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Abstract

The thesis tackles the problem of non-orthogonal eigenvectors of non-Hermitian
random matrices from two perspectives: theoretical and applicational. The first part is
devoted to development of analytical tools allowing for effective calculation of one- and
two-point correlation functions involving scalar products of left and right eigenvectors.
The technique of Feynman diagrams is used for calculations in the limit of large matrix
size. Eigenvector non-orthogonality is studied in the real elliptic ensemble, where a novel
regime of weak non-normality is discovered. The developed formalism from the first part
is then applied to two neural networks. One is a model of a biological network, where
it is discovered that two biological rules – Dale’s principle and excitatory/inhibitory
balance – are the source of strong eigenvector non-orthogonality. The second is an
artificial neural network with residual architecture, where the input-output Jacobian is
analyzed. It is observed that its singular values in a universal way concentrate around
one, explaining why such an architecture facilitates training neural networks.

Streszczenie

Przedstawiona praca porusza problem nieortogonalnych wektorów własnych nieher-
mitowskich macierzy przypadkowych z punktu widzenia teorii oraz zastosowań. Pier-
wsza część pracy poświęcona jest rozwinięciu technik analitycznych pozwalających na
obliczanie jedno- i dwupunktowej funkcji korelacji, które zawierają iloczyny skalarne
lewych i prawych wektorów własnych. Obliczenia w granicy dużego rozmiaru macierzy
są wykonane w oparciu o analizę diagramów Feynmana. Przeprowadzona jest analiza
nieortogonalnych wektorów własnych w eliptycznym zespole statystycznym, gdzie od-
kryty zostaje nowy obszar tak zwanej słabej nienormalności. Wypracowany formalizm
jest następnie zastosowany w dwóch modelach sieci neuronowych. W pierwszym mo-
delu, który opisuje biologiczne sieci, zaobserwowano, że uwzględnienie reguły Dale’a
oraz równowagi między neuronami wzmacniajacymi a hamującymi jest źrodłem silnej
nieortogonalności wektorów własnych. Drugim analizowanym modelem jest sztuczna
sieć neuronowa o architekturze residualnej, gdzie analizowany jest jakobian wejście-
wyjście. Zaobserwowano, że jego wartości osobliwe w uniwersalny sposób koncentrują się
wokół jedności, tym samym wyjaśniając, dlaczego taka architektura ułatwia trenowanie
sieci neuronowych.
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Chapter 1

Introduction

1.1 Mathematical preliminaries

In simple words, matrices are arrays of numbers. Like numbers, one can add and
multiply them. The latter operation is different than for numbers, because the order of
multiplication matters. In particular, matrices can multiply vectors, which are special
instances of matrices, represented by a single column. For a given matrix A vectors |vi〉
that satisfy

A |vi〉 = λi |vi〉 (1.1)

are distinguished and called eigenvectors, while the corresponding numbers λi are called
eigenvalues.

A lot of attention is focused on the spectral properties of symmetric (Hermitian)
matrices due to their ubiquity in physics. Such matrices always have real eigenvalues and
their eigenvectors form orthogonal basis. One of the physical examples is the moment
of inertia. It is a rank-2 tensor, therefore represented by a matrix, which is symmetric
by construction. Its orthogonal eigenvectors determine the principal axes of rotation,
while eigenvalues define principal moments of inertia.

When the symmetry (Hermiticity) condition is dropped, these properties are lost.
Eigenvalues can be complex in general. Moreover, due to the fact that the matrix and
its transpose are not related, the eigenproblem is not uniquely defined. The matrix can
be multiplied by the column vector from the right hand side or the row vector from
the left hand side, therefore the need for the notion of left and right eigenvectors. They
satisfy

〈Li|A = 〈Li|λi, A |Ri〉 = λi |Ri〉 (1.2)

for the same eigenvalue. Eigenvalues can be found by solving the algebraic equation
det(λ − A) = 0, which for an N ×N matrix has N solutions, including multiplicities.
When the eigenvalues are degenerate, it is, however, not always possible to find N
eigenvectors, and then the matrix is said to be nondiagonalizable. If the matrix is
diagonalizable, the eigenvectors form a biorthogonal set

〈Li|Rj〉 = δij , for i, j = 1, . . . , N, (1.3)

but the eigenvectors are not orthogonal within sets, 〈Li|Lj〉 6= δij 6= 〈Ri|Rj〉. Dual to
the biorthogonality condition is the resolution of the identity matrix

1 =
N∑
k=1

|Rk〉 〈Lk| . (1.4)

Relations (1.3) and (1.4) put constraints on the eigenvectors, but some freedom still
remains. One can multiply each right eigenvector by a non-zero complex number ci,

9
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|Ri〉 → ci |Ri〉 and the corresponding left eigenvector by the inverse 〈Li| → c−1
i 〈Li|,

keeping (1.3) and (1.4) untouched, while still solving the eigenproblem (1.1). This
further allows one to normalize lengths of either left or right eigenvectors, but we will
not use this fact. Instead, we focus on objects that are insensitive to these rescalings.

The simplest possible quantities built from left and right eigenvectors that are
invariant under their rescalings are the following scalar products introduced by Chalker
and Mehlig [25, 77]:

Oij = 〈Li|Lj〉 〈Rj |Ri〉 . (1.5)

Here by 〈Rj | we mean the Hermitian conjugate of the right eigenvector |Rj〉, which is
now a row vector. Similarly, |Li〉 = (〈Li|)† is a column vector. These scalar products
can be collected into a matrix, which we refer to as the matrix of overlaps or the overlap
matrix. The resolution of the identity (1.4) combined with the biorthogonality (1.3) put
constrains on the elements of the overlap matrix - the sum rules

N∑
j=1

Oij = 1. (1.6)

The matrix O is Hermitian by construction, but its spectral properties are beyond our
interest. Instead, we pay attention to the elements of this this matrix.

A particular class of non-Hermitian matrices, called normal matrices is worth dis-
tinguishing. Such matrices commute with their Hermitian conjugate, XX† = X†X, and
can always be diagonalized. Moreover, the transformation to the eigenbasis is unitary,
therefore the eigenvectors are orthogonal, 〈Ri|Rj〉 = δij . Left and right eigenvectors
are associated by 〈Li| = (|Ri〉)†. As a consequence, the overlap matrix is an identity
matrix Oij = δij , as it is for Hermitian matrices. Normal matrices can be therefore seen
as objects in which non-Hermiticity affects only eigenvalues, while keeping eigenvectors
still orthogonal.

1.2 Why eigenvectors?

After this a bit dry and succinct, but necessary mathematical introduction, it is
time to explain why eigenvectors of non-Hermitian matrices are interesting at all.

Let us imagine a stock market in which prices of stocks evolve in time. Their evo-
lution is not independent and one of the measures describing their interdependence is
their correlation. Each pair of stocks has its own correlation, a number between -1 and
1, which says to what extent they coevolve. These numbers are stored in the correlation
matrix. The numbers of stocks priced in decent stock markets often exceed thousands,
therefore, in order to understand their dynamics, one needs to reduce the number of
parameters, while losing as little information as possible. For correlation matrices this
is obtained by diagonalizing the correlation matrix, which decomposes the system into
principal components. The magnitude of the eigenvalue tells how important that com-
ponent is, while the corresponding eigenvector tells how each stock participates in the
principal. When this procedure is applied to stock markets, it naturally decomposes
the market into sectors (see Fig 1.1). While the first principal component describes the
overall evolution of the market, and each stock participates approximately equally, the
next principal components are dominated by different types of stocks like banks, the
oil industry, healthcare, and so on.

This type of analysis allows one to find correlations between stock prices at the
same moment of time. From the investor’s perspective it is more desired to find corre-
lations between different moments of time and use this knowledge to make investment
decisions. Such time-lagged correlations are no longer symmetric - prices of stocks in



11

Figure 1.1: Principal component analysis of 30-min returns of 1000 US stocks for the 2-year
period 1994–1995. The dashed line on the left represents random matrix model corresponding
to the absence of any correlations. Eigenvectors associated with the outlying eigenvalues are
strongly localized at stocks belonging to different market sectors. Analysis performed in [91],
where this figure is also taken from.

the banking sector influence prices in the healthcare sector much more than vice versa.
This naturally leads to asymmetric correlation matrices [75], but the methodology
with decomposition into eigenvalues and eigenvectors remains the same [14, 86]. Again,
eigenvectors encode participation of stocks in the principal components.

As another example, let us consider a random walk on a directed graph. For each
node a walker moves with the same probability into any possible directions given by
outgoing links from that node. If there is no outgoing link, one connects that node
with all others, allowing the walker to go anywhere with the same probability. Further,
regardless of the node the walker resides in, one also allows the walker to teleport to any
possible node with a small probability. Probabilities of jumps from one node to another
are stored in the transition matrix. The right eigenvector of this matrix to the eigenvalue
equal to 1 encodes the stationary probability distribution of a random walker. Such a
construction was used to develop an internet search engine, hence the name Google
matrix. Websites that have larger probability to be reached by a walker are considered
more relevant and appear first in the list of search results. Besides the Page Rank
algorithm described here, eigenvectors play an essential role in many other algorithms
in computer science, including spectral clustering [107, 99], community detection [85,
72] and spectral partitioning [94].

Many algorithms rely on the diagonalization of non-Hermitian matrices and precise
numerical calculations of eigenvalues are important. In this context, eigenvalues of non-
normal matrices are less stable and require more effort to maintain required precision
because of the non-orthogonality of their eigenvectors. This phenomenon is illustrated
by the following mathematical model.

Suppose that we want to numerically calculate eigenvalues of a matrix X, which
is stored in memory with finite precision or its elements are determined with some
uncertainty. Instead, we deal with slightly perturbed matrix X ′ = X + εP , where εP
represents the deviation of our matrix from the true one. We can numerically compute
only the eigenvalues of X ′, so one needs to know how close they are to the eigenvalues
of X. If the deviation P is small, one can resort to the perturbation theory, which in
the first order yields

∆λi = ε 〈Li|P |Ri〉 . (1.7)
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The Cauchy-Schwartz inequality provides the upper bound

〈Li|P |Ri〉 ¬ ||P ||F
√
〈Li|Li〉 〈Ri|Ri〉. (1.8)

Here ||P ||2F = TrPP † is the Frobenius norm. The inequality is saturated if the pertur-
bation is tuned to the eigenspace of that particular eigenvalue, which is of the form
P = |Ri〉 〈Li|. For normal matrices, this bound reduces to the norm of the perturbation,
but non-orthogonal eigenvectors enhance the eigenvalue’s sensitivity against perturba-
tions. The quantity κi =

√
Oii is known in the numerical analysis community as the

eigenvalue condition number [112]. In the early era of numerical computations it played
an important role by telling how much the non-normal nature of the matrix enhances
the uncertainty from finite precision.

As another example where the non-orthogonality of eigenvectors plays an important
role, let us consider a dynamical system with N components evolving according to the
system of nonlinear equations ẋi = fi(x). Close to a fixed point x∗, defined as fi(x∗) = 0
for all i, the dynamics can be linearized

dyi
dt

=
N∑
j=1

Jikyk, (1.9)

where yi = xi−x∗i and Jik = ∂fi
∂xk

∣∣∣
x∗

is the Jacobian matrix at the fixed point. To quanti-
tatively describe whether and how the system approaches its fixed point, it is convenient
to consider the squared Euclidean distance from it, ||y(t)||2 = 〈y(0)| eJ†teJt |y(0)〉. Here
|y(0)〉 is the initial condition and we used the solution of the linear system in the form
of a matrix exponential.

The above form is general and exact, but if the Jacobian can be diagonalized,
J =

∑N
i=1 |Ri〉λi 〈Li|, we gain a new interpretation, since we can now write

||y(t)||2 =
N∑

j,k=1

et(λ̄i+λj) 〈y(0)|Li〉 〈Ri|Rj〉 〈Lj |y(0)〉 . (1.10)

With this decomposition into eigenmodes, it is clearly visible that the fixed point is
stable if real parts of all eigenvalues are smaller than 0, otherwise the system moves
away from the fixed point. This characterizes the asymptotic behavior of the system,
but the early-time dynamics is more complicated. If the Jacobian matrix is normal,

||y(t)||2 =
N∑
j=1

e2tReλi | 〈Rj |y(0)〉 |2, (1.11)

the dynamics separate into eigenspaces and each eigenspace contributes independently.
Eigenmodes decouple, and for stable systems the squared norm decays monotonically.
In systems driven by non-normal matrices all eigenmodes are coupled with each other
through the scalar product of eigenvectors and their overlap with the initial conditions.
One therefore expects effects similar to interference. Indeed, the behavior of the squared
norm can be nonmonotonic even for stable systems.

As an illustration, consider two 2× 2 matrices representing Jacobians

J1 =

(
−1 10
0 −2

)
, J2 =

(
−1 1
0 −2

)
. (1.12)

They have the same eigenvalues, but differ by their eigenvectors. The dynamics of the
squared norm, presented in Fig. 1.2, are completely different. In the second case, the
system initially drifts away from the fixed point, but after some time it eventually
approaches it, since the fixed point is stable. When the system is observed in a short
time interval, these transient dynamics may mislead the observer to conclude instability.
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Figure 1.2: Evolution of the squared norm in the system (1.9) driven by two matrices with the
same eigenvalues but different eigenvectors (1.12). The initial condition was chosen |y(0)〉 =
( 12 ,

√
3
2 )T . Eigenvectors of the matrix J1 are more non-orthogonal.

1.3 Randomness in matrix elements

Each matrix is different, with its own properties. It is impossible to analyze all ma-
trices. In many cases where the matrix represents interactions in the physical system,
such as couplings between differential equations governing the dynamics or a Hamil-
tonian of a quantum system, one cannot even retrieve the exact form of that matrix.
Since the properties of that specific system are impossible to calculate, one reverts the
problem and asks: what is a ‘typical’ system, what properties does it have and whether
the predictions from the ‘typical’ system can be verified in the system that one started
with.

This line of reasoning led Eugene Wigner to introduce random matrices to physics.
In the early 1950’s there was a lot of data from nuclear scattering that unraveled
the structure of energy levels in heavy nuclei, but constructed theories were correctly
predicting only low-energy excitations, failing at more energetic collisions. Knowing
that attempting to construct a Hamiltonian that will recover the spectrum is fruit-
less, Wigner proposed to treat it as a matrix filled with random numbers. The main
constraint put on that matrix is its symmetry - the matrix must be symmetric, Hermi-
tian or skew-symmetric to represent the physical Hamiltonian. Such a random object
definitely cannot predict energies of excited states, so Wigner proposed to look at the
statistics of the energy gap between consecutive levels and compare with the results
obtained from a random matrix.

He started from the simplest example – a 2 × 2 random matrix with Gaussian
entries – and found the spacing distribution p(s) = πs

2 e
−πs2/4, now called the Wigner

surmise. If the data is normalized, that is mean and variance are equal to 1, there is
no place for adjusting any parameters. When applied to empirical data from heavy
nuclei, it shows remarkable agreement despite such a simplistic approach. This sparked
heavy interest in applications of random matrix theory to other domain of physics. The
Wigner surmise is used in quantum systems as a first check to see whether a system
is integrable or chaotic. According to the Bohigas-Giannoni-Schmit conjecture [15],
quantum systems, the classical counterpart of which is integrable, exhibit a Poissonian
spacing distribution, while the Wigner surmise applies to systems with chaotic classical
dynamics. Random matrix theory also found applications in quantum chromodynamics
where it describes low-lying eigenvalues of the Dirac operator [3].
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The Wigner surmise has also been found beyond physics. In number theory it de-
scribes spacings between large zeros on the critical line of the Riemann zeta func-
tion [87]. For this reason it was even speculated that there exists a Hamiltonian, the
spectrum of which coincides with zeros of the Riemann zeta (Hilbert-Polya conjecture)
and its Hermiticity will prove the Hilbert conjecture. Recently, such a Hamiltonian
was constructed [11], but it is not Hermitian, so the conjecture still remains unproven.
Further remarkable applications include the bus system in the Mexican city of Cuer-
navaca [68], where no schedule regulates the transportation system. Rather, bus drivers
themselves decide when to start a route and how fast to drive in order to maximize
their income. The statistics of time intervals between consecutive buses fit well to the
Wigner surmise. Similar behavior was observed also in the subway system in New York
City [61].

It is intriguing why the Wigner surmise obtained from a simple 2× 2 matrix model
can appear in so many places. There are two phenomena observed in random matrix
theory explaining its remarkable success. One is fast convergence. In other words, re-
sults calculated for small matrices do not differ much from formulas obtained for large
matrices. With a great analytical effort, the Wigner surmise was generalized to any
matrix size, and the limiting case for infinitely large matrices involves solving nonlin-
ear differential equations in the Painlevé hierarchy [36, 65], but, when plotted, it does
not differ significantly from the Wigner surmise [47]. Calculating the distribution of the
eigenvalues of finite-size random matrices is another demanding task, which in the limit
of their large size can be performed using Feynman diagrams and 1/N expansion. This
approach is often simpler to use, and results take a much simpler form, which never-
theless stays in a decent agreement with the exact finite N formulas, even for the size
N = 10. The second phenomenon is universality. In simple words, it is not essential
to consider matrix elements as Gaussian. Matrices with independent and identically
distributed entries with finite variance, in the large N limit give the same spectral
density as Gaussian matrices [102]. This phenomenon is known as macroscopic univer-
sality. Also, the behavior of eigenvalues at the scale of their typical separation is not
very sensitive to the type of randomness, but more to the symmetry of matrices. This
microscopic universality is responsible for ubiquity of the Wigner surmise. Universality
explains why random matrices can describe certain properties of so many systems in
nature, while fast convergence justifies the use of simpler asymptotic formulas, making
random matrices handy to use.

There is another reason for introducing randomness – it is everywhere. Information
is often corrupted with noise. Measurements are imperfect, and randomness models
this imperfection. In interacting systems there are no two identical agents, and the
populational variability is modeled by introducing randomness on top of certain deter-
ministic structure. Random matrices are therefore not only null hypotheses or typical
representants of an abstract class, but also important ingredient of reality.

1.4 Previous work on eigenvectors of non-Hermitian ran-
dom matrices

Ten years after Wigner introduced random Hermitian matrices to physics, in 1965
Jean Ginibre studied random non-Hermitian Gaussian matrices [48]. He focused on their
spectral properties and found the joint distribution of eigenvalues for real, complex and
quaternionic random matrices. Since then, eigenvalues of random matrices have been
intensively studied. There was also an interest in eigenvectors, mostly concentrated in
their localization properties [42, 80] and relations to quantum chaos [74, 93].

In random matrix theory, the non-orthogonality was somehow overlooked until 1998,
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when Chalker and Mehlig [25, 77] introduced the overlap matrix (1.5). It is such a
complicated object, that even for the simplest ensemble studied by Ginibre, it was
difficult to calculate its statistics beyond matrices of size N = 2. Instead, Chalker and
Mehlig introduced correlation functions related to the overlap matrix:

Õ1(z) =

〈
1
N

N∑
i=1

Oiiδ
(2)(z − λi)

〉
, O2(z1, z2) =

〈
1
N

N∑
i,j=1
i 6=j

Oijδ
(2)(z1 − λi)δ(2)(z2 − λj)

〉
.

(1.13)
Here and throughout the thesis 〈...〉 denotes the average over the randomness with
respect to the proper probability distribution function. Chalker and Mehlig were able
to calculate Õ1(z) and O2(0, z) for the Ginibre ensemble for a finite size of the matrix,
expressing the result in terms of a determinant of the band matrix. They also developed
a way to calculate their asymptotics. It turns out that in order to obtain finite result in
the large N limit, the one-point function must be rescaled to O1(z) = 1

N Õ1(z). Using
Feynman diagrams, they also found the two-point function in the large N limit.

Around that time there was a quest to develop a technique for calculating the spectra
of non-Hermitian random matrices. Such a task was completed [33, 63], and the resulting
quaternionic formalism produces two outputs, one of them yielding the desired spectral
density, the other more mysterious. Soon, it was realized that the additional piece of
information that naturally emerges from the mathematical structure was exactly the
one-point eigenvector correlation function [62].

Eigenvector non-orthogonality plays an important role in open quantum systems,
in particular in the scattering in open chaotic cavities [37]. It also appears in ran-
dom lasing, where the Petermann factor [90] modifies quantum limitations on the laser
linewidth. These problems triggered research on eigenvectors in the specific model of
the quantum scattering ensemble, resulting in the calculation of the one- and two-point
functions [41, 78, 88, 97] and the full distribution in the case of a single channel cou-
pling [88]. Furthermore, non-orthogonal eigenvectors were linked to the resonance width
shifts in open quantum systems [43]. This fact was soon confirmed experimentally [53].

In late 2000’s and early 2010’s, transient amplification in systems driven by non-
normal matrices was proposed as a possible mechanism of amplification of weak signals
in balanced neural networks [58, 59, 81]. This topic created a wave of interest in random
matrices and aspects of their non-normality in the neuroscience community.

During my undergraduate studies I was working on the problem of diffusion in
non-Hermitian matrices. In such a process, matrix elements undergo Brownian motion,
but since eigenvalues are complicated functions of matrix elements, their dynamics are
highly nontrivial. In diffusing Hermitian matrices it was known since the early days
of random matrix theory that the main force driving the eigenvalues was their mutual
repulsion [30]. There was no such description in the case of non-Hermitian matrices and
the Kraków group was working on the dynamics of the global density of eigenvalues. It
turned out that the evolution of the spectral density requires also knowledge about the
eigenvector correlation function. More specifically, it evolves according to the continuity
equation

∂tρ(z) = ∂zz̄O1(z), (1.14)

while the evolution of the eigenvector correlation function is not influenced by the eigen-
value density [20, 21]. Based on this result, it was speculated that it is the eigenvectors
that are primary objects in this process.
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1.5 What is this thesis about?

It was the lack of understanding of the mysterious correlation function playing a
crucial role in diffusing matrices and scientific curiosity that drove me to enter this
unexplored area and pursue the problems of non-orthogonal eigenvectors in random
matrices. There are two main lines of research presented in this thesis - theoretical
and applicational. The first approach aims at a better understanding of the overlap
matrix and the development of new analytical tools that allow for calculating correlation
functions. Given the scarcity of analytical results on this subject, even the asymptotic
results that can be obtained from Feynman diagrams are of great value. The developed
formalism is then applied to matrix models borrowed from theoretical neuroscience and
machine learning.

The realm of random matrices is broad, and one can distinguish different types
of them, depending on the criteria used. Random matrices can be dense, with almost
all elements non-zero, or sparse, where only a small fraction of elements is non-zero.
Matrix elements can be independent or dependent, but with various symmetries of
their joint probability density. Each class of random matrices requires its own tools
for their analysis. Here and throughout the thesis we focus on a class of unitarily
invariant ensembles. Such matrices are dense, their elements are not independent, but
the probability distribution function is invariant under the adjoint action of the unitary
group, that is P (X) = P (UXU †) for U ∈ U(N). Such transformations are natural
operations on matrices, making this class convenient for spectral analysis. We focus on
complex random matrices, but the results obtained in the large N limit are the same if
we also take real or quaternionic matrices. This fact is used in chapters 6 and 7 where
the developed techniques are applied to real random matrices.

In chapters 2 and 3 we fill the gaps in calculations of one- and two-point eigenvector
correlation functions. While the general procedure for the calculation of the one-point
function is known, it leads to equations which often need to be solved numerically. We
focus on the subclass of random matrices in which the enhanced unitary symmetry leads
to remarkable simplifications, making these random matrices handy to use. The for-
malism of Feynman diagrams which was used for calculation of the two-point function
in the Ginibre ensemble is extended to the general class of unitarily invariant random
matrices. In such a case the summation of Feynman diagrams can be performed, allow-
ing one to write a set of matrix equations for the two-point functions. These equations
can be solved for the class of matrices with enhanced unitary symmetry.

We discussed Hermitian matrices with orthogonal eigenvectors and non-Hermitian
random matrices with eigenvectors so strongly non-orthogonal that one needs addi-
tional rescaling in the definition of the one-point function O1(z). Is there anything in
between? In chapter 4 we study an ensemble which allows for a smooth interpolation
between a symmetric Gaussian matrix and a matrix with a complete lack of symmetry.
Previously, in such an ensemble the regime of weak non-Hermiticity was found, where
eigenvalues gain a tiny imaginary part. We find that in this regime eigenvectors be-
come non-orthogonal, but only weakly, therefore the associated regime is called weak
non-normality.

Universal microscopic correlations are at the heart of random matrix theory. How-
ever, calculations of their explicit forms are often technically challenging. Borodin and
Olshanski offered a different perspective of the problem, which allows for fast calcula-
tions of microscopic limits. In chapter 5 we demonstrate this method and extend it for
a broader class of ensembles, called biorthogonal ensembles. The biorthogonal structure
there is strikingly similar to the biorthogonal structure of eigenvectors of non-Hermitian
matrices. We demonstrate on a concrete example that the functions appearing there
can be interpreted as left and right eigenfunctions of a non-self-adjoint differential op-
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erator. This allows us to use Borodin and Olshanski’s tools to obtain the microscopic
universality in an effortless way.

In the last decade we have witnessed a surge of interest in neural networks, both
biological and artificial. Recent progress in experimental techniques enables us to ob-
serve brain activity with unprecedented resolution, and the activity of single neurons
can now be tracked. Due to the large number of neuronal cells in brains, data acqui-
sition is still a challenging technical problem. Numerical simulations of their dynamics
are still an important field of study, not only because this is the least invasive tech-
nique. Random matrices have also appeared in theoretical neuroscience as important
ingredients of neural network models, which at the beginning were considered purely
random, but with time acquired an increasingly deterministic structure. In chapter 6
we study a model which was introduced in 2006, but all following studies focused on the
spectral properties of the associated random matrix and its influence on the dynamics.
The work [A6] on which this chapter is based was the first to observe a particularly
strong non-orthogonality of eigenvectors in such a model. The source of this effect is
a combination of a deterministic structure, Dale’s principle and excitatory-inhibitory
balance.

Artificial neural networks suffered from many problems preventing them from ef-
fective learning. Major steps overcoming these difficulties were linked with developing
new types of architecture. The work [A7], which heavily uses tools developed in [A1], is
described in chapter 7 and provides a quantitative answer why and how residual neural
networks overcame the problem of vanishing gradients. Remarkably, we find macro-
scopic universality of the spectral density in the associated random matrix model.

The aim of this thesis is to provide the Reader with a tentative introduction to
the topic by briefly setting papers [A1-A7] in the context of previous developments,
presenting the motivation for tackling these specific problems and briefly exposing the
main results. A detailed derivation of the main results, more side results and appli-
cations of general formulas can be found in these papers, which are attached to the
thesis.

1.6 Overview of recent progress in studies of eigenvectors

During the last four years we have witnessed a significant growth of interest in
eigenvectors in the random matrix community. More research groups started tackling
these problems. Renowned scientists who already have achievements in this field took
another look at this topic, but also young researchers entered the field. The aim of this
section is to give a brief overview on the progress that was made in parallel to my own
research.

The problem of dynamics of eigenvalues in the process of the non-Hermitian dif-
fusion was solved by Grela and Warchoł [52], and, independently, by Bourgade and
Dubach [19]. The system of stochastic differential equations describes the evolution of
eigenvalues at the microscopic level and indeed, the overlaps between eigenvectors are
an essential ingredient in that process.

Knowledge about the one-point function has been growing. The expression obtained
by Chalker and Mehlig for finite N as a determinant of a band matrix has been brought
into a compact form that allowed for studying its edge asymptotics [109]. Later O1(z)
was also found for products of Ginibre matrices of a small size [24]. Recently, Akemann
et al. [6] considered slightly more general correlation functions than (1.13), with more
than one eigenvalue conditioned by the Dirac delta, and found that such objects form
determinantal point processes. Crawford and Rosenthal considered correlation functions
that include overlaps of more than two different eigenvectors and found analytic results
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in the large N limit for the Ginibre ensemble [26].
Bourgade and Dubach [19] have considered diagonal elements of the overlap ma-

trix for the eigenvalues conditioned in the bulk of the spectrum (far from the edge).
They found the full distribution of Oii in the large N limit for the complex Ginibre
ensemble, which turns out to be the same as of 1

γ2
, where γ2 is a random variable from

the gamma distribution, pγk(x) ∼ xk−1e−x. The distribution of Oii is heavy-tailed with
only its first moment finite. Dubach further applied his technique to other complex [27]
and quaternion [28] non-Hermitian matrix ensembles . Fyodorov [39], using the super-
symmetry technique, found the full distribution of Oii for finite N in complex Ginibre
and for real eigenvalues in the real Ginibre ensemble. His approach allows also to obtain
the asymptotics at the edge of the spectrum. In the real Ginibre ensemble, Oii for real
eigenvalues in the bulk is given by the inverse γ1 distribution in the large N limit.
Eigenvector overlaps of eigenvalues that come in complex conjugate pairs even in real
Ginibre remain an open problem at the stage of writing the thesis.



Chapter 2

One-point correlation functions.
Based on [A1,A2].

2.1 Random Hermitian matrices

The joint probability density function of elements of Hermitian matrices that belong
to the class of unitarily invariant ensembles can be written in the form

P (H)dH = ZN exp (−NTrV (H)) dH, (2.1)

where dH denotes the flat Lebesgue measure over all independent matrix elements and
ZN denotes the normalization constant. Trace in the exponent ensures invariance under
the transformation U → UHU †. Also, the integration measure transforms as dH →
dH det(UU †). Hermitian matrices can be brought to the diagonal form by unitary
transformations, and it turns out that also the Jacobian of the change of variables
to the diagonal basis H = UΛU † factorizes into the eigenvalues and the eigenvector
variables. For that reason eigenvalues capture relevant information of the ensemble,
while the eigenvectors are uniformly distributed on the U(N) group.

The primary object of interest in these ensembles is the average density of eigen-
values

ρ(x) =

〈
1
N

N∑
i=1

δ(x− λi)
〉
. (2.2)

The Dirac delta is impractical in direct calculations, so instead one resorts to its rep-
resentations. Particularly convenient is the Sochocki-Plemelj formula

δ(x) = − 1
π

lim
ε→0

Im
1

x+ iε
. (2.3)

To find the eigenvalue density, one introduces the Green’s function – a traced resolvent
of a matrix

G(z) =
〈

1
N

Tr
1

z1−H

〉
. (2.4)

When the Green’s function is considered as a function on the complex plane, its ex-
pansion around z =∞ generates all spectral moments

G(z) =
∞∑
k=0

1
zk+1

〈
1
N

TrHk
〉

=
∞∑
k=0

1
zk+1

∫
R
ρ(λ)λkdλ. (2.5)

Its behavior in the vicinity of the real line, where eigenvalues reside, stores information
about their mean density, which is recovered by the virtue of the Sochocki-Plemelj
formula

ρ(x) = − 1
π

lim
ε→0

ImG(x+ iε). (2.6)
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The Green’s function is more handy to evaluate. Due to the U(N) invariance, the
averaged resolvent is proportional to the identity matrix, while for z close to infinity it
can be expanded into a power series, yielding the following:

G1 =
1

z
+
〈
1

z
H
1

z

〉
+
〈
1

z
H
1

z
H
1

z

〉
+ . . . . (2.7)

The averages are then performed with the use of tools from statistical field theory –
Feynman diagrams. The potential V (H) in (2.1) is split into the Gaussian part yielding
the propagator and the residual part bringing vertices into the calculations. One distin-
guishes the class of one-line irreducible (1LI) diagrams, which are the building blocks
of this diagrammatic calculus. Each diagram can be drawn as a composition of 1LI di-
agrams glued together by terms coming from 1/z. This gives the first Schwinger-Dyson
equation

G(z) =
1
z

+
1
z

Σ(z)
1
z

+
1
z

Σ(z)
1
z

Σ(z)
1
z

+ . . . =
1

z − Σ(z)
, (2.8)

where Σ(z) denotes sum of all 1LI diagrams.
For large matrix size, the dominant contribution comes from planar diagrams, sim-

plifying their combinatorics. One defines cumulants ck =
〈

1
NTrXk

〉
c

as the sum of all
connected diagrams appearing in calculation of k-th moment. Each 1LI diagram can be
then decomposed as a certain cumulant ck encompassing diagrams that are not neces-
sarily 1LI. On the other hand, such diagrams contribute to the Green’s function, and
one can write the second Schwinger-Dyson equation

Σ(z) = c1 + c2G(z) + c3G(z)2 + . . . = R(G(z)), (2.9)

where R(z) =
∑N
k=1 ckz

k−1 is the cumulant-generating function.
The form of the cumulant-generating function depends on the potential, but its

knowledge is sufficient to solve the problem. In short, the non-perturbative object, that
is the Dirac delta, is regularized via the resolvent, which is then evaluated using the
perturbative method of Feynman diagrams. The spectral density is then recovered from
the behavior of the Green’s function in close proximity to the real line.

Here the complex argument z plays the role of a regularizer, the imaginary part of
which moves us away from the problematic real axis, where the resolvent is not defined.
When z is promoted to a full-fledged complex variable, it uncovers additional features
of this formalism that stay in direct analogy to classical probability.

Consider the problem of addition of two random matrices A and B. What is the
spectrum of A + B? In general, it depends not only on the eigenvalues, but also on
the mutual orientations of the eigenvectors of A and B. If these matrices are random,
generated from the unitarily invariant distribution, their eigenvectors are in a random
position. This independent orientation of eigenbases is the noncommutative counterpart
of classical independence in random matrix theory. In such a case, similarly to classical
probability, cumulants are additive. In other words, their cumulant-generating functions
are additive:

RA+B(z) = RA(z) +RB(z). (2.10)

The function R plays the same role as the logarithm of the characteristic function
in classical probability and is also known as the R-transform. The relation between
the R-transform and the Green’s function is more complicated than their classical
counterparts, because they satisfy functional equations

R(z) = B(z)− 1
z
, R(G(z)) = z − 1

G(z)
, (2.11)
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where B(z) is the functional inverse of the Green’s function, B(G(z)) = z. The mathe-
matical theory describing the probability calculus on large random matrices was discov-
ered by Voiculescu and is now known as free probability [105, 106], since the notion of
independence is replaced by freeness, which corresponds to random orientation of eigen-
bases. Interestingly, for six years free probability existed as a separate mathematical
theory, before the connection to random matrices was discovered [104].

Similarly to addition, one may consider the problem of multiplication of random
matrices. Such a problem is not always well posed, because the product of two Hermitian
matrices is not Hermitian, (AB)† = BA 6= AB. However, if one of them (let us say A) is
positive definite, its square root A1/2 is Hermitian. The spectrum of AB is the same as
the spectrum of A1/2BA1/2, which is now Hermitian and therefore the spectrum of AB
is real. The object that is multiplicative under the multiplication of random matrices is
called the S-transform and it is related to the R-transform by the following functional
relations

R(z)S(zR(z)) = 1, S(z)R(zS(z) = 1. (2.12)

2.2 Non-Hermitian random matrices

When the Hermiticity condition is relaxed, there are many more admissible proba-
bility distribution functions, which can now be written in the generic form

P (X,X†)dXdX† = ZN exp
(
−NTrV (X,X†)

)
dXdX†. (2.13)

The flat measure contains all independent elements dXdX† =
∏N
j,k=1 dxjkdyjk. Again,

one wants to find the density of eigenvalues, but now eigenvalues can be complex, and
one deals with a 2-dimensional Dirac delta. The Sochocki-Plemelj formula ceases to
work, and another representation is needed. It is convenient to use

δ(2)(z) =
1
π

lim
ε→0

ε2

(|z|2 + ε2)2 =
1
π

lim
ε→0

∂z̄
z̄

|z|2 + ε2
. (2.14)

The second differentiation reduces the power in the denominator. In order to apply this
formula, one is tempted to use〈

1
N

Tr
z̄1−X†

(z1−X)(z̄1−X†) + ε21

〉
, (2.15)

but this form contains quadratic terms in the denominator, which are impractical in
diagrammatic calculations. A remedy for this problem is to consider (2.15) as a part of a
bigger object. In order to solve the spectral problem of N ×N matrices, one introduces
the generalized Green’s function, which is a 2× 2 matrix [33, 63]

G =

(
G11 G11̄
G1̄1 G1̄1̄

)
=

〈
bTr

(
z1−X iw̄1
iw1 z̄1−X†

)−1〉
. (2.16)

Here bTr is the block trace operation which acts on a space of 2N × 2N matrices and
yields 2× 2 matrices:

bTr

(
A B
C D

)
=

(
TrA TrB
TrC TrD

)
. (2.17)

The Schur complement formula shows that G11 is precisely equal to (2.15). Moreover,
the generalized Green’s function can be rewritten as follows:

G =
〈

1
N

bTr(Q⊗ 1N −X )−1
〉
, (2.18)
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where Q is the 2 × 2 matrix representation of a quaternion, while X is a duplicated
matrix

Q =

(
z iw̄
iw z̄

)
, X =

(
X 0
0 X†

)
. (2.19)

The form (2.18) resembles the standard resolvent, but now it is a 2 × 2 matrix. Sym-
metries of this matrix are the same as of the quaternion Q, therefore we refer to it as
the quaternionic Green’s function [64].

The tools used for Hermitian matrices can be easily generalized with one complica-
tion, namely when performing averages with respect to the ensemble, due to the block
structure, we need to deal with two types of indices - one set enumerates blocks, and
the other enumerates matrix element within blocks, running from 1 to N . We use the
convention where the first set of indices takes values in {1, 1̄} instead of {1, 2} because
of the structure of the matrix X . Its first block is always associated with X, while the
second block with its conjugate, hence 1̄.

The methodology behind calculations remains the same. One starts with the aver-
aged quaternionic resolvent, which, again, has trivial structure in matrix elements due
to the unitary invariance. Expanding it as a geometric series, one obtains

G(Q)⊗ 1 = Q−1 +
〈
Q−1XQ−1

〉
+
〈
Q−1XQ−1XQ−1

〉
+ . . . (2.20)

where we denoted Q = Q⊗1. Now the order of terms in the expansion matters, because
QX 6= XQ.

Because of non-normality, the structure of cumulants is much richer – there are
several different cumulants of the same order, for example

c
(4)
111̄1̄ =

〈
1
N

TrXXX†X†
〉
c
6=
〈

1
N

TrXX†XX†
〉
c

= c
(4)
11̄11̄. (2.21)

Thanks to noncommutativity of X and Q, all cumulant are stored in the R-transform,
which is now a quaternion. Its expansion reads [21] [A2]

R(Q)⊗ 1 = 〈X 〉c + 〈XQX〉c + 〈XQXQX〉c + . . . (2.22)

or, more explicitly, component-wise

R(Q)αβ = c(1)
α δαβ + c

(2)
αβQαβ +

∑
γ

c
(3)
αγβQαγQγβ +

∑
γ,ε

c
(4)
αγεβQαγQγεQεβ + . . . . (2.23)

Again the quaternionic R-transform is additive when two independent random matrices
are added.

Schwinger-Dyson equations are generalized to the quaternionic setting and read

G(Q) = [Q− Σ(Q)]−1, (2.24)

Σ(Q) = R(G(Q)). (2.25)

The knowledge of all cumulants determines the form of the R-transform and therefore
allows one to fully solve the non-Hermitian random matrix model.

2.3 Eigenvectors

After solving the model, at the end of the day, one obtains the quaternionic Green’s
function, which in turn yields the spectral density via ρ(z, z̄) = lim|w|→0

1
π∂z̄G11. The

Green’s function as a 2× 2 matrix has 4 entries, but its quaternionic nature constrains
two entries G1̄1̄ = G11 and G11̄ = −G 1̄1. This means that besides the spectral density
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one obtains an additional piece of information for free. It was observed that the prod-
uct of off-diagonal elements of the quaternionic Green’s function yields the one-point
eigenvector correlation function [62]. An alternative derivations was presented in [A1].

The definition of the correlation function as presented in (1.13) does not have a clear
interpretation. From the discussion in Section 1.2 it is now clear that Oii is the square
of the eigenvalue condition number, κ2(λi). The correlation function by itself is not
very informative, as it is a density of eigenvalues, but each eigenvalue is weighted by the
associated overlap. Rather, the ratio O1(z)

ρ(z) carries information because it is a conditional

expectation of κ2(λi)/N , where the corresponding eigenvalue λi is conditioned to take
the value z. This simply follows from the sequence of equalities [A1]

E
(
κ2(λi)
N

∣∣∣∣∣λi = z

)
=
∫
Oii
N

ρ(Oii, λi = z)
ρ(λi = z)

=
1

Nρ(z)

∫
Oiiδ

(2)(z−λi)p(X)dX =
O1(z)
ρ(z)

.

(2.26)
Here ρ(Oii, λi = z) denotes the joint probability density of finding Oii and λi at Oii
and z, respectively. In the second inequality we used the fact that this density can be
obtained from the joint density of all matrix elements by integrating all variables except
for the two interesting ones. An additional factor of 1/N and the summation appear
when one symmetrizes this expression over eigenvalues, which directly leads to the last
equality.

This result, despite its simplicity, tells important fact about condition numbers of
eigenvalues of random matrices. The additional 1/N in the normalization of O1(z) was
introduced to obtain finite results in the large N limit. This means that condition
numbers of eigenvalues of random matrices grow like

√
N and Oii grows linearly with

their size.

2.4 Biunitarily invariant ensembles

In principle, the formalism presented above solves all non-Hermitian matrix models
with unitary symmetry, but due to its 2 × 2 matrix structure it leads to systems of
algebraic equations. Therefore, the number of analytically solved examples of matrix
models is rather small. There is, however, a certain class of non-Hermitian random
matrices, the treatment of which is effectively one-dimensional. The potential that
determines the probability density function is not a function of X and X† separately,
but of their product, V (XX†). Such ensembles admit enhanced symmetry, because
multiplication by two unitary matrices U, V from both sides,X → UXV †, does not alter
the probability density. Moreover, using transformations belonging to the symmetry
group, the matrix can be brought to the diagonal form with its singular values on
the diagonal. With this argument one expects all observables in this ensemble to be
determined solely by the singular values.

Due to the enhanced symmetry, eigenvalue density is rotationally symmetric, that
is ρ(z, z̄) = ρ(|z|). For that reason it is convenient to consider the radial cumulative
distribution function F (r) = 2π

∫ r
0 ρ(r)rdr, counting the fraction of the eigenvalues

within a disk of radius r. When analyzing the biunitarily invariant ensemble, Feinberg
and Zee [31, 32] not only found the relation between the density of eigenvalues and
singular values in terms of the Green’s function of XX†, but also discovered that the
spectrum of such random matrices is either a disk or an annulus, hence the name the
single ring theorem. It is characterized by internal and external radii

r2
ext =

∫
xρXX†(x)dx, r−2

int =
∫
x−1ρXX†(x)dx, (2.27)



24

R(z)

S(z)

S(z)R(zS(z)) = 1 R(z)S(zR(z)) = 1

A(z)
R
(

z
1+zA(z)

)
= A(z) (1 + zA(z))

R(z) = (zR(z) + 1)A
(
z2R(z) + z

)

K(z)
K(z) = (1 + z)S(z)

A(z)K(zA(z)) = 1 K(z)A(zK(z)) = 1

G
(
R+ 1

z

)
= z

R(G) + 1
G = z

G(z)
G(z) =

∫ ρ(λ)dλ
z−λ

ρ(x) = − 1
π limε→0 ImG(x+ iε)

ρXX†(x)

S(F (|z|)− 1) = 1
|z|2

F (|z|)
ρ(|z|) = 1

2π|z|F
′(|z|)

F (|z|) = 2π
∫ |z|
0
rρ(r)dr

ρX(|z|)

Figure 2.1: A diagrams presenting relations between transforms which appear in free probability
in the context of large biunitarily invariant random matrices. The bottom-left leg of the diagram
is the essence of the Haagerup-Larsen theorem. The cycle on the right-hand side presents
relations between the function A(z) representing cumulants in the expansion of X and the R-
transform generating cumulants in the expansion of XX†. We also used an auxiliary function
K(z), which is related to A(z) in the same way as S(z) is related to R(z).

where ρXX† is the density of squared singular values of X. If the latter integral is
infinite, rint = 0, which corresponds to the case of a disk. Later, this ensemble was
studied in the framework of free probability by Hageruup and Larsen [54], who found
a particularly simple mapping between the S-transform of squared singular values and
the radial cumulative distribution function in terms of a functional equation

SXX†(F (r)− 1) =
1
r2 , (2.28)

which is now known as the Haagerup-Larsen theorem.
The eigenvector correlation function is also directly linked to the distribution of

singular values. Having solved (2.28) for F (r) one immediately obtains the one point
function via [A1,A2]

O(r) =
F (r)(1− F (r))

πr2 . (2.29)

From the diagrammatic point of view, the effective reduction to one dimension
stems from the fact that the non-vanishing cumulants in this ensemble are of the form
αk =

〈
1
NTr(XX†)k

〉
c

= c
(2k)
11̄...11̄ = c

(2k)
1̄1...1̄1. Therefore, they can be stored in a single

scalar generating function A(z) =
∑∞
k=1 αkz

k−1. Thus, the quaternionic R-transform
takes the particularly simple form [A2]

R(Q) = A(−|w|2)

(
0 iw̄
iw 0

)
. (2.30)

A direct analysis of one-line irreducible Feynman diagrams contributing to the Green’s
function of XX† leads to the functional relation between the R-transform of XX† and
the generating function A(z) in terms of the Green’s function [A2]

R(G(z)) = zG(z)A(zG2(z)). (2.31)

One can further manipulate this relation to find further relations between all relevant
transforms [A2]. They are summarized in Fig. 2.1.

2.5 A brief summary

Based on the work [10], the relation (2.29) was derived for the first time in [A1].
The connection between the conditional expectation of the squared eigenvalue condition
number and the ratio between O1 and the density (2.26) was also established therein.
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The work [A2] provides an alternative derivation of the relation (2.29) based on the
diagrammatic approach. To this end the quaternionic R-transform for biunitarily in-
variant ensembles (2.30) and its relations with R ans S transforms for their squared
singular value density, are needed.



26



Chapter 3

Two-point eigenvector correlation
functions. Based on [A3].

3.1 Motivation

Let us return to the example of a dynamical system operating near a fixed point,
discussed in section 1.2. The time dependence of the squared norm is expressed in terms
of eigenvalues and corresponding left and right eigenvectors

||y(t)||2 =
N∑

j,k=1

et(λ̄i+λj) 〈y(0)|Li〉 〈Ri|Rj〉 〈Lj |y(0)〉 . (3.1)

It clearly depends also on the choice of the initial condition |y(0)〉. If the system is
perturbed in many different directions, it is reasonable to consider its dynamics averaged
over all possible directions. Since each direction is equiprobable, one may take N basis
vectors from the orthogonal canonical basis, e1 = (1, 0, . . .)T , . . ., eN = (0, . . . , 0, 1)T

and average over them. This results in

||y(t)||2 =
1
N

N∑
j,k=1

et(λ̄i+λj)Oji. (3.2)

These dynamics in turn depend on the choice of the matrix, therefore – in the spirit of
the thesis – we consider it random and average over the randomness. This leads to the
expression which can be written in a compact form

S(t) =
〈
||y(t)||2

〉
=
〈

1
N

TreX
†teXt

〉
. (3.3)

This is an instance of a more general problem, namely of evaluating averages of type〈
1
NTrf(X)g(X†)

〉
, where f, g are arbitrary functions. Its Hermitian counterpart, which

is known under the name linear statistics, has been intensively studied in random
matrix theory, mainly due to its applications. The non-normal version, however, has
not attracted attention so far. With the use of the identity f(λ) =

∫
C δ

(2)(z−λ)f(z)d2z
and interchanging the order of integration and summation, (3.3) can be rewritten as
follows:

S(t) =
∫
C
d2z1

∫
C
d2z2e

t(z1+z̄2)

〈
1
N

N∑
i,j=1

Oijδ
(2)(z1 − λi)δ(2)(z2 − λj)

〉
. (3.4)

On the right-hand side we recognize the object resembling (1.13). Indeed, by extracting
the singular part, it is naturally decomposed into one- and two-point functions

D(z1, z2) = O2(z1, z2) + Õ1(z1)δ(2)(z1 − z2). (3.5)
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While the eigenvector correlation functions appear naturally when one calculates
expectations of functions of matrices and their Hermitian conjugates, explicit calcula-
tions using the representation (3.4) are impossible. To make analytical progress, we use
Cauchy’s integral formula, which can be easily generalized to functions of matrices and
which then reads

f(X) =
1

2πi

∮
γ

f(z)
z1−X

dz. (3.6)

The contour γ encircles all eigenvalues counterclockwise. Inserting this into (3.3) and
interchanging the order of integrals, one obtains the following representation [A2,B5]

S(t) =
1

(2πi)2

∮
γ

∮
γ
dz1dz2e

t(z1+z̄2)
〈

1
N

Tr
1

z11−X
1

z̄21−X†
〉
. (3.7)

This reduces the problem to the calculation of another correlation function, which is a
traced product of resolvents that later needs to be integrated with exponentials.

3.2 Setup for two-point functions

In the same manner as the resolvent yields spectral density, the correlation function

h(z1, z̄2) =
〈

1
N

Tr
1

z11−X
1

z̄21−X†
〉

(3.8)

is directly related to the eigenvector correlation function due to another representation
of the two-dimensional Dirac delta

δ(2)(z) =
1
π
∂z̄

1
z
. (3.9)

In principle

D(z1, z2) =
1
π2∂z̄1∂z2h(z1, z̄2), (3.10)

but one needs to know h inside the spectrum, where resolvents are not defined, thus
this relation does not provide the correct formula. In order to perform calculations, one
needs to remove singularities at the location of eigenvalues by appropriately regularizing
the resolvent. A correct prescription is already provided by the second equality in (2.14),
which was later successfully used to evaluate eigenvalue density. Each resolvent that
appears in formulas needs to be replaced as follows

(z −X)−1 → (z̄ −X†)M(z, w)−1, (3.11)

with M(z, w) = (z − X)(z̄ − X†) + |w|2. Then the expectations with respect to the
randomness can be calculated, and finally the regularization is removed by taking the
limit |w| → 0. To this end we consider the following object [77][A3]

h(z1, w1, z2, w2) =
〈

1
N

Tr(z̄1 −X†)M(z1, w1)−1M(z2, w2)−1(z2 −X)
〉
, (3.12)

which will lead to the desired correlation function via [77]

D(z1, z2) = lim
|w1|,|w2|→0

1
π2∂z̄1∂z2h(z1, w1, z2, w2). (3.13)

In fact, the average over randomness is calculated using Feynman diagrams, which is
a perturbative technique. Such methods are insensitive to objects that are nonpertur-
bative like the Dirac delta, therefore the singular term in (3.5) will not be captured
within this formalism, and D(z1, z2) = O2(z1, z2).
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3.3 Linearization

After properly regularizing resolvents, we encounter the same problem as in calcu-
lations of one-point functions, namely we deal with the inverse of a matrix that is a
quadratic form of X and X†. To overcome this difficulty, we linearize the expression by
introducing twice bigger matrices. The most general object that can be built from two
resolvents is their Kronecker product [77]

H =
〈

(Q−X )−1 ⊗ (PT −X T )−1
〉
. (3.14)

Here Q = Q ⊗ 1 and P = P ⊗ 1, while Q,P and X are different quaternions and the
duplicated matrix

Q =

(
z1 iw̄1

iw1 z̄1

)
, P =

(
z2 iw̄2

iw2 z̄2

)
, X =

(
X 0
0 X†

)
. (3.15)

Transposition in (3.14) anticipates the final results, and this convention makes them
more consistent. H, a 4N2×4N2 matrix, is equipped with 8 indices enumerating blocks
of each term in a Kronecker product (Greek indices) and matrix elements within each
block (Latin indices). Explicitly,

Hαβ,ijµν,kl =
〈

(Q−X )−1
αβ,ij(P − X )−1

νµ,lk

〉
. (3.16)

Previously, when dealing with a single resolvent, there was a unique way to contract
Latin indices leading to the block trace. Now there are two different possibilities gen-
erating the following objects [A3]:

Kαβ
µν =

1
N

N∑
i,j=1

Hαβ,ijµν,ij , Lαβµν =
1
N2

N∑
i,j=1

Hαβ,iiµν,jj . (3.17)

These two objects are different due to another reason - the way how indices are con-
tracted determines which diagrams are planar, thus each of them requires separate
treatment.

The second contraction corresponds to the block trace withing each term in the
Kronecker product. Such correlation functions involving products of traces are also
relevant in random matrix theory. We, though, need an object that leads to the multi-
plication of resolvents. Therefore, we turn our attention to K, which is a 4× 4 matrix.
The simplest way to identify the correct entry that corresponds to h(z1, w1, z2, w2) is to
set w1 = 0 = w2, calculate the entries and check which one generates h(z1, z̄2), which is
devoid of regularization. It turns out that the desired component is K11

1̄1̄ , or, in standard
notation, K22.

3.4 Diagrammatics

In the large N limit the dominant contribution to K comes from ladder-type planar
diagrams. Two rails of the ladder are generated by two resolvents in (3.14) and all
vertices must be located between these rails. Diagrammatic equations now bear the
name of Bethe-Salpeter, but their structure is similar to Schwinger-Dyson equation for
one-point functions. K is expressed as a geometric series, which can be written as [A3]

K(Q,P ) = G(Q)⊗ G(P )T + [G(Q)⊗ G(P )T ]B(Q,P )K(Q,P ). (3.18)

Here G is the one-point Green’s function, while B is the counterpart of one-line irre-
ducible diagrams. Loosely speaking, B(Q,P ) is the sum of connected diagrams that
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G
+
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C(4) + . . .

Figure 3.1: Diagrammatic representations of the Bethe-Salpeter equations for the two-point
functions. (top) Relation (3.18) between K and irreducible diagrams B connecting two rails
of the ladder. (bottom) Sum of irreducible diagrams expressed in terms of cumulants and the
one-point Green’s function (3.19).

build rungs of the ladder. It is expressed in terms of cumulants and the Green’s func-
tions in the following way [A3]

Bαβ
µν (Q,P ) =

∞∑
k,l=1

∑
σ1,...,σk
ρ1,...,ρl

δασ1δβσkδµρlδνρ1c
(k+l)
σ1...σkρ1...ρl

Gσ1σ2(Q) . . .Gσk−1σk(Q)Gρ1ρ2(P ) . . .Gρl−1ρl(P ). (3.19)

This expansion is similar to the expansion of Σ(Q) for one-point functions, but now
certain Green’s function are replaced by the Green’s functions of a second quaternionic
argument, making the above form more complicated. The knowledge of one-point func-
tions, which can be determined beforehand, and all cumulants is sufficient to solve the
model by equations (3.18) and (3.19). First one needs to find the form of the B function
and then solve the algebraic equation for the 4× 4 matrix. It is a daunting task, so it
is worth looking at problems with a simplified structure.

3.5 Traced product of resolvents

Outside of the spectrum, the regularization in the resolvents can be removed, and
then h(z1, 0, z2, 0) = h(z1, z̄2). Setting w1 = 0 = w2 simplifies formulas significantly,
because then quaternions are diagonal, and (3.18) reduces to decoupled scalar equations
with the immediate solution [A3]

K11
1̄1̄ =

G(z1)Ḡ(z̄2)
1−G(z1)Ḡ(z̄2)B11

1̄1̄
, (3.20)

where G(z) =
〈

1
NTr(z −X)−1

〉
is the one-point Green’s function like in the Hermitian

case, but for non-Hermitian matrices it is not informative about the spectrum. Ḡ(z̄)
is its complex conjugate. The double series yielding the appropriate element of B also
simplifies and can be summed up. All cumulants appearing therein can be recovered
from the quaternionic R-transform. If we denote R̃11̄ = R11̄/Q11̄ (such division is
always possible and does not lead to rational expressions), then

B11
1̄1̄ = R̃11̄(diag(G(z1), Ḡ(z̄2)). (3.21)

3.6 Biunitarily invariant ensembles

For matrices with enhanced symmetry to U(N) × U(N) the expressions above
simplify even further. The traced product of resolvents takes the particularly simple
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form [A3]

h(z1, z̄2) =
1

z1z̄2 − r2
out

. (3.22)

This means that the expression
〈

1
NTrf(X)g(X†)

〉
depends only on the spectral radius

rout. The entire dependence of eigenvalues and eigenvectors for such a class of expres-
sions is reduced to a single parameter, showing the remarkable degree of universality
of transient dynamics.

Inside the spectrum, due to the simplified structure of cumulants, (3.19) can be
brought into a compact form, and it turns out that out of 16 elements of B, only 4 are
non-zero. This allows us to find a formula for the two-point function [A3]

O2(z1, z2) =
1
π
∂z̄1∂z2

z̄1(z1 − z2)O1(r1) + z2(z̄1 − z̄2)O1(r2)
|z1 − z2|2[F (r1)− F (r2)]

, (3.23)

where rj = |zj | and F is the radial cumulative distribution function. The two-point
function is not rotationally symmetric (except for O2(0, z)) because choosing one point
in the spectrum distinguishes a particular direction. Equation (3.23) can be considered
as the next generalization of the Haagerup-Larsen theorem to eigenvector correlation
functions.

3.7 Microscopic universality?

The two considered correlation functions are not independent. Sum rules (1.6) sat-
isfied by the overlap matrix impose the sum rule

∫
d2z2D(z1, z2) = ρ(z1), which in turn

implies

ρ(z1) = NO1(z1) +
∫
C
O2(z1, z2)d2z2. (3.24)

At first glance, this equation seems contradictory, because all functions – ρ,O1, O2 – are
of order 1 in the large N limit, while the one-point function is multiplied by a factor of
N . Without doubting its correctness, one expects some cancellations on the right-hand
side.

It is not immediately evident how this may take place, but after calculating several
examples, a certain pattern emerges. The two-point function takes the form [A3]

O2(z, w) = − 1
π2

P (z, w)
|z − w|4

, (3.25)

where P (z, w) is some function. Moreover, it can be checked that for biunitarily invari-
ant ensembles P (z, z) = O1(z)

ρ(z) . This repeating singularity in the denominator suggests
that when the two argument get close to each other something new happens. Such
singularities in two-point functions in Hermitian ensembles are the signs of a micro-
scopic universality, and different universality classes correspond to different types of
singularity. Microscopic universality is observed at scales of typical separation between
eigenvalues, which for non-Hermitian models is of the order 1√

N
. Introducing the vari-

able probing the microscopic scale as w = z + u√
Nρ(z)

, one sees that the denominator

in (3.25) combined with the Jacobian of a change of variables produces additional fac-
tor of N , which may provide the needed cancellation in the sum rule (3.24). Based on
the importance of the microscopic scaling and ubiquity of the |z − w|−4 singularity it
was conjectured that there exists a universal miscroscopic scaling of the eigenvector
correlation function [A3]

lim
N→∞

N−2O2

(
z +

x√
N
, z +

y√
N

)
= − O1(z)

π2|x− y|4
(
1− (1 + |x− y|2)e−|x−y|

2
)
.

(3.26)
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The exact form of the universal function is not accessible from Feynman diagrams, but
it was deduced based on the exact calculations and the asymptotic limit of O2(0, z)
calculated by Chalker and Mehlig [77].

3.8 A brief summary

The setup for the two-point eigenvector correlation functions was proposed by
Chalker and Mehlig [77], where it was used to solve the Gaussian model. The work [A3]
presents its significant extension, solving all ensembles in large N by the summation of
planar Feynman diagrams. Bethe-Salpeter equations (3.18 – 3.19) provide the general
solution. Biunitarily invariant ensembles admit further simplifications with the explicit
formula for the two-point function (3.23), the analysis of which supports hypothesized
microscopic universality in eigenvector correlations (3.26). Another important result of
[A3] is the procedure for calculations of traced product of two resolvents (3.8), with the
general solution given by (3.20 – 3.21).



Chapter 4

Eigenvectors in a partially
symmetric ensemble. Based
on [A4].

4.1 Motivation

For a long time the study of non-orthogonal eigenvectors in random matrices was
limited to the analysis of one- and two-point functions, with a single exception [88].
Only very recently, Bourgade and Dubach [19] considered the complex Ginibre ensemble
and studied the full distribution of the diagonal overlap Oii with the corresponding
eigenvalue λi = z. They found that the rescaled variable u = Oii

N(1−|z|2) in the large N
limit tends to the inverse γ2 distribution given by the probability density function

p(u) =
1
u3 e

− 1
u . (4.1)

The heavy tail p(u) ∼ u−3 of the distribution has already been conjectured by Chalker
and Mehlig [25, 77] on the basis of calculations for 2 × 2 matrices and numerical sim-
ulations for larger sizes. The rescaling factor in u is the conditional expectation of the
overlap NO1(z)

ρ(z) , so this procedure merely shifts the mean of the distribution.
Fyodorov [39], using a different technique, obtained the joint distribution of the

eigenvalue and the associated overlap for any matrix size in the complex Ginibre en-
semble and for real eigenvalues in the real Ginibre ensemble. He confirmed the inverse
γ2 distribution in the complex Ginibre ensemble, and also found that in the real Gini-
bre the joint density of the rescaled overlap Oii = Ns and the corresponding bulk
eigenvalue λi = x

√
N reads

Pbulk(s, x) =
1− x2

2
√

2π

e−
1−x2
2s

s2 for |x| < 1. (4.2)

This distribution is so heavy-tailed that it even does not have the mean, so the corre-
lation function O1(z) does not exist on the real line for the real Ginibre ensemble. The
rescaling u = 2s

1−x2 brings (4.2) to the canonical form of the inverse γ1 distribution.
Dubach [27] analyzed diagonal overlaps in truncated unitary matrices [113] and

in the so-called spherical ensemble [69]. Matrices in both ensembles are complex and
possess unitary invariance. Again, after rescaling by the conditional expectation NO1(z)

ρ(z) ,
the distribution of diagonal overlaps is the inverse γ2 distribution. In the ensemble of
quaternionic Gaussian matrices, which was also studied by Dubach, the distribution of
properly rescaled overlaps turns out to be the inverse γ4 distribution [28]. His results

33



34

point at possible bulk universality in the distribution of eigenvector overlaps, which is
given by the inverse γβ distribution with the parameter β determined by the number
of degrees of freedom in matrix elements, β = 1 for real, β = 2 for complex, β = 4 for
quaternion matrices.

Eigenvalues of studied non-Hermitian matrices are ill-conditioned – diagonal over-
laps grow linearly with their size. On the other hand, eigenvalue condition numbers in
Hermitian matrices are all equal to one. One expects an intermediate regime existing
between these two extremes. The elliptic ensemble allows one to smoothly interpolate
between the Gaussian Unitary Ensemble of Hermitian matrices and the Ginibre ensem-
ble of non-Hermitian matrices by varying one parameter. This ensemble was studied
by Girko [49], who concentrated on the limiting spectral density, which is an ellipse,
degenerating to an interval for Hermitian matrices. Fyodorov, Khoruzhenko and Som-
mers [40, 44] studied this ensemble at a finite size and discovered an intermediate
regime of weakly non-Hermitian matrices, where some of the eigenvalues become com-
plex, but their imaginary part is of the same order as the spacing between their real
parts. Knowing that the non-Hermiticity affects also the eigenvectors, we conjectured
that there exists an analogous regime of weak non-Hermiticity, which we called the
weak non-normality.

4.2 The real elliptic ensemble

Eigenvector overlaps are simpler to analyze when real eigenvalues of real ensembles
are considered. Therefore, we focus our attention on the real elliptic ensemble, in which
the joint probability density function for the elements reads

P (X)dX = C−1
N exp

[
− 1

2(1− τ2)
Tr(XXT − τX2)

]
dX. (4.3)

Here dX =
∏N
i,j=1 dXij is the flat Lebesgue measure over all matrix elements. The

normalization constant reads CN = (2π)N
2/2(1 + τ)(1 − τ2)N(N−1)/4. An important

ingredient in the model is the parameter τ ∈ [0, 1], which allows for interpolating
between the Gaussian Orthogonal Ensemble (τ = 1) and the real Ginibre ensemble
τ = 0. More specifically, it governs the correlations between elements on the opposite
side of the diagonal 〈XijXji〉 = τ . The weak non-Hermiticity regime in this model is
obtained in the limit N →∞, τ → 1, but keeping the product N(1− τ) of order unity.

4.3 Eigenvectors in the elliptic ensemble

The Cauchy-Schwartz inequality asserts that Oii ­ 1, so Fyodorov proposed to
consider the shifted overlaps ti = Oii − 1. He defined the joint probability density
function [39]

PN (z, t) =

〈
r∑
i=1

δ(z − λi)δ(Oii − 1− t)
〉
. (4.4)

The summation runs over all real eigenvalues. The joint density defined this way differs
from the standard definitions of correlation functions by the normalization factor. After
integrating over all variables, it yields the average number of real eigenvalues.

It turns out that for the elliptic ensemble it is convenient to absorb a factor that
drives the departure from Hermiticity by introducing the variable q = (1 − τ)t. Then
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the joint density takes the form of [A4]

P(z, q) =
1

2(1 + τ)
√

2πΓ(N − 1)

e
− z2

2(1+τ)

(
1+ q
1+q

)
√
q(1 + q)

(
q

1 + τ + q

)N
2 −1

[
PN−2z

2

(1 + q)2 +

(1 + τ − 2z2)PN−2 + 2z[RN−2 + τ(N − 2)RN−3]
1 + q

+
τ2(1 + τ)2N(N − 2)PN−3

(1 + τ + q)2 +

(1 + τ)(1− τ2)(N − 2)((N − 2)PN−3 − TN−3)
1 + τ + q

− 2τ(1 + τ)(N − 2)zRN−3

(1 + q)(1 + τ + q)

]
(4.5)

The auxiliary functions PN , RN and TN are defined in the following way:

PN = N !
N∑
k=0

τk

k!

(
(k + 1)He2

k

(
z√
τ

)
− kHek−1

(
z√
τ

)
Hek+1

(
z√
τ

))
, (4.6)

RN =
N !
2

N∑
k=0

τk+ 12

k!

(
(k + 2)Hek+1

(
z√
τ

)
Hek

(
z√
τ

)
− kHek+2

(
z√
τ

)
Hek−1

(
z√
τ

))
,

(4.7)

TN = N !
N∑
k=0

kτk

k!

(
(k + 1)He2

k

(
z√
τ

)
− kHek−1

(
z√
τ

)
Hek+1

(
z√
τ

))
, (4.8)

where Hek(z) denotes the Hermite polynomials

Hek(z) =
(±i)k√

2π
e
z2

2

∫ ∞
−∞

tke−
t2

2 ∓iztdt. (4.9)

The expression (4.5) is exact for any matrix size, but in order to draw conclusions
it is beneficial to take the asymptotic limits.

1. Bulk. We fix τ ∈ [0, 1) and rescale z → z
√
N , t → Nt. We define the limiting

distribution PBulk(z, t) = limN→∞NPN (
√
Nz,Nt), which for |z| < 1 + τ takes

the form [A4]

PBulk(z, t) =

√
1− τ2

2
√

2π

[
1− z2

(1+τ)2

]
t2

e
− 1−τ

2

2t

[
1− z2

(1+τ)2

]
. (4.10)

The way the asymptotic limit is taken shows that in the bulk the eigenvector
overlap grows linearly with the matrix size N . Moreover, in the rescaled variable
1
u = 1−τ2

2t [1 − z2

(1+τ)2 ] the joint density PBulk takes the form of the inverse γ1

distribution.

2. Edge. Keeping τ ∈ [0, 1) fixed, we probe the edge of the distribution by param-
eterizing z =

√
N(1 + τ) + δτ

√
1− τ2. The overlap is further reparamerized as

q = σ
√
N(1− τ2). The limit PEdge(δτ , σ) = limN→∞ PN (z, q) reads [A4]

PEdge(δτ , σ) =
1

4πσ2(1− τ2)
e−

1
4σ2

+ δτ
σ

[
e−2δ2τ +

(
1
σ
− 2δτ

)∫ ∞
2δτ

e−
u2

2 du

]
.

(4.11)
Eigenvector overlaps corresponding to the eigenvalues located close to the edge of
the spectrum scale now as Oii ∼ N1/2, so the eigenvectors are less non-orthogonal
than for bulk eigenvalues.
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3. Weak non-normality. Rescaling z → z
√
N we take the large N limit, but keeping

a2 = 2N(1−τ) fixed, and thus approaching also the Hermitian limit. The limiting
distribution PWeak(z, t) = limN→∞N

−1/2PN (z
√
N, t) reads [A4]

PWeak(z, t) =
A

2
ρsc(z)

e−
A
2t

t2

∫ 1

0
e−
1
2As

2
(

1 +A+
A

t
−As2

)
s2ds, (4.12)

where we denoted A = (πaρsc(z))2, and ρsc(z) = 1
2π

√
4− z2 is the Wigner semi-

circle distribution, which is a density of eigenvalues in the fully Hermitian limit.
In the regime of weak non-Hermiticity Oii are of order one, but their distribution
is heavy-tailed.

The bulk and edge limiting distributions after an appropriate rescaling are given by
the same form as obtained by Fyodorov for the real Ginibre ensemble [39], providing
further evidence for the universality in the bulk and the edge. The expression in the
weak non-normality limit interpolates between the Hermitian limit P(z, t) = ρsc(z)δ(t)
and strong non-normality. In the entire range, the distribution PWeak is heavy tailed,
so we conclude that the tail P(z, t) ∼ t−2 is the most robust feature of the distribution
of overlaps.

4.4 About the proofs

A key technical tool in the derivation of (4.5) is the partial Schur decomposition.
A real N ×N matrix XN with a real eigenvalue λ can be decomposed as

XN = O

(
λ wT

0 XN−1

)
OT = OX̃NO

T . (4.13)

Here w is a column vector with N − 1 components and the matrix XN−1 has the size
reduced by 1. The matrix O is orthogonal. With this decomposition the eigenvector
overlap associated with λ can be written as [39]

Oii = 1 + wT (λ−XN−1)−1(λ−XT
N−1)−1w. (4.14)

The Jacobian of the change of variables is the modulus of the characteristic determinant,
|det(λ−XN−1)|. Instead of the direct density, it is convenient to work with the Laplace
transform in the eigenvector variable and consider L(z, p) =

〈
δ(z − λ)e−p(Oii−1)

〉
. The

orthogonal matrix O decouples, while the integral over w is Gaussian, so it can be
evaluated explicitly, yielding [A4]

L(z, p) =
e
− z2

2(1+τ)

2N/2Γ
(
N
2

)√
1 + τ

〈
det(z −XN−1)(z −XT

N−1)

det 1/2[2p(1− τ2) + (z −XN−1)(z −XT
N−1)]

〉
. (4.15)

The Laplace transform is expressed in terms of the ratio of two determinants averaged
over the same elliptic ensemble (4.3), but with size reduced by 1. Ratios of characteristic
polynomials were intensively studied in random matrix theory and several tools for their
study have been worked out [7, 8, 38, 45]. One of them uses the Gaussian representation
of the characteristic polynomials and its inverse square root

detX =
∫
dχdηe−χ

TXη, det−1/2X = (2π)−N/2
∫
R
e−y

TXydny, (4.16)

where y is a real N -component vector, while χ, η are two different vectors with anti-
commuting (Grassmann) numbers which satisfy the algebra χjχk = −χkχj .

The bulk, edge and weak non-normality limits are obtained via the integral repre-
sentation of the Hermite polynomials (4.9) followed by saddle point analysis.
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4.5 A brief summary

The paper [A4] relies on the technique developed by Fyodorov [39], applying it to
the real elliptic ensemble. The main results are the exact finite N formula (4.5) and
its asymptotic limits in three regimes (4.10 – 4.12), including the weak non-normality
regime, which was identified for the first time.
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Chapter 5

Fast route to microscopic
universality. Based on [A5].

5.1 Integrability of Hermitian random matrices

Random Hermitian matrices with a unitarily invariant probability density function
(given by (2.1)) are solvable not only in large N limit, but also for any matrix size.
By solvability we understand that for 1 ¬ m ¬ N , all m-point eigenvalue correlation
functions [34]

Rm(x1, . . . , xm) =

〈 ∑
i1 6=... 6=im

m∏
j=1

δ(xj − λij )
〉

(5.1)

can be calculated. The one-point function is the spectral density times the number of
eigenvalues, while the N -point function is the joint density of eigenvalues. The k-point
functions are obtained by integrating out one variable from the (k+ 1)-point function.
Changing variables as H = UΛU †, we move to the eigenbasis, and the joint pdf now
reads [34]

P (Λ, U)dΛdU = Q−1
N e
−
∑N

j=1 V (λj)
∏

1¬i<j¬N
|λi − λj |2dΛdU. (5.2)

Here dΛ =
∏N
i=1 dλi is the flat Lebesgue measure, while dU denotes the Haar measure

on the unitary group. We also removed a factor of N in the exponent in (2.1) since this
is the standard convention in the literature on finite random matrices. This scaling will
be brought back when taking the scaling limits.

One sees that U – the matrix of eigenvectors – is uniformly distributed on the
U(N) group. Eigenvectors decouple from the eigenvalues, so they can be integrated
out, changing only the overall normalization constant. An additional factor |∆(λ)|2 =∏

1¬i<j¬N |λi − λj |2 is the Jacobian of the change of variables. It is the square of the
Vandermonde determinant

∆(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
λ1 λ2 . . . λN
λ2

1 λ2
2 . . . λ2

N
...

...
. . .

...
λN−1

1 λN−1
2 . . . λN−1

N

∣∣∣∣∣∣∣∣∣∣∣∣
= det[λk−1

l ]Nk,l=1. (5.3)

Adding a multiplicity of one row to another one does not change the value of the de-
terminant, so monomials as entries of this matrix are not the only choice. In fact, in
the k-th row one can put any polynomial with the leading term λk−1 (monic polyno-
mial), thus ∆(λ) = det[Pk−1(λl)]Nk,l=1, where Pk denotes such a polynomial. Moreover,

39
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the term in the potential can be incorporated into the matrix, so the joint probability
density function is proportional to(

det[ψk−1(λl)]Nk,l=1

)2
= det[KN (λk, λl)]Nk,l=1, (5.4)

where ψk(λ) = e−V (λ)/2Pk(λ). In the second equality we used the fact that the transpo-
sition of the determinant does not change its value and performed matrix multiplication
explicitly, which results in the following function:

KN (x, y) =
N−1∑
k=0

ψk(x)ψk(y). (5.5)

In principle, Pk can be any monic polynomial, but it is most convenient to choose
it to be orthogonal with respect to the weight given by the potential. Moreover, the
combination of normalization constants allows one to further rescale monic polynomials
so that they are orthonormal∫ +∞

−∞
e−V (x)Pj(x)Pk(x)dx = δjk, (5.6)

but no longer monic. With the choice of orthonormal polynomials, the function KN is
called the correlation kernel and satisfies the self-reproducing property∫ ∞

−∞
KN (x, z)KN (z, y)dz = KN (x, y). (5.7)

It can be shown [79] that all m-point correlation functions can be written as

Rm(x1, . . . , xm) = det[KN (xi, xj)]mi,j=1, (5.8)

which provides a solution for any matrix model. It is a remarkable simplification that
all correlation function are expressed in terms of a single two-point function.

5.2 Spectral projection method

To describe the main concept, we focus now on a specific choice of the potential
V (λ) = λ − α log(x). Such a potential is realized in the Wishart ensemble. Consider
X to be a matrix of size N × T with elements generated from the complex Gaussian
distribution of zero mean and

〈
|Xij |2

〉
= 1. Then, the matrix H = XX† belongs to the

Wishart ensemble. The choice of the potential corresponds to the weight e−λλα in (5.6).
Polynomials orthogonal to this weight are the modified Laguerre polynomials, which
appear also in the hydrogen atom problem. Indeed, upon the identification of constants
and parameters, ψk(λ) can be mapped onto the radial part of the wavefunction (see
the details of that mapping in [A5]).

Moreover, the first determinant in (5.4) is the Slater determinant, which means
that the eigenvalues of random matrices behave like non-interacting fermions. This fact
explains why all correlation functions are expressed by the correlation kernel – it plays
the role of a propagator in non-interacting theories. The function ψk(x) satisfies the
Schrödinger equation

d2ψk
dx2 +

1
x

dψk
dx

+
1 + 2k + α

2x
ψk −

α2

4x2ψk =
1
4
ψk. (5.9)

It is even more instructive to use the bra-ket notation, in which the kernel can be
written as K̂N =

∑N−1
k=0 |ψk〉 〈ψk|. Besides orthonormality, eigenfunctions |ψk〉 provide
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also the resolution of identity 1 =
∑∞
k=0 |ψk〉 〈ψk|. The kernel is represented by a

similar sum, but truncated at first N terms, so it is a projection operator. Interestingly,
the self-reproducing property (5.7) reflects this fact, K̂2

N = K̂N , but it is written in
the coordinate representation KN (x, y) = 〈x| K̂N |y〉. Formally, the kernel projects the
Hilbert space to its subspace spanned by eigenfunctions satisfying 〈ψ| Ĥ |ψ〉 ¬ EN−1,
where Ĥ is the Hamiltonian associated with the Schrödinger equation (5.9). We write
this less formally as [A5]

d2

dx2 +
1
x

d

dx
+

1 + 2k + α

2x
− α2

4x2 ­
1
4
, (5.10)

and we will be looking for a convenient representation of functions spanning this space.
In order to have a finite support of the limiting density of eigenvalues for large N ,

it is convenient to rescale the Wishart matrix as H → 1
TH. Then in the double scaling

limit N,T →∞ with c = N
T fixed, one obtains the Marčenko-Pastur distribution [76]

ρ(x) =
1

2πcx

√
(r+ − x)(x− r−), (5.11)

where r± = (1±
√
c)2 are the two endpoints of the spectrum.

Universal correlations of eigenvalues are probed on the scale of the typical separation
between them. Based on the limiting form of the density, one can distinguish three
possibilities of microscopic universality, depending on the behavior of ρ(x). The scale s,
at which the correlations are probed, is obtained by demanding that within an interval
of length s one expects one eigenvalue to occur. The three regimes are:

1. Bulk. Between endpoints in the close vicinity of the considered point x0 the density
can be approximated as constant ρ(x0), so we are looking for s in which

1 ∼ N
∫ x0+s/2

x0−s/2
ρ(x0)dx = Nsρ(x0). (5.12)

Therefore the proper scale is s ∼ 1
Nρ(x0)

.

2. Soft edge. Close to the edges of the spectrum the density vanishes like
√
|r± − x|,

so the condition determining the proper scale now reads

1 ∼ N
∫ s

0

√
xdx ∼ Ns2/3, (5.13)

and the microscopic scale at the edge is s ∼ N−2/3.

3. Hard edge. When c = 1 the left endpoint of the spectrum is r− = 0, drastically
changing the spectral density, which is now singular at the origin and behaves
like x−1/2. A similar analysis leads to the microscopic scale s ∼ 1

N2 .

The above rough calculations allow one only to determine the microscopic scale at
which the behavior of the eigenvalues can be probed. The existence and exact form of
the microscopic correlations need to be found by taking the appropriate limits. Since all
correlation functions are determined by the kernel, it is sufficient to study its scaling.
This is a difficult task as it involves studying the Plancherel-Rotach asymptotics of
orthogonal polynomials in which the argument of the polynomial is rescaled by its
order, which goes to infinity. Typically, such calculations are performed by finding the
integral representation of the kernel, followed by careful saddle point analysis. In all
interesting regimes, representations involve at least two integrals, and the saddle point
is degenerate, complicating calculations even more.
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Borodin and Olshanski [18] introduced a method which simplifies the calculations
considerably. It uses the fact that the kernel is a projection built from eigenfunctions of
a certain Hamiltonian. The microscopic scaling often simplifies the form of the Hamil-
tonian. Instead of an abstract description, we demonstrate it by recalculating three
microscopic universalities, which can be found in the Wishart ensemble. This analysis
in a more general setting was performed by Bornemann [16].

1. Bulk. We probe the microscopic scale by introducing the variable s defined as
x
T = x0 + s

Nρ(x0)
. The factor 1/T is needed to ensure a finite support of the

spectrum, while 1
Nρ(x0)

provides proper probing of the microscopic regime. This
change of variables, followed by taking the limit N,T →∞ with c = N/T fixed,
turns the condition (5.10) into

− d2

ds2 ¬ π
2. (5.14)

On the left-hand side we see the Hamiltonian of a free particle, so it is convenient
to move to the momentum space via the Fourier transform. We introduce F (q),
the Fourier transform of f(y). These functions are related via

F (q) =
∫ ∞
−∞

e2πiqyf(y)dy, f(x) =
∫ ∞
−∞

e−2πixqF (q)dq. (5.15)

The Fourier transform and its inverse provide also the resolution of the identity

f(x) =
∫ ∞
−∞

∫ ∞
−∞

e−2πixqe2πiqydqf(y)dy. (5.16)

The Kernel is a projection operator acting on the space of functions via

P [f(x)] =
∫ ∞
−∞

K(x, y)f(y)dy. (5.17)

In the Fourier space the condition (5.14) takes the form of q2 ¬ 1
4 . This means

that only momenta in the range −1
2 ¬ q ¬

1
2 contribute to the kernel, so

P [f(x)] =
∫ ∞
−∞

[∫ 1
2

− 12
e−2πixqe2πiqydq

]
f(y)dy. (5.18)

Comparing (5.18) with (5.17), we immediately read out the form of the kernel

KBulk(x, y) =
sin(π(x− y))
π(x− y)

. (5.19)

2. Edge scaling. To probe the microscopic behavior at the soft edge, we introduce
the following scaling variable: x

T = r± ± s√
c(r±N)2/3

, which in the large N limit

turns (5.10) into

− d2

ds2 + s ¬ 0. (5.20)

The trick with the Fourier space does not lead to simplifications, because it re-
stricts the region of integration to a parabola. Instead, we observe that (5.20)
represents a Hamiltonian of a particle in a linear potential, the eigenfunctions of
which are the Airy functions. Therefore, we resort to the Airy transform

F (z) =
∫ ∞
−∞

Ai(y − z)f(y)dy, f(x) =
∫ ∞
−∞

Ai(x− z)F (z)dz. (5.21)



43

The Airy transform and its inverse provide the resolution of the identity

f(x) =
∫ ∞
−∞

∫ ∞
−∞

Ai(x− z)Ai(y − z)dzf(y)dy, (5.22)

The condition (5.20) in this representation leads to z < 0, which truncates the
range of admissible values of z, therefore the kernel, understood as a projection,
reads

KEdge(x, y) =
∫ 0

−∞
Ai(x− z)Ai(y − z)dz =

Ai(x)Ai′(y)−Ai(y)Ai′(x)
x− y

. (5.23)

3. Hard edge. The hard edge occurs only when c = 1, that is, when N goes with the
same speed to infinity as T , so their difference α = T −N may remain constant,
which plays an important role in the microscopic regime. Upon the scaling x

T = s
N2

the condition (5.10) is transformed into

d2

ds2 +
1
s

d

ds
+

1
s
− α2

4s2 ­ 0. (5.24)

With the variable z = 2
√
s it takes a more familiar form

− d2

dz2 −
1
z

d

dz
+
α2

z2 ¬ 1. (5.25)

On the left-hand side we recognize the Bessel operator, so we use the Hankel
transform, which provides the resolution of the identity

f(z) =
∫ ∞

0

∫ ∞
0

z′tJα(zt)Jα(tz′)dtf(z′)dz′. (5.26)

The condition (5.20) in the variable of the Bessel transform reads t ¬ 1, which
turns the identity (5.26) into the projection

P [f(z)] =
∫ ∞

0

[∫ 1

0
ztJα(zt)Jα(tz′)dt

]
f(z)dz′. (5.27)

Returning to the original Hamiltonian by introducing variables t =
√
s, z =

√
x,

z′ =
√
y, we read out the form of the kernel

KHard(x, y) =
1
4

∫ 1

0
Jα(
√
xs)Jα(

√
ys)ds. (5.28)

The above calculations show how the projection method, combined with the clever
choice of the integral transform, allows one to calculate the microscopic scaling of the
kernel in just a few lines, without the need of integral representations and saddle point
analysis.

5.3 Biorthogonal ensembles

Having in mind integrable structure of Hermitian matrices, Muttalib [82], motivated
by physical applications, and later Borodin [17] introduced a new class of ensembles
which also have determinantal structure. In this case the joint probability density func-
tion is given by the product of two determinants

P (x1, . . . , xN ) ∼ det[ηi(xj)]Ni,j=1 det[χi(xl)]Nk,l=1, (5.29)
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where ηi and χi are some functions. The choice ηi(x) = xi−1 and χi(x) = e−V (x)xi−1

corresponds to ensembles solved by orthogonal polynomials. Assume now that it is pos-
sible to biorthogonalize these functions, that is, to construct Pk’s as linear combinations
of χi’s and Qk’s as linear combinations of ηi’s in such a way that Pk’s and Qk’s form a
biorthogonal set ∫ ∞

−∞
Qj(x)Pk(x)dx = δjk. (5.30)

Then, all correlation functions are expressed in terms of a determinant of a matrix, the
elements of which are given by the correlation kernel, which reads

KN (x, y) =
N∑
k=0

Pk(x)Qk(y). (5.31)

Beyond the example considered by Muttalib and Borodin, biorthogonal ensembles were
later found in multi-matrix models [13, 12, 29, 35] and recently in products of random
matrices [4, 5, 66, 73].

The biorthogonal structure of functions Qk and Pk reminds us of the biorthogonal
eigenvectors of non-Hermitian matrices, where Qk’s play the role of left and Pk’s of
right eigenvectors. In the method of orthogonal polynomials it was possible to choose
Pk = Qk, which were the eigenfunctions of a self-adjoint operator. In the case of Wishart
model, it was the Hamiltonian. This raises a question whether a non-self-adjoint coun-
terpart of the Hamiltonian can be found in biorthogonal ensembles. Below we provide
an example of a biorthogonal ensemble, where such a structure is realized. Moreover,
the spectral projection method allows one to simply calculate the microscopic scaling.

5.4 Products of Gaussian matrices

Let Xk be a rectangular matrix of size (N+νk−1)×(N+νk), the entries of which are
Gaussian of zero mean and variance

〈
|Xij |2

〉
= 1. One may assume ν0 = 0 and νk > 0

for all k > 0 without losing generality. The squared singular values of the product
YM = X1X2 . . . XM form a biorthogonal ensemble with the correlation kernel (5.31).
The biorthogonal functions read [4]

Pk(x) = G1,0
1,M+1

(
k + 1

0,−νM , . . . ,−ν1

∣∣∣∣x), (5.32)

Qk = GM,1
1,M+1

(
−k

νM , . . . , ν1, 0

∣∣∣∣x), (5.33)

where G denotes the Meijer-G function (see Appendix C of [A5] for the definition and
basic properties). More importantly, due to the differential equation satisfied by the
Meijer-G function, functions Pk(x), which are in fact polynomials, satisfy the eigenequa-
tion HMPk = kPk with the differential operator

HM = x
d

dx
− d

dx

M∏
j=1

(
x
d

dx
+ νj

)
. (5.34)

Its adjoint operator, in a sense that it satisfies
∫
g(x)HMf(x)dx =

∫
(H∗Mg(x))f(x)dx,

can be obtained by the integration by parts and noticing that the boundary terms
vanish. It reads explicitly [A5]

H∗M = −x d
dx
− 1 + (−1)M

d

dx

M∏
j=1

(
x
d

dx
− νj

)
. (5.35)
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It can be checked that indeed Qk satisfies the eigenequation H∗MQk = kQk for the
same eigenvalue. This stays in the full analogy with the left and right eigenvectors of
non-Hermitian matrices.

The limiting spectral density of 1
NM YMY

†
M cannot be presented in an explicit form,

but in the vicinity of zero it behaves as ρ(x) ∼ x−
M
M+1 [22]. For M > 1 this is a new

type of singular behavior, so one expects different microscopic universality to occur.
Introducing the scaling variable x = z

N turns the eigenequation for Pk into 1
N
z
d

dz
− d

dz

M∏
j=1

(
z
d

dz
+ νj

)Pk =
k

N
Pk. (5.36)

The summation index in the kernel (5.31) is always smaller than N , which provides a
bound on the eigenfunctions which can be less formally written as [A5]

− d

dz

M∏
j=1

(
z
d

dz
+ νj

)
¬ 1. (5.37)

Narain [84] introduced a class of asymmetric integral transforms that generalize
‘classical’ transforms. A special instance of the transform that is relevant for our prob-
lem is the following

g(s) =
∫ ∞

0
k(s, y)f(y)dy, f(x) =

∫ ∞
0

h(x, s)g(s)ds, (5.38)

with

k(s, y) = GM,0
0,M+1

(
−

ν1, . . . , νM , 0

∣∣∣∣ sy), (5.39)

h(x, s) = G1,0
0,M+1

(
−

0,−ν1, . . . ,−νM

∣∣∣∣xs). (5.40)

These transforms provide a convenient representation of the condition (5.37), because
in the dual variable it simply reads s ¬ 1. In the resolution of the identity

f(x) =
∫ ∞

0

∫ ∞
0

h(x, s)k(s, y)dsf(y)dy (5.41)

the condition (5.37) restricts the range of the inner integral to 0 ¬ s ¬ 1, so one easily
reads out the form of the limiting kernel [A5], which was obtained for the first time
in [73]

KM
Hard(x, y) =

∫ 1

0
G1,0

0,M+1

(
−

0,−ν1, . . . ,−νM

∣∣∣∣xs)GM,0
0,M+1

(
−

ν1, . . . , νM , 0

∣∣∣∣ sy)ds.
(5.42)

It is worth noting that the case M = 1 corresponds to the Wishart ensemble, so this
result generalizes the Bessel kernel. However, the exact form of that kernel reads

K1
Hard(x, y) =

(
y

x

)ν/2 ∫ 1

0
Jν(2
√
sx)Jν(2

√
sy)ds, (5.43)

which is almost the same as (5.28), but with a different prefactor. This discrepancy is
explained by the fact that the functions Pk and Qk building the kernel are not unique.
Like left and right eigenvectors are defined up to rescaling, one can rescale Pk(x) →

1
f(x)Pk(x) and Qk(y) → f(y)Qk(y) without altering the orthogonality relations. Then

the kernel transforms as K(x, y)→ f(y)
f(x)K(x, y).
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5.5 A brief summary

The spectral projection method, introduced by Borodin and Olshanski [18] is ex-
tended to the case of biorthogonal ensembles in paper [A5], where an analogous struc-
ture to left and right eigenvectors of non-Hermitian matrices was noticed. The Narain
transform was identified as the source of projections obtained in the microscopic limit
at the hard edge in products of Gaussian random matrices.



Chapter 6

Non-orthogonal eigenvectors in
models of neural networks. Based
on [A6].

6.1 Models of randomly coupled neural networks

In 1988, Sompolinsky, Crisanti and Sommers [100] introduced a model of a neu-
ral network evolving in time according to the system of first order coupled nonlinear
differential equations

ẏi = −yi +
N∑
j=1

Jijφ(yj). (6.1)

Here yi denotes the local membrane potential of the i-th neuron, while φ(yi) denotes
its activity. The nonlinear function φ(y) is sigmoidal and for concreteness chosen to
be φ(x) = tanh(gx), with parameter g adjusting its degree of nonlinearity. Equations
(6.1) are Kirchhoff equations in which the first term represents leaking current due to
membrane capacity, −yi is the current flow through the membrane resistance, while the
last term is the inflowing current from other connected cells. Jij are synaptic efficacies
coupling the output of the j-th neuron with the input of the i-th neuron. In this model
they are chosen as Gaussian random variables with zero mean and variance σ2/N . The
synaptic weight matrix J is therefore a random matrix generated from the real Ginibre
ensemble.

The model can be solved in the large N limit with the use of the dynamical mean
field theory. There are two parameters g and σ in the model, but the dynamics depend
on their combination gσ, and one can distinguish two regimes. The system has a fixed
point y∗ = 0, and by linearizing (6.1) one can see that when gσ < 1 this fixed point is
stable. If neurons are externally excited by some stimulus, their activity will be finally
damped. Therefore, in this regime the system cannot operate for a long time. When
gσ < 1 the fixed point y∗ is unstable, and the system is in the chaotic phase in the
sense that its response to two very similar external stimuli will differ in time, and this
difference will grow exponentially in time.

The stability-instability transition of the fixed point is related to the rightmost
eigenvalue (that is, the eigenvalue with the largest real part) of a random matrix gJ
– whether it is greater or smaller than 1. At the microscopic level, it is related to the
transition between a single fixed point and the proliferation of fixed points, the number
of which grows exponentially with the number of the system’s components N [108].

If the system is to be operative, none of these two phases is desired. Instead, the
system should be posed at the edge of the stability or slightly below in order to main-
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tain its activity for a long time, while still responding in a non-chaotic manner. The
network is excited by external stimuli coming from other networks coupled to the con-
sidered network or from the surroundings, so it needs to stay active until the next
external excitation comes. In systems with a non-normal synaptic connectivity matrix,
the transient dynamics was proposed as a mechanism, which keeps the system active
for a longer time by amplifying neural responses to weak stimuli [46, 81, 51].

6.2 The Rajan-Abbott model

The aim of modeling neural networks is to gain some insights into how biological
networks may operate. The main drawback of the model (6.1) is that the connections
between real neurons are definitely not random. A way out of this problem was proposed
by Rajan and Abbott [95], who proposed modifications by changing only the synaptic
weight matrix. They introduced two types of neurons: excitatory (E) and inhibitory (I).
Synaptic strengths of fEN excitatory neurons are generated from a Gaussian distribu-
tion with mean µE > 0 and variance σ2

E/N . Similarly, weights of the remaining fIN
inhibitory neurons have a Gaussian distribution with µI < 0 mean and σ2

I/N variance.
For large matrix sizes, it is unlikely for an excitatory neuron to have a negative weight,
therefore this model reflects the Dale’s principle stating that each neuron either inhibits
or excites all connected neurons.

The synaptic weight matrix can be naturally decomposed as J = M + W . The
deterministic matrix M represents the average strengths of neuronal connection and it
consists of fEN identical columns filled with µE followed by fIN columns with elements
µI . W represents the populational variability of synaptic strengths and is decomposed
as W = GΛ, where G is a random matrix from the Ginibre ensemble. The diagonal
matrix Λ with first fEN elements equal to σE and last fIN elements equal to σI is
responsible for rescaling the variance within columns.

The spectrum of the matrix W is a disk of radius r2 = fIσ
2
I + fEσ

2
E , so in order to

pose the system at the edge of stability, one slightly modifies the model, introducing
another parameter µ, and shifting the spectrum. Now the dynamics can be written as

ẏi = −βyi +
N∑
j=1

(µj +Gijσj)φ(yj), (6.2)

where µj is either µE or µI depending of the type of neuron and similarly for σj . This
additional parameter β can be obtained by recovering the time-scale of the dynamics.

When the deterministic matrix M is introduced to the model, the spectrum of the
synaptic weight matrix changes drastically, and several outliers emerge. Such outliers
cause chaos in the model by making the fixed point y∗ = 0 unstable. In principle, this
can be cured by appropriately adjusting µ to shift all eigenvalues to the left, but then
the contribution from the eigenvalues in the bulk will by quickly damped.

It was observed in experiments that the amount of excitation and inhibition to a
single neuron is the same [55, 98, 103]. This so-called E/I balance is maintained on
the time-scale of several milliseconds [60, 110]. Rajan and Abbott incorporated this
phenomenon in the model by demanding that the strengths of incoming synapses add
to zero both on the average, fIµI + fEµE = 0 (global balance), and for each neuron
separately,

∑N
j=1Wij = 0 (local balance). The global balance is set by restricting one

parameter in the model, while the local balance is imposed numerically by subtracting
the same number from all elements within each row so that their sum is zero. This
procedure leads to only a small modification of the original matrix W , therefore, besides
one eigenvalue equal to 0, its spectrum is not affected much, and the results obtained
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from random matrix theory approximate it very well. The E/I balance, however, has
a drastic change on the spectrum of the entire synaptic strength matrix, making it
insensitive to the presence of the deterministic part. Spectra of M + W and M are
exactly the same, which also means that the E/I balance cures the model by bringing
outliers back to the disk.

6.3 Spectrum in the Rajan-Abbott model

The Rajan-Abbott model is easily generalized to m types of neurons, the synap-
tic weights of which are generated from q Gaussian distribution with µk mean and
σ2
k/N variance. There are fkN neurons of each type, with participations adding to

one,
∑m
k=1 fk = 1. The diagonal matrix, which rescales variances, can be written as

W = diag(σ11f1N , . . . , σm1fmN ), while the deterministic part has a dyadic structure
M = |u〉 〈m| with

|u〉 = (1, . . . , 1)T , 〈m| = (µ1, . . . , µ1︸ ︷︷ ︸
f1N times

, . . . , µm, . . . , µm︸ ︷︷ ︸
fmN times

). (6.3)

Spectral properties of the synaptic weight matrix in such a model has already been
considered, and the Feynman diagram technique allows one to find spectral densities [2,
111]. Such results can be obtained in a much simpler way, because in the large N limit
biunitarily invariant ensembles behave like an ideal. This means that W , which is the
product of a deterministic matrix with a biunitarily invariant one, is also a subject of
the Haagerup-Larsen theorem. The radial cumulative distribution function satisfies an
algebraic equation [A6]

1 =
m∑
i=1

fiσ
2
i

r2 − σ2
i (F (r)− 1)

, (6.4)

which for m ¬ 4 types of neurons can be solved analytically. The spectrum of the
synaptic weight matrix is then obtained via ρ(r) = 1

2πr
dF
dr , since it is insensitive to the

presence of the deterministic part. Eigenvector correlations are also easily accessible,
O1(r) = F (r)(1−F (r))

πr2 , but only of the matrix W modeling populational variability. The
applicability of the Haagerup-Larsen theorem has further advantages, because it allows
one to consider other types of randomness than Gaussian. The case when G represents
Cauchy randomness cannot be treated with diagrammatic techniques, but it nicely
fits with the Haagerup-Larsen theorem, and the spectral density with the eigenvector
correlation function of W can be written explicitly [A6]

ρ(r) =
1
π

m∑
i=1

fiσ
2
i

(r2 + σ2
i )2 , (6.5)

O1(r) =
1
π

m∑
i=1

fi
r2 + σ2

i

m∑
j=1

fjσ
2
j

r2 + σ2
j

. (6.6)

6.4 Eigenvector non-orthogonality in the Rajan-Abbott
model

While, due to the E/I balance maintained in the model, the presence of determinis-
tic synaptic strengths does not affect the spectrum, it strongly influences eigenvectors,
in particular their non-orthogonality. Assuming that left and right eigenvectors of the
matrix W with the E/I balance condition imposed are known, one can explicitly con-
struct eigenvectors of W + M . In fact, left eigenvectors of W and W + M are the
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Figure 6.1: (left) Averaged squared norm in the model interpolating between the Rajan-Abbott
model and the model without deterministic weights. As the interpolating parameter q grows,
S(t) is amplified with the maximum exceeding the initial value 1. (right) Maximum of the
squared norm throughout the entire dynamics as a function of q. Inset shows a close-up for the
range 0.07 < q < 0.15, where the transition between the maximum attaining its initial value
and the maximum growing quadratically with q (red line) occurs. Error bars denote standard
deviation in the numerical simulations.

same and |u〉 is always a right eigenvector to the eigenvalue λ1 = 0 because of the E/I
balance. The remaining right eigenvectors are then∣∣∣R′j〉 = |Rj〉+

αj
λj
|u〉 , (6.7)

where αj = 〈m|Rj〉. The diagonal elements of the overlap matrix O′ of M+W read [A6]

O′jj = Ojj + 2 〈Lj |Lj〉Re

(
〈m|Rj〉 〈Rj |u〉

λj

)
+N 〈Lj |Lj〉

| 〈m|Rj〉 |2

|λj |2
. (6.8)

By the freedom of rescaling left and right eigenvectors (see section 1.1) one can also
set 〈Lj |Lj〉 = 1. Diagonal elements of the overlap matrix get a contribution from
the deterministic weight, and, moreover, this surplus grows linearly with the size of
the matrix. The denominator in the last term shows that this effect is stronger for
eigenvalues of smaller magnitude. Although the condition of the E/I balance brings
outliers back to the circle saving the dynamics, it makes all eigenvalues extremely
sensitive. Small changes in synaptic weights may result in a complete reshuffling of the
eigenvalues.

6.5 Transient dynamics in the Rajan-Abbott model

Through the same mechanism the off-diagonal overlaps become larger, the leading
contribution of which reads [A6]

O′ij −Oij ∼ N 〈Li|Lj〉
〈m|Ri〉 〈Rj |m〉

λiλ̄j
. (6.9)

Due to such a strong non-normality, reflected in the high values of all elements of the
overlap matrix, we expect transient effects in the linearized dynamics. Moreover, despite
the fact that the contribution to the squared norm from eigenvalues of a small magni-
tude is decaying faster than the one from eigenvalues close to the rightmost eigenvalue,
non-normality affects such eigenvalues more. Strong coupling between eigenmodes re-
sults in the oscillatory dynamics of the squared norm, which correspond to moving back
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and forth towards the fixed points. These effects can be observed for almost all initial
conditions [A6]. In the absence of the deterministic matrix M , the initial conditions
need to be carefully tuned for transient amplification to occur.

To quantitatively study the effects of the presence of the deterministic matrix, we
consider a family of models, J = W + qM , where the parameter q ∈ [0, 1] interpolates
between purely random weights and the Rajan-Abbott model. The E/I balance is always
imposed. We analyze the squared norm of the solution, averaged over initial conditions
and over the randomness in matrix elements, S(t). The oscillations average out, but
above the threshold value q∗ we observe the growth of the norm, as presented in Fig. 6.1.
As a measure of amplification we consider the maximum attained throughout the entire
process, maxt­0 S(t). For low values of q stays at 1, when the amplification is not strong
enough to overcome the exponential damping. When the threshold value q∗ is exceeded,
the maximum squared norm grows quadratically with q (see Fig. 6.1), which is expected
from (6.9), where the vector |m〉 appears twice.

6.6 A brief summary

In [A6] it was observed that in the model introduced by Rajan and Abbott [95]
the Dale’s principle and the excitatory/inhibitory balance are the source of strong non-
orthogonality of eigenvectors. This phenomenon, which was not studied in previous
research, leads to high sensitivity of the spectrum against changes in synaptic weights
and leads to the strong transient effects in the linearized dynamics close to the fixed
point.
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Chapter 7

Universal spectra of input-output
Jacobians in residual neural
networks. Based on [A7].

7.1 What are artificial neural networks?

One of the steps towards artificial intelligence is to get machines ‘understanding’ the
content of images from the surrounding environment. This is, definitely, too difficult a
task to start with. Instead, in computer vision one considers a simplified version of this
problem, namely an image is presented to a computer, which is supposed to choose a
word or a sentence to describe its content. The choice is then compared to the ground
truth. For a long time this type of problem posed a serious challenge to computer
scientists until 2012, when deep neural networks sparked a revolution in this field [71].

Mathematically, this problem relies on finding a mapping between a collection of
pixels representing an image and a set of labels describing the possible content of
images. Neural networks provide a model of that mapping by the composition of simple
operations realized by layers. Each layer as an entry gets a vector of numbers, which
is then multiplied by a matrix of weights W , and another vector of biases b is added.
Then a nonlinear function φ, called the activation function, is applied entry-wise to
this affine transformed vector. The output xi of the layer becomes then an input of the
next layer. This set of operations can be mathematically written as a set of recursive
equations

xli = φ(hli), hli =
N∑
j=1

W l
ijx

l−1
j + bli. (7.1)

We also used h to denote preactivations – the numbers to which the activations func-
tion is applied. The upper indices enumerate layers, while the lower indices enumerate
elements within a layer.

There are many technical details related with practical neural networks. For ex-
ample, the last layer performs classification and transforms a vector of preactivations
into probabilities for each labels. Also, the number of neurons may be different for each
layer, and often this is the case because the size of an image (number of pixels) is larger
than the number of labels. To focus on important aspects, we neglect these subtleties
and consider a simplified neural network in which all layers have the same number N
of neurons, and layers perform similar operations.
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7.2 Training neural networks

In neural networks, weights and biases are the adjustable parameters, and the train-
ing process relies on tuning them so that the networks perform well on the sets of
training and test data. One defines an error function, which tells how bad a network
is. An example of such a function is E = 1

M

∑M
k=1 ||xL(k) − x̂(k)||2, where k enumerates

pictures in the training set, xL is the output of the network and x̂ is the desired out-
put. The choice of the error function determines a landscape in the high-dimensional
space of adjustable parameters, and better performing networks correspond to a lower
elevation in this landscape. In each training step parameters are adjusted, so that the
error function decreases the most, that is, in the direction of the steepest descent in the
landscape. There are many variants of the learning algorithm devised to avoid getting
stuck in bad local minima, but for simplicity we focus on a simple gradient descent
algorithm. Weights in the l-th layer are incremented according to

∆W l
ij = −η ∂E

∂W l
ij

, (7.2)

where the parameter η is the learning rate. Biases are updated in a similar way, but
for concreteness we focus on weights only.

7.3 Problems with gradients

Using the chain rule, the derivative can be decomposed into 3 terms

∆W l
ij = −η

∑
k,m

∂xlk
∂W l

ij

∂xLm
∂xlk

∂E

∂xLm
. (7.3)

The first term represents the derivative of an output of the l-th layer with respect to
the weights of this layer, and the last term is the derivative of the error function with
respect to the output of the last layer. For stable learning, all terms cannot be too small
or too large and the middle one is the most problematic. This is a matrix of derivatives
of the output of the last layer with respect to the output of the l-th layer, which reads

∂xLj
∂xli

=

 L∏
m=l+1

DmWm


ij

. (7.4)

Here Dm
ij = φ′(hmi )δij is a diagonal matrix with a derivative of the activation function

evaluated at preactivations of the m-th layer. The derivatives in (7.4) are decomposed as
products of matrices, which can be more problematic, as more matrices are multiplied.
One therefore considers the most extreme object – the input-output Jacobian

J =
L∏

m=1

DmWm. (7.5)

In general, it can be a rectangular matrix, so its eigenvalues are not always defined, thus
we shift our attention to the analysis of its singular values. Singular value decomposition
J = UΣV † yields two unitary matrices and a diagonal matrix with positive entries.
Columns of unitary matrices have unit norm, and thus singular values are the only
objects with clearly defined magnitudes. In the analysis of deep linear networks Saxe
et al. [96] found that training the neural network is the fastest when all singular values
of the input-output Jacobian are equal to 1. Otherwise, the training goes in an uneven
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pace – the network learns fast in directions associated with large singular values and
slowly in directions associated with small singular values. This is a severe problem in
deep networks, since, typically, the largest (smallest) singular value grows (decays) fast
with the depth. Such an issue even makes very deep networks impossible to train, and
thus it is desired to keep the singular values as close to unity as possible. In the case
when all singular values are equal to 1, the network adjust its weights and biases in
all directions of the parameter space at the same pace and is a phenomenon called
dynamical isometry.

7.4 Spectral properties of the Jacobian

Training a network is a dynamical process, so besides the dataset and the choice
of the learning algorithm, the network’s accuracy also depends on how the network is
initialized. It was empirically observed that networks pretrained on simpler tasks and
taken as a starting point for more sophisticated datasets learn faster. On the other hand,
networks which learn very slowly at the beginning are highly unlikely to be trained at
all. It is therefore desired to find initializations of neural networks which do not hinder
the training process.

In practice, neural networks are initialized at random. Weights and biases are in-
dependently sampled from some probability distribution, usually Gaussian. The distri-
bution of preactivations hi, which are sums of independent random numbers, approxi-
mates the Gaussian distribution, due to the central limit theorem. Therefore, the main
quantity describing their behavior is variance. Glorot and Bengio [50] studied the for-
ward propagation of the signal across the randomly initialized networks with sigmoidal
nonlinearity and found that depending on the variances of weights, the variance of pre-
activations grows or decays exponentially with depth. This pushes preactivations to 0
or to large values. In the first regime the signal decays, while in the second regime the
sigmoid function saturates. In both cases nonlinearity is insensitive to its inputs. This
phenomenon prevents efficient training of deep networks. Glorot and Bengio proposed
an initialization scheme that poses the network in the ‘sweet spot’ where the variance
stays approximately constant across depth. This choice of initialization significantly de-
creases the time needed to train the networks. Later, a similar analysis was performed
for the rectified linear unit (ReLU) as an activation function, where it was proposed to
initialize weights from a Gaussian distribution of variance 2

N [57].
Stabilization of the variance of forwardly propagated signal is not sufficient to sta-

bilize the backwardly propagated gradients, as the latter form a matrix, while the
former is a single number. Poole et al. [92] studied backpropagation by means of the

layer-to-layer Jacobian, ∂xl+1
k

∂xli
. The analysis of the second moment of its singular value

density led them to the discovery of a transition between regimes of exploding and
vanishing gradients. Since the parameters are initialized as Gaussian, only variances
of weights σ2

W and biases σ2
b are relevant, and the phase portrait is two-dimensional.

The condition that the mean squared singular value is located at 1 separates these
two regimes. Choosing the initialization parameters in order to stay at the critical line
indeed significantly speeds up learning.

Demanding that the mean of the distribution of the layer-to-layer Jacobian is,
though, quite a weak condition, because it only prevents exponential growth or de-
cay of the mean of the input-output Jacobian. It may happen that, when adding more
layers to the network, small singular values become smaller, and large singular values
grow even more, with the mean singular value remaining constant. Pennington, Shoen-
holz and Ganguli [89] studied also the full distribution of squared singular values of the
input-output Jacobian with special emphasis on the location of the right edge of the



56

spectrum. They found that for Gaussian weights it is not possible to achieve dynamical
isometry at any depth of the network. However, if the weight matrices are chosen as
scaled orthogonal matrices, that is WW T = σ2

w1, and sigmoidal nonlinearity is used,
the spectrum concentrates around 1, and the network is close to perfect dynamical
isometry. Such a situation cannot be realized for the ReLU activation function.

7.5 Residual networks

A couple years before introducing the concept of dynamical isometry and discovering
its role in the trainability of deep neural networks, scientists have found a way to train
networks with more than one hundred layers [56]. It became possible with introducing a
novel architecture, which relies on skip connections. In standard feedforward networks
described in previous sections, at each layer the signal undergoes affine transformation
followed by the element-wise evaluation of the nonlinear activation function. Skip con-
nections bypass one or more layers directly sending the original signal. In the simplest
setting, where each layer is equipped with skip connections, the signal is propagated
according to the recursion

xli = xl−1
i + φ(hli), hli = bli +

N∑
j=1

W l
ijx

l−1
j , (7.6)

which differs from (7.1) by a single term. This changes also the form of the input-output
Jacobian, which now reads

J =
L∏
l=1

(1 +DlW l). (7.7)

It was also observed that, in order to maintain stable forward signal propagation, such
an architecture requires different normalization of weights [9, 101]. Their variance needs
to be rescaled both by the width N and the depth L of the network.

7.6 Spectra of Jacobians in residual networks

The formalism presented in chapter 2, upon tiny modifications, allows one to deduce
the distribution of singular values of Jacobians in residual architecture.

Let us define the layer-to-layer Jacobian as Yl = (1 + DlW l) and the Jacobian
between output of the L-th layer to the input as JL. Then, JLJTL = YLJL−1J

T
L−1Y

T
L ,

which has the same spectrum as Y T
L YLJL−1J

T
L−1. For large random matrices, their S-

transforms are multiplicative, that is SJJT (z) = SY TL YL
(z)SJL−1JTL−1(z). Decomposing

recursively, one immediately obtains the factorization in terms of S-transforms [23]

SJLJTL
(z) =

L∏
l=1

SY TL YL
(z), (7.8)

despite the fact that JLJTL does not factorize. This reduces the problem to the cal-
culation of squared singular values of the layer-to-layer Jacobian and the associated
S-transform. Let us introduce two block matrices [A7]

Z =

(
−1 1
z −1

)
, X =

(
X 0
0 XT

)
, (7.9)
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with X = DlW l. They are used for constructing the generalized Green’s function

G =

(
G11 G12

G21 G22

)
=
〈

1
N

bTr(Z ⊗ 1−X )−1
〉

=

〈
1
N

bTr

(
−1−X 1

z1 −1−XT

)−1〉
.

(7.10)
The G12 entry is precisely the Green’s function of YlY T

l :

G12 =
〈

1
N

Tr(z1− YlY T
l )−1

〉
= G(z). (7.11)

The generalized Green’s function defined this way is not a quaternion, but solely because
of its symmetries. The diagrammatic formalism presented in chapter 2 works in the
same way. If the weight matrix W is biunitarily invariant, which includes the cases of
Gaussian and scaled orthogonal matrices, its product with an arbitrary matrix is also
the subject of the Haagerup-Larsen theorem. This leads to the functional equation for
the Green’s function [A7]

G =
GA(zG2)− 1

1− z(1−GA(zG2))2 . (7.12)

Using formulas (2.11) and (2.12), the above can be transformed into the equation for
the S transform. When the additional 1/

√
L rescaling proposed for residual networks

is taken into account, the S transform can be expanded [A7]

SYlY Tl
(z) = 1− cl2

L
(1 + 2z) +O(L−2). (7.13)

Here

cl2 =
〈

1
N

TrXX†
〉

=
σ2
w

N

N∑
i=1

(
φ′(hli)

)2
(7.14)

is the second cumulant of X, which is also the spectral radius of the matrix DlW l.
Assuming that cl2 does not vary much across the depth, the logarithm of the S transform
of the input-output Jacobian reads

lnSJJT (z) = −(1 + 2z)c+O(L−1), (7.15)

where c = 1
L

∑L
k=1 c

l
2. In the large L limit the subleading terms can neglected, and thus

the S transform takes the form of an exponent. The Green’s function of the input-
output Jacobian satisfies the transcendental equation [A7]

G(z) = (zG(z)− 1)ec(1−2zG(z)), (7.16)

which formally is solved by the Lambert W function, but in practice it is solved nu-
merically to obtain the singular value density.

In general, the spectrum depends on weights and the activation function, which
in turn determine the forward propagation, but the above calculations show that this
entire dependence is encapsulated in a single parameter c. Moreover, a direct evaluation
of the spectral density shows that the singular values of the Jacobian concentrate around
1 for small values of c (see Fig. 7.1). Hence, residual neural networks are close to the
dynamical isometry, provided that the variance of weights is proportional to 1

NL . Note
that the spectrum concentration holds both for Gaussian and scaled orthogonal weights,
regardless of the activation function used. Contrary to the feedforward architecture, one
does not need to fine-tune the parameters of the networks to ensure its trainability.
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In order to relate the parameter c with parameters of neural networks, one needs
to know how the signal propagates across the network. It was already argued that the
preactivations are Gaussian, so we denote by ql their variance in the l-th layer. Then

cl2 = σ2
W

∫ +∞

−∞
Dzφ′2

(
z
√
ql
)
, (7.17)

where we denoted the Gaussian measure by Dz = dz√
2π
e−z

2/2. An analysis of the signal
propagation shows that variances satisfy the recurrence [A7]

ql+1 = ql +
σ2
W

L

∫ ∞
−∞
Dzφ2(z

√
ql) + 2

(σW )2

L

[
l−1∑
k=1

∫ ∞
−∞
Dzφ(z

√
ql−k)

] ∫ ∞
−∞
Dzφ(z

√
ql),

(7.18)

with the initial condition q1 = σ2
b + σ2W

L . Note that the last term vanishes for antisym-
metric activation functions, such as hyperbolic tangent.

7.7 Numerical experiments

To test the predictions of the theory, we used the CIFAR-10 dataset [70], which is
one of popular benchmarks in image classification. It consists of 60000 color images of
size 32× 32 pixels. There are 10 classes of images in this dataset. We used the residual
architecture, with L = 10 and L = 20 layers and with an additional classification layer
at the end. The following activation functions were considered: ReLU (φ(x) = x for
x > 0 and φ(x) = 0 for x < 0) [83], hyperbolic tangent, Hard Tanh (φ(x) = x for
|x| < 1 and φ(x) = sign(x) otherwise), sigmoid (φ(x) = 1

1+e−x ), Leaky ReLU (φ(x) = x
for x > 0 and φ(x) = αx for x < 0) with the leaking constant α = 0.05 and 0.25, and
Scaled Exponential Linear Unit (SELU) [67].

In the first experiment, all weights are initialized as Gaussian with zero mean and
variance σW√

NL
, while biases are set to zero. For a given activation function and the

number of blocks L we set σW in such a way that, upon solving the recurrence (7.18)
numerically, the parameter c is equal to 0.125, in order to ensure the concentration of
the spectrum. Then, an image from the dataset is directed as an input to the network.
The signal is propagated, and, finally, the input-output Jacobian of residual blocks (the
classification layer is neglected) is calculated. The spectra of Jacobians, as presented in
Fig. 7.1, coalesce, and the theoretical predictions describe the empirical Jacobian very
well. This validates the prediction of the theory that a single parameter c determines
the shape of the spectrum. Remarkably, despite the fact that the formula (7.16) was
derived in the limit L→∞, it works also for relatively small values L = 10.

The theoretical considerations were focused on the Jacobian at the initialization. We
hypothesize that the universality in the spectra of Jacobians is also reflected in the early
stages of learning. To verify this claim, we trained networks for 200 epochs and observed
the accuracy of the network, measured as a fraction of correctly classified images.
Networks were initialized like in the previous experiment. We observe that the learning
curves follow the same trajectory for almost all activation functions. Only the sigmoid
detaches with much worse accuracy. This is caused by the instability of the forward
signal propagation, resulting in a saturation of the nonlinearity. To further investigate
the effect of the Jacobian universality, we considered a different initialization scheme in
which variances of weights were set to be 1√

NL
, irrespective of the activation function.

In such a case the curves detach at the very beginning of the learning process [A7],
confirming the importance of initialization in the learning dynamics.

In many experiments the initialization of the network is a confounding factor. Our
second numerical experiments shows that this factor can be eliminated by appropriately
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Figure 7.1: (left) Singular value densities of the input-output Jacobians for several values of the
parameter c. Solid lines represent numerical simulations, while the dashed lines are obtained by
numerically obtaining the density from (7.16). One sees that singular values concentrate around
1 for small values of c. (right) Distribution of singular values of the input-output Jacobian
evaluated on the data from CIFAR10. The parameters of the network were chosen in such a
way that c = 0.125. Distributions for all activation functions are described by the same curve
(solid line).

initializing networks. Then, other effects than the input-output Jacobians can be stud-
ied, as it was already observed that the sigmoid activation function follows completely
different learning trajectory.

7.8 A brief summary

The work [A7] uses the formalism developed in [A2] to describe the spectra of input-
output Jacobians. It is shown that, after the rescaling of weights by the square root of
the depth of a network, singular values concentrate around 1 and the network is close to
the dynamical isometry. This phenomenon explains why the residual architecture makes
deep networks easier to train. Theoretical predictions are then verified in numerical
experiments.
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Summary of the thesis

This thesis presents studies of properties of non-orthogonal eigenvectors of random
matrices. First, the one- and two-point eigenvector correlation functions are studied
in the large N limit for unitarily invariant ensembles by means of Feynman diagrams.
Then, the joint density of the diagonal overlap Oii and the associated real eigenvalue in
the real elliptic ensemble is studied. It is also observed that the mathematical structure
resembling left and right eigenvectors appears in biorthogonal ensembles, which opens a
way for immediate calculations of the universal microscopic correlations of eigenvalues.

The main results are:

• The relation (2.26) between the one-point function and the conditional expec-
tation of the squared eigenvalue condition number controlling the stability of
eigenvalues.

• The relation (2.29) determining the one-point function for the biunitarily invari-
ant ensembles in terms of the spectral density. It can considered as the general-
ization of the Haagerup-Larsen theorem [54] from functional analysis.

• The formalism of Bethe-Salpeter equations (3.18) and (3.19) for finding the two-
point function for unitarily invariant ensembles with its special case (3.23) for
biunitarily invariant ensembles.

• Finite N formula (4.5) with the study of its asymptotic regimes (4.10), (4.11) and
(4.12), with the discovery of the weak non-normality regime.

• The extension of the spectral projection method to the biorthogonal ensembles,
allowing for calculations of microscopic universalities in a new way.

The theoretical developments are then applied to theoretical neuroscience and ma-
chine learning.

It is shown that in the Rajan-Abbott model of a neural network the proposed
Dale’s principle combined with the excitatory/inhibitory balance leads to strong non-
orthogonality of eigenvectors of the weight matrix, which in turn causes high sensitivity
of the network to the changes in weights, and strong transient effects in the linearized
dynamics close to the fixed point.

The distribution of the squared singular values of the input-output Jacobian in
residual neural networks is analyzed. It is shown that, after appropriate rescaling of
weights, this distribution is universal, depends only on a single parameter, and, more
importantly, concentrates around one. The network is then close to the dynamical isom-
etry. This phenomenon explains why this specific architecture allows one to effectively
train very deep networks.
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Chapter 8

Appendix

The appendix contains papers [A1-A7] contributing to the thesis in the style and
formatting of the publishing journals. The paper [A4], which at the stage of writing
the thesis is still under review, is presented in the style in which it was submitted to
Annales Henri Poincaré and posted in the ArXiv repository.
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1.  Introduction

Recently, Belinschi, Speicher and Śniady [3] provided a rigorous mathematical justification 
of the method of the so-called generalized Green’s functions [1, 4–7], broadly exploited in 
the physics literature in relation to the spectral problems of non-hermitian operators. In par
ticular, as one of the examples of their construction, they showed explicitly how the general-
ized Green’s functions reproduce the Haagerup–Larsen theorem [2], valid for the case when 
the non-hermitian operator X can be decomposed as X  =  PU, where P is a positive hermitian 
operator, U is a Haar unitary operator and P and U are mutually free in the sense of free 
random variables [8]. Such operators are named ‘R-diagonal’ in the mathematical literature 
[9]. It was shown [10] that random matrices drawn from a probability distribution function of 
the form P X X N V XX, exp Tr( ) ( ( ))† †∼ −  (biunitarily invariant ensembles) in the limit N →∞ 
become R-diagonal. The Haagerup–Larsen theorem for such R-diagonal operators states 
that the spectrum possesses radial symmetry is localized within the two circles with known 
radii r r,min max (including the possibility r 0min = , rmax = ∞), and the radial spectral cumu-

lative distribution function F r s s s2 d
r

0
( ) ( )∫π ρ=  can be derived from the simple functional 

equation S F r 1P r

1
2 2( ( ) )− = , where S zP2( ) is the Voiculescu S-transform for the square of the 

positive operator P and r is the modulus of the complex eigenvalue λ. The Haagerup–Larsen 
theorem gives the mapping between spectral densities of eigenvalues and singular values for 
biunitarily invariant ensembles in the large N limit. Recently, the correspondence between 
eigenvalues and singular values was extended to the exact mapping between their joint prob-
ability density functions [11]. In this letter we demonstrate that the function F(r) yields, for 
these biunitarily invariant ensembles, also (in the limit N →∞) the eigenvector correlation 
function, namely we show that

O r
N

O
F r F r

r
lim

1 1 1
,

N 2
2

2
( ) ( ) ( )( ( ))

→
( )∑ δ λ λ

π
≡ − =

−

α
αα α

∞
� (1)

where …  denotes expectation value, O L L R R= | |αβ α β β α , where Lα  and Rα  are left and 
right eigenvectors of X, respectively. We make use of free probability tools, thus the result is 
valid at the N →∞ limit. In case of finite but large matrices the formula describes the correla-
tor in the bulk of the spectrum quite well, however the transient phenomena near the spectral 
edge (typically of size N1/ ) are not accessible within this formalism.

This paper is organized as follows. Section  2 recalls the definition of the generalized 
Green’s functions [4]. The relevance of the correlation function and its connection with the 
eigenvalue condition number are discussed in section 3. Section 4 exploits the formalism and 
results of [3], in order to provide a short, direct proof of the main result (1). Section 5 includes 
a few examples where our formula can be easily applied and provides the verification of these 
results with the large scale numerical simulations. We derive in section 6 a mapping between 
the spectral density and the eigenvector correlator, showing that they play an equal role in the 
biunitarily invariant ensembles. Section 7 concludes the paper.

2.  Generalized Green’s functions

In this section we briefly summarize the method of the generalized Green’s function for non-
hermitian random matrix models in the limit N →∞. The method is based on the ‘electro-
static’ analogy [12–14]. One defines a quantity

S Belinschi et alJ. Phys. A: Math. Theor. 50 (2017) 105204
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Φ = − − +| |z z w w
N

z X z X w1 1 1, , ,
1

Tr log ,N N N
2( )( ¯ ¯ ) ( )( ¯ )†� (2)

which can be interpreted in the limit w 0→| |  as an electrostatic potential of a cloud of N identi-
cal electric charges interacting on the z-complex plane. The corresponding electric field is a 
gradient of the potential

= ∂ Φ =
−

− − +| |
G z z w w z z w w

N

z X

z X z X w

1
1 1 1

, , , , , ,
1

Tr .z
N

N N N
2

( ¯ ¯ ) ( ¯ ¯ ) ¯
( )( ¯ )

†

†

�

(3)

We study first the distribution of eigenvalues

z z
N

z,
1

,
i

i
2( ¯) ( )( )∑ρ δ λ≡ −� (4)

where iλ ’s are the eigenvalues of X. The limiting eigenvalue density comes from the Gauss law

z z G z z w w, lim
1

, , , .
w

z
0

( ¯) ( ¯ ¯ )
→

¯ρ
π

= ∂
| |

� (5)

This relation follows from a standard representation of the complex Dirac delta function

z
w

w z
lim .i
w i

2

0

2

2 2 2
( )

( )
( )

→
πδ λ

λ
− =

| |

| | + −| |
� (6)

The expression in the brackets on the r.h.s. of (3) can take formally the standard form of the 
resolvent (z  −  X)−1 at the price of introducing N N2 2×  matrices

Q
z w
w z

X
X

1
1 1
1 1

,
0

0
,N

N N

N N

¯
¯ †

⎜ ⎟
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝

⎞
⎠⊗ =

−
=X� (7)

in place of the original N N×  ones. The generalized resolvent is represented by a 2 2×  matrix

z z w w
N Q 1

, , ,
1

bTr
1

,
N

z w

w z

11 12

21 22
( ¯ ¯ )

¯ ¯

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟≡ =

⊗ −
=

∂ Φ ∂ Φ
−∂ Φ ∂ Φ

G
G G
G G X

� (8)

where the block-trace is defined as

B
C D

B
C D

bTr A TrA Tr
Tr Tr

.( ) ( )=

We note that G from (8) has the algebraic structure of quaternions and we refer to it as the 
generalized Green’s function or the quaternionic Green’s function [4, 5, 15], since both 

z z w w, , ,( ¯ ¯ )G  and Q are quaternions. Similarly, one can define the quaternionic R-transform, 
Q Q Q1[ ( )] [ ( )]+ =−R G G , which is additive under the free convolution of non-hermitian 

ensembles and generates also the non-hermitian multiplication laws [17]. We mention that the 
quaternionic extension is equivalent to another approach known under the name of hermitiza-
tion method [1, 7, 16], in which the diagonal and off-diagonal blocks of matrices Q and X  are 
flipped before the block-trace operation.

The upper-left element of the quaternionic resolvent 11G  is equal to G z z w w, , ,( ¯ ¯ ) (3), the 
second diagonal element 22G  is just its complex conjugated copy, but one may wonder what 
role is played by the off-diagonal elements of the 2 by 2 matrix G?
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If a non-normal matrix X is diagonalizable via a similarity transformation, it pos-
sesses distinct left and right eigenvectors X R Lλ= ∑α α α α , where X R Rλ=α α α  and 
L X Lλ=α α α  with the normalization L R δ| =α β αβ. However, neither the left and right 

eigenvectors are normalized to unity L L R R1| ≠ ≠ |α α α α  nor they are orthogonal to each 
other L L R R0| ≠ ≠ |α β α β  (for α β≠ ). The orthogonality relations hold only for normal 
matrices. We define a bra of the right eigenvector in the standard way ( )†=R Ri i , and analo-
gously a ket of the left eigenvector.

The biorthogonality condition leaves the freedom of rescaling each eigenvector by an 
arbitrary non-zero complex number R c Ri i i→ , L L ci i i

1→ − . Another allowed transfor-
mation is the multiplication by a unitary matrix R U Ri i→ , L L Ui i→ †. The simplest 
non-trivial quantities invariant under these transformations form the matrix of overlaps 

O L L R R≡ | |αβ α β β α . One can define a correlation function [18] (being the special case of 
the Bell–Steinberger matrix [19–21])

O z z
N

O z,
1

.
2

2( ¯) ( )( )∑ δ λ≡ −
α

αα α� (9)

Below we show that the product of off-diagonal elements of G in the limit w 0→| |  gives the 
eigenvector correlator, simplifying the proof, originally given in [6].

We rewrite the electrostatic potential (2) in terms of the regularized Fuglede–Kadison 
determinant [22], using the relation A ATr log log det=  and linearize it by bringing it to a 
block structure

Φ = − − +| | = − Xz z w w
N

z X z X w
N

Q, , ,
1

log det
1

log det .2( )( ¯ ¯ ) ( )( ¯ ) ( )†

�

(10)

We assume that the matrix X can be diagonalized by a similarity transformation X S S 1= Λ − , 
which enables us to rewrite the Fuglede–Kadison determinant as

( ) [ ( ) ]
¯

¯ ¯ ( )− = − =
− Λ − |

| − Λ
= +−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟X S X SQ Q

z w L L

w R R z
A F

1

1
det det det det ,

N

N

1

�

(11)

where S Sdiag , 1( ( ) )†= −S  is a block-diagonal matrix. Here S(S−1) are built from N right (left) 
eigenvectors of X. In the last equality we represent the matrix as a sum of diagonal A and block 
off-diagonal F. Making use of the result in ([23], theorem 2.3) we expand the determinant as 
follows

A F A F S S Sdet det det ,N1 2 2 1( )+ = + + + +…+ −� (12)

where

S
A

a a
F

det
det ,k

i i N i i
i i

1 2
, ,

k k

k

1 1

1

⩽ ⩽
∑=

…<…<
…� (13)

ai denotes the ith element on the diagonal of A, and Fi i, , k1…  is a k k×  submatrix the element of 
which lie at the intersections of i i, , k1 … th rows and columns.

If z is far from any of the eigenvalues of X, the regularization in (10) is not needed and one 
can safely set w 0→| | . In the w 0→| |  limit the non-vanishing contribution to the correlator 
comes when during the averaging procedure z is close to a certain eigenvalue iλ . We remark 
that in matrix models with unitary symmetry the probability of coalescence of two eigenvalues 
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is zero due to the presence of the Vandermonde determinant. Since S1  =  0, the dominant term 
in the expansion is

∑
λ λ

λ
λ

=
− −

− |

|

=
| − |

| | + | | | − |

=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

O

S
A

z z

w L L

w R R

A

z
w O w z

det
det

0

0

det
.

k l

N

k l

k l

l k

i
ii i

2
, 1

2
2 2

( )( ¯ ¯ )
¯

( )

�

(14)

In the first equality we used the fact that F is off-diagonal and the only non-zero terms 
correspond to i N1 ⩽  and i N2 ⩾  in (13). Since Adet  contains a factor z i

2λ| − | , we regrouped 
terms into the ones that z i( )λ−  has canceled (k  =  l), and others (k l≠ ) which include a factor 
of z iλ−  or its conjugate, denoting the sum over them by z i( )λ| − |O .

In the leading term we obtain

∂ − =
+| |λ| − |

XQ
w

w
log det ,w z

O
2i

ii

2( ) ¯
� (15)

therefore it is easy to see that

O z z
N

Q Q, lim
1

log det log det ,
w

w w
0 2

( ¯) ( ) ( )
→

¯π = ∂ − ∂ −
| |

X X� (16)

where we used the representation of the two-dimensional Dirac delta (6). Equation (16) is 
exact for any N. It is a characteristic property of probability density functions which are invari-
ant under the action of the U(N ) group that in the large N limit the average of two quantities A 
and B preserving the U(N ) symmetry factorizes. More precisely, we denote

f
N

Q g
N

Q
1

log det ,
1

log det .N w N w( ) ( )¯≡ ∂ − ≡ ∂ −X X

As indicated in section 5 of [10] it is enough to prove concentration of measure on the unitary 
group (i.e. assume deterministic singular values for X). Then, as in equation (34) in section 3.2 
of [10], by relying on corollary 4.4.28 of [24], we have that fN, gN, as well as that f gN N are 
almost surely close to their respectve expected values as N →∞.

Applying this to (16), we finally obtain

O z z, lim .
w

w w w
0

12 21 0( ¯)
→

¯π = ∂ Φ∂ Φ = −
| | | |=G G� (17)

3.  Diagonal overlaps and the stability of the spectrum

The diagonal elements of the matrix of overlaps play an important role in the stability of the 
spectrum of non-normal matrices as can be seen in the following example. Consider a diago-
nalizable matrix X which is slightly perturbed by P: X X P( ) = +ε ε . The first order perturba-
tion yields the leading term in ε

L P R L L R R P0 ,i i i i i i i i( ) ( ) ⩽ ∥ ∥λ λ| − |=| | | | | | | |ε ε ε� (18)

and the bound is reached if the perturbation is of rank one =P L Ri i . The square root of Oii 
is known in the numerical analysis community as the eigenvalue condition number i( )κ λ , intro-
duced in [25] (see also [26] for a review). The Cauchy–Schwartz inequality asserts that O 1ii ⩾ .

S Belinschi et alJ. Phys. A: Math. Theor. 50 (2017) 105204
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Generically, O Nii∼  in the bulk (see example 5 for the behavior at the edge), but for normal 
matrices Oij ijδ= , showing explicitly that the eigenvalues of normal matrices are the most 
stable. The definition (9) of O z z,( ¯) differs from the original one in [18] by the factor of N −1 
so that in the large N limit O z z,( ¯) remains finite. As a consequence of this normalization, for 
normal matrices there holds a relation O z z N z z, ,1( ¯) ( ¯)ρ= − .

The eigenvector correlator and the mean spectral density give a partial access to the con-
ditional probability of the eigenvalue condition numbers, namely their ratio is the conditional 
mean of the eigenvalue condition number

∫ ∫κ λ λ
λ
λ ρ

δ λ
ρ

= | = =
=
=

= − =−Ec z z N z
O

N

p O z

p z
O

z z

O

N
z p X X

O z z

z z
,

,
d

1

,
d

,

,
.i i

ii ii i

i
ii

ii
i

2 1 2( )( ¯) ( ) ( )
( ) ( ¯)

( ) ( ) ( ¯)
( ¯)

( )

�
(19)

Here we used the fact that the joint probability density for Oii and iλ  can be calculated by inte-
grating out all other variables from the joint pdf for the matrix elements. The additional N−1 
factor and the summation over the eigenvalues appears if one symmetrizes the integrand. Last, 
but not least, we mention that c z z,( ¯) is also known in physics as a Petermann factor (excess 
noise factor), reflecting the non-orthogonality of the cavity modes in open chaotic scattering 
[27–29].

4. The eigenvector correlator from the single ring theorem

In the previous section we have stressed that the full solution of the spectral non-hermitian 
problem requires the simultaneous knowledge of its eigenvalues and eigenvectors, since 
they mutually interact with each other already at the leading terms of the 1/N expansion. 
Considering now the case of the Haagerup–Larsen theorem, one may therefore wonder what 
has happened to the information about the correlator O z z,( ¯). Certainly, R-diagonal operators 
are not normal in general, so such correlators are different from zero. Luckily, the direct con-
struction of Belinschi, Speicher and Śniady can easily give the answer, we just read off the 
product of the appropriate elements of the Green’s function ([3], equation (31))

( ¯ ) ( ¯ ) ( )
( ( ) )
ω

ω
− − =

−| |
ε ε ε ε

ε
ε

G Gz z z z
z

, , i , i , , i , i
i

i
.12 21

2

2 2 2� (20)

The function i( )ω ε  is specified in [3], however its exact form is not necessary for our pur-
pose, since the upper diagonal element of the Green’s function satisfies the relation ([3], 
equation (32))

( ¯ )
( )ω

− =
| |

| | −
ε ε

ε
zG z z

z

z
, , i , i

i
.

2

2 2� (21)

In the limit 0→ε  the lhs tends to zG z z F z, , 0, 0( ¯ ) ( )≡ | |  which is the radial cumulative distribution 

function [1, 3] F r r r r2 d
r

0
( ) ( )∫π ρ= ′ ′ ′. It satisfies the functional equation S F r r1P

2
2( ( ) )− = −  

[2]. For simplicity we use the notation = | |r z . Combining (20) and (21) with (17), we finally 
obtain

O r
F r F r

r

1 1
,

2
( ) ( ) [ ( )]

π
=

−
� (22)

which represents the main result of this paper.
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5.  Examples

In this section we provide five examples: (1) free product of n complex Ginibre ensembles, 
(2) free product of n truncated Haar matrices, (3) free quotient of complex Ginibre ensembles, 
(4) free sum of k Haar measures, and (5) mean condition number for the Ginibre ensemble. 
Taking into account the simplicity of the main formula (1), generalizations to any domain of 
applicability of the single ring theorem are straightforward.

	 1.	Let us first take Y X X X... n1 2= , where Xi are free complex Ginibre ensembles. In this case 

the Haagerup–Larsen theorem yields F r rY n
2( ) =  for r  <  1 and 1 otherwise [30, 31], hence

O r
r

r
r

1
1 ,Y n

n

n,

2

2 2
( ) ( )

/

/π
θ=

−
−−� (23)

		 where θ denotes the Heaviside (step) function. For completeness we note that [32]

r
n

r r
1

1 .Y n n,
2 2( ) ( )ρ

π
θ= −−� (24)

		 Interestingly, even for the case n  =  1 the result for O r r r1 1Y ,1
1 2( ) ( ) ( )π θ= − −−  was 

obtained for the first time 33 years [6, 18] after the spectral density result r1Y ,1
1 ( )ρ π θ= −−  

derived in the seminal paper by Ginibre [33]. Figure 1(a) confronts our prediction with 
the numerical calculations. Recently, (23) was confirmed by independent calculation 
using diagrammatic methods [34].

	 2.	Let us also take =Y X X X... n1 2 , where Xi are truncated unitary matrices, i.e. Haar matrices 
of the size N L N L( ) ( )+ × + , in which L columns and rows are removed. In the limit 

where both L and N tend to infinity in such a way that L N/κ =  is fixed, FY
r

r1

n

n

2

2

/

/κ=
−

 for 

r 1 n 2( ) /κ< + −  and 1 otherwise [30], hence

O r
r

r r
r

1 1

1

1

1
.Y n

n

n n n n, ,

2

2 1 2 2 2
( ) ( )

( ) ( )

/

( )/ / /

⎛
⎝
⎜

⎞
⎠
⎟κ

π
κ
θ

κ
=

− +
− +

−κ −� (25)

0.0 0.2 0.4 0.6 0.8 1.0
0

1
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3

4

r

O
(r

)
a)

n=2

n=4

0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

r

O
(r

)

b)
n=2, =1/3

n=3, =1

Figure 1.  A numerical simulation (dots) of the eigenvector correlator for the product 
of (a) n  =  2, 4 complex Ginibre matrices of the size 1000 by 1000, averaged over the 
sample of 2000 matrices; (b) n  =  2, 3 truncated unitary matrices of the size L  =  1000, 

κ=N L done on the samples of 2000 matrices. The solid lines represent the analytic 
prediction. The fact that one observes datapoints outside the limiting spectrum is the 
effect of the finite size of matrices. Their agreement with the theoretical prediction 
(O(r)  =  0 outside) is related to the scaling of the diagonal overlap Oii (see also 
example 5).
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		 Figure 1(b) confronts our prediction with the numerical calculations.
	 3.	Let us consider k Ginibre ensembles Xi and the same number of inverse Ginibre ensem-

bles Xi
1˜− . Defining Y as the product Y X X X Xk k1 1

1 1˜ ˜= … …− −
, one easily obtains [35] 

S z z z1P
k k

2( ) ( ) /( )= − + . If we argue that the eigenvector correlator formula holds also for 
the unbounded measures, using the Haagerup–Larsen theorem we get a rather unexpected 
result:

r
k

r

r

O r
r

r

r

1

1
,

1

1
,

Y k k

Y k
k

k

,

2

2 2

, 2

2

2 2

k
2

( )
( )

( )
( )

/

/

ρ
π

π

=
+

=
+

−

�

(26)

		 i.e. the spectral density and the eigenvector correlator satisfy a very simple relation 
O r k rY k Y k, ,( ) ( )ρ= , which means that the eigenvalues are (on average) uniformly con-
ditioned. The formula for the spectral density agrees with the recent results [36]. In 
figure 2(a) we confront our result for the eigenvector correlator with numerical simula-
tions.

	 4.	Let us consider free convolution of k Haar-distributed matrices Uk, i.e. 

Y U U Uk1 2= + + +� . Then, FY
r k

k r

12

2 2

( )= −
−

 [2, 37] for r k<  and 1 otherwise, hence

r
k k

k r
k r

O r
r

k
r

1 1
,

1 .

Y k

Y k Y k

,

2

2 2 2

,

2

,

( ) ( )
( )

( )

( ) ( )
⎛
⎝
⎜

⎞
⎠
⎟

ρ
π

θ

ρ

=
−
−

−

= −
�

(27)

	 5.	Our formula (1) is valid only in the limit N →∞. In order to access condition numbers 
in the Ginibre ensemble in the finite N, we superimpose the results from [18] and [38], 
derived with the use of different techniques. We obtain the formula for the averaged 
squared eigenvalue condition number

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

r

O
(r

)
a)

0.1 0.5 1 5
1.×10- 4

5.×10- 4

0.001

0.005

0.010

0.050

0.100

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

|z|

c(
|z

|)

N=2
N=10

b)

Figure 2.  (a) The eigenvector correlator calculated by a numerical diagonalization of 
4000 matrices that are ratio of two Ginibres (also known as the spherical ensemble) 
of size N  =  1000 presented on linear and double logarithmic (inset) scales. (b) Mean 
eigenvalue condition number of the Ginibre ensemble. The complex plane was divided 
into the hollowed cylinders of radii r and +∆r r, eigenvalues and their condition 
numbers were assigned to cylinders, according to the modulus of the eigenvalue. The 
dots denote the average eigenvalue condition number within each cylinder, the lines 
present formula (28). Numerical distribution was obtained by the diagonalization of 106 
matrices of size N  =  2 and ⋅4 105 matrices of size N  =  10.
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( ¯)
( )

( )
= −| | +

| |
Γ | |

− | |
c z z z

N

N z

N N z
, 1

1 e

,
,

N z N
2

2

2

2

� (28)

		 valid for any size of a matrix. Here N x,( )Γ  stands for the incomplete gamma function. 
The accordance with the numerical results is presented in figure 2(b).

		 Formulas (23), (25) and (27) predict that the eigenvector correlator vanishes at the edges 
of the spectrum. It neither means that the eigenvectors become orthogonal to each other 
nor that the condition number is smaller than 1, rather the diagonal overlap grows slower 
than linearly with the size of a matrix. Indeed, an asymptotic analysis of the formula (28) 
yields the conditional expectation

λ
π π

| = | | = + + −OE O N N1
2 2

3
ii i

1 2 1 2( ) ( )/ /� (29)

6.  Eigenvector-eigenvalue mapping

Combining (1) with the definition of the radial spectral density r
r

F r

r

1

2

d

d
( ) ( )ρ =

π
, we can obtain 

a general relation between r( )ρ  and O(r). Solving a quadratic equation we arrive at

F r r O r
1

2
1 1 4 .2( ) ( ( ) )π= −∓� (30)

We remark that both signs are relevant. At the inner rim of the ring, F(r)  =  0, which corre-
sponds to the negative sign in (30). At the outer rim of the ring, F(r)  =  1, corresponding to the 
positive sign in (30). Differentiation of (30) with respect to r yields

r
r O r

O r r
O r

r

1

2 1 4
2

d

d
.

2
( )

( )
( ) ( )

⎜ ⎟
⎛
⎝

⎞
⎠ρ

π
=±

−
+� (31)

It is instructive to consider the Ginibre case. The spectral density calculated from (31), with 

the use of O r r r1 11 2( ) ( ) ( )θ= − −
π

, reads

ρ
π

θ
π
θ=± − − = −r r r r

1
sgn 1 2 1

1
1 ,2( ) ( ) ( ) ( )� (32)

where the switch from the branches of the square root in (30) takes place at r 1 2/= .

7.  Conclusions

We have augmented the single ring theorem with the additional prediction for certain eigen-
vector correlations. We pointed out a link between the main object of this paper and the sen-
sitivity of eigenvalues to perturbations. The considered correlation function, which is the 
spectral density weighted by the squared eigenvalue condition number, gives partial access to 
the distribution of eigenvalue condition numbers. We have shown that the ratio of the eigen-
vector correlation function and the spectral density gives the conditional expectation of the 
squared eigenvalue condition number. This ratio varies on the complex plane, indicating that 
the eigenvalues are not uniformly conditioned.

In a series of recent papers [39, 40] it was argued that the consistent description of non-
hermitian ensembles requires the knowledge of the detailed dynamics of the co-evolving 
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eigenvalues and eigenvectors. Unexpectedly, in the Gaussian case (Ginibre ensemble), the 
dynamics of eigenvectors seemed to play even a superior role (at least in the N →∞ limit) 
and leads directly to the inference of the spectral properties solely from the knowledge of the 
eigenvector correlator. The case considered here, the Haagerup–Larsen theorem, seems to 
agree with this scenario. We conjecture therefore that in generic non-hermitian ensembles the 
correlations between left and right eigenvectors play an equally important role as the spec-
tral information. Historically, in the literature on non-hermitian random matrix models, our 
parameter w always played the role of a regulator of the Fuglede–Kadison determinant, and 
was usually put to zero in an incautious way, and thus loosing a track of eigenvectors. That 
practice was a consequence of the duplication of the paradigm of hermitian random matrix 
models, which concentrates on the spectrum, since the U(N ) invariance of the probability 
density function leads to the decoupling of the eigenvectors. We suggest that this paradigm 
has to be challenged in the case of non-normal random matrix models, where the unitary trans-
formations are not sufficient to diagonalize a matrix. In particular, our formula (8) explicitly 
points at the symmetric nature of z and w as complex variables, controlling the spectra and 
eigenvectors, respectively. In particular, w z11 12∂ = ∂G G .

The presented new relation for eigenvectors in the single ring theorem is just the conse-
quence of the above-mentioned symmetry applied to R-diagonal operators.

On more general grounds, it is tempting to speculate that the interplay between eigenvector 
correlators and spectral measures may play a role in generalizations of the Brown measure, 
which will be free of pathological discontinuities, as observed in [41].
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Using diagrammatic techniques, we provide explicit functional relations between the cumulant generating
functions for the biunitarily invariant ensembles in the limit of large size of matrices. The formalism allows us to
map two distinct areas of free random variables: Hermitian positive definite operators and non-normal R-diagonal
operators. We also rederive the Haagerup-Larsen theorem and show how its recent extension to the eigenvector
correlation function appears naturally within this approach.
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I. INTRODUCTION

Over half a century ago, Jean Ginibre [1], driven solely
by the mathematical curiosity,1 considered a first non-normal
random matrix model. He proposed an ensemble, where
the elements of a random matrix were drawn from real
(complex, quaternion-valued) Gaussian distribution without
imposing any restriction on the symmetry of the ensemble.
Such a simple random matrix model (named today the
Ginibre ensemble) exhibited two main features distinguishing
it from earlier considered Hermitian or unitary ensembles,
which made a great impact in various fields of mathematics,
physics, statistics, and interdisciplinary applications. First, the
spectrum was complex, filling, in the limit when size of the
matrix tends to infinity, a uniform disk on the complex plane.
Second, the ensemble is non-normal, therefore possesses two
sets of left and right eigenvectors. It took several decades to
understand the role of left and right eigenvectors. In late 1990s,
in a series of papers by Fyodorov, Savin, Sokolov, Chalker, and
Mehlig [2] showed that for non-normal matrices another type
of observable, built out of right and left eigenvectors, plays
a crucial role in understanding non-Hermitian ensembles,
especially in the study of stability of the ensemble under small
perturbations. Nowadays, the non-normal random matrices
turned out to be beneficial for a plethora of problems
involving chaotic scattering in quantum physics [3,4], lagged
cross correlations [5,6], search algorithms [7], non-Hermitian
quantum mechanics [8,9], and many others.

From the perspective of this work, it is worthy of notice
that the Ginibre ensemble has another distinctive feature.
The probability measure of the above-mentioned ensemble
is invariant under the biunitary transformation, in contrast to
single unitary invariance in the case of the Dysonian threefold
way [10]. Since the unitary transformations related with the
singular value decomposition fall into the symmetry group of
the considered matrices, one expects that all spectral properties
are given by the (squared) singular values. Symmetry of the
ensemble assures also that the spectrum does not depend on

*maciej.a.nowak@uj.edu.pl
†wojciech.tarnowski@student.uj.edu.pl
1In his own words, “Apart from the intrinsic interest of the problem,

one may hope that the methods and results will provide further insight
in the cases of physical interest or suggest as yet lacking applications.”

the azimuthal angle φ, but is a function of a radial variable |z|
only.

In the limiting case of the size of the matrix N → ∞, the
Ginibre ensemble was also the first case of the later-termed
R-diagonal random matrices. The concept of the R-diagonal
operator was introduced formally by Nica and Speicher [11], in
the framework of Voiculescu’s theory of free random variables
[12]. We say that the operator X (or its matricial representation)
is R diagonal, if it can be decomposed as X = PU , where P

is Hermitian positive definite, U represents the Haar measure,
and P and U are mutually free. These are the natural extension
of the isotropic complex random variables, the probability
density function of which depends only of the modulus.
Since the R-diagonal operators play a vital role in several
applications of RMT—e.g., in MIMO telecommunication
[13] and quantum information problems [14], the study of
R-diagonal operators is not only an interesting subject from
the viewpoint of formal mathematics.

An early result for spectra of biunitarily invariant matrices
(but without explicit relation to the concept of R-diagonality)
was formulated in a paper by Feinberg and Zee [15], who
discovered the so-called “single-ring theorem”—the spectrum
of the biunitary invariant measure in the limit when the
N → ∞ is always confined between two rings, rin and
rout. This theorem was elaborated later in more detail by
Feinberg, Scalettar, and Zee in Ref. [16]. The single-ring
theorem includes also the cases when rin = 0 (disk, like the
Ginibre case) or rout = ∞. Independently, in the more general
framework of operator algebras Haagerup and Larsen [17]
have mathematically formulated the single-ring theorem in
terms of Voiculescu multiplicative S transform [18] for the
square of the polar operator P . Then the topic of R-diagonal
operators became the subject of intense research in mathemat-
ics. Another proof relying on the characteristic determinant
and integration over the unitary groups was given by Fyodorov
and Khoruzenko [19]. The direct and mathematically complete
link to random matrices was established quite late by Guionnet,
Krishnapur, and Zeitouini [20]. In 2015, Belinschi, Speicher,
and Śniady [21] have rigorously proven how the single-ring
theorem emerges as a result of the reduction of “Hermitization”
(“quaternionization”) approaches, proposed in the context of
physical problems involving non-Hermitian operators [22–26].
All these works were concentrating on spectral properties
of the single-ring theorem and did not address the issue
of eigenvector correlations. Very recently, the single-ring

2470-0045/2017/96(4)/042149(13) 042149-1 ©2017 American Physical Society
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theorem was augmented, using analytic methods, with the
part predicting also the generic form of a certain eigenvector
correlation function [27].

Historically, Voiculescu formulated the free probability
theory in the analytical language, but several years later,
Speicher and Nica reformulated it as a combinatorial theory
of noncrossing partitions, corresponding to planar diagrams in
physicists language. Despite that the R-diagonal concept was
originally introduced in a combinatorial language, all known
mathematical proofs and generalization of the Haagerup-
Larsen theorem were performed using the analytic methods of
free random variables, sometimes quite involved. Moreover,
despite that the original Feinberg and Zee’s approach to
the single-ring theorem relies on the resummation of planar
diagrams, they do not focus on their combinatorial aspects.

The intention of this work is to fill this gap and provide
the simple diagrammatic arguments leading directly to the
Haagerup-Larsen theorem, for both the spectra and the left-
right eigenvector correlator. In this way we build an explicit
relation between the R transform of the square of the Hermitian
operator P and the quaternionic R transform of R-diagonal
matrices.

The paper is organized as follows. In Sec. II, we recall
the diagrammatics of Hermitian ensembles leading to the
Voiculescu additive R transform for free convolution. We
note here that to avoid confusion coming from too many R’s
used traditionally in the free random variable calculus, we
denote the R-diagonal feature using the bold font. Section III
generalizes this diagrammatic construction to the case of non-
Hermitian operators, following quaternionization construction
[22,23]. Section IV shows the main result of the paper, i.e.,
the procedure of effective reduction of generic non-Hermitian
diagrammatics to the case of R-diagonal operators. The main
result is the diagrammatic derivation of the full (spectra and
eigenvectors) Haagerup-Larsen theorem. We also stress the
analogy between the Hermitian and R-diagonal cases, by
presenting the mapping between various transformations used
in free probability. We elucidate also an infinite resummation
of the corresponding diagrams emerging from the change of
the variables and leading to the change of the topology of the
interlocked one-line irreducible diagrams. This observation is
crucial for the proof. Finally, in Sec. V we consider three
explicit examples applying our construction for a simple
rederivation of the quaternionic R transform for the Haar
measure, the R-diagonal analog of free Poisson distribution,
and we study cumulants of the products of Ginibre matrices,
which turn out to be the so-called Raney numbers. Section VI
concludes the paper.

II. HERMITIAN RANDOM MATRICES

Before we focus on diagrams for non-Hermitian R-diagonal
matrices we present briefly the diagrammatic approach to large
Hermitian matrices and their integrable structure. We consider
random matrices, the probability density function (pdf) of
which is given by

P (H )dH = Z−1 exp[−NTrV (H )]dH. (1)

Here dH = ∏N
j=1 dReHjj

∏N
j,k=1
j<k

dReHjkdImHjk and

Hjk = H̄kj . The potential V (H ) = ∑∞
k=1 gkH

k is chosen
such that the pdf is normalizable. We also include a
possibility that some of g’s are zero. The normalizing constant
ensures that

∫
P (H )dH = 1. The pdf is invariant under the

unitary transformations H → UHU †, where U ∈ U (N ).
Since these transformations can bring H to the diagonal

form, the only invariant quantities are built out of its eigen-
values. The simplest possible such object is the one-point
correlation function, the spectral density

ρ(x) :=
〈

1

N

N∑
j=1

δ(x − λi)

〉
, (2)

where 〈. . .〉 denotes the average over the pdf (1),

〈f (H )〉 =
∫

f (H ) exp[−NTrV (H )]dH. (3)

In practice, the spectral density is inconvenient to handle
directly, thus one considers its Stieltjes transform (Green’s
function),

G(z) :=
〈

1

N
Tr

1

z1 − H

〉
, (4)

which is more tractable. The spectral density can be recovered
from G by means of the Sochocki-Plemelj formula

ρ(x) = − 1

π
lim
ε→0

ImG(x + iε). (5)

The Green’s function is also the generating function for
moments of the spectral density, as can be seen from the power
series expansion at z = ∞,

G(z) =
∞∑

k=0

1

zk+1

〈
1

N
TrHk

〉
=

∞∑
k=0

1

zk+1

∫
ρ(λ)λkdλ. (6)

For large matrices calculations of G can be done perturbatively.
Consider the averaged resolvent Ĝ = 〈(z1 − H )−1〉. The
unitary invariance of the pdf asserts that any quantity calculated
as an average of matrices H has a trivial matrix structure, i.e., it
is a multiple of the identity matrix (see [28,29] for calculations
of averages with respect to the unitary group and [30,31] for a
modern approach). We therefore treat them as scalars, which
also enables us to freely interchange the resolvent with its
traced version, the Green’s function. The resolvent can be
expanded into the geometric series

G1 = 1
z

+
〈

1
z
H

1
z

〉
+

〈
1
z
H

1
z
H

1
z

〉
+ · · · (7)

and the average in each term can be evaluated independently.
Sometimes it is convenient to rephrase the expansion into
moments around z = 0, then the useful generating function
reads

M̃(z) := 1

z
G

(
1

z

)
1

z
− 1

z
=

∞∑
k=1

mkz
k−1. (8)

For calculation of the averages in Eq. (7) we use the
diagrammatic representation, borrowing from standard field-
theoretical tools—Feynman diagrams. The main ingredient is
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G = + +

g4

+

g4 g4

+ . . .

FIG. 1. Several exemplary planar diagrams which appear in the expansion of the complex resolvent for the potential V (H ) = g2H
2 + g4H

4.
Double dots denote a matrix H and each dot carries an index (not shown explicitly) which refers to the entries of the matrix. A dashed horizontal
line with single dots at its ends represents 1

z
terms in the expansion (7). Gray circles denote the coefficients of the power expansion of the

potential (9), while budding white circles are the matrices in this expansion. For the simplicity, trivial summations of the identity matrix with
the relevant matrices in the expansion are presented as already merged circles.

the representation of the Kronecker δ function by a single
line. In the case of random matrix models the graphs have
a particularly simple form, since they basically control only
the flow of the indices of the averaged strings of matrices.
We distinguish the Gaussian part in the potential, while the
remaining part of the potential we expand into a series

exp[−NTrV (H )]

= exp(−Ng2TrH 2)
∞∑
l=0

1

l!

⎛
⎝−N

∞∑
k �=2

gkH
k

⎞
⎠

l

. (9)

Then we integrate it, term by term, with respect to the Gaussian
measure, making use of the Wick’s (Isserlis’) theorem, which
reduces the calculation of expectations of H ’s to the all
possible pairings. The price for the simplification of the
integrals is the proliferation of the terms in the integrand. In
order to cope with the multitude of expressions, we represent
them graphically as diagrams; see Fig. 1. A pairing of two
matrices we call a propagator, which brings a factor

〈HabHcd〉G = 1

g2N
δadδbc, (10)

which is represented by the double line. The terms on the right-
hand side of (9) bring additional factors: Ngk and k matrices to
be paired. The final expressions are represented by diagrams
obtained from all possible pairing of vertices and matrices
from the expansion (7) by the propagators (10).

Remarkably, in the large N limit only the planar diagrams
give the O(1) contribution, while the sum of all remaining
diagrams vanishes in this limit, which simplifies the theory.
This fact was observed by t’Hooft [32] in the context of non-
Abelian gauge theories. We remark here that the subleading
terms are successively accessible in the framework of loop
equations (see, e.g., [33]) and the O(N−2g) corrections are
encoded in diagrams that are planar when drawn on the surface
of genus g.

A. R transform and 1LI diagrams

Among the planar diagrams we distinguish a class of
one-line irreducible (1LI), i.e., the ones that cannot be split
into two by a single cut of a horizontal line. We denote by
� a sum of all 1LI diagrams and refer to this as self-energy.
Further, among the 1LI diagrams we distinguish the connected
subdiagrams which originate from the expectations 〈Hn〉,
where H ’s are separated by dashed horizontal lines. The
sum of such diagrams with the traced trivial matrix structure

we call the nth cumulant κn := 〈 1
N

TrHn〉c and endow the
corresponding average with the index c. We consider also
a generating function of all cumulants R(z) := ∑∞

n=1 κnz
n−1,

called the R transform.
The self-energy is the building block of the Green’s function

which can be expressed as a geometric series of �’s [see
Fig. 2(a)],

G(z) = 1

z
+ 1

z
�(z)

1

z
+ 1

z
�(z)

1

z
�(z)

1

z
+ · · · , (11)

written in a closed form,

G(z) = [z − �(z)]−1. (12)

The relation between the Green’s function and the self-energy
is known by the name of the Schwinger-Dyson equation.
Moreover, the planarity of diagrams allows us also to express
the self-energy through the Green’s function by means of the
R transform [see Fig. 2(b)]

�(z) = R(G(z)) =
∞∑

k=1

κkG
k−1(z) (13)

Combining (12) with (13) we arrive at the relation

R(G(z)) + 1

G(z)
= z, (14)

which, after introducing the auxiliary function B(z) = R(z) +
1/z (sometimes nicknamed Blue’s function), leads to the
relation of the functional inverse type, i.e.,

G(B(z)) = B(G(z)) = z. (15)

Knowledge of the R transform is sufficient to solve the matrix
model in the large N limit. We remark that the combinatorics
standing behind the planar diagrams is equivalent to the
axiomatic framework of the lattice of noncrossing partitions
in the free probability theory [34].

G = + Σ + Σ Σ + . . .

Σ =

κ1

+ G

κ2

+ G G

κ3

+ . . .

(a)

(b)

FIG. 2. (a) Relation between the Green’s function and the sum
over all 1LI diagrams. (b) Self-energy represented by the cumulants
and the Green’s function.
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B. Addition and multiplication of Hermitian random matrices

It is natural to ask a question about the spectral density of a
sum of two large matrices. In general, this is a very hard task
since the matrices can be correlated. In classical probability
of real variables, one has to know their joint distribution
in advance. The problem simplifies if they are independent
and the logarithm of the Fourier transform of the probability
density function is the quantity, which is additive when we add
two independent random variables.

In the noncommutative world of large random matrices the
notion of independence is replaced by freeness, a concept
introduced by Voiculescu [12]. We do not go into detail
concerning the free probability, we just mention the important
fact that the matrices A and UBU †, where U is Haar unitary,
are free in the limit when their size tends to infinity [35,36]. In
this framework, the R transform, which has already appeared
in the description of Feynman diagrams, is additive under the
addition of free random variables. The additivity of the R

transform in the language of Feynman diagrams was shown
in Ref. [37].

Although the product AB of two Hermitian matrices is
not Hermitian in general, assuming that at least one of these
matrices, let us say A, is positive definite, the construction
for multiplication is possible. Since A is Hermitian positive
definite, its square root A1/2 is also Hermitian, therefore the
matrix AB, isospectral to the Hermitian matrix A1/2BA1/2, has
real eigenvalues. The problem of multiplying large unitarily
invariant random matrices in the sense above is solved by the
S transform, which is related to the R transform via

R(z)S(zR(z)) = 1, S(z)R(zS(z)) = 1. (16)

These relations are particularly simple, if we use “tilded”
functions S̃(z) = zS(z) and R̃(z) = zR(z). Then S̃(z) is the
functional inverse of R̃(z)

R̃(S̃(z)) = S̃(R̃(z)) = z. (17)

This formulation requires RA(0) �= 0 �= RB(0), i.e., that the
first moments of both distributions do not vanish, for the S

transform to exist. This assumption can be further weakened
to the case when one of the distributions has zero mean [38].
There exists a different formulation of the multiplication rule
in terms of the R transforms solely [39],

RAB(z) = RA(x)RB(y), (18)

where x and y are related to z via

x = zRB(y), y = zRA(x). (19)

III. NON-HERMITIAN RANDOM MATRICES

A. Preliminaries

In this section we focus on the spectral properties of non-
Hermitian random matrices, the entries of which, Xjk = xjk +
iyjk , are generated from the probability distribution

P (X,X†)dXdX† ∼ exp[−NTrV (X,X†)]dXdX†, (20)

where the measure reads

dXdX† =
N∏

j,k=1

dxjkdyjk. (21)

Since X is not Hermitian, the potential depends also on X†

and non-normality of X allows for a much richer structure
of the potential than in the Hermitian case. We demand that
V is chosen such that the probability density function is
normalizable and real valued. The pdf is again invariant under
the unitary transformations.

Non-Hermitian matrices have in general complex eigenval-
ues. In such a case the Sochocki-Plemelj formula ceases to
work, therefore in order to find a spectral density one has to
resort to different methods. In the spirit of the electrostatic
analogy one introduces a potential [40–42]


(z,z̄,w,w̄) :=
〈

1

N
ln det[(z1 − X)(z̄1 − X†) + |w|21]

〉
(22)

and its z gradient

g(z,z̄,w,w̄) := ∂z
 =
〈

1

N
Tr

z̄1 − X†

(z1 − X)(z̄1 − X†) + |w|21

〉
.

(23)

The spectral density ρ(z,z̄) := 〈 1
N

∑N
i=1 δ(2)(z − λi)〉 is then

given by the Poisson law

ρ(z,z̄) = 1

π
lim

|w|→0
∂z̄g(z,z̄,w,w̄) = lim

|w|→0

1

π
∂zz̄
(z,z̄,w,w̄),

(24)

which simply follows from the representation of the two-
dimensional Dirac δ (Poisson kernel)

δ(2)(z) = lim
ε→0

1

π

ε2

(|z|2 + ε2)2
. (25)

The z gradient of the potential contains a quadratic
expression in the denominator, which makes it inconvenient
to calculate in the perturbative expansion. For the price of
doubling the size of a considered matrix one can linearize
g [22,24,26], introducing the generalized Green’s function,
which is a 2 × 2 matrix

G =
(

G11 G11̄
G1̄1 G1̄1̄

)
:=

〈
1

N
bTr

(
z1 − X iw̄1

iw1 z̄1 − X†

)−1〉
,

(26)

where we introduced a block trace operation, which, acting on
2N × 2N matrices, yields a 2 × 2 matrix

bTr

(
A B

C D

)
=

(
TrA TrB
TrC TrD

)
. (27)

The components of the generalized Green’s function read
explicitly

G11 =
〈

1

N
Tr

z̄1 − X†

(z1 − X)(z̄1 − X†) + |w|21

〉
= Ḡ1̄1̄,

G11̄ =
〈

1

N
Tr

−iw̄

(z1 − X)(z̄1 − X†) + |w|21

〉
= −Ḡ1̄1. (28)

One easily recognizes that the G11 entry of the generalized
Green’s function is exactly equal to (23). Moreover, the
generalized Green’s function can be written in the form
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which resembles the complex Green’s function for Hermitian
matrices,

G(Q) =
〈

1

N
bTr(Q ⊗ 1N − X )−1

〉
, (29)

where Q is a 2 × 2 matrix representation of a quaternion and
X is a duplicated matrix

Q :=
(

z iw̄

iw z̄

)
, X :=

(
X 0
0 X†

)
. (30)

The generalized Green’s function as a 2 × 2 matrix has a
structure of a quaternion, therefore we refer to this also as
the quaternionic Green’s function [23].

Solving the random matrix problem for the spectral density,
one always gets the entire generalized Green’s function,
obtaining the additional information stored in the off-diagonal
elements of G, which is as important as the spectral density
itself.

A non-Hermitian matrix, if it is diagonalizable, possesses
sets of left (〈L|) and right (|R〉) eigenvectors, solving the
eigenproblem

X|Ri〉 = λi |Ri〉, 〈Li |X = 〈Li |λi. (31)

The eigenvectors are biorthogonal, i.e., they are constrained
by the condition 〈Li |Rj 〉 = δij , but they are not orthogonal
among themselves 〈Li |Lj 〉 �= δij . The biorthogonality condi-
tion leaves freedom of rescaling each eigenvector by a nonzero
complex number |Ri〉 → ci |Ri〉 with 〈Li | → 〈Li |c−1

i , and of
multiplication by a unitary matrix |Ri〉 → U |Ri〉 with 〈Li | →
〈Li |U †. The vectors obtained by the latter transformation
are no longer the eigenvectors of X, but of another matrix
UXU †, which lies on the orbit of X under the symmetry
group of the joint pdf (20). The simplest nontrivial quantity
invariant under these transformations is the matrix of overlaps
Oαβ := 〈Lα|Lβ〉〈Rβ |Rα〉. Only for normal matrices Oij = δij ,
therefore the overlaps can be thought of as a measure of
non-normality of a matrix.

Chalker and Mehlig introduced in Ref. [43] a one-point
correlation function associated with the diagonal part of the
overlap matrix, being the special case of the Bell-Steinberger
matrix [44]

ON (z,z̄) :=
〈

1

N2

N∑
α=1

Oααδ(2)(z − λα)

〉
. (32)

In the large N limit the eigenvector correlation function
is given by the product of off-diagonal elements of the
quaternionic Green’s function [27,45],

O(z,z̄) := lim
N→∞

ON (z,z̄) = − 1

π
lim

|w|→0
lim

N→∞
G11̄G1̄1. (33)

The diagonal overlaps Oαα are the squares of the eigenvalue
condition numbers, Oαα = κ2(λα), known in the numerical
analysis community to play the significant role in the stability
of the spectrum against additive perturbations [46,47]. The
Cauchy-Schwartz inequality gives a bound Oii � 1 and
the inequality is saturated for normal matrices. The ratio
ON (z,z̄)/ρ(z,z̄) gives a conditional expectation of the squared

eigenvalue condition number [27]

ON (z,z̄)

ρ(z,z̄)
= E

(
1

N
κ2(λα)

∣∣∣∣z = λα

)
. (34)

B. Large N expansion of the quaternionic Green’s
function and Feynman diagrams

The procedure for the calculation of the quaternionic
Green’s function is only slightly modified, compared to the
Hermitian case. Again, the unitary invariance of the pdf
asserts that the untraced resolvent has a trivial structure
〈(Q ⊗ 1 − X )−1〉 = G ⊗ 1. We write the geometric series

G(Q) ⊗ 1

= Q−1 + 〈Q−1XQ−1〉 + 〈Q−1XQ−1XQ−1〉 + · · · ,

(35)

where Q = Q ⊗ 1. Now, due to the block structure originating
from the linearization, all objects in the above expansion,
apart from the matrix indices, possess additional indices
(1,1̄) enumerating the blocks of X and the elements of the
quaternion. The block trace operation taken at the end of the
calculations is in fact the partial trace over the matrix space.

To calculate the averages, we decompose the pdf into
Gaussian and residual parts. The most general, allowed by the
Hermiticity condition, Gaussian part of the potential (20) can
be written in a convenient form with σ > 0 and τ ∈ (−1,1),

PG(X,X†)

∼ exp

[
− N

σ 2

1

1 − τ 2

(
TrXX† − τ

2
Tr[X2 + (X†)2]

)]
.

(36)

The propagator therefore reads

〈
X αβ

ab X μν

cd

〉
G

= σ 2

N
[1 + (τ − 1)δαμ]δαβδμνδadδbc, (37)

where the Greek indices take values from {1,1̄} and the
Latin ones from {1,2, . . . ,N}. The residual part is expanded
into a power series, bringing additional matrices (vertices in
the diagrammatic representation), and all averages are then
calculated with respect to the Gaussian measure, which by
means of the Wick’s theorem reduces to the summation over
all possible pairings. The diagrammatic rules are exactly the
same as in the Hermitian case, apart from the additional Greek
indices, carried by each dot. In this paper we do not exploit the
index structure explicitly; for a thorough calculation involving
Gaussian matrices we refer to [6].

C. Quaternionic R transform

The structure of the Feynman diagrams is exactly the
same as for Hermitian matrices, but now the objects that we
calculate are 2 × 2 matrices. The Schwinger-Dyson equation
relating the quaternionic Green’s function with the self-energy
composed of 1LI diagrams then reads

G(Q) = [Q − �(Q)]−1. (38)

Now, due to the fact that in general X is not related with
X†, there are many types of cumulants in the expansion

042149-5



MACIEJ A. NOWAK AND WOJCIECH TARNOWSKI PHYSICAL REVIEW E 96, 042149 (2017)

TABLE I. Comparison between corresponding quantities in Hermitian vs non-Hermitian ensembles.

Hermitian Non-Hermitian

Spectrum real complex

Green’s complex valued quaternion valued

function G(z) = 1
N

〈Tr(z − H )−1〉 G(Q) = 1
N

〈bTr(Q − X )−1〉
Moments M̃(z) = 1

z
G

(
1
z

)
1
z

− 1
z

M̃(Q) = Q−1G(Q−1)Q−1 − Q−1

Cumulants R(z) = ∑
n κnz

n−1 [R(Q)]αβ = ∑
k,{i1...ik−2} c

(k)
αi1 ...ik−2βQαi1 ...Qik−2β

S-D eqs. R(G(z)) + 1
G(z) = z R(G(Q)) + (G(Q))−1 = Q

of G, corresponding to the connected averages of different
words, separated by a horizontal line (appropriate component
of Q−1), e.g., c11̄11̄ = 〈 1

N
TrXX†XX†〉c �= 〈 1

N
TrXXX†X†〉c =

c111̄1̄. Remarkably, all possible cumulants are stored in a single
object, the quaternionic R transform, which itself is a 2 × 2
matrix representation of the quaternion, defined as follows:

R(Q) ⊗ 1 = 〈X 〉c + 〈XQX 〉c + 〈XQXQX 〉c + · · · ,

(39)

more explicitly

R(Q)αβ = c(1)
α δαβ + c

(2)
αβQαβ +

∑
γ∈{1,1̄}

c
(3)
αγβQαγ Qγβ

+
∑

γ,ε∈{1,1̄}
c

(4)
αγ εβQαγ QγεQεβ + · · · . (40)

This definition is quite compact and deserves a more
intuitive explanation. Suppose that we know all cumulants and
we want to construct the R transform. We naturally associate
1̄ in the index of the cumulant with † in the corresponding
expression in X’s. The first and the last index of the cumulant
give us the appropriate component of R. Starting from the first
index, we move towards the rightmost one and each time we
make a step between two indices, we pick the component
of Q given by the indices we encounter. Q therefore can
be considered as a transfer matrix. The cumulant c

(4)
αβγ ε =

〈 1
N

TrXαXβXγ Xε〉c comes with the expression QαβQβγ Qγε

in Rαβ . For example, c1111̄ appears with Q11Q11Q11̄ = z2(iw̄)
in R11̄. The ability to store all mixed cumulant in a single object
relies on the fact that Q and X do not commute. The mapping
between R transform and the cumulants is not bijective, there
are different cumulants, which bring the same expression in
the components of Q to the quaternionic R transform.2 For the
one-to-one mapping, one has to consider either different Q’s
in the expansion (39) or a single Q, but with entries from a
noncommutative algebra.

The relation between the self-energy and the quaternionic
Green’s function through the connected diagrams can be
expressed via the quaternionic R transform �(Q) = R(G(Q)).
A direct relation between the generalized Green’s function
and the quaternionic R transform can be written in terms of
the auxiliary function, nicknamed Blue’s function, which is
the functional inverse of the quaternionic Green’s function

2For example a pair c
(6)
111̄11̄1 and c

(6)
11̄111̄1.

B(G(Q)) = Q = G(B(Q)). The R transform is then given by
R(Q) = B(Q) − Q−1. The inverse of Q is understood as the
matrix inverse.

The R transform for non-Hermitian matrices was discov-
ered in Refs. [15,22] as a function generating all 1LI diagrams.
The quaternionic structure was discovered much later [23].

We remark here that the mixed moments are encoded in the
same way in the quaternionic moment generating function

M̃(Q) = Q−1G(Q−1)Q−1 − Q−1. (41)

We conclude this section by a comparison of two for-
malisms (Table I), using calligraphic notation in the case of
non-Hermitian analogs of Hermitian entries.

In the next section we demonstrate how, in the case of R-
diagonal operators, the general formalism for non-Hermitian
ensembles reduces to quasi-Hermitian formalism for biunitary
invariant ensembles.

IV. BIUNITARILY INVARIANT RANDOM MATRICES

The presented construction for non-Hermitian random
matrices, despite its neatness, suffers from a limited practical
usage due to the procedure of functional inversion on route
from the R transform to the quaternionic Green’s function.
Even in the calculation for Hermitian matrices we are limited
by the degree of the polynomial equation that we have to solve.

There are classes of random matrices, the quaternionic R

transform of which can be calculated from simpler objects,
because the spectrum of such matrices is one dimensional and
matrices are normal. An embedding of complex transforms
of Hermitian matrices to the general setting of quaternionic
transforms in the non-Hermitian world was rendered by [23].
Later, an analogous embedding has been conducted for unitary
matrices [48].

In this section we discuss another class of random ma-
trices, the spectrum of which, despite being complex, is
effectively one dimensional, because the spectral problem
has an azimuthal symmetry. We consider matrices generated
according to the probability distribution function P (X,X†) ∼
exp[−NTrV (XX†)]. The symmetry in this case is enhanced
from U (N ) to U (N ) × U (N ). The spectrum of X is rotation-
ally symmetric on the complex plane ρ(z,z̄) = ρr (|z|) and the
entire information is encoded in the radial cumulative distri-
bution function F (s) = ∫

|z|�s
ρ(z,z̄)d2z = 2π

∫ s

0 s ′ρr (s ′)ds ′.
Such matrices are the natural extensions of the so called
isotropic complex random variables, the distribution of which
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depends only on their modulus. Moreover, the symmetry
transformations can bring the matrix to the diagonal form with
the singular values on the diagonal. It is natural, therefore,
to expect all spectral properties of X to be determined by its
singular values.

In the free probability community such objects are called
R diagonal; the meaning of this notion shall become clear
later. The R-diagonal operators have a polar decomposition
X = PU , where P is Hermitian positive definite, U is Haar
unitary, and P and U are mutually free. In the limit N → ∞
biunitarily invariant random matrices become the R-diagonal
operators, which was shown by Hiai and Petz [49, Theorem
4.4.5].

The first relation between the Green’s function of XX†,
encoding the distribution of the squares of the singular values,
and the radial cumulative distribution was found by Feinberg
and Zee [15]. They also found a very intriguing property that
the support of the spectrum of such matrix is either a disk or
an annulus, which bears the name of the single-ring theorem.
Later, Haagerup and Larsen [17] within the framework of free
probability derived a simple relation between the S transform
of XX† and the radial cumulative distribution function

SXX† [F (s) − 1] = 1

s2
. (42)

Recently [27], this theorem has been extended to describe also
the eigenvector correlation function

O(s) = F (s)[1 − F (s)]

πs2
. (43)

The relation between eigenvalues and squared singular values
of biunitarily invariant random matrices has been pushed much
further by Kieburg and Kösters who found an explicit integral
transform between their joint pdfs [50].

We remark here that the expression on the right-hand side
of the equality above has already appeared in the pioneering
paper by Feinberg and Zee [15], but without any connection
to eigenvectors.

A. 1PI diagrams

Due to the particular form of the potential, namely that X

and X† appear alternately, and the planarity of diagrams in the
large N limit, the structure of diagrams simplifies considerably.

The only nonvanishing cumulants correspond to the
expressions where X and X† are alternating, i.e., αn :=
〈 1

N
Tr(XX†)n〉c = c

(2n)
11̄11̄...11̄ = c

(2n)
1̄11̄1...1̄1. Let us consider a gen-

erating function for all such cumulants A(x) := ∑∞
k=1 αkz

k−1.
In the free probability context it is also known as the
determining sequence [11]. Due to the very simple structure
of nonvanishing cumulants, only one (commuting) variable is
sufficient to encode all cumulants.

According to the prescription (40), the quaternionic R

transform for biunitarily invariant random matrices reads

R = A(−|w|2)

(
0 iw̄

iw 0

)
. (44)

The R transform depends only on the off-diagonal elements
of the quaternion, which is a consequence of the fact that
X† has to be sandwiched between X’s and vice versa. In

∈
GXX† GXX†

κ3

∈ G11̄

c
(2)

11̄

(a)

(b)

FIG. 3. The average 〈(XX†)3〉 with respect to the Gaussian
measure exp(−NTrXX†) produces the same vertices which are
classified to different types of 1LI diagrams, depending on at which
expansion it appears. Diagram (a) appears in the expansion of the
complex resolvent of XX†, while (b) is in the expansion of the
quaternionic Green’s function of X. To distinguish between X and
X† we denote the first by double dots with white on the left, while
for X† it is the other way around. Two neighboring black dots joined
by a solid line denote matrix multiplication. The loop formed from
the black dots and propagators in (a) becomes an internal line of the
cumulant κ3 of XX†. The appearance of additional horizontal dashed
lines (appropriate components of Q−1) in (b) classifies this diagram
to a different class of 1LI diagrams.

the “hermitization” approach to non-Hermitian matrices, the
corresponding R transform is diagonal.

B. Relation between R transform of X X† and the
quaternionic R transform of X

Before we find a relation between the R transforms, let us
briefly explain why the alternating cumulants in the expansion
of the quaternionic Green’s function of X are not the same
as the corresponding ones of XX†. In both cases we consider
moments like 〈 1

N
Tr(X†X)k〉 in the moment expansion of the

Green’s function of XX†. The average is taken over the prob-
ability measure proportional to exp[−NTrV (X†X)]dXdX†.
There are two ways of calculating such an object.

First, making use of the symmetry of the potential, one
changes the integration measure from dXdX† into d(XX†)
and uses the tools for Hermitian matrices. In this approach,
however, the resulting Jacobian modifies the form of the
potential, which changes the structure of the vertices in the
expansion of the Green’s function.

In the diagrammatic approach for non-Hermitian problems,
we circumvent the calculation of the Jacobian, calculating
the averages with respect to the original measure. We remind
that the connected diagrams contributing to the kth cumulant
originate from the k matrices separated by horizontal lines. In
the expansion of the Green’s function of XX† the matrices X

and X† are merged and treated as a new single object, which
gives rise to the new connected diagrams. Some propagators
become internal lines, changing the topology of the diagrams
and producing effectively new types of vertices. The notion
of 1LI diagrams is always tied to the Green’s function, the
expansion of which is taken under consideration.

In Fig. 3 we present how the third cumulant of XX† emerges
from propagators, which are the only allowed lines for the
quadratic potential. Such a mechanism is at the heart of the
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ΣXX†
=

c
(2)

11̄

+

c
(2)

1̄1

c
(2)

11̄

+

c
(4)

11̄11̄

+

c
(6)

11̄11̄11̄

+

c
(2)

1̄1

c
(4)

11̄11̄

+

c
(2)

1̄1

c
(4)

11̄11̄

+

c
(2)

1̄1

c
(4)

11̄11̄

+

c
(4)

1̄11̄1

c
(2)

11̄

+

c
(2)

1̄1
c
(2)

1̄1

c
(2)

11̄

+ . . .

FIG. 4. Several lowest order 1PI diagrams contributing to �XX† .

powerful linearization technique, which allows for calculation
of spectra of products [39,51–53], polynomials [54,55], and
even of the rational expressions of random matrices [56].

Let us consider the expansion of the complex resolvent of
XX†,

GXX† (z)1 = 1
z

+
〈

1
z
XX† 1

z

〉
+

〈
1
z
XX† 1

z
XX† 1

z

〉
+ · · · .

(45)

Let us focus on 1PI diagrams, the simplest of which are
presented in Fig. 4. All vertices are already summed, such
that we depicted cumulants. Let us notice that in order to
have a 1LI diagram, the leftmost X has to be connected with
the rightmost X† through some cumulant. The matrices in
between legs of the outermost cumulant can be connected in
any manner. Further, we use the fact that the term 1

z
commutes

with X and X†, therefore we can rearrange diagrams, so that the
resulting diagrams in between legs are the ones of the Green’s
function of either XX† or X†X. The missing 1/z terms are
encapsulated by considering zG(z). The general structure of
the diagrams, presented graphically in Fig. 5, is now clear. The
equation generated by these diagrams reads

�XX† (z) = c
(2)
11̄ zGX†X(z) + c

(4)
11̄11̄zGX†X(z)

×GXX† (z)zGX†X(z) + · · · (46)

= zGX†X(z)
∞∑

k=1

αk[zGX†X(z)GXX†(z)]k−1

= zGX†X(z)A[zGX†X(z)GXX†(z)]. (47)

Using the general relation between the self-energy and the
Green’s function (13), we arrive at

RXX†(GXX† (z)) = zGX†X(z)A(zGX†X(z)GXX†(z)). (48)

Knowing that for square matrices GXX† = GX†X, which
follows from cyclicity of the trace, we can associate these
objects and skip the subscript for simplicity. Let us also make

a substitution z → B(z) and make use of the fact that B is a
functional inverse of G, to finally obtain

R(z) = zB(z)A(z2B(z)). (49)

This relation is convenient if knowing the quaternionic R

transform of X one wants to calculate the complex R

transform of XX†. To invert this relation, let us introduce
an auxiliary variable y := z2B(z). Note that zR(z) + 1 =
zB(z) = yA(y) + 1.

Introducing yet another variable t given by z =: tS(t),
where S(z) is the S transform and using the relation between
R and S transforms (16), we obtain

t = yA(y) and y = t(t + 1)S(t). (50)

Let us introduce another auxiliary transform K(z) related to A

in a similar way as R is related with S, namely

A(z)K(zA(z)) = 1, K(z)A(zK(z)) = 1. (51)

This definition says that zK(z) is a functional inverse of zA(z).
Such an inversion is always possible for nonzero R-diagonal
operators, since A(0) = c

(2)
11̄ = 〈 1

N
TrXX†〉. The last auxiliary

variable u, which we define via y =: uK(u), transfers (50) into

t = u and uK(u) = t(t + 1)S(t). (52)

This gives us the simple relation between K and S,

S(t) = 1

1 + t
K(t). (53)

The S transform of XX† is therefore related to the determining
sequence of X via

S(zA(z)) = 1

A(z)[1 + zA(z)]
. (54)

This relation is crucial in the derivation of the Haagerup-Larsen
theorem, as we demonstrate in the next section. One can apply
the relation between R and S transforms (16) to obtain an

FIG. 5. General structure of 1PI diagrams in the resolvent expansion of XX†.
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equation which allows us to calculate A from R,

R

(
z

1 + zA(z)

)
= [1 + zA(z)]A(z). (55)

We remark that the relations (49) and (55) were known earlier
in terms of coefficients of their expansions around z = 0 [34,
Proposition 15.6]. The functional relation, which is more oper-
ational, and all intermediate steps are the alternative approach.

To summarize this part, we have introduced a set of
auxiliary transforms in order to relate the R transform of XX†

with the determining sequence A(z), being the cornerstone of
the quaternionic R transform of R-diagonal matrices. In Fig. 6
we provide a guide through all transformations.

C. Haagerup-Larsen theorem

Using the above formalism we rederive in a compact way
Eqs. (42) and (43).

Making use of the form of the quaternionic R transform
(44) and the relation R(G) + G−1 = B(G) = Q, we obtain the
matrix equation

A(G11̄G1̄1)

(
0 G11̄

G1̄1 0

)
+ 1

G11G1̄1̄ − G11̄G1̄1

×
(

G1̄1̄ −G11̄
−G1̄1 G11

)
=

(
z iw̄

iw z̄

)
. (56)

We are now interested in calculating the spectral density and
the eigenvector correlator, so we set |w| → 0. Let us first
consider the upper-left component of matricial Eq. (56):

G1̄1̄

G11G1̄1̄ − G11̄G1̄1
= z. (57)

The 1̄1̄ component gives the complex conjugate of the above.
Combining them we easily deduce that zG11 = z̄G1̄1̄. Denoting
F := zG11 [15], we immediately obtain from (57) that

O(z,z̄) = − 1

π
G11̄G1̄1 = F − F 2

π |z|2 . (58)

Considering now the 11̄ component we obtain two possi-
bilities. First G11̄ = 0 and in consequence G11 = 1

z
, which is a

trivial solution, valid outside the spectrum. Second, assuming
G11̄ �= 0 we use (58) to arrive at

A(G11̄G1̄1)G11̄G1̄1 = F − 1. (59)

Now, evaluating the S transform at both sides of the equation
above, exploiting the relation between S and A (54), and using
(58) once again, we finally get

S(F − 1) = 1

A(G11̄G1̄1)[1 + G11̄G1̄1A(G11̄G1̄1)]
= 1

|z|2 ,

(60)

which is the statement of the original formulation of the
Haagerup-Larsen theorem. One deduces that F depends on
z and z̄ only through their modulus, therefore the spectral
density can be calculated by [15]

ρ(z,z̄) = 1

π
∂z̄G11 = 1

2π |z|F
′(|z|). (61)

Moreover, outside the support of the spectral density, the
trivial solution gives F = 1, therefore F is indeed the radial

cumulative distribution function. The inner and outer radii of
the spectrum can be calculated by imposing F = 1 (outer)
or that F is equal to the fraction of the zero modes (inner)
and solving the resulting equation for |z|. In general, (60) can
yield several solutions for F . The uniqueness of the radial
cumulative distribution function has been shown within the
framework of the analytic subordination function theory [21].

Multiplying (60) by (F − 1), evaluating the R transform on
both sides of the equation and making use of (16), we obtain

RXX†

(
F − 1

r2

)
= r2. (62)

Substituting F = 1 and taking into account that R(0) = κ1 =
m1, we relate the external radius with the first moment of XX†.

Using the relation SX(z)SX−1 (−1 − z) = 1 [57] and per-
forming analogous computations, we arrive at

R(XX†)−1 (−Fr2) = 1

r2
. (63)

Substitution F = 0 relates the first inverse moment of XX†

with the internal radius. To summarize, the internal and
external radii are given by

r2
ext =

∫
xρXX† (x)dx, r−2

in =
∫

x−1ρXX† (x)dx, (64)

which was observed independently in Refs. [16,17].

D. Addition and multiplication of R-diagonal matrices

The problem of addition of unitarily invariant non-
Hermitian random matrices was posed and solved a long time
ago [15,22]. It turns out that the quaternionic R transform
is additive under the addition of non-Hermitian matrices,
generalizing the result from free probability. Due to the
particular form of the quaternionic R transform for biunitarily
invariant large random matrices R-diagonal operators, their
addition boils down to the addition of the corresponding
determining sequences.

The multiplication is also straightforward for the reason that
the entire one-point spectral information is encoded in the S

transform of XX†, by virtue of the Haagerup-Larsen theorem.
Yet, the matrix ABB†A† has the same eigenvalues as BB†A†A,
and if A and B are free, then SABB†A†(z) = SA†A(z)SBB†(z),
which shows that the S transform of XX† is multiplicative.

We remark here that the rules for multiplication and addition
of R-diagonal operators were known in free probability, but
were given in terms of a boxed convolution of determining
sequences with an auxiliary Möbius sequence [11]. Our
approach, which uses functions instead of the coefficients
of their expansion is more operational. Together with the
Haagerup-Larsen theorem this allows us to calculate spectral
densities and the eigenvector correlator easily. The presented
functional approach is complementary to the special case
of the rectangular free probability [58]. Within the latter
formalism, when adding R-diagonal operators, one deals with
a symmetrized distribution of X†X, while our approach pro-
vides a very simple prescription for calculation of an additive
quantity. Moreover, the explicit form of the quaternionic R

transform enables us also for addition with non-Hermitian
random matrices which are not biunitarily invariant.
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R(z)

S(z)

S(z)R(zS(z)) = 1 R(z)S(zR(z)) = 1

A(z)
R z

1+zA(z) = A(z) (1 + zA(z))

R(z) = (zR(z) + 1)A z2R(z) + z

K(z)
K(z) = (1 + z)S(z)

A(z)K(zA(z)) = 1 K(z)A(zK(z)) = 1

G R+ 1
z = z

R(G) + 1
G = z

G(z)
G(z) = ρ(λ)dλ

z−λ

ρ(x) = − 1
π lim →0 ImG(x+ )

ρXX†(x)

S(F (|z|) − 1) = 1
|z|

F (|z|)
ρ(|z|) = 1

2π|z|F (|z|)

F (|z|) = 2π
|z|
0

rρ(r)dr

ρX(|z|)

FIG. 6. Diagram of intermediate transforms, linking the spectral density of squared singular values and the radial profile of the eigenvalue
density. The diagram also present the relation and all intermediate steps between the R-transform of squared singular values and the determining
sequence of an R-diagonal operator. The lower left branch is discussed in Sec. IV C.

E. Abelization

One way of generating complex isotropic variables is given
in terms of the radial profile of the corresponding pdf. Its
natural extension for noncommutative random variables is
given by the Haagerup-Larsen theorem.

The radial distribution ρr (|z|) of an isotropic complex
random variable z = x + iy can be also recovered from the
marginal distribution of its real part,

ρx(x) =
∫ √

R2−x2

−√
R2−x2

ρ(|z|)dy = 2
∫ ∞

x

ρ(r)rdr√
r2 − x2

. (65)

Here R is the radius of the support of the distribution, which
can be infinite. The last integral is the Abel transform of the
radial profile, which can be inverted via

ρ(r) = − 1

π

∫ ∞

r

dρx(x)

dx

dx√
x2 − r2

, (66)

giving the exact one-to-one mapping between radial density
profile of a complex number and the distribution of its real
part.

One can ask whether a counterpart of this relation exists
in the noncommutative free probability. Biely and Thurner
[5] conjectured that the Abel transform directly transfers to
matrices. Later, it was pointed out that the Abel transform
does not give a proper spectral density for the product of two
GUE matrices [51]. Recently, the authors has shown that such
a procedure, coined as Abelization, works for normal matrices,
the spectrum of which possesses an azimuthal symmetry [6].
The biunitarily invariant matrices are in general not normal,
which can be seen from the fact that the eigenvector correlation
function O(|z|) does not vanish.

Consider now the R transform of the matrix X + X†, which
is twice the Hermitian part of X. This matrix appears in
the description of the transient regime of a linear dynamical
system [59]. Its cumulants can be related to the non-Hermitian
cumulants, encoded in the determining sequence, via

RX+X† (z) =
∞∑

k=1

zk−1

〈
1

N
Tr(X + X†)k

〉
c

=
∞∑

k=1

2z2k−1

〈
1

N
Tr(XX†)k

〉
c

= 2zAX(z2). (67)

In the second equality we have used the fact that the only
nonvanishing cumulants of the R-diagonal operators are αk =
〈 1

N
Tr(XX†)k〉c, which can be extracted from the even powers

of X + X† exactly in two ways. The connected cumulants
are encoded in the determining sequence A instead of the R

transform of XX†, because in the expansion of the Green’s
function of X + X† matrices X and X† are separated by either
1
z

term or a plus sign.

V. APPLICATIONS OF THIS FORMALISM

A. Quaternionic R transform of Haar unitary matrix

We consider a unitary matrix UU † = 1, the spectral density
of which is uniform on the unit circle. Due to unitarity,
RUU † (z) = 1 and from (16) S(z) = 1, hence K(z) = 1 + z.
Substituting z → xA(x) and using (51), we obtain the
quadratic equation

xA2(x) + A(x) − 1 = 0. (68)

Knowing that A(0) = c11̄ = 〈 1
N

TrUU †〉c = 1, we choose the
appropriate branch of the solution. From (44) we deduce the
quaternionic R transform, which reads

R(Q) = 1 −
√

1 − 4|w|2
2|w|2

(
0 iw̄

iw 0

)
. (69)

The same result was derived in Ref. [48] using a different
technique. We remark that the free cumulants are αn =
(−1)n−1Cn−1, where Cn−1 = 1

n+1

(2n

n

)
are the Catalan numbers,

in agreement with [60].

B. Free non-Hermitian Poisson

In Hermitian free probability, the counterpart of the Poisson
distribution is the Wishart distribution, which has all cumulants
the same, equal to q. The matrix model corresponding to
this distribution is constructed as follows. Take X a N × T

rectangular matrix with independent identically distributed
(iid) normal complex entries. The spectral density of 1

T
XX†

in the limit N,T → ∞ with T/N = q fixed is given by the
Wishart law.

Let us consider now the isotropic ensemble with all
αn = limN→∞〈 1

N
Tr(XX†)n〉c = q the same for any n � 1

and vanishing all other mixed cumulants. The generating
sequence is therefore A(z) = ∑∞

k=1 qzk−1 = q

1−z
. The S trans-
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form reads S(z) = [(1 + z)(q + z)]−1 and the application of

the Haagerup-Larsen theorem yields F (r) = 1−q+
√

(q−1)2+4r2

2 ,
where the positive branch of the solution was taken, so that the
cumulative distribution function (cdf) is increasing. We easily
recover the spectral density and the eigenvector correlator,

ρ(r) = max(0,1 − q)δ(2)(z) + 1

π
√

(1 − q)2 + 4r2
θ (

√
q − r),

(70)

O(r) = q
√

(q − 1)2 + 4r2 − q2 + q − 2r2

2πr2
θ (

√
q − r).

(71)

Remarkably, the spectral density corresponds to the density
of eigenvalues in the model 1

T
XY †, where X and Y are inde-

pendent N × T matrices the entries of which are iid normal
complex, considered in the limit N,T → ∞, with q = T/N

fixed [53], generalizing the result from the Hermitian case.

C. Cumulants of products of Ginibre matrices

Let X be a complex Ginibre matrix. The S transform of
XX† reads S(z) = (1 + z)−1. Let us consider a product of k

independent Ginibre matrices. The multiplication law leads to
Sk = (1 + z)−k . Using the relation (54) we obtain the algebraic
equation for the determining sequence,

[zAk(z) + 1]k−1 = Ak(z). (72)

The solution can be written in a power series [61]

Ak(z) =
∞∑

n=1

An−1(k − 1,k − 1)zn−1, (73)

where

An(p,r) = r

np + r

(
np + r

m

)
= r

n!

n−1∏
i=1

(mp + r − i) (74)

are the two parameter Fuss-Catalan numbers, also known
as Raney numbers. The R-diagonal cumulants are therefore
α(k)

n = An−1(k − 1,k − 1) = An(k,1). Such numbers have ap-
peared in the free probability many times [62–64] and densities
associated with them have been extensively studied [65,66].

D. Commutator [X,X†]

One of many measures of non-normality of a matrix
(see, e.g., [67]) is defined through the spectral properties
of a Hermitian matrix C := XX† − X†X. Usually it is a
square root of its Frobenius norm or the square root of
the largest eigenvalue. Substituting the polar decomposition
X = PU , one obtains C = P 2 + U (−P 2)U †. The unitary
matrices assert that in the large N limit the summands are free
and their addition reduces to the addition of the corresponding
R transforms,

RC(z) = RP 2 (z) + R−P 2 (z) = RP 2 (z) − RP 2 (−z), (75)

since RaX(z) = aRX(az).
In the simplest instance, the Ginibre matrix, the R transform

of the commutator reads RC(z) = z
1−z2 , which corresponds to

the distribution known as the Tetilla law, derived in Ref. [68].
It was proven to be the limiting law for the anticommutator of
Hermitian Wigner matrices [69]. Recently, it has also found
an application in quantum information [70].

VI. SUMMARY

In this work, we have formulated a diagrammatic con-
struction for R-diagonal operators or, equivalently, biunitary
invariant random matrices in the limit when the size of
the matrix tends to infinity. Relations between individual
cumulants and moments were known, but were expressed
usually in terms of ζ functions and their inverses (Möbius
functions), and the explicit functional relation between the
corresponding generating function was so far unknown. Then,
adapting the formalism of free random variables for the
Hermitian and the non-Hermitian ensembles to the case of
R-diagonal operators, we have obtained a concise proof of the
original Haagerup-Larsen theorem for the isotropic spectra
(single-ring theorem) and of its recent extension for the case
of the correlation function, which involves overlaps of left and
right eigenvectors of non-normal matrices.

Hitherto, all proofs of the single-ring theorem in the
formalism of free random variables were based on the analytic
methods, so providing the concise diagrammatic proof is an
interesting result. It is also interesting to speculate why the
eigenvector part of single-ring theorem was missed for almost
20 years (counting from the original formulation by Feinberg
and Zee), despite several followups and generalizations in
physical and mathematical literature. We dare to link this fact
to the very subtle and underappreciated role of the complex
parameter w in the “electrostatic potential” (or the regularized
Fuglede-Kadison determinant in mathematical language) in
Eq. (22). When considering the spectra, this parameter serves
solely as the infinitesimal regulator, which is put to zero after
performing the average over the ensemble. However, since it
appears also in a nontrivial way in off-diagonal components
of the quaternionic Greens’ function (28), contributing to
the left-right eigenvector correlations, particular care has to
be taken during the limiting procedure. Actually, looking
at our prescription for R transform for biunitarily invariant
ensembles (44) one clearly sees that taking the limit |w| → 0
in a hasty way makes our construction meaningless. Moreover,
keeping w �= 0 causes that Q do not commute with the
linearized matrix X , which in turn is crucial in encoding all
mixed cumulant in the quaternionic R transform.

Last but not least, taking into account the rapidly growing
impact of free random variable calculus onto so many
branches of modern applications [13,14,71] we hope that
the operational construction presented here will contribute to
further interweaving of both communities of mathematicians
and practitioners.
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1 Introduction

Non-normal operators are ubiquitous in physical models. Examples include hydrodynam-

ics, open quantum systems, PT-symmetric Hamiltonians, Dirac operators in the presence of

a chemical potential or finite angle θ. Non-normality is responsible for the transient dynam-

ics, sensitivity of the spectrum to perturbations, pseudoresonant behavior and rapid growth

of the perturbations of the system [1]. These effects are relevant in plasma physics [2], fluid

mechanics [3], ecology [4, 5], laser physics [6], atmospheric science [7], and magnetohydro-

dynamics [8], just to mention a few. Non-normality is common in dynamical systems as

its simplest source is the asymmetry of coupling between components.
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Historically, most of the studied properties of non-normal random operators dealt

with the eigenvalues. The eigenvalues of such operators are usually complex, requiring new

calculational techniques, at the level of both macroscopic and microscopic correlations.

Surprisingly, this quest for complex eigenvalues has eclipsed the study of eigenvectors,

which are perhaps most distinctive features of non-normal operators. In particular, non-

normal operators have two sets of eigenvectors, left and right, which are non-orthogonal

among themselves, but can be chosen to be bi-orthogonal, provided that the non-normal

operator can be diagonalized at all.

One of the first attempts to develop a systematic understanding of the non-ortho-

gonality of eigenvectors in non-Hermitian random matrices was made by Chalker and

Mehlig [9, 10]. Despite their study concentrated on the complex Ginibre ensemble, per-

haps the simplest non-normal random operator, the results turned out quite non-trivial

and revealed the possibilities of well-hidden universal properties of eigenvectors of non-

normal operators. Another connection of the properties of non-normal operators and their

eigenvectors to free probability was established soon after [11], but the systematic study

of this topic has not followed. Only very recently, the topic of eigenvectors of non-normal

operators was picked back up. First, the transient growth driven by eigenvector non-

orthogonality was proposed as a mechanism of amplification of neural signals in balanced

neural networks [12–14] and giant amplification of noise crucial in the formation of Turing

patterns [15–17]. Second, the non-orthogonality of eigenfunctions was related to the statis-

tics of resonance width shifts in open quantum systems [18], which was soon confirmed

experimentally [19]. Third, the essential role of eigenvectors in stochastic motion of eigen-

values was revealed [20–22]. Last but not least, the topic has triggered the attention of the

mathematical community [23, 24].

In this work we focus on statistical ensembles of complex non-Hermitian matrix models,

the probability density of which is invariant under the action of the unitary group P (X) =

P (UXU †). We also assume that in the N → ∞ limit, at which we are working, the

eigenvalues of X concentrate on a compact domain of a complex plane. Our results are

valid for |z − w| of order 1. We will study one-point and two-point Green functions built

out of left and right eigenvectors. Here we recall, that if a non-normal matrix X can

be diagonalized by a similarity transformation X = SΛS−1, it possesses two eigenvectors

for each eigenvalue λi: right |Ri〉 (a column in the matrix notation) and left 〈Li| (row),

satisfying the eigenequations

X |Ri〉 = λi |Ri〉 , 〈Li|X = 〈Li|λi. (1.1)

These eigenvectors are not orthogonal 〈Li|Lj〉 6= δij 6= 〈Ri|Rj〉, but normalized by the

biorthogonality condition 〈Li|Rj〉 = δij . They also satisfy the completeness relation∑N
k=1 |Rk〉 〈Lk| = 1. These two properties leave a freedom of rescaling each eigenvec-

tor by a non-zero complex number, |Ri〉 → ci |Ri〉 with 〈Li| → 〈Li| c−1
i . They also allow

for multiplication by a unitary matrix |Ri〉 → U |Ri〉 and 〈Li| → 〈Li|U †. Upon the sec-

ond transformation the new vectors are not the eigenvectors of the original matrix but of

one given by the adjoint action of the unitary group X → UXU †, which suggests that a

natural probability measure should assign these two matrices the same probability density
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function (pdf). The simplest object, which is invariant under these transformations, is the

matrix of overlaps Oij = 〈Li|Lj〉 〈Rj |Ri〉 [9, 10].

To see how the eigenvector correlation functions appear naturally, let us consider an

average
〈

1
NTrf(X)g(X†)

〉
, where f, g are two functions analytic in the spectrum of X and

〈f(X)〉 =
∫
f(X)P (X)dX denotes the average with respect to the pdf P (X). Taking f = g,

we get the (normalized) Frobenius norm of a function of matrix. The 1/N normalization

was taken to get a finite quantity in the N → ∞ limit. Using the spectral decomposition

X =
∑N

k=1 |Rk〉λk 〈Lk| and inserting the identity, 1 =
∫
dµ(z)δ(2)(z−λk) twice, we obtain

the expression 〈
1

N
Trf(X)g(X†)

〉
=

∫
dµ(z)dµ(w)f(z)g(w̄)D(z, w), (1.2)

with

D(z, w) =

〈
1

N

N∑
k,l=1

Oklδ
(2)(z − λk)δ(2)(w − λl)

〉
. (1.3)

The two dimensional Dirac delta is understood as two deltas for real and imaginary parts

δ(2)(z) = δ(Rez)δ(Imz), and the measure dµ(z) = dxdy for z = x+ iy. D(z, w) introduced

in [9, 10] is the density of eigenvalues weighted by the invariant overlap of the corresponding

eigenvectors. It is split into a regular and singular part D(z, w) = Õ1(z)δ(2)(z − w) +

O2(z, w), where

Õ1(z) =

〈
1

N

N∑
k=1

Oiiδ
(2)(z − λi)

〉
, O2(z, w) =

〈
1

N

N∑
k,l=1
k 6=l

Oklδ
(2)(z − λk)δ(2)(w − λl)

〉
.

(1.4)

A one-point function, defined this way, in the bulk and far from the rims of the complex

spectra grows linearly with the size of a matrix. To have a finite limit in large N , one

considers the scaled function O1(z) = 1
N Õ1(z). Throughout the paper we shall use only

the ‘untilded’ function.

The one-point function O1 plays an important role in scattering in open chaotic cavi-

ties [18, 25] and random lasing [26, 27], where the so-called Petermann factor [28] modifies

the quantum-limited linewidth of a laser. It is also crucial in the description of the dif-

fusion processes on matrices [21, 22] and gives the expectation of the squared eigenvalue

condition number [29], an important quantity governing the stability of eigenvalues [1, 30].

The exact calculations are possible for Gaussian matrices [9, 10, 23], in the matrix model

for open chaotic scattering [26, 27, 31] and for products of small Gaussian matrices [32].

For the Ginibre matrix the full distribution of the diagonal overlap is available and turns

out to be heavy-tailed, as discovered by Bourgade and Dubach [24] with the use of prob-

abilistic techniques, and investigated later using integrable structure and sypersymmetry

by Fyodorov [33].

Despite that the overlap between eigenvectors are crucial in the description of the

dynamic of the linear system [34] and in the decay laws in open quantum systems [35], the

two-point function is much less known. The exact results are obtained only for the Ginibre
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matrix [9, 10, 24] and for open chaotic scattering with a single channel coupling [31]. Even

the asymptotic results are known only for Gaussian matrices [9, 10] and the quantum

scattering ensemble [36]. The aim of this paper is to extend the known asymptotic results

and develop a diagrammatic technique for calculation of the two-point function in the large

N limit.

The paper is organized as follows. In section 2 we briefly recall the cornerstones

of diagrammatic calculus [11] for one-point Green’s functions in the large non-Hermitian

ensembles, to show an analogy between the formalism developed in this paper and the

diagrammatic approach to one-point functions. This encapsulates both the mean spectral

density and the one-point eigenvector correlation function O1. Appendix A shows concrete

calculations within this formalism for the elliptic ensemble.

Section 3 contains the main body of the paper — a formalism for the calculation of O2

in the large N limit. We extend the diagrammatic technique introduced by Chalker and

Mehlig for Gaussian matrices to any probability distribution with unitary symmetry. Reg-

ularizing and linearizing the product of resolvents, we embed them into the quaternionic

space. The analysis of planar Feynman diagrams leads us to the matrix Bethe-Salpeter

equation (3.15), which relates the product of resolvents with the one-point Green’s function

and planar cumulants. The latter are encoded in their generating function — quaternionic

R-transform, see (3.16). As a result, the two-point eigenvector correlation function is

completely determined by the one-point functions encoding the spectral density and O1.

This result resembles the Ambjørn-Jurkiewicz-Makeenko universality for Hermitian ensem-

bles [37].

We also study the traced product of resolvents h(z, w̄) =
〈

1
NTr(z1−X)−1(w̄1−X†)−1

〉
,

which allows for the calculation of the average (1.2) as a Dunford-Taylor integral [38, 39]〈
1

N
Trf(X)g(X†)

〉
=

1

(2πi)2

∫
γ
dz

∫
γ̄
dw̄f(z)g(w̄)h(z, w̄), (1.5)

where contours γ̄,γ encircle all eigenvalues of X clockwise and counterclockwise, respec-

tively. We derive the equation for h, expressing it in terms of quaternionic R-transform

and traced resolvents, see (3.18) and (3.19).

An important and still quite large subclass of non-Hermitian ensembles for which the

main equations (3.15)(3.16) admit further simplifications consists of matrices, the pdf of

which is invariant under the transformation by two independent unitary matrices U, V ∈
U(N), i.e. P (X) = P (UXV †), thus called the biunitarily invariant ensemble [40]. In this

case we obtain a compact formula for the two-point eigenvector correlation function

O2(z1, z2) =
1

π
∂z̄1∂z2

z̄1(z1 − z2)O1(r1) + z2(z̄1 − z̄2)O1(r2)

|z1 − z2|2 [F (r1)− F (r2)]
. (1.6)

Here F is the radial cumulative distribution function (cdf), defined as F (r) = 2π
∫ r

0 ρ(s)sds,

with ρ(s) the spectral density circularly symmetric on the complex plane. The one-point

eigenvector function is related to F via [29]

O1(r) =
F (r)(1− F (r))

πr2
, (1.7)

– 4 –
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and r = |z|. The traced product of resolvents is shown to take a universal form

h(z, w̄) =
1

zw̄ − r2
out

, (1.8)

where rout is the spectral radius. This result has been already obtained for the Ginibre

ensemble [10] and, recently, for matrices with independent identically distributed (iid)

entries [41].

Applications of the developed formalism are presented in section 4, where we consider

an elliptic ensemble, some instances from the biunitarily invariant class: truncated unitary,

induced Ginibre, the product of two Ginibres and their ratio. As the last example we con-

sider a pseudohermitian matrix — a product of two shifted GUE matrices. In section 5,

we discuss the consequences of our large N results on the microscopic regime. We conjec-

ture, on the basis of the few examples solved in the literature and using our own results,

that the two-point eigenvector correlation functions may exhibit universal bulk scaling, as

what happens for the microscopic spectral two-pointers in Hermitian matrix models. More

precisely, we conjecture that in generic complex non-Hermitian matrices for all points in

the bulk at which the spectral density does not develop singularities there exists a limit

lim
N→∞

N−2O2

(
z +

x√
N
, z +

y√
N

)
= O1(z)Φ(|x− y|), (1.9)

where

Φ(|ω|) = − 1

π2|ω|4
(

1− (1 + |ω|2)e−|ω|
2
)
. (1.10)

Section 6 concludes the paper and points at some possible further developments.

2 Non-Hermitian random matrices

In non-Hermitian random matrix theory one is primarily interested in the distribution of the

eigenvalues ρ(z) =
〈

1
N

∑N
i=1 δ

(2)(z − λi)
〉

. The 2-dimensional Dirac delta can be recovered

using the relation ∂z̄
1
z = πδ(2)(z). Unfortunately, the average over the ensemble of the

trace of the resolvent g(z) =
〈

1
NTr(z1−X)−1

〉
does not yield the correct result inside the

spectrum, as one would naively expect. The reason for this failure is that differentiation

and taking the ensemble average are not interchangeable. This phenomenon was termed

the spontaneous breaking of holomorphic symmetry [42].

A way to circumvent this obstacle is to consider a regularization of the Dirac delta. In

RMT one mostly considers the 2D Poisson kernel

πδ(2)(z) = lim
ε→0

ε2

(|z|2 + ε2)2
= lim

ε→0
∂z̄

z̄

|z|2 + ε2
. (2.1)

The expression on the right hand side provides a prescription for how the resolvent in the

spectrum of X should be regularized. Having this hint in mind, one defines

g(z, z̄, w, w̄) =

〈
1

N
Tr(z̄1−X†)[(z1−X)(z̄1−X†) + |w|21]−1

〉
. (2.2)

– 5 –
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The spectral density can be now calculated via

ρ(z, z̄) =
1

π
lim
|w|→0

∂z̄g(z, z̄, w, w̄), (2.3)

which can be also understood as a Poisson law in 2D electrostatics, since

ρ(z, z̄) = lim
|w|→0

1

π
∂z∂z̄Φ(z, z̄, w, w̄), (2.4)

where

Φ(z, z̄, w, w̄) =

〈
1

N
ln det[(z1−X)(z̄1−X†) + |w|21]

〉
(2.5)

is the (regularized) electrostatic potential of charges interacting via repulsive central force

F (r) ∼ 1
r .

2.1 Linearization

Due to the quadratic expression in X in the denominator, the average in (2.2) is intractable

when non-normal matrices are considered. To circumvent this problem one introduces the

2N × 2N matrix [42–45]

G =

〈(
z1−X iw̄1

iw1 z̄1−X†

)−1〉
(2.6)

and the block trace operation, mapping 2N × 2N matrices onto 2× 2 ones

bTr

(
A B

C D

)
=

(
TrA TrB

TrC TrD

)
. (2.7)

Then, one defines the 2× 2 Green’s function

G(z, z̄, w, w̄) =

(
G11 G11̄

G1̄1 G1̄1̄

)
=

1

N
bTrG(z, z̄, w, w̄). (2.8)

Its upper-left entry is exactly the desired function g (cf. (2.2)). Once Green’s function is

known, one gets four elements of G. The entry G1̄1̄ is just the complex conjugate of G11,

thus does not provide any additional information. The off-diagonal entries G11̄ = −Ḡ1̄1 in

the large N limit give the one-point eigenvector correlation function [11]

O1(z) = lim
|w|→0

− 1

π
G11̄G1̄1. (2.9)

2.2 Quaternionic structure

Green’s function can be conveniently written as

G =

〈
1

N
bTr(Q−X )−1

〉
=

(
∂Q11Φ ∂Q1̄1

Φ

∂Q11̄
Φ ∂Q1̄1̄

Φ

)
, (2.10)

– 6 –
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with

X =

(
X 0

0 X†

)
, Q = Q⊗ 1, Q =

(
z iw̄

iw z̄

)
. (2.11)

This form of Green’s function resembles its traditional form as a traced resolvent, but now

its argument is a 2× 2 matrix and the matrix X is duplicated to incorporate also X†. The

matrix Q is a representation of a quaternion q = x + iy + ju + kv with the identification

z = x+ iy and w = v + iu [46]. The entries of G satisfy the same algebraic constraints as

Q, therefore G is itself a quaternion and we refer to it as the quaternionic Green’s function,

similarly G is called the quaternionic resolvent.

2.3 Averages in large N

We are interested in calculations of the averages of some functions of X, e.g.
〈
f(X,X†)

〉
,

with respect to distributions invariant under the adjoint action of the unitary group P (X) =

P (UXU †). We parameterize them by

P (X) ∼ exp
(
−NTrV (X,X†)

)
. (2.12)

V (X,X†), often referred to as potential, has to be Hermitian and growing sufficiently fast at

infinity. To simplify calculations, we split the potential into the Gaussian and the residual

part. The Gaussian part can be conveniently parameterized with σ > 0 and τ ∈ [−1, 1] [47]

VG(X,X†) =
1

σ2(1− τ2)

(
XX† − τ

2

(
X2 + (X†)2

))
. (2.13)

Averages with respect to the Gaussian potential by the virtue of Wick’s theorem reduce to

products of pairwise expectations, called propagators

〈XabXcd〉G =
σ2τ

N
δadδbc,

〈
XabX

†
cd

〉
G

=
σ2

N
δadδbc. (2.14)

The exponent of the residual part of the potential is expanded into series, which produces

additional terms, called vertices, to be averaged with respect to the Gaussian distribution.

To cope with the multitude of terms, we represent them as diagrams (see table 1 for an

overview). This introduces a natural hierarchy of diagrams according to their scaling with

the size of the matrix. The dominant contribution, which is of the order of 1, comes from

planar diagrams (see figure 1). The subleading corrections can be classified by the genus

of the surface at which they can be drawn without the intersection [48].

2.4 Moment expansion of the quaternionic resolvent

To calculate the average of the quaternionic resolvent, we write it as

G=
〈(

1−Q−1X
)−1
〉
Q−1

and expand it into the geometric series

G = Q−1 +
〈
Q−1XQ−1

〉
+
〈
Q−1XQ−1XQ−1

〉
+ . . . , (2.15)
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Figure 1. Examples of planar (a) and non-planar (b) diagrams in the diagrammatic expansion

of the Gaussian model coming from the term
〈
Q−1(XQ−1)4

〉
. For a general matrix model with

an arbitrary potential the order of the diagram is given by NL+V−P , where V is the number of

vertices, L is the number of loops and P is the number of propagators comprising the diagram. This

shows that the dominant contribution comes from the planar diagrams. The contribution from the

non-planar diagram on (b) is of order N−2, thus vanishes in the large N limit.

propagator 〈Xαβ,ijXµν,jk〉G
i j

βα

lk

µ ν Green’s

function
Gαβ = 1

N bTrG G
α β

horizontal

line
(Q−1)αβδij

i j

α β
vertex Ng3X

α
ijX

β
jkX

γ
ki

g3

i j
α

j

k β
i

kγ

resolvent G =
〈

(Q−X )−1
αβ,ij

〉
G

i j

α β
cumulant

〈
Xα
ijX

β
jkX

γ
ki

〉
c

c3

α β γ
i j j k k i

Table 1. Diagrammatic representation of the basic expressions in the moment expansion of the

resolvent. The propagator represents the averages with respect to the Gaussian potential (2.14). An

exemplary vertex is drawn for the theory which contains the cubic interaction Ng3TrXαXβXγ in

the potential. A cumulant (dressed vertex) represents a sum over all connected diagrams connected

to the baseline. Its structure in matrix indices (Latin letters) is the same as that of the vertex,

because the propagators are the Kronecker deltas in this indices. The dashed line without arrows

represent summation over Latin indices only.

and perform averages in the large N limit, as described in the previous section. The

expansion is valid, provided that ||Q−1X|| < 1, thus for z inside the spectrum of X, we

need to keep w finite. If the spectrum is bounded, one can always find sufficiently large

w, so that this series is absolutely convergent. For the calculations with z outside the

spectrum one can safely set w = 0.

It is convenient to introduce a notation, which incorporates the block structure of the

duplicated matrices. We therefore endow each matrix with two sets of indices, writing

for example Gαβ,ij . The first two Greek indices, which we also refer to as quaternionic

indices, enumerate blocks and take values 1 and 1̄. The Latin ones, running from 1 to N

enumerate matrices within each block. The space described by the Latin indices we call

simply the matrix space. The block trace operation can be represented as a partial trace

over the matrix space G(Q)αβ = 1
N

∑N
i=1 Gαβ,ii (see also table 1). Due to the fact, that

the propagators are expressed in terms of Kronecker deltas, all averaged expressions have

trivial matrix structure, e.g. G = G⊗ 1, but we need this notation for the next section.

Among all diagrams contributing to G (see figure 2 for an example) we distinguish

a class of one-line irreducible diagrams (1LI), i.e. the ones that cannot be split into two

– 8 –



J
H
E
P
0
6
(
2
0
1
8
)
1
5
2

G = + +

g4

+

g4 g4

+ . . .

Figure 2. Some exemplary planar diagrams in a model with a quartic term g4X
4 contributing to

the Green’s function. All diagrams (except for the first) are 1PI.

G = + Σ + Σ Σ + . . .

Σ =

c1

+ G

c2

+ G G

c3

+ . . .

a)

b)

Figure 3. a) First Schwinger-Dyson equation. Diagrams contributing to the Green’s function

can be divided into one-particle irreducible (1PI) and the ones composed of 1PI connected by a

horizontal line (corresponding to Q−1). b) Second Schwinger-Dyson equation. Any 1PI planar

diagram can be represented as a certain connected subdiagram attached to the baseline (horizontal

line from the graphical representation of the expansion (2.15)) via k propagators (this is the k-th

cumulant). The diagrams between the legs of the cumulant can be of any type, which are in turn

encoded in the Green’s function. Since all cumulants are encoded in their generating function —

the quaternionic R-transform (2.19), this relation leads to the equation Σ(Q) = R(G(Q)).

parts, connected only through Q−1. Let us denote as Σ a sum of all 1LI diagrams. This is

a building block of the quaternionic resolvent, since any diagram can be decomposed into

1LI subdiagrams connected through Q−1. Having the absolute convergence of the series,

we rearrange terms, obtaining the Schwinger-Dyson equation (here we restrict it only to

the quaternionic part)

G(Q) = Q−1 +Q−1Σ(Q)Q−1 +Q−1Σ(Q)Q−1Σ(Q)Q−1 + . . . , (2.16)

presented also diagrammatically in figure 3a). This is a geometric series, which can be

summed and written in a closed form

G(Q) = (Q− Σ(Q))−1 . (2.17)

2.5 Quaternionic R-transform

To find G, one needs to relate Σ to G. To this end, let us consider diagrams contributing

to averages of traced strings of X’s and X†’s such that all X’s and X†’s are connected

with each other. Their sum we call a cumulant (in field theory language it is known

as a dressed vertex) and endow the respective average with a subscript c. We adopt a

convenient notation for cumulants in which † is associated with the 1̄ index and, trivially,
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lack of conjugation with 1. We also encode the length of the string. An example reads

c(k)
α1α2...αk

=

〈
1

N
TrXα1Xα2 . . . Xαk

〉
c

. (2.18)

We also introduce the R-transform, which is a 2× 2 matrix, defined through its expansion

for small arguments

Rαβ = c(1)
α δαβ + c

(2)
αβQαβ +

∑
µ∈{1,1̄}

c
(3)
αµβQαµQµβ +

∑
µ,ν∈{1,1̄}

c
(4)
αµνβQαµQµνQνβ + . . . (2.19)

This definition written in terms of indices may not seem to be intuitive, but in the matrix

notation takes a clearer form

R(Q)⊗ 1 = 〈X 〉c + 〈XQX〉c + 〈XQXQX〉c + . . . , (2.20)

which is the counterpart of (2.15). The matrix R is also a quaternion, so it is dubbed

the quaternionic R-transform. Q is always associated with two consecutive indices in the

cumulant and can be thought of as a transfer matrix. It is crucial for encoding all cumulants

in the R-transform that matrices X and Q do not commute.

Consider now any 1LI diagram. Due to its irreducibility it can be depicted as a

certain cumulant connecting the first and last X and possibly some others in between. The

subdiagrams disconnected from the cumulant can be in any form, which is already encoded

in the quaternionic Green’s function. This allows us to write the second Schwinger-Dyson

equation relating Σ and G via the quaternionic R-transform (see also figure 3b))

Σ(Q) = R(G(Q)). (2.21)

The knowledge of all cumulants allows us to solve the matrix model, since equations (2.17)

and (2.21) can be brought to a single 2× 2 matrix equation

R(G(Q)) +G(Q)−1 = Q. (2.22)

Once the averaging with respect to the ensemble was taken at the level of diagrams, we

can safely remove the regularization and solve the above algebraic equation, setting first

w = 0. We refer to [49, 50] for more detailed calculations in the diagrammatic formalism.

The construction presented in this section has been recently rigorously formalized in

the framework of free probability [51].

3 2-point eigenvector correlation function

3.1 Preliminaries

In order to investigate the 2-point eigenvector correlation function associated with

the off-diagonal overlap, we follow the paradigm outlined in the previous section for

calculations of Green’s function. A naive approach, i.e. calculation of h(z1, z̄2) =〈
1
NTr(z11−X)−1(z̄21−X†)−1

〉
, yields the result which is correct only outside of the
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spectrum of X, which we refer to as the holomorphic solution. Inside the spectrum, we

regularize each resolvent, using the rule

(z1−X)−1 → (z̄1−X†)M(z, w)−1, (3.1)

where M(z, w) = (z1−X)(z̄1−X†) + |w|21. We shall therefore study

h(z1, w1, z2, w2) =

〈
1

N
Tr(z̄11−X†)M(z1, w1)−1M(z2, w2)−1(z21−X)

〉
. (3.2)

The weighted density is therefore given by

D(z1, z2) = lim
|w1|,|w2|→0

1

π2
∂z̄1∂z2h(z1, w1, z2, w2). (3.3)

In this paper we will calculate h by diagrammatic 1/N expansion in the planar limit.

The singular part of D(z1, z2) containing the Dirac delta is not accessible in perturbative

calculations, so we get

O2(z1, z2) = lim
|w1|,|w2|→0

1

π2
∂z̄1∂z2h(z1, w1, z2, w2). (3.4)

There exists a class of matrices which despite not being Hermitian have a real spectrum.

A simple example is the product of two Hermitian matrices A,B, one of which (let us say A)

is positive definite. The resulting matrix is not Hermitian, but isospectral to A1/2BA1/2,

which must have real eigenvalues. The eigenvectors of AB are not orthogonal, which makes

O2 non-trivial. The realness of the spectrum facilitates calculations, as the knowledge of

the traced resolvent is sufficient. By the virtue of the Sochocki-Plemelj formula valid for

real x we can write

2πiδ(x) = lim
ε→0

(
1

x− iε −
1

x+ iε

)
, (3.5)

and the two-point function can be calculated from the holomorphic function via

O2(x, y) =
−1

4π2
(h(+,+)− h(+,−)− h(−,+) + h(−,−)) , (3.6)

where

h(±,±) = lim
ε1,ε2→0

h(x± iε1, y ± iε2) (3.7)

and signs are uncorrelated.

3.2 Linearization

The expression for the regularized product of resolvents (3.2) contains two quadratic non-

linearities. We overcome this difficulty, by using 2N × 2N matrices Q = Q⊗ 1, P = P ⊗ 1

and X , where

Q =

(
z1 iw̄1

iw1 z̄1

)
, P =

(
z2 iw̄2

iw2 z̄2

)
, X =

(
X 0

0 X†

)
. (3.8)
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As a natural generalization of the quaternionic resolvent to two-point functions, we define

the average of the Kronecker product of two quaternionic resolvents

H =
〈
(Q−X )−1 ⊗ (PT −X T )−1

〉
. (3.9)

Such an object is quite unusual in Random Matrix Theory. A similar construction was

used by Brezin and Zee for the calculation of the connected 2-point density in Hermitian

models [52], but there one deals only with matrix indices. To the best of our knowledge

the quaternionic approach to two-point functions for non-Hermitian matrices is considered

for the first time, thus we will discuss it in more detail.

H is a 4N2 × 4N2 matrix with a very specific block structure. To keep track of it, we

endow H with 8 indices. The upper ones refer to the first matrix in the Kronecker product,

while the lower ones to the second. As in the case of the quaternionic Green’s function,

Greek indices, taking values in {1, 1̄}, enumerate blocks, while Latin indices ranging in

{1, . . . , N} denote elements within each block. In the index notation, its components read

(note the transpose of the second matrix)

Hαβ,ijµν,kl =
〈

(Q−X )−1
αβ,ij (P − X )−1

νµ,lk

〉
. (3.10)

With the same assumptions as for one-point functions, the resolvents are then expanded

into the power series

H =
〈(
Q−1 +Q−1XQ−1 + . . .

)
⊗
(
P−1 + P−1XP−1 + . . .

)T〉
, (3.11)

and taking the expectation produces diagrams. The flow of Latin (matrix) indices in the

diagrams follows the lines in the double line notation. The propagators are symmetric,

thus the direction does not matter. The flow of quaternionic (Greek) indices is governed

by their order in the expansion of the resolvent. Since the quaternion matrices Q and P

are not symmetric, the direction of the line representing Q−1 matters and is depicted by an

arrow. We draw diagrams in such a way that the terms in the expansion of the resolvents

are in two rows, hereafter called baselines, with the first resolvent above. The quaternionic

indices flow from left to right in the upper baseline and in the opposite direction below.

There are two ways of contracting matrix indices,1 thus we define two functions

Kαβ
µν =

1

N

N∑
i,j=1

Hαβ,ijµν,ij , Lαβµν =
1

N2

N∑
i,j=1

Hαβ,iiµν,jj , (3.12)

which correspond to contractions presented in figure 4a). It will become clear later that K

encodes correlations of eigenvectors and L of eigenvalues. These two possible contractions

define two different classes of planar diagrams. The admissible diagrams have to be drawn

in the region of the plane bounded by baselines and dashed lines depicting contractions.

The diagrams contributing to K are of the ladder type (see figure 5), while the class of

planar diagrams contributing to L, termed wheel diagrams, is broader, as it admits for

1In fact, there are 4!
22·2!

= 3 ways, but
∑
ij H

αβ,ij
µν,ji leads to the same diagrams as Kβα

µν .
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H

α, i

µ, k

β, j

ν, l

Hαβ,ij
µν,kl =

L
α β

µ ν

= N2Lαβµν

K

α β

µ ν

= NKαβ
µν

a) b)

g4

c)

Figure 4. a) Possible contractions of matrix indices (dashed lines) of the Kronecker product of

two quaternionic resolvents. The way one contracts indices determines the class dominant planar

diagrams, which are drawn between dashed lines and the horizontal baselines. The upper choice

corresponds to a class of double-trace two-point functions, see (5.2), while the lower possibility leads

a single-trace two point function encoding correlations of eigenvectors. Diagrams contributing to L

are of wheel type [52, 53] and K is given as a sum of ladder diagrams. b) An example of a diagram

which contributes to L but is subleading in the calculation of K. c) An example of a diagram

appearing during the calculation of L, which despite its planarity is subleading.

K = + + g4 + g4 + . . .

Figure 5. Some exemplary diagrams in a theory with quartic potential contributing to K.

circumventing one of the baselines if the points on the baseline are connected through

propagators and vertices, see figure 4b). Not all planar diagrams contribute equally to L.

Diagrams in which a propagator connects two sides of a vertex and encircles a baseline is

subleading, see figure 4c). In this section we concentrate on the ladder diagrams.

3.3 Ladder diagrams

In this section we are interested in the calculation of K. The contraction of matrix indices

in H, which leads to K, is in fact a summation of all N4 elements within each 4× 4 block.

To make the notation of Greek indices even more explicit, we write the entries of K

K =


K11

11 K11
11̄
K11̄

11 K11̄
11̄

K11
1̄1 K11

1̄1̄
K11̄

1̄1
K11̄

1̄1̄

K 1̄1
11 K 1̄1

11̄
K 1̄1̄

11 K 1̄1̄
11̄

K 1̄1
1̄1 K 1̄1

1̄1̄
K 1̄1̄

1̄1
K 1̄1̄

1̄1̄

 . (3.13)

An important consequence of this construction is that the K11
1̄1̄

element is exactly the

desired function h (3.2) for the calculation of the eigenvector correlation function.

Let us define Kαβ,ijµν,kl the sum of all ladder diagrams contributing to K (before we

contract indices). A vertex can connect two points on a baseline (a side rail of the ladder),

dressing the part of the rail. There are also vertices connecting two baselines, which give

rise to the rungs of the ladder. If we denote Γαβ,ijµν,kl a sum of all connected subdiagrams
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K =

G

G
+

G

G
Γ

G

G
+

G

G
Γ

G

G
Γ

G

G
+ . . .

Figure 6. The general structure of planar ladder diagrams contributing to K.

K =

G

G
+

G

G
Γ K

Figure 7. Matrix Bethe-Salpeter equation (3.14).

which connect two rails, one can express K in terms of Γ as a geometric series, presented

in figure 6, which can be written in a closed form (a sum over repeating indices is implicit)

Kαβ,abµν,cd = GαβGµνδ
abδcd +GαγGµρδ

aiδcjΓ
γε,ik
ρσ,jlK

εβ,kb
σν,ld . (3.14)

This relation, shown diagramatically in figure 7 and known as the matrix Bethe-Salpeter

equation, is the counterpart of the Schwinger-Dyson equation for the two-point function,

with Γ the counterpart of the self-energy.

A direct analysis of planar diagrams yields Γαβ,ijµν,kl = 1
NB

αβ
µν δikδ

j
l , where B is of order 1,

see figure 8. Using the matrix structure of Γ, we trace out the matrix indices and find the

equation for K, which in the matrix notation reads

K(Q,P ) = G(Q)⊗GT (P ) +
[
G(Q)⊗GT (P )

]
B(Q,P )K(Q,P ). (3.15)

We now turn our attention to the rungs. Any diagram contributing to Γ can be

decomposed as a certain cumulant of length n ≥ 2, the first k legs of which are attached

to the upper rail, while the last legs are connected to the lower rail. The part of the rail

between the legs of the cumulant gets dressed to the quaternionic Green’s function G(Q)

above and G(P ) below. The space between k-th and (k+ 1)-th legs is left unfilled, because

the quaternonic indices at the end of rails are not contracted. This decomposition of Γ is

depicted in figure 9. As Γ is completely determined by the planar cumulants, Bαβ
µν can be

calculated from the quaternionic R transform (2.19). The rule is simple and goes as follows.

Consider the expansion of Rαµ in Q (2.19) and differentiate it with respect to Qβν .

As a result for some 0 < k < n − 1 the k-th quaternion Qµkµk+1
will be replaced by

δµkβδνµk+1
. Then all Qµlµl+1

’s from the l.h.s. of the removed Q (i.e. for l < k) are replaced

by Gµlµl+1(Q) and all Qµlµl+1
on the right (l > k) by GTµlµl+1

(P ). Then the sum over all

possible positions (i.e. k’s), where Q has been removed, is performed.
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g4

Figure 8. An example of a diagram contributing to Γ. It contributes to the second-to-last diagram

in figure 9. Since the matrix indices follow the solid lines and propagators are given by Kronecker

deltas, Γαβ,ijµν,kl = 1
NB

αβ
µν δ

i
kδ
j
l , allowing for the calculation of K.

Γ = C(2) +

G

C(3) +

G
C(3) +

G G

C(4) +

G

C(4)

G
+

G G
C(4) + . . .

Figure 9. Γ given by the planar cumulants.

B can be therefore expressed in terms of cumulants as a power series

Bαβ
µν (Q,P )

=
∞∑

k,l=1

∑
σ1,...,σk
ρ1,...,ρl

δασ1δβσkδµρlδνρ1c
(k+l)
σ1...σkρ1...ρl

Gσ1σ2(Q) . . .Gσk−1σk(Q)Gρ1ρ2(P ) . . .Gρl−1ρl(P ),

(3.16)

where all σi and ρj take values in {1, 1̄} and for k = 1 or l = 1 Gσkσk+1
reduces to Kronecker

delta. An application of this procedure to the quantum scattering ensemble is presented

in appendix B.

We remark that the additivity of the quaternionic R-transform under the addition of

unitarily invariant non-Hermitian matrices implies additivity of B.

3.4 Traced product of resolvents

In the holomorphic domain outside the spectrum the situation simplifies considerably,

because one can set |w| → 0 at the very beginning of calculations. Green’s function is

then diagonal, G(z, z̄) = diag(g(z), ḡ(z̄)), where g(z) =
〈

1
NTr(z1−X)−1

〉
and ḡ(z̄) =〈

1
NTr(z̄1−X†)−1

〉
. Due to such a structure, B is also diagonal with components

Bαβ
µν = δαβδµν

∞∑
k,l=1

c
(k+l)
α . . . α︸ ︷︷ ︸

k

µ . . . µ︸ ︷︷ ︸
l

(gα(z1))k−1 (gµ(z2))l−1 , (3.17)

where we assume the standard convention g1(z) = g(z) and g1̄(z) = ḡ(z̄). A matrix

equation (3.15) splits into decoupled scalar equations with the explicit solution for the

component of our interest

K11
1̄1̄ =

g(z1)ḡ(z̄2)

1− g(z1)ḡ(z̄2)B11
1̄1̄

. (3.18)
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The desired component of B obtained from (3.17) reads

B11
1̄1̄ =

∞∑
k,l=1

c
(k+l)

1 . . . 1︸ ︷︷ ︸
k

1̄ . . . 1̄︸ ︷︷ ︸
l

(g(z1))k−1 (ḡ(z̄2))l−1 . (3.19)

Despite the fact that the mapping between cumulants and the R-transform is not one

to one [49], some cumulants can be uniquely determined from the knowledge of R(Q). The

cumulants c
(n)

1 . . . 1︸ ︷︷ ︸
k

1̄ . . . 1̄︸ ︷︷ ︸
n−k

are the coefficients at Qk−1
11 Q11̄Q

n−k−1
1̄1̄

in the expansion of R11̄(Q).

One can easily see that there are no other cumulants contributing to this term.

All cumulants contributing to R11̄ have at least one X† following X in the string,

therefore R11̄ is divisible by Q11̄. Let us define R̃11̄ = R11̄/Q11̄, which is regular at 0. The

considered cumulants are the only ones in which X is followed by X† exactly once. To

exclude all other possibilities in the expansion of R̃11̄, we set Q11̄ = 0 = Q1̄1 in R̃11̄(Q).

To reproduce (3.19) from R̃11̄ one also needs to replace Q11 by g(z1) and Q1̄1̄ by ḡ(z̄2).

Finally,

B11
1̄1̄ = R̃11̄ (diag(g(z1), ḡ(z̄2))) . (3.20)

3.5 Biunitarily invariant ensembles

In this subsection we consider a class of ensembles, the pdf of which is invariant under

multiplication by two unitary matrices, i.e. P (X) = P (UXV †). In the large N limit the

spectral density, which is rotationally invariant, is supported on either a disc or an annulus,

a phenomenon termed ‘the single ring theorem’ [54, 55]. The enhanced symmetry allows one

to relate the distribution of eigenvalues and singular values both in the N →∞ limit [56]

and for finite N [40]. More precisely, the radial cumulative distribution function F (r) =

2π
∫ r

0 ρ(s)sds is given by the solution of the simple functional equation SXX†(F (r)−1) = 1
r2 ,

where SXX† is the Voiculescu S-transform of the density of squared singular values [56].

Recently, this result was extended to the one-point eigenvector correlation function, which

is determined solely by F [29, 49]

O1(r) =
F (r)(1− F (r))

πr2
. (3.21)

Such simple results in the large N limit are possible because of the exceptionally

simple structure of cumulants. The only non-zero planar cumulants are the alternating

ones [49], αn = c
(2n)

11̄...11̄
= c

(2n)

1̄1...1̄1
. They can be encoded in a function of a single scalar

variable A(x) =
∑∞

k=1 αnx
n−1, called the determining sequence [57]. Due to this, only four

components of B (out of 16) do not vanish. These are B11
1̄1̄

= B1̄1̄
11 , B11̄

1̄1
, B1̄1

11̄
.
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A direct application of formula (3.16) leads to

B11
1̄1̄ =

∞∑
k,l=1

αk+l−1 [G11̄(Q)G1̄1(Q)]k−1 [G11̄(P )G1̄1(P )]l−1 (3.22)

B11̄
1̄1 = G11̄(Q)G11̄(P )

∞∑
k,l=1

αk+l [G11̄(Q)G1̄1(Q)]k−1 [G11̄(P )G1̄1(P )]l−1 (3.23)

B1̄1
11̄ = G1̄1(Q)G1̄1(P )

∞∑
k,l=1

αk+l [G11̄(Q)G1̄1(Q)]k−1 [G11̄(P )G1̄1(P )]l−1 (3.24)

The components of B can be expressed through auxiliary functions

B11
1̄1̄ = B1̄1̄

11 = S (G11̄(Q)G1̄1(Q), G11̄(P )G1̄1(P )) , (3.25)

B11̄
1̄1 = G11̄(Q)G11̄(P )T (G11̄(Q)G1̄1(Q), G11̄(P )G1̄1(P )) , (3.26)

B1̄1
11̄ = G1̄1(Q)G1̄1(P )T (G11̄(Q)G1̄1(Q), G11̄(P )G1̄1(P )) , (3.27)

where

S(x, y) =

∞∑
k,l=1

αk+l−1x
k−1yl−1 =

xA(x)− yA(y)

x− y , (3.28)

T (x, y) =
∞∑

k,l=1

αk+lx
k−1yk−1 =

A(x)−A(y)

x− y , (3.29)

with A being the determining sequence.

We remark that the average over the ensemble has been already taken at the level of

Feynman diagrams and at this moment, we can safely remove the regularization. There

are further simplifications for the biunitarily invariant matrices [49]

G11̄G1̄1A(G11̄G1̄1) = F (r)− 1, G11̄G1̄1 = −πO1(r). (3.30)

Having calculated B and knowing Green’s function, we determine K11
1̄1̄

from (3.15)

and, after algebraic manipulations, we get a compact formula for the 2-point eigenvector

correlation function from (3.4)

O2(z1, z2) =
1

π
∂z̄1∂z2

z̄1(z1 − z2)O1(r1) + z2(z̄1 − z̄2)O1(r2)

|z1 − z2|2 [F (r1)− F (r2)]
. (3.31)

The quaternionic R-transform of biunitarily invariant ensembles takes a remarkably

simple form [49], in particular R11̄(Q) = Q11̄A(Q11̄Q1̄1). Moreover, due to the rotational

symmetry of the spectrum, g(z) = 1/z. According to (3.18), the traced product of resol-

vents is given by

h(z1, z̄2) =
1

z1z̄2 −A(0)
. (3.32)

Interestingly, A(0) = r2
out, where rout is the external radius of the spectrum. This result

shows a high level of universality, since for any two functions f, g analytic in the spectrum

the expectation in the N →∞ limit〈
1

N
Trf(X)g(X†)

〉
=

1

(2πi)2

∫
γ
dz1

∫
γ̄
dz̄2

f(z1)g(z̄2)

z1z̄2 − r2
out

(3.33)

– 17 –



J
H
E
P
0
6
(
2
0
1
8
)
1
5
2

is given by the same formula, irrespectively of the specific biunitarily invariant ensemble.

The only parameter — spectral radius rout — can be set to 1 by rescaling the matrix.

This result, appearing naturally in the language of cumulants, from the point of the spec-

tral decomposition, X =
∑

k |Rk〉λk 〈Lk|, is far from being obvious and may explain the

simplicity of formula (3.31).

4 Examples

4.1 Elliptic ensemble

As the first example of application of this formalism, we take the elliptic ensemble. Due to

the fact that only the second cumulants do not vanish, the sum in (3.16) reduces to a single

term and B is diagonal, Bell = diag(σ2τ, σ2, σ2, σ2τ). However, the equations (3.15) do

not decouple, because Green’s functions are not diagonal in the non-holomorphic regime.

Denoting for j = 1, 2

Gj =

 z̄j−zjτ
σ2(1−τ2)

i
σ2

√
1− |zj−z̄jτ |2

σ2(1−τ2)

i
σ2

√
1− |zj−z̄jτ |2

σ2(1−τ2)
zj−z̄jτ
σ2(1−τ2)

 (4.1)

Green’s function of the elliptic ensemble in the non-holomorphic regime (see appendix A),

we find K, solving (3.15)

K =
(
1− (G1 ⊗GT2 )BEll

)−1 (
G1 ⊗GT2

)
. (4.2)

Then we focus on the component K11
1̄1̄

and differentiate it twice, according to (3.4), obtain-

ing

O2(z1, z2) =
1

π2
∂z̄1∂z2K

11
1̄1̄ = −σ

2(1− τ2)2 − (z1 − z̄2τ)(z̄2 − z1τ)

π2σ2(1− τ2)|z1 − z2|4
. (4.3)

This result was derived for the first time by Chalker and Mehlig [10].2 For the Ginibre

Ensemble (σ = 1, τ = 0) it reduces to

O2(z1, z2) =
−1

π2

1− z1z̄2

|z1 − z2|4
. (4.4)

For completeness, we remark that the holomorphic part of the two point function,

calculated from (3.18), reads

h(z1, z̄2) =
4

−4 +
(
z1 +

√
z2

1 − 4σ2τ
)(

z̄2 +
√
z̄2

2 − 4σ2τ
) . (4.5)

4.2 Biunitarily invariant ensembles

We consider some examples where the two-point function can be easily calculated. This

list is by no means exhaustive. In fact, biunitary invariance is preserved under addition

and multiplication, thus one can easily generate new ensembles. We do not present results

for products of the ensembles considered below, solely due to the fact that the expressions

for O2(z1, z2) become lengthy.

• Ginibre. As a cross-check of correctness of our formula, let us first consider the

Ginibre ensemble. Its spectral density is uniform on the unit disk, therefore F (r) =

2[10, eq. (94)] contains a small misprint in the constant factor, which does not affect validity of any other

results therein.
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2π
∫ r

0 s
θ(1−s)
π ds is equal to 1 for r > 1 and F (r) = r2 for r ≤ 1. Substitution to (3.31)

reproduces the result derived earlier (4.4).

• Induced Ginibre [58]. Let us consider a rectangular N ×M matrix X (without loss

of generality, M > N) with iid Gaussian entries. There exists an M ×M unitary

matrix U so that Y = XU can be represented in the block form Y = (X ′, 0). The

right N × (M − N) block consists of zeros, while X ′ is called the induced Ginibre

matrix. In the limit N,M →∞ with α = M−N
N fixed, its radial cdf reads

F (r) =


0 for r <

√
α

r2 − α for
√
α < r <

√
α+ 1

1 for r >
√

1 + α

(4.6)

Substitution into (3.31) yields, after some algebra

OInd(z1, z2) =
1

π2

(1 + α− z1z̄2)(α− z1z̄2)

z1z̄2|z1 − z2|4
. (4.7)

The Ginibre Ensemble corresponds to α = 0.

• Truncated Unitary [59]. Let us consider a (N +L)× (N +L) random unitary matrix

with a pdf given by the Haar measure on U(N + L) and remove its last L rows and

columns. The radial cdf of the remaining square matrix in the limit N,L→∞, with

κ = L
N fixed, reads F (r) = κ r2

1−r2 for r < (1 + κ)−1/2 and 1 otherwise [60]. Therefore

the two-point eigenvector function reads

OTU (z1, z2) =
1

π2

−1 + z1z̄2(1 + κ)

|z1 − z2|4
. (4.8)

• Spherical Ensemble. Consider the product Y = X1X
−1
2 , where X1 and X2 are Ginibre

matrices. Its radial cdf reads F (r) = r2

1+r2 and its spectrum is unbounded [61]. This

ensemble is beyond the assumptions made for the derivation of (3.31). Nevertheless,

motivated by the successful application of these methods for the one-point correlation

function in this ensemble [29], we assume the correctness of our formulas and calculate

the two-point function

OSph(z1, z2) =
1

π2

−1

|z1 − z2|4
. (4.9)

• Product of two Ginibre. We consider a matrix Y = X1X2, where X1 and X2 are

Ginibre matrices. The radial cdf of Y is F (r) = min(r, 1), thus

Oprod(z1, z2) = − 1

π2

2(|z1|+ |z2|)(z1z̄2 + |z1z2|)− |z1 + z2|2 − 4|z1z2|
4|z1z2||z1 − z2|4

. (4.10)
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4.3 Pseudohermitian matrix

Let us consider the product X = AB of two Hermitian matrices A,B. The product is not

Hermitian, X† = BA 6= X, but if one of the matrices, let us say A, is positive definite,

X is isospectral to the Hermitian matrix A1/2BA1/2, thus X, despite its non-Hermiticity,

has a real spectrum. The diagonalising matrix is, however, not unitary, resulting in non-

orthogonality of eigenvectors. Such matrices can be toy-models for more complicated phys-

ical system described by Hamiltonians which are not Hermitian but possesses parity-time

(PT) symmetry [62]. The most interesting models have a parameter which controls how

far the system is from breaking of the symmetry. At a critical value, called the exceptional

point, two real eigenvalues coalesce and move away in the imaginary direction, sponta-

neously breaking the PT-symmetry.

As an example we consider the matrix X = (2+G1)(2+G2), whereGi’s are independent

matrices drawn from the Gaussian Unitary Ensemble, the spectral density of which in the

large N limit is the Wigner semicircle, ρGUE(x) = 1
2π

√
4− x2, supported on the interval

[−2, 2]. This model has an exceptional point at x = 0.

The components of the quaternionic R-transform of X read [63]

R11 =
4(1−G11̄G1̄1)(1−G1̄1̄)2

(1 +G11̄G1̄1(G1̄1̄ − 2)−G1̄1̄ +G11(G1̄1̄ +G11̄G1̄1 − 1))2 , (4.11)

R11̄ = − G11̄ [−3−G11̄G1̄1(G1̄1̄ − 1) +G1̄1̄ +G11(1−G11̄G1̄1 +G1̄1̄)]2

(G11̄G1̄1 − 1) [1 +G11̄G1̄1(G1̄1̄ − 2)−G1̄1̄ +G11(G1̄1̄ − 1 +G11̄G1̄1)]2
. (4.12)

The other two components are given by the exchange of indices 1 ↔ 1̄. Inserting them

into (2.22) and focusing only on the holomorpic solution (|w| = 0), we arrive at the equation

for Green’s function
4

(1− g(z))2
+

1

g(z)
= z. (4.13)

We choose a branch which gives the asymptotic behavior g(z) ∼ 1/z for large z. The

spectrum is supported on a single interval [0, z+], with z+ = 1
2(11 + 5

√
5). The Green’s

function infinitely close to the spectrum reads

lim
ε→0

g(x± iε) =
1 + 2x

3x
− 1

6x

( a

r1/3
(1± i

√
3)− r1/3(1∓ i

√
3)
)
, (4.14)

where a = 1+10x+x2 and r = 1+15x+39x2−z3−6
√

3x
√
x+ 11x2 − x3. The imaginary

part of Green’s function yields the spectral density, calculated in [64]. The traced product

of resolvents according to (3.18) satisfies the equation

1

h(z1, z̄2)
=

1

g(z1)ḡ(z̄2)
−

(
1− g(z1))2(1− ḡ(z̄2)

)2
[−3 + g(z̄2) + g(z1) + g(z1)g(z̄2)]2

, (4.15)

where g(z1) and g(z̄2) are the solutions of (4.13) with 1/z asymptotic behavior.

The two-point function is calculated from (3.6) and its cross-sections are juxtaposed

with the numerical simulations in figure 10, showing an excellent agreement.
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Figure 10. Cross sections of the two point eigenvector correlation function O2(x, y) for a) x = 1.475

(squares and dashed line), x = 3.975 (circles and solid line) and b) x = 0.075. The numerical data

(points) are obtained by diagonalization of 5 · 104 matrices of size N = 100. Black lines are the

solutions of (4.15) inserted into (3.7). Interestingly, if one of the arguments is close to the exceptional

point x = 0, the large part of the function can be approximated by a power-law.

5 Towards microscopic universality of eigenvectors

Random matrices show the phenomenon of universality at certain regions of the spectra.

In the case of Hermitian ensembles, such universalities appear in the bulk (the so-called

sine kernel) and at the edges of the spectra (Airy, Bessel, Pearcey, etc.). For a given generic

Hermitian ensemble represented by N × N matrices H, one of the tools for investigating

the existence of universalities are the multi-trace correlation functions

G(z1, z2, . . . , zj) =
∞∑

k1,...,kj=1

N j−2

〈
trHk1 . . . trHkj

〉
c

zk1+1
1 . . . z

kj+1
k

. (5.1)

The subscript c denotes the connected part.

Such objects were studied extensively using various techniques including loop equa-

tions [37], Coulomb gas analogy [65] and Feynman diagrams [52, 53]. They were put into a

formal mathematical formulation of the higher order freeness [66–68]. When the eigenval-

ues occupy a single interval, they obey the Ambjørn-Jurkiewicz-Makeenko universality [37].

The divergences of the double-trace correlation function signal the breakdown of the 1/N

expansion and the need to resum the whole series and rescale its arguments. Different

universal limits are manifested as different types of singularities.

A natural generalization of the two-point double-trace function to the non-Hermitian

setting is the connected average of two copies of the electrostatic potential (2.5)

F (Q,P ) =

〈
1

N
ln det(Q−X )

1

N
ln det(P − X )

〉
c

, (5.2)

introduced in [42], where Gaussian models were also considered. As the quaternionic

Green’s function, encoding all expectations of the traces can be obtained from the potential

(see (2.10)), the function above generates all covariances of traces〈
1

N
TrXα1Xα2 . . . Xαk

1

N
TrXβ1Xβ2 . . . Xβl

〉
c

, (5.3)
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Figure 11. Hierarchy of wheel diagrams contributing to the two-point double-trace correlation

function (5.2), which in turn corresponds to the contraction of indices in figure 4 leading to L. The

combinatorial factor 1/m corresponds to rotational symmetry and prevents overcounting the dia-

grams.

being a natural extension of the second order freeness for large non-Hermitian matrices.

Here αi, βj ∈ {1, †}.
As we mentioned earlier, the indices in the product of a resolvent can be contracted

in two ways, see figure 4. One of them gives access to the eigenvector correlation function,

while the second one yields F . More precisely, F (Q,P ) = TrL.

Since we consider connected expectation, we may write ln det(Q − X ) = ln det(1 −
XQ−1) and use the identity ln det = Tr ln. Then, logarithms are expanded in power series,

ln(1 + z) =
∑∞

k=1
zk

k , which allows for convenient calculation of Feynman diagrams. Due

to the presence of traces, the baselines from (XQ−1)k are now drawn as two concentric

rings.3 The dominant diagrams are the planar ones in which vertices and propagators are

drawn between the two rings, but propagators connecting vertices do not encircle the inner

ring (as in figure 4), see also [52, 53]. The diagrams have an additional symmetry, namely

rotating each ring leads to a new admissible diagram contributing equally. The resulting

symmetry factors exactly cancel coefficients in the expansion of logarithms.

Each diagram can be decomposed into m segments in which X ’s from two rings are

connected through propagators and vertices. Segments are connected to each other through

rings. As a result, each diagram looks like a wheel with m spokes. It turns out that the sum

of all diagrams contributing to the spoke is exactly the rung, Γ, from the ladder diagrams

in section 3.3. The X ’s on ring, which are not part of a spoke can be connected with

each other through propagators and vertices in any way, thus contributing to the Green’s

function. The general structure of such diagrams is presented in figure 11.

The wheel diagrams with m spokes have an additional symmetry, namely they can be

rotated by an angle 2π/m. In order not to overcount the diagrams in the sum, we must

include 1/m factor. Finally, we get

N2F (Q,P ) = Tr

∞∑
m=1

1

m

[
(G(Q)⊗GT (P ))B(Q,P )

]m
= − log det

[
1− (G(Q)⊗GT (P ))B(Q,P )

]
.

(5.4)

This means that the result, derived in [42] and used for deducing the existence

of the edge universality for the spectral density [69], holds for the entire class of non-

Hermitian models.

3The rings could be equivalently drawn next to each other. This choice is just for convenience.
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The two-point single-trace correlation functions encoding correlations between eigen-

vectors also have their counterpart in the Hermitian case, but because of realness of

the spectrum and orthogonality of eigenvectors it trivially reduces to the one-point

Green’s function 〈
1

N
Tr(z11−H)−1(z21−H)−1

〉
=

g(z1)− g(z2)

z2 − z1
, (5.5)

thus not attracting attention. Eigenvectors of non-normal matrices are no longer trivial,

making such correlation functions meaningful quantities.

In the spirit of the above analysis, one is tempted to ask if we can probe hypothetical

eigenvector universality using similar tools. We would like to stress that, even in the case of

the simplest Ginibre ensemble, the direct analysis of the eigenvector correlation functions

is very hard. Whereas the finite N expression for the one point function is known [10, 23],

the only known non-perturbative results for the calculation of the two-point eigenvector

correlation function are given implicitly [9, 10] as

O2(z1, z2) = − N

π2Γ(N)
e−N(|z1|2+|z2|2) det [hij ]

N−2
i,j=0 , (5.6)

where the matrix h is pentadiagonal with entries given by

hij =
N j+3

π(j + 1)!

∫
d2λλ̄iλj

[
|z1 − λ|2|z2 − λ|2 +

1

N
(z1 − λ)(z̄2 − λ̄)

]
e−N |λ|

2
. (5.7)

There is, however, a different possibility of inferring the existence of universality. Spec-

tra of non-normal matrices are intimately linked with the properties of their eigenvectors.

The completeness relation
∑N

k=1 |Rk〉 〈Lk| = 1 used in the weighted density (1.3) leads

to the sum rule
∫
C dµ(w)D(z, w) = ρ(z), which imposes constraints on the eigenvector

correlation functions

NO1(z) +

∫
C

dµ(w)O2(z, w) = ρ(z). (5.8)

While the right hand side is of order 1, the one-point correlator gives a contribution of

order N , thus there has to be a counterterm from the integral. As the region of integration

is in fact compact in the large N limit, the divergence can stem only from the region

when w is close to z. The exact calculations in this regime are not accessible within the

diagrammatic approach, but below we give a qualitative argument that the microscopic

scaling is responsible for the cancellation of divergences.

In RMT the microsopic universality can be probed on the scale of the typical distance

between eigenvalues. Demanding that in the disk of radius δz centered at z we expect one

eigenvalue, leads us to the scaling

w = z +
u√
Nρ(z)

, (5.9)

where u ∼ 1. We notice that in all examples presented in section 4 the two-point function

can be expressed as

O2(z, w) = − 1

π2

P (z, w)

|z − w|4 (5.10)
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with the same behavior in the denominator. The microscoping scaling (5.9) inserted in

the denominator produces a term (Nρ(z))2, while the Jacobian of the change of variables

reduces the power to one, giving the desired behavior in N . Moreover, by the explicit

evaluation of derivatives in (3.31) and the application of de l’Hospital’s rule twice we get for

biunitarily invariant ensembles P (z, z) = O(z)
ρ(z) , which cancels densities, eventually leaving

only the one-point function, which produces the desired counterterm. We hypothesize that

this phenomenon is universal across all non-Hermitian ensembles in the bulk.

Motivated by the ubiquitousness of the |z − w|−4 divergence in the bulk we state

the conjecture that in generic non-Hermitian matrices with complex entries for all points

in the bulk at which the spectral density does not develop singularities, there exists a

microscopic limit

lim
N→∞

N−2O2(z +
x√
N
, z +

y√
N

) = O1(z)Φ(|x− y|), (5.11)

where

Φ(|ω|) = − 1

π2|ω|4
(

1− (1 + |ω|2)e−|ω|
2
)
. (5.12)

The function Φ was calculated in [9, 10] by evaluating O2(0, z) from the exact re-

sult (5.6) and taking the scaling limit z = ω√
N

. It is presented in figure 12a) and compared

with the evaluation of the exact formula.

Interestingly, performing an analogous reasoning for the Ginibre ensemble (in which

P (z, w) = 1− zw̄) when z is at the edge of the spectrum leads us to a different conclusion.

When two arguments get close, the two-point function diverges, but it does so as |z−w|−3,

because P also vanishes, reducing the exponent. This suggests that at the edge the two-

point function scales as N3/2 instead of N2 in the bulk. This stays in agreement with the

sum rule (5.8), since O1 at the edge scales as N1/2 [23]. The limiting scaling function is not

available to us, hence we evaluate numerically (5.6) and show the results in figure 12b).

The divergence of the two-point function at the origin for the product of two Ginibre

matrices (4.10) also suggests the existence of a different scaling there.

6 Summary

Using the methods of the quaternion formalism [70] for non-Hermitian random matrices,

we have proposed the explicit calculational scheme for the two-point eigenvector correlation

function (1.4). First, we have checked that our formalism reproduces all known examples in

the literature, i.e. the complex Ginibre ensemble, an elliptic ensemble and the open chaotic

scattering ensemble. Second, we considered two subclasses of non-normal random matrices:

the pseudo-hermitian and the biunitarily invariant ensembles, which in the large N limit

are described by the R-diagonal operators from free probability [71, 72]. In both cases

we got new results for the two-point eigenvector correlation functions. In the case of the

bi-unitarily invariant ensembles, the two-point function O2(z, w) has a particularly simple

form. It is expressed solely as a function of the radial cumulative distribution function

F (r) and the one-point eigenvector correlation function O1(r).
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Figure 12. The two-point eigenvector correlation function O2(z1, z2) for the Ginibre ensemble in

the microscopic a) bulk regime, z1 = 0, z2 = x√
N

and b) edge regime z1 = 1 + x
2
√
N

, z2 = 1− x
2
√
N

.

The red dashed line is Chalker and Mehlig’s exact result (5.12). In the bulk microscopic regime O2

scales as N2 and at the edge as N3/2. The rapid convergence to the limiting bulk scaling suggest

that the corrections are exponentially small, while the hypothetical edge scaling seems to have

1/N corrections.

Recently, it was proven [29] that for biunitarily invariant ensmbles, O1(r) can be ex-

pressed in terms of F (r) exclusively, which can be viewed as an extension of the single

ring (Haagerup-Larsen) theorem [54, 56]. Combining this result with our formalism, we

arrive at the conclusion, that the two-point eigenvector correlation function for general

biunitarily invariant ensembles in the large N limit depends functionally solely on the

spectral density. Such a situation resembles the Ambjørn-Jurkiewicz-Makeenko (known

also as the Brezin-Zee) universality in the case of Hermitian random matrix models, where

the two-point spectral Green’s function depends solely on the one-point Green’s function,

irrespectively on the specific ensemble. Mathematical formulation of such a construction

is known as the second order freeness [66]. We are therefore tempted to speculate that,

by combining second order freeness and freeness with amalgamation [73], the notion of the

non-orthogonality of eigenvectors can be extended into a broader context of operators in

von Neumann algebras. Indeed, an equation similar to (3.15) has recently appeared in the

description of fluctuations of Gaussian block matrices [74]. Moreover, the diagrammatic

calculations of the traced product of resolvents resemble the partition structure diagrams

introduced in [75].

The similarity of our result to AJM (BZ) universality has further consequences. In the

case of the ABJ (BZ) universality, the singular points of the correlation functions identify

the regions of the spectra where microscopic universality takes place. This includes both

the cases of the bulk and edge universality. We are therefore inclined to apply a similar ar-

gument to our result, searching for the microscopic eigenvector universalities. An additional

argument for the microscopic universality comes from a constraint on eigenvector correla-

tion function (5.8), as originallly noted by Walters and Starr. The sum rules originating

from this constraint strongly suggest the universal form of the microscopic two-point eigen-

vector correlations in analogy to a similar phenomenon for the sum rules of Dirac Euclidean

operators found by Leutwyler and Smilga [76]. The latter lead the Stony Brook group to

the discovery of the universal Bessel kernels for chiral random matrix models [77, 78].
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Our analysis, as well as explicit examples for the biunitarily invariant ensembles cal-

culated in section 4.2, point at the generic shape of such universality, coming from the

ubiquitous factor |z − w|4 in the denominator. Explicitly, O2(z, w) = − 1
π2

P (z,w)
|z−w|4 , where

limz→w P (z, w) = O1(z)/ρ(z) yields the Petermann factor. Such unique behavior is re-

sponsible for the crucial cancellation of the divergent terms in the leading order in N in

the sum rules. The identification of this mechanism leads us to predict the existence of the

universal microscopic scaling of the eigenvector correlation function Φ(|ω|). Such a limit

was obtained in the special case of the Ginibre ensemble [9, 10]. We conjecture that this

universality extends to at least biunitarily invariant random ensembles.

Interestingly, the sum rule (5.8) leads also to interesting predictions at the edge. It

is well known that correlations of eigenvalues of non-Hermitian matrices exhibit universal

behavior at the edge, given by the error function. Our large N results for the eigenvector

correlations show that the leading singularity weakens at the edge, |z − w|4 → |z − w|3,

leading to N3/2 scaling of the two-point correlation function. The numerical evaluation of

the implicit exact result (5.6) confirms this hypothesis, but the analytic form of the scaling

function is not yet available, even in the case of the simplest, complex Ginibre ensemble.

Our results are only one step towards understanding the statistical properties of non-

normal random operators and give rise to new questions. The matrix of overlaps Oij is

the simplest invariant object. It is natural to ask what kind of non-trivial higher order

invariants can be built out of eigenvectors. This problem is even more cumbersome in

the light of recent results [24, 33], because the distribution of the diagonal overlap Oii
is heavy tailed and some objects, for instance

〈
O2
ii

〉
, do not exist. For the real Ginibre

ensemble the situation is even more hopeless, since at the real axis the one-point function

O1 does not exist! While one expects the existence of certain correlation functions involving

local averages of distinct eigenvectors, it is unclear whether their mathematical structure

simplifies as it does for spectral statistics, which form determinantal point processes. Even

though an event with two or more eigenvalues lying close to each other is unlikely to happen

due to the eigenvalue repulsion, correlations between their eigenvectors do not decay, as

can be seen from the microscopic scaling of O2. It is therefore very appealing to study

microscopic eigenvector correlations involving more than two eigenvalues.

Although the real eigenvalues and corresponding eigenvectors of the real Ginibre en-

semble are beyond the scope of perturbative techniques, we expect that the results for the

two-point function remain unchanged for the eigenvectors associated with complex eigen-

values of the real Ginibre. Despite that the eigenvector overlaps are heavy-tailed, the traces

of powers of X and its conjugate transpose are localized around their mean value [23]. Such

a big cancellation is possible due to the sum rule originating from the completeness relation.

Based on this fact, we expect that the formula for the traced product of resolvents (3.18)

holds also for matrices with real entries.

The issue of a hypothetical microscopic eigenvector universality for generic non-

Hermitian ensembles is also of primary importance, since unraveling the unknown mi-

croscopic eigenvector correlations may give hope in the case of notorious sign problems by

giving an insight into the properties of the Dirac operator in Euclidean QCD at non-zero

chemical potential.
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Note added. After completing this manuscript, we became aware of a recent work by

Bourgade and Dubach [24], which tackles the issue of eigenvector correlations in the com-

plex Ginibre ensemble in the bulk using different probabilistic techniques. They found the

full probability of the diagonal overlap as an inverse gamma distribution and also studied

the first two moments of the off-diagonal overlap. Moreover they proved that the result for

the macroscopic two-point function (4.4) extends to mesoscopic scales.
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A One-point functions in elliptic ensemble

It is very instructive to show how the formalism described in section 2 works in practice.

Let us consider a non-Hermitian matrix model given by the Gaussian potential (2.13). Due

to the fact that there are no vertices in this model, the only cumulants are c
(2)
αβ , given by

the propagators. This completely determines the quaternionic R-transform

R(Q) = σ2

(
τQ11 Q11̄

Q1̄1 τQ1̄1̄

)
. (A.1)

Once we perform the average over the ensemble (i.e. we know the form of R), we can safely

remove the regularization by setting |w| = 0 at the level of the algebraic equation (2.22),

which in this case reads

σ2

(
τG11 G11̄

G1̄1 τG1̄1̄

)
+

1

G11G1̄1̄ −G11̄G1̄1

(
G1̄1̄ −G11̄

−G1̄1 G11

)
=

(
z 0

0 z̄

)
. (A.2)

Focusing on the 11̄ component, one gets

G11̄

(
σ2 − 1

G11G1̄1̄ −G11̄G1̄1

)
= 0. (A.3)

There are two solutions, a trivial one G11̄ = 0 and a non-trivial one, σ2 =

(G11G1̄1̄ −G11̄G1̄1)−1. Let us focus on the trivial first. Inserting G11̄ = 0 into the equation

given by the 11 component, we get σ2τG11 + 1/G11 = z, with two solutions

G11(z) =
z ±
√
z2 − 4σ2τ

2σ2τ
= g(z). (A.4)
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This is the holomorphic part, valid outside the spectrum and we have to choose the branch

of the solution with a minus sign for correct asymptotic behavior at infinity g(z) ∼ 1/z. In

the holomorphic domain, the off-diagonal elements of Green’s function vanish, because the

one-point eigenvector correlation function is trivially zero as there are no eigenvalues there.

Considering the non-trivial solution of (A.3) and inserting it into the equations for 11

and 1̄1̄ components, we obtain a system of two linear equations

σ2τG11 + σ2G1̄1̄ = z,

σ2τG1̄1̄ + σ2G11 = z̄,

with the solution

G11(z) =
z̄ − zτ

σ2(1− τ2)
. (A.5)

The spectral density is calculated according to (2.3):

ρ(z, z̄) =
1

π
∂z̄G11 =

1

πσ2(1− τ2)
. (A.6)

One can also calculate G11̄ and get the following formula for the one-point eigenvector

correlation function from (2.9)

O1(z) =
1

πσ2

(
1− |z − z̄τ |2

σ2(1− τ2)2

)
. (A.7)

The boundary of the spectrum can be calculated in two ways: by requiring that the holo-

morphic and non-holomorphic solutions match at the boundary or by imposing vanishing

of the one-point eigenvector correlation function. Both methods give

x2

(1 + τ)2
+

y2

(1− τ)2
= σ2, (A.8)

which is the equation for the ellipse with semi-axes σ(1 + τ) and σ(1− τ), hence the name

of the ensemble.

B Quantum scattering ensemble

Let us see how the procedure for determining the rung of the ladder works in practice. We

consider the quantum scattering ensemble [79] given by

X = H + iγΓ, (B.1)

where H is a N × N complex matrix with Gaussian entries of zero mean and variance〈
|Hkl|2

〉
= N−1δkl and Γ =

∑M
a=1 V

a(V a)†. The components of N -dimensional vectors

V a are complex Gaussians with variance
〈
V a
k V̄

b
l

〉
= N−1δklδab. The two-point eigenvector

correlation function in the limit M,N → ∞ with M/N = m fixed (planar limit) was

studied by Mehlig and Santer [36]. We show how this result can be rederived within this

formalism in a simpler way.
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Γ is the complex Wishart matrix [80] multiplied by m. The planar cumulants of the

Wishart matrix are stored in the Voiculecu’s R-transform from free probability, which

reads RΓ(z) = m
1−z . The considered matrix X is non-Hermitian, therefore we need its

quaternionic R-transform. Using the embedding of the complex R-transform into the

quaternionic structure [70], we get RΓ(Q) = m(12 − Q)−1. The Gaussian matrix is a

particular instance of the elliptic ensemble corresponding to τ = 1, therefore RH(Q) =

Q. Further, Γ is rescaled by a complex number iγ. The quaternionic R-transform of

such a rescaled matrix is obtained from the relation [70] RiγΓ(Q) = gRΓ(Qg), where g =

diag(iγ,−iγ). As the R-transform is additive under addition of two matrices, we have

RX(Q) = Q+mg(1−Qg)−1, which we then expand into a power series

RX(Q) = Q+mg
∞∑
k=0

(Qg)k. (B.2)

Then we perform the procedure with acting derivatives on the quaternionic R-transform

and substituting the argument, as described in section 3.3. After summing up the resulting

series, we get

Bαβ
µν (Q,P ) = δαβδνµ +m

(
g−1 −G(Q)

)−1

αβ

(
g−1 −GT (P )

)−1

µν
. (B.3)

This can we written in matrix form as

B(Q,P ) = 1 +m
[
g−1 −G(Q)

]−1 ⊗
[
g−1 −GT (P )

]−1
. (B.4)

Inserting this into (3.15), we reproduce the results of [36]. Green’s function is calculated

from (2.22).
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ginibre ensemble of random matrices and quantum operations, J. Phys. A 45 (2012) 075203.

[59] K. Zyczkowski and H.-J. Sommers, Truncations of random unitary matrices, J. Phys. A 33

(2000) 2045.

[60] Z. Burda, M.A. Nowak and A. Swiech, Spectral relations between products and powers of

isotropic random matrices, Phys. Rev. E 86 (2012) 061137.

[61] U. Haagerup and H. Schultz, Brown measures of unbounded operators affiliated with a finite

von neumann algebra, Math. Scand. 100 (2007) 209.

[62] C.M. Bender, Making sense of non-Hermitian Hamiltonians, Rept. Prog. Phys. 70 (2007) 947

[hep-th/0703096] [INSPIRE].

[63] M.A. Nowak and W. Tarnowski, in preparation.

[64] P. Warcho l, Dynamics in random matrix theory — toy model with spectral phase transition,

(2010).

[65] F.D. Cunden and P. Vivo, Universal covariance formula for linear statistics on random

matrices, Phys. Rev. Lett. 113 (2014) 070202.

– 32 –



J
H
E
P
0
6
(
2
0
1
8
)
1
5
2

[66] J.A. Mingo and R. Speicher, Second order freeness and fluctuations of random matrices: I.

gaussian and wishart matrices and cyclic fock spaces, J. Funct. Anal. 235 (2006) 226 .
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Abstract

We study the distribution of the eigenvalue condition numbers κi =
√

(l∗i li)(r
∗
i ri) associated

with real eigenvalues λi of partially asymmetric N × N random matrices from the Gaussian
elliptic ensemble. The large values of κi signal about the non-orthogonality of (bi-orthogonal)
set of left li and right ri eigenvectors and enhanced sensitivity of the associated eigenvalues
against perturbations of the matrix entries. We derive the general finite N expression for the
joint probability density (JPD) PN (z, t) of ti = κ2i − 1 for λ conditioned to have a value z and
investigate its several scaling regimes in the limit N → ∞. When the degree of asymmetry
is fixed as N → ∞, the number of real eigenvalues is O(

√
N), and in the bulk of the real

spectrum ti = O(N), while on approaching the spectral edges the non-orthogonality is weaker:
ti = O(

√
N). In both cases the corresponding JPDs, after appropriate rescaling, coincide with

those found in the earlier studied case of fully asymmetric (Ginibre) matrices, see [20]. A
different regime of weak asymmetry arises when a finite fraction of N eigenvalues remain real
as N → ∞. In such a regime eigenvectors are weakly non-orthogonal, t = O(1), and we derive
the associated JPD, finding that the characteristic tail P(z, t) ∼ t−2 survives for arbitrary weak
asymmetry. As such, it is the most robust feature of the condition number density for real
eigenvalues of asymmetric matrices.

1 Introduction

A (real-valued) square matrix X is asymmetric if it is different from its transpose XT , and non-
normal if XXT 6= XTX. Generically, asymmetric matrices are non-normal, and their eigenvalues
are much more sensitive to the perturbations of the matrix entries than for their symmetric (hence
selfadjoint and normal) counterparts. It is well-known, that non-normality may raise serious issues
when calculating spectra of such matrices numerically: keeping fixed precision of calculations might
not be sufficient as some eigenvalues can be “ill-conditioned”.

To be more specific, we assume that X can be diagonalized (which for random matrices happens
with probability one). Then to each eigenvalue λi, real or complex (in the latter case being always
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†wojciech.tarnowski@doctoral.uj.edu.pl

1

ar
X

iv
:1

91
0.

09
20

4v
1 

 [
m

at
h-

ph
] 

 2
1 

O
ct

 2
01

9



accompanied by its complex conjugate partner λi) correspond two sets of eigenvectors, left li and

right ri which always can be chosen bi-orthogonal: l∗i rj = δij , where l∗i := lTi stands for Hermitian
conjugation. The corresponding eigenproblems are Xri = λiri and XT li = λili. Consider now
a matrix X ′ = X + εP , where second term represents an error one makes by storing the matrix
entries with a finite precision, with ε > 0 controlling the magnitude of the error and P reflecting
the matrix structure of the perturbation. In the first order perturbation theory in parameter ε
eigenvalues are shifted by

|δλi| = ε|l∗iPri| ≤ ε||P ||
√

(l∗i li)(r
∗
i ri). (1)

The latter quantity, κi =
√

(l∗i li)(r
∗
i ri), shows that the sensitivity of eigenvalues is essentially

controlled by non-orthogonality of the corresponding left and right eigenvectors. Correspondingly,
in the numerical analysis context κi is called the eigenvalue condition number of the eigenvalue
λi [39, 40]. Note also that the Cauchy-Schwarz inequality implies κ ≥ 1, with κ = 1 only when X
is normal.

It is natural to ask how well-conditioned is a ‘typical’ asymmetric matrix. This question can
be most meaningfully answered in the context of Random Matrix Theory (RMT), by defining
‘typical’ as randomly chosen according to a probability measure specified by a particular choice
of the ensemble. The simplest yet nontrivial choice is to assume that all entries are mean zero
independent, identically distributed Gaussian numbers. This defines the standard real Ginibre
ensemble which we denote Gin1. Note that the question is equally interesting for matrices whose
entries are complex rather than real, defining complex Ginibre ensemble which we denote Gin2.
Note that for such ensemble eigenvalues λi are purely complex with probability one.

It is the latter ensemble for which the study of the eigenvalue condition numbers has been initi-
ated two decades ago by Chalker and Mehlig [8,33]. More precisely, Chalker and Mehlig introduced
a matrix of inner products Oij = (l∗i lj)(r

∗
jri), which they called “eigenvector overlaps”. The diag-

onal elements of that matrix are simply the squared eigenvalue condition numbers. They further
associated with the diagonal elements of the overlap matrix the following single-point correlation
function:

O1(z) =

〈
1

N

N∑

k=1

Okkδ(z − λk)
〉

Gin2

. (2)

where the angular brackets stand for the expectation with respect to the probability measure
associated with complex Ginibre ensemble, and δ(z−λk) is the Dirac delta mass at the eigenvalue λk,
so that the empirical density of eigenvalues in the complex plane z reads ρ(z) = 1

N

∑N
k=1 δ(z−λk).

Such O1(z) gives the conditional expectations of (squared) κ as E(κ2
i |z = λi) = O1(z)

〈ρ(z)〉 , where

〈ρ(z)〉 is the mean spectral density around z [3]. It turned out that in the bulk of the spectrum
of the complex Ginibre ensemble the magnitude of a typical diagonal overlap Oii grows linearly
with the size of the matrix N , so one needs to consider a rescaled object Õ1(z) = 1

NO1(z) to
obtain a non-trivial limit. In their influential papers [8, 33] Chalker and Mehlig used the “formal”
perturbation theory expansion to evaluate asymptotically, for N � 1, both the diagonal overlap
O1(z) and its more general off-diagonal counterpart

O2(z1, z2) =

〈
1

N

N∑

k 6=l
Oklδ(z1 − λk)δ(z2 − λl)

〉

Gin2

.
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The first mathematically rigorous verification of the Chalker and Mehlig result for the diagonal
overlap has been done in [41]. Remarkably, the function O1(z) can be efficiently studied within the
formalism of the free probability [31] which recently allowed to extend the Chalker-Mehlig formulas
to a broad class of invariant ensembles beyond the Gaussian case [3, 35]. O1(z) is also known
for finite size of the complex Ginibre matrix [8, 33] and products of small Ginibre matrices [7].
It has been recently shown that for complex Ginibre matrices the one and two-point functions
conditioned on an arbitrary number of eigenvalues are related to determinantal point processes [2].
Various features characterising rich properties of eigenvectors of nonnormal random matrices have
been also studied in [4] and [9].

Here it is necessary to mention that the interest in statistical properties of the overlap matrix
Okl and related objects extends much beyond the issues of eigenvalue stability under perturbation,
and is driven by numerous applications in Theoretical and Mathematical Physics. In particular,
non-orthogonality governs transient dynamics in complex systems [28,30,38], see also [15,32], anal-
ysis of spectral outliers in non-selfadjoint matrices [34], and, last but not least, the description of
the Dyson Brownian motion for non-normal matrices [5, 6, 29]. Another steady source of interest
in the statistics of eigenvector overlaps is due to its role in chaotic wave scattering. In that con-
text O1(z) and O2(z1, z2) has been studied for a few special models different from Ginibre (both
theoretically [18, 24, 25] and very recently experimentally [10, 11]) and in the associated models of
random lasing [36, 37]. In the scattering context all eigenvalues are necessarily complex, and the
lasing threshold is associated with an eigenvalue with the smallest imaginary part. For that special
eigenvalue even the distribution of the overlap Oii has been studied [37].

In fact, already Chalker and Mehlig not only analysed O1(z), but also put forward a conjecture
on the tail for the density P (Oii) of the distribution of diagonal overlaps Oii. Namely, based
on exactly solvable case of 2 × 2 matrices and numerical simulations for complex Ginibre case
they predicted that for large overlaps the density will show a tail P (Oii) ∼ O−3

ii making all the
positive integer moments beyond O1(z) divergent. This conjecture has been settled only recently
with two different methods, by Bourgade and Dubach in [5] (where some information about Ol 6=k
was also provided) and by Fyodorov [20]. The latter paper also revealed that for real eigenvalues
of a real Ginibre matrices Gin1 the diagonal overlaps Oii are distributed with even heavier tail:
P (Oii) ∼ O−2

ii , making even the mean of the overlap divergent.
To address the above distributions it is convenient to introduce the following natural general-

ization of the equation (2)

PN (z, t) =

〈
N∑

i=1

δ(Oii − 1− t)δ(z − λi)
〉

(3)

interpreted as the (conditional) probability density function of the ‘diagonal’ (or ‘self-overlap’)
non-orthogonality factor t = Oii−1 for the right and left eigenvectors corresponding to eigenvalues
in the vicinity of a point z = x + iy in the complex plane. We will call it for brevity the joint
probability density (JPD) of the two variables, t and z. As was shown in [5, 20] the JPD PN (z, t)
tends (after appropriate rescaling of the variables z and t with the size N) to the inverse gamma
distribution as N � 1:

lim
N→∞

N PN (z
√
N,Nt) =

〈ρ(z)〉
t

e
− Õ1(z)
t〈ρ(z)〉

(
Õ1(z)

t〈ρ(z)〉

)β
, |z| < 1. (4)

3



Here parameter β = 1 corresponds to the real eigenvalues of the real Ginibre matrices (in which
case the parameter z should be chosen real) and β = 2 to the complex Ginibre case. Recall that
in the above the limiting spectral density of real eigenvalues for β = 1 is 〈ρ(z)〉 = 1

2
√

2π
for the

interval |z| < 1, whereas the limiting spectral density of real eigenvalues for β = 2 is 〈ρ(z)〉 = π−1

inside the unit circle |z| < 1.
The limiting expression (4) naturally incorporates for complex Ginibre case the Chalker-Mehlig

result. In the formula above Õ(z) = π−1(1 − |z|2), which is the large N limit of the rescaled
one-point correlation function. Interestingly, despite the fact that for β = 1 the mean value defined
via O1(z) does not exist, its rescaled version, Õ1(z) = 1

2
√

2π
(1 − z2), appears as a parameter in

the inverse γ1 distribution and defines therefore the typical value of the diagonal overlap. Further
calculations in a few non-Gaussian rotationally-invariant matrix ensembles (in particular, associated
with “truncations” of unitary matrices) done very recently in [12] suggest that (4) might exhibit a
certain degree of universality. Note that the statistics of Oii for complex eigenvalues of real Ginibre
matrices remains an outstanding problem, though it would be natural to expect that also in that
case for a fixed z with nonvanishing imaginary part the limit should be the same as for the complex
Ginibre case.

Returning to the original question of eigenvalue condition numbers for real-valued matrices,
the above results in particular imply that in contrast to well-conditioned eigenvalues of symmetric
matrices with κ = 1 the typical condition numbers in fully asymmetric random matrices grow with
matrix size as

√
N [20] and show strong fluctuations. One of natural questions is then to ask how

those properties evolve for matrices with a controlled degree of asymmetry in their entries. The aim
of this work is to answer this question. To this end we consider matrices with i.i.d. real Gaussian
entries, such that the entries Xij and Xji are correlated. The joint pdf for the elements of this
ensemble, known in the literature either as real partly symmetric Ginibre ensemble, or alternatively
as the Real Elliptic Gaussian Ensemble, is given by

P (X)dX = C−1
N exp

[
− 1

2(1− τ2)
Tr(XXT − τX2)

]
dX. (5)

Here dX =
∏N
i,j=1 dXij is the flat Lebesgue measure over all matrix elements and the normalization

constant reads CN = (2π)N
2/2(1 + τ)N/2(1− τ2)

N(N−1)
4 . The parameter τ ∈ [0, 1] tunes the degree

of correlation, E(XijXji) = τ for i 6= j, and (5) interpolates between the Real Ginibre Ensemble for
τ = 0 and real symmetric matrices (Gaussian Orthogonal Ensemble) for τ = 1. In particularly, it
is well-known that for large sizes N � 1 a nontrivial scaling regime of weak non-Hermiticity arises
as long as the product N(1− τ) is kept of the order of unity [14,21–23,26]. It is this regime when
non-normality gradually develops and the condition numbers κi start growing away from the value
κi = 1. Our considerations allow us to address this regime in a quantitative way.

2 Statement of the main results

It turns out that the method of evaluating the JPD in eq. (3) suggested for Ginibre case in [20]
works for the Elliptic ensemble as well, though actual calculations turn out to be significantly more
involved. Relegating technical detail to the rest of the paper, in this section we present our main
findings.
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Our main theorem gives the joint probability density function of the eigenvalue λi and the
shifted overlap t = Oii − 1 for elliptic matrices of a given size N distributed according to (5). It
takes more compact form when the rescaled variable q = (1− τ)t is considered.

Theorem 2.1. Let XN be N×N random matrix with the probability density function given by (5).
Let us define the rescaled and shifted eigenvalue condition number q = (1 − τ)(κ2 − 1). The joint
pdf (3) of real eigenvalue z and associated squared condition number expressed via the variable q is
given by

PN (z, q) =
1

2(1 + τ)
√

2πΓ (N − 1)

e−
z2

2(1+τ) (1+
q

1+q )
√
q(1 + q)

(
q

q + 1 + τ

)N
2 −1

×
[

(1 + τ − 2z2)PN−2 + 2z[RN−2 + τ(N − 2)RN−3]

1 + q
+
PN−2z

2

(1 + q)2
+
τ2(1 + τ)2N(N − 2)PN−3

(1 + τ + q)2
+

(1 + τ)(1− τ2)(N − 2)((N − 2)PN−3 − TN−3)

1 + τ + q
− 2τ(1 + τ)(N − 2)zRN−3

(1 + q)(1 + τ + q)

]
, (6)

where the functions: Pm := Pm(z), Rm := Rm(z), Tm := Tm(z) are defined in terms of the Hermite
polynomials

Hem(z) =
(±i)m√

2π
e
z2

2

∫

R
tme−

t2

2
∓iztdt, (7)

as

PN (z) = N !

N∑

k=0

τk

k!

(
(k + 1)He2k

(
z√
τ

)
− kHek−1

(
z√
τ

)
Hek+1

(
z√
τ

))
, (8)

RN (z) =
N !

2

N∑

k=0

τk+
1
2

k!

(
(k + 2)Hek+1

(
z√
τ

)
Hek

(
z√
τ

)
− kHek+2

(
z√
τ

)
Hek−1

(
z√
τ

))
, (9)

TN (z) = N !
N∑

k=0

kτk

k!

(
(k + 1)He2k

(
z√
τ

)
− kHek−1

(
z√
τ

)
Hek+1

(
z√
τ

))
. (10)

Remark 2.2. Note that for τ = 0 these quantities simplify to PN = ez
2
Γ
(
N + 1, z2

)
, RN = zPN

and TN = Nz2PN−1, with Γ (N + 1, z) =
∫∞
z uNe−xdu, and the known result [20, eq. 2.5] is

recovered.

Remark 2.3. The exact mean density of purely real eigenvalues ρ
(r)
N (z) for real Elliptic matrices

of even size N is known due to Forrester and Nagao [17]. It is given by ρ
(r)
N (z) = ρ

(1)
N (z) + ρ

(2)
N (z)

with

ρ
(1)
N (z) =

1√
2π
e−

z2

1+τ

N−2∑

k=0

τk

k!
He2

k

(
z√
τ

)
, (11)

ρ
(2)
N (z) =

1√
2π(1 + τ)Γ (N − 1)

e
− z2

2(1+τ) τN−3/2HeN−1

(
z√
τ

)∫ z

0
e
− u2

2(1+τ)HeN−2

(
u√
τ

)
du. (12)

For N odd the density can be obtained using the method from [16]. Our expression (6) by its very
definition must reproduce the Forrester-Nagao result after integration over the variable t. Perform-
ing such an integration analytically is, however, a challenging task which we managed to complete
for N = 2, 3, 4. However, we checked that performing such integral numerically for moderate values
of N gives indistinguishable results from the density of real eigenvalues, see Appendix A.
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Being exact, the expression (6) can be further analyzed in interesting scaling limits as N →∞.
The first of such limits is the so-called ‘bulk scaling’ corresponding to the eigenvalues inside the
limiting support of the spectrum which (after appropriate rescaling z →

√
Nz) for a fixed z and

0 ≤ τ < 1 represents an ellipse in the complex plane (hence the name for the ensemble) centered
at the origin, with semi-axis 1− τ along imaginary axis and 1 + τ along the real axis. Since we are
dealing only with real eigenvalues, we restrict ourselves to real z such that |z| < 1 + τ , where the
following asymptotics holds:

Corollary 2.4. (bulk scaling) Define for a fixed 0 ≤ τ < 1 and real z satisfying |z| < 1 + τ the
limiting scaled JPD as Pbulk(z, t) = limN→∞NPN (

√
Nz,Nt). Then

Pbulk(z, t) =

√
1− τ2

2
√

2π

[
1− z2

(1+τ)2

]

t2
e
− 1−τ2

2t

[
1− z2

(1+τ)2

]

. (13)

This asymptotics shows that the typical value of the diagonal overlap t = Oii− 1 in this regime
is always of the order N as N � 1, similarly to the behaviour for the Ginibre case τ = 0. Moreover,
by recalling that the asymptotic density of real eigenvalues in elliptic case is 〈ρ(z)〉 = 1√

2π(1−τ2)

and introducing Õ1(z) =
√

1−τ2
2
√

2π
(1− z2

(1+τ)2
), we see that (13) is exactly of the form (4) for β = 1.

When approaching the boundary |z| = 1 + τ of the eigenvalue support the typical diagonal
overlap Õ1(z) tends to zero, and in the appropriate scaling vicinity of the boundary it becomes
parametrically weaker, as the variable t in such a regime becomes of the order

√
N :

Corollary 2.5. (edge scaling) Take a fixed 0 ≤ τ < 1 and parametrize z and q as z =
√
N(1 +

τ) + δτ
√

1− τ2 and q = σ
√
N(1− τ2). Then the limit Pedge(δτ , q) = limN→∞

√
NPN (z, q) exists

and is equal to

Pedge(δτ , σ) =
1

4πσ2(1− τ2)
e−

1
4σ2

+ δτ
σ

[
e−2δ2τ +

(
1

σ
− 2δτ

)∫ ∞

2δτ

e−
u2

2 du

]
. (14)

Note that this form is essentially the same as found for real Ginibre case in [20].
Finally, the ultimate goal of our study is to investigate the weak non-Hermiticity regime occuring

for N →∞ when τ approaches unity with the rate O(N−1), so that the parameter 2N(1− τ) = a2

is fixed. Such parameter therefore controls the deviation from the fully symmetric limit. In this
regime of “almost symmetric” matrices already a finite fraction of order of N eigenvalues are real,
and their mean density asymptotically is given by [14,23]

〈ρ(z)〉 = ρsc(z)

∫ 1

0
e−

1
2
As2ds, |z| < 2, (15)

where ρsc(z) = 1
2π

√
4− z2 is the standard Wigner semicircle density characterizing real symmetric

GOE matrices, and A = (πρsc(z)a)2.
As anticipated, such regime turns out to be not only “weakly non-Hermitian”, but also “weakly

non-normal” as the typical value of the diagonal overlap t = Oii− 1 turns out to be of the order of
unity in the bulk of the spectrum, namely
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Figure 1: (left) 3D plot of Pweak(z, t). (right) Section of the plot at z = 0 (red line) juxtaposed numerical
diagonalization of 2 · 104 matrices of size N = 500.

Corollary 2.6. Let |z| < 2 and t ≥ 1 be fixed. Consider the limit Pweak(z, t) = limN→∞N−1/2PN (z
√
N, t)

with 2N(1− τ) = a2 fixed. Then

Pweak(z, t) =
A

2
ρsc(z)

e−
A
2t

t2

∫ 1

0
e−

1
2
As2
(

1 +A+
A

t
−As2

)
s2ds, (16)

where A = (πρsc(z)a)2 and ρsc(z) = 1
2π

√
4− z2.

Remark 2.7. After integration by parts one can rewrite the above as

Pweak(z, t) =
A

2
ρsc(z)

e−
A
2t

t2

[(
2

A
− 1

t

)
e−

A
2 +

(
1 +

1

t
− 2

A

)∫ 1

0
e−

1
2
As2ds

]
. (17)

From this form it is easy to check that
∫∞

0 Pweak(z, t)dt agrees with the mean density (15), as
expected.

We thus conclude that the characteristic tail Pweak(z, t) ∼ t−2 is the most robust feature of the
condition number density for real eigenvalues of asymmetric matrices, as it survives in the regime
of arbitrary weak asymmetry as long as a > 0,

Acknowledgments. WT appreciates the support of Polish Ministry of Science and Higher
Education through the ‘Diamond Grant’ 0225/DIA/2015/44 and the doctoral scholarship ETIUDA
UMO-2018/28/T/ST1/00470 from National Science Center. WT is grateful to King’s College
London for warm hospitality during his stay.

3 Derivation of the main results

We briefly outline an adaptation of the method of evaluating the JPD in eq. (3) following [20]
with necessary modifications.
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3.1 Partial Schur decomposition

Let λ be a real eigenvalue of a N ×N real matrix XN . Then it is well-known, see e.g. [13], that
the matrix XN can be decomposed as

XN = O

(
λ wT

0 XN−1

)
OT = OX̃NO

T , (18)

where w is a column vector with N −1 components and XN−1 is a matrix of size (N −1)× (N −1).
The matrix O is known in the literature as the Hausholder reflection matrix. Note that although the
left/right eigenvectors of X̃N corresponding to λ are different from those of XN , the inner products
(hence, the eigenvalue condition numbers) are the same. Parameterizing these eigenvectors as
r̃λ = (1, 0, . . . , 0)T and l̃λ = (1, b1, . . . , bN−1) = (1,bT ), we immediately obtain for the associated
condition number κ2

λ = 1 + bTb. Demanding that l̃λ is the left eigenvector of X̃N leads us to the
relation b = (λ−XT

N−1)−1w. As a consequence [20]

κ2
λ = 1 + wT (λ−XN−1)−1(λ−XT

N−1)−1w. (19)

The Lebesgue measure on XN can be decomposed as dXN = C̃N | det(λ−XN−1)|dλdwdXN−1dO,
with the known proportionality constant C̃N .

It turns out to be more technically convenient to concentrate on evaluating a characteristic

function L(z, p) =
〈
δ(z − λ)e−pb

Tb
〉
N

representing the Laplace transform of the JPD P(z, t).

Hereafter by 〈. . .〉N we denote the expected value with respect to the probability measure (5) for
matrices XN of size N .

Lemma 3.1. The characteristic function L(z, p) can be represented in the form

L(z, p) =
e
− z2

2(1+τ)

2
N
2 Γ
(
N
2

)√
1 + τ

〈
det(z −X)(z −XT )

det 1/2 [2p(1− τ2) + (z −X)(z −XT )]

〉

N−1

. (20)

Proof. Substituting the decomposition (18) together with the associated decomposition of the
Lebesgue measure into the probability measure of the elliptic ensemble (5) one can easily see
that the ensemble average in (20) amounts to performing the following integral:

L(z, p) = C−1
N e

− z2

2(1+τ)

∫
exp

[
− 1

2(1− τ2)
Tr(XN−1X

T
N−1 − τX2

N−1)

]
×

exp

[
− 1

2(1− τ2)
wT

(
1 + 2p(1− τ2)(z −XN−1)−1(z −XT

N−1)−1
)
w

]
|z −XN−1|dXN−1dwdO

(21)

The integral over O yields the volume of the space of Hausholder transformations VO = πN/2

Γ(N2 )
[13].

The integral over w is Gaussian and can be easily performed, giving the factor

[
2π(1− τ2)

]N−1
2

det 1/2[1 + 2p(1− τ2)(z −XN−1)−1(z −XT
N−1)−1]

=

[
2π(1− τ2)

]N−1
2 det 1/2(z −XN−1)(z −XT

N−1)

det 1/2
[
(2p(1− τ2) + (z −XN−1)(z −XT

N−1)
] .

(22)
Taking all the multiplicative numerical constants into account and the factor |det(z−XN−1)| from
the Jacobian, we arrive at (20).
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3.2 Ratio of determinants

The problem has been therefore reduced to the calculation of the expectation for the ratio of
two random determinants

DN :=

〈
det(z −X)(z −XT )

det 1/2 [(2p(1− τ2) + (z −X)(z −XT )]

〉

N

, (23)

which is evaluated as

Theorem 3.2.

DN =
2−

N
2

√
1 + τΓ

(
N
2

)
∫ ∞

0

dt

t
e−pt(1−τ)e

− z2t
2(1+τ)(1+t)

(
t

1 + t

)1/2( t

1 + τ + t

)N−1
2

×
[
PN−1(1 + τ − 2z2) + 2z(RN−1 + τ(N − 1)RN−2)

1 + t
+
PN−1z

2

(1 + t)2
+
τ2(1 + τ)2(N2 − 1)PN−2

(1 + τ + t)2
+

(1 + τ)(1− τ2)(N − 1)[(N − 1)PN−2 − TN−2]

1 + τ + t
− 2τ(1 + τ)(N − 1)zRN−2

(1 + t)(1 + τ + t)

]
, (24)

where PN , RN and TN are defined in (8)-(10).

Remark 3.3. The Theorem 3.2 immediately implies our main statement, Theorem 2.1: Indeed,
by inserting (24) into (20) we see that L(z, p) is already represented as a Laplace transform and
(6) follows.

The proof of Theorem 3.2 proceeds via employing the supersymmetry approach to ratios of
determinants.

Proof. Let χ, ρ, θ, η denote N -component vectors in anticommuting (Grassmann) variables. This
allows us to rewrite the determinant in the numerator as a standard Berezin Gaussian integral

det(z −X)(z −XT ) =

∫
dχdρdθdη exp

[
−χT (z −X)η − θT (z −XT )ρ

]
. (25)

The inverse square root of the determinant of a symmetric positive definite matrix A can be
represented as a standard Gaussian integral. Namely, introducing N -component real vectors S1, S2

we can write

det−
1
2
[
2p(1− τ2) + (z −X)(z −XT )

]
=

1

(2π)N

∫
dS1dS2 exp

[
−1

2
(ST1 S

T
2 )

(
u i(z −X)

i(z −XT ) u

)(
S1

S2

)]
, (26)

where we denoted u2 = 2p(1− τ2). This provides a representation of the right-hand side in (24) in
the form

DN =
1

(2π)N

∫
dχdρdθdηdS1dS2 exp

[
−z(χT η + θTρ)− 1

2
(uST1 S1 + uST2 S2 + 2izST1 S2)

]
×

〈
eTrX(θρT−ηχT+iS2ST1 )

〉
N
. (27)
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The identity
〈
e−TrXA

〉
N

= e
1
2

Tr(AAT+τA2) allows us to perform the ensemble average. This in turn
produces terms that are quartic in Grassmann variables, which we further bilinearize by employing
a few auxilliary Gaussian integrals, the step known as the Hubbard-Stratonovich transformation:

eθ
T ηρTχ =

1

π

∫

C
d2ae−|a|

2+aθT η+āρTχ, eτχ
T θρT η =

1

π

∫

C
d2be−|b|

2+
√
τbχT θ+

√
τ b̄ρT η, (28)

e−
τ
2

(ρT θ)2 =
1√
2π

∫

R
e−

c2

2
+ic
√
τρT θdc, e−

τ
2

(χT η)2 =
1√
2π

∫

R
e−

f2

2
−if√τχT ηdf, (29)

where we use the notation d2z = dx dy for z = x+ iy.
Applying these transformations converts all integrations over anticommuting variables into a

Gaussian Berezin integral which we can write as
∫
dχdρdθdηe−

1
2
ξTMξ, where ξT = (χT ηT θTρT )

and the antisymmetric matrix M is given by

M =




0 g − iAT −b√τ ā
−g + iA 0 a b̄

√
τ

b
√
τ −a 0 h− iA

−ā −b̄√τ −h+ iAT 0


 . (30)

Here we denoted g = z + if
√
τ , h = z + ic

√
τ for brevity, and introduced the rank-two matrix

A = S1 ⊗ ST2 + τS2 ⊗ ST1 , where a⊗ bT stands for the matrix with entries aibj .
The Berezin Gaussian integration yields Pfaffian of the matrix M , evaluating which explicitly

gives

Pf(M) = (|a|2 + τ |b|2 + gh)N−2
[
(|a|2 + τ |b|2 + gh)2 − (|a|2 + τ |b|2 + gh)i(g + h)TrA−

|a|2TrAAT − τ |b|2TrA2 − (g2 + h2) detA− gh(TrA)2 − i(g + h) detATrA+ det 2A
]
. (31)

We then see that the resulting integrand depends on the vectors S1 and S2 only via their scalar
products, so it is convenient to parameterize integrals by the entries of the associated Gram ma-
trix [19]

Q̂ =

(
Q1 Q
Q Q2

)
, Q̂ij = (STi Sj), i, j = 1, 2. (32)

The Jacobian of this change of variables is (det Q̂)
N−3

2 , while the integration over redundant

angular variables yields the factor C
(o)
N,2 = 2N−2πN−1

Γ(N−1) [27]. The range of integration is restricted by

the non-negativity conditions Q1 ≥ 0, Q2 ≥ 0,det Q̂ = Q1Q2−Q2 ≥ 0. Following [20] it convenient

to change variables into r = (det Q̂)1/2, and parameterize the integration region by Q2 = r2+Q2

Q1
.

The change of measure reads dQ1dQ2dQ = 2dQ1

Q1
rdrdQ. After rescaling Q1 → uQ1, we have

DN =
1

4π4Γ (N − 1)

∫

C
d2a

∫

C
d2b e−|a|

2−|b|2
∫

R2

dc df e−
c2

2
− f2

2

×
∫ ∞

−∞
dQ

∫ ∞

0

dQ1

Q1

∫ ∞

0
rN−2dr e

− 1
2

(
u2Q1+ r2+Q2

Q1
+2izQ+r2+Q2(1+τ)

)

Pf(M). (33)
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Noticing that TrA = (1 + τ)Q, TrA2 = (1 + τ2)Q2 + 2τQ1Q2, TrAAT = (1 + τ2)Q1Q2 + 2τQ2 and
detA = −τ detQ, the Pfaffian Pf(M) can be expressed as

(|a|2 + τ |b|2 + gh)N−2
[
(|a|2 + τ |b|2 + gh)2 − (|a|2 + τ |b|2 + gh)(iQ(1 + τ)(g + h) +Q2(1 + τ)2)−

−|a|2(1 + τ2)r2 − 2τ2r2|b|2 + τr2(g2 + h2)− iτ(g + h)Q(1 + τ)r2 + τ2r4
]
. (34)

The integrals over a, b, c, f are performed in the following way. Let us denote

PN =
1

2π3

∫
d2ad2bdcdfe−|a|

2−|b|2− c2
2
− f2

2 (|a|2 + τ |b|2 + gh)N . (35)

Expanding the expression in the bracket and using the binomial theorem twice, we obtain

PN = N !
N∑

k=0

τk
k∑

m=0

1

m!
He2

m

(
z√
τ

)
, (36)

where Hem(x) = (2π)−1/2
∫∞
−∞ e

− y2
2 (x + iy)mdy are the monic Hermite polynomials. The internal

sum can be performed via the Cristoffel-Darboux formula, finally yielding

PN = N !
N∑

k=0

τk

k!

(
(k + 1)He2

k

(
z√
τ

)
− kHek−1

(
z√
τ

)
Hek+1

(
z√
τ

))
. (37)

Note that PN can be interpreted as the expectation of the squared characteristic polynomial〈
det(z −X)(z −XT )

〉
N

, and in this capacity has been already studied for the elliptic ensemble [1].
All other integrals over a, b, c, f in (33) are performed in a similar way. After exploiting the three
term recurrence for Hermite polynomials HeN+1(x) = xHeN (x) − NHeN−1(x), the integrals are
evaluated to

PN − PN−1Q
2(1 + τ)2 + r4τ2PN−2 − r2[(N − 1)(1 + τ2) + 4τ2]PN−2 − 2iQ(1 + τ)RN−1+

2r2τ(z − iQ(1 + τ))RN−2 + (1− τ2)r2TN−2, (38)

where RN and TN are defined by (9) and (10). Note also that RN (z) = 1
2(N+1)

dPN+(z)
dz . It is

convenient to exploit the structure of (38) and exponent in (33) and rescale further Q→ Q
1+τ and,

similarly, Q1 → Q1

1+τ . Recalling that u2 = 2p(1− τ2), one then arrives at

DN =
1

2π(1 + τ)Γ (N − 1)

∫ ∞

0

dQ1

Q1
e−pQ1(1−τ)

∫

R
dQe

− 1
2(1+τ)

(
Q2 1+Q1

Q1
+2izQ

)

∫ ∞

0
rN−2dre

− r2
2
Q1+1+τ
Q1

[
PN − PN−1Q

2 + r4τ2PN−2 − r2[(N − 1)(1 + τ2) + 4τ2]PN−2−

2iQRN−1 + 2r2τ(z − iQ)RN−2 + (1− τ2)r2TN−2

]
. (39)

The remaining integration overQ is Gaussian, while the one over r is of the type
∫∞

0 rN−2e−ar
2/2dr =

1
2

(
2
a

)N−1
2 Γ

(
N−1

2

)
. The integral over Q1 formally looks like logarithmically divergent. To see the

cancellation of the divergent part one should exploit a non-trivial identity

PN − PN−1(1 + τ − z2)− (N − 1)[2τ2 +N − 1]PN−2 − 2zRN−1 + (1− τ2)(N − 1)TN−2 = 0, (40)
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which is verified in the Appendix B. After further algebraic manipulations with the help of Math-
ematica we finally obtain

DN =
2−

N
2

√
1 + τΓ

(
N
2

)
∫ ∞

0

dQ1

Q1
e−pQ1(1−τ)e

− z2Q1
2(1+τ)(1+Q1)

(
Q1

1 +Q1

) 1
2
(

Q1

1 + τ +Q1

)N−1
2

×
[
PN−1(1 + τ − 2z2) + 2z(RN−1 + τ(N − 1)RN−2)

1 +Q1
+

PN−1z
2

(1 +Q1)2
+
τ2(1 + τ)2(N2 − 1)PN−2

(1 + τ +Q1)2
+

(1 + τ)(1− τ2)(N − 1)[(N − 1)PN−2 − TN−2]

1 + τ +Q1
− 2τ(1 + τ)(N − 1)zRN−2

(1 +Q1)(1 + τ +Q1)

]
. (41)

3.3 Asymptotic analysis

As PN , RN and TN are the building blocks of the determinant, we consider here their large-N
asymptotics. First, we find convenient integral representations which should allow the use of the
Laplace method. For this we start from (37) and using the integral representation for Hermite
polynomials in (7) we obtain

PN =
N !

2πτ
e
z2

τ

N∑

k=0

1

k!

∫

R2

dtdse−
t2+s2

2τ
− iz
τ

(t−s)[(k + 1)tksk − ktk+1sk−1]. (42)

The sum is evaluated using
∑N

k=0
xk

k! = ex Γ(N+1,x)
Γ(N+1) , where Γ (N + 1, x) =

∫∞
x uNe−udu. This yields

Lemma 3.4.

PN (z) =
N !

2πτ
e
z2

τ

∫

R2

dtdse−
t2+s2

2τ
− iz
τ

(t−s)+ts
(

Γ (N + 1, ts)

N !
+ t(s+ t)

Γ (N, ts)

(N − 1)!

)
. (43)

An analogous procedure applied to TN gives

Lemma 3.5.

TN =
N !

2πτ
e
z2

τ

∫

R2

dtdse−
t2+s2

2τ
− iz
τ

(t−s)+ts
(

(t2 + 2ts)
Γ (N, ts)

(N − 1)!
+ t2s(t+ s)

Γ (N − 1, ts)

(N − 2)!

)
. (44)

3.3.1 Bulk scaling

Let us give the proof of the Corollary 2.4.

Proof. After rescaling z → z
√
N , t → t

√
N and s → s

√
N , and then changing the integration

variables (t, s)→ (p, q) as (t+ s)/
√

2 = p and (t− s)/
√

2 = q the equation (43) takes the following
form:

PN (z
√
N) =

N !N

2πτ
eN

z2

τ

∫

R
dp e−N

p2

2 ( 1
τ
−1)

∫

R
dqe
−N

(
q2

2 ( 1
τ

+1)+ iz
√

2
τ

q

)

(45)

×
(
θN

(
p2 − q2

2

)
+Np2θN−1

(
p2 − q2

2

N

N − 1

))
,
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where we denoted θN (x) = Γ(N+1,Nx)
Γ(N+1) . Note that for any N this function is bounded: θN (x) ≤ 1,

and in the limit N →∞ for a fixed real x we have θN (x)→ θ∞(x), where θ∞(x) = 1 for x < 1 and
0 otherwise.

For N � 1 the integral over p can be most straightforwardly evaluated by the Laplace method,
yielding that the leading contribution to PN (z

√
N) can be written as

PN (z
√
N) ∼ N !

√
N√

2πτ(1− τ)
eN

z2

τ

∫

R
dqe
−N

(
q2

2 ( 1
τ

+1)+ iz
√

2
τ

q

)(
θN

(−q2

2

)
+

τ

1− τ θN−1

(−q2

2

))
.

(46)
For large N the q−integral above can be performed (for a fixed, N−independent real value of z)

by the standard saddle point method, with the saddle point position given by q = q∗ := − iz
√

2
1+τ

yielding the required asymptotic formula:

PN (z
√
N) ∼ N !√

1− τ2(1− τ)
e
Nz2

1+τ θ∞
(
z2/(1 + τ)2

)
(47)

The same type of reasoning applied to (44) gives

TN (z
√
N) ∼ N !

(1− τ2)3/2

Nz2

1 + τ
e
Nz2

1+τ θ∞
(
z2/(1 + τ)2

)
. (48)

Finally, the asymptotics

RN (z
√
N) ∼ N !z

√
N

(1− τ2)3/2
e
Nz2

1+τ θ∞
(
z2/(1 + τ)2

)
(49)

is obtained from (47) using the fact that RN (z) = 1
2(N+1)

dPN+1(z)
dz .

Upon inserting this asymptotics into (6) and rescaling q → Nq it is clear that only the second
to last term in the square bracket provides the leading order contribution, which happens to be

(1 + τ)(1− τ2)(N − 1)[(N − 1)PN−2 − TN−2]

1 + τ +Nq
∼ (N − 1)![(1 + τ)2 − z2]

q
√

1− τ2
e
Nz2

1+τ . (50)

As a consequence, the joint pdf reads

NP(z
√
N,Nq) =

√
1+τ
1−τ (1− z2

(1+τ)2
)

2
√

2πq2
e
− 1+τ

2q

(
1− z2

(1+τ)2

)

. (51)

Changing variables to t = q
1−τ , one immediately recovers Corollary 2.4.

3.3.2 Edge scaling

When z is tuned to values parametrically close to z = ±(1+τ) where the step-function argument
in equations (47)-(50) is close to unity by a distance O(N−1/2), the correponding asymptotics need
to be evaluated with higher accuracy. Such regime is known as the edge scaling, which features in
the Corollary 2.5 which we now prove.
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Proof. In the proof we choose the vicinity of z = 1 + τ . Correspondingly, in (45) we now scale z =
1+τ+ w√

N
, where w is of order 1. The transition from (45) to (46) remains the same as before. Now

we use the integral representation of the incomplete gamma function Γ (N, x) = xN
∫∞

1 uN−1e−uxdu
helps to rewrite the integral (46) in the form

PN (z) ∼ N !NN+1

4πτΓ (N)
eN

z2

τ

∫

R
dq e−

N(1+τ)
2τ

(q2+i2
√

2q)− iqw
√

2N
τ

∫ ∞

1
du e−

Nu
2

(−q2)+N ln[u2 (−q2)]×
(−q2

2
+

τ

1− τ
1

u

)
. (52)

An inspection shows that whereas the q−integration is dominated by the contribution from the
saddle point q = −

√
2i the last u−integral is dominated by the vicinity of u = 1 of the widths

O(N−1/2). Parametrizing in such a vicinity u = 1 + v√
N

one then arrives at the leading -order
asymptotic

PN ∼
N !NN−1/2

(1− τ)2Γ (N)
e
w2

1+τ
+2w

√
N+Nτ

∫ ∞

0
e
− 1+τ

2(1−τ)(v+ 2w
1+τ )

2

dv. (53)

After the change of variables u =
√

1+τ
1−τ (v+ 2w

1+τ ) and the use of Stirling’s approximation Γ (N + 1) ∼
√

2πNN+ 1
2 e−N , we obtain

PN =
N !e

z2

1+τ

(1− τ)
√

2π(1− τ2)

∞∫

2w√
1−τ2

e−
u2

2 du. (54)

The last integral is related to the complementary error function erfc(x) = 2√
π

∫∞
x e−t

2
dt. Using

RN (z) = 1
2(N+1)

dPN+1(z)
dz we obtain that in such regime asymptotically RN ∼

√
NPN . From the

asymptotics of (50) one expects that the leading order contributions from (N+1)PN and TN cancel,
therefore one needs to work with the appropriate integral representation. Combining (43) and (44)
and following the analogous reasoning as above we obtain

(N + 1)PN − TN =
N !
√
N√

2π(1− τ2)
e
z2

1+τ


e−

2w2

1−τ2 − 2w√
1− τ2

∫ ∞
2w√
1−τ2

e−
u2

2 du


 , (55)

which is of the same order as
√
NPN , as expected. To get the correct asymptotic at the edge, we

rescale q → q
√
N in (6). It is now clear that the first term in square bracket in (6) is subleading and

contribution of other terms is of the same order. The asymptotics of
(

q
√
N

1+τ+q
√
N

)N
2
−1

is calculated
as

e
−N

2
ln
(

1+ 1+τ

q
√
N

)

∼ e−
(1+τ)

√
N

2q
+

(1+τ)2

4q2 (56)

and we obtain

P ∼ 1

4πq2
√
N
e
w
q
− 1−τ2

4q2

[
e
− 2w2

1−τ2 +

(√
1− τ2

q
− 2w√

1− τ2

)∫

2w
1−τ2

e−
u2

2 du

]
. (57)

After denoting w = δτ
√

1− τ2 and q = σ
√

1− τ2, the statement of the Corollary 2.5 follows.
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3.3.3 Weak nonhermiticity

Our final goal is to provide the proof of Corollary 2.6.

Proof. We start again from (45) keeping z fixed and N−independent like before in the bulk case,

but for the weak nonhermiticity regime replace τ = 1 − a2

2N . It is then immediately obvious that

p−integral is no longer dominated by the small vicinity p ∼ N−1/2, but rather by the integration
range of order unity. Then a quick inspection shows that for extracting the leading asymptotics in
the large N limit one can effectively replace (45) by

PN (z
√
N) ∼ N !N2

2πτ
eN

z2

τ

∫

R
dp p2e−

p2a2

4

∫

R
dqe−N(q2+iz

√
2q)θ∞

(
p2 − q2

2

)
. (58)

Performing the integral over q by the saddle point method we see that the range of integration over p

is given by |p| <
√

4−z2√
2

. After a few simple changes of variables and straightforward manipulations
one arrives at

PN (z
√
N) ∼ N !N3/2(4− z2)3/2

2
√

2π
e
Nz2

2

∫ 1

0
e
− s2a2

2

(
1− z2

4

)
s2ds. (59)

The asymptotic behavior of RN simply follows from the relation RN (z) = 1
2(N+1)

dPN+1(z)
dz and is

related to the asymptotics of PN as RN = z
√
N

2 PN . Asymptotics of TN analogously follows from
its integral representation and reads

TN (z
√
N) =

N !N5/2(4− z2)3/2

2
√

2π
e
Nz2

2

∫ 1

0
e
− s2a2

2

(
1− z2

4

)
4s4 − z2s4 + z2s2

4
ds. (60)

Note that in (6) we used the rescaled quantity q = (1− τ)t, therefore for the correct asymptotics,
we need to rescale q → 2N

a2
t. This shows that all terms in square bracket are of the same order.

Direct use of the asymptotic forms (59) and (60) leads to (16).

Appendix A Density of real eigenvalues for moderate matrix size

For N = 2 the joint pdf (6) reads

PN=2(z, q) =
1

2
√

2π(1 + τ)

e
− z2

2(1+τ)
(1+ q

1+q
)

√
q(1 + q)

(
z2

(1 + q)2
+

1 + τ

1 + q

)
. (61)

The substitution t2 = q
q+1 allows one to calculate the integral. After integration by parts, we obtain

∫ ∞

0
PN=2(z, q)dq =

e−
z2

1+τ

√
2π

+
e
− z2

2(1+τ)

√
2π

z

1 + τ

∫ z

0
e
− u2

2(1+τ)du, (62)

which agrees with (11)-(12) when we substitute N = 2. This way, with the help of Mathematica
software, we were also able to perform integration for N = 3, 4. For N = 4 we again see agreement
with Forrester-Nagao result, while for N = 3 we compared the results of integration with the
numerical diagonalizations of random matrices, see Fig. 2. For moderate matrix sizes, where the
symbolic calculations were not possible, we numerically integrated (6) and compared with numerical
diagonalization, observing good agreement, see Fig. 2.
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Figure 2: Histograms of the density of real eigenvalues for the elliptic ensemble with τ = 0.9 obtained by
direct diagonalization of 106 matrices of size N = 3 (left) and 2 · 105 matrices of size N = 10 (right). Blue
solid lines present the formula obtained by analytical (left) and numerical (right) integration of P(z, q) (6).
Formulas are rescaled so that the density is normalized to 1.

Appendix B Proof of the identity (40)

We shall prove (40) by induction.

Proof. The first step is trivial as this identity can be verified by substituting Hermite polynomials
for low N . Let us assume that (40) holds for N − 1. Using formulas (8)-(10) it is easy to find the
recurrence relations

PN = NPN−1 +AN , (63)

RN = NRN−1 +BN , (64)

TN = NTN−1 +NAN , (65)

with

AN = τN [(N + 1)He2
N −NHeN+1HeN−1], (66)

2BN = τN−1/2[(N + 1)HeNHeN−1 − (N − 1)HeN+1HeN−2, (67)

where for simplicity we omitted the argument z√
τ

of Hermite polynomials. These recursions allow

us to rewrite lhs of (40) as

(N −1)[PN−1−PN−2(1+τ −z2)− (N −2)(2τ2 +N −2)PN−3−2zRN−2 +(1−τ2)(N −2)TN−3]+

AN + (z2 − τ)AN−1 −N(N − 1)τ2AN−2 − 2zBN−1. (68)

The the expression in square brackets is zero by the induction assumption. Verification that the
second line equals 0 relies on the substitution of (66) and (67) and consecutive use of the three
term recursion HeN+1(x) = xHeN (x)−NHeN−1(x).
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Abstract

We start from applying the general idea of spectral projection (suggested by Olshanski and Borodin 
and advocated by Tao) to the complex Wishart model. Combining the ideas of spectral projection with the 
insights from quantum mechanics, we derive in an effortless way all spectral properties of the complex 
Wishart model: first, the Marchenko-Pastur distribution interpreted as a Bohr-Sommerfeld quantization 
condition for the hydrogen atom; second, hard (Bessel), soft (Airy) and bulk (sine) microscopic kernels 
from properly rescaled radial Schrödinger equation for the hydrogen atom. Then, generalizing the ideas 
based on Schrödinger equation to the case when Hamiltonian is non-Hermitian, we propose an analogous 
construction for spectral projections of universal kernels for bi-orthogonal ensembles. In particular, we 
demonstrate that the Narain transform is a natural extension of the Hankel transform for the products of 
Wishart matrices, yielding an explicit form of the universal kernel at the hard edge. We also show how the 
change of variables of the rescaled kernel allows us to make the link to the universal kernel of the Muttalib-
Borodin ensemble. The proposed construction offers a simple alternative to standard methods of derivation 
of microscopic kernels. Finally, we speculate, that a suitable extension of the Bochner theorem for Sturm-
Liouville operators may provide an additional insight into the classification of microscopic universality 
classes in random matrix theory.
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1. Introduction

Determinantal point processes [1] appear in several areas of mathematics, physics and applied 
sciences, ranging from random matrix theory (RMT) to combinatorics and theory of representa-
tions. The unique feature of such processes relies on the fact, that the N -point joint probability 
distribution function is expressed as a determinant of a matrix built from a single, two-point 
correlation function known as a kernel. Celebrated examples of such kernels in high energy 
physics include “hard-edge” Bessel kernels [2–4], observed in numerous lattice calculations [5], 
or Pearcey kernels appearing at strong-weak coupling phase transition in Yang-Mills theories 
in the limit of large number of colors [6,7]. The calculation of kernels and their asymptotic 
limits became therefore an area of vigorous studies using advanced mathematical tools, like 
supersymmetry [8–11], orthogonal [12] and bi-orthogonal polynomials [13], Riemann-Hilbert 
problem [14–16] and Plancherel-Rotach [17] limiting procedures for integral representations, to 
mention most popular.

Borodin and Olshanski [18] offered a different point of view at kernels built from orthogonal 
polynomials in random matrix theory. When treated as an integral operator, the kernel is a pro-
jection – a consequence of a finite number of eigenvalues and orthogonality of polynomials. This 
idea was later advocated by Tao [19], who also used physical intuition by the mapping between 
Gaussian Unitary Ensemble and the quantum harmonic oscillator. In this quantum mechanical 
picture the projection stems from the fact that the first N energy levels are occupied. Using these 
techniques, Bornemann elaborated the Sturm-Liouville problem and showed that all three clas-
sical limiting kernels can be obtained in this way [20]. The joint probability density functions in 
RMT can be mapped onto various physical systems, including point charges with logarithmic in-
teraction [21–23] and spinless fermions [24]. The latter equivalence proved to be a fertile ground 
of applications of RMT to cold atom systems [25–28].

It is intriguing to investigate the chronological intertwining of the ideas in quantum mechan-
ics, mathematics and statistics from the perspective of the contemporary random matrix theory. 
In 1926, Schrödinger has solved his equation for Coulomb potential, obtaining among others the 
radial part of the wave function in terms of Laguerre functions.1 Two years later (1928) Wishart 
introduced his ensemble in multivariate statistics, as a generalization of the χ2 ensemble [29]. 
The original paper deals with the real random variables, but his ideas were later generalized 
to complex variables [30]. A year later (1929), Bochner has proven his theorem [31] (see sec-
tion 3.1) for Sturm–Liouville operators, without any direct references to Schrödinger equation. At 
that time spectral properties of random matrices were not considered at all. Laguerre polynomials 
appeared explicitly in random matrix theory only after Mehta and Gaudin used the orthogonal 
polynomial method to disentangle the Van der Monde determinant [32]. This technique has also 
paved the way for classical universal kernels. However, the link to the uniqueness of the deter-
minantal triality of soft, edge and bulk microscopic universalities of Sturm–Liouville operators 
have been cleared out only recently [20].

With introducing non-trivial initial conditions for Dyson Brownian motion, new universality 
classes emerged in random matrix theory. In the 90’s of the previous century, collision of soft 
edges in GUE led Brezin and Hikami [33] to the Pearcey kernel. In a similar collision of chiral 
fronts at the hard edge of the chiral random matrix model one of the authors found the Bessoid 
kernel universality [34]. While still determinantal [35], such models break rotational invariance, 

1 Year earlier, Pauli has quantized algebraically hydrogen atom, using the hidden symmetry (Runge-Lenz vector) of 
the Coulomb potential, therefore treating this problem as a free problem on S3 hypersphere.
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and require non-standard tools. Later it was discovered that such ensembles can be solved by 
polynomials that are orthogonal with respect to more than one weight [36].

The bi-orthogonality method of Muttalib and Borodin [13,37] opened a new way for treating 
a broader class of random matrix models, to which the orthogonal polynomial method does not 
apply. Historically, it is again puzzling that bi-orthogonality was not linked to random matri-
ces earlier. Already in 1951, Fano and Spencer [38] studying propagation of the X-rays through 
the matter, have introduced bi-orthogonal Laguerre polynomials. These ideas were further de-
veloped in mathematics by Preiser [39] and Konhauser [40]. In particular, Preiser’s construction 
corresponds exactly to the case of Muttalib-Borodin ensemble.

The aim of this work is to further elaborate the spectral projection method, with the use of in-
sights from elementary quantum mechanics. In section 2, we pedagogically introduce the spectral 
projection method and demonstrate its easiness in taking the microscopic limits by recalculating 
all limiting kernels in the complex Wishart ensemble. We link the Marchenko-Pastur distribu-
tion [41] to the Bohr-Sommerfeld quantization condition. We also notice that the threeness of 
the classical universal kernels can be linked to the strictures originating from the Bochner theo-
rem for Sturm-Liouville problem [31].

Recent developments on the integrable structure of products of random matrices and the multi-
tude of new microscopic kernels in biorthogonal ensembles naturally pose a question whether the 
spectral projection method can be extended to incorporate these universality classes. In section 3
we discuss the possibilities to circumvent the constrains of Bochner’s theorem and consider an 
analog of a quantum-mechanical Hamiltonian, but with higher number of derivatives. Although 
such an operator may not be self-adjoint, still, due the fact that its left and right eigenvectors form 
a bi-orthogonal basis, it is possible to infer the microscopic limit of the kernels, using the spectral 
projection method. The power of this approach – easiness of calculation of microscopic kernel 
without the need of Plancherel-Rotach asymptotics – is demonstrated on two examples: singular 
values of products of Gaussian matrices [42] and the Muttalib-Borodin ensemble [13,37]. In both 
cases the Narain transform [43–45] allows one to recover the Meijer-G hard edge universality, 
generalizing Bessel kernel. Again, the spectral projection translates to the truncation of the phase 
space of the associated transform.

Section 4 concludes the paper. In appendix A, we show an alternative mapping of the Wishart 
ensemble to the 2-dimensional hydrogen atom problem [46]. In appendix B we recover the 
Marchenko-Pastur distribution from the WKB approximation. In appendix C we recall some 
properties of the Meijer-G functions.

2. Spectral projections from hydrogen atom problem

2.1. Complex Wishart ensemble

Let us consider Hermitian matrix M = XX†, where X is the complex N × T matrix with en-

tries given by the probability density function P(X)dX = Z−1
NT e

− 1
σ2

∑N,T
α,j |Xα,j |2 ∏N,T

αj d�Xαj ×
d�Xαj . Here Z−1

NT provides the normalization and σ 2 is the variance of the complex Gaussian 
distribution, which we set to 1, to simplify the expressions. This defines complex Wishart 
matrix [29]. Switching to eigenvalues, we arrive, using standard methods [47], at their joint 
probability density
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P(λ1, ..., λN) = Q−1
N

N∏
j=1

λα
j e−λj

∏
1≤i<j≤N

|λi − λj |2, (1)

with α = T − N , and the Vandermonde determinant (last term) is the price for switching from 
elements of X to eigenvalues λi of matrix M . Standard orthogonal polynomials method [12]
allows one to rewrite the probability distribution as

PN(λ1, ..., λN) = 1

N !
(

det
[
ψj−1(λk)

]N
j,k=1

)2 = 1

N !
[
detKN(λi, λj )

]
, (2)

with the correlation kernel

KN(λ,μ) =
N−1∑
l=0

ψl(λ)ψl(μ), (3)

where ψl(λ) = e−λ/2λα/2Pl(λ) and Pl are monic polynomials. This form already suggests links 
to quantum mechanics. The first equality in (2) represents the joint probability of eigenvalues 
as the square of the Slater determinant, therefore can be interpreted as the quantum probability 
density of non-interacting spinless fermions (see [28] for a review). This also explains why the 
eigenvalue density is expressed solely in terms of a two-point function (second expression on the 
r.h.s. of (2)). Next, we see that the most natural choice of polynomials is dictated by the weight 
wα(λ) = λαe−λ. Such polynomials, orthonormal on the positive part of the real axis, are the as-
sociated Laguerre polynomials and appear in the radial part of the Schrödinger equation. Indeed, 
upon standard separation of variables in the wavefunction, ϕ(�r) = R(r)Ym

l (θ, ψ), it reads

d2y(r)

dr2 +
[

2μe2

rh̄2 − l(l + 1)

r2

]
y(r) = −2μE

h̄2 y(r), (4)

where y(r) = rR(r). Switching to dimensionless variable x = rε, where (ε/2)2 = −2μE/h̄2, 
putting 2μ = 1 and all other physical constants to 1, we recover [48]

d2y(x)

dx2 +
[
−1

4
+ 1

εx
− l(l + 1)

x2

]
y(x) = 0, (5)

where y = yl
n = e−x/2x(k+1)/2Lk

j (x). Here k = 2l + 1 and the principal quantum number is 
related to the order of Laguerre polynomial as n = j + l +1. Note, that ε = 1/n, or, equivalently, 
En = −1/4n2, since in our units Bohr’s radius equals to 2. To map this random matrix problem 
to the hydrogen atom we associate ψl(λ) = √

xy(x). This completes the dictionary between 
hydrogen atom problem and the Wishart kernel. In Appendix A we also present a mapping into 
2D hydrogen atom with 1/r potential [46], in which the relation between eigenfunctions of the 
radial part of the Schrödinger equation and ψ is even more explicit.

The Schrödinger equation for ψ expressed in terms of the parameters of the Wishart ensemble 
reads

d2ψk

dx2 + 1

x

dψk

dx
+ 1 + 2k + α

2x
ψk − α2

4x2 ψk = 1

4
ψk. (6)

Finally, let us note that in the bra-ket notations the kernel can be rewritten as K̂N =∑N−1
k=0 |ψk〉 〈ψk|, thus it is the operator projecting onto the set of N lowest eigenstates. In-

deed, due to the orthonormality of eigenfunctions K̂2
N = K̂N , last equation, when calculated 

in coordinate representation, yields well-known reproducing property 〈x| K̂N |y〉 ≡ KN(x, y) =∫
KN(x, z)KN(z, y)dz.
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Fig. 1. (left) A region in the phase space where the Wigner function is nonzero. We took c=0.3. (right) Identification of 
three regions of the Marchenko-Pastur distribution that give rise to different microscopic scalings.

2.2. Macroscopic density from the semiclassical approximation

To have the finite support of the spectral density in the large N limit, we rescale x → T x. 
Upon this scaling and identifying momentum2 as p = − i

T
d
dx

(in analogy to h̄ ↔ 1/T ) in the 
limit N, T → ∞ with c = N/T fixed we obtain the Schrödinger equation (p2 +Veff )ψ = − 1

4ψ

with the effective potential

Veff = (1 − c)2

4x2 − 1 + c

2x
. (7)

The probability density function can be obtained from the Wigner quasiprobability distribu-
tion, defined as

W(x,p) = 1

πh̄

∞∫
−∞

ψ(x + y)ψ(x − y)e2ipy/h̄dy, (8)

by integrating out the momentum. In the large N limit the Wigner function is constant in the 
region of the phase space p2 +V (x) ≤ 1

4 and zero outside [49] (see Fig. 1). As a consequence, the 
density of eigenvalues is proportional to the momentum and the Bohr-Sommerfeld quantization 
condition

T

∮
p(xT )dx =

(
N + 1

2

)
2π (9)

on the RMT side corresponds to the normalization of the density

r+∫
r−

ρ(x)dx = 1. (10)

This allows us to obtain the density of eigenvalues

ρ(x) = 1

2πcx

√
(r+ − x)(x − r−). (11)

2 For this analogy it is even better to take the 2D radial momentum pr = i
T

(
d
dx

+ 1
x

)
, but this eventually leads to the 

same result in large T limit.
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Here r± = (1 ± √
c)2 are classical turning points in WKB approximation. In Appendix B we 

provide another derivation of this result based on the explicit WKB analysis of (6).
We have therefore obtained Marchenko-Pastur distribution as an exact, semiclassical limit of 

the quantum mechanical hydrogen atom problem. It is intriguing to speculate why such a link 
has not been exploited (to the authors knowledge) in the literature. Perhaps the reason is that the 
Bohr-Sommerfeld quantization condition does not reproduce correctly the ground state of the 
hydrogen atom, and not even the Bohr quantization condition [50]. It is amusing to notice, that 
if one replaced l(l + 1) by (l + 1/2)2 in the numerator of the centrifugal potential, this would be 
the case and B-S approximation would lead to the exact result for the hydrogen spectra [51]. Of 
course, in the large l limit it does not matter which of the equations (5) or (6) we use, however, 
at the microscopic level, the additional square root in Laguerre function for the Wishart will play 
the crucial role in getting the proper scaling of the hard edge.

We complete this part with the observation, that in the case of harmonic oscillator, simi-
lar construction is ambiguities free, since Bohr-Sommerfeld quantization condition yields exact 
spectrum. The Wigner semicircle, or rather semi-ellipse, is just the similar projection of the 
ellipse p2 +x2/4 = 1 onto the x axis in the phase space. The Bohr-Sommerfeld quantization con-
dition just reads 

∫
ρ(x)dx = 1, where ρ = 1

2π

√
4 − x2 (in units where 2μ = 1) [19]. Again, the 

rigid argument comes from the fact, that the Wigner function for harmonic oscillator is explicitly 
known [49], and yields a direct relation between the momenta and positions at the semi-classical 
level.

2.3. Microscopic scaling as a spectral deformation

Correlations of eigenvalues probed on the scale of the typical separation between them are 
independent on the probability density function of matrix elements. They fall into several univer-
sality classes, depending on the point x0 of the spectrum at which their behavior is probed. The 
shape of the spectral density, in turn, determines the microscopic scale s by demanding that in the 
interval [x0, x0 + s] one expects one eigenvalue to occur. Looking at the form of the Marchenko-
Pastur distribution (see Fig. 1), we immediately identify three distinct regions corresponding to 
microscopic scalings.

A Hard edge. In the limit when N, T → ∞ but α = T − N remains fixed (c → 1), the turning 
point r− approaches zero, and the eigenvalue density near this point behaves like 1/

√
x. Ask-

ing how many out of original N eigenvalues will appear in a narrow bin of size s around zero, 
we get

nhard ∼ N

s∫
0

dx√
x

∼ N
√

s. (12)

Demanding that nhard ∼ 1, we set the proper microscopic scale to s ∼ N−2.
B Bulk. Between the endpoints, at some x0, when counting the number of eigenvalues in a 

narrow interval of length s, one can approximate the density as locally constant ρ(x0). This 
leads to

nbulk ∼ N

x0+s/2∫
x0−s/2

ρ(x0)dx ∼ Nsρ(x0), (13)



M.A. Nowak, W. Tarnowski / Nuclear Physics B 955 (2020) 115051 7

which implies that the bulk microscopic scale is s ∼ 1
Nρ(x0)

.
C Soft edge. When c �= 1, the macroscopic spectral density around both turning points vanishes 

like 
√|r± − x|. Counting the eigenvalues close to the edge, leads to

nsof t ∼ N

s∫
0

√
xdx ∼ Ns3/2, (14)

thus the edge microscopic scale is set to s ∼ N−2/3.

Following the generic arguments by Borodin and Olshanski [52] and inspired by Tao [19]
presentation for the Gaussian Unitary Ensemble, we will now obtain the microscopic, universal 
kernels for the complex Wishart ensemble. We remark that this case belongs to the generic class 
of Sturm-Liouville operators, considered recently by Bornemann [20]. However, in this note, we 
attempt to use the insights from quantum mechanics rather than abstract mathematics.

The complete set of eigenfunctions provides a resolution of identity 1 = ∑∞
k=0 |ψk〉 〈ψk|. The 

random matrix kernel is obtained by truncating this sum to first N eigenstates and is therefore 
a projection. Formally, we project the Hilbert space to the space of functions |ψ〉 that satisfy 
〈ψ | Ĥ |ψ〉 ≤ EN−1. Using the explicit form of (6), we write is less formally as

d2

dx2 + 1

x

d

dx
+ 1 + 2k + α

2x
− α2

4x2 ≥ 1

4
(15)

and later we are looking for a convenient representation of functions that span such space.
The microscopic scalings provide further deformations of the projection range, which in the 

large N, T limit gives rise to the universal microscopic kernels, which we work out in details 
beneath.

A Bessel kernel. Using the hard edge scaling x/T → sN−2, and performing the large N limit 
(note that k ∼ N ), we obtain the equation

d2

ds2 + 1

s

d

ds
+ 1

s
− α2

4s2 ≥ 0. (16)

Changing variables z = 2
√

s converts the above bound into the more familiar form

�α ≡ − d2

dz2 − 1

z

d

dz
+ α2

z2 ≤ 1, (17)

where on the l.h.s. we recognize the Bessel operator, appearing in quantum mechanical prob-
lems with polar angle symmetry. To see the deformation caused by the microscopic scaling at 
the hard edge, we invoke the Hankel transform

F(t) = Hα[f (z)] =
∞∫

0

Jα(tz)f (z)zdz (18)

and its inverse

f (z) =
∞∫

0

Jα(tz)F (t)tdt. (19)
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The Hankel transform of the Bessel operator reads Hα[�αf (z)] = t2F(t) [53], thus the spec-
tral deformation in dual variable t (note that t cannot be negative) reads simply

t ≤ 1. (20)

Hankel transform and its inverse give a representation of the identity operator

f (z′) =
∞∫

0

∞∫
0

ztJα(z′t)Jα(tz)f (z)dzdt. (21)

The deformation condition (20) restricts the range of the parameter t and therefore turns the 
above identity operator into the projection

P[f (z′)] =
∞∫

0

⎡
⎣ 1∫

0

ztJα(z′t)Jα(tz)dt

⎤
⎦f (z)dz. (22)

Changing variables once more as t = √
s and introducing z = √

y and z′ = √
x, we rewrite 

the above as

P[f (x)] =
∞∫

0

⎡
⎣1

4

1∫
0

Jα(
√

xs)Jα(
√

sy)ds

⎤
⎦f (y)dy ≡

∞∫
0

K(x,y)f (y)dy, (23)

so the kernel, understood as a projection, reads

KBessel(x, y) = 1

4

1∫
0

Jα(
√

xs)Jα(
√

ys)ds =

Jα(
√

x)J ′
α(

√
y)

√
y − √

xJ ′
α(

√
x)Jα(

√
y)

2(x − y)
, (24)

where on the r.h.s. we presented the more familiar form of the kernel based on the Lommel 
integral and primes denote differentiation with respect to the argument. Hard edge scaling 
deforms the upper half plane in s variable onto the strip between the parallel lines s = 0 and 
s = 1.

B Sine kernel. Combining the rescaling needed for the finite support and the microsopic scaling, 
we define the new variable s as x/T = x0 + s

Nρ(x0)
. Upon taking the large N, T limit, the 

bound (15) in this new variable reads

d2

ds2 ≥ (x0 − r+)(x0 − r−)

4c2x2
0ρ2(x0)

. (25)

Using the explicit form of the Marchenko-Pastur density (11), the above bound is simplified 
to

− d2

ds2 ≤ π2. (26)

On the l.h.s. we recognize the Schrödinger operator for a free particle, therefore the natural 
procedure for resolving this bound is to use plane waves, i.e. to move to the momentum space 
via the Fourier transformation:
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F(q) =
∞∫

−∞
e2πitqf (t)dt,

f (t) =
∞∫

−∞
e−2πitqF (q)dq. (27)

The spectral deformation in the momentum space reads therefore

q2 ≤ π2

(2π)2 = 1

4
. (28)

Combination of Fourier transforms provides a representation of an identity operator

f (t ′) =
∞∫

−∞

∞∫
−∞

e−2πit ′qe2πitqf (t)dtdq. (29)

The deformation (28) projects the above identity operator onto

P[f (t ′)] =
∞∫

−∞

⎡
⎢⎢⎣

1
2∫

− 1
2

e−2πit ′qe2πitqdq

⎤
⎥⎥⎦f (t)dt, (30)

Microscopic scaling in the bulk restricts the range of momenta to the interval − 1
2 ≤ q ≤ 1

2 . 
Calculation of the integral in square brackets yields the projection in the position basis, which 
is the sine kernel

KSine(t, t
′) = sin(π(t ′ − t))

π(t ′ − t)
. (31)

C Airy kernel. At the soft edge we introduce the scaling variable s as x/T = r± ± s√
c(r±N)2/3 . 

In the large N and T limit generic bound (15) is transformed into

− d2

ds2 + s ≤ 0. (32)

On the l.h.s. we recognize the Schrödinger operator with the linear potential. This condi-
tion in the position-momentum space (s, q) restricts the range of integration to the parabola 
4π2q2 + s ≤ 0, which is not well suited for reading out the limiting kernel. To circumvent 
this problem, Tao introduced a similarity transformation in the momentum space [19]. Alter-
natively, since we identify the differential Airy operator in (32), we can directly resort to the 
Airy transform [54]

F(z) = A[f (t)] =
∞∫

−∞
Ai(z − t)f (t)dt (33)

and its inverse

f (t) =
∞∫

∞
F(z)Ai(z − t)dz. (34)
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Fig. 2. Regions in the phase space after microscopic scaling at the hard edge (A), in bulk (B) and at the soft edge (C). 
Red arrows point at the direction of deformation. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

Using the Airy transform for the operator bound (32), and the fact that the Airy function 
fulfills Ai′′(x) = xAi(x) we express the spectral deformation in dual variable t simply as

z ≤ 0. (35)

Combining both Airy transforms we obtain the identity operator

f (t ′) =
∞∫

−∞

∞∫
−∞

Ai(t ′ − z)Ai(t − z)f (t)dtdz (36)

The deformation condition (35) turns the above identity operator into a projection

P[f (t ′)] =
∞∫

−∞

⎡
⎣ 0∫
−∞

Ai(t ′ − z)Ai(t − z)dz

⎤
⎦f (t)dt, (37)

so the kernel reads

KAiry(t, t
′) =

0∫
−∞

Ai(t ′ − z)Ai(t − z)dz = Ai(t ′)Ai′(t) − Ai′(t ′)Ai(t)

t ′ − t
, (38)

where on the r.h.s. we presented the more familiar form of the Airy kernel based on relation

d

dz

[
Ai(t ′ − z)Ai′(t − z) − Ai′(t ′ − z)Ai(t − z)

t ′ − t

]
= Ai(t ′ − z)Ai(t − z). (39)

We summarize this section in Fig. 2, by plotting the domain of the projection operator before 
and after the pertinent microscopic scalings.

3. Bochner theorem and beyond - non-Hermitian Hamiltonians

3.1. Bochner theorem

In a short paper written in 1929 [31] Salomon Bochner has noticed that if an infinite sequence 
of polynomials Pn(x) satisfies an eigenequation to the second order self-adjoint differential op-
erator

p(x)P ′′
n (x) + q(x)P ′

n(x) + r(x)Pn(x) = λnPn(x), (40)
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then p(x), q(x), r(x) must be polynomials of degree 2, 1, and 0, respectively. If additionally 
polynomials are orthogonal and their support is real, the only solutions are polynomials of Jacobi, 
Laguerre or Hermite type.

These orthogonal polynomials are associated with classical random matrix ensembles: Gaus-
sian Unitary Ensemble (Hermite), Laguerre Unitary Ensemble (also known as complex Wishart) 
and Jacobi Unitary Ensemble (null hypothesis in the complex multivariate analysis of variance). 
They do not lead to any new universality class than what is known for Wishart ensemble. Re-
cently, Bornemann [20], using the spectral projection method, classified the scaling limits of 
determinantal processes arising from Sturm-Liouville operators.3 They do not lead to any new 
universality class than what is known for Wishart ensemble. On the other hand, it is known that 
there are other scaling limits of the kernel in unitary matrix models. These are related to differ-
ent vanishing of the spectral density at the edge or at the closing gap in the bulk, see [55] for a 
review. This raises a question whether such limits can be related to spectral projections. To avoid 
limitations of the Bochner theorem one may look at the class of Hamiltonians with higher powers 
of momentum operator. Self-adjointness constrains these Hamiltonians to have only even powers 
of momentum and Krall [56] provided complete classification of orthogonal polynomials to the 
problem with quartic momenta. However, classification of higher order Bohner-Krall polynomial 
systems remains still an open problem. While there are some particular examples of sixth [57]
and eighth order systems [58], the corresponding weights are only modifications of classical 
Gaussian, Laguerre and Jacobi weights by Heaviside theta and Dirac delta functions (see [59]
for review), which makes them uninteresting from the random matrix theory perspective.

3.2. Non-Hermitian ‘Hamiltonians’

Relaxing the self-adjointness condition admits a broader class of operators. Then one deals 
with non-Hermitian ‘Hamiltonian’ and two eigenequations to each eigenvalue:

H |Pk〉 = λk |Pk〉 and H† |Qk〉 = λk |Qk〉 . (41)

Here |Pk〉 and 〈Qk| are called left and right eigenfunctions, in the analogy to non-Hermitian 
matrices. They are no longer orthogonal, but bi-orthogonal

〈Qk|Pl〉 =
∫

Qk(x)Pl(x)dx = δkl . (42)

The adjoint Hamiltonian H† is defined in a standard way∫
f (x)Hg(x)dx =

∫
(H†f (x))g(x)dx. (43)

Now, because of biorthogonality the two sets of eigenfunctions cannot be both polynomials, 
enlarging the space of possible solutions.

Preiser [39] considered a higher order generalization of Bochner-Krall theorem with restric-
tion that Pk(x) are polynomials in x, while Qk(x) are polynomials in xm multiplied by some 
weight. He found that for the Hamiltonian with third derivative there exists only one such set, 
which was discovered earlier by Spencer and Fano [38].

Biorthogonal structures appear in multi matrix models, where the correlation kernel is built 
from biorthogonal functions Pk and Qk

3 He did not used explicitly Bochner theorem.
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KN(x, y) =
N−1∑
k=0

Qk(x)Pk(y). (44)

Biorthogonality ensures that the kernel is a projection. It is therefore tempting to ask whether 
such kernels are built of eigenfunctions of a certain ‘Hamiltonian’ and if so, is it possible to 
obtain the microscopic scaling using spectral projections?

3.3. Singular values of products of complex Gaussian matrices

Let us consider Xk - rectangular matrices of size (N + νk−1) × (N + νk) with complex Gaus-
sian iid entries of zero mean and unit variance. Without loss of generality we assume ν0 = 0 and 
νk > 0 for k > 0. The squared singular values of the product YM = X1X2 . . .XM form a biorthog-
onal ensemble with the correlation kernel (44). The biorthogonal functions are explicitly given 
by [42]

Pk(x) = G
1,0
1,M+1

(
k + 1

0,−νM, . . . ,−ν1

∣∣∣∣x
)

, (45)

Qk(x) = G
M,1
1,M+1

( −k

νM, . . . , ν1,0

∣∣∣∣x
)

. (46)

Here G stands for the Meijer-G function (see Appendix C). From the differential equation (88)
we deduce that polynomials Pk satisfy the eigenproblem (HMPk = λkPk with λk = k) of the 
following differential operator (Hamiltonian)

HM = x
d

dx
− d

dx

M∏
j=1

(
x

d

dx
+ νj

)
. (47)

With the help of the identity 
(

d
dx

x − νj

)
d
dx

= d
dx

(
x d

dx
− νj

)
we immediately obtain its adjoint

H†
M = −x

d

dx
− 1 + (−1)M

d

dx

M∏
j=1

(
x

d

dx
− νj

)
. (48)

The explicit form (46) and the differential equation (88) prove that Qk satisfy the eigenequa-
tion H†

MQk = kQk . Therefore Pk and Qk are left and right eigenfunctions of a non-Hermitian 
Hamiltonian.

To probe the microscopic scaling at the edge, we rescale x = z
N

, which turns the eigenequation 
for HM into⎡

⎣ 1

N
z

d

dz
− d

dz

M∏
j=1

(
z

d

dz
+ νj

)⎤
⎦Pk = k

N
Pk. (49)

As k is always smaller than N , in the large N limit we look for the functions that satisfy 
〈ψ |�(M+1)

�ν |ψ〉 ≤ 1, with

�
(M+1)

�ν := − d

dz

M∏
j=1

(
z

d

dz
+ νj

)
. (50)
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In order to continue the analogy to the deformation of the phase-space of Hermitian operators, 
we have to find the suitable transformation, which will convert the above inequality into an 
algebraic constraint.

3.4. The Narain transform

In a series of papers [43–45] Narain introduced a broad class of asymmetric transforms, which 
include many known classical transforms. The Narain transform and its inverse are defined as

g(s) =
∞∫

0

k(s, y)f (y)dy, f (y) =
∞∫

0

h(y, s)g(s)ds, (51)

where the integral kernels read

k(s, y) = 2γ xγ−1/2G
m,p
p+q,m+n

(
a1, . . . , ap, b1, . . . , bq

c1, . . . , cm, d1, . . . , dn

∣∣∣∣ (sy)2γ

)
, (52)

h(y, s) = 2γ xγ−1/2G
n,q
p+q,m+n

(−b1, . . . ,−bq,−a1, . . . ,−ap

−d1, . . . ,−dn,−c1, . . . ,−cm

∣∣∣∣ (ys)2γ

)
. (53)

If f has a discontinuity at x, then 
∫ ∞

0 h(x, s)ds
∫ ∞

0 k(s, y)f (y)dy takes the value 1
2(f (x + 0) +

f (x − 0)), provided that 
∑

ak + ∑
bk = ∑

ck + ∑
dk .

3.5. Spectral projection for products of Wishart Matrices

We use the following kernels in the Narain transformation

k(s, y) = G
M,0
0,M+1

( −
ν1, . . . , νM,0

∣∣∣∣ sy
)

, (54)

h(y, s) = G
1,0
0,M+1

( −
0,−ν1, . . . ,−νM

∣∣∣∣ sy
)

. (55)

In the space of the dual variable s, the operator �(M+1)

�ν acts by multiplying by s, as can be 
easily proven, using identities from Appendix C. The hard edge scaling of the kernel reduces 
therefore the range of parameter s to s ≤ 1. Alike in the Hermitian case, the identity operator

g(x) =
∞∫

0

⎡
⎣ ∞∫

0

h(x, s)k(s, y)ds

⎤
⎦g(y)dy (56)

is deformed to

P[f (x)] =
∞∫

0

⎡
⎣ 1∫

0

h(x, s)k(s, y)ds

⎤
⎦f (y)dy. (57)

We obtain this way the limiting form of the microscopic kernel at the hard edge

Khard
M (x, y) =

1∫
0

G
1,0
0,M+1

( −
0,−ν1, . . . ,−νM

∣∣∣∣ sx
)

G
M,0
0,M+1

( −
ν1, . . . , νM,0

∣∣∣∣ sy
)

ds. (58)
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Note that G1,0
0,2

( −
ν,0

∣∣∣∣x
)

= xν/2Jν(2
√

x) and G1,0
0,2

( −
0,−ν

∣∣∣∣x
)

= x−ν/2Jν(2
√

x), which yields

Khard
1 (x, y) =

(y

x

)ν/2
1∫

0

Jν(2
√

sx)Jν(2
√

sy)ds. (59)

This form slightly differs from (24). To understand this discrepancy, let us note that biorthogonal 
functions can be rescaled as Pk(x) → f (x)Pk(x) and Qk(x) → 1

f (x)
Qk(x) without altering their 

biorthogonality. Under such a rescaling kernel is transformed K(x, y) → 1
f (x)

K(x, y)f (y). In 

our case it is sufficient to take f (x) = xν/2 and further rescale (x, y) → 1
4 (x, y). The Narain 

transform can therefore be viewed as a generalization of the Hankel transform at the hard edge.

3.6. Muttalib-Borodin ensemble with the Laguerre weight

As another example we consider the joint pdf of eigenvalues introduced by Muttalib [37] and 
elaborated later by Borodin [13]

P(λ1, . . . , λn) = CN

∏
1≤i<j≤N

|λi − λj |
∏

1≤i<j≤N

|λθ
i − λθ

j |
N∏

k=1

λα
k e−λkdλk, (60)

with α > −1, and θ ≥ 0. Eigenvalues form a determinantal point process with a correlation 
kernel given by the bi-orthogonal functions (44). Here Pk is a polynomial of order k, while Qk

is a polynomial in xθ multiplied by the Laguerre weight. For integer values of θ Konhauser 
provides the explicit form of Q [40, eq. (5)]

Qk(x) = xαe−x

k∑
j=0

(−1)j
(

k

j

)
xjθ

�(jθ + α + 1)
, (61)

while Carlitz gives the explicit form of polynomials [60, eq. (9)]

Pk(x) = 1

k!
k∑

i=0

xi

i!
i∑

j=0

(−1)j
(

i

j

)
�(k + j+α+1

θ
)

�(k)
. (62)

For θ = 1 this reduces to the Laguerre orthogonal polynomials, while the case θ = 2 was con-
sidered by Preiser [39] in an attempt to extend Bohner-Krall theorem. Polynomials satisfy the 
eigenvalue equation HPk = λkPk , with λk = θk of the following differential operator [40]

H =
(

d

dx
x + α − x

)[(
1 − d

dx

)θ

− 1

]
. (63)

Konhauser showed also that Zk = x−αexQk(x), a polynomial in xθ , satisfies [40, eq. (10)](
d

dx

)θ

xα+1 d

dx
Zk − xα+1 d

dx
Zk = −xαθkZk. (64)

Then it is easy to show that Qk satisfies the eigenequation H†Qk = λkQk to the same eigenvalues 
as Pk . The differential operator
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H† =
[

1 −
(

1 + d

dx

)θ
](

−α + x + x
d

dx

)
(65)

is the adjoint of H. We probe the hard edge by introducing a new variable x = uN− 1
θ . In the 

large N limit, having in mind that k < N , from the eigenequation for H† we obtain

−1

θ

(
d

du

)θ (
u

d

du
− α

)
≤ 1. (66)

A change of variable u = θz1/θ turns this condition into a more familiar form

− d

dz

θ∏
j=1

(
z

d

dz
+ νj

)
≤ 1, (67)

with

ν = −1

θ
,−2

θ
,−3

θ
, . . . ,−θ − 1

θ
,−α

θ
. (68)

We now take

k(s, y) = G
θ,0
0,θ+1

( −
0,− 1

θ
, . . . ,− θ−1

θ
,−α

θ

∣∣∣∣ sy
)

, (69)

h(y, s) = G
1,0
0,θ+1

( −
α
θ
,0, 1

θ
, . . . , θ−1

θ

∣∣∣∣ sy
)

. (70)

Again, using the identities from Appendix C one can show the identity 
∫ ∞

0 k(s, z)(H†f (z))dz =∫ ∞
0 sk(s, z)f (z)dz. This means that the condition (67) in the dual space is equivalent to s ≤ 1. 

This allows us to read out the form of the kernel

K(y,x) =
1∫

0

G
1,0
0,θ+1

( −
α
θ
,0, 1

θ
, . . . , θ−1

θ

∣∣∣∣ sx
)

G
θ,0
0,θ+1

( −
0,− 1

θ
, . . . ,− θ−1

θ
,−α

θ

∣∣∣∣ sy
)

ds.

(71)

Note also that the truncation condition s ≤ 1 was obtained from the consideration of H†, there-
fore the kernel has now interchanged arguments. Using (87) we also write an equivalent kernel

(y

x

) α
θ
K(y, x) =

1∫
0

G
1,0
0,θ+1

( −
0,−α

θ
,−α−1

θ
, . . . ,−α−θ+1

θ

∣∣∣∣ sx
)

G
θ,0
0,θ+1

( −
α
θ
, α−1

θ
, . . . , α−θ+1

θ
,0

∣∣∣∣ sy
)

ds, (72)

which corresponds to the form obtained by Kuijlaars and Stivigny [61, Theorem 5.1].

4. Summary

We explained the spectral projection method on the example of Wishart ensemble, rederiving 
three classical microscopic universalities. We also linked the Marchenko-Pastur distribution with 
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the Bohr-Sommerfeld quantization condition of the hydrogen atom. Such a link is intuitively ex-
pected, because the Dyson electrostatic analogy in the limit of large matrices allows one to solve 
random matrix models using the saddle point approximation - the same mathematical method 
which gives the WKB approximation in quantum mechanics, with the correspondence 1

h̄
↔ N . 

To the best of our knowledge such an interpretation was not emphasized in the literature.
Bochner theorem provides limitations on the applications of spectral projection method to 

orthogonal polynomials. We demonstrated that the spectral projection method can be extended 
to biorthogonal systems. To demonstrate the power of this approach, we recalculated the hard 
edge Meijer-G kernel. In the paper [42], where all correlations functions for products of Wishart 
matrices were found for the first time, the problem of calculating the microscopic limit at the 
hard edge was not tackled, despite that such a result was expected. This task was performed 
several months later as a subject of a separate work [62]. This impressive calculation required 
refined integral representations and careful saddle point analysis. In this work we show how the 
calculations can be reduced to just a few lines. Moreover, to the best of our knowledge, the Narain 
transform was not used before in random matrix theory.

Rapid progress in random matrix theory in last three decades has brought plethora of new mi-
croscopic universality classes. Despite of many examples of microscopic universalities, there is 
lack of their systematic classification. The spectral projection method adopted to non-Hermitian 
Hamiltonians and possible generalizations of Bochner theorem for higher order differential 
operators4 offer a new perspective on this problem. Certainly, this program is a challenging 
mathematical problem, which we do not attempt to solve in this work.

This work raises a series of fundamental questions related to possible generalization of 
Bochner theorem in the context of random matrix theory. Is it possible to reframe all univer-
sality classes in this language? Will this classification be predictive for constructing new types of 
random matrix models? Can one infer the microscopic kernels of non-Hermitian ensembles from 
a ‘complex version’ of Bochner theorem? Can one mimic this construction for pfaffian processes 
for β = 1, 4? If so, is there a link to Quantum Hall Effect [64]? We leave these questions open but 
we think that the presented method has also pedagogical value. It offers an easy and intuitive way 
to recover not only the classical universality classes, but also more involving Meijer-G functions. 
Combining physical intuition with mathematics may provide in such a way new insights even in 
standard problems.
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Appendix A. Mapping Wishart onto 2D hydrogen atom

The time-independent Schrödinger equation in 2D with the potential V (r) = −Ze2/r in the 
cylindrical coordinates reads[

− h̄2

2m

(
∂2

∂r2 + 1

r

∂

∂r
+ 1

r2

∂2

∂ϕ2

)
− Ze2/r

]
φ(r,ϕ) = Eϕ(r,ϕ). (73)

An Ansatz φ(r, ϕ) = R(r)eilϕ/
√

2π separates variables. Setting the physical constants Ze2 = 1, 
2m = 1, h̄ = 1 and changing variables as ρ = λr , E = −1/4λ2 we arrive at the equation for the 
radial part(

d2

dρ2 + 1

ρ

d

dρ
+ λ

ρ
− l2

ρ2 − 1

4

)
R(ρ) = 0. (74)

Upon identification 2l = |α| and 2λ = 1 + 2k + α we obtain the equation (6) for the function 
building the kernel.

Appendix B. WKB analysis of the macroscopic spectral density

The spectral density is calculated from the kernel as

ρ(x) = 1

N
K(x,x) = 1

N

N−1∑
k=0

ψ2
k (x). (75)

In the large N limit the sum can be approximated by an integral over the variable t = k/N

ρ(x)
N→∞−−−−→

1∫
0

ψ2
t (x)dt. (76)

Taking the equation (6) for ψk , rescaling x → T x and setting t = k/N , we obtain

1

T 2

(
d2

dx2 + 1

x

d

dx

)
ψt(x) =

(
1

4
+ (1 − c)2

4x2 − ct

x
− 1 − c

2x

)
ψt(x) ≡ (V (x) − E)ψt(x). (77)

We also note that up to a term 1/4x2, which is irrelevant in the asymptotic analysis, the operator 
on the lhs of (77) is minus square of the radial momentum pr(x) = −ih̄

( 1
r

+ d
dr

)
. Using the 

WKB Ansatz ψ(x) = A(x)eT φ(x), we obtain the general solution

ψt(x) = 1√
xpr(x)

(
C+eiT

∫ x
pr (x

′)dx′ + C−e−iT
∫ x

pr (x
′)dx′)

. (78)

Matching condition at each of the turning points gives two forms of the solution

ψ(x) = C√
xpr(x)

cos

⎡
⎣−π

4
+ T

x∫
x−

dx′pr(x
′)

⎤
⎦ = C′

√
xpr(x)

cos

⎡
⎣−π

4
+ T

x+∫
x

dx′p(x′)

⎤
⎦ .

(79)
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Uniqueness of the solution irrespective of the choice of turning point leads to the quantization 
condition

T

∮
pr(x)dx = 2π

(
n + 1

2

)
, n ∈ N. (80)

Note that for the calculation of the spectral density, ψ2
t is needed. For large T it is a rapidly 

oscillating function and the oscillations average out and only the average of cos2, which is 1/2, 
is relevant5

ψ2
t (x) =

{
0 for x < x− or x > x+
C

2xp(x,t)
for x− < x < x+ . (81)

The turning points are

x±(t) = 1 − c + 2ct ± 2
√

ct (1 + ct − c). (82)

The spectral density is therefore given by

ρ(x) =
1∫

0

dt
C√

2c(1 + 2tx − x) − c2 − (x − 1)2
χx−<x<x+ =

C

2cx

√
(x − (1 − √

c)2)((1 + √
c)2 − x), (83)

where χA is equal to 1 when A is true and 0 for A false. Setting C = 1
π

normalizes the density.

Appendix C. Some properties of Meijer-G functions

The Meijer-G functions are defined as an integral

Gm,n
p,q

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ z
)

= 1

2πi

∫
L

∏m
j=1 �(bj − s)

∏n
j=1 �(1 − aj + s)∏q

j=m+1 �(1 − bj + s)
∏p

j=n+1 �(aj − s)
zsds, (84)

where �(z) is the Euler gamma function. The integration contour L is chosen to separate all 
poles of 

∏m
j=1 �(bj − s) from the poles of 

∏n
j=1 �(1 − aj + s) (see also [65], §5.2 for details). 

By definition, they are symmetric in its first m and last q − m lower parameters. When first and 
the last lower parameter differ by an integer number, they can be interchanged

Gm,n
p,q

(
a1, . . . , ap

b1, b2, . . . , bq−1, bq

∣∣∣∣ z
)

= (−1)bq−b1Gm,n
p,q

(
a1, . . . , ap

bq, b2, . . . , bq−1, b1

∣∣∣∣ z
)

. (85)

The following differential operator acts by increasing first lower indices(
−z

d

dz
+ b1

)
Gm,n

p,q

(
a1, . . . , ap

b1, b2, . . . , bq

∣∣∣∣ z
)

= Gm,n
p,q

(
a1, . . . , ap

b1 + 1, b2, . . . , bq

∣∣∣∣ z
)

. (86)

Combining this with (85), we obtain the operator z d
dz

− bq , which increases last lower indices. 
Multiplication by the argument allows one to increase all indices

5 This can be rephrased more rigorously in terms of weak convergence.
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zαGm,n
p,q

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ z
)

= Gm,n
p,q

(
a1 + α, . . . , ap + α

b1 + α, . . . , bq + α

∣∣∣∣ z
)

. (87)

Meijer-G functions satisfy the following differential equation⎡
⎣(−1)p−m−nz

p∏
j=1

(
z

d

dz
− aj + 1

)
−

q∏
j=1

(
z

d

dz
− bj

)⎤
⎦Gm,n

p,q

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ z
)

= 0.

(88)
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The study of neuronal interactions is at the center of several big collabo-
rative neuroscience projects (including the Human Connectome Project,
the Blue Brain Project, and the Brainome) that attempt to obtain a de-
tailed map of the entire brain. Under certain constraints, mathematical
theory can advance predictions of the expected neural dynamics based
solely on the statistical properties of the synaptic interaction matrix. This
work explores the application of free random variables to the study of
large synaptic interaction matrices. Besides recovering in a straightfor-
ward way known results on eigenspectra in types of models of neu-
ral networks proposed by Rajan and Abbott (2006), we extend them to
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heavy-tailed distributions of interactions. More important, we analyti-
cally derive the behavior of eigenvector overlaps, which determine the
stability of the spectra. We observe that on imposing the neuronal exci-
tation/inhibition balance, despite the eigenvalues remaining unchanged,
their stability dramatically decreases due to the strong nonorthogonality
of associated eigenvectors. This leads us to the conclusion that under-
standing the temporal evolution of asymmetric neural networks requires
considering the entangled dynamics of both eigenvectors and eigenval-
ues, which might bear consequences for learning and memory processes
in these models. Considering the success of free random variables the-
ory in a wide variety of disciplines, we hope that the results presented
here foster the additional application of these ideas in the area of brain
sciences.

1 Introduction

Contemporary neuroscience focuses on detailed studies of the neuronal
connections across the entire human brain. Large-scale collaborative efforts
(Insel, Landis, & Collins, 2013; Van Essen et al., 2013), including the BRAIN
Initiative in the United States, Brainome in China, and the Blue Brain Project
in the European Union were launched with the objective of mapping the
connectivity of the entire brain at different resolutions. At a certain point,
a theory will be desperately needed to analyze these very large maps, de-
scribing the adjacency matrix of the brain. The work presented here enters
into this uncharted and challenging territory.

Under certain constraints, mathematical theory can advance predictions
of the expected neural dynamics based solely on the statistical properties
of their synaptic interaction matrix. In that sense, randomly connected net-
works of neurons are one of the classical tools of theoretical neuroscience.
Only recently it was observed that the nonnormality of the synaptic con-
nectivity matrix (i.e., the matrix does not commute with its transpose) has
dramatic consequences for the temporal dynamics of stochastic equations,
which can mimic the dynamics of the network (Hennequin, Vogels, & Ger-
stner, 2012; Ganguli, Huh, & Sompolinsky, 2008; Ahmadian, Fumarola, &
Miller, 2015). In particular, the work of Martí, Brunel, and Ostojic (2018)
shows that increasing the symmetry of the connectivity leads to a system-
atic slowing down of the dynamics, and vice versa, decreasing the symme-
try of the matrix leads to the speed-up of the dynamics. This asymmetry
not only forces matrices to have complex spectra (which challenges several
traditional tools of random matrix theory), but, more important, its study
sheds new light on the role of the Bell-Steinberger (Bell & Steinberger, 1965)
matrix of overlaps between the left and right eigenvectors of the connectiv-
ity matrix.
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Contemporarily, the pivotal role of overlaps is understood in the sim-
plest case of the spectral dynamics of the complex Ginibre matrix—
in either Smoluchowski-Fokker-Planck formalism (Burda, Grela, Nowak,
Tarnowski, & Warchoł, 2014; Gudowska-Nowak, Janik, Jurkiewicz, &
Nowak, 2003) or in Langevin formalism (Bourgade & Dubach, 2018; Grela &
Warchoł, 2018), following pioneering work (Chalker & Mehlig, 1998; Mehlig
& Chalker, 2000). The effects of the overlaps of the Ginibre matrix for the
temporal autocorrelation function of randomly connected networks was re-
cently addressed analytically (Martí et al., 2018), confirming the numerical
simulations in the weakly coupled regime of synaptic models.

In this letter, we study the nonnormality aspects of the popular model
with excitatory-inhibitory structure (Wehr & Zador, 2003; Higley & Contr-
eras, 2006; Haider, Duque, Hasenstaub, & McCormick, 2006), proposed by
Rajan and Abbott (2006). An important ingredient of this model is the in-
troduction of the balance condition, which stabilizes the fluctuating spectra
of the network. Later, the numerical study of the full nonlinear dynamics in
the Rajan-Abbott model (del Molino, Pakdaman, Touboul, & Wainrib, 2013)
has shown the emergence of a transition leading to synchronized (station-
ary or periodic) states. This phenomenon cannot be explained solely by the
spectral features of the connectivity matrix, which motivates our study of
missing nonspectral properties of nonnormal networks, such as sensitivity
to perturbations and transient dynamics induced by the nonorthogonality
of eigenvectors. Recently, it was also hypothesized that the nonnormality is
universal in real complex networks (Asllani & Carletti, 2018).

Free random variables (hereafter FRV) theory is a relatively young math-
ematical theory, originating from the work of Voiculescu, Dykema, and Nica
(1992). Partly due to the connection with large, random matrices, in the
past decade it has made a huge impact on physics (Gopakumar & Gross,
1995), statistical inference (El Karoui, 2008; Rao, Mingo, Speicher, & Edel-
man, 2008), engineering of information and communication technologies
(Couillet & Debbah, 2011), and finances (Potters, Bouchaud, & Laloux, 2005;
Burda, Jurkiewicz, Nowak, Papp, & Zahed, 2004; Burda, Jarosz, Nowak, &
Snarska, 2010; Burda et al., 2011). In brief, FRV can be viewed as a noncom-
mutative probability theory for big-data problems, where the information
is hidden in statistical properties of eigenvalues and eigenvectors. As such,
it is ideally suited for disentangling signals from noise in various kinds of
complex systems. Another advantage comes from the fact that at the oper-
ational level, the formalism is simple and powerful, often getting results on
the basis of back-of-the-envelope calculations.

From this perspective, it is rather bewildering that FRV so far has not
been broadly applied to the most challenging complex problem of under-
standing the brain. Thus, in this letter, we consider FRV applications to un-
derstand the neuronal networks as represented by the synaptic strength
matrix. A direct application of FRV not only allows us to recover in a
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straightforward way well-known results from the literature (Rajan & Ab-
bott, 2006), but also to address quantitatively such issues as the stability of
the network with respect to the change of weight and to extend the existing
formalisms for the heavy-tailed distributions.

The letter is organized as follows. In section 2, we discuss two impor-
tant effects caused by the nonorthogonality of eigenvectors of nonnormal
matrices: high sensitivity of the spectra and the transient behavior of the lin-
earized dynamics. We briefly describe free probability theory in section 3,
showing how it allows one to calculate spectral density and gives a ac-
cess to eigenvector nonorthogonality. In section 4, we reframe the model
introduced by Rajan and Abbott in this language. Applying the theoretical
toolbox explained in appendixes A to C, we recover and generalize their
main results for the unbalanced network. In doing so, we uncover the an-
alytic formulas for the one-point eigenvector correlation function for this
model, which is crucial for determining its stability. Since FRV also works
in the case of heavy-tailed distributions (Bercovici, Pata, & Biane, 1999), we
present results for the spectra and eigenvectors of the Rajan-Abbott model
adapted for the case of Cauchy noise. We successfully confirm our analytic
predictions with numerical simulations.

In section 5, we show explicitly that the excitation/inhibition balance
condition not only tames the spectral outliers, but also exerts dramatic
effects on the nonorthogonality of eigenvectors, increasing the networks’
eigenvalue condition number by several orders of magnitude. Section 6
closes the letter with a summary of the main results and their implications.
It also outlines promising directions for further studies using the formalism
presented here.

2 Nonnormality of Synaptic Interactions in Neural Networks

Adjacency matrices of directed networks and synaptic strength matrices are
nonnormal. This not only influences their spectra, as the eigenvalues can be
complex but also has a strong effect on the eigenvectors. A diagonalizable
nonnormal matrix possesses two eigenvectors: left and right for each eigen-
value. They satisfy the eigenproblems

〈Li| X = 〈Li| λi, X |Ri〉 = λi |Ri〉 . (2.1)

Here we use physicists’ “bra-ket notation,” where |Ri〉 is a column and 〈Li|
is a row vector. The scalar product is denoted as

〈
Li|Rj

〉
, and we define the

conjugated left vector |Li〉 = (〈Li|)†.
Eigenvectors are normalized to

〈
Li|Rj

〉 = δi j, but they are not orthogonal
among themselves

〈
Ri|Rj

〉 �= δi j �= 〈
Li|Lj

〉
. Chalker and Mehlig (1998; Mehlig

& Chalker, 2000) introduced a matrix of scalar products of eigenvectors:
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Oi j = 〈
Li|Lj

〉 〈
Rj|Ri

〉
. (2.2)

We next describe two phenomena important in neural networks, in which
the nonorthogonality of eigenvectors captured in the matrix of overlaps
plays an essential role.

2.1 Perturbations of a Network. Considering the perturbation of the
matrix X by some εP, the change of the spectrum in the first order in ε reads

δλi = ε 〈Li| P |Ri〉 ≤ ε
√

〈Li|Li〉 〈Ri|Ri〉‖P‖F . (2.3)

The inequality follows from the Cauchy inequality, and ‖P‖F denotes the
Frobenius norm ‖P‖2

F = TrPP†. This inequality is saturated (equality holds)
by the rank one Wilkinson matrix P = |Li〉 〈Ri|. The inequality, equation
2.3, shows that spectra of networks represented by nonnormal matrices are
more sensitive to changes in their connectivity. This enhanced sensitivity is
driven by the nonorthogonality of eigenvectors. The quantity κ (λi) = √

Oii

is known in the numerical analysis community as the eigenvalue condition
number (Wilkinson, 1965; Trefethen & Embree, 2005).

2.2 Eigenvector Nonorthogonality in Transient Dynamics. Stability
analysis and the linear response of the dynamic systems with respect to
external perturbations are among the most popular methods for describing
complex systems (Guckenheimer & Holmes, 2013). Let us consider dynam-
ics obtained from the linearization of the system in the vicinity of a fixed
point:

d
dt

|ψ〉 = (−μ + X ) |ψ〉 + ∣∣ξ (t)
〉
. (2.4)

Here, ξ represents the external drive, and μ ensures stability in the absence
of coupling (X) between components. In the context of neural networks,
μ represents the current leakage due to membrane capacitance (Sompolin-
sky, Crisanti, & Sommers, 1988). Choosing it as a “spike”

∣∣ξ (t)
〉 = δ(t)

∣∣ψ (0)
〉

or, equivalently, choosing an initial condition
∣∣ψ (0)

〉
, we formally solve the

system for t > 0:∣∣ψ (t)
〉 = exp[(X − μ)t]

∣∣ψ (0)
〉
. (2.5)

The long-time dynamics is governed by the eigenvalue with the largest
real part. However, if X is nonnormal, this analysis is incomplete. The be-
havior of the linearized dynamics can be drastically different at its early
stage. In particular, the system may initially move away from the fixed
point. This sometimes invalidates the linear approximation and renders the
fixed point unstable, even though the linearized dynamics predicts stability.
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To describe this transient dynamics, we consider the squared Euclidean
distance from the fixed point, which is the squared norm of the solution,
equation 2.5:

D(t) = 〈
ψ (t)|ψ (t)

〉 = e−2μt 〈
ψ (0)

∣∣ eX†teXt
∣∣ψ (0)

〉
=

N∑
i, j=1

〈
ψ (0)|Li

〉 〈
Ri|Rj

〉 〈
Lj|ψ (0)

〉
e−2μt+t(λ̄i+λ j ). (2.6)

If we consider
∣∣ψ (0)

〉
as a particular vector of unit norm, averaging over

all directions uniformly distributed on the hypersphere (real or complex)
‖ψ (0)‖2 = 1 leads to

D̄(t) = e−2μt 1
N

TreX†teXt = e−2μt 1
N

∑
i j

et(λi+λ̄ j )Oi j. (2.7)

We see that all elements of the overlaps of left and right eigenvectors
drive the behavior of the squared distance. First, they enhance the contri-
butions of the eigenmodes, which is responsible for amplifying the response
to the external driving. Second, since the matrix is not diagonal, they couple
different eigenmodes during the evolution. This results in an interference
between eigenmodes, which is reflected as an oscillatory behavior of the
squared norm of the solution (see Figure 7). Note that for normal matrices,
such effects do not exist, since left and right vectors are orthogonal and the
“coupling matrix” is an identity. Recently, transient growth was proposed
as an amplification mechanism of neural signals (Murphy & Miller, 2009;
Hennequin, Vogels, & Gerstner, 2012, 2014). We also remark here that even
in the systems in which the average trajectory is not amplified, one can still
observe transient trajectories, provided that the initial condition is chosen
from the subspace spanned by the eigenvectors of eX†teXt to eigenvalues
greater than 1 (Bondanelli & Ostojic, 2018).

Usually the matrix X is modeled as random. We remark that the averag-
ing over all initial conditions is equivalent to fixing an initial vector

∣∣ψ (0)
〉

and averaging over the vectors U
∣∣ψ (0)

〉
, where U is uniformly distributed

(according to the Haar measure) on the orthogonal (unitary) group. This
implies that the average over initial conditions is already included when
averaging over randomness in X when its probability density function is in-
variant under orthogonal (unitary) transformations, P(X ) = P(UXU†). Al-
though the matrix X may not admit this invariance, the averaging over
initial conditions is equivalent to rotating the matrix eX†teXt → U†eX†teXtU,
thus acting as if X were invariant. Although biologically plausible models
break the unitary invariance of the synaptic connectivity matrix, the above
argument and equation 2.7 apply to a broad class of models.
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3 Theory of Free Random Variables

3.1 Spectral Density and Eigenvector Correlations. Unitarily (and or-
thogonally) invariant random matrices in the large size limit are described
by free probability. Its power relies on the easiness of obtaining analytical
formulas, which are very good approximations even for a relatively small
matrix size.

An important class of matrices, the so-called bi-unitarily invariant,
which generalizes the gaussian distribution (described in section 3.2), is im-
portant in models of neural networks. In this class, the unitary symmetry of
the distribution is enhanced to P(UXV ) = P(X ) for U,V independent uni-
tary matrices—hence, the name. Despite the fact that they are genuinely
non-Hermitian, due to enhanced symmetry the spectral problem is effec-
tively one-dimensional, because the spectrum is rotationally invariant on
the complex plane. In this case, a powerful result holds in FRV, known as
the Haagerup-Larsen theorem (Haagerup & Larsen, 2000). It states that the
radial cumulative distribution function, F(r) = ∫ r

0 2πρ(r′)r′dr′, of the ensem-
ble X can be inferred from the simple functional equation,

SX†X (F(r) − 1) = 1
r2 , (3.1)

where SX (z) is the so-called S-transform for the ensemble X. In appendix
A, we explain the probabilistic interpretation of S and provide a simple ex-
ample. Spectra of bi-unitarily invariant ensembles in large N limit are sup-
ported on either a disc or an annulus, a phenomenon dubbed “the single
ring theorem” (Feinberg & Zee, 1997; Feinberg, Scalettar, & Zee, 2001). The
inner radius of the spectrum is deduced from the condition F(rin) = 0, while
the outer one is given by F(rout ) = 1.

The applicability of free probability to non-Hermitian matrices is not lim-
ited to spectra only. It gives also access to the averages of the overlap matrix
conditioned on eigenvalues. The one-point function

O(z) = 1
N2

〈
N∑

i=1

δ(2)(z − λi) 〈Li|Li〉 〈Ri|Ri〉
〉

, (3.2)

associated with the diagonal elements of the overlap matrix, can be cal-
culated for any type of unitarily invariant probability (Janik, Nörenberg,
Nowak, Papp, & Zahed, 1999).1 For bi-unitarily invariant ensembles, it
takes a remarkably simple form (Belinschi, Nowak, Speicher, & Tarnowski,

1
In the original formulation, Chalker and Mehlig chose normalization 1/N and

showed that the correlator for the Ginibre-Girko ensemble grows like N. Our normal-
ization 1/N2 ensures the finite limit for large N.
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2017):

O(r) = 1
πr2 F(r)(1 − F(r)). (3.3)

The ratio of the one-point correlation function and the spectral density
gives the conditional expectation of the squared eigenvalue condition num-
ber (Belinschi et al., 2017):

E
(
κ2(λi)|r = |λi|

) = NO(r)
ρ(r)

. (3.4)

Recently, the two-point function associated with off-diagonal elements
of the overlap matrix has become accessible within free probability (Nowak
& Tarnowski, 2018).

3.2 Example: Ginibre-Girko Ensemble. We conclude this section with
an example of the above construction by considering the so-called Ginibre-
Girko matrix G, the entries of which are independently taken from the
real/complex gaussian distribution with zero mean and 1/N variance. Such
a case was considered in the model of randomly connected neural networks
by Sompolinsky et al. (1988).

According to equation 3.1, we need the S-transform for G†G. This ma-
trix belongs to the Wishart ensemble (Wishart, 1928; Anderson, 1958). Its
S-transform reads SG†G(z) = 1

1+z (see appendix A). This completes the cal-
culation, since now replacing z → F(r) − 1 and using equation 3.1, we get

F(r) = r2. (3.5)

The spectrum is therefore uniform, ρ(r) = 1
2πr

dF(r)
dr = 1

π
, on the unit disc

(F(rin) = 0, F(rout ) = 1), reproducing the Ginibre-Girko result. The eigenvec-
tor correlator comes from equation 3.3, O(r) = 1

π
(1 − r2), in agreement with

Chalker and Mehlig (1998), where it was calculated using much more labo-
rious techniques. In the next section, we show that this computational sim-
plicity is preserved when considering the ensembles, taking into account
physiological restrictions imposed on the neural networks models.

4 Reframing the Rajan-Abbott Model

The strength of synapses between all pairs of N neurons in a network is
represented by the weighted adjacency (synaptic) matrix. Contrary to the
Ginibre matrices, the structure of its elements is more complicated. In the
minimal model (Rajan & Abbott, 2006), there are two kinds of neurons with
a fraction fEN representing excitatory (E), and fIN = (1 − fE )N the remain-
ing inhibitory (I) neurons. Their strengths are sampled from gaussian en-
sembles, with means μi and variances σ 2

i /N, where i = I, E. The matricial
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representation of the synaptic strength matrix therefore reads X = M + W .
Here, the deterministic matrix M represents the average synaptic activity. In
this model, it is a rank one matrix with identical rows, each containing fEN
consecutive means μE , followed by fIN consecutive means μI. The random
part W models variability across the population. It is assumed to be of the
form W = G�, where G is the Girko-Ginibre matrix and � is diagonal with
its first fEN elements equal to σE and last fIN ones equal to σI.

Several studies (Shadlen & Newsome, 1994; Troyer & Miller, 1997;
Haider et al., 2006) show that the amount of excitation and inhibition of
a neuron is the same (the so-called E/I balance) even on the scale of few
milliseconds (Wehr & Zador, 2003; Higley & Contreras, 2006). To incorpo-
rate this fact in the model, the balance condition is imposed on two levels.
The global condition fEμE + fIμI = 0 means that neurons are balanced on
average. This forces the last nonzero eigenvalue of M to vanish. Even in the
case of a null spectrum of M, its nonnormal character causes the eigenvalues
of M + G� to differ much from that of G�. As a result a few eigenvalues
lie far beyond the spectrum of G� (Rajan & Abbott, 2006; Tao, 2013; see
Figure 1).

The local E/I balance is imposed on this model by demanding that the
sum of strengths coupled independently to each neuron vanishes. Mathe-
matically, we subtract the 1/N of a sum of each row from any element in
that row. As a consequence, the elements within each row sum to zero. This

condition brings the outliers back to the disc of radius R =
√

fIσ
2
I + fEσ 2

E ;
now the spectra of W and M + W are identical (Rajan & Abbott, 2006; see
also Figure 1). Whenever we indicate E/I balance in the figures, we assume
such local balance.

4.1 Rajan-Abbott Results from FRV. Having known that the E/I bal-
ance causes the spectrum to be insensitive to the matrix of average strengths
M, we consider a more general model of m types of neurons, each with
multiplicity fkN and the synaptic strength variance σ 2

k /N. The random part
of the synaptic strength matrix can be written as W = G�, where G is a
Ginibre-Girko matrix as before, while � is diagonal with a generic structure
diag(σ11 f1N, . . . , σm1 fmN ). The multiplicities are normalized as

∑m
i=1 fi = 1.

In appendix B, using free probability, we obtain the algebraic equation for
the radial cumulative distribution function F(r):

1 =
m∑

i=1

fiσ
2
i

r2 − σ 2
i (F(r) − 1)

. (4.1)

Explicit solutions exist for m = 2, 3, 4 types of neurons, corresponding to
the quadratic, cubic, or quartic algebraic equation for F(r), but other cases
are easily tractable numerically. The case solved by Rajan and Abbott cor-
responds to the quadratic equation. Solution 4.1 is also equivalent to the
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Figure 1: Eigenvalues and their condition numbers of the matrix of variances
G� (top left), the Rajan-Abbott neural network model (top right), matrix of vari-
ances with the E/I balance imposed (bottom left), and the Rajan-Abbott model
with E/I balance (bottom right). We observed in many realizations that the out-
liers of the unconstrained Rajan-Abbott model have a higher condition number
than the average of eigenvalues within the circle. The spectra in the panels on
the left differ only slightly. The eigenvalues presented in bottom panels are ex-
actly the same, but the presence of a highly nonnormal matrix M causes the
eigenvalues on the bottom right to be conditioned much more poorly. Note the
tenfold (

√
N, as predicted by equation 5.3) broader scale in that panel. The same

realization of the gaussian matrix G was taken for all plots. We used parame-
ters σI = 0.3, σE = 0.1, fI = 0.15, fE = 0.85, μI = 0.85, μE = 0.15, and matrix size
N = 100.

diagrammatic construction of Wei (2012) but more explicit. The spectrum is
always confined within the disc of radius r2

out = ∑m
i=1 fiσ

2
i , as visible from

the condition F(rout ) = 1.
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We argue in section 5 that the presence of the deterministic matrix M
and the balance condition exert a dramatic effect on the eigenvectors of the
synaptic strength matrix. Knowing F(r), free probability allows us to calcu-
late via equation 3.3 the eigenvector correlation function O(r) for its random
part W . In the case of the minimal model considered by Rajan and Abbott,
it reads explicitly

OW (r) = 1
2πσ 4

Eσ 4
I

(
( fI − fE )σ 2

I σ 2
E (σ 2

Eσ 2
I ) − r2(σ 4

E + σ 4
I ) + (σ 2

E + σ 2
I )

√
K

)
,

(4.2)

where

K = r4(σ 2
E − σ 2

I )
2 + σ 4

I σ 4
E + 2r2( fE − fI )σ 2

Eσ 2
I (σ 2

E − σ 2
I ). (4.3)

This result is inaccessible within the framework of Wei (2012).

4.2 Heavy-Tailed Noise. Cauchy noise, belonging to the regime of Lévy
stable distributions, is used here as the simplest mechanism to mimic the
nongaussianity of the realistic synaptic matrices. Since learning rules could
change the initial random network structure into a small-world network
(Watts & Strogatz, 1998; Yu, Huang, Singer, & Nikolić, 2008; Downes et al.,
2012; Pastore, Massobrio, Godjoski, & Martinoia, 2018) by dynamic modifi-
cation of synaptic weights, the possibility of obtaining analytic benchmarks
for heavy-tailed distributions is appealing. Spatial and temporal Lévy pro-
cesses are omnipresent in biological time series, but the fact that they do
not possess finite moments invalidates several standard tools of statistical
analysis. In the case of matrices exhibiting heavy-tailed distributions of el-
ements, the underlying mathematical structure is quite involved (Cizeau &
Bouchaud, 1994; Burda, Jurkiewicz, Nowak, Papp, & Zahed, 2007). Here,
for simplicity, we focus on the Cauchy matrix distribution, given by the
probablity density function P(X ) ∼ det(XX† + 1)−2N.

Application of FRV techniques to the spectral Cauchy distribution leads
(see appendix C) to the simple result

ρ(r) = 1
2πr

dF(r)
dr

= 1
π

m∑
i=1

fiσ
2
i

(r2 + σ 2
i )2 , (4.4)

O(r) = 1
πr2 F(r)(1 − F(r)) = 1

π

m∑
i=1

fi

r2 + σ 2
i

m∑
j=1

f jσ
2
j

r2 + σ 2
j

. (4.5)

In this case, the spectrum spreads over the whole complex plane, reflecting
the large fluctuation of Lévy-type noise. In the case of more realistic Lévy
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noise, one loses the simple analytic structure presented above, but the for-
malism stays; the resulting equations are usually of a transcendental type
but can be easily solved numerically.

We also remark that in models with heavy-tailed randomness, Dale’s
principle cannot be tightly satisfied in this model. Irrespective of the mean
of this distribution, there is always a nonnegligible probability of obtaining
the value with the opposite sign as the mean because of the infinite variance
of such distributions.

5 Nonnormality in the Rajan-Abbott Model

We argue that imposing the E/I balance not only confines the eigenvalues
to a disc but, more important, induces a very strong nonorthogonality of
eigenvectors. This in turn causes the spectra to be highly sensitive to per-
turbations and strengthen the transient effects.

Let us assume that the matrix W is diagonalizable. If we denote
|u〉 = (1, 1, . . . , 1)T , the E/I balance is equivalent to the fact that |u〉 is
the right eigenvector of W to the eigenvalue λ1 = 0. Let 〈L1| be the
left eigenvector to this eigenvalue. For brevity, we also denote 〈m| =
(μ1, . . . , μ1︸ ︷︷ ︸

f1N times

, . . . , μm, . . . , μm︸ ︷︷ ︸
fmN times

), which allows us to write M = |u〉 〈m|. The

spectral decomposition of W reads

W = 0 · |u〉 〈L1| +
N∑

j=2

∣∣Rj
〉
λ j

〈
Lj

∣∣ . (5.1)

Since 〈m|u〉 = 0, 〈m| has a decomposition into the left eigenvectors of W ,
except for 〈L1|, 〈m| = ∑N

j=2

〈
Lj

∣∣ α j with α j = 〈
m|Rj

〉
. Hence, the total synaptic

strength matrix is decomposed as

M + W = 0 · |u〉 〈L1| +
N∑

j=2

(∣∣Rj
〉 + α j

λ j
|u〉

)
λ j

〈
Lj

∣∣ . (5.2)

We explicitly constructed the eigenvectors of the synaptic strength matrix.
The left eigenvectors are not altered when M is taken into consideration due
to the E/I balance. The bi-orthogonality condition

〈
Li|Rj

〉 = δi j leaves free-
dom of rescaling each pair of eigenvectors by a nonzero complex number∣∣Rj

〉 → c j
∣∣Rj

〉
and

〈
Lj

∣∣ → 〈
Lj

∣∣ c−1
j . These transformations allow us to set the

length of left eigenvectors
〈
Lj|Lj

〉 = 1. The diagonal elements of the overlap
matrix in the presence of the matrix M and E/I balance read
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Figure 2: (Left) The eigenvector correlation function for the matrix of variances
G� with the E/I balance imposed. The random matrix G was generated from
the complex and real Ginibre ensembles. The dashed line presents the analyti-
cal solutions from FRV. Numerical results (circles) were obtained by diagonal-
izing 1500 matrices of size N = 1000. The discrepancies for real matrices come
from the real eigenvalues. The fluctuations of the diagonal overlaps associated
with them are so strong that the mean of their distribution does not exist (Fyo-
dorov, 2018). (Right, log-log scale) Eigenvector correlator of M + G�, where G
is complex Ginibre. The solid line presents the power law, O(r) ∼ r−2, predicted
by equation 5.3 for small r. In both panels, we took the parameters σI = 0.4,
σE = 0.1, fI = 0.25, fE = 0.75. For the picture on the right, we also set μE = 0.25,
μI = 0.75.

O′
j j = Oj j + 2Re

(〈
m|Rj

〉 〈
Rj|u

〉
λ j

)
+ N

| 〈m|Rj
〉 |2

|λ j|2 , (5.3)

where we have used 〈u|u〉 = N and denoted Oj j the overlap matrix in the
absence of deterministic weights M. Note that Oj j also grows linearly with
N. This shows that the condition numbers grow with the size of a matrix,
and the effect of the matrix of averages is stronger for eigenvalues close to
the origin.

Analogous reasoning for the full overlap matrix leads to the conclusion
that all of its elements Oi j for i, j ≥ 2 are affected by the E/I balance and the
deterministic matrix. The dominant term in large N is given by

O′
i j − Oi j ∼ N

〈
Li|Lj

〉 〈m|Ri〉
〈
Rj|m

〉
λiλ̄ j

. (5.4)

To study the statistics of the eigenvalue condition numbers, we per-
formed numerical simulations by diagonalizing matrices, the random part
of which was generated from either a real or complex Ginibre ensemble.
The eigenvector correlation function is juxtaposed with equation 4.2 from
free probability (see Figure 2). The presence of the matrix M and the E/I
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Figure 3: (Left, Log Scale) The eigenvector correlation function of the synaptic
strength matrices with the E/I balance condition. Despite unchanged spectra,
the squared condition numbers differ significantly. (Right, log-log scale) The
distribution of the squared eigenvalue condition numbers of the eigenvalues of
the synaptic strength matrix with and without the matrix M.

balance is manifested in the scaling O(r) ∼ r−2 for small r, as observed in
Figure 2, in accordance with equation 5.3.

There is a visible mismatch between numerics for real matrices and the
results from free probability, particularly evident for eigenvalues with small
moduli. This fact is explained in the light of the recent result of Fyodorov
(2018), who showed that the distribution of the overlap for gaussian matri-
ces is heavy-tailed. This distribution conditioned on real eigenvalues of the
real Ginibre ensemble is so fat-tailed that even the mean does not exist; thus,
O(z) can be considered only outside the real axis. Being aware of this fact,
we have performed further simulations only for complex matrices, which
do not suffer from this problem.

We studied the effect of the deterministic matrix M by juxtaposing the
eigenvector correlation function in Figure 3 and noticed the significant in-
crease in its magnitude. This enhancement of nonnormality is visible not
only at the level of the mean value, but also on the full distribution of the
overlap (see Figure 3, right).

These conclusions are strengthened by the similar study based on
Cauchy synaptic matrices. Figure 4 shows perfect agreement of our pre-
dictions with the numerics. Due to the local E/I balance, the spectra are un-
changed. This does not hold, however, for the squared eigenvalue condition
numbers; they dramatically increase (several orders of magnitude; note the
scales in Figures 5 and 6). Finally, the unperturbed eigenvector correlator
approaches the predicted slope (compare the predicted slope 4 to the mea-
sured 3.84). The perturbed correlator reproduces small r behavior (compare
the predicted exponent 2 to the measured 2.03), whereas large r numerical
simulations provide asymptotic slope 5.25, as compared to the predicted
slope equal to 4.
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Figure 4: A cross-check of the numerical results with the analytical prediction
of the spectral density for the Cauchy synaptic matrix on a log-log scale.

Figure 5: Eigenvalues and their condition numbers for the synaptic matrix, the
random part of which is generated from the matrix Cauchy distribution without
(left) and with (right) the deterministic connection, M, reflecting Dale’s princi-
ple. Note the increase of condition numbers caused by addition of M (the scale is
resized by an order of magnitude). Matrices M and � are the same as in Figure 1.

Although the presence of the matrix M breaks the unitary invariance
of the synaptic strength matrix, it is still worth considering the squared
norm averaged over initial conditions as a quantity measuring the transient
response. The deterministic connections and the E/I balance cause an in-
crease of all elements of the overlap matrix Oi j, as equation 5.4 predicts. To
elucidate the importance of this fact, we studied the squared norm of the
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Figure 6: The radial eigenvector correlator for Cauchy synaptic matrices on a
log-log scale. Blue circles approximate the analytic prediction (α = 4, dashed
curve) for the unperturbed model. The red slope is the perturbed model, with
filled squares reflecting the universal inverse squared behavior for small r (ex-
ponent α = 2). Dashed straight lines are numerical fits for small and large r.
Matrix size used: N = 500.

solution to the linearized dynamics, equation 2.6, with X = W and X =
M + W , where initial conditions were generated randomly from the uni-
form distribution on the unit sphere. This dynamics is obtained by the
linearization of the model considered in del Molino et al. (2013). Results
presented in Figure 7 show that the deterministic connections in the net-
work followed by the E/I balance significantly enhance the norm of the
solution, and all presented trajectories are transient. This would not be the
case if the connections were fully random. Moreover, the strong oscillations
of the squared norm indicate interference between the eigenmodes. It is
worth stressing the accuracy of qualitative predictions based on equation
2.7 despite the fact that the presence of the matrix M and the E/I balance
break the rotational symmetry of the ensemble.

To further explore the effect of the matrix M, we study the linear dynam-
ics governed by the synaptic connectivity matrix X = W + qM and imposed
E/I balance. The parameter 0 ≤ q ≤ 1 allows one to tune the strength of the
deterministic weights and the level of nonnormality. For q = 1, it coincides
with the Rajan-Abbott model. Numerical simulations show that for small
values of q, the squared norm decays monotonically. As q increases, D̄(t)
becomes nonmonotonic with a local maximum (see Figure 8). For a quan-
titative study, as a measure of the transient amplification, we consider the
maximum of the squared norm over the entire time span, maxt>0 D(t), as a
function of q. Equation 2.7 shows that the transient dynamics is governed
by the full overlap matrix and—according to equation 5.4, where the matrix
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Figure 7: The squared Euclidean distance from the fixed point in the linearized
dynamics of del Molino et al. (2013). The presence of M induces transient be-
havior and strong oscillations. These effects are caused by strong nonnormal-
ity. Numerical results were obtained for the minimal Rajan-Abbott model. The
matrix is of size N = 100 with the same parameters as in Figure 1. We chose
μ = rout + 0.02 to ensure stability. Each blue and red curve corresponds to a sin-
gle initial condition generated randomly from the set of vectors of unit norm.
The solid purple line represents an average of D(t) taken over the presented re-
alizations, while the green dashed line is the theoretical average over all initial
conditions, equation 2.7.

Figure 8: (left) The average squared norm, equation 2.7, in the system, equation
2.4, with the connectivity matrix X = G� + qM. The parameter 0 ≤ q ≤ 1 tunes
the strength of deterministic connections. We chose μ = rout + 0.05, N = 100 and
averaged over 200 realizations of the matrix X. (right) Maximum of the squared
norm averaged over initial conditions, equation 2.7, further averaged over 200
realizations of the matrix X. Error bars denote standard deviation. The red line
depicts the quadratic fit 0.38 − 1.35q + 57.48q2 for data with q ≥ 0.15, confirm-
ing predictions based on equation 5.4. In the inset, we show a close-up of the
region around q∗, where the transition between the constant and quadratic be-
havior takes place.
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Figure 9: The activity of each neuron in the linearized dynamics. In the right
panel we can see the onset of collective dynamics driven by the matrix M and
the balance condition. Both simulations started from exactly the same initial
condition randomly chosen from the N-dimensional hypersphere. Parameters
are the same as in Figure 7.

M enters twice—we expect that the maximal amplification grows quadrat-
ically with q. This behavior is verified in Figure 8 and is true only for q
exceeding a certain threshold q∗. For q < q∗, the transient effects are small,
and the maximal value is the initial value, 1.

One expects these dramatic effects to be visible in the activity of indi-
vidual neurons. We therefore studied the temporal dynamics of the compo-
nents of the vector of neural activities, equation 2.5, for randomly chosen
initial conditions. The results, presented in Figure 9, show that in the pres-
ence of M, the neuronal activity is not only transiently enhanced; it is also
more synchronized, as observed numerically in the full dynamics by del
Molino et al. (2013). This effect, which is persistent in the nonlinear model,
is observed as transient in the linearized dynamics.

Spectra of heavy-tailed random matrices are unbounded, and there is
a nonzero probability for arbitrarily large eigenvalues. This challenges the
model, equation 2.4, with fixed μ. We adapt it to the heavy-tailed spectra,
noticing that for each realization of the random matrix, the corresponding
eigenvalues are finite. To ensure the stability of the linear system, we choose
μ = 0.02 + max Reλ for each realization of randomness. Similar to the case
of the gaussian disorder, we observe an initial growth of D(t), which is two
orders of magnitude stronger in the presence of the matrix M, followed
by relaxation toward the fixed point and oscillations resulting from the in-
terference between eigenmodes. The spectral radius of the Cauchy matrix
grows with its size like

√
N (Jiang & Qi, 2017); therefore, to ensure stabil-

ity, μ needs to be of the same order, while for the gaussian noise, μ is of
order one. This difference of scales is equivalent to different timescales of
the dynamics; therefore, the transient effects are much shorter with Cauchy
noise. This effect is magnified because of the low value of the spectral
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density for large r. Eigenvalues with large real parts are more separated
from each other, and a single mode quickly dominates equation 2.7, ending
the transient phase.

6 Discussion and Conclusion

In this letter, we explored the use of FRV in the study of large synaptic in-
teraction matrices. Besides straightforwardly recovering known results on
the application of random matrices to neural networks, we have addressed
the issue of large fluctuations, most probably relevant to the dynamics of
learning and memory in biological neural networks (Beggs & Plenz, 2003;
Benayoun, Cowan, van Drongelen, & Wallace, 2010). Using recent results
on the properties of eigenvectors in nonnormal matrices, we have quan-
titatively linked the strength of the fluctuation of the outliers to a certain
eigenvector correlator. We presented our analysis for the simplest gaussian
case; nevertheless, we also pointed out how one can consider other distri-
butions (e.g., heavy-tailed). The formalism stays the same, but in the case of
more general PDFs (apart form the Cauchy disorder, which we solved ana-
lytically), one may need to rely on numerical solutions. In the case of heavy
tails, one needs to redefine the dynamical model, equation 2.4, in such a way
that the fixed point is stable. For the finite size of matrices, it is possible by
adjusting the parameter μ.

Previous work on dynamical random matrices (Burda et al., 2014;
Gudowska-Nowak et al., 2003; Grela & Warchoł, 2018) shows that the
understanding of the temporal evolution of nonnormal matrix models
requires considering the entangled dynamics of both eigenvectors and
eigenvalues, contrary to the simple evolution of the spectra of normal ma-
trices, for which the eigenvectors decouple in the presence of the spectral
evolution.

The synaptic strengths of real neuronal networks are not static (Kandel,
Schwartz, & Jessell, 2000). Neural activity itself, in the course of time, allows
neurons to form new connections, strengthening or weakening the existing
synapses. This synaptic plasticity, on which biological learning is based,
is not captured in many models. Nonetheless, the change of the synaptic
strengths in a short time interval can be treated as a small, additive pertur-
bation of the initial matrix. This results in reorganization of the spectrum
on a complex plane.

Our results indicate that for balanced networks, the sensitivity of eigen-
values to additive perturbation is dramatic and increases several orders
of magnitude in the networks with a heavy-tailed spectrum of adjacency
matrices (small worlds). Since it is commonly accepted that spike-timing-
dependent plasticity in small-world networks is a hypothetical learning
mechanism (for a recent experimental study, see Kim & Lim, 2018), one
may worry how synchronization of the network is possible at all. We
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emphasize here that the E/I balance is put into this model by hand. In the
real brain, the E/I balance is maintained on the scale of hundreds of millisec-
onds (Haider et al., 2006), and periods during which the balance is violated
are not longer than few milliseconds (Wehr & Zador, 2003; Higley & Con-
treras, 2006). More complete models of neural networks must incorporate
the E/I balance as a dynamical process.

Networks adapting to the changing external conditions may change their
structure in a controlled way. The high sensitivity of eigenvalues to these
changes in this case might be desired because it can facilitate the adapta-
tion. We hypothesize that such high sensitivity in the models with dynam-
ical E/I balance can emerge through a process of a kind of self-regulated
criticality (Chialvo, 2010). Although the specifics of such a process are not
certain yet, there is evidence both empirical (Turrigiano & Nelson, 2004;
Liu, 2004; Pu, Gong, Li, & Luo, 2013; Shew, Yang, Yu, Roy, & Plenz, 2011)
and theoretical (Levina, Herrmann, & Geisel, 2007; Magnasco, Piro, & Cec-
chi, 2009; Schneidman, Berry, Segev, & Bialek, 2006) of its plausibility. In
addition, the connection of the E/I balance with criticality has already been
observed at the level of neuronal avalanche analysis in EEG or MEG data
(Poil, Hardstone, Mansvelder, & Linkenkaer-Hansen, 2012).

Since the balance condition leads to a dramatic increase of eigenvector
overlaps, conditioning the spectra, which further take crucial part in driving
mechanisms of temporal evolution of the networks, one needs a powerful,
stabilizing mechanism preventing the transition to the chaotic behavior in
the full nonlinear dynamics.

We envision one a priori mechanism that can tame such a behavior: tran-
sient behavior. This conclusion is consistent with the model of del Molino
et al. (2013) for nonnormal balanced networks, who have observed synchro-
nization inexplicable by solely spectral properties of the networks. Tran-
sient behavior means that even stable trajectories may initially diverge
before reaching the fixed point for long periods. This implies that transient
behavior is complementary to the stability analysis and may signal nonlin-
ear features already on the linear level (Grela, 2017). Since analytic tools
allowing the study of transient behavior for balanced networks are still
missing, we have performed sample simulations for gaussian networks.
The results are shown in Figures 7 to 9. These simulations confirm quali-
tatively the presence of transient behavior.

Nevertheless, they raise more quantitative questions: What are the statis-
tical features of transient behavior in balanced neuronal networks? How do
the effects of transient behavior scale with the size of the network? What are
the timescales in the transient behavior? How does the transient behavior
depend on the type of adjacency matrix? We hope to provide some analytic
answers to these questions in the sequel to this work. Finally, considering
the success of FRV analysis in a variety of disciplines, we hope that the ideas
presented in this letter trigger more interdisciplinary interactions in the area
of brain studies.
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Appendix A: A Guide Through Free Random Variables

Free random variables can be viewed as a probability theory, where the ba-
sic random variable is represented by an infinite matrix. It is therefore most
convenient to explain the cornerstones of the theory of free probability us-
ing concepts from the classical theory of probability (CTP). (For a more de-
tailed treatment of the problem, see Mingo & Speicher, 2017.)

Consider the following problem. We have two random variables x1 and
x2 drawn from independent probability distributions p1(x1) and p2(x2). The
distribution of the random variable s being the sum of x1 and x2 therefore
reads

p(s) =
∫

dx1dx2 p1(x1)p2(x2)δ(s − (x1 + x2)) =
∫

dxp1(x)p2(s − x).

(A.1)

One can easily unravel the convolution using the Fourier transform (char-
acteristic function). Then p̂(k) ≡ ∫

p(s)eiksds = p̂1(k)p̂2(k), where p̂i(k) are
Fourier transforms corresponding to the original densities pi(x). Note that
a characteristic function generates moments of the respective distribution.
We can further simplify the problem if instead of characteristic functions,
we consider their natural logarithms φ(k) ≡ ln p̂(k). Then we get the addi-
tion law, which linearizes the convolution

φ1+2(k) = φ1(k) + φ2(k). (A.2)

Since φ is another generating function—this time for cumulants of the
distribution—the above relation means the additivity of the corresponding
cumulants. The algorithm of convolution is therefore straightforward. First,
knowing pi(x), we construct φi(k). Then we perform the addition law, equa-
tion A.2. Finally, we reconstruct p1+2(s) from φ1+2(k), performing the first
step in reversed order. A pedagogical and simple example is represented by
the convolution of two independent gaussian distributions, N1(0, σ 2

1 ) and
N2(0, σ 2

2 ). The first step shows that in both cases, only one cumulant—the
second one, κ2 = σ 2—is nonvanishing. The addition law and the last step
of the logarithm immediately lead to the the resulting distribution, which
is also gaussian, N1+2(0, σ 2 = σ 2

1 + σ 2
2 ).

In free probability, the notion of independence is replaced by the notion
of freeness. Two large (infinite) matrices are mutually free if their eigen-
vectors are maximally decorrelated—for example, matrices X and UYU†,
where U is the Haar measure, are free.

The role of the characteristic function is played by the complex valued
Green’s function,
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GX (z) =
∫

ρX (λ)
z − λ

dλ, (A.3)

where ρX (λ) is the average spectral density of the matrix X, here play-
ing the role of the probability density function in CTP. Indeed, expanding
GX (z) around z = ∞, we get spectral moments m(X )

k = ∫
λkρX (λ)dλ. Note

that knowing GX (z), we can easily reconstruct ρX (λ). Indeed,

− 1
π

lim
ε→0

�G(z)|z=λ′+iε = lim
ε→0

∫
ρ(λ)

1
π

ε

(λ′ − λ)2 + ε2
dλ =

=
∫

ρ(λ)δ(λ − λ′)dλ = ρ(λ′). (A.4)

The role of the generating function for free cumulants is played by the so-
called R-transform, R(z) = ∑∞

k=1 κkzk−1. The crucial relation between R(z)
and G(z) reads R(G(z)) + 1

G(z) = z or G(R(z) + 1/z)) = z; the function R(z) +
1
z is the functional inverse of Green’s function. Let us return to the problem
of addition. Imagine that we now have the spectral measures ρXi (λ), corre-
sponding to two matricial ensembles with the measures P(Xi)dXi, where
i = 1, 2. We are now asking what the spectral density of the ensemble
X1+2 = X1 + X2 is. This is a highly nontrivial and nonlinear problem, since
X1 and X2 do not commute, but free calculus allows solving this case in full
analogy to CTP. The algorithm is as follows. First, from ρi corresponding to
Xi we construct matching Gi(z) and Ri(z). Then

RX1+X2 = R1(z) + R2(z), (A.5)

which supersedes equation A.2. Finally, we proceed in reverse order, re-
constructing from RX1+X2 (z) Green’s function GX1+X2 (z) and, finally, the
spectral density ρX1+X2 (λ). As an example, we consider the “gaussian”
distribution in free theory—the spectral distribution where the only non-
vanishing cumulant is the variance σ 2. Thus, R(z) = σ 2z. Reconstructing
Green’s function gives σ 2G + 1/G = z, with the solution G(z) = 1

2σ 2 (z −√
z2 − 4σ 2). Taking the imaginary part, we reconstruct the celebrated

Wigner semicircle ρ(λ) = 1
2πσ 2

√
4σ 2 − λ2. We see that the addition algo-

rithm for two free Wigner semicircles precisely mimics the addition algo-
rithm of two gaussians.

Similarly to addition, one can consider multiplication laws for random
variables x1 · x2. In CTP, such a problem is unraveled with the help of
the Mellin transform (see Epstein, 1948). In free calculus, the role of the
Mellin transform is played by the S-transform, related to the R-transform
by SX (z)RX (zSX (z)) = 1. The multiplication law reads

SX1X2 (z) = SX1 (z) · SX2 (z), (A.6)
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and the algorithm for multiplication follows the algorithm for addition.
However, one should be aware that the product of two symmetric (Her-
mitian) matrices may be nonsymmetric (non-Hermitian). In such a case,
the eigenvalues can appear on the whole complex plane, and the meth-
ods of R(z) and S(z) transforms, based on analyticity, require substantial
modifications. Luckily, there exists one powerful case, governed by the
Haagerup-Larsen theorem (known also as the single-ring theorem), when
analytic methods hold for complex spectra. If the complex matrix X can be
decomposed as X = PU, where P is positive, U is Haar-measured, and P
and U are mutually free, the spectrum on the complex plane has a polar
symmetry and the radial distribution can be easily read out from the sin-
gular values of X, that is, the real eigenvalues of X†X. In free probability
theory, such ensembles are known as R-diagonal. To infer the information
about the spectra and some correlations between left and right eigenvec-
tors, one needs only the explicit form of SX†X (z). In the case of the Ginibre
ensemble G (where Gi j are drawn from either real or complex gaussian dis-
tributions), this is particularly easy, since matrix G†G is known as a Wishart
ensemble. To avoid obscure mathematics, let us recall that the Wishart
ensemble is a free analogue of the Poisson distribution from classical prob-
ability (Voiculescu et al., 1992). This implies that all cumulants are the same,
and if normalized to 1 for convenience, its R-transform is by definition
RG†G(z) = ∑∞

i=1 zi−1 = 1
1−z . Using the above-mentioned functional relation

between R and S transforms, we arrive at SG†G = 1
1+z . Similar techniques

can be applied for generic randomness in Rajan-Abbott type models, as we
show below.

Appendix B: The Rajan-Abbott Model with Gaussian Noise

We use the theorem from free probability, which states that the product
of an R-diagonal operator with any operator is R-diagonal (Nica & Spe-
icher, 2006); therefore, W is subject to the Haagerup-Larsen theorem. Then
W†W = �G†G�

Tr= G†G�2, where the last equation expresses the fact that
the spectral properties are invariant under the cyclic permutations of ma-
trices under the trace. Green’s function (resolvent) for �2 therefore reads

G�2 (z) =
m∑

i=1

fi

z − σ 2
i

. (B.1)

Substituting z → R�2 (z) + 1
z in equation B.1 and using the fundamental FRV

relation G(R(z) + 1
z ) = z, we arrive at

1 =
m∑

i=1

fi

zR�2 (z) − zσ 2
i + 1

. (B.2)
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Now we replace in equation B.2 z → tS�2 (t), and using the relation between
S and R transforms, we arrive at

1 =
m∑

i=1

fi

1 + t − σ 2
i tS�2 (t)

. (B.3)

We note that 1
1+t is the S-transform for the Wishart ensemble (calculated

above), and the multiplication law gives us the final S-transform for W†W ,
that is, 1

1+t S�2 (t) = SG†G(t)S�2 (t) = SW†W (t), so we arrive at

1 + t =
m∑

i=1

fi

1 − σ 2
i tSW†W (t)

. (B.4)

In the last step, we substitute t → F(r) − 1 and use the Haagerup-Larsen
theorem, arriving at

F(r) =
m∑

i=1

fi

1 − σ 2
i (F(r) − 1)/r2

. (B.5)

Subtracting 1 = ∑
i fi from both sides, we simplify it to

1 =
m∑

i=1

fiσ
2
i

r2 − σ 2
i (F(r) − 1)

. (B.6)

Appendix C: The Rajan-Abbott Model with Cauchy Noise

FRV calculus is a powerful technique, and the range of its applications
is not confined to the basin of attraction of the gaussian type. In particu-
lar, for random matrices X belonging to the free Lévy class (spectral den-
sity decays like 1/λα−1), the S-transform for the Wishart-Lévy matrix X†X
reads SX†X (t) = 1

t(1+t)

( t
b

)t/α , with b = exp[iπ (α/2 − 1)] (Burda, Jurkiewicz,
Nowak, Papp, & Zahed, 2001). The stability index α = 2 reproduces the
gaussian case, but a simple form can be obtained also for the Cauchy disor-
der α = 1. In this case, SX†X (t) = − t

1+t , and when applied to equation B.3,
yields

1 + t =
m∑

i=1

fi

1 + SW†W (t)σ 2
i

. (C.1)

The final substitution t → F(r) − 1 and the use of the Haagerup-Larsen the-
orem give an explicit, linear equation for an arbitrary number of types of
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neurons:

F(r) =
m∑

i=1

fi

1 + σ 2
i /r2

. (C.2)

Contrary to the previous case, the spectrum is unbounded and stretches
up to infinity. Explicitly, the spectral density and the eigenvector correlator
read

ρ(r) = 1
2πr

dF(r)
dr

= 1
π

m∑
i=1

fiσ
2
i

(r2 + σ 2
i )2 , (C.3)

O(r) = 1
πr2 F(r)(1 − F(r)) = 1

π

m∑
i=1

fi

r2 + σ 2
i

m∑
j=1

f jσ
2
j

r2 + σ 2
j

. (C.4)

In the case of arbitrary α, the resulting transcendental equations can be eas-
ily solved numerically. Other types of neural network randomness can also
be modeled (e.g., by considering Student-Fisher spectral distributions).
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Jagiellonian University in Kraków Jagiellonian University in Kraków

Abstract

We demonstrate that in residual neural networks
(ResNets) dynamical isometry is achievable irre-
spective of the activation function used. We do
that by deriving, with the help of Free Probabil-
ity and Random Matrix Theories, a universal for-
mula for the spectral density of the input-output
Jacobian at initialization, in the large network
width and depth limit. The resulting singular
value spectrum depends on a single parameter,
which we calculate for a variety of popular acti-
vation functions, by analyzing the signal propa-
gation in the artificial neural network. We cor-
roborate our results with numerical simulations
of both random matrices and ResNets applied to
the CIFAR-10 classification problem. Moreover,
we study consequences of this universal behav-
ior for the initial and late phases of the learning
processes. We conclude by drawing attention to
the simple fact, that initialization acts as a con-
founding factor between the choice of activation
function and the rate of learning. We propose
that in ResNets this can be resolved based on our
results by ensuring the same level of dynamical
isometry at initialization.

1 Introduction

Deep Learning has achieved unparalleled success in fields
such as object detection and recognition, language trans-
lation, and speech recognition (LeCun et al., 2015). At
the same time, models achieving these state-of-the-art re-
sults are increasingly deep and complex (Canziani et al.,
2016), which often leads to optimization challenges such as
vanishing gradients. Many solutions to this problem have
been proposed. In particular, Residual Neural Networks
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remedy this to some extent (He et al., 2016; Veit et al.,
2016) by using skip connections in the network architec-
ture, which improve gradient flow. As a result, Residual
Neural Networks outmatched other competing models in
the 2015 ILSVRC and COCO competitions. Yet another
approach towards solving this problem is to tailor fit the
networks weight initialization to facilitate training, for ex-
ample by ensuring dynamical isometry (Pennington et al.,
2017). In this latter case, the insights are based on an anal-
ysis of the statistical properties of information propagation
in the network and a study of the full singular spectrum
of a particular matrix, namely the input-output Jacobian,
via the techniques of Free Probability and Random Matrix
Theories (FPT & RMT). This perspective has recently led
to successfully training a 10000 layer vanilla convolutional
neural network (Xiao et al., 2018).

RMT is a versatile tool that, since its inception, saw a sub-
stantial share of applications, from the earliest in nuclear
physics (Wigner, 1993) to the latest in game theory (Car-
mona et al., 2018) (see (Akemann et al., 2011) for some
of the use cases discovered in the mean time). It is thus
not surprising that it found its way to be used to understand
artificial neural networks. In particular, to study their loss
surface (Choromanska et al., 2015; Pennington and Bahri,
2017), the associated Gram matrix (Louart et al., 2018;
Pennington and Worah, 2017) and in the case of single
layer networks, their dynamics (Liao and Couillet, 2018).
Our main contribution is extending the theoretical analysis
of (Pennington et al., 2017; Schoenholz et al., 2016; Pen-
nington et al., 2018) to residual networks. In particular, we
find that residual networks can achieve dynamical isome-
try for many different activation functions provided that the
variance of weight initialization scale is inversely propor-
tional to the number of skip-connections. This is in contrast
to feedforward networks, where orthogonal weights and
antisymmetric sigmoidal activation functions (like tanh)
are required. These theoretical results are supported by
an empirical investigation on the popular CIFAR-10 bench-
mark.
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1.1 Related work

The framework of dynamical mean field theory, we will
apply to study signal propagation in neural networks, was
first used in this context in (Poole et al., 2016). There, the
authors showed the existence of an order-to-chaos expres-
sivity transition for deep feedforward neural networks with
random initial weights, on the plane spanned by the vari-
ances of the network weights and biases. This in turn led to
the insight of (Schoenholz et al., 2016), that arbitrary deep
networks can be trained as long as they are close to the
criticality associated with that transition. The techniques
developed in these works, together with methods of FPT
and RMT, allowed, for the first time, to analytically com-
pute the singular value distribution of the input-output Ja-
cobian of a deep feedforward network with nonlinear acti-
vation function and at criticality (Pennington et al., 2017).
Finally, (Pennington et al., 2018) showed, that for feedfor-
ward neural networks, in their large depth limit and at a
special point of the above mentioned critical line, the sin-
gular spectrum of the Jacobian is given by a universal dis-
tribution depending on the form of the activation function
used. In particular they distinguish the Bernoulli and the
smooth universality classes corresponding to piecewise lin-
ear and some nonlinear activation functions. In fact, in this
paper, we take the approach of that last work and apply it to
fully connected residual neural networks. We find a single
universality class for this architecture.

Let us also mention some recent, important developments
in the area of residual neural network initialization. One
of the earlier developments, is the introduction of layer-
sequential unit-variance (LSUV) initialization (Mishkin
and Matas, 2015). The two step process involved normal-
izing the outputs of the neurons on the first forward run and
showed promising results. In another, very relevant paper
(Taki, 2017), analyzing the signal propagation in a similar
manner to that mentioned in the paragraph above, shows for
ResNets, with piecewise linear, symmetric as well as ReLU
activation functions, that the proper variance for network
weight initialization is of order 1

NL , where L is the number
of layers and N the number of neurons in each layer. A sim-
ilar conclusion is reached by (Balduzzi et al., 2017). We
corroborate this result with our analysis. Another contri-
bution shows that adding skip connections to the network,
eliminates the critical behavior described above (Yang and
Schoenholz, 2017). Finally, the importance of initializa-
tion in ResNets is shown by (Zhang et al., 2019), where it
is demonstrated that initializing to a zero function enables
training state of the art residual networks without the use
of batch normalization (Ioffe and Szegedy, 2015). Note
that ResNet with this initialization achieves in fact an ideal
isometry.

When finishing this manuscript, we have learned of a recent
paper tackling the same problem of ResNets initialization
by studying the singular spectrum properties of the Jaco-

bian with the tools of Free Probability. While the analysis
of (Ling and Qiu, 2018) is related, it is crucial to note that
the authors do not observe the universal character of the
singular spectrum - the main result of our paper, and treat
only piecewise linear activation functions. It is also worth
mentioning that, similar to us, they rediscover the impor-
tance of 1

LN scaling of (Balduzzi et al., 2017) and (Taki,
2017).

1.2 Our results

Our contributions are the following. We show that the sin-
gular spectrum of the input-output Jacobian, in the the net-
works large width and depth limit, is given by a univer-
sal formula - with the dependence on the type of activa-
tion function encapsulated in a single parameter. Further-
more, we calculate the layer dependent statistical proper-
ties of the pre-activations for a variety of activation func-
tions. All together, this gives the associated singular spec-
tra of the Jacobian, which we compare with random ma-
trix and artificial neural network numerical simulations cor-
roborating our theoretical results. The singular values of
the input-output Jacobian concentrate around 1 for a wide
range of parameters, which shows that fine-tuning the ini-
tialization is not required for achieving dynamical isome-
try in ResNets. Interestingly, the universal formula for the
singular spectrum of the Jacobian is valid also in the case
when batch normalization is used. Even though the final re-
sults of the theoretical calculations are derived in the limit
L,N → ∞, the numerical experiments match them already
for L = 10 (with N = 500). As a practical application
of our work and the universality property it uncovers, we
propose a framework for setting up weight initialization in
experiments with residual neural networks.

1.3 Structure of the paper

We follow this introductory section by defining the model
of ResNets we will work with and with a short note on the
relevance of the input-output Jacobian. Then, in subsection
3.1, we derive the equation governing the Green’s function
and hence the spectrum of the Jacobian, which depends on
a single parameter, which we denote by c. Proceeding is
the analysis of the propagation of the information in the
network via an analysis of the probability density function
describing the pre-activations across the layers at network
initialization. This allows us to calculate c for many differ-
ent activation functions in Appendix D. We close the sec-
ond section of the paper by revealing the random matrix ex-
periments confirming our results. Sec. 4 is devoted to the
outcome of associated residual neural network numerical
calculations. There, we showcase the resulting, experimen-
tal, universal spectrum of the Jacobian and the outcomes
of the learning processes. We close the paper with a dis-
cussion section. In Appendix A we give a brief comment
on the influence of batch normalization on the presented
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setup. In the rest of the Appendices, we show the results
of numerical experiments validating the signal propagation
recurrence relations and some baseline (based on using the
same weight matrix variances, irrespective of the choice of
activation functions) simulations of the learning process.

2 The model

In this paper, we consider a deep, residual network of L
layers of a constant width of N neurons. We follow the
typical nomenclature of the literature and therefore the real-
valued, synaptic matrix for the l-th layer is denoted by W l,
whereas the real-valued bias vectors are bl. The informa-
tion propagates in this network according to:

xl = φ(hl) + axl−1, hl = W lxl−1 + bl, (1)

where hl and xl are pre- and post-activations respectively
and φ is the activation function itself, acting entry-wise on
the vector of pre-activations. We have introduced the pa-
rameter a to track the influence of skip connections in the
calculations, however we do not study its influence on the
Jacobian’s spectrum or learning in general. By x0 we de-
note the input of the network and by xL its output. Our pri-
mary interest will lay in exploring the singular value spec-
tral properties of the input-output Jacobian:

Jik =
∂xL

i

∂x0
k

, (2)

known to be useful in studying initialization schemes of
neural networks at least since the work of (Glorot and Ben-
gio, 2010). It in particular holds the information on the
severity of the exploding gradients problem.

2.1 Relevance of the input-output Jacobian

To understand why we are interested in the Jacobian, con-
sider the neural network adjusting its weights during the
learning process. In a simplified, example by example sce-
nario, this happens according to

∆W l
i j = −η

∂E(xL,y)
∂W l

i j

, (3)

where E(xL,y) is the error function depending on xL - the
output of the network, y - the correct output value associ-
ated with that example and, implicitly through xL, on the
parameters of the model, namely the weights and biases.
Here, for simplicity, we consider only the adjustments of
the weights - an analogous reasoning applies to the biases.
η is the learning rate. By use of the chain rule we can
rewrite this as:

∆W l
i j = −η

∑
k,t

∂xl
t

∂W l
i j

∂xL
k

∂xl
t

∂E(xL,y)
∂xL

k

, (4)

For the learning process to be stable, all three terms need
to be bounded. Out of those, the middle one can become
problematic if a poor choice of the initialization scheme is
made. We can rewrite it as:

∂xL
k

∂xl
t

=

 L∏
i=l+1

(
DiW i + 1a

)
kt

(5)

and see the larger the difference between L and l, the more
terms we have in the product, and (in general) the less con-
trol there is over its behavior. Here 1 is an identity matrix
and, Dl is a diagonal matrix such that Dl

i j = φ′(hl
i)δi j. In-

deed, it was proposed by (Glorot and Bengio, 2010), that
learning in deep feed-forward neural networks can be im-
proved by keeping the mean singular value of the Jacobian
associated with layer i (in our setup J i = DiW i + 1a),
close to 1 for all i’s. It is also important for the dynamics
of learning to be driven by data, not by the random ini-
tialization of the network. The latter may take place if the
Jacobian to the l-th layer possesses very large singular val-
ues which dominate the learning or very small singular val-
ues suppressing it. In the optimal case all singular values
should be concentrated around 1 regardless of how deep is
the considered layer. One therefore examines the case of
l = 0, namely ∂xL

k /∂x0
t - the input-output Jacobian, as the

most extreme object of (5). The feature that in the limit
of large depth all singular values of J concentrate around
1, irrespective of the depth of the network, was coined as
dynamical isometry (Saxe et al., 2013).

Note, that the spectral problem for the full Jacobian

J =

L∏
l=1

(
DlW l + 1a

)
(6)

belongs to the class of matrix-valued diffusion pro-
cesses (Gudowska-Nowak et al., 2003; Janik and Wiec-
zorek, 2004), leading to a complex eigenvalue spectrum.
We note that the large N limit, spectral properties of (6)
with D = 1 (deep linear networks), and different symmetry
classes of W , was derived already by (Gudowska-Nowak
et al., 2003). Due to non-normality of the Jacobian, singu-
lar values cannot be easily related to eigenvalues. There-
fore we follow (Pennington et al., 2017, 2018) and tackle
the full singular spectrum of the Jacobian (or equivalently
the eigenvalue spectrum of JJT ), extending these works to
the case of the Residual Neural Network model.

3 Spectral properties of the Jacobian

3.1 Spectral analysis

Free Probability Theory, or Free Random Variable (FRV)
Theory (Voiculescu et al., 1992), is a powerful tool for the
spectral analysis of random matrices in the limit of their
large size. It is a counterpart of the classical Probability



Dynamical Isometry is Achieved in Residual Networks in a Universal Way for any Activation Function

Theory for the case of non-commuting observables. For
a pedagogical introduction to the subject, see (Mingo and
Speicher, 2017) - here we start by laying out the basics use-
ful in the derivations of this subsection. The fundamental
objects of the theory are the Green’s functions (a.k.a. Stielt-
jes transforms in mathematical literature):

GH(z) =

〈
1
N

Tr (z1 −H)−1
〉

=

∫ ∞

−∞

ρH(λ)dλ
z − λ

, (7)

which generate spectral moments and where the subscript
H indicates, that his formulation is proper for self-adjoint
matrices. The eigenvalue density can be recovered via the
Sochocki-Plemelj formula

ρH(x) = −
1
π

lim
ε→0

GH(x + iε). (8)

The associated free cumulants are generated by the so-
called R-transform, which plays the role of the logarithm of
the characteristic function in the classical probability. By
this correspondence, the R-transform is additive under ad-
dition, i.e. RX+Y (z) = RX(z) + RY (z) for mutually free, but
non-commuting random ensembles X and Y . Moreover, it
is related to G via the functional equations

G
(
R(z) +

1
z

)
= z, R(G(z)) +

1
G(z)

= z. (9)

On the other hand, the so-called S -transform facilitates cal-
culations of the spectra of products of random matrices, as
it satisfies S AB(z) = S A(z)S B(z), provided A and B are mu-
tually free and at least one is positive definite. If addition-
ally, the ensemble has a finite mean, the S-transform can
be easily obtained from the R-transform, and vice versa,
through a pair of the following, mutually inverse maps
z = yS (y) and y = zR(z). Explicitly:

S (zR(z)) =
1

R(z)
, R(zS (z)) =

1
S (z)

. (10)

Denoting now JL the Jacobian across L layers and
Yl = (a1 + DlW l), one can write the recursion relation
JLJ

T
L = YLJL−1J

T
L−1YL. The latter matrix is isospectral

to Y T
L YLJL−1J

T
L−1, which leads to the equation for the S -

transform S JL JT
L
(z) = S YT

L YL
(z)S JL−1 JT

L−1
(z). Proceeding in-

ductively, we arrive at

S JJT (z) =

L∏
l=1

S YlYT
l
(z). (11)

To find the S -transform of the single layer Jacobian, we
will first consider its Green’s function

G(z) =

〈
1
N

Tr(z1 − YlY
T

l )−1
〉
, (12)

with the averaging over the ensemble of weight matrices
W l. To facilitate the study of G, in particular to cope with

Y Y T , one linearizes the problem by introducing matrices
of size 2N × 2N

Z :=
(
−a 1
z −a

)
, X :=

(
X 0
0 XT

)
, (13)

with X = DlW l. Another crucial ingredient is the block
trace operation (bTr), which is the trace applied to each
N × N block. The generalized Green’s function is defined
as a block trace of the generalized resolvent (Z⊗ 1 − X)−1

G :=
(

G11 G12
G21 G22

)
=

〈
1
N

bTr
(
−a −X 1

z −a −XT

)−1〉
.

(14)
Remarkably, the Green’s function of Y Y T is the G12 en-
try of the generalized Green’s function. This construction
is a slight modification of the quaternionization approach
to large non-Hermitian matrices developed by (Janik et al.,
1997), therefore we adapt these concepts here for calcula-
tions in the large width limit of the network. Furthermore,
the generalized Green’s function (14) is given implicitly by
the solution of the Schwinger-Dyson equation

G(Z) = (Z− R(G(Z)))−1. (15)

Here R is the generalized R-transform of FRV theory. This
construction is a generalization of standard FRV tools to
the matrix-valued functions. In particular, (15) is such a
generalization of (9) to 2 × 2 matrices.

To study two common weight initializations, Gaussian and
scaled orthogonal, on the same footing, we assume that W
belongs to the class of biunitarily invariant random matri-
ces, i.e. its pdf is invariant under multiplication by two
orthogonal matrices, P(UWV T ) = P(W ) for U ,V ∈

O(N). In the large N limit these matrices are known in
free probability as R-diagonal operators (Nica and Spe-
icher, 1996). A product of R-diagonal operator with an
arbitrary operator remains R-diagonal (Nica and Speicher,
2006), thus the matrix X is R-diagonal too.

The generalized R-transform of R-diagonal operators takes
a remarkably simple form (Nowak and Tarnowski, 2017)

R(G) = A(G12G21)
(

0 G12
G21 0

)
. (16)

Here, A(x) =
∑∞

k=1 c2k xk−1 is the determining sequence,
which generates cumulants c2k, it is a Taylor expansion
of A(x) at 0. For the later use we mention a simple re-
lation for the determining sequence of a scaled matrix
AaX(z) = a2AX(a2z), which generalizes the Hermitian case
GaH(z) = 1

aGH( z
a ) or, equivalently, RaH(z) = aRH(az).

We derive the equation for the Green’s function (with
G(z) = G12) by substituting the R-transform (16) into (15)
and eliminating irrelevant variables. It thus reads:

G =
GA(zG2) − 1

a2 − z(1 −GA(zG2))2 , (17)
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where for clarity we omitted the argument of the Green’s
function. In the next step we substitute z → R(z) + 1

z and
use (9) to obtain

z =
zA(z2R + z) − 1

a2 − (R + 1
z )(1 − zA(z2R + z))2

. (18)

Then, we substitute z→ zS (z) and use (10), which leads us
to

1 =
zS A(z(z + 1)S ) − 1

a2zS − (z + 1)(1 − zS A(z(z + 1)S ))2 . (19)

This equation is exact. To incorporate the additional scal-
ing of weights variances by 1/L in our considerations,
as proposed by (Taki, 2017) and (Balduzzi et al., 2017),
we rescale X → X/

√
L and since we are interested

in deep networks, we keep only the leading term in 1/L
(see also (Janik and Wieczorek, 2004)). This leads to
A (z(z + 1)S )→ 1

L A
(

1
L z(z + 1)S

)
= c2

L +O
(

1
L2

)
, which sim-

plifies (19) to a quadratic equation for S . Choosing the ap-
propriate branch of the solution, we see that

S YlYT
l
(z) =

1
a2

1 − cl
2

a2L
(1 + 2z) + O

(
1
L2

) . (20)

Here

cl
2 =

〈
1
N

TrW lDlDl(W l)T
〉

=
σ2

w

N

N∑
i

(
φ′(hl

i)
)2

(21)

is the squared spectral radius of the matrix DlW l. In gen-
eral, cl

2 can vary across the depth of the network due to
non-constant variance of preactivations. Assuming that this
variability is bounded, we can consider the logarithm of
(11) and write:

ln S JJT (z) = −2L ln a −
(1 + 2z)

a2 c, (22)

where we defined the effective cumulant c = 1
L
∑L

l=1 cl
2 and

used ln(1 + x) ≈ x. This allows us to deduce the form of
the S -transform, assuming that a does not scale with L

S JJT (z) =
1

a2L e−
c

a2 (1+2z). (23)

Substituting z→ zR(z) and using (10), we obtain

a2L = R(z) exp
[
−

c
a2 (1 + 2zR(z))

]
. (24)

Then, we substitute z→ G(z) and use (9) to finally get

a2LG(z) = (zG(z) − 1)e
c

a2 (1−2zG(z)), (25)

an equation for the Green’s function characterizing the
square singular values of the Jacobian, which can be solved
numerically. We do that for a range of different activation
functions and present the results with numerical simula-
tions to corroborate them in Fig. 1.

We close this section with a remark that the above analysis
is not restricted only to the model (1), but analogous rea-
soning can be performed for networks in which skip con-
nections bypass more than one fully connected block. The
qualitative results remain unaltered provided that L is re-
placed by the number of skip connections.

3.2 Signal propagation

The formulas we have derived until now were given in
terms of a single parameter c, which is the squared deriva-
tive of the activation function averaged within each layer
and across the depth of the network. Thus, we now need
to address the behavior of preactivations. In the proceeding
paragraph, we closely follow a similar derivation done in
(Schoenholz et al., 2016), for fully connected feed forward
networks.

For the simplicity of our arguments, we consider here W l
i j

and bl
i as independent identically distributed (iid) Gaus-

sian random variables with 0 mean and variances (σW )2

LN and
(σb)2, respectively. Here, (σW )2 is of order one, and the ad-
ditional scaling is meant to reflect those introduced in the
previous paragraphs. At the end of this section we provide
an argument that the same results hold for scaled orthogo-
nal matrices.

In this subsection, we will denote the averaging over vari-
ables W l

i j and bl
i, at a given layer l, by 〈·〉wbl. By 〈u〉l we

denote the sample average, of some variable u in the l-th
layer: 〈u〉l ≡ 1

N
∑N

i=1 ul
i. Note that the width (N) is inde-

pendent of the layer number, however the derivation can be
easily generalized to the opposite case, when the architec-
ture is more complicated. Unless stated otherwise explic-
itly, all integrals are calculated over the real line.

We are interested in the distribution of hl
i in our model, de-

pending on the input vectors and the probability distribu-
tions of W l

i j and bl
i. If we assume they are normal (as can

be argued using the Central Limit Theorem), we just need
the first two moments. It is clear that 〈hl

i〉wbl = 0. Fur-
thermore, we assume ergodicity, i.e. that averaging some
quantity over a layer of neurons is equivalent to averag-
ing this quantity for one neuron over an ensemble of neural
networks with random initializations. We assume this is
true for hi, xi, Wi j and bi. Thus, we can say that 〈h〉l = 0
and moreover, as we work in the limit of wide networks,
〈 f (h)〉l (where f is some function of hl) can be replaced
with an averaging over a normal distribution of variance

ql ≡

〈(
hl
)2
〉

wbl
. This is the crux of the dynamical mean

field theory approach (Poole et al., 2016) for feed-forward
neural networks. We have in particular:

cl
2 = σ2

W

〈(
φ′(h)

)2
〉

l
= σ2

W

∫
Dzφ′2

(√
qlz

)
, (26)
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where Dz = exp(−z2/2)dz/
√

2π. To calculate the effective
cumulant, we need to know how the variance of the distri-
bution of the preactivations changes as the input informa-
tion propagates across consecutive layers of the network.
It is shown in Appendix C, that ql satisfy the recurrence
equation

ql+1 = a2ql +
(
1 − a2

)
σ2

b +
(σW )2

L

∫
Dzφ2

(√
qlz

)
+

2
(σW )2

L

 l−1∑
k=1

ak
∫
Dzφ

(√
ql−kz

) ∫ Dzφ
(√

qlz
)
, (27)

with the initial condition q1 = σ2
b +

σ2
W
L .

We remark here that the above reasoning concerning sig-
nal propagation holds also when the weights are scaled or-
thogonal matrices, i.e. WW T =

σ2
W
L 1. In such a case〈

Wi j

〉
= 0 and

〈
Wi jWkl

〉
=

σ2
W

NL δikδ jl (Collins and Śniady,
2006) and the entries of W can be approximated as inde-
pendent Gaussians (Chatterjee and Meckes, 2007).

3.3 Random matrix simulations

To thoroughly test the theoretical predictions of Section
3, we run numerical simulations using Mathematica. The
initial condition, input vector x0 of length N = 500,
filled with iid Gaussian random variables of zero mean
and unit variance, is propagated according to the recur-
rence (1), for various activation functions. The network
weights and biases are generated from normal distribu-
tion of zero mean and σ2

W/NL and σ2
b variances, respec-

tively, with N = 500 The propagation of variance of pre-
activations, post-activations as well as the calculation of the
second cumulants cl for the studied activation functions,
across the network, is presented in Appendix E. All numer-
ical simulations corroborate our theoretical results. Here,
for clarity and as a generic example, in Fig. 1 (upper), we
show the distribution of singular values of the input-output
Jacobian (defined in (6)) for the tanh nonlinearity for var-
ious network depths. In this example the Jacobian in not
independent of the signal propagation, contrary to the case
of piecewise linear activation functions. Similarly, in the
lower panel of Fig. 1, we showcase the outcome of numer-
ical experiments and the associated, matching, theoretical
results for the most popular ReLU activation function, for
various initializations resulting in different values of the ef-
fective cumulant c.

4 Experiments on image classification

The goal of this section is to test our theoretical pre-
dictions on real data via the popular CIFAR-10 bench-
mark (Krizhevsky, 2009). To this end we will use a single
representation fully connected residual network, see Fig. 2.
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Figure 1: (Top) density of singular values of the input-
output Jacobian for the residual network with tanh nonlin-
earity. Note that the asymptotic theoretical result describes
remarkably well not very deep (L = 10) networks. (Bot-
tom) asymptotic distribution of singular values for various
values of parameter c (dashed) juxtaposed with the numer-
ical simulations for ReLU nonlinearity (solid). Note that
histograms were calculated from a single random initiali-
sation. The smaller c, the narrower the spectrum and the
closer to the ideal isometry.

This simplified version of the model of (He et al., 2016)
does not use (i) multiple stages with different dimension
of hidden representation, and (ii) two layers within resid-
ual block. We leave study of a more general version of
ResNets for future work.

4.1 Achieving dynamical isometry for any activation
function

Perhaps the most interesting prediction of our theory is
that ResNets, in contrast to fully connected networks, can
achieve dynamical isometry for many different activation
functions. We will study this empirically by looking at J, at
initialization, for different activation functions and number
of residual blocks. Please note that by J we refer to Jaco-
bian of the output of the last residual block with respect to
the input of the first one, see also Fig. 2.

We consider the following popular activation functions:
ReLU (Nair and Hinton, 2010), Tanh, Hard Tanh, Sigmoid,
SeLU (Klambauer et al., 2017) and Leaky ReLU (Maas
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Figure 2: Residual network architecture used in the paper.
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Figure 3: Singular spectra obtained for various activation
functions and depth L = 10, 20. The network was fed with
examples from CIFAR10 dataset.

et al., 2013) with the leaking constant 0.05 and 0.25. For
each activation function we consider the number of blocks
L to be 10 and 20. All weights of the network are ini-
tialized from a zero-centered normal distribution whereas
biases are initialized to zero. The weights of the residual
blocks are initialized using standard deviation σW/

√
NL,

other weights are initialized as by (Taki, 2017). For the
given activation function and the number of blocks L, we
set σW in such a way that the effective cumulant c = 0.125,
which ensures the concentration of eigenvalues of the Ja-
cobian around one, and hence dynamical isometry (see Ap-
pendix D for more details and Fig. 1 for the shape of the
singular value densities).

For each pair of activation function and number of blocks
we compute the empirical spectrum of J at initialization,
the results are reported in Fig. 3. Indeed, we observe that
upon scaling the initializations standard deviation, in such
a way that c is kept constant, the empirical spectrum of J is
independent of the number of residual blocks or the choice
of activation functions.

4.2 Learning dynamics are more similar at
universality under dynamical isometry

Our next objective is to investigate whether networks
achieving dynamical isometry share similar learning dy-
namics. While this is outside of the scope of our theoretical
investigation, it is inspired by studies such as (Pennington
et al., 2017), which demonstrate the importance of dynam-
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Figure 4: Training accuracy during first 200 epochs (mid-
dle) and first 100 iterations (bottom) of residual networks
with various activation functions. The weight initialization
was chosen for each activation function in such a way that
the effective cumulant is c = 0.125. In the top panel, the
dynamics with this initialization was juxtaposed with anal-
ogous training of networks in which the variance of weights
was chosen to be 1

LN for all activation functions. We used
leaky ReLU with α = 0.05, 0.25.
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ical isometry at the initialization for the subsequent opti-
mization.

We consider the same set of experiments as in the previous
section, and follow a similar training protocol to (He et al.,
2016). We train for 200 epochs and drop the learning rate
by a factor of 10 after epochs 80, 120, and 160. We use
batch-size 128 and a starting learning rate of either 10−3 or
10−4 1.

First, we look at the learning dynamics on the training set.
We can observe that most of the activation functions ex-
hibit similar training accuracy evolution, see Fig. 4 (mid-
dle). Using the sigmoid activation, led however to signifi-
cantly slower optimization. This is due to a faster growth
of the variances of post- and pre- activations (which can be
observed in Fig. 5), which exacerbates the neuron satura-
tion problem.

Overall our results suggest that the singular spectrum of
J at initialization does not fully determine generalization
and training performance. Nonetheless, setting the same
effective cumulant for the experiments with different ac-
tivation functions results in a markedly coinciding behav-
ior of neural networks using activation functions of similar
characteristics. This is in contrast to a setup in which the
variances of the weight matrix entries are set to be equal.
To demonstrate this we run another set of training experi-
ments, this time with all standard deviations σ = 1/

√
LN.

The plots depicting the full results are relegated to Fig. 7 in
Appendix F. Here, in Fig. 4 (top) we showcase the train-
ing accuracy during the first 40 iterations for these two
setups (excluding, for clarity, the networks with the sig-
moid activation function). With different effective cumu-
lants, the network learning dynamics, differs among exper-
iments with different activation functions, especially at the
beginning of learning.

This suggests that the spectrum of the input-output Jaco-
bian at initialization can be treated as a confounding vari-
able in such experiments. Ensuring that the level of dy-
namic isometry, and hence the value of the effective cu-
mulant is kept the same, provides the possibility of a more
meaningful comparison of the effect of activation functions
on learning dynamics.

5 Synopsis and discussion

The main focus of this paper was the singular spectrum
of the input-output Jacobian of a simple model of resid-
ual neural networks. We have shown that in the large net-
work depth limit, it is described by a single, universal equa-
tion. This holds irrespective of the activation function used,
for biunitarily invariant weight initializations matrices, a
set covering Gaussian and scaled orthogonal initialization

1We use relatively low learning rates, largely because we omit
batch normalization layers in the architecture.

schemes. The singular value density depends on a single
parameter called the effective cumulant, which can be cal-
culated by considering the propagation of information in
the network, via a dynamical mean field theory approach.
This parameter depends on the activation function used,
variance of biases and the entries of the weight matrices,
and, for some activation functions, also on the depth of the
network. We demonstrated the validity of our theoretical
results in numerical experiments, both by generating ran-
dom matrices adhering to the assumptions of the model and
by evaluating the Jacobians of residual networks (at initial-
ization) on the CIFAR10 dataset.

For a given activation function and/or network depth, it is
always possible to set the weight matrix entries variances in
such a way, that the resulting singular spectra of the Jaco-
bians not only fulfill the conditions for dynamical isometry,
but also are exactly the same, irrespective of the activation
function used. This observation allows us to eliminate the
singular spectrum of the Jacobian treated as a confounding
factor in experiments with the learning process of simple
residual neural networks for different activation functions.
As an example of how this approach can be applied, we ex-
amined how accuracies of simple residual neural networks,
employing a variety of activation functions, change during
the learning process. When using the same variances of
weight matrices entries, the learning curves of similar ac-
tivation functions differed between each other more than
when the networks were initialized with the same input-
output Jacobian spectra. This allows, in our opinion, for a
more meaningful comparison between the effects of choos-
ing the activation function. We hope this observation will
help with the research of deep neural networks.
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