes the motion of the
points in the phase space [41]. In this approach, the evolution
of the Universe is represented by trajectories in the phase
space (spaces of all states of the system at any time). The
phase space is organized by the singular solution represented
by critical points (points inwhich thederivative of solutions of
the dynamical system is zero), invariant submanifolds (sub-
manifolds which are invariant under the action of the
dynamical system) and trajectories (geometrical representa-
tions of solutions of the dynamical system).Whole dynamics
can bevisualized in a geometrical way on the phase portrait—
a phase space of all evolutional paths for all initial conditions
[41]. We are looking for attractors (repellers) in the phase
space to distinguish some generic evolution scenarios for the
Universe [42].
Wedescribe effectively the cosmic evolution in termsof the

dynamical system of the Newtonian type. In this language,
the motion of a fictitious particle mimics the evolution of the
Universe and the potential contains all information needed for
studying its dynamics. The right-hand side of the system
cannot be a smooth function like for the cosmological
evolution governed by general relativity. However, in any
case, they are piecewise smooth functions. The context of the
application of the Palatini formalism in the investigation of
cosmological dynamics discovers the significance of new
types of dynamical systems with nonsmooth right-hand sides
[43]. It is interesting that cosmological singularities can be
simply characterized in terms of the geometry of the potential
VðaÞ, where a is the scale factor [43].
In this geometrical framework, singularities are mani-

fested by a lack of analyticity of a potential itself or its
derivativeswith respect to the scale factor a and a diagram of
the potential function (or its derivatives) possesses poles at
some values of scale factor a ¼ asing. Because the potential
function is an additive function of energy density compo-
nents, the discontinuities appearing on a diagram of the
potentialVðaÞ can be interpreted as a discontinuous jumping
of a potential part. This idea that a potential form possesses
some part which contains jump discontinuities can be
applied in different cosmological contexts. For example,
it was considered to characterize singularities in phantom
cosmologies [44].
Finite late-time singularities can be classified into six

categories according to divergences of physical character-
istics [45,46]:
(a) Type 0: “Big crunch.” The scale factor a is vanishing

and the Hubble parameter H, effective energy density
ρ and pressure p are blown up.

(b) Type I: “Big rip.” The scale factor a, ρ and p are blown
up. They are classified as strong [47,48].

(c) Type II: “Typical sudden.” The scale factor a, ρ and H
are finite, and _H and p are divergent. Geodesics are
not incomplete in this case [49–51].

(d) Type III: “Big freeze.” The scale factor a is finite and
H, ρ and p are blown up [49] or divergent [52]. In this

case, there is no geodesic incompleteness and they can
be classified as weak or strong [52].

(e) Type IV: “Generalized sudden.” The scale factor a, H,
ρ, p and _H are finite but higher derivatives of the scale
factor a diverge. These singularities are weak [53].

(f) Type V: “w singularities.” The cosmological time t is
finite, the scale factor a and ρ blow up, p vanishes and
a coefficient of the equation of state w ¼ p

ρ diverges.
These singularities are weak [54–56].

Following Królak [57], types 0 and I are strong, whereas
types II, III and IV are weak singularities.
The main aim of the paper is a study of the cosmological

equations based on fðRÞ gravity in the Palatini formalism
in both Einstein and Jordan frames. We want to show that
the topological structures of phase space are different in
these frames.
The order of this paper is as follows. In Sec. II, we

introduce the Palatini formalism in the context of cosmol-
ogy. We consider the Palatini formalism in cosmology in
the Jordan frame in Sec. III and in the Einstein frame in
Sec. IV. Section V is about differences between these
frames. The last section is our conclusions.

II. PALATINI FORMALISM: INTRODUCTION

The Palatini gravity action of fðR̂Þ gravity in the Jordan
frame is given by

S ¼ Sg þ Sm ¼ 1

2

Z ffiffiffiffiffiffi
−g

p
fðR̂Þd4xþ Sm; ð1Þ

where R̂ ¼ gμνR̂μνðΓÞ is the Ricci scalar and R̂μνðΓÞ is the
Ricci tensor of a torsionless connection Γ [16,58]. To
simplify, we assume that 8πG ¼ c ¼ 1.
After variation with respect to both dynamical variables

g and Γ we obtain the field equations ðδS ¼ 0Þ, which are
the counterparts of the Einstein equations in the Palatini
formalism, and an additional equation which establishes
some relation between the metric and the connection,

f0ðR̂ÞR̂μν −
1

2
fðR̂Þgμν ¼ Tμν; ð2Þ

∇̂αð
ffiffiffiffiffiffi
−g

p
f0ðR̂ÞgμνÞ ¼ 0; ð3Þ

where Tμν ¼ − 2ffiffiffiffi−gp δLm
δgμν

is the matter energy momentum

tensor and ∇μTμν ¼ 0 and ∇̂α means that the covariant
derivative is calculated with respect to connection Γ. The
conservation equation ∇μTμν ¼ 0 is obtained from the
Bianchi’s identities ∇μðf0ðR̂ÞR̂μν − 1

2
fðR̂ÞgμνÞ ¼ 0.

From the trace of the metric field equation (2), we get an
additional equation, which is called the structural equation,
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f0ðR̂ÞR̂ − 2fðR̂Þ ¼ T; ð4Þ

where T ¼ gμνTμν.
The metric g is the FRW metric for which the line

element is given in the following form:

ds2¼−dt2þa2ðtÞ
�

1

1−kr2
dr2þr2ðdθ2þsin2θdϕ2Þ

�
; ð5Þ

where aðtÞ is the scale factor, k is a constant of spatial
curvature (k ¼ 0;�1) and t is the cosmological time.
In this paper, we assume perfect fluid with the energy-

momentum tensor

Tμ
ν ¼ diagð−ρ; p; p; pÞ; ð6Þ

where p ¼ wρ, w ¼ const is a form of the equation of state.
From the conservation equation Tμ

ν;μ ¼ 0 we get that
ρ ¼ ρ0a−3ð1þwÞ. As a result, trace T is in the form

T ¼
X
i

ρi;0ð3wi − 1ÞaðtÞ−3ð1þwiÞ: ð7Þ

In the above equation, parameters wi correspond to differ-
ent fluids described by the equation of state pi ¼ wiρi. We
assume baryonic and dark matter ρm in the form of dust
w ¼ 0 and dark energy ρΛ ¼ Λ with w ¼ −1.
A form of the function fðR̂Þ is unknown. In this paper we

assume that the polynomial form of the fðR̂Þ function is in
the form

fðR̂Þ ¼ R̂þ γR̂2: ð8Þ
The Lagrangian (8) can be treated as a deviation from the
lambda cold dark matter (ΛCDM) model by the quadratic
Starobinsky term. The Starobinsky model in the Palatini
formalism in the cosmological context is considered
in [21,43].
A solution of the structural equation (4) has the follow-

ing form:

R̂ ¼ −T ≡ 4Λþ ρm;0a−3: ð9Þ

Note that solution (9) has the same form in our model as in
the ΛCDM model.
The Friedmann equation in our model is given by

H2

H2
0

¼ b2

ðbþ d
2
Þ2
�
ΩγðΩm;0a−3 þΩΛ;0Þ2

ðK − 3ÞðK þ 1Þ
2b

þ ðΩm;0a−3 þ ΩΛ;0Þ þ
Ωr;0a−4

b
þ Ωk

�
; ð10Þ

where Ωk ¼ − k
H2

0
a2, Ωr;0 ¼ ρr;0

3H2
0

, Ωm;0 ¼ ρm;0

3H2
0

,

ΩΛ;0 ¼ Λ
3H2

0

, K¼ 3ΩΛ;0
ðΩm;0a−3þΩΛ;0Þ, Ωγ ¼ 3γH2

0, b¼f0ðR̂Þ¼1þ
2ΩγðΩm;0a−3þ4ΩΛ;0Þ, d¼ 1

H
db
dt ¼−2ΩγðΩm;0a−3þΩΛ;0Þ

ð3−KÞ, H0 is the present value of Hubble function,
ρr;0 is the present value of the energy density of radiation
and ρm;0 is the present value of the density of matter. For
simplicity, henceforth, we consider the model without
radiation (ρr;0¼0). Note that for γ¼0, we get the ΛCDM
model.

III. TYPES OF SINGULARITIES IN
COSMOLOGY IN THE PALATINI

FORMALISM IN THE JORDAN FRAME

In our model, new types of singularities appear which are
not contained in the classification of Nojiri et al. They are
nonisolated singularities. Our model with such singularities
is an example of a piecewise smooth dynamical system of
the cosmological origin.
Recently, a physically relevant solution of general

relativity of the typical black hole spacetimes which
admit C0-metric extensions beyond the future Cauchy
horizon has focused mathematicians’ attention [59]
because this discovery is related to the fundamental
issues concerning the strong cosmic censorship conjecture.
In his paper, Sbierski [59] noted that the Schwarzschild
solution in the global Kruskal-Szekeres coordinates is
C0-extendible.
Galloway and Ling [60] reviewed some aspects of

Sbierski’s methodology in the general relativity context
of cosmological solutions, and use similar techniques to
Sbierski in the investigation of the C0 extendibility of open
Friedmann-Lemaître-Robertson-Walker (FLRW) cosmo-
logical models. They found that a certain special class of
open FLRW spacetimes, which we have dubbed “Milne-
like,” actually admits theC0 extension through the big bang.
[60–62].
Sbierski has presented recently a new version of his

original proof of the C0 inextendibility of the maximal
analytic Schwarzschild spacetime [63]. He deviates from
his original proof by using the result, established in
collaboration with Galloway and Ling [63], that given
the C0 extension of a globally hyperbolic spacetime, one
can find a timelike geodesic that leaves this spacetime.
Consequently, this result simplifies greatly the Sbierski
proof of the inextendibility through the exterior region of
the Schwarzschild spacetime.
The above-mentioned fact and phase portraits suggest

that models with the sewn type of singularity can belong to
a new class of metrics which admits C0 extension like in the
Milne-like model.
In our model, we find two new types of singularities,

which are a consequence of the Palatini formalism: the
sewn freeze and sewn sudden singularity. Generally, the
freeze singularity takes place when the scale factor a is
finite and H, ρ and p are blown up [49] or divergent [52],
and the sudden singularity is when the scale factor a, ρ and
H are finite and _H and p are divergent [45]. The freeze
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singularity appears when the expression b
bþd=2, in the

Friedmann equation (10), is equal to infinity. The evolution
of the scale factor of the model (10) through the sewn freeze
singularity is presented in Fig. 1. The sewn sudden
singularity appears when b

bþd=2 is equal to zero. This
condition is equivalent to b ¼ 0. The evolution of the
scale factor of the model (10) through the sewn sudden
singularity is presented in Fig. 2.
When the parameter γ is positive, the sewn freeze

singularity appears. In this case, the evolution of the
universe in our model and ΛCDM model are equivalent,
except the freeze singularity. The evolution starts from the
big bang and follows by the deceleration phase. Then the
acceleration phase appears in the neighborhood of the sewn
freeze singularity. In this singularity, the Hubble function

reaches the infinity value, which corresponds to the pole of
the potential function. In this time, the inflation appears.
After the inflation phase, the universe decelerates and the
evolution is similar to the evolution in the ΛCDM model.
The main physical effect of the sewn freeze singularity is
the inflation, but its influence on the evolution of the
universe is minor because the number of e-folds is too
small [64].
In the case of the negative parameter γ, the big bang does

not appear because it is replaced by the bounce, which
corresponds with the sewn sudden singularity. In this
singularity, the value of the Hubble function is zero.
When the bounce is reached, the acceleration and next
the deceleration phase appears. Afterwards, the behavior of
the universe is like that in the ΛCDM model.
After an explicit application of geodesic equation to the

Friedmann cosmology, one can find out whether geodesics
can be prolonged through a singularity, i.e., about the
geodesic incompleteness of the spacetime. Let us note that
geodesics do not feel a singularity at all—they are not
singular there since, for exampleas ¼ aðtsÞ ¼ const at t ¼ ts
being the time of a singularity, and there is no geodesic
incompleteness [65].
A deeper insight in the structure of singularities can be

obtained from the geodesic deviation equation (which
measures the behavior of a bunch of geodesics). It is
important that this equation does feel singularities since at
t ¼ ts the Riemann tensor Rαβμν → ∞. As an example we
see that with the sudden singularity it is possible to “go
through” the singularity since we have

Rα
0β0 ¼ −

ä
a
δαβ; _ð…Þ ¼ ∂

∂t ; ð11Þ

_uα ¼ −Rα
0β0nβ ∝ ä ∝ −

∂V
∂a ; ð12Þ

where δαβ is the Kronecker delta, uα is the four-velocity
vector and nα is the deviation vector separating neighboring
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FIG. 1. The left panel presents the illustration of the evolution of the scale factor of the model (10) for the positive parameter γ for the
flat universe. The right panel presents a close-up of the left panel in the neighborhood of the sewn freeze singularity (at the vertical

inflection point). The value of the parameter γ is chosen as 10−6 s2 Mpc2

km2 . The cosmological time is expressed in sMpc
100 km.
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FIG. 2. The illustration of the evolution of the scale factor of the
model (10) through the sewn sudden singularity (at the inflection
point) for the flat universe. The model with the negative
parameter Ωγ has a mirror symmetry with respect to the
cosmological time t. The bounce is at t ¼ 0. The value of

parameter γ is chosen as −10−6 s2 Mpc2

km2 . The cosmological time

is expressed in sMpc
100 km.
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geodesics (particle worldlines) which describes the propa-
gation of the distance between geodesics.
The curvature tensor feels, for example, the sudden

singularity because the Riemann tensor diverges to minus
infinity at t ¼ ts.
Physically, it means that the tidal forces which manifest

here as the (infinite) impulse which reverses (or stops) the
increase of separation of geodesics and the geodesics
themselves can evolve further—the universe can continue
its evolution through a singularity.
In our model, the sewn freeze singularity is a solution of

the following algebraic equation:

2bþ d ¼ 0 ð13Þ
or

−3K −
K

3ΩγðΩm þΩΛ;0ÞΩΛ;0
þ 1 ¼ 0; ð14Þ

where K ∈ ½0; 3Þ.
The solution of Eq. (14) is

Kfreeze ¼
1

3þ 1
3ΩγðΩmþΩΛ;0ÞΩΛ;0

: ð15Þ

We obtain an expression for a value of the scale factor at the
freeze singularity from Eq. (15),

afreeze ¼
�

1 −ΩΛ;0

8ΩΛ;0 þ 1
ΩγðΩmþΩΛ;0Þ

�1
3

: ð16Þ

We get the sewn sudden singularity when b ¼ 0. This
gets us the following algebraic equation:

1þ 2ΩγðΩm;0a−3 þ 4ΩΛ;0Þ ¼ 0: ð17Þ

From Eq. (17), we get the formula for the scale factor at a
sewn sudden singularity,

asudden ¼
�
−

2Ωm;0
1
Ωγ

þ 8ΩΛ;0

�
1=3

: ð18Þ

We can rewrite Eq. (10) as a dynamical system. We

choose a and y ¼ a0, where 0 ≡ d
dσ ¼

bþd
2

b
d

dH0t
is a new

parametrization of time, as the variables of the dynamical
system. We derive these variables with respect to the σ time
using Eq. (10) and we get the following equations of the
dynamical system:

a0 ¼ y; ð19Þ

y0 ¼ −
∂VðaÞ
∂a ; ð20Þ

where

V ¼ −
a2

2

�
ΩγðΩm;0a−3 þ 4ΩΛ;0Þ2

ðK − 3ÞðK þ 1Þ
2b

þ ðΩm;0a−3 þ 4ΩΛ;0Þ
�
: ð21Þ

We can treat the dynamical system [(19)–(20)] as a sewn
dynamical system [66,67]. In this case, the phase portrait is
divided into two regions: the first part is for a < asing and
the second part is for a > asing. Both parts are sewn along
the singularity.
For a < asing, we can rewrite the dynamical system

[(19)–(20)] in the corresponding form

a0 ¼ y; ð22Þ

y0 ¼ −
∂V1ðaÞ
∂a ; ð23Þ

where V1 ¼ Vð−ηða − asÞ þ 1Þ and ηðaÞ denotes the
Heaviside function.
For a > asing, we get in an analogous way the following

equations:

0.2 0.4 0.6 0.8 1.0 a

1.5

1.0

0.5

V a

0.155 0.160 0.165 0.170 0.175 0.180
a

0.65125

0.65120

0.65115

0.65110

0.65105

V a

FIG. 3. The left panel presents the diagram of the potential VðaÞ (21) for the positive parameter γ. The right panel presents a close-up
of the left diagram in the neighborhood of the sewn singularity. The vertical line represents the sewn freeze singularity. The parameter γ

is chosen as 10−6 s2 Mpc2

km2 . Note that for a ¼ asing, VðaÞ is undefined.
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a0 ¼ y; ð24Þ

y0 ¼ −
∂V2ðaÞ
∂a ; ð25Þ

where V2 ¼ Vηða − asÞ.
The diagrams of the potential function VðaÞ (21) are

presented in Fig. 3 for the positive parameter γ and in Fig. 4
for the negative parameter γ. The phase portraits of the

system can be constructed similarly as in classical mechan-
ics due to the particlelike description of dynamics. Phase
trajectories representing evolutionary paths can be obtained
directly from the geometry of potential function VðaÞ by
consideration of constant energy levels ða0Þ2=2þ VðaÞ ¼
E ¼ const ¼ −k=2. The reparametrized time parameter σ is
measured along the trajectories of the corresponding
dynamical system. It has a sense of a diffeomorphic trans-
formation beyond the singularity vertical line.
The potential function (21) is undefined at the singularity

pointa ¼ asing. Therefore, in phase portraits of the system in
the Jordan frame, there are two domains separated by a line
of singularity points. These phase portraits are constructed
by the application of the diffeomorphic reparametrization of
cosmological time beyond this singularity line and then C1

sewing of trajectories. As a result, we obtain that only one
unique trajectory moves at any point in the phase space.
The phase portraits for the system [(19)–(20)] for

positive Ωγ are presented in Fig. 5 and for negative Ωγ

in Fig. 6. The line of singularity points is represented by a
dashed line.
We find that the system [(19)–(20)] for positive Ωγ has a

sequence of three critical points located on the a axis
(saddle-center-saddle sequence). To clarify the behavior of
trajectories in the neighborhood of the saddle located at the
singularity line we present a close-up of this area in Fig. 5
(see the right panel).

0.2 0.4 0.6 0.8 1.0
a

1.5

1.0

0.5

0.5

1.0

V a

FIG. 4. The diagram of the potential VðaÞ (21) for the negative
parameter γ. The vertical line represents the sewn sudden

singularity. The parameter γ is chosen as −10−6 s2 Mpc2

km2 .

FIG. 5. The left panel is the phase portrait of the system [(19)–(20)] with the positive parameterΩγ. The right panel is a close-up of the

left panel in the neighborhood of critical points 2 and 3. The value of parameter γ is chosen as 10−6 s2 Mpc2

km2 . The value ofΩΛ;0 is chosen as
0.7 and the present value of the Hubble function is chosen as 68 km

sMpc. The scale factor a is presented in the natural logarithmic scale.
The spatially flat universe is represented by the red trajectories. The dashed line 2bþ d ¼ 0 represents the freeze singularity. The critical
points 1, 2 and 3 represent the static Einstein universes. The phase portrait belongs to the class of sewn dynamical systems. Note that the
existence of the homoclinic orbit which starts at t ¼ −∞ and approach at t ¼ þ∞. In the interior of this orbit, there are located
trajectories representing oscillating cosmological models. They are free from initial and final singularities.
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In Fig. 6 the critical points at infinity, a ¼ asing; a0 ¼
�∞ represent typical sudden singularities. There are two
types of sewn trajectories: one homoclinic orbit and infinity
of periodic orbits. The homoclinic orbit starts from the
neighborhood of critical point 1, goes to the singularity at
a0 ¼ −∞ and, after sewing with the trajectory which comes
from the singularity at a0 ¼ þ∞, finishes at the saddle
point 1. The periodic orbits are situated inside the domain
bounded by the homoclinic orbit. Similarly to the homo-
clinic orbit, the periodic orbits are sewn when going to the

minus infinity singularity and going out from the plus
infinity singularity. Note that these periodic orbits are
possible only in the k ¼ þ1 universe. There are also
nonperiodic trajectories which lie inside the two regions
bounded by the separatrices of the saddle 1. The trajectories
start at a0 ¼ −∞, approach saddle 1, go to the minus
infinity singularity after sewing go out from the plus
infinity singularity, approach saddle 1 and then continue
to a0 ¼ þ∞. This kind of evolution is possible for the flat
universe as well as k ¼ −1 and k ¼ þ1 universes. Finally,
in the region on the right of the separatrices of saddle 1, the
trajectories start at a0 ¼ −∞ and go to a0 ¼ þ∞, repre-
senting the evolution without a sewn sudden singularity of
the k ¼ þ1 universes.
The critical points of the dynamical system [(19)–(20)]

are completed in Table I.
The action (1) can be rewritten as

S ¼ Sg þ Sm ¼ 1

2

Z ffiffiffiffiffiffi
−g

p
ϕR̂d4xþ Sm; ð26Þ

where ϕ ¼ fðR̂Þ
R̂
. Let Geff mean the effective gravitational

constant. Then ϕ ¼ 1
8πGeff

and in the consequenceGeffðR̂Þ ¼
R̂

8πfðR̂Þ and especially for fðR̂Þ ¼ R̂þ γR̂2 has the following

form:

GeffðR̂Þ
G

¼ 1

1þ γR̂
: ð27Þ

The evolution of Geff is presented in Fig. 7. Note that the
value of Geff for t ¼ 0 is equal to zero and approaches
asymptotically to the value of gravitational constant.

IV. THE PALATINI FORMALISM IN THE
EINSTEIN FRAME

Scalar-tensor theories of gravity can be formulated in the
Jordan and in the Einstein frames. These frames are
conformally related [68]. We know that the formulations
of a scalar-tensor theory in two different conformal frames
are physically inequivalent. There was a remarkable
progress in the understanding of the geometric features
of the Palatini theories and the role of the choice of a frame
in the last years [69,70]. Considering the model in the

FIG. 6. The phase portrait of the system [(19)–(20)] with the
negative parameter Ωγ. The value of the parameter γ is chosen as

−10−13 s2 Mpc2

km2 . The value of ΩΛ;0 is chosen as 0.7 and the present
value of the Hubble function is chosen as 68 km

sMpc. The scale
factor a is presented in the natural logarithmic scale. The spatially
flat universe is represented by the red trajectories. The dashed line
separates the domain where a < asing from the domain where
a > asing. The shaded region represents trajectories with b < 0. If
we assume that f0ðRÞ > 0, then this region can be removed.
Critical point 1 represents the static Einstein universe. The critical
points at infinity, a ¼ asing, a0 ¼ �∞ represent typical sudden
singularities. The phase portrait belongs to the class of sewn
dynamical systems.

TABLE I. Critical points of the dynamical system [(19)–(20)]. They are also presented in Fig. 5. All three critical points represent a
static Einstein universe.

No. of critical point Coordinates of critical point Type of critical point

1 �
a ¼

�
8γΛ2−Λþ3H2

0
ð1−8γΛÞþð3H2

0
−ΛÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−24γΛÞ

p
4Λð1þ8γΛÞ

�1=3
; a0 ¼ 0

� saddle

2 �
a ¼

�
8γΛ2−Λþ3H2

0
ð1−8γΛÞ−ð3H2

0
−ΛÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−24γΛÞ

p
4Λð1þ8γΛÞ

�1=3
; a0 ¼ 0

� center

3
�
a ¼ ðγð3H2

0
−ΛÞÞ1=3

ð1þ8γΛÞ1=3 ; a0 ¼ 0
�

saddle
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Einstein frame in the Palatini formalism, we find that the big
bang singularity is replaced by the singularity of the finite
scale factor and that some pathologies, like degenerated
multiple freeze singularities [64], disappear in a generic case.
If f00ðR̂Þ ≠ 0, then action (1) is dynamically equivalent to

the first order Palatini gravitational action [1,12,36]

Sðgμν;Γλ
ρσ;χÞ

¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðf0ðχÞðR̂−χÞþfðχÞÞþSmðgμν;ψÞ: ð28Þ

LetΦ ¼ f0ðχÞ be a scalar field and χ ¼ R̂. Then action (28)
can be rewritten in the following form:

Sðgμν;Γλ
ρσ;ΦÞ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðΦR̂−UðΦÞÞþSmðgμν;ψÞ;

ð29Þ

where the potential UðΦÞ is defined by

UfðΦÞ≡UðΦÞ ¼ χðΦÞΦ − fðχðΦÞÞ; ð30Þ

where Φ ¼ dfðχÞ
dχ and R̂≡ χ ¼ dUðΦÞ

dΦ .
We can get from the Palatini variation of the action (29)

the following equations of motion:

Φ
�
R̂μν −

1

2
gμνR̂

�
þ 1

2
gμνUðΦÞ − Tμν ¼ 0; ð31aÞ

∇̂λð
ffiffiffiffiffiffi
−g

p
ΦgμνÞ ¼ 0; ð31bÞ

R̂ −U0ðΦÞ ¼ 0: ð31cÞ

From Eq. (31b), we get that the connection Γ̂ is a metric
connection for a newmetric ḡμν¼Φgμν; thus, R̂μν ¼ R̄μν; R̄¼
ḡμνR̄μν¼Φ−1R̂ and ḡμνR̄ ¼ gμνR̂. The g trace of (31a) gives
a new structural equation,

2UðΦÞ −U0ðΦÞΦ ¼ T: ð32Þ
The question of whether the metric gμν or ḡμν has the

physical meaning is a problem of the interpretation of these
functions. It is strictly related to the problemof a choice of the
frame (Einstein frame or Jordan frame). Some people claim
that a conformally rescaled metric by a scalar field is only an
mathematical trickwithout a physicalmeaning.However, the
objectivity of investigation requires the consideration of both
cases. In our opinion, only astronomical observations can
resolve this question [71]. In this section, we also consider
that ḡμν has the physical meaning in the Einstein frame. We
are looking for such a choice of the frame in which inflation
can be reproduced in analogy to the Starobinsky model.
Unfortunately, it is not the case of the Jordan case. Azri [72]
tried to answer the question about the reality of conformal
frames in the context of the nonminimal coupling dynamics
of a single scalar field in purely affine gravity. In this
approach, the coupling is performed via an affine connection
and its associated curvature without referring to any metric
tensor. It is interesting that in affine gravity the transition
from nonminimal to minimal couplings is realized by only
field redefinition of the scalar field. As a result, the infla-
tionary models gain a unique description in this context
where observed parameters are invariant under a field
reparametrization. The inflation in the Starobinsky model
is realized in the Einstein frame but it would be nice to find
the realization of the inflation as a phenomenon which is
invariant under the redefinition of the scalar field.
Now Eqs. (31a) and (31c) take the following forms:

R̄μν −
1

2
ḡμνR̄ ¼ T̄μν −

1

2
ḡμνŪðΦÞ; ð33Þ

ΦR̄ − ðΦ2ŪðΦÞÞ0 ¼ 0; ð34Þ
where ŪðϕÞ ¼ UðϕÞ=Φ2, T̄μν ¼ Φ−1Tμν and the structural
equation can be replaced by

ΦŪ0ðΦÞ þ T̄ ¼ 0: ð35Þ
As a result, the action for the metric ḡμν and scalar fieldΦ is
given in the following form:

Sðḡμν;ΦÞ¼1

2

Z
d4x

ffiffiffiffiffiffi
−ḡ

p ðR̄−ŪðΦÞÞþSmðΦ−1ḡμν;ψÞ;

ð36Þ
where a nonminimal coupling is between Φ and ḡμν,

T̄μν ¼−
2ffiffiffiffiffiffi
−ḡ

p δ

δḡμν
Sm¼ðρ̄þ p̄Þūμūνþ p̄ḡμν¼Φ−3Tμν;

ð37Þ

0.0 0.1 0.2 0.3 0.4
t
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Geff t

G

FIG. 7. The evolution of Geff for the positive parameter γ and
the flat universe. The cosmological time t is expressed in sMpc

100 km.

The parameter γ is chosen as 10−6 s2 Mpc2

km2 . Note that when t → ∞
then Geff ðtÞ

G → 1
1þ4γΛ.
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ūμ ¼ Φ−1
2uμ, ρ̄ ¼ Φ−2ρ; p̄ ¼ Φ−2p, T̄μν ¼ Φ−1Tμν; T̄ ¼

Φ−2T [12,73].
In the FRW metric case, metric ḡμν has the following

form:

ds̄2 ¼ −dt̄2 þ ā2ðt̄Þ½dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ�; ð38Þ
where dt̄ ¼ ΦðtÞ12dt and new scale factor āðt̄Þ ¼ Φðt̄Þ12aðt̄Þ.
Because we assume the barotropic matter, the cosmological
equations are given by

3H̄2 ¼ ρ̄Φ þ ρ̄m; 6
̈ā
ā
¼ 2ρ̄Φ − ρ̄mð1þ 3wÞ; ð39Þ

where

ρ̄Φ ¼ 1

2
ŪðΦÞ; ρ̄m ¼ ρ0ā−3ð1þwÞΦ1

2
ð3w−1Þ ð40Þ

and w ¼ p̄m=ρ̄m ¼ pm=ρm. The conservation equation gets
the following form:

_̄ρm þ 3H̄ρ̄mð1þ wÞ ¼ − _̄ρΦ: ð41Þ
In the case of the Starobinsky-Palatini model, the

potential Ū is described by the following formula:

ŪðΦÞ ¼ 2ρ̄ΦðΦÞ ¼
�
1

4γ
þ 2λ

�
1

Φ2
−

1

2γ

1

Φ
þ 1

4γ
: ð42Þ

V. A COMPARISON OF THE JORDAN
FRAME AND THE EINSTEIN FRAME

IN THE PALATINI FORMALISM

If we consider dynamics in the Jordan frame, then one
can use a formula for H2 to reduce the dynamics to the
dynamical system of the Newtonian type which possesses
the first integral 1

2
ðdadtÞ2þVðaÞ¼0, where VðaÞ ¼ − 1

2
H2a2.

In this representation of dynamics, singularities for the
finite value of the scale factor a ¼ as are poles of VðaÞ
potential or their derivatives. Stachowski et al. [64] inves-
tigated these type of singularities in detail. The generic
feature of the formulation of dynamics is the appearance of
the freeze or typical sudden type of singularity in the past.
At the freeze singularity point while the scale factor is
finite, its second derivative with respect to the time blows
up, i.e., d2a

dt2 ¼ �∞. In general, all singularities can be
detected from the diagram of the potential function.
If we consider dynamics in the Einstein frame, there are

no such singularities. The big bang singularity present in
the ΛCDM model is replaced by the generalized sudden
singularity of the finite scale factor. Beyond this singularity,
the phase portrait is equivalent to the ΛCDM model.
Two dynamical systems in the phase space are equivalent

if there is a homeomorphism transforming all trajectories
with the preserving of the direction of time measured
along the trajectories. The comparison of dynamics in
both the Jordan and Einstein frames explicitly shows that

corresponding dynamical systems are not topologically
equivalent. Consequently, the physics in both frames is
different.
The cosmological equation for the Starobinsky-Palatini

model in the Einstein frame can be rewritten to the form of
the dynamical system with the Hubble parameter H̄ðt̄Þ and
the Ricci scalar R̂ðt̄Þ as variables,

_̄Hðt̄Þ ¼ 1

6ð1þ 2γR̂ðt̄ÞÞ2 ð6Λ − 6H̄ðt̄Þ2ð1þ 2γR̂ðt̄ÞÞ2

þ R̂ðt̄Þð−1þ 24γΛþ γð1þ 24γΛÞR̂ðt̄ÞÞÞ; ð43Þ

_̂Rðt̄Þ ¼ −
3

ð−1þ γR̂ðt̄ÞÞ H̄ðt̄Þð1þ 2γR̂ðt̄ÞÞð4Λþ R̂ðt̄Þ

× ð−1þ 16γΛþ 16γ2ΛR̂ðt̄ÞÞÞ; ð44Þ

FIG. 8. The phase portrait of system (43)–(44). There are four
critical points: point 1 represents the Einstein universe, point 2
represents the stable de Sitter universe, point 3 represents the
unstable de Sitter universe and point 4 represents the Einstein
universe. The value of the parameter γ is chosen as 10−6 s2 Mpc2

km2 .
The value of ΩΛ;0 is chosen as 0.7 and the present value of the
Hubble function is chosen as 68 km

sMpc. The values of the Hubble

function are given in 100 km
sMpc and the values of the Ricci scalar are

given in 104 km2

s2 Mpc2 in the natural logarithmic scale. The gray color

represents the nonphysical domain. The dashed line represents
the generalized sudden singularity. Note that for the Starobinsky-
Palatini model in the Einstein frame for the positive parameter γ,
the sewn freeze singularity is replaced by the generalized sudden
singularity. A typical trajectory in the neighborhood of the
trajectory of the flat model (represented by the red trajectory)
starts from the generalized sudden singularity then goes to the de
Sitter attractor. The position of this attractor is determined by the
cosmological constant parameter. Oscillating models (blue
trajectory) are situated around critical point 4.
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where a dot denotes the differentiation with respect to
the time t̄. The phase portrait for the dynamical system
[(43)–(44)] is presented in Fig. 8. Here, the periodic orbits
appear around critical point 4. In the Starobinsky-Palatini
model in the Einstein frame appears the generalized sudden
singularity, for which H and _H are finite but Ḧ and its
derivatives are diverge (see Fig. 9). The evolution of the
scale factor begins from a finite value different from zero
(see Fig. 10). In terms of the scale factor, at the singularity
for the finite value of the scale factor ā, a third time
derivative (and higher orders) of the scale factor in Einstein
frame blows up, while first and second order time deriv-
atives behave regularly. The evolution of the scale factor for
one of these periodic orbits is presented in Fig. 11.
When matter is negligible, then the inflation appears. In

this case, a ≈ a0 exp
�
t
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1−32γΛ
p
3γ

q �
, where a0 ¼ að0Þ

and RðtÞ ≈ 1−16γΛþ ffiffiffiffiffiffiffiffiffiffiffiffi
1−32γΛ

p
32γ2Λ [74]. If γ > 1

36Λ, then the non-

physical domain appears for R̂ < 1−16γΛþ ffiffiffiffiffiffiffiffiffiffiffiffi
1−32γΛ

p
32γ2Λ for

which ρm < 0.

For comparison of the dynamical systems in both frames,
we obtain the dynamical system for the Starobinsky-Palatini
model in the Jordan frame in the variables HðtÞ and R̂ðtÞ

_HðtÞ ¼ −
1

6

�
6ð2ΛþHðtÞ2Þ þ R̂ðtÞ

þ 18ð1þ 8γΛÞðΛ −HðtÞ2Þ
−1 − 12γΛþ γR̂ðtÞ −

18ð1þ 8γΛÞHðtÞ2
1þ 2γR̂ðtÞ

�
;

ð45Þ
_̂RðtÞ ¼ −3HðtÞðR̂ðtÞ − 4ΛÞ; ð46Þ

where a dot means the differentiation with respect to time t.
The phase portrait for the dynamical system (45)–(46) is
shown inFig. 12 (see left panel). Thisphaseportrait represents
all evolutionary paths of the system in the Jordan frame
without adopting the time reparametrization. Along the
trajectories is measured the original cosmological time t.
The system[(45)–(46)] constitutes a two-dimensional autono-
mousdynamical system.Let us note thatwhile theRicci scalar
R̂ is related with a second time derivative of the scale factor a,
the Hubble functionH is related with a first time derivative of
the scale factor a. The oscillating orbits appear around critical
point 4 (see Fig. 12). The evolution of the scale factor for one
of these periodic orbits is presented in Fig. 13.
For a deeper analysis of the behavior of the trajectories of

system (45)–(46) in the infinity, we introduce variables R̂
and W ¼ Hffiffiffiffiffiffiffiffiffi

1þH2
p and rewrite Eqs. (45)–(46) in these

variables. Then we get the following dynamical system:

_WðtÞ¼
_HðtÞ

ð1þHðtÞ2Þ3=2¼−
ð1−WðtÞ2Þ3=2

6

"
6

�
2Λþ WðtÞ2

1−WðtÞ2
�

þR̂ðtÞþ
18ð1þ8γΛÞ

�
Λ− WðtÞ2

1−WðtÞ2
�

−1−12γΛþγR̂ðtÞ

−
18ð1þ8γΛÞ WðtÞ2

1−WðtÞ2

1þ2γR̂ðtÞ

#
; ð47Þ

0.0 0.2 0.4 0.6 0.8 1.0
a

2 109

4 109

6 109

8 109

1 1010
H a

FIG. 9. The relation ḦðāÞ for the Palatini formalism in the
Einstein frame. The value of the parameter γ is chosen as

10−9 s2 Mpc2

km2 . The values of the ḦðāÞ are given in km3

s3 Mpc3. The

dashed line represents the generalized sudden singularity. Note
that, in the generalized sudden singularity, H and _H are finite but
Ḧ and its derivatives are divergent.
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a t
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1 1050

a t

FIG. 10. The illustration of the evolution of the scale factor for the Palatini formalism in the Einstein frame for the flat universe. The
left panel presents the case when matter is not negligible. The right panel presents the case when matter is negligible. The value of
parameter γ is chosen as 10−9 s2 Mpc2

km2 . The cosmological time is expressed in sMpc
km . Note that the evolution of the scale factor begins from

a finite value different from zero. Note that when matter is negligible, then the inflation appears (see the right panel). In this case, the
number of e-folds is equal to 50.
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_̂RðtÞ ¼ −3
WðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −WðtÞ2
p ðR̂ðtÞ − 4ΛÞ: ð48Þ

The phase portrait for dynamical system (47)–(48) is
presented in Fig. 12 (the right panel). This portrait is a
good illustration of how trajectories are sewn at the points at
infinity (points 5 and 6). For expanding models situated on

the upper part of the domain, where W is positive, all the
trajectories pass through point 6. This continuation of
trajectories is the class ofC0. The singularity line represents
the freeze type of singularity. There are some differences in
the behavior of trajectories of the samemodel represented in
Figs. 5 and 12.While the continuation on the singularity line
in Fig. 5 is smooth of C1 class and the Cauchy problem is
correctly solved in Fig. 12, all trajectories from separated
regions focused at the degenerated point 6 (and point 5 for
contracting models) represent the freeze type of singularity.
It has a consequence for the solution of the Cauchy problem.
Therefore, the representation of dynamics in the reparame-
trized time seems to be more suitable than in the original
cosmological time.
For the Eqs. (43)–(44) and (45)–(46), we can find the

first integrals. In the case of Eqs. (43)–(44), the first integral
has the following form:

H̄ðt̄Þ2 þ Λ −
R̂ðt̄Þð2þ γR̂ðt̄ÞÞ
6ð1þ 2γR̂ðt̄ÞÞ2 þ k

ā2
¼ 0: ð49Þ

Because

0 2 4 6 8 10
t

0.2

0.4

0.6

0.8

1.0

a t

FIG. 11. The diagram presents the evolution of the scale factor
for trajectory of the oscillating orbit in the neighborhood of
critical point 4 (see Fig. 8). The cosmological time is expressed in
sMpc
100 km. Here, amin ¼ 1.

FIG. 12. The left panel is the phase portrait of system (45)–(46) and the right one is the phase portrait of system (47)–(48). There are
four critical points in both systems: point 1 and 2 represent the Einstein universe, point 3 represents the unstable de Sitter universe and
point 4 represents the stable de Sitter universe. For illustration, the value of the parameter γ is chosen as 10−6 s2 Mpc2

km2 . The value of ΩΛ;0 is
chosen as 0.7 and the present value of the Hubble function is chosen as 68 km

sMpc. The values of the Hubble function are given in
100 km
sMpc and

the values of the Ricci scalar are given in 104 km2

s2 Mpc2 in the natural logarithmic scale. The dotted line, representing a line of discontinuity,

separates the domain where R̂ < R̂sing ¼ R̂ðasingÞ from the domain where R̂ > R̂sing ¼ R̂ðasingÞ. In the right panel, points 5 and 6
represent points where the right and left side of the phase space is sewn (some trajectories pass through the sewn singularity–points 5 and
6). Note that oscillating models exist (blue trajectory) and are situated around critical point 2. They represent oscillating models without
the initial and final singularities. The green line represents the separatrix trajectory, which represents the only case for which the
trajectory can pass from the left side of the phase portrait to the right one without the appearance of the sewn freeze singularity during the
evolution. It joins saddle points in a circle at infinity. This line separates trajectories going to the freeze singularity from the bouncing

solutions. For this case Ωk ¼ −ΩγðΩm;0a−3 þ 4ΩΛ;0Þ2 ðK−3ÞðKþ1Þ
2b − ðΩm;0a−3 þ 4ΩΛ;0Þ when a ¼ asing.
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ā ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C0ð1þ 2γR̂ðt̄ÞÞ

e
−
arctan

�
−1þ16γΛþ32γ2ΛR̂ðt̄Þffiffiffiffiffiffiffiffiffiffi

−1þ32γΛ
p

�
3
ffiffiffiffiffiffiffiffiffiffi
−1þ32γΛ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Λþ R̂ðt̄Þð−1þ 16γΛþ 16γ2ΛR̂ðt̄ÞÞ

q
vuuuuut

; ð50Þ

where C0 ¼ ā2
0
e
−

arctan

�
−1þ16γΛþ32γ2ΛR̂ðt̄0Þffiffiffiffiffiffiffiffiffiffi

−1þ32γΛ
p

�
3
ffiffiffiffiffiffiffiffiffiffi
−1þ32γΛ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ΛþR̂ðt̄0Þð−1þ16γΛþ16γ2ΛR̂ðt̄0ÞÞ

p
ð1þ2γR̂ðt̄0ÞÞ with ā0 as the present value of the scale factor, we get the

first integral in the following form:

H̄ðt̄Þ2 þ Λ −
R̂ðt̄Þð2þ γR̂ðt̄ÞÞ
6ð1þ 2γR̂ðt̄ÞÞ2 þ k

e
−
arctan

�
−1þ16γΛþ32γ2ΛR̂ðt̄Þffiffiffiffiffiffiffiffiffiffi

−1þ32γΛ
p

�
3
ffiffiffiffiffiffiffiffiffiffi
−1þ32γΛ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Λþ R̂ðt̄Þð−1þ 16γΛþ 16γ2ΛR̂ðt̄ÞÞ

q
C0ð1þ 2γR̂ðt̄ÞÞ ¼ 0: ð51Þ

As a result, the potential VðR̂Þ is given by

VðR̂Þ ¼ a2

2

�
Λ −

R̂ðt̄Þð2þ γR̂ðt̄ÞÞ
6ð1þ 2γR̂ðt̄ÞÞ2

�
: ð52Þ

Because we know the form of VðR̂Þ and āðR̂Þ, we can get the potential VðāÞ in a numerical way. VðāÞ potential is
demonstrated in Fig. 14.
Equations (45)–(46) have the following first integral given by

HðtÞ2 −
ð1þ 2γR̂ðtÞÞ2

�
−3Λþ R̂ðtÞ − kð−4ΛþR̂ðtÞÞ2=3

C0
þ γð12Λ−3R̂ðtÞÞR̂ðtÞ

2ð1þ2γR̂ðtÞÞ

�
ð1þ 2γR̂ðtÞ − 3γð−4Λþ R̂ðtÞÞÞ2 ¼ 0; ð53Þ

where C0 ¼ a20ð−4Λþ R̂ðt0ÞÞ2=3. Here, a0 is the present
value of the scale factor.

VI. CONCLUSIONS

In this paper, the main conclusion is that the Starobinsky
models in the Palatini formalism in the Jordan and Einstein

frames are not physically equivalent. There are a few
qualitative differences between the models in these frames.
The most important difference is that the sewn freeze
singularity in the Jordan frame is replaced by the gener-
alized sudden singularity in the Einstein frame. Other
differences between these frames are the lack of the big
bang in our model in the Einstein frame and the fact that

0.0 0.5 1.0 1.5 2.0
t

0.2

0.4

0.6

0.8

1.0

a t

FIG. 13. The diagram presents the evolution of the scale factor
for the trajectory of the oscillating orbit in the neighborhood of
critical point 2 (see Fig. 12). The cosmological time is expressed
in sMpc

100 km. Here, amin ¼ 1.

0.2 0.4 0.6 0.8 1.0
a
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2

1

1

2
V a

FIG. 14. The potential VðāÞ for the Palatini formalism in the
Einstein frame. The value of the parameter γ is chosen as

10−9 s2 Mpc2

km2 . The values of the VðāÞ are given in 104 km2

s2 Mpc2 . The

dashed line represents the generalized sudden singularity. The
value of the potential at the singularity is finite.
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phase portraits in these frames are not qualitatively equiv-
alent. It is consistent with results obtained that models in
the Jordan frame are not physically equivalent to those in
the Einstein frame [75–79].
From the detailed analysis of cosmological dynamics in

the Palatini formulationwe derive the following conclusions:
(1) If we consider the cosmic evolution in the Einstein

frame we obtain inflation as an endogenous effect
from the dynamical formulation in the Palatini
formalism [74].

(2) If we consider the cosmic evolution in the Jordan
frame we obtain an exact and covariant formula for
the variability of the gravitational constant Geff
parametrized by the Ricci scalar.

(3) Given two representations of our model in the
Einstein and Jordan frames, we found that its
dynamics are simpler in the Einstein frame as being
free from some obstacles related to an appearance of
bad singularities. It is an argument for the choice of
the Einstein frame as physical.

(4) In our model considered in the Einstein frame, we
have both the inflation as well as the acceleration
[74]. While the inflation in the model is obtained as
an inherited dynamical effect, the acceleration is
driven by the cosmological constant term.

(5) In the model under consideration, we include effects
of matter. This enables us to study the fragility of the
inflation with respect to small changes of the energy
density of matter [74].

(6) In the obtained evolutional scenario of the evolution
of the Universe in the Einstein frame in the Palatini
formalism we found the singularity of the finite scale
factor (generalized sudden singularity) and the phase
of the acceleration of the current Universe. Note that
in [74] it was found the inflation in this model with
the sufficient number of e-folds in the case when the
matter is negligible.

(7) In the context of the Starobinsky model in the
Palatini formalism we found a new type of double
singularities beyond the well-known classification of
isolated singularities.

(8) The phase portrait for the Starobinsky model in the
Palatini formalism with a positive value of γ is
equivalent to the phase portrait of the ΛCDMmodel.
There is only a quantitative difference related to the
presence of the nonisolated freeze singularity.

(9) For the Starobinsky-Palatini model in the Einstein
frame for the positive parameter γ, a sewn freeze
singularity is replaced by a generalized sudden
singularity. As a result, this model is not equivalent
to the phase portrait of the ΛCDM model.
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