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Abstract

This thesis is concentrated on quantum transport properties of mono- and bilayer
graphene systems in ballistic regime. The Landauer–Büttiker formalism is utilised to
analyse transport properties of ultraclean samples. The aims of this work are twofold.
The first one is concerned in analysing the properties of graphene itself, both mono-
and bilayer. The second one is concentrated on novel electronic devices that might be
constructed thanks to extraordinary properties of graphene. The particular systems are
chosen weighting the theoretical interest, experimental feasibility and possible future
applications.

The first part addresses three main questions. The first one How one may reliably
measure the trigonal warping strength in bilayer graphene? is replied with vast anal-
ysis of thermoelectric properties of bilayer graphene. Two experimentally accessible
ways has been proposed. The first one requires measurement of carrier concentration
corresponding to the secondary maximum of the Seebeck coefficient, while the other
requires measurement of temperature at which the Seebeck coefficient reaches its global
maximum on the doping – temperature plane.

The second question: How appearance of a bandgap will modify the thermoelectric
properties? is followed by analysis of two system geometries. The traditional lead-
sample-lead geometry and the sharp potential step geometry allowing to pinpoint the
crucial properties of the system in idealised case. The thermoelectric properties occur
to be defined dominantly by the presence of the bandgap. The special attention is put
to unusual behaviour of figure of merit (ZT).

The third question: What is a conductivity of large piece of bilayer graphene? con-
siders the impact of non-leading terms in effective bilayer graphene Hamiltonian on the
conductance of the large system at zero doping. The three different behaviours of conduc-
tivity (diverging, levelling off or decaying) with growing system length are recognized
and interpreted. The analysis includes the finite temperature effects and comparison
with available experimental results.

The second part is also naturally divided into three parts. The first one concentrates
on possibility of pinpointing the Aharonov-Bohm effect without two slit setup in the
Corbino disk made out of graphene. It occurred that pseudodiffusive transport in bilayer
graphene is affected by magnetic flux piercing the central electrode and sufficiently strong
to allow its experimental measurement. The robustness of the effect is analysed in terms
of non-zero doping and breaking of rotational symmetry of the system.

The second system is a proposition of a mesoscopic valley filter – the first device in
valleytronics being the modification of electronics that takes advantage of valley polarised
currents in graphene. As proposition does not require use of experimentally problematic
single atom precise sample forming or application of strain-induced pseudomagnetic
fields, we believe it allows experimental construction of the first valley filter – a milestone
in development of valleytronics.

The last system consists of buckled nanoribbon with mechanical kink generator. Such
a system has been analysed before, by other authors, and proved to be controllable
via gentle shaking of one of its ends, taking advantage of unusual negative radiation
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pressure effect. Our central question: Does buckled graphene nanoribbon might be used
as an electric pump? is addressed and analysed in terms of SSH model. The surprising
result show it should be possible not only to construct such a pump, but also to use it
as a standard current device (ampere prototype).
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Streszczenie

Dyssertacja jest skoncentrowana na kwantowych cechach przewodnictwa w ballisty-
cznych układach grafenu i dwuwarstwy grafenowej. Do analizy przewodnictwa wyko-
rzystano formalizm Landauera–Büttikera. Cele niniejszej pracy dzielą się na dwie ogólne
grupy. Pierwsza grupa koncentruje się na analizie własności monowarstwy i dwuwarstwy
grafenowej. Druga natomiast rozważa własności konkretnych układów wykonanych z
grafenu. Wybór układów jest podyktowany interesującą fizyką, realizowalnością oraz
możliwymi, przyszłymi zastosowaniami.

Pierwsza część pracy zadaje trzy główne pytania. Po pierwsze, Jak wiarygodnie
zmierzyć wartość tunelowania skośnego w dwuwarstwie? pytanie to jest analizowane w
świetle własności termoelektrycznych dwuwarstwy grafenowej. Dwie dostępne ekspery-
mentalnie procedury są zaproponowane. Pierwsza wymaga pomiaru koncentracji nośników
ładunku odpowiadającej pobocznemu maksimum współczynnika Seebecka, podczas gdy
druga wymaga pomiaru temperatury odpowiadającej najwyższej wartości współczynnika
Seebecka w przestrzeni parametrów domieszkowanie – temperatura.

Drugie pytanie Jak obecność przerwy energetycznej wpływa na własności termoelek-
tryczne? jest analizowane dla dwóch różnych geometrii układu. Tradycyjnej geometrii
złącze-próbka-złącze oraz geometrii z gwałtownym skokiem potencjału, która umożliwia
analizę kluczowych własności dwuwarstwy w sytuacji uproszczonej. Analizowane włas-
ności termoelektryczne okazują się być w dominującym stopniu zdeterminowane przez
obecność przerwy energetycznej. Szczególny nacisk jest położony na analizę współczyn-
nika wydajności (ZT).

Trzecie pytanie Jaka jest przewodność dużego fragmentu dwuwarstwy grafenowej? doty-
czy kwestii wpływu niewiodących wyrazów Hamiltonianu na przewodnictwo dużych
układów niedomieszkowanej dwuwarstwy grafenowej. Trzy istotnie różne zachowania
przewodnictwa (rozbieżne, stabilizujące się oraz zanikające) zostały zaobserwowane przy
wzroście długości układu w zależności od obecności/braku poszczególnych wyrazów.
Analiza uwzględnia również efekty skończonej temperatury oraz porównanie z wynikami
eksperymentalnymi.

Druga część pracy również naturalnie dzieli się na trzy części. Pierwsza koncentruje sie
na możliwości obserwacji efektu Aharonova-Bohma bez tradycyjnej geometrii dwuszczeli-
nowej w dysku Corbino wykonanym z grafenu. Okazuje się, że strumień pola magne-
tycznego przechodzący przez centralną elektrodę wpływa na pseudodyfuzyjny transfer
ładunku w stropniu umożliwiającym eksperymentalną obserwację. Trwałość efektu jest
analizowana ze względu zmienne domieszkowanie i złamanie symetrii obrotowej układu.

Drugi z rozważanych systemów jest propozycją konstrukcji mezoskopowego filtra doli-
nowego – pierwszego z urządzeń postulowanych w ramach dolinotroniki, będącej wersją
elektroniki wykorzystującą możliwość dolinowego polaryzowania prądu w grafenie. Jako
że proponowany układ nie wymaga przygotowania z precyzją sięgającą pojedynczych
atomów, ani wykorzystania pochodzących z naprężeń pól pseudomagnetycznych, mamy
nadzieję, że pozwoli on na realistyczną eksperymentalnie konstrukcję pierwszego filtru
dolinowego – kamienia milowego rozwoju dolinotroniki.
Ostatni z rozważanych systemów składa się ze ściśniętego paska grafenu połączonego
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z generatorem mechanicznych kinków. Taki układ był niedawno analizowany przez in-
nych autorów ze względu na możliwość kontroli ruchu solitonów (kinków) poprzez de-
likatne potrząsanie jednym z końców paska. Mechanizm kontroli wykorzystuje niecodzi-
enne zjawisko ujemnego ciśnienia promieniowania. Nasze pytanie Czy ściśnięty pasek
grafenowy może posłużyć jako pompa elektronowa? jest analizowane w ramach modelu
SSH (Su-Schrieffer-Heeger). Dość nieoczekiwanie wyniki wskazują na możliwość wyko-
rzystania takiego układu jako wzorca ampera.
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1 Introduction

Mastering new materials has been one of key ingredients driving human development.
Starting from ancient times and mastering the stone and brass, through mastering the
iron and steel up to nowadays. Understanding the electron behaviour gun fired electricity
revolution. Last century resulted in mastering semiconductors, liquid crystals, optical
fibres and many other materials. The possibilities opened by those breakthroughs do
not need to be enlisted for a modern man. To say that we achieved a lot would be an
understatement, yet it seems we are still at the beginning of the journey.

Many researchers struggle in order to understand high temperature superconductors,
that are already used in medical tomography. The fascinating world of topological
insulators and Majorana edge modes is now opening, holding the hope for realisation
of scalable quantum computers. Single atom manipulation via Scanning Tunnelling
Microscope is already achievable in almost every nanoscale laboratory. There’s Plenty
of Room at the Bottom[1] and there are probably wonders that not a man has ever
dreamed about. Down there, among many others, there is graphene – a unique material
holding very special place.

Graphene is a stable, self-standing, two-dimensional material of thickness of a single
carbon atom. Such materials were long thought to be non-existing and even impossible
to exist due to reasons connected with mechanical stability of in-plane vibartions [2].
In finite temperatures its mechanical properties are exceptional making it one of the
strongest material ever tested [3]. Graphene is a great and promising thermal conduc-
tor [4]. It has unusually high carrier mobility making it a great current conductor [5].
Its phenomenal electronic feasibility has drawn interest of many researchers investigat-
ing graphene devices in areas like unconventional superconductivity [6], spintronics [7],
valleytronics or physics of Quantum Hall Effect [8]. Despite purely laboratory charac-
ter of first graphene production method (2004) it has already found first applications
and is available in commercial products including cars [9], earphones [10], helmets [11],
tires [12], lubricants [13], conducting ink [14], conducting packing foil for electronics [15]
and photodetectors [16]. Graphene allowed also to relax operating conditions of Quan-
tum Hall resistance standards from Tmax ≈ 1.3K, Bmin ≈ 10T, and Imax ≈ 30µA to
Tmax ≈ 10K, Bmin ≈ 3.5T, and Imax ≈ 0.5mA significantly reducing their size, cost and
complexity [17].

1.1 Aim and scope of this thesis

Among different interests and hopes concerning graphene this thesis is devoted to
its electronic properties in ballistic regime. The Landauer–Büttiker formalism is used
throughout the thesis. Despite all the research done, there are still some questions
concerning properties of graphene itself. This thesis addresses some of them

• What is a value of trigonal warping strength in bilayer graphene?

• How does it affect thermoelectric properties?
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• How thermoelectric properties are going to change if the bandgap appear?

• What is the conductivity of infinite sample of ultraclean bilayer graphene?

The first question is one of few elementary questions about electronic structure of
bilayer graphene that is still open. The second one is a consequence of approach taken
to the first one. The third one is a natural extension and a complementary research. The
fourth question, probably the most complex one, is devoted to the analysis of effective
low energy Hamiltonian and significance of terms appearing in it for conductivity of
large samples.

To understand graphene well may yet be only a temporary goal. The real value of
graphene lies in possibilities opened by its understanding and mastering of its fabrica-
tion. Among enormous number of graphene applications considered in contemporary
discussion this thesis concentrates on three special cases

• realisation of Aharonov-Bohm effect in Corbino geometry (without two slit setup),

• construction of a mesoscopic valley filter,

• construction of an electric pump in graphene nanoribbon.

The first task is an interesting possibility to realise Aharonov-Bohm effect without
standard two slit setup. Such a realisation would also allow to show the magnetocon-
ductance oscillations in graphene Corbino disk that are not experimentally available in
constant magnetic field situation [18]. The second task is a new proposition of construc-
tion of mesoscopic valley filter - the device that might be use to valley polarise current
flowing through graphene. The basic idea of valley polarised current has given rise to
the valleytronics - the modern electronics, yet to be implemented due to experimental
difficulties. The mesoscopic nature of proposed filter should help to overcome some of
them. The third task has brought interesting result, showing possibility of constructing
mechanically driven electric pump that transports a quantum value of charge per cycle.
Such a pump might be then used to construct a device serving as a current standard.
The author believes that two last system might lead to construction of devices that push
further limits of the human development.
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2 Graphene structure

2.1 Crystal structure of graphene

Graphene is one of crystalline carbon allotropes. It is 2-dimensional honeycomb crystal
of carbon atoms. The primitive lattice vectors are

a1 =

(
a

2
,

√
3a

2

)
, a2 = (a, 0), (1)

with lattice constant of graphene a = 0.246 nm [19]. Within the unit cell there are two
atoms located at positions

dA = (0, 0), dB =

(
a√
3
, 0

)
, (2)

leading to presence of two triangular sublattices, often referred to as A and B sublattices
(or atoms).

The reciprocal lattice of a triangular lattice is also a triangular lattice leading to
hexagon shape of Wigner-Seitz cell being the first Brillouin zone. Its primitive vectors
are defined as

b1 =

(
2π

a
,

2π√
3a

)
, b2 =

(
2π

a
,⇒ 2π√

3a

)
. (3)

It is important to note that out of six corners of the Brillouin three may be connected
by inverse lattice vectors. Thus there exists two inequivalent corners called K and K’
points. Hereinafter, the following convention is chosen

K =

(
4π

3a
, 0

)
and K′ =

(
⇒4π

3a
, 0

)
. (4)

2.2 Electronic structure of graphene

The band structure of graphene crosses the zero-energy level at K and K’ points [20].
In the vicinity of each of them (called also valleys) there is a conical structure that
resembles dispersion relation of relativistic, massless particles. Around the K and K’
points the effective Hamiltonian may be written as:

Hξ = v0ppp · (ξσx, σy) + V (xxx) +M(xxx)σz, (5)

where ξ = 1(⇒1) corresponds to K(K’) valley, v0 ≈ 106 m/s is the Fermi velocity,
ppp = ⇒i~∇ is a 2-dimensional momentum operator, V (xxx) is a potential that has the same
value on both sublattices and M(xxx) is a staggered potential. The above Hamiltonian is
equivalent to the 2-dimensional Dirac Hamiltonian, where V (xxx) plays the role of external
potential and M(xxx) plays a role of a mass term. It is also worth to note that second
nearest neighbour tunnelling within a graphene lattice does not introduce terms linear
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Figure 1: Structure of tight-binding parameters in bilayer graphene. The matrix ele-
ments γ3 and γ4 are displayed only once for clarity of the figure. The B(A)
sublattice in upper(lower) lattice are marked with black dots. They are ver-
tically aligned and connected with the biggest interlayer matrix element γ1.
The other sublattices are marked by coloured dots.

in momentum to the Hamiltonian. The peculiar Hamiltonian structure is the source of
bizarre behaviour of electrons in graphene, such as spinor transformation rules for the
wavefunction, Klein tunnelling or lack of backscattering for normal incidence.

2.3 Crystal structure of bilayer graphene

Bilayer graphene consists of two graphene layers based on top of one another. In order
to minimize energy of such system the second lattices needs to be shifted with respect
to the first one forming so-called Bernard stacking [21]. In this stacking atoms from one
sublattice in the lower sheet are positioned directly under the atoms from the second
sublattice in the sheet above. Such pairs of vertically aligned atoms are called dimers,
while the other atoms will be referred to as non-dimer ones. Both real and reciprocal
primitive cells are the same as in the case of graphene. The K(K’) points are inherited
from their definition in monolayer graphene. Infinite self-standing bilayer graphene is
an energetically stable system.

14



2.4 Electronic structure of bilayer graphene

The electronic properties of bilayer graphene are more complicated than those of single
layer graphene. This is not surprising as in addition to intra-layer tunnellings one need
to include interlayer ones. The tight binding Hamiltonian including three dominant
interlayer tunnellings takes a form:

Hb =


δAB/2⇒ U/2 v0π γ1 ⇒v4π†

v0π
† ⇒δAB/2⇒ U/2 ⇒v4π† v3π

γ1 ⇒v4π ⇒δAB/2 + U/2 v0π
†

⇒v4π v3π
† v0π δAB/2 + U/2

 , (6)

where π = e−iθ(ξpx+ipy), π† = e−iθ(ξpx⇒ipy), θ is the angle between armchair direction
and the x -axis, ξ equals +1(⇒1) for K(K’) valley, v3 = v0γ3/γ0, v4 = v0γ4/γ0, U is the
electrostatic bias between layers and δAB is the staggered potential describing irreducible
part of spontaneous bandgap in bilayer graphene. One might also add additional poten-
tial (∆′) introducing energy difference between dimer and non-dimer sites. Such a term
introduces electron-hole asymmetry to the system, similarly to the γ4 tunnelling. As γ4
is present in model considered ∆′ may be skipped as redundant clarifying interpretation
of γ4.

The values of γ0 = 3.16 eV and γ1 = 0.38 eV are widely accepted[22]. The value of γ4 ≈
0.15 eV is known with reasonable precision, while γ3 remains somehow a mystery with
values reported from 0.1 eV to 0.4 eV. Experiments report no presence of spontaneous
bandgap in bilayer graphene based on semiconductor. The value of interlayer energy
offset U is defined by external out of plane electric field. Provided values are used
throughout the thesis unless stated otherwise.

The difference in band structure of bilayer and monolayer graphene comes predomi-
nantly from γ1 term. Its presence changes the graphene band structure around K(K’)
points significantly. It is no longer linear and become quadratic in momentum. More-
over, bands split leading to appearance of low energy conductance band (that touches
highest valence band) and high energy conductance band (and corresponding lower va-
lence band). It may be also interpreted as giving mass to electron pseudoparticles.

2.5 The 2-band approximation for bilayer graphene

In the low energy limit the electronic properties of the bilayer graphene origins almost
entirely from the lowest conductance band and the highest valence band. It is thus
possible to catch them in the 2-band approximation [21]
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Ĥ2 = ĥ0 + ĥ3 + ĥ4 + ĥU + ĥAB, (7)

ĥ0 = ⇒ 1

2m

(
0 (π†)2

π2 0

)
, (8)

ĥ3 = v3

(
0 π
π† 0

)
⇒ v3a

4
√

3~

(
0 (π†)2

π2 0

)
, (9)

ĥ4 =
2vv4
γ1

(
π†π 0
0 ππ†

)
, (10)

ĥU = ⇒U
2

[(
1 0
0 ⇒1

)
⇒ 2v2

γ21

(
π†π 0
0 ⇒ππ†

)]
, (11)

ĥAB =
δAB
2

(
1 0
0 ⇒1

)
, (12)

with Ĥ2 being the 2-band approximate Hamiltonian. The ĥ0 term dominates in low
energy limit, thus other terms might be considered a correction to it. It is worth noting
that second part of ĥ3 term is only a renormalization of effective electron mass and the
unique role of γ3 comes from the first part.

2.6 The Peierls substitution

The inclusion of magnetic field is somehow unique among many different physical
effects. Usually inclusion of additional effects correspond to addition of a new term to
effective Hamiltonian. In the case of magnetic field it is rather modification of existing
terms. The exact formula is given by the Peierls substitution

ppp→ ppp+ eA, (13)

where e is electron charge and A is the vector potential corresponding to magnetic field
considered B = ∇×A. The vector potential is a gauge field giving one some freedom
in parametrization of the problem. Throughout this thesis, the symmetric gauges will
be chosen.

2.7 Local density of states

Density of states is a useful quantity giving insight into the quantum system consid-
ered. It describes the number of quantum states present in given energy range. Formally,
it is defined as

ρ(E) =
∑
n

δ(E ⇒ En), (14)

where δ(x) is Dirac delta, En is energy of state n and sum is performed over all eigen-
states of Hamiltonian. Analysis of density of states reveals presence or lack of va-
lence/conduction band and the bandgap, that is crucial for electronic properties of the
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system. In some cases additional, useful information may be obtained from its local
version. It is unsurprisingly called the local density of states and in the lattice models
is defined as

ρloc(Rj, E) =
∑
n

|ψ(j)
n |2δ(E ⇒ En), (15)

where Rj is a position of site j and ψ
(j)
n is the value of n-th Hamiltonian eigenstate

wavefunction at site j. Local density of states gives information where are localized
states corresponding to given energy. For practical reasons, usually in order to obtain
better looking plots, both density of states and local density of states is smeared by
substituting

δ(x)→ 1

π

ε

x2 + ε2
, (16)

where ε defines (small) energy scale over which the densities are smeared.
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3 Scattering matrix formalism

3.1 The concept of leads

One of the main difficulties in the domain of quantum transport is connecting the
macroscopic circuits (batteries, amperometers, voltmeters or probes in general) with the
investigated nanostructure. Due to the quantum nature of such systems the measure-
ment rules known from macroscopic world do not longer apply. The theoretical object
allowing modelling of macroscopic probes connected to the true quantum system is a
lead. The lead is a thermodynamic reservoir of electrons occupying delocalized states.
Connecting two or more of such leads to the quantum nanostructure allows one to char-
acterise transport properties of the structure. The electrons coming from an incoming
lead may be reflected back from a nanostructure or transmitted to a second lead giving
rise to the flow of the electric current through the nanostructure. If a number of open
channels - quantum delocalized states allowing to deliver or pick up electrons - in the
leads is much bigger than the number of open channels in the nanostructure the current
flowing through the system does not usually depend on the microscopic details of the
leads and may be solely predicted by the details of nanostructure and thermodynamic
properties of the leads (the temperature and chemical potential for electrons).

It is striking that transport properties of the nanostructure are described most con-
veniently solely in terms of states in the leads being at once independent on the specific
choice of the leads1.

3.2 Scattering matrix

The quantum system may be then described by so called scattering matrix (Ŝ(E))
connecting the incoming electron states in the leads (Ψin(E)) with outgoing electron
states in the leads (Ψout(E)):

Ψout(E) = Ŝ(E)Ψin(E), (17)

or explicitly specifying states from left (L) and right (R) leads (the dependence on
chemical potential is omitted for clarity):(

ΨL,out

ΨR,out

)
=

(
ŝLL ŝLR
ŝRL ŝRR

)(
ΨL,in

ΨR,in

)
. (18)

Traditionally, the blocks building the scattering matrix are renamed into transmission
(t and t′) and reflection (r and r′ ) parts of scattering matrix:

Ŝ =

(
ŝLL ŝLR
ŝRL ŝRR

)
≡
(
r̂ t̂′

t̂ r̂′

)
. (19)

1The transmission amplitudes and form of scattering matrix blocks may (and will) of course depend
on the exact choice of the leads, yet the set of transmission eigenvalues will approximately not.
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Of great theoretical interest are probabilities of electron incoming in channel n being
transmitted through (or reflected by) the nanostructure. These probabilities are given
by diagonal values formed by transmission and reflection matrices:

Tn =
(
t̂†t̂
)
nn
, (20)

Rn =
(
r̂†r̂
)
nn
. (21)

3.3 Transport characteristics at constant temperature

The most straightforward transport characteristic of a quantum nanosystem is con-
ductance (G) being the inverse of the electric resistance. To obtain a formula for the
conductance of a system it is convenient to start with formula for the current flowing
through the system [23]:

I = 2se
∑
n


∞∫
0

dkx
2π

vx(kx)fL(E) (22)

+

0∫
−∞

dkx
2π

vx(kx) [Rn(E)fL(E) + (1⇒R′n(E))fR(E)]

 (23)

=
2se

h

∑
n

∞∫
0

(1⇒Rn(E)) [fL(E)⇒ fR(E)] dE (24)

=
2se

h

∞∫
0

(∑
n

Tn(E)

)
[fL(E)⇒ fR(E)] dE (25)

≈ 2se
2

h
U

(∑
n

Tn(E)

)
, (26)

obtaining desire formula for the system conductance:

G(E) = 2sG0

∑
n

Tn(E), (27)

where G0 = e2/h is conductance quantum, fL(R)(E) is the Fermi-Dirac distribution
of electrons in the left (right) lead, U is the (small) voltage and 2s stands for spin
degeneracy. In the derivation, identities

∑
n

1 ⇒ R′n =
∑
n

1 ⇒ Rn =
∑
n

Tn following

from the unitarity of the scattering matrix have been used. In the final approximation
the assumption that transmission coefficients does not significantly depend on chemical
potential in the scales defined by voltage U and temperature kbT has been made.
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3.4 Thermoelectric properties

Despite a fact that electric current is the current that drives electronic and informatic
revolutions the thermoelectric properties of materials are also of significant importance.
The electronic part of thermal current (and thermal properties of a material) may be
easily represented in Landauer–Büttiker formalism. Starting from formulas for electrical
and thermal currents [24]:

I = ⇒ge
h

∫
T (E)[fL(E)⇒ fR(E)]dE,

IQ =
g

h

∫
T (E)[fL(E)⇒ fR(E)](E ⇒ µ)dE,

where g is the degeneracy factor, µ is the (average) chemical potential in the leads
and T (E) is shorthand notation for

∑
n

Tn(E). In the linear response regime (infinitesi-

mal potential and temperature differences) the Seebeck (S) coefficient and the thermal
conductance Kel are given by:

S = ⇒ V

∆T

∣∣∣∣
I=0

=
L1

eTL0

, (28)

Kel =
IQ
∆T

∣∣∣∣
I=0

=
L0L2 ⇒ L2

1

TL0

, (29)

where

Ln =
g

h

∫
T (E)

(
⇒ ∂f
∂E

)
(E ⇒ µ)n, (30)

with f being the Fermi Dirac distribution with thermodynamic parameters (chemical
potential and temperature) taken as mean values between the leads.

3.5 Adiabatic pumping

The analysis of transport properties of a nanostructure up to now assumed that the
nanostructure itself does not change during the time of experiment. When it does, this
process may generate the current between the leads even in the absence of voltage and
temperature difference between the leads. Assuming that typical time corresponding to
change of the scatterer is much larger than time of flight of electron through the scatterer
one may write adiabatic formula for a charge transferred [23]

∆Qα = ⇒ ie
2π

∫
Trα

(
dŜ

dt
Ŝ†

)
dt (31)

where ∆Qα is charge transferred to a lead α and trace is taken over elements corre-
sponding to states originating from the lead α.

20



4 Investigating graphene

4.1 Pursuing the trigonal warping strength

4.1.1 Motivation

Trigonal warping is the common name for γ3 tunnelling - arguably the second most
important interlayer tunnelling in bilayer graphene. This term breaks the rotational
symmetry of the approximate band structure in the vicinity of the K and K ′ points.
Moreover it leads to the splitting of each of two Dirac cones into 4 new cones (see Fig.
2 (a)). A single cone out of 4 new cones is centred exactly at the K (K ′) point, while
3 remaining cones are centred at momentum p = γ1v3/v

2 at three different directions.
The central cone is approximately circular, while the satellite cones are approximately
elliptical with ratio of major- an minor-semi axes equal 3.
The splitting of Dirac cones leads to enhancement of minimal conductivity of bilayer

graphene by (approximately) factor of 3 [25] being the possible explanation for exper-
imentally measured value [26]. The splitting of the Fermi surface does not survive to
higher chemical potentials. This has obvious consequence of appearance of the Lifshitz
phase transition reconnecting the splitted Fermi surface. The Lifshitz transition appears
at Lifshitz energy

EL =
γ1
4

(
γ3
γ0

)2

(32)

and is accompanied by the presence of van Hove singularity in bulk density of states (see
Fig. 2 (b)) [27].

Despite being profound in its consequences the Lifshitz transition has till now been
avoiding precise experimental determination. The available experimental results cover
the range of EL ∼ 0.1⇒ 1meV [29, 30, 22]. The motivation of this work was to propose
an experimentally convenient way to measure trigonal warping strength with satisfying
precision.

4.1.2 Seebeck coefficient: the simple approach

For the clarity of reasoning and in order to concentrate on the influence of trigonal
warping strength the simplest possible model has been chosen. Explicitly, our model is
equivalent to setting v4 = U = δAB = 0 in Hamiltonian (6).

The Lifshitz transition is accompanied by van Hove singularity in density of states.
One may thus expect abrupt behaviour of conductance of the system in the vicinity of
the Lifshitz energy. Unfortunately there are too small to smoke gun the transition in
experiment. The well-known Mott formula for metals2 [31] states that Seebeck coeffi-
cient is proportional to logarithmic derivative of transmission with respect to chemical
potential. One may thus expect that due to low conductance at the vicinity of Lifshitz

2S = (π2/3)e|1k2BT [∂lnT (E)/∂E]E=µ
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Figure 2: (a) The Fermi surface for E = 0.5EL, E = EL, E = 1.5EL depicted by grey
solid lines, red solid lines and blue dashed lines respectively. (b) Density of
states (purple solid lines) with the case γ3 = 0 (grey solid line) and linear
approximation for γ3 6= 0 (black dash dotted line, see eq. (33)). Adapted from
[28].

transition and the presence of derivative in the Mott formula the abrupt changes origi-
nating from van Hove singularity will be magnified in dependence of Seebeck coefficient
on chemical potential.

The analysis starts with simplified 2-band Hamiltonian for bilayer graphene (7). Treat-
ing each Dirac cone separately and expanding the Hamiltonian to linear terms in mo-
mentum leads to simple formula for bulk density of states:

ρ(E) ≈ ρ0
|E|
EL

, (33)

where ρ0 is the bulk density of states of bilayer graphene in the absence of trigonal
warping. One may thus expect linear dependence of conductance of the system as
the function of chemical potential. Mode matching numerical analysis confirms these
suspicion for chemical potential E 6 EL/2 (see Fig. 3).
Unfortunately for a system with linear dependence of conductance on chemical poten-

tial the Seebeck coefficient is uniquely defined by temperature and holds no information
about the slope of conductance vs chemical potential dependence. Moreover one may
not simply apply Mott formula to numerical analysis due to significant contribution from
Fabry-Pérot resonances. One is forced to use non-simplified equation (28).

Fortunately enough, the full numerical calculation of Seebeck coefficient shows anomaly
- the additional maximum at the vicinity of Lifshitz energy (EL) for appropriate tem-
perature range (see Fig. 4). When the temperature is too large, it average out all details
connected to Lifshitz transition. When it is to small, the Fabry-Pérot oscillations give
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Figure 3: The zero temperature conductivity of bilayer graphene for 3 distinct values of
trigonal warping (marked on picture). The vertical dashed lines corresponds
to Lifshitz energies for considered values of trigonal warping (compare eq.
32). The inset is a zoom-in close to charge neutrality point. The horizontal
lines corresponds to conductivities σ = 2 σMLG = (8/π)e2/h and σ = 6 σMLG.
Reprinted from [28].
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Figure 4: Left: The Seebeck coefficient for γ3 = 0.3 eV for 4 different temperatures (see
the picture). The dashed vertical line marks the Lifshitz energy. Right: The
Lorentz number with respect to the value provided by Wiedemann-Franz law.
The temperatures are the same as in the left panel. Inset shows the crossover
temperature corresponding to disappearance of second maximum of Seebeck
coefficient (triangles) and second minimum of Lorentz number (triangles) with
respect to Lifshitz energy. Reprintedfrom [28].

higher contribution than the anomaly.
Similar anomaly is present in the Lorentz number being the ratio of electronic part

of thermal conductance to the conductance L = Kel/TG though this time it represents
itself as an additional minimum (see Fig. 4) below the value given by Wiedemann-Franz
law (LWF = (π2/3)(kB/e)

2), obeyed by the standard Fermi gas (with constant DOS).
Measuring thus the Seebeck coefficient or the Lorentz number as a function of chemical

potential allows to find a value of Lifshitz energy. One may be worried about possibility
of measuring the electronic part of thermal conductance, yet such worries would be
misplaced. The electronic part of thermal conductance may be measured as a difference
between the total thermal conductance and the phonon thermal conductance. Measuring
the phonon thermal conductance is possible by electrostatically opening the energy gap,
reducing the electronic contribution of thermal conductance to negligible value.

The real inconvenience of such measurement comes from the need to measure val-
ues considered as a function of chemical potential, while most of experiments provides
them rather as the function of carrier concentration. This difficulty might however be
overcomed.

4.1.3 Temperature dependent analysis

In order to avoid measurement of chemical potential one may measure global proper-
ties of the dependence of Seebeck coefficient on the chemical potential. The procedure
proposed is to find (for a given temperature) the global maximum of Seebeck coefficient
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Figure 5: The carrier concentration corresponding to the maximal Seebeck coefficient
as a function of temperature for three different values of trigonal warping.
Reprinted from [28].

as a function of chemical potential (controlled by the bias gate voltage). Than for the
bias gate voltage corresponding to the maximal value of Seebeck coefficient one should
measure the carrier concentration. Such a measurement should be repeated for different
values of temperature. From measured temperature dependence of carrier concentration
corresponding to the maximal Seebeck coefficient one may obtain the value of trigonal
warping strength (compare Fig. 5). It should be stressed, that despite of finding the
maximum of Seebeck coefficient as a function of chemical potential, the chemical poten-
tial need not to be measured. The corresponding bias gate potential is fully capable of
controlling the measurement process.

During the investigation of system properties another method has been found. It is
based on the observation that the maximal value of Seebeck coefficient (as the function
of chemical potential) grows up to some temperature and than starts to fall down. It
occurred that the temperature corresponding to the maximal value of Seebeck coefficient
depends linearly on the Lifschitz energy. It is thus enough to measure temperature corre-
sponding to global maximum of the Seebeck coefficient as the function of both chemical
potential and temperature (compare Fig. 6). Once again, the chemical potential does
not need to be measure, even once.

25



Figure 6: Temperature corresponding to global maximum of the Seebeck coefficient (on
the chemical potential vs temperature plane) as a function of Lifshitz energy.
Adapted from [28].
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4.2 Thermoelectric properties in the presence of the bandgap

4.2.1 Introduction

Previous analysis has been restricted to situation, where there is no bandgap in the
system. It is valuable to include in the analysis also the case with the bandgap present.
Such gap may be easily realised experimentally by applying out of plane electric field.3
In order to do so, one needs to include U term from Hamiltonian (6) on top of all
parameters considered till now. In the absence of trigonal warping, the bandgap is equal
to ∆ = |U |t⊥/

√
U2 + t2⊥. The presence of trigonal warping leads to minor correction,

that usually might be ignored.
As the presence of the bandgap suppress the minimal conductance via evanescent

modes and the bandgap influence is of primary interest one may get rid of the Fabry-
Pérot oscillations by considering the sharp potential step geometry instead of usual
lead-sample-lead geometry. Such sharp potential step geometry might be understood as
a geometry joining two regions (weakly- and heavily-doped) at an abrupt line. Unfor-
tunately despite producing nice looking, qualitatively correct predictions it also overes-
timates the conductance by the approximate factor of 2 (due to lack of backscattering
at the second interface). All the analysis is than performed for two system geometries -
the abrupt potential step one and the traditional lead-sample-lead one. The first gives
clear view, while the second gives results easier to realize in typical experiments.

4.2.2 Seebeck coefficient and T (α) models

As one might expect opening the bandgap leads to strong suppression of the con-
ductance in the bandgap regime followed by rapid increase just after the bottom of
the conduction band (see Fig. 7). Following the Mott formula one would expect the
appearance of the maximum of Seebeck coefficient at the bottom of conduction band.
That is not the case for finite temperatures. Instead it appears at the vicinity of the
Goldsmid-Sharp value |S|GS

max = ∆/(2eT ) derived for wide semiconductors.
In order to understand that behaviour one might apply the family of simple models

quantifying the transmission of the system

T (α) = C(∆)×
{
δ
(
E ⇒ 1

2
∆
)

+ δ
(
E + 1

2
∆
)

if α = 0

Θ
(
|E| ⇒ 1

2
∆
) (
|E| ⇒ 1

2
∆
)α−1 if α > 0

(34)

where C(∆) is parameter controlling the value of transmission, δ(x) is the Dirac delta
function and Θ(x) is Heaviside step function.
Applying the above family of models to the calculation of Seebeck coefficient leads to

the asymptotic (u = ∆/(2kBT )� 1) formula for the maximum of the Seebeck coefficient

|S|(α)max ≈
kB
e

(
u⇒ 1

2
ln(u) + α⇒ 1

2
+O(u−1)

)
, (35)

3Some experiments report appearance of spontaneous bandgap in the suspended graphene of the order
of 2.5meV [32, 33]. Such a bandgap is much smaller than the gaps analysed in this work and is not
found in the graphene placed on semiconductor, thus it is of little importance for this analysis.
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Figure 7: Conductance and Seebeck coefficient as a function of chemical potential for
different values of the bandgap (from 0meV to 20meV every 5meV). Solid
lines correspond to potential step geometry, while dashed lines correspond to
lead-sample-lead geometry. The inset shows zoom-in of conductance around
the bottom of the conductance band (the curves where appropriately shifted).
Reprinted from [34].
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Figure 8: (a) Maximal value of the Seebeck coefficient as a function of ∆/(2kBT ) for
sharp potential step geometry. (b,c) Deviation from Goldsmid-Sharp value in
the presence (absence) of trigonal warping. Points show numerical calculations
for T = 1K (open circles), T = 5K (full circles) and T = 10K (triangles).
Lines shows predictions of T (α) models for α = 0 (blue dashed), α = 1 (red
solid) and α = 2 (magenta dash dotted). Reprinted from [34].

which clearly reproduces Goldsmid-Sharp value in the leading term. Moreover it predicts
this maximum to appear at the chemical potential

µ|S|max ≈
kBT

2
ln

(
2∆

kBT

)
(36)

that is much lower value than the one expected by naive implementation of Mott formula
(µexpected = ∆/2). This lead to conclusion that the properties of Seebeck coefficient (at
sufficiently low temperatures) are predominantly determined by the presence of bandgap
and the details of band structure or transmission give just minor corrections. Indeed,
the comparison of numerical calculations with predictions of T (α) models gives great
agreement (see Fig. 8). One should though stress that influence of trigonal warping
strength is still visible in low temperature data (see Fig. 8 (b,c)).
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Figure 9: The figure of merit (ZT) as a function of chemical potential for different values
of the gap. The temperature is set to 5K. The color and solid/dashed encoding
of lines is the same as in Fig. 7. Reprinted from [34].

4.2.3 Thermoelectric figure of merit (ZT)

Having analysed the Seebeck coefficient one may now wonder how the thermoelectric
figure of merit (ZT) will behave in such a system. Usually, the maximum of ZT corre-
sponds to the maximum of the Seebeck coefficient due to its square dependence on it.
However, in the system considered that is no longer the truth. The reason for that lies
in a strong suppression of the figure of merit in the gap regime due to almost negligible
conductance. One might have expected that the ratio of electronic to thermal electron
conductance would still remain almost constant and thus the suppression of conduc-
tance should not diminish the figure of merit. Such reasoning would yet be misplaced,
as the figure of merit does depend on total thermal conductivity and the phonon thermal
conductance is almost unaffected by electric field opening the gap.

In gapped bilayer graphene the maximum of figure of merit corresponds to the bottom
of the conduction band (and top of the valence band), see Fig. 9. This is the result of
interplay between energies with disappearing conductance and regions with disappearing
Seebeck coefficient. Again the results for finite sample system are qualitatively the same
as the results for potential step geometry, being just diminished by some numerical
factor.

Once again, the Tα models (see Eq.(34)) are capable of both describing the figure of

30



merit and predicting the maximum of it with satisfying precision (especially for α = 1,
see Fig. 10). Just like in the case of the Seebeck coefficient one may conclude that the
properties of the figure of merit are determined by the presence of the bandgap, while
the other properties of band structure play at most secondary role.

Phonons play dominant role in thermal conductance during the determination of figure
of merit for bilayer graphene. Among different degrees of freedom, the dominant contri-
bution to phonon thermal conductance comes from out of plane modes (ZA phonons).
Thus suppressing them by placing bilayer graphene on rigid substrate may open practi-
cal possibility to enhance the maximal value of the figure of merit, approximated by a
factor of 3.

4.3 Conductivity of the large sample of bilayer graphene

4.3.1 Introduction

Bilayer graphene is a crystal characterized by several non-equivalent parameters. Re-
searchers included different sets of them, appropriately to the goal chosen. Here the
following question is addressed

What is the D.C. conductance of large piece of ultra-clean bilayer graphene and which
microscopic parameters are crucial for appropriate description of it?

In order to pursue crucial model parameters the symmetry driven approach, ennobled
in long history of physics, has been taken. Among different parameters in Eq.(6) only
U is omitted, as the interest lies in intrinsic properties of bilayer graphene, not the ones
originating from external fields. Parameters γ0 and γ1 describes the nearest neighbour
hoppings within the layers and between them respectively. There are thus unavoidable
and form a minimal model of bilayer graphene. The trigonal warping strength γ3 intro-
duces the breaking of rotational symmetry, while γ4 breaks the electron-hole symmetry.
The δAB term represents the irreducible part of bandgap that may not be closed by
external electric field. Such a gap may spontaneously appear due to electron-electron
interaction [35], that are otherwise ignored in this work.

For the simplicity and clarity of discussion unique, non-zero values has been chosen
for each parameter according to reported experimental results [21]. Namely γ3 = 0.3 eV,
γ4 = 0.15 eV and δAB = 1.5meV has been chosen.

4.3.2 Zero-temperature results

The zero temperature results in the presence of a gap are not surprising. The bi-
layer graphene becomes an insulator, while for short samples (L < 100 l⊥ with l⊥ =√

3aγ0/(2γ1) ≈ 1.77 nm being the effective length appearing in bilayer graphene trans-
port analysis that originates from coupling between the layers) it preserves some trans-
mission via evanescent modes (see Fig. 11 (c,d)).

The physics becomes more rich in gapless scenarios. In absence of both skew inter-
layer tunnellings the conductance of the system is just twice the conductance of single
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Figure 10: Chemical potential corresponding to maximal values of Seebeck coefficient
(µ|S|max) and figure of merit (µZTmax) as a function of Goldsmid-Sharp value.
Point symbol encoding is the same as in Fig. 8. Lines correspond to T (α)

model predictions for α = 1 (solid) and α = 2 (dash dotted). Reprinted from
[34].
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Figure 11: Conductivity of the bilayer graphene as a function of sample length (σ0 =
(8/π)e2/h is the conductance at charge neutrality point). Systems with pres-
ence/lack of trigonal warping strength are presented at panel (a,b)/(c,d).
Bottom panels are zoom-ins of the upper ones for short system lengths. The
red circle represents the experimental result [26]. Reprinted from [36].
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layer graphene, despite presence of the coupling (it is a non-trivial result, see Ref.[37]).
Introduction of trigonal warping (and thus breaking of the rotational symmetry) slowly
increases the conductance up to the value of 3σ0, with σ0 being the conductance of two
decoupled graphene layers. Introduction of γ4 term in place of trigonal warping leads in
opposite to slow, power law decrease of conductance with the system length (σ ∝ L−2.0).
One would expect the situation with presence of both trigonal warping and γ4 term to
be a competition between two opposite forces. Instead, presence of both skew tunnelling
terms leads to unbounded increase of conductance with the system length (see Fig. 11
(a)). The reason of this approximately linear increase is the presence of propagating
modes at zero energy (or any other energy). The propagating modes originate from ele-
vation of three of secondary Dirac cones. The secondary cones are introduced by trigonal
warping, yet elevated by γ4 term. Thus only presence of both terms may introduce con-
ducting states at zero energy to the bilayer graphene. This situation where interplay of
two factors leads to appearance of qualitatively new phenomenon is a beautiful example
of the rich structure of quantum mechanics and physics in general.

It is worth to note, that Fano factor does not significantly differ from the pseudodif-
fusive value (F = 1/3), except for the regimes of vanishing conductance, when unsur-
prisingly it approaches value of 1.

4.3.3 Finite temperature effects

At the beginning of discussion of influence of temperature on conductance properties
of the system one should note that interaction induced gap depends on temperature and
disappears for a critical value of temperature. In order to reproduce reported tempera-
ture dependence [38] the gap will be than modelled as

δAB(T ) = δAB(0)

tanh

(
1.74

√
TC
T
⇒ 1

)
if T 6 TC

0 if T > TC

, (37)

with TC = 12K and δAB(0) = 1.5meV.
One of the most striking features of finite temperature conductance is that it almost

does not depend on γ4 term, that becomes irrelevant. One may thus conclude that
electron-hole symmetry does not play important role in finite temperature conductance
of bilayer graphene (see Fig. 12).

Unsurprisingly, T > 0 leads to increase of conductance with higher temperature lead-
ing to higher increase of conductance. The increase seams unlimited with system length
for any finite temperature considered. The presence of thermically reduced gap leads to
diminished increase of conductance, with effect disappearing altogether with gap closing.

The most interesting part of conductance is probably the regime of sufficiently short,
gapless systems where the effects of finite temperature are almost negligible. In this
regime the quantum properties of conductance via evanescent states are the most im-
portant and dominate the finite temperature effects.

The electronic noise for finite temperature is dominated by Nyquist-Johnson noise,
making the Fano factor irrelevant.
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Figure 12: Conductivity of the bilayer graphene as a function of sample length (σ0 =
(8/π)e2/h is the conductance at charge neutrality point) for T = 0K, 5K,
10K and TC = 12K. As influence of γ4 occurred to be almost negligible, γ4 is
set to 0.15 eV for all lines with single exception in panel (c). Reprinted from
[36].
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4.3.4 Spontaneous symmetry breaking in bilayer graphene

Another interesting property of conductance of bilayer graphene is the fact that it
may be used as an example of spontaneous symmetry breaking system with three pos-
sible scenarios. Considering σ(L) being the order parameter the spontaneous symmetry
breaking is gun-smoked by non-commuting order of limits

lim
L→∞

[...] σ = σ0, (38)

lim
d→∞

lim
L→∞

lim
δAB→0

σ =∞, (39)

lim
d→∞

lim
δAB→0

lim
L→∞

σ = lim
δAB→0

σ = 0, (40)

where limit of infinite interlayer distance d (d→∞) correspond to simultaneous limits
γ3 → 0, γ4 → 0 and γ1 → 0 (the last limit being irrelevant for the final result). One may
than conclude that in bilayer graphene breaking of the rotational symmetry, breaking
of electron-hole symmetry and breaking of sublattice equivalence (due to γ1 6= 0) may
appear spontaneously.
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5 Selected devices made out of graphene

5.1 Aharonov-Bohm effect without two slits

5.1.1 Introduction

Aharonov-Bohm effect is a bizarre quantum effect that has no analogue in classical
mechanics. It is unique in the sense that it allows to influence time evolution of charged
particles by the magnetic field that is never met by particles wavefunctions. Despite
many experimental realizations [39, 40] its existence in orthodox version presented here
has been long questioned and the effect was attributed to residual Lorentz force (origi-
nating from e.g. leakage fields) acting on the electron wavefunction [41, 42]. Nowadays
the discussion is settled, by beautiful experimental realization [43] exploiting shielding
of the magnetic field with superconductor.

In vast majority of experimental realizations of Aharonov-Bohm effect the trajectories
encircling the magnetic field flux are considered as they provide most straightforward
interpretations. In this work an alternative approach is taken. Instead of electron current
encircling the magnetic field, the electron wavefunctions themselves encircle magnetic
field flux at each moment of experiment and electron current flows radially according to
rotational symmetry of the system.

5.1.2 Earlier work

The functional form of transmission coefficient for Corbino disk in uniform magnetic
field at charge neutrality point is long since known [44]

Tj =
1

cosh2 [ln(Ro/Ri)(j + φd/φ0)]
, (41)

where j corresponds to total angular momentum (Jz = ~j, j = ±1/2,±3/2, ...), φd =
π (R2

o ⇒R2
i )B is the magnetic flux piercing the disk, φ0 = 2(h/e) ln(Ro/Ri) being period

of conductance oscillations, B standing for magnetic field, Ro(Ri) for outer (inner) disk
radius. Unfortunately, the uniform magnetic field setup occurred to be unsuitable to
measure oscillations of magnetoconductance, leaving space for more subtle approach
involving Aharonov-Bohm effect.

The picture is even more simple in the case of Aharonov-Bohm effect, when all the
magnetic field flows through the hole in the inner lead and does not flow through the
disk itself. In such a situation above formula holds, but with simplified substitution [45]

φd ≡ φi, (42)
φ0 ≡ φAB = h/e, (43)

where φi stands for total magnetic flux piercing the inner lead. Nonetheless, the analysis
for non-zero chemical potentials were missing.
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5.1.3 Magnetoconductance at non-zero chemical potential

The magnetoconductance of the system has been derived using mode matching anal-
ysis. The closed form solution for the transmission coefficients has been derived [18]
and used to analyse the magnetoconductance. The total conductance of the system
grows almost linearly starting from charge neutrality conductance via evanescent modes
(see Fig. 13 (a)). The magnetoconductance is perfectly periodic with a period given by
Aharonov-Bohm flux (φAB) (see Fig. 13 (b)). Notably enough, the magnetoconductance
oscillations are quite large (of the order of 0.15φAB for chosen Ro/Ri = 5). Moreover
the oscillations appear at almost all energies (see Fig. 13 (d)) with contraposition to the
uniform magnetic field case, where they appear only in the vicinity of Landau levels [44].
The further analysis shows that similarly high magnetoconductance oscillations appear
also for different ratios of disk radii (see Fig. 13 (c)), yet they might be shifted toward
higher chemical potential.

5.1.4 Magnetoconductance in the absence of cylindrical symmetry

In experimental reality the perfect cylindrical symmetry might be hard to achieve.
Almost all imperfections leads to mode mixing and many to local charge density fluc-
tuations (i.e. p-n puddles). The natural question arises, whether results of the previous
section survive in lower symmetry reality. In order to investigate this issue lets consider
application of in plane electric field leading to addition of linear potential

U(r, ϕ) = ⇒U0r

Ro

sin(ϕ), (44)

where U0 stands for maximal value of potential at the edge of the system. Such a term
introduces mode mixing to the system removing possibility of finding compact closed
form solution for transmission coefficients. The numerical analysis has been then applied,
following the standard procedure. The results are compactly summarised in Fig. 14. As
expected, presence of in-plane electric field enhanced the zero-energy transmission (via
conducting states formed in heavily doped regions). The change in total conductance is
almost negligible for the higher chemical potentials, as one may consider the uniformly
doped sample as being ’averaged’ version of a sample with linear potential. The interest
lies though in the magnetoconductance. At the charge neutrality point the amplitude
of magnetoconductance oscillations is strongly diminished. This may be understood,
provided the additional conducting states are roughly localized either in upper or lower
half circle. Such states does not encircle the magnetic field flux and there is no reason to
believe they should be significantly influenced by its change. Fortunately, the amplitude
of magnetoconductance oscillations is preserved even for U0 values being higher than
p-n puddle potential variations (being of the order of 10meV [47]) provided than one
not restrict the analysis to charge neutrality point (see Fig. 14). This proves both the
robustness of results obtained and importance of non-zero chemical potential analysis.
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5.2 Mesoscopic valley filter

5.2.1 Concept of valleytronics

The presence of two Dirac cones (valleys) in a dispersion relation of graphene does
usually manifest itself as an additional (to spin) two-fold degeneracy of electron states.
This follows from equivalence of valleys - there are exchanged under combined action
of time reversal and charge conjugation operators. As long as this symmetry holds and
there is no coupling between layers the degeneracy of states is be preserved. Breaking
those symmetries may lead however to more complex behaviour.

Valleytronic is probably most far going idea of utilizing the valley inequivalence [48].
It postulates to physically separate the currents originating from both graphene valleys
in analogy to spintronics postulating separation of currents with respect to spin polar-
ization. Such valley polarized current might be than used to store information and give
rise to new type of electronics — the valleytronics itself.

The valley polarization is defined as

P =
TrTξ=1 ⇒ TrTξ=−1

TrTξ=1 + TrTξ=−1
, (45)

with Tξ being the transmission matrix for valley ξ (ξ = 1, ⇒1 corresponds to K, K ′
valley).

The first valleytronic device, crucial for the whole idea, would be then the valley
filter (or polariser) of the current. There are many propositions of constructing such
devices, all employing either system preparation with single-atom precision, or presence
of strained induced pseudomagnetic fields, both being problematic for experimental re-
alisation. In opposition to them this work tries to propose construction of mesoscopic
valley filter - the valley filter that operation will not depend on single-atom details,
but rather on mesoscopic properties without experimental difficulties of strain induced
pseudomagnetic fields.

5.2.2 The setup

In order to achieve the goal lets concentrate on effective graphene Hamiltonian with
two additional potentials

(ξπxσx + πyσy)ψ(r, φ) = [E ⇒ V(r, φ)⇒M(r, φ)σz]ψ(r, φ) (46)

with V(r, φ) being the electrostatic potential andM(r, φ) being the position dependent
mass term. The system in Corbino geometry has been chosen due to clarity of picture
following from the lack of edge states. The electrostatic potential is assumed to origin
from in-plane electric field leading to form of

V(r, φ) = ⇒eEr sin(φ⇒ φV ), (47)

where E stands for electric field and φV defines orientation of direction of electric field.
For further use define V = eERo with Ri, Ro being respectively the internal and external
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Corbino disk radii. The ratio Ro/Ri = 4 has been chosen throughout all section. For
the sake of simplicity, the step profile of mass term has been incorporated

M(r, φ) = MΘ(φ⇒ φM)Θ(π + φM ⇒ φ), (48)

with M quantifying the mass potential strength and φM defining the mass orientation.
Such a mass term may originate from chemical functionalization [49] or the adsorption
of hexagonal boron nitride [50]. Throughout the whole paper φV = π/2 and φM = 0
has been preserved. The filter is designed in such a way, that after system fabrication
it might be fully controlled by gate voltages adjusting the in-plane electric field and
chemical potential. It is worth noting that fully functioning filters has been modelled
also for continuous change in spatial mass distribution following very similar procedure
to the one described here.

5.2.3 Role of electrostatic potential

The analysis of system behaviour starts with the case of zero mass (M = 0). In
the case of lack of external electric field and zero chemical potential the system is in
pseudodiffusive limit and the conductance of the system slightly oscillates around the
approximate value of 6g0, with g0 = e2/h (see Fig. 16). For small electric field the
behaviour of the system does not differ significantly up to some threshold value of mag-
netic field, where the conductance drops to the value of 4g0. The stronger the electric
field, the lower the threshold magnetic field. Above that magnetic field the current flows
along the p-n interface through so-called snake states, with single snake state per valley
explaining the additional factor of 2 (on top on spin degeneracy). The snake states are
most intuitively described via the semi-classical picture involving Klein tunnelling. In
that picture travelling electron is subjected to classical cyclotron trajectories and con-
secutive changes into and from a hole at the moment of traversing the p-n interface (see
Fig. 15). Despite easily understandable picture the quantum mechanical states them-
selves does not exhibit ’snake shape’ structure and usually are evenly distributed around
the interface preserving the translational symmetry along the (straight) p-n interface.
Nonetheless, the formation of snake states, being just special kind of Quantum Hall
states, is well understood and will be of primary interest of this work.

The crucial property of this snake states used in construction of valley filter is their
appearance on only single side of the system for a given voltage polarization between
the leads (see Fig. 17). It is enforced by their Quantum Hall nature, that allows them
to traverse the interface in exactly one direction. At the end of this paragraph I would
like to note that up to know the currents originating from both valleys behave exactly
in the same way. In order to construct a working valley filter one needs additional tool.

5.2.4 Role of the mass term

The primary role of the mass term is to break the valley symmetry. It is possible,
because mass term breaks the symplectic symmetry that gives rise to effective time-
reversal symmetry in each of the valleys. Combined with magnetic field that breaks
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the true time-reversal symmetry (involved in symmetry between valleys) it should be
capable of allowing the existence of valley filter.

Lets start with the case of zero magnetic and electric fields. Oddly enough, in config-
uration considered the valley currents are already well separated (see Fig. 18). One may
relate it to forming of the zero doping edge states formation, with mass step playing the
role of effective edge of the system. Unlike in true edge case, in mass step setup there is
no reason to enforce sharpness of the step. In addition to the cases considered here, the
systems with regularised step profile has been considered, all of them leading to same
qualitatively results.

5.2.5 Operating the valley filter

Having described influence of both electric field and mass term it is time to combine
them in a valley filter. The spatial orientation of potentials is the same as in the examples
above. The electric potential V is set to 1meV and magnetic field is set to large value of
B = 1T. Large value means here that the magnetic length lB =

√
~/eB and cyclotron

radius are significantly smaller than distance between leads. Note however that such
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Figure 19: Conductance (left) and valley polarization (right) of the current flowing
through the valley filter. The electric field is set to 1meV. As it may be
seen even for small values of mass term almost perfect polarization of the
current is achieved. Reprinted from [51].

value describes moderate magnetic fields and is easily achievable in laboratory with use
of permanent magnets. The main result of this part of work – the working diagram of
the filter – is presented at Fig. 19.

The diagram may be easily understood in idealized case (B → ∞, ERi � E,M)
depicted on Fig. 20. The analysis is based on assumption that effective potentials
experienced by currents originating from both valleys might be approximated by effective
potentials for lower and upper component of pseudospin wavefunction (see Fig. 21).
Such an approximation is valid for the case of strong electric potential [52] and seems
to survive to the range of parameters considered here.

Having made the assumption about effective potentials one should only add that the
each effective p-n junction within single valley will provide one conducting state. The role
of the chemical potential is restricted to shifting the p-n junctions. As long as effective
p-n junction crosses the internal lead the conducting state provided by it increases the
conductance by g0. The situation is especially clear for the M = 0 case, where the
conductance is equal to 2g0 as long as p-n junction crosses the internal lead and 0 when
it does not. The appearance of small mass leads in the first place to the splitting of
the p-n junction as long as its original position stay within the upper halfcircle (being
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Figure 20: The schematic working diagram of strong magnetic field valley filter. The
black solid lines correspond to effective p-n junctions splitted by mass, while
dashed line correspond to p-n junction crossing the bottom of the Corbino
disk. Reprinted from [51].
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Figure 21: The electrostatic potential (blue line) and the effective potentials V(y)±M(y)
(black lines). The conducting states appear at the effective p-n interfaces
corresponding to electrostatic potential (for y < 0) or the effective potential
(for y > 0) crossing the Fermi energy EF . Additional interface may appear
at y = 0 due to existence of step of effective potential. Reprinted from [51].
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the region of M 6= 0). As long as exactly one effective p-n junction crosses the internal
lead the conduction is equal g0 and all the current is fully valley polarized. In the high
mass limit the upper half circle effective potential is dominated by the mass effective
potential (but of opposite signs for different valleys). The appearance of the effective p-n
junction will thus depend on the polarization of lower half circle (ruled by the chemical
potential). If the polarizations are the same there is no p-n junction and no current, if
there are opposite there is the single conducting state. Following the fact of dominant
contribution of mass term being opposite for different valleys, there is always just single
conducting state and the current is always fully polarized.

In the case of finite fields there are two main corrections. The first one is coming from
finite width of the conducting states, leading to increase of effective radius of the inner
lead by approximately lB. The second one is connected to finite value of V , which leads
to formation of additional, not fully developed conducting states at the edges of P = ⇒1
domain. Those additional states may be easily pinpointed by more detailed analysis of
exact form of effective potentials (see Fig. 21). As they brought no additional insight
into the physics of the system nor influence the interior of well developed domains of
fully polarized current they detailed analysis will be omitted here.

Having understood the physics of working valley filter two possible ways of switching
the polarization of the current may be proposed. The first one assumes changing the
chemical potential (via the bias gate potential) at given value of in-plane electric field,
while the second assumes changing the in-plane electric field at constant and close to
zero chemical potential. Both propositions require only changing the gate potentials,
while keeping the mass term and magnetic field constant.

The author believe that proposed here scheme of valley filter is experimentally realiz-
able and may lead to breakthrough in realization of valleytronic devices.

5.3 Adiabatic quantum pumping with mechanical kinks in
graphene

5.3.1 Aim of the section

Recently, very interesting study of buckled graphene nanoribbon as a mechanical
realisation of φ4 model has appeared [53]. The formation, reflection and annihilation
of solitons (kinks and antikinks) has been predicted. Moreover, it has been shown that
one may control the kink movement by periodically shaking one of the edges of the
nanoribbon. Such shaking produces phonons that may either push the kink away from
this end either pull it toward the source of phonons (being the realization of radiation
within the model) resulting in straightforward realization of striking negative radiation
pressure effect.

Having such mechanical system described one may ask about characterization of its
electronic properties, crowned with question

May such a system be used as an electric pump?
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What really is a pump? Pump is a device working in a periodic cycle that produces
the net flow. Usually, we encounter pumps that enforce flow of liquid or gas using
electrical or combustion engines (with human heart being noticeable exception). Here,
electric pump means the pump that produces flow of electrons (the electric current) out
of mechanical motion of the nanoribbon (ignoring the source of mechanical force). It is
worth to note, that usually electricity is produced using Faraday’s law or by chemical
reaction. Here the interest lies in none of them. Electric pump understood in this way
has been already proposed taking advantage of laser irradiation [54], strain fields [55],
tunable magnetic barriers [56], Landau quantization [57], or sliding the Moiré pattern
in twisted bilayer graphene [58].

Despite differences in details, the general system geometry will be the same throughout
the whole section. The nanoribbon considered is long (along y-dimension) and narrow
(along x-dimension). Near both ends of the nanoribbon there are 2 electrodes connected
to the opposite edges of the nanoribbon (see Fig. 22). The leads are made out of flat
graphene. The energy offset in the leads is assumed to be U∞ = ⇒0.5 t0 throughout all
section.

5.3.2 Simple kink model

Lets consider simple model of kink, by defining elevation of atoms as

z = H tanh

(
y ⇒ y0
λ

)
sin2

(πx
W

)
, (49)

hereW is the nanoribbon width, y0 is a position of a center of the kink, H is the maximal
elevation of atoms in graphene buckled nanoribbon in the absence of kink and λ is the
parameter describing kink profile. The λ = 3a has been set throughout the work in
order to resemble the kink profile obtained from molecular dynamics simulations [53].

Having defined atom positions the standard modification of tunnellings is applied to
tight binding model of electrons in graphene [60]

tij = ⇒t0 exp

(
⇒β δdij

d0

)
, (50)

where tij is the tunnelling between the atoms i and j, t0 is the nearest neighbour tun-
nelling value for the relaxed graphene, β = 3 is the dimensionless electron-phonon cou-
pling, δdij is the elongation of the bond length and d0 = a/

√
3 is the equilibrium bond

length.
Such a system obviously lacks relaxation, as it may only extend interlayer bond length.

It may be then at most the first step in this journey, yet it is capable of catching few
key concepts.

5.4 Dynamics in the simple kink model

We start the analysis of the system dynamics by calculating the conductance of the
nanoribbon in the absence of the kink, in the buckled nanoribbon (being the case of
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y0 → ∞) and in the presence of the kink at the center of the system. The results are
depicted in the Fig. 23. The conducting nanoribbon (W = 10a) has been chosen. As it
may be easily seen the conductance of buckled nanoribbon does not significantly differ
from the case of flat nanoribbon with exception of the charge neutrality point. There is a
wide region (µ0 ∈ [⇒0.2 t0, 0.2 t0]) where conductance is close to 2e2/h. The 2 degeneracy
factor origins from the spin degeneracy. Outside of that region the conductance becomes
heavily noisy, thus the analysis will be restricted to the region itself. The behaviour of
the system becomes very different in the presence of the kink. The nanoribbon stops to
conduct, with the exception of two very narrow resonances, that disappear, when the
kink is shifted from the center of the nanoribbon (y0 6= L/2 with L being the nanoribbon
length).

Described behaviour of the system is very promising. The kink seems to play the
role of impenetrable barrier for electrons. One may thus hope, that moving it through
the system will sweep the electrons from the ribbon to the (second) lead. The working
mechanism would be then very simple and similar to the working mechanism of the snow
plow.

The calculations seem to confirm the thesis above (see Fig. 24). For purpose of
calculating the charge transferred the kink has been moved from effective ⇒∞ position
to the effective +∞. The charge has been calculated with use of the formula (31). As one
may see the pumping efficiency is approximately linear with the chemical potential and
grow with kink height. The results may be understood in terms of mechanism proposed.
In the regime considered the band structure of unbuckled nanoribbon consists of two
states with linear dispersion relation E = ±~vFky. Thus, the total pumpable charge
present in the nanoribbon at given chemical potential is

Qtot

e
≈ |µ0|

~vF
Leff

π
= 35.3

|µ0|
t0

(51)

where Leff = L ⇒ Wlead. As one may see, the moderate kink height H = 2a already
corresponds to almost maximal theoretical pumping efficiency. It suggests that buckling
of the nanoribbon has not significantly changed corresponding density of electrons. It
is worth to note that system has Z2 symmetry corresponding to the reflection of z-axis.
Due to that the scattering matrix does not change under z → ⇒z transformation. Thus
full pumping cycle, corresponding to transport of two kinks through the system, that
restores the original mechanical state of the system corresponds to two identical cycles
of its electronic properties. Having that in mind, the term cycle will correspond to the
full mechanical cycle of the pump, while all the charge will be referenced for half-cycle
or in other words per kink.

Summing up the results, buckling nanoribbon has little influence on its electronic
properties, the kink may play a role of impenetrable barrier for electrons and it may
sweep them through the system. The problem posses the Z2 symmetry corresponding
to halving the electronic cycle length with respect to mechanical cycle length. Now it is
time to verify, if those findings appear in more realistic model of graphene nanoribbon.
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5.4.1 The SSH kink model

In order to validate results obtained with simple kink model the Su-Shrieffer-Heeger
(SSH) Hamiltonian has been adopted [60]. It takes a form

HSSH =⇒ t0
∑
<ij>,s

exp

(
⇒β δdij

d0

)(
c†i,scj,s + c†j,sci,s

)
+

1

2
Kd

∑
<ij>

(dij ⇒ d0)2

+
1

2
Kθ

∑
j

∑
{^(j)}

(
θ^(j) ⇒ θ0

)2
+ Vδ

∑
j

2π ⇒
∑
{^(j)}

θ^(j)

 ,

(52)

with a constrain ∑
<ij>

(dij ⇒ d0) = 0. (53)

The modified tunnellings are the same as in the equation 50, Kd quantizes the energy
corresponding to change of the bond length, Kθ parametrizes the resistance to angle
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bending, Vδ describes the influence of out of plane deformations and θ0 = 120◦. The
sum over set of angles {^(j)} is sum of 3 angles with the common vertex (j). Its value
is equal to full angle (2π) in flat graphene.

The minimization procedure requires simultaneous minimization of both electron and
phonon parts of the Hamiltonian. The minimum is obtained by standard iterative proce-
dure. Within the model considered the configuration of atoms and bond lengths depends
on the chemical potential. However for the range of chemical potentials analysed here
the difference is negligible and will be omitted. The results are provided for µ = 0 being
the charge neutrality point with number of electrons equal to number of atoms. Two
systems are considered, the metallic armchair nanoribbon (W = 10 a, L = 90

√
3 a) and

for insulating armchair nanoribbon (W = 11 a, L = 90
√

3 a).

5.4.2 Results for the SSH kink model

The case of metallic armchair is quite similar to the one described previously. The
charge pumped per kink grows approximately linearly with the chemical potential and
for W ′/W = 0.90 is close to the total charge available in the conduction band (see Fig.
25). The hypothesis about sweeping the electrons by kink is supported by analysis of
local density of states. For illustrative purposes, we take µ = 0.04 t0, the local density
of states is calculated according to formula (15) with smearing (16), ε = 5 · 10−3 t0. The
results are presented on the figure 26. As one may see, there is no electron density in the
vicinity of the kink. The kink forms an impenetrable barrier for electrons, what explains
the pumping mechanism.

The case of insulating armchair is more interesting. For sufficiently strong buckling,
already of the order of W ′ = 0.96W , the charge pumped per kink levels at the value of
2e for significant range of chemical potential (see Fig. 25). This is the pumped charge
quantization. In order to understand its origin once again the local density of states will
be proved useful. As one may see on Figure 26 the local density of states is concentrated
in the vicinity of the kink itself. It represents electron bound state that accompanies
the mechanical kink. The single bound state (though with a twofold spin degeneracy)
located in the bangdap is easily visible in the density of states, see figure 27 d). Such
bound state is absent in the metallic nanoribbon, as there is no bandgap and all states
are delocalized.

In the case of insulating armchair the pumping mechanism is thus very different.
The kink and accompanying electron bound state are formed at the beginning of the
nanoribbon. As the nanoribbon is insulating the bound state is initially unoccupied. As
kink adiabatically traverses the system, the bound state is following it. Passing the first
electrode the bound state is filled by electron (2 electrons counting the spin degeneracy).
Later the connection to the first electrode is broken by insulating nanoribbon. At the
end of the system the kink is anihilated and there is no place for the electron occupying
till now the bound state. The electron(s) is thus forced to leave the system by second
electrode located near the system end. In opposition to the case of metallic armchair
the kink does not sweep electrons in front of itself, it rather loads them on itself and
carry them between the electrodes.
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y0=(3/8)L

Figure 26: The local density of states for metallic (left) and insulating (right) nanorib-
bons. The chemical potential is set to µ = 0.04 t0, level smearing is
ε = 5 · 10−4 t0. The electron phonon coupling β = 3 was present during
the bond length optimization for buckling W ′/W = 0.90. Reprinted from
[61].
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Figure 27: Electron density of states as the function of chemical potential for metallic
(a,b) and insulating (c,d) armchair nanoribbons. The β = 0(3) was set re-
spectively in (a,c) and (b,d) panels. Arrow marks position of localized bound
state at E = 0.04 t0 located in the band gap. Smearing and buckling are the
same as in Fig. 26. Reprinted from [61].
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The important note is needed to be made. The density of states corresponding to
systems optimized with and without electron phonon coupling (corresponding to β = 3
or β = 0) are quite similar, yet without the electron phonon coupling the bound state
localized crucial for quantization of charge pumped does not appear (see Fig. 27). Thus
in order to properly describe pumping in the insulating nanoribbon one has to include
electron density impact on the bond lengths.

Concluding results of this section, the metallic armchair nanoribbon behaves similarly
to the system described by simple kink model, efficiently sweeping electron density on
front of itself. On the other hand the description of insulating armchair nanoribbon is
more involved and requires full SSH model. The charge pumped per kink in the insulating
armchair is quantized, opening the possibility of using it as a quantum standard of
ampere.
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6 Conclusions

The transport properties of both mono- and bilayer graphene has been studied. The
special attention has been put on the analysis of thermoelectric properties and conduc-
tivity scaling for bilayer graphene systems. Moreover, three graphene devices has been
proposed and analysed. The purposes of those devices are: visualisation of Aharonov-
Bohm effect, valley polarization of electric current, and serving as a current standard.

Our initial motivation of analysing the thermoelectric properties of bilayer graphene
was to find a suitable way to determine the value of trigonal warping strength. This task
results with three propositions: (i) to measure the anomaly of thermoelectric proper-
ties in sub-Kelvin temperatures, (ii) to measure the carrier concentration corresponding
to the maximal Seebeck coefficient, and (iii) to measure temperature corresponding to
global maximum of the Seebeck coefficient on the doping-temperature plane. The last
two propositions do not need to be performed at sub-Kelwin temperatures, the ap-
proximate temperature of 1K should be sufficient. It is worth to stress that proposed
measurements does not require neither strong magnetic fields nor measurement of con-
ductivity scaling with the systems length. All of them might be performed at a single
sample.

The thermoelectric properties of the bilayer graphene has been analysed with respect
to varying doping, temperature and external electric field opening the bandgap. The
Seebeck coefficient, Lorentz number and figure of merit has been studied numerically.
Observed behaviour of discussed quantities has been rationalised in term of simple ef-
fective models. The violation of Wiedemann-Franz law in the pseudodiffusive regime
has been found and reported. Among different results, the dominant role of bandgap in
forming the thermoelectric characteristic should be marked.

The influence of trigonal warping strength γ3, γ4 term and the bandgap on conductiv-
ity of long sample at zero doping point has been studied. The four different behaviour
has been identified. The semiconductor behaviour characterises all systems with the
bandgap. For the systems without a gap three regimes appear, the well known pseudod-
iffusive regime for γ3 = γ4 = 0, the asymptotic pseudodiffusive regime γ3 6= 0, γ4 = 0
and divergent pseudodiffusive regime for γ3 6= 0 and γ4 6= 0. The available experimental
data allow to conclude that the conductivity of bilayer graphene may not be properly
described without γ3. The role of γ4 is revealed only in samples much longer than the
ones experimentally achievable so far.
Use of graphene Corbino disk to measure the Aharonov-Bohm effect has been pro-

posed. This proposition avoids use of two slit setup typical for magnetic Aharonov-Bohm
effect. Instead it presents that properties of the wavefunction propagating away from
central solenoid in any direction on xy plane might be significantly affected by magnetic
flux flowing through the center of the system. As in standard Aharonov-Bohm setup the
wavefunction is affected, despite never seeing the magnetic field itself. The amplitude of
the effect has been investigated with respect to system geometry, doping, magnetic field
and in-plane electric field being a measure of system imperfections. The effect has been
found to be robust and possibly measurable over wide range of parameters considered.
Taking advantage of the presence of two Dirac cones in graphene dispersion relation
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the construction of mesoscopic valley filter has been proposed. The construction has
been based on functionalization of graphene Corbino disk in a preparation phase, con-
stant magnetic field, and gates providing control over the doping and the in-plane electric
field. The system has been designed to be controllable and switchable between current
polarisation solely by means of gate potentials. Almost perfect filtering efficiency ex-
ceeding 99% has been observed even in the scenarios with lowered assumptions about
system manufacturing precision. The device is believed to be scalable and robust against
long range manufacturing imperfections.

Turning recently considered mechanical kink representation of 1 ⇒ D field theory in
graphene into electric pump serving as a current standard device has been proposed. The
construction is based on clamped and buckled graphene nanoribbon and the control is
performed by mechanical shaking of one of the system edges. The mechanical solitons
are found to be efficient pumps pushing out almost all available electrons in their way.
The special case of soliton is accompanied by the electron bound state that might be used
to deliver quantum charge per pump cycle, potentially serving as the current standard
device.
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This is a numerical study of thermoelectric properties of ballistic bilayer graphene in the presence of a trigonal
warping term in the effective Hamiltonian. We find, in the mesoscopic samples of the length L > 10 μm at
sub-Kelvin temperatures, that both the Seebeck coefficient and the Lorentz number show anomalies (the additional
maximum and minimum, respectively) when the electrochemical potential is close to the Lifshitz energy, which
can be attributed to the presence of the van Hove singularity in a bulk density of states. At higher temperatures the
anomalies vanish, but measurable quantities characterizing the remaining maximum of the Seebeck coefficient
still unveil the presence of massless Dirac fermions and make it possible to determine the trigonal warping
strength. Behavior of the thermoelectric figure of merit (ZT ) is also discussed.

DOI: 10.1103/PhysRevB.97.125403

I. INTRODUCTION

It is known that thermoelectric phenomena provide valuable
insight into the details of the electronic structure of graphene
and other relativistic condensed-matter systems that cannot
be solely determined by conductance measurements [1]. Such
a fundamental perspective has inspired numerous studies on
Seebeck and Nernst effects in mono- (MLG) and bilayer (BLG)
graphenes [2–9] as well as in other two-dimensional sys-
tems [10–13]. The exceptionally high thermal conductivity of
graphenes has also drawn significant attention [14–19] after a
seminal work by Balandin et al. [20]. A separate issue concerns
thermal and thermoelectric properties of tailor-made graphene
systems [1,21–26], including superlattices [21], nanoribbons
[22–25], or defected graphenes [25,26], for which peculiar
electronic structures may result in high thermoelectric figures
of merit ZT > 2 at room temperature [24,25].

Unlike in conventional metals or semiconductors, thermo-
electric power in graphenes can change a sign upon varying the
gate bias [2–4], making it possible to design thermoelectronic
devices that have no analogues in other materials [27]. In
BLG the additional band-gap tunability [28–30] was utilized
to noticeably enhance the thermoelectric power in a dual-gated
setup [8].

At sufficiently low temperatures, one can expect thermo-
electric properties of BLG to reflect most peculiar features of
its electronic structure. These features include the presence (in
the gapless case) of three additional Dirac points in the vicinity
of each of the primary Dirac points K and K ′ [31–34]. In
turn, when varying chemical potential the system is expected
to undergo the Lifshitz transition at μ = ±EL (the Lifshitz
energy) [34]. What is more, electronic density of states (DOS)
shows van Hove singularities at μ = ±EL. Unlike in systems
with Mexican-hat band dispersion, for which diverging DOS
appears at the bottom of the conduction band and at the top of
the valence band [12,13], in BLG each van Hove singularity
separates populations of massless Dirac-Weyl quasiparticles
(|μ| < EL) with approximately conical dispersion relation,
and massive chiral quasiparticles (|μ| > EL) characterized

by the effective mass meff ≈ 0.033 me, with me being the
free-electron mass. Although the value of EL is related to
several directly-measurable quantities, such as the minimal
conductivity [35–37], available experimental results cover the
full range of EL ∼ 0.1–1 meV [34].

The purpose of this paper is to show that thermoelectric
measurements in ballistic BLG (see Fig. 1) can provide insights
into the nature of quasiparticles near the charge-neutrality
point and allow one to estimate the Lifshitz energy. We
consider a relatively large, rectangular sample of ballistic
BLG (with the length L = 17.7 μm and the width W = 20 L)
and calculate its basic thermoelectric properties (including the
Seebeck coefficient S and the Lorentz number L) within the
Landauer-Büttiker formalism [38,39]. Our main findings are
outlined in Fig. 1, where NS

max (NL
min)—the number of maxima

(minima) of S (L) appearing for μ > 0 is indicated in the EL-T
parameter plane. For instance, a handbook value of EL/kB ≈
10 K [40] leads to the anomalies, including additional ex-
trema at μ ≈ EL, at sub-Kelvin temperatures. We further
show that even for T � 1 K (at which NS

max = NL
min = 1)

the value of EL determines the carrier concentration corre-
sponding to the remaining maximum of S (or the minimum
of L).

The paper is organized as follows: The model and theory
are described in Sec. II, followed by the numerical results
and discussions on the conductance, thermopower, validity
of the Wiedemann-Franz law, the role of phononic thermal
conductivity, and the figure of merit (Sec. III). A comparison
with the linear model for transmission-energy dependence
(see Appendix) is also included. The conclusions are given in
Sec. IV.

II. MODEL AND THEORY

A. The Hamiltonian

We start our analysis from the four-band effective
Hamiltonian for low-energy excitations [34], which can be
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FIG. 1. The system studied numerically in the paper (inset) and
the thermoelectric phase diagram (main) for Bernal-stacked bilayer
graphene. Thermal and electric currents (IQ,I ) flow between the
leads, modeled as infinitely-doped graphene regions with electro-
chemical potentials μL(R) → ∞ (at a fixed μR−μL ≡ eV , with the
electron charge −e and the voltage V ), and temperatures TL(R),
attached to the rectangular sample. Additional gate electrodes (not
shown) are used to tune the chemical potential in the sample area
μ at zero bias between the layers. The number of distinct maxima
of the Seebeck coefficient (NS

max) and minima of the Lorentz factor
(NL

min), occurring for 0<μ<∞, are indicated in the Lifshitz energy–
temperature parameter plane. The border of the Fabry-Pérot transport
regime T <TF−P (in which NS

max,N
L
min � 1), corresponding to the

system length L = 104 l⊥ = 17.7 μm, is also depicted.

written as

H = ξ

⎛
⎜⎜⎝

0 vF π ξ t⊥ 0
vF π † 0 0 v3π

ξ t⊥ 0 0 vF π †

0 v3π
† vF π 0

⎞
⎟⎟⎠, (1)

where the valley index ξ = 1 (−1) for K (K ′) valley, vF =√
3 t0a/(2h̄) � 106 m/s is the asymptotic Fermi velocity de-

fined via the intralayer hopping t0 = 3.16 eV and the lattice pa-
rameter a = 0.246 nm, π = h̄e−iθ (−i∂x + ∂y), θ denotes the
angle between the main system axis and the armchair direction.
(For the numerical calculations, we set h̄vF = 0.673 eV nm.)
The nearest-neighbor interlayer hopping is t⊥ = 0.381 eV [41]
defining l⊥ = h̄vF /t⊥ = 1.77 nm, and v3 = vF t ′/t0 with t ′
being the next-nearest neighbor (or skew) interlayer hopping.

The Hamiltonian (1) leads to the bulk dispersion relation
for electrons [31,34]

E
(e)
± (k) =

[
1
2 t2

⊥ + (
v2

F + 1
2v2

3

)
k2 ±

√
�(k)

]1/2
,

�(k) = 1
4

(
t2
⊥−h̄2v2

3k
2
)2 + h̄2v2

F k2
(
t2
⊥+h̄2v2

3k
2
)

+ 2ξ t⊥h̄3v3v
2
F k3 cos 3ϕ, (2)
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FIG. 2. Physical consequences of the dispersion relation given
by Eq. (2). (a) Equienergy surfaces for E = 0.5 EL (gray solid lines),
E = EL (red solid line), and E = 1.5 EL (blue dashed line) for the
crystallographic orientation θ = 0. (b) Density of states (purple solid
line) and the approximating expressions given by Eqs. (7), (8), and (9)
(gray solid, black dashed, and black dotted-dashed line, respectively).
(c) Carrier density and (d) the number of open channels for different
values of t ′ (specified for each line). Solid and dashed lines in panel
(d) corresponds to θ = 0 and θ = π/6, dotted-dashed lines represent
the approximating Eq. (12).

where k ≡ (kx,ky) is the in-plane wave vector (with k = 0
referring to the K or K ′ point), k = |k|, and the angle 0 ≤
ϕ < 2π can be defined as the argument arg z of a complex
number

z = e−iθ (kx + iky). (3)

For holes, we have E
(h)
± (k) = −E

(e)
± (k) [42].

B. Low-energy electronic structure

Basic consequences of Eq. (2) are illustrated in Fig. 2. In
the energy range |E| < EL, with the Lifshitz energy

EL = 1

4
t⊥

(
v3

vF

)2

, (4)

there are four distinct parts of the Fermi surface [see
Fig. 2(a)], centered at z = z0, . . . ,z3, where z0 = 0, zj =
kL exp(2πij/3),j = 1,2,3, and

kL = t⊥v3

h̄v2
F

. (5)

For |E| ≥ EL the Fermi surface becomes connected, and
the transition at E = ±EL is accompanied by the van Hove
singularity in the density of states ρ(E) [see Fig. 2(b)], which
can be defined (for electrons) via∫ E

0
dE′ρ(E′) ≡ n(E) = A(E)

π2
, (6)

125403-2



LIFSHITZ TRANSITION AND THERMOELECTRIC … PHYSICAL REVIEW B 97, 125403 (2018)

where n(E) is the physical carrier density (taking into ac-
count spin and valley degeneracies gs = gv = 2) depicted in
Fig. 2(c), and A(E) denotes the area bounded by the Fermi
surface in the (kx,ky) plane [43]. In particular, taking the limit
of t ′ → 0 we have

ρ t ′→0(|E| � t⊥) ≈ 2meff

πh̄2 = t⊥
π (h̄vF )2

≡ ρ0, (7)

where we have introduced the effective mass relevant in the
absence of trigonal warping (EL = 0). At finite t ′ (EL > 0)
the value of ρ0 defined in Eq. (7) is approached by the actual
ρ(E) for |E| � EL [see Fig. 2(b)]. Also, in the t ′ �= 0 case, we
find that the approximating formula

ρ(E) ≈ ρ0|E|
EL

[1 + 0.33(E/EL)2], (8)

reproduces the actual ρ(E) with 1% accuracy for |E| ≤ EL/2
(being the energy interval most relevant for discussion pre-
sented in the remaining parts of this paper). For |E| � EL,
leaving only the leading term on the right-hand side of Eq. (8)
brought us to

ρ(|E| � EL) ≈ 4|E|
π (h̄v3)2

, (9)

which can be interpreted as a double-monolayer DOS with the
Fermi velocity replaced by v3.

Although the trigonal-warping effects become hardly vis-
ible in ρ(E) for E � EL, characteristic deformations of the
Fermi surface can be noticed also for E � EL. We point out
that a compact quantity taking this fact into account, which
can be determined directly from Eq. (2) without resorting to
quantum transport simulations, is the number of propagating
modes (open channels) Nopen(θ,E) presented in Fig. 2(d). It
can be defined as a total number of solutions, with real kx , of
equations

E
(p)
+ (kx,q	ky) = E, E

(p)
− (kx,q	ky) = E, (10)

where p = e for electrons (E > 0) or p = h for holes
(E < 0), q = 0, ± 1, ± 2, . . . , and 	ky = 2π/W (we sup-
pose the periodic boundary conditions along the y axis)
that correspond to a chosen sign of the group velocity, e.g.,
(vg)(p)

±,q = ∂E
(p)
± (kx,q	ky)/∂ky > 0. Apart from the t ′ → 0

limit, for which

Nopen(t ′ → 0,|E| � t⊥) ≈ 2

√
|E|t⊥

(h̄vF )2

1

	ky

, (11)

the number of open channels is anisotropic and shows the
periodicity with a period π/3. In the low-energy limit

Nopen(θ,|E| � EL) ≈ 2F (θ )
|E|
h̄v3

1

	ky

, (12)

where

F (θ ) = 1 +
∑

j=1,2,3

[
1 − 8

9
cos2

(
θ + 2π

3
j

)]1/2

,

≈ 3.126 + 0.029 cos 6θ. (13)

The anisotropy is even more apparent for |E| � EL. In par-
ticular, Nopen(θ = 0,E) grows monotonically with increasing

E, whereas Nopen(θ = π/6,E) has a shallow minimum at
E ≈ 1.11EL.

It is also visible in Fig. 2(d) that the effects of increasing t ′
are essentially opposite at different energy ranges: For |E| �
EL, Nopen grows systematically with t ′; for |E| � EL we have
Nopen ∝ 1/t ′ following from Eq. (12). Such a feature has no
analogues in behaviors of other characteristics presented in
Fig. 2.

C. Thermoelectric properties

In the linear-response regime, thermoelectric properties of a
generic nanosystem in graphene are determined via Landauer-
Büttiker expressions for the electrical and thermal currents
[44,45]

I = −gsgve

h

∫
dE T (E)[fL(E)−fR(E)], (14)

IQ = gsgv

h

∫
dE T (E)[fL(E)−fR(E)](E−μ), (15)

where gs = gv = 2 are spin and valley degeneracies, T (E) ≡
Tr(tt†) with t being the transmission matrix [36], fL(R) is the
distribution functions for the left (right) lead with electro-
chemical potential μL(R) and temperature TL(R). Assuming
that μL − μR ≡ − eV and TL − TR ≡ 	T are infinitesimally
small [hereinafter, we refer to the averages μ = (μL + μR)/2
and T = (TL + TR)/2], we obtain the conductance G, the
Seebeck coefficient S, and the electronic part of the thermal
conductance Kel, as follows [39]

G = I

V

∣∣∣∣
	T =0

= e2L0, (16)

S = − V

	T

∣∣∣∣
I=0

= L1

eT L0
, (17)

Kel = IQ

	T

∣∣∣∣
I=0

= L0L2 − L2
1

T L0
, (18)

where Ln (with n = 0,1,2) is given by

Ln = gsgv

h

∫
dE T (E)

(
−∂fFD

∂E

)
(E − μ)n, (19)

with fFD(μ,T ,E) = 1/[ exp ((E−μ)/kBT ) + 1 ] the Fermi-
Dirac distribution function.

By definition, the Lorentz number accounts only the elec-
tronic part of the thermal conductance,

L = Kel

T G
= L0L2 − L2

1

e2T 2L2
0

. (20)

The thermoelectric figure of merit accounts the total thermal
conductance (Ktot = Kel + Kph)

ZT = T GS2

Ktot
=

(
Kel

Kel + Kph

)
L2

1

L0L2 − L2
1

, (21)

where the phononic part can be calculated using

Kph = 1

2π

∫
dω h̄ω

∂fBE

∂T
Tph(ω), (22)

with fBE(T ,ω) = 1/[ exp (h̄ω/kBT ) − 1 ] the Bose-Einstein
distribution function and Tph(ω) the phononic transmission
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spectrum. For BLG in a gapless case considered in this
work, we typically have Kph ∼ Kel (see Sec. III D) [46].
As Tph(ω) in Eq. (22) is generally much less sensitive to
external electrostatic fields than T (E) in Eq. (18) it should
be possible—at least in principle—to independently determine
Kph and Kel in the experiment.

It can be noticed that ultraclean ballistic graphene shows
approximately linear transmission to Fermi-energy depen-
dence T (E) ∝ |E| (where E = 0 corresponds to the charge-
neutrality point) [47–50]. Straightforward analysis (see Ap-
pendix A) leads to extremal values of the Seebeck coefficient
as a function of the chemical potential

Smax = −Smin ≈ kB/e = 86 μV/K, (23)

providing yet another example of a material characteristic
given solely by fundamental constants [47,51]. Similarly, the
Lorentz number reaches, at μ = 0, the maximal value given
by

Lmax = 9 ζ (3)

2 ln 2

(
kB

e

)2

= 2.37 LWF, (24)

with LWF = 1
3π2(kB/e)2 being the familiar Wiedemann-Franz

constant. Although the disorder and electron-phonon coupling
may affect the above-mentioned values, existing experimental
works report Smax and Lmax close to those given by Eqs. (23)
and (24) for both MLG and BLG, provided the temperature is
not too low [2–7,18].

At low temperatures, the linear model no longer applies,
partly due to the contribution from evanescent modes [47,52]
and partly due to direct trigonal-warping effects on the elec-
tronic structure (see Sec. II B). For this reason, thermoelectric
properties calculated numerically from Eqs. (16)–(21) are
discussed next.

III. RESULTS AND DISCUSSION

A. Zero-temperature conductivity

For T → 0 Eq. (16) leads to the conductivity

σ (T →0) = G(T →0)L

W
= g0L

W
Tr(tt†), (25)

with the conductance quantum g0 = 4e2/h. As the right-hand
side of Eq. (25) is equal to Tr(tt†) with a constant prefactor,
σ (T →0) gives a direct insight into the transmission-energy
dependence that defines all the thermoelectric properties [see
Eqs. (16)–(21)].

In order to determine the transmission matrix t for a given
electrochemical potential μ we employ the computational
scheme similar to that presented in Ref. [36]. However, at finite-
precision arithmetics, the mode-matching equations become ill
defined for sufficiently large L and μ, as they contain both ex-
ponentially growing and exponentially decaying coefficients.
This difficulty can be overcome by dividing the sample area
into Ndiv consecutive, equally-long parts, and matching wave
functions for all Ndiv+1 interfaces [53].

Numerical results are presented in Fig. 3. A striking feature
of all datasets is the presence of quasiperiodic oscillations
of the Fabry-Pérot type. Although such oscillations can be
regarded as artifacts originating from a perfect, rectangular

FIG. 3. Zero-temperature conductivity [see Eq. (25) in the main
text] for L = W/20 = 104 l⊥ = 17.7 μm and θ = 0 [54] plotted as a
function of the chemical potential. The value of skew-interlayer hop-
ping t ′ is specified for each line. Remaining tight-binding parameters
are given below Eq. (1) in the main text. Vertical lines mark values of
the Lifshitz energy, given by Eq. (4), for t ′ = 0.2 eV and t ′ = 0.3 eV.
Inset is a zoom in, for low chemical potentials, with horizontal lines
depicting σ = 2 σMLG = (8/π ) e2/h and σ = 6 σMLG.

shape of the sample area (vanishing immediately when, e.g.,
samples with nonparallel edges are considered, see Ref. [55])
their periodic features are useful to benchmark the numerical
procedure applied.

In particular, for t ′ = 0, the conductivity shows abrupt
features at energies associated with resonances at normal
incidence (ky = 0) [52], namely

En(t ′ = 0) ≈ ± h̄vF l⊥
(πn

L

)2
, n = 1,2,3, . . . , (26)

where the approximation refers to the parabolic dispersion
relation applying for |En| � t⊥, or equivalently for n �
L/(πl⊥) ≈ 3180 in our numerical example. In turn, the sepa-
ration between consecutive resonances is

	En(t ′ = 0) = |En+1−En| ≈ 2n+1

t⊥

(
πh̄vF

L

)2

≈ 2
πh̄vF

L

√
|En|
t⊥

, (27)

with the last approximation corresponding to n � 1.
For t ′ �= 0 the analysis is much more cumbersome even

at low energies, as we have resonances associated with four
distinct Dirac cones. However, resonances at normal incidence
associated with the central cone, occurring at En ≈ πh̄v3n/L

(n = ±1, ± 2, . . . ), allow us to estimate the order of magni-
tude of the relevant separation as

	En(t ′ �= 0) ∼ πh̄v3

L
= 2

πh̄vF

L

√
EL

t⊥
≡ kBTF−P, (28)

finding that the period of Fabry-Pérot oscillations is now
energy independent and should be comparable with 	En(0)
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given by Eq. (27) for μ = En ≈ EL(t ′). The data displayed
in Fig. 3 show that the oscillation period is actually energy
independent in the surprisingly-wide interval of μ � 1.5EL,
with the multiplicative factor 	En(t ′)/	En(0)|μ=EL(t ′) ≈ 3.
The oscillation amplitude is also enhanced, in comparison to
the t ′ = 0 case, for μ � 1.5EL. For μ � 1.5EL, both the oscil-
lation period and amplitude are noticeably reduced, resembling
the oscillation pattern observed for the t ′ = 0 case. It is also
visible in Fig. 3, that the mean conductivity (averaged over
the oscillation period) linearly increase with μ for μ � EL,
with a slope weakly dependent on t ′. Such a behavior indicates
that Tr(tt†) < Nopen [see Fig. 2(d)] which can be interpreted as
a backscattering (or transmission reduction) appearing when
different classes of quasiparticles are present in the leads and
in the sample area. For larger μ, the transmission reduction is
still significant, but its dependence on t ′ is weakened, and the
sequence of lines from Fig. 2(d) is reproduced.

A detailed explanation of the above-reported observations,
in terms of simplified models relevant for |μ| � EL and for
|μ| � EL, will be presented elsewhere. Here we only notice
that the linear model for transmission-energy dependence is
justified, for |μ| � EL, with the numerical results presented in
Fig. 3.

The rightmost equality in Eq. (28) defines the Fabry-Pérot
temperature, which can be written as

TF−P = π t⊥t ′l⊥
kBt0L

= 13890 K × t ′ l⊥
t0L

. (29)

For L = 104 l⊥, we obtain TF−P = 88 mK if t ′ = 0.2 eV,
or TF−P = 132 mK if t ′ = 0.3 eV. For higher temperatures,
Fabry-Pérot oscillations are smeared out due to thermal exci-
tations involving transmission processes from a wider energy
window [see Eqs. (16) and (19)].

B. Thermopower and Wiedemann-Franz law

As the finite-T conductivity is simply given by a convolu-
tion of T (E) = Tr(tt†) with the derivative of the Fermi-Dirac
function, we proceed directly to the numerical analysis of
the Seebeck coefficient and the Lorentz number given by
Eqs. (17)–(20) [56]. In Fig. 4, these thermoelectric properties
are displayed as functions of μ, for a fixed t ′ = 0.3 eV
(corresponding to EL/kB ≈ 10 K) and varying temperature.
Quasiperiodic oscillations are still prominent in datasets for
the lowest presented temperature, T = 80 mK ≈ 0.6 TF−P,
although it is rather close to TF−P. This is because all the
abrupt features of T (E) are magnified when calculating S, or
L, since they affect the nominator and the denominator in the
corresponding Eq. (17), or Eq. (20), in a different manner. For
T = 0.2 K ≈ 1.5 TF−P the oscillations vanish for S and are
strongly suppressed for L; instead, we observe the anomalies:
the secondary maximum of S and minimum of L, located
near μ = EL. The secondary maximum of S vanishes for
T = T S


 = 0.515 K, but L still shows the two shallow minima
at this temperature. (We find that the minima of L merge at
T L


 = 1.20 K = 2.33 T S

 , the corresponding dataset is omitted

for clarity.) For T = 2 K , each of S and L shows a single
extremum for μ > 0.

The crossover temperatures T S

 and T L


 as functions of EL,
varied in the range corresponding to 0.1 eV ≤ t ′ ≤ 0.35 eV,

FIG. 4. Seebeck coefficients S and Lorentz number L for t ′ =
0.3 eV, as a function of the chemical potential. The temperature is
specified for each line in the top panel and is the same in both panels.
Vertical lines mark the Lifshitz energy; horizontal line in bottom panel
corresponds to the Wiedemann-Franz valueL = LWF = 1

3 π 2(kB/e)2.
Inset shows crossover temperatures, corresponding to vanishing of
the secondary maximum of S (triangles) and minimum of L (circles),
plotted as functions of the Lifshitz energy, together with the best-fitted
linear functions [see Eqs. (30) and (31)].

are also plotted in Fig. 4 (see the inset). The least-squares fitted
lines are given by

T S

,fit = 0.0504(5) × EL/kB, (30)

T L

,fit = 0.1176(3) × EL/kB, (31)

with standard deviations of the last digit specified by numbers
in parentheses.

These findings can be rationalized by referring to the onset
on low-energy characteristics given in Sec. II B (see Fig. 2). In
particular, the abrupt features of T (E) near E = EL, attributed
to the van Hove singularity of ρ(E) shown in Fig. 2(b), or to the
anisotropy of Nopen(θ,E) in Fig. 2(d), are smeared out when
calculating thermoelectric properties for energies of thermal
excitations

kBT � 0.1 EL. (32)

However, some other features, related to trigonal-warping
effects on Nopen(θ,E) or n(E) [see Fig. 2(c)] away from
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FIG. 5. Same as Fig. 4 but plotted versus the dimensionless
variable μ/(kBT ). Solid lines in both panels represent the datasets
for T = 0.2 K and T = 2 K. Dashed-dotted lines correspond to
Eqs. (A4) and (A5) in Appendix, following from the linear model
for transmission-energy dependence. Dashed line in bottom panel
marks L = LWF. Inset shows the finite-T conductivity (solid lines)
σ = GL/W [see Eqs. (16) and (19) in the main text] and the linear
fit (dash-dot line) to the corresponding T = 0 dataset in Fig. 3.

E = EL, visible in thermoelectric properties, may even be
observable at higher temperatures.

C. Comparison with the linear model for transmission-energy
dependence

In Fig. 5 we display the selected numerical data from
Fig. 4, for T = 0.2 K and T = 2 K, as functions of μ/(kBT )
[solid lines] in order to compare them with predictions of the
linear model for transmission-energy dependence T (E) ∝ |E|
[dashed-dotted lines] elaborated in Appendix. For T = 2 K,
both S andL show an agreement better than 10% with the linear
model for μ � EL ≈ 5 kBT . For T = 0.2 K, larger deviations
appear for low chemical potentials due to the influence of
transport via evanescent waves, which are significant for μ <

h̄vF /L ≈ 2–3 kBT . For larger μ, a few-percent agreement
with the linear model is restored and sustained as long as
μ � EL ≈ 40 kBT .
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FIG. 6. Relative electronic contribution to the thermal conduc-
tance for t ′ = 0.3 eV as a function of the chemical potential. The
temperatures are (top to bottom) T = 80 mK, 0.2 K, 0.515 K, and
2 K. Inset shows phononic [blue line] and electronic [red line] thermal
conductivities (κ = KL/(2dW ), with d = 0.335 mn the separation
between layers) as functions of temperature, with the chemical
potential fixed at μ = μmax corresponding to the maximal Seebeck
coefficient.

Another remarkable feature of the results presented in
Fig. 5 becomes apparent when determining the extrema: The
maximal thermopower corresponds to μ(S)

max/(kBT ) = 2.0 at
T = 2 K, or to μ(S)

max/(kBT ) = 2.2 at T = 0.2 K; the minimal
Lorentz number corresponds to μ

(L)
min/(kBT ) = 5.4 at T = 2 K,

or to μ
(L)
min/(kBT ) = 4.6 at T = 0.2 K. In other words, an

almost perfect agreement with the linear model [see, respec-
tively, the second equality in Eq. (A6), or the second equality
in Eq. (A7) in Appendix] is observed provided that

h̄vF

L
� kBT ∼ μ(S)

max ∼ μ
(L)
min � EL. (33)

In consequence, the effects that we describe may be observable
for the sample length L > 10 μm.

D. Electronic and phononic parts of the thermal conductance

Before discussing the thermoelectric figure of merit ZT we
first display, in Fig. 6, values of the dimensionless prefactor in
the last expression of Eq. (21), quantifying relative electronic
contribution to the thermal conductance. The phononic trans-
mission spectrum [see Eq. (22)] was calculated numerically by
employing, for the sample length L = 17.7 μm, the procedure
presented by Alofi and Srivastava [57] adapting the Callaway
theory [58] for mono-and few-layer graphenes [59]. The
results show that in sub-Kelvin temperatures the electronic
contribution usually prevails, even if the system is quite close
to the charge-neutrality point, as one can expect for a gapless
conductor. For T > 1 K, however, the phononic contribution
overrules the electronic one in the full range of chemical
potential considered.
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FIG. 7. Effective carrier concentration (n−p)max (a) and chem-
ical potential μmax (b) corresponding to the maximal Seebeck co-
efficient Smax (c) as functions of temperature. The figure of merit
ZT (μmax) (d) is also displayed. Solid lines represent the numerical
results for different values of t ′ [specified in panel (a)]. Dashed
lines mark predictions of the linear model for transmission-energy
dependence T (E) ∝ |E|.

A direct comparison of the phononic and the electronic and
thermal conductivities calculated in the physical units (see
inset in Fig. 6) further shows that, if the chemical potential
is adjusted to μmax ≡ μ(S)

max for a given temperature, both
properties are of the same order of magnitude up to T = 2 K.
Also, for μ = μmax, we find that Kel = Kph at the temperature
Tel−ph ≈ 0.3 K, which is almost insensitive to the value of t ′.

E. Maximal performance versus temperature

In Fig. 7 we present parameters characterizing the maximal
thermoelectric performance for a given temperature (0 <

T ≤ 2 K). As the existing experimental works refer to the
carrier concentration rather than to the corresponding chemical
potential, we focus now on the functional dependence of the
former on T (and t ′).

Taking into account that the maximal performance is
expected for μ ∼ kBT (see previous subsection), and that
a gapless system is under consideration, one cannot simply
neglect the influence of minority carriers. For the conduction
band (μ > 0), the effective carrier concentration can be written
as

n−p =
∫ ∞

0
dE ρ(E)f (μ,E)

−
∫ 0

−∞
dE ρ(E)[1 − f (μ,E)], (34)

where we have supposed the particle-hole symmetry ρ(E) =
ρ(−E). [For the valence band (μ < 0), the effective concentra-
tion p-n is simply given by the formula on the right-hand side
of Eq. (34) with an opposite sign.] Next, the approximating

Eqs. (7) and (8) for the density of states lead to

n−p ≈ ρ0kBT

×
{

y, if t ′ = 0,

τL

[
I1(y) + 0.33 τ 2

L I3(y)
]
, if t ′ �= 0,

(35)

where y = μ/kBT , τL = kBT /EL, and we have defined

In(y) =
∫ ∞

−y

(x + y)n

ex + 1
dx −

∫ ∞

y

(x − y)n

ex + 1
dx. (36)

(In particular, I0(y) = y.) Numerical evaluation of the inte-
grals in Eq. (35) for y = ymax given by Eq. (A6) in Appendix
brought us to

(n−p)max ≈ ρ0kBT

×
{

1.949 if t ′ = 0,

3.269 τL

(
1+3.23 τ 2

L

)
if t ′ �= 0.

(37)

In turn, the carrier concentration corresponding to the max-
imum of S for a given T is determined by the value of EL.
[A similar expression for the minimum of L, see Eq. (A7) in
Appendix, is omitted here.]

Solid lines in Fig. 7(a) show the values of (n−p)max

calculated from Eq. (34) for the actual density of states and
the chemical potential μ = μmax [displayed with solid lines in
Fig. 7(b)] adjusted such that the Seebeck coefficient, obtained
numerically from Eq. (17), reaches the conditional maximum
(Smax) [see Fig. 7(c)] at a given temperature T (and one of the
selected values of t ′ = 0, 0.2 eV, or 0.3 eV). The numerical
results are compared with the linear-model predictions (dashed
lines in all panels), given explicitly by Eq. (37) [Fig. 7(a)] or
Eq. (A6) in Appendix [Figs. 7(b) and 7(c)]. Again, the linear
model shows a relatively good agreement with corresponding
data obtained via the mode-matching method; moderate devia-
tions are visible for t ′ �= 0 when μmax � EL/2. In such a range,
both ρ(E) no longer follows the approximating Eq. (9), and the
sudden rise of T (E) near E ≈ EL starts to affect thermoelectric
properties.

Figures 7(c) and Fig. 7(d) display, respectively, the maximal
Seebeck coefficient (Smax) and figure of merit [ZT (μmax)]
as functions of temperature. For t ′ �= 0, the former shows
broad peaks, centered near temperatures corresponding to
μmax ≈ 0.4 EL, for which the prediction of the linear model
[see Eq. (A6) in Appendix] is slightly exceeded (by less then
10%), whereas for t ′ = 0 a monotonic temperature depen-
dence, approaching the linear-model value, is observed. The
figure of merit (calculated for μ = μmax) shows relatively
fast temperature decay due to the role of phononic thermal
conductivity (see Sec. III D). We find that ZT (μmax), although
being relatively small, is noticeably elevated in the presence of
trigonal warping in comparison to the t ′ = 0 case. The behavior
of Smax presented in Fig. 7(c) suggests a procedure, allowing
one to determine the trigonal-warping strength via directly
measurable quantities.

For any t ′ �= 0, one can determine a unique global maximum
of S = S(μ,T ), which is reached at μ = μS

max and T = T S
max.

Our numerical findings for 0.1 eV ≤ t ′ ≤ 0.35 eV are pre-
sented in Fig. 8, where we have plotted (instead of μS

max), the
optimal effective concentration (n−p)Smax [see the inset]. The
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FIG. 8. Temperature corresponding to the maximal thermopower
as a function of the Lifshitz energy (data points). Least-squares fitted
linear dependence [see Eq. (38)] is also displayed (line). Inset shows
the carrier concentration versus ρ0kBT S

max, together with the model
prediction (dashed line) and the linear fit (solid line) [see Eqs. (37)
and (39)].

best-fitted lines displayed in Fig. 8 are given by

T S
max, fit = 0.203(2) × EL/kB, (38)

(n − p)Smax, fit = 0.816(5) × ρ0kBT S
max, (39)

where numbers in parentheses are standard deviations for the
last digit. A few-percent deviation of the actual (n−p)Smax
from predictions of the linear model [see dashed line in the
inset, obtained from Eq. (37) by setting τL = kBT S

max, fit/EL ≈
0.20] is relatively small taking into account that the existence
of a global maximum of S(μ,T ) is directly linked to the
breakdown of the linear model occurring for μ ∼ kBT � EL

(and therefore is not observed in the t ′ = 0 case). We further
notice that Eqs. (38) and (39) provide direct relations between
the two independent driving parameters corresponding to the
optimal thermopower, T S

max and (n−p)Smax, and the trigonal
warping strength quantified by EL.

IV. CONCLUSIONS

We have investigated the thermopower, violation of the
Wiedemann-Franz law, and the thermoelectric figure of merit,
for large ballistic samples of bilayer graphene in the absence of
electrostatic bias between the layers (a gapless case) and close
to the charge-neutrality point. Although the thermoelectric
performance is not high in such a parameter range, we find
that low-temperature behavior of thermoelectric properties is
determined by microscopic parameters of the tight-binding
Hamiltonian, including the skew-interlayer hopping integral
responsible for the trigonal warping, and by the relativistic
nature of effective quasiparticles (manifesting itself in linear
energy dependence of both the density of states and the
electrical conductivity).

In particular, at sub-Kelvin temperatures, clear signatures of
the Lifshitz transition, having forms of anomalies in chemical-
potential dependences of the Seebeck coefficient and the
Lorentz number, occurs in a vicinity of the Lifshitz energy

(defined by the microscopic parameters and quantifying the
trigonal-warping strength). The anomalies are blurred out by
thermal excitations above the crossover temperatures (different
for the two thermoelectric properties) that are directly propor-
tional to the Lifshitz energy.

At higher temperatures (of the order of 1 K) the trigonal-
warping strength can be determined from thermoelectric mea-
surements following one of the two different approaches: (i)
finding the carrier concentration corresponding to the maximal
thermopower as a function of temperature, or (ii) finding the
optimal temperature, i.e., such that the thermopower reaches its
global maximum. The first possibility is linked to the properties
of massless quasiparticles, due to which the carrier concentra-
tion corresponding to the maximal thermopower depends ap-
proximately quadratically on temperature and reciprocally on
the Lifshitz energy. On the other hand, existence of unique opti-
mal temperature (equal to 2 K if the handbook value of the Lif-
shitz energy EL/kB ≈ 10 K is supposed) is related to the grad-
ual conductivity enhancement, and subsequent suppression of
the thermopower, with increasing population of thermally-
excited massive quasiparticles above the Lifshitz energy.

To conclude, we have shown that thermoelectric mea-
surements may complement the list of techniques allowing
one to determine tight-binding parameters of bilayer-graphene
Hamiltonian. Unlike the well-established techniques [34] (or
the other recently proposed [36,37]), they neither require
high-magnetic-field measurements nor refer to conductivity
scaling with the system size. Instead, the proposed single-
device thermoelectric measurements must be performed on
large ballistic samples (with the length exceeding 10 μm), such
that quantum-size effects define the energy scale much smaller
then the Lifshitz energy.

As we have focused on clean ballistic systems, several fac-
tors which may modify thermoelectric properties of graphene-
based devices, including the disorder [34], lattice defects [60],
or magnetic impurities [61], are beyond the scope of this study.
However, recent progress in quantum-transport experiments on
ultraclean freestanding monolayer samples exceeding 1 μm
size [49,62] allows us to expect that similar measurements
would become possible in bilayer graphene soon. Also, as
the effects we describe are predicted to appear away from the
charge-neutrality point, the role of above-mentioned factors
should be less significant than for phenomena appearing
precisely at the charge-neutrality point, such as the minimal
conductivity [63,64]. Similar reasoning may apply to the role
of interaction-induced spontaneous energy gap [65–67] (we
notice that experimental values coincide with energy scales
defined by quantum-size effects, e.g., h̄vF /L ≈ 3 meV for
L = 250 nm in Ref. [67]).

Note added. Recently, we become aware of theoretical
works on strained monolayer graphene reporting quite similar,
double-peak spectra of the Seebeck coefficient for sufficiently
high uniaxial strains [68].
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APPENDIX: LINEAR MODEL FOR
TRANSMISSION-ENERGY DEPENDENCE

At sufficiently high temperatures, thermoelectric properties
given by Eqs. (16)–(21) become insensitive to the detailed
functional form of T (E), and simplified models can be
considered. Here we assume T (E) = C|E|, with C being a
dimensionless parameter. In turn, Eq. (19) leads to

L0 = D
β

(
y

∫ y

0

dx

cosh x + 1
+

∫ ∞

y

x dx

cosh x + 1

)

= D
β

ln (2 cosh y + 2), (A1)

L1 = D
β2

( ∫ y

0

x2dx

cosh x + 1
+ y

∫ ∞

y

x dx

cosh x + 1

)

= D
β2

[
π2

3
+ y2 − y ln (2 cosh y + 2) + 4Li2(−e−y)

]
,

(A2)

L2 = D
β3

(
y

∫ y

0

x2dx

cosh x + 1
+

∫ ∞

y

x3dx

cosh x + 1

)

= D
β3

[
π2

3
y − y3 + y2 ln(2 cosh y + 2)

− 8yLi2(−e−y) − 12Li3(−e−y)

]
, (A3)

where D = (gsgv/h) C, β = 1/kBT , y = βμ, and Lis(z) is
the polylogarithm function [69]. Subsequently, the Seebeck
coefficient and the Lorentz number [see Eqs. (17) and (20) in
the main text] are given by

S = kB

e

[
−y +

π2

3 + y2 + 4Li2(−e−y)

ln (2 cosh y + 2)

]
, (A4)

Kel

T G
=

(
kB

e

)2 {
π2y + y3 − 12Li3(−e−y)

ln (2 cosh y + 2)

−
[ π2

3 + y2 + 4Li2(−e−y)

ln (2 cosh y + 2)

]2 }
. (A5)

As the right-hand sides in Eqs. (A4) and (A5) depend only
on a single dimensionless variable (y) they are convenient to be
compared with thermoelectric properties obtained numerically
via the mode-matching method (see Sec. III for details). In
particular, the function of Eq. (A4) is odd and has a single
maximum for y > 0, i.e.,

Smax = 1.0023 kB/e for y(S)
max = 1.9488, (A6)

which is approximated by Eq. (23) in the main text. Analo-
gously, the function of Eq. (A5) is even, and has a maximum
at y = 0, that brought us to Eq. (24) in the main text. It also
reaches a minimum

Lmin = 3.0060 (kB/e)2 ≈ 0.91 LWF for y
(L)
min = 4.5895,

(A7)

with the Wiedemann-Franz constant the LWF = 1
3π2(kB/e)2.

For y → ∞ we have L → LWF.
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1.  Introduction

In recent years, bilayer graphene (BLG) devices made it pos-
sible to demonstrate several intriguing physical phenomena, 
including the emergence of quantum spin Hall phase [1, 2], 
the fractal energy spectrum known as Hofstadter’s butterfly 
[3, 4], or unconventional superconductivity [5, 6], just to men-
tion a few. From a bit more practical perspective, a number of 
plasmonic and photonic instruments were designed and build 
[7–9] constituting platforms for application considerations. 
BLG-based thermoelectric devices have also attracted a sig-
nificant attention [10–13], next to the devices based on other 
two-dimensional (2D) materials [14–16].

In a search for high-performance thermoelectric material, 
one’s attention usually focusses on enhancing the dimension-
less figure of merit [17, 18]

ZT =
GS2T

K
,� (1)

where G, S and K are (respectively): the electrical conduc-
tance, the Seebeck coefficient quantifying the thermopower, 
and the thermal conductance; the last characteristic can be 
represented as K = Kel + Kph, with Kel (Kph) being the elec-
tronic (phononic) part. This is because the maximal energy 
conversion efficiency is related to ZT via [19]

ηmax =
∆T
Th

√
1 + ZTav − 1√
1 + ZTav +

Tc
Th

,� (2)

where Tc (Th) is the hot- (or cool) side temperature, 
∆T = Th − Tc, and Tav = (Tc + Th)/2. In particular, for 
ZTav = 3 we have ηmax > 1

3∆T/Th (with ∆T/Th the Carnot 
efficiency), and therefore ZT  >  3 is usually regarded as a 
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Abstract
Unlike in conventional semiconductors, both the chemical potential and the band gap in 
bilayer graphene (BLG) can be tuned via application of external electric field. Among 
numerous device implications, this property also designates BLG as a candidate for high-
performance thermoelectric material. In this theoretical study we have calculated the Seebeck 
coefficients for abrupt interface separating weakly- and heavily-doped areas in BLG, and for a 
more realistic rectangular sample of mesoscopic size, contacted by two electrodes. For a given 
band gap (∆) and temperature (T) the maximal Seebeck coefficient is close to the Goldsmid–
Sharp value |S|GS

max = ∆/(2eT), the deviations can be approximated by the asymptotic 
expression |S|GS

max − |S|max = (kB/e)×
[ 1

2 ln u + ln 2 − 1
2 +O(u−1)

]
, with the electron 

charge  −e, the Boltzmann constant kB, and u = ∆/(2kBT) � 1. Surprisingly, the effects of 
trigonal warping term in the BLG low-energy Hamiltonian are clearly visible at few-Kelvin 
temperatures, for all accessible values of ∆ � 300 meV. We also show that thermoelectric 
figure of merit is noticeably enhanced (ZT  >  3) when a rigid substrate suppresses out-of-plane 
vibrations, reducing the contribution from ZA phonons to the thermal conductivity.
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condition for thermoelectric device to be competitive with 
other power generation systems.

As the Seebeck coefficient is squared in equation  (1), a 
maximum of ZT—considered as a function of the driving 
parameters specified below—is commonly expected to appear 
close to a maximum of |S|. Here we show this is not always the 
case in gapped BLG: when discussing in-plane thermoelectric 
transport in a presence of perpendicular electric field such that 
the band gap is much greater than the energy of thermal exci-
tations (∆ � kBT ), the maximal absolute thermopower |S|max 
corresponds to the electrochemical potential relatively close 

to the center of a gap, namely µ|S|
max ≈ ± 1

2 kBT ln(2∆/kBT), 
whereas the maximal figure of merit ZTmax appears near the 
maximum of the valence band (or the minimum of the con-
duction band), i.e. µZT

max ≈ ±∆/2. In contrast to ZTmax, |S|max 
is not directly related to the value of the transmission prob-
ability near the band boundary, and these two quantities show 
strikingly different behaviors with increasing ∆ for a given T.

Qualitatively, one can expect that thermoelectric perfor-
mance of BLG is enhanced with increasing ∆, since abrupt 
switching behavior is predicted for the conductance G when 
passing µ = ±∆/2 for ∆ � kBT  [20, 21]. (Moreover, the 
gap opening suppresses κel, reducing the denominator in 
equation (1).) Such a common intuition is build on the Mott 
formula, according to which S is proportional to the loga-
rithmic derivative of G as a function of the Fermi energy 
EF. One cannot, however, directly apply the Mott formula for 
gapped systems at nonzero temperatures, and the link between 
a rapid increase of G(EF) for EF ≈ ∆/2 and high |S| is thus not 

direct in the case of gapped BLG, resulting in µ|S|
max � ∆/2.

The results of earlier numerical work [22] suggest that 
|S|max, obtained by adjusting µ for a given ∆ and T, is close to

|S|GS
max =

∆

2eT
,� (3)

being the Goldsmid–Sharp value for wide-gap semiconduc-
tors [23]. In this paper, we employ the Landauer–Büttiker 
approach for relatively large ballistic BLG samples, finding 
that equation (3) provides a reasonable approximation of the 
actual |S|max for ∆ ∼ kBT  only. For larger ∆, a logarithmic 
correction becomes significant, and the deviation exceeds 
kB/e (≈86 µV K−1) for ∆ � 10 kBT . We further find that—
although |S|max grows monotonically when increasing ∆ at 
fixed T and may reach (in principle) arbitrarily large value—
ZTmax shows a conditional maximum at ∆�(T) ∼ 102 kBT  
(for T � 10 K). An explanation of these findings in terms of 
a simplified model for transmission-energy dependence is 
provided.

2.  Model and methods

The two systems considered are shown schematically in fig-
ures 1(a) and (b). The first system (hereinafter called an abrupt 
interface) clearly represents an idealized case, as we have sup-
posed that both the doping and temperature change rapidly on 
the length-scale much smaller than the Fermi wavelength for 
an electron. Therefore, a comparison with the second system, 

in which chemical potentials and temperatures are attributed 
to macroscopic reservoirs (the two leads), separated by a 
sample area of a finite length L, is essential to validate the 
applicability of our precictions for real experiments.

We take the four-band Hamiltonian for BLG [24]

H = ξ




−U/2 vFπ ξt⊥ 0
vFπ

† −U/2 0 v3π

ξt⊥ 0 U/2 vFπ
†

0 v3π
† vFπ U/2


 ,� (4)

where the valley index ξ = 1 for K valley or ξ = −1 for K′ 
valley, π = px + ipy, π† = px − ipy, with p = ( px, py) the 
carrier momentum, vF =

√
3at0/(2�) is the Fermi velocity, 

v3 = (t′/t0)vF, U is the electrostatic bias between the layers, 
and a  =  0.246 nm is the lattice parameter. Following [25], 
we set t0  =  3.16 eV—the nearest-neighbor in-plane hopping 
energy, t⊥ = 0.381 eV—the direct interlayer hopping energy; 
the skew interlayer hopping energy is set as t′ = 0 or t′ = 0.3 
eV in order to discuss the role of trigonal warping1. The band 
gap ∆ ≈ |U| for |U| � t⊥ and t′ = 0 (remaining details are 
given in supplementary information, section I (stacks.iop.org/
JPhysCM/31/415501/mmedia)). Solutions of the subsequent 
Dirac equation, HΨ = EΨ, with Ψ = (ΨA1,ΨB1,ΨB2,ΨA2)

T  
the probability amplitudes, are matched for the interfaces 
separating weakly- and heavily-doped regions allowing us 
to determine the energy-dependent transmission probability 
T(E) (see supplementary information, section II).

At zero temperature, the relation between physical car-
rier concentration (the doping) and the Fermi energy EF can 
be approximated by a close-form expression for t′ = 0 and 
|EF| −∆/2 � t⊥, namely

n(EF) ≈
t⊥

π(�vF)2 max (0, |EF| −∆/2) ,� (5)

following from a piecewise-constant density of states in 
such a parameter range [24]. The prefactor in equation  (5) 
(1/π) t⊥/(�vF)

2 ≈ 0.268 nm−2 eV−1. In a general situa-
tion, it is necessary to perform the numerical integration of 
the density of states following from the Hamiltonian H (4) 
(see supplementary information, section  I); however, equa-
tion (5) gives a correct order of magnitude for ∆ � kBT . In 
the remaining part of the paper, we discuss thermoelectric 
characteristics as functions of the electrochemical potential µ, 
keeping in mind that the doping n = n(|µ|) is a monotonically 
increasing function of |µ|.

Next, we employ the Landauer–Büttiker expressions for 
the electrical and thermal currents [26, 27]

I = −gsgve
h

∫
dE T(E) [ fL(E)− fR(E)] ,� (6)

IQ =
gsgv

h

∫
dE T(E) [ fL(E)− fR(E)] (E − µ),� (7)

1 Remaining parameters of the systems studied numerically are, for an 
abrupt interface of figure 1(a): W = 103 l⊥ = 1.77 µm (with l⊥ = �vF/t⊥); 
and for a rectangular setup of figure 1(b): L = W/20 = 104 l⊥.
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where gs = gv = 2 are spin and valley degeneracies, fL and fR 
are the distribution functions for the left and right reservoirs, 
with their electrochemical potentials µL and µR, and temper
atures TL and TR . We further suppose that µL − µR ≡ −eV  and 
TL − TR ≡ ∆T  are infinitesimally small (the linear-response 
regime) and define µ = (µL + µR)/2 and T = (TL + TR)/2. 
The conductance G, the Seebeck coefficient S, and the elec-
tronic part of the thermal conductance Kel, are given by [28]

G =
I
V

∣∣∣∣
∆T=0

= e2L0,� (8)

S = − V
∆T

∣∣∣∣
I=0

=
L1

eTL0
,� (9)

Kel =
IQ

∆T

∣∣∣∣
I=0

=
L0L2 − L2

1

TL0
,� (10)

where

Ln =
gsgv

h

∫
dE T(E)

(
−∂fFD

∂E

)
(E − µ)n

(n = 0, 1, 2)
� (11)

with fFD(µ, T , E) = 1/ [ exp ((E − µ)/kBT) + 1 ] being the 
Fermi–Dirac distribution function. In particular, for T → 0, 
equation (8) reduces to G = (gsgve2/h)T(µ), the well-known 
zero-temperature Landauer conductance.

The phononic part of the thermal conductance, occuring in 
equation (1), can be calculated using

Kph =
1

2π

∫
dω �ω

∂fBE

∂T
Tph(ω),� (12)

with fBE(T ,ω) = 1/ [ exp (�ω/kBT)− 1 ] the Bose–Einstein 
distribution function and Tph(ω) the phononic transmission 
spectrum. We calculate Tph(ω) by adopting the procedure 
developed by Alofi and Srivastava [29] to the two systems 
considered in this work (see supplementary information, 
section IV).

3.  Numerical results

Before discussing the thermoelectric properties in details, we 
present zero-temperature conductance spectra, which repre-
sent the input data to calculate thermoelectric properties (see 
section  2). Since the Hamiltonian given by equation  (4) is 

Figure 1.  Systems studied numerically in the paper (left) and their basic thermoelectric characteristics (right). (a) BLG strip of width 
W with a voltage source driving electric current through the strip. Two gate electrodes, with different temperatures T1 and T2, induce an 
abrupt interface (dash-dot line) between the weakly-doped (light area) and the heavily-doped (dark area) regions. (b) A finite, weakly-
doped section of the strip (of length L) with leads driving both thermal and electric currents. In both cases, additional gate electrodes (not 
shown) allow to tune the electrostatic bias between the layers (See footnote 1.). The coordinate system is also shown. (c) Zero-temperature 
conductance, specified in the units of g0 = 4e2/h, and (d) the Seebeck coefficient at T  =  5 K as functions of the chemical potential. Solid 
lines correspond to the system of panel (a), dashed lines correspond to the system of panel (b). (e) Zoom-in of the conductance as a function 
of the chemical potential measures from the conduction band minimum (µ = ∆/2) for the system of panel (a). Skew-interlayer hopping 
is fixed at t′ = 0.3 eV. The electrostatic bias between the layers is varied from U  =  0 to U  =  20 meV in steps of 5 meV (c) and (d) or from 
U  =  10 meV to U  =  150 meV in steps of 20 meV (e). (The extreme values of U are specified for corresponding lines.)

J. Phys.: Condens. Matter 31 (2019) 415501
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particle-hole symmetric, it is sufficient to limit the discussion 
to µ � 0.

Typically, the conductance G(µ) of the finite-strip section, 
compared with the case of an abrupt interface, is reduced 
by approximately 50% near the conduction band minimum 
(µ = ∆/2) due to backscattering on the second interface, and 
slowly approaches the abrupt-interface limit for µ � ∆/2; see 
figure 1(c). Additionally, for a rectangular setup of figure 1(b) 
oscillations of the Fabry–Pérot type are well-pronounces, see 
[13]. In contrast, the Seebeck coefficient is almost identical 
for both systems, see figure 1(d). We further notice that the 
conductance near µ = ∆/2, displayed in figure 1(e), is gradu-
ally suppressed with increasing U. (Hereinafter, the bandgap 
∆ is determined numerically for the dispersion relation fol-
lowing from equation  (4), see supplementary information, 
section I. In general, ∆ < |U| [24]).

Figure 2.  (a) Maximal absolute value of the Seebeck coefficient 
and (b), (c) its deviation from the Goldsmid–Sharp value 
|S|GS

max = ∆/(2eT) calculated numerically for the system of 
figure 1(a) (datapoints) as functions of the energy gap for different 
temperatures T  =  1 K (open circles), T  =  5 K (full circles), and 
T  =  10 K (triangles). Skew-interlayer hopping integral is t′ = 0.3 
eV (a) and (b) or t′ = 0 (c). Lines depict Smax = SGS

max (black 
dotted line), and predictions of the model for transmission-energy 
dependence given by equation (14) with α = 0 (blue dashed line), 
α = 1 (red solid line), and α = 2 (magenta dash-dot line—omitted 
in panel (a) for clarity).

Figure 3.  Phononic parts of the thermal conductance for the 
systems of figures 1(a) (solid line) and (b) (dashed line) as functions 
of temperature. Insets are zoom in, for low temperatures, in the 
linear (top left) and the log–log (right) scale.

The close overlap of the thermopower spectra presented 
in figure 1(d) allows us to limit the discussion of |S|max to the 
case of an abrupt interface, see figures 2(a)–(c). In order to 
rationalize the deviations of the numerical data from |S|GS

max 
given by equation (3), we propose a family of models for the 
transmission-energy dependence, namely

T(α) = C(∆)×
{
δ(E − 1

2∆) + δ(E + 1
2∆) if α = 0

Θ(|E| − 1
2∆)(|E| − 1

2∆)α−1 if α > 0
� (13)
with the prefactor C(∆) quantifying the transmission prop-
ability near the band boundary |E| ≈ 1

2∆, δ(x) being the Dirac 
delta function, and Θ(x) being the Heaviside step function. 
The analytic expressions presented here, and later in section 4, 
are (unless otherwise specified) valid for any α � 0, althought 
when comparing model predictions with the numerical data 
we limit our considerations to integer α.

In particular, equation (13) leads to the maximal absolute 
value of the Seebeck coefficient

|S|(α)max × (kB/e)−1 ≈
√
(u + α)(u + α− 1)− ln

(√
u + α+

√
u + α− 1

)

= u − 1
2
ln (4u) + α− 1

2
+

3 − 7α+ α2

8u
+O(u−2) for α � 0,

�

(14)

where the first asymptotic equality corresponds to 
u = ∆/(2kBT) � 1 (see supplementary information). It is 

clear from figure 2(a) that |S|(α)max with α = 1 (red solid line) 
reproduces the actual numerical results (datapoints) notice-

ably better than |S|(α)max with α = 0 (blue dashed line) or |S|GS
max 

(black dotted line). What is more, the deviations |S|GS
max − |S|max, 
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displayed as functions of ∆, allows one to easily identify the 
effects of trigonal warping, see figures  2(b) for t′ = 0.3 eV 
and 2(c) for t′ = 0.

Next, we investigate the figure of merit (ZT) given by equa-
tion (1). For this purpose, it is necessary to calculate both the 
electronic part of thermal conductance (Kel), that is determined 
by the energy-dependent transmission T(E) (see section 2), as 
well as the phononic part (Kph), presented in figure 3. We find 
that for T  <  10 K the two systems considered show almost 
equal Kph (∝ T3), and different values of ZT (see figures 4(a) 
and (b)) follow predominantly from the G reduction discussed 
above. Unlike |S|max, a value of which (for a given T) is limited 
only by the largest experimentally-accessible ∆ ≈ 300 meV 
[24, 30], ZTmax shows well-defined conditional maximum for 
the optimal bandgap ∆�/kBT ≈ 100–150 (at the temperature 
range 10 K� T � 1 K) and decreases for ∆ > ∆�; see fig-
ures 4(c) and (d).

Also in figures 4(c) and (d), we compare ZTmax for free-
standing BLG, in which all polarizations of phonons (LA, 
TA, and ZA) contribute to the thermal conductance (see sup-
plementary information, section IV) with an idealized case of 
BLG on a rigid substrate, eliminating out-of-plane (ZA) pho-
nons. In the latter case, ZTmax is amplified, approximately by 
a factor of 3 (for any ∆), exceeding ZT  =  3 for T  =  1 K and 
∆ ≈ ∆� = 10 meV.

4.  Discussion

Let us now discuss here why we have identified apparently 
different behaviors of |S|max and ZTmax with increasing ∆. To 
understand these observations, we refer to the model T(α)(E) 
given by equation (13) with α � 0, for which |S|(α)max, approxi-
mated by equation (14), corresponds to

µ
|S|
max

kBT
≈ ln

(√
u + α+

√
u + α− 1

)

≈ 1
2
ln

(
2∆
kBT

)
for ∆ � kBT .

� (15)

In contrast, the chemical potential corresponding the the 
maximal ZT is much higher and can be approximated (in the 
∆ � kBT  limit) by

µZT
max ≈ ∆

2
− 1.145 kBT for α = 1,� (16)

or

µZT
max ≈ ∆

2
+ 0.668 kBT for α = 2,� (17)

where we have further supposed that Kph � Kel, being equiv-
alent to

Figure 4.  Left: thermoelectric figure of merit displayed as a function of the chemical potential for temperatures (a) T  =  1 K and (b) T  =  5 
K. Solid lines correspond for the system of figure 1(a), dashed lines correspond for the system of figure 1(b). (Remaining parameters 
are same as in figures 1(c) and (d).) Right: maximal value of the figure of merit for the system of figure 1(a), versus the energy gap for 
temperatures (c) T  =  1 K and (d) T  =  5 K. Inset in panel (c) shows the optimal gap ∆� as a function of temperature. Different lines in 
panels (c) and (d) correspond to the limit of rigid substrate eliminating ZA phonons (solid lines) or the free-standing sample (dashed-dotted 
lines).
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ZT ≈ GS2 T
Kph(T)

.� (18)

As the last term in equation (18) depends only on T we can 
focus now on the power factor (GS2), a maximal value of 
which can be approximated by

(
GS2)

max ≈ M(α)
max

gsgvk2
B

h
(kBT)α−1 C(∆),� (19)

where the prefactor M(α)
max depends only on α and is equal to 

1.27 for α = 1 or to 4.06 for α = 2 (see also supplementary 
information, section III).

The positions of maxima visible in figures  4(a) and (b) 
are numerically close to the approximation given by equa-
tion (16). Also, the data visualized in figure 5, together with 
the lines corresponding to equations  (16) and (17), further 
support our conjucture that the model T(α)(E), given by equa-
tion (13) with α = 1 (the step-function model), is capable of 
reproducing basic themoelectric characteristics of gapped 
BLG with a reasonable accuracy.

Although it might seem surprising at first glance that the 
step-function model (α = 1) reproduces the actual numerical 
results much better than T(α)(E) with α = 2, as the conduct-
ance spectra in figure  1(e) exhibit linear, rather than step-
line, energy dependence for µ � ∆/2. However, for the 
temperature range of 1 K � T � 10 K the T(E) behavior for 
E −∆/2 � 0.1 eV, visualized with the data in figure  1(c), 
preveils (notice that the full width at half maximum for 
−∂fFD/∂E in equation (11) is ≈3.53 kBT). For this reason, a 

simple step-function model grasps the essential features of the 
actual T(E).

Apart from pointing out that µ|S|
max � µZT

max ≈ ∆/2 for 
∆ � kBT  (some further implications of this fact are dis-
cussed below), the analysis starting from T(α)(E) models 
also leads to the conclusion that—unlike |S|max that is not 
directly related to C(∆)—for the figure  of merit we have: 
ZTmax ∝ (GS2)max ∝ C(∆) (see equations  (18) and (19)). It 
becomes clear now that a striking ZTmax suppression for large 
∆ is directly link to the local G suppression for large U, illus-
trated in figure 1(e). Power-law fits to the datasets presented 
in figures 4(c) and (d), of the form ZTmax ∝ ∆−γ for ∆ > ∆�, 
lead to γ ≈ 0.5. It is worth to stress here that the dispersion 
relation, and also the number of open channels as a func-
tion of energy above the band boundary, Nopen(|E| −∆/2) 
(see supplementary information, section II), is virtually unaf-
fected by the increasing ∆. Therefore, the average transmis-
sion for an open channel near the band boundary decreases 
with ∆. This observation can be qualitatively understood 
by pointing out a peculiar (Mexican hat-like) shape of the 
dispersion relation for ∆ > 0 [31]. In the energy range 
∆/2 < |E| < |U|/2 there is a continuous crossover from zero 
transmission (occuring for |E| < ∆/2) to a high-transmission 
range (|E| > |U|/2). As the width of such a crossover energy 
range, (|U| −∆)/2, increases monotonically with ∆, the 
continuity of T(E) implies that the average transmission near 
|E| ≈ ∆/2 decreases with ∆.

For a bit more formal explanation, we need to refer the 
total transmission probability through an abrupt interface 
(see supplementary information, section II). For the incident 
wavefunction with the momentum parallel to the barier (con-
served during the scattering) �ky (where ky = 2πq/W  and 
q = 0,±1,±2, . . . assuming the periodic boundary condi-
tions) we have

Tky =
∑
m,n

|tm
n |

2 jx (ψn
II) /jx (ψm

I ) ,� (20)

where {tm
n } is the 2 × 2 transmission matrix (m, n = 1, 2 are 

the subband indices) to be determined via the mode-matching, 
and jx(ψn

X) is the x-component of electric current for the 
wave function propagating in the direction of incidence, with 
X = I, II indicating the side of a barrier. For E = ε+∆/2 
(with 0 < ε � ∆/2) there are propagating modes in a weakly-
doped area (X  =  II) with n  =  1 (the lower subband) only; in 
the simplest case without trigonal warping (t′ = 0) we find 
that the relevant current occuring in equation (20) scales as

jx
(
ψ1

II

)
∝

√
ε/∆.� (21)

The above allows us to expect that the full transmission 

scales as T(E) =
∑

ky
Tky ∝

√
ε/∆ also for t′ �= 0, pro-

vided that the band gap is sufficiently large (∆ � EL , with 
EL = 1

4 t⊥ (t′/t0) 2 the Lifshitz energy). As the number of 
propagating modes is approximately ∆-independent, scaling 
roughly as Nopen ∝

√
ε, we can further predict that zero- (or 

low-) temperature conductance should follow the approximate 
scaling law

Figure 5.  Chemical potential corresponding to the maximal 
absolute thermopower presented in figure 2 (µ

|S|
max) and the maximal 

figure of merit presented in figure 4 (µZT
max) as function of the energy 

gap. Points correspond to same datasets as in figures 2(a) and (b) 
(skew-interlayer hopping integral is t′ = 0.3 eV). Lines depict 
approximating equation (15) with α = 1 (red solid line) and α = 2 
(red dash-dot line), equations (16) (blue solid line), and (17) (blue 
dash-dot line).
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G(µ) ∝ (µ−∆/2) /
√
∆ (for µ � ∆/2).� (22)

This expectation is further supported with the numerical data 
presented in figure 1(e).

An initial increase of ZTmax with ∆ for 0 < ∆ � ∆�, also 
apparent in figures 4(c) and (d), can be understood by pointing 
out that the electronic and phononic parts of the thermal con-
ductance are of the same order of magnitude (Kel ∼ Kph) in 
such a range. In consequence, an upper bound to ZT can be 
written as (up to the order of magnitude) ZT � TGS2/Kel, 
allowing a rapid increase of ZT with ∆ (see supplementary 
information, section III), until Kel (decreasing with ∆) is over-
ruled by Kph (∆-independent).

In the remaining part of this section, we briefly discuss the 
possible influence of electron–electron interactions, neglected 
in our numerical analysis.

Several experimental works on free-standing BLG report 
an intrinsic (or spontaneous) band gap of ∆int(T = 0) ≈ 1.5 
meV vanishing above the critical temperature Tcrit ≈ 12 K 
[32–34]. To the contrary, no signatures of an intrinsic band 
gap are reported for BLG in van der Waals heterostructures 
(VDWHs) [35], in which thermoelectric properties may be 
significantly enhanced due to the suppression of out-of-plane 
(ZA) vibrations. Possibly, the above-mentioned difference 
could be attributed to a modification of the effective dielectric 
constant due to the materials surrounding a BLG sample in 
VDWHs. In fact, a basic mean-field description, relating 
∆int > 0 to the alternating spin order, allows one to expect 
that ∆int ∼ t0 exp(−const. × t0/Ueff) (where const.  ∼1 is 
determined by the bandwith), and thus a moderate decrease 
of the effective Hubbard repulsion (Ueff ) strongly suppresses 
∆int; see [36].

Although temperatures considered in this paper 
(0 < T � 10 K) are essentially lower then Tcrit, we focus on 
the case with a bias between the layers |U| ≈ ∆ ∼ 10–100 
meV, and much smaller ∆int should not affect the physical 
properties under consideration.

Additionally, the maximal ZT appears near the bottom 
of the conduction band or the top of the valence band 
(|µZT

max| ≈ ∆/2), where one of the layers is close to the charge-
neutrality, and thus one can expect the Coulomb-drag effects 
to be insignificant [37].

5.  Concluding remarks

We have numerically investigated thermoelectric propeties 
of large ballistic samples of electrostatically-gapped BLG. A 
logarithmic deviation of the maximal absolute thermopower 
from the Goldsmid–Sharp relation is identified and rational-
ized with the help of the step-function model for the trans-
mission-energy dependence. In addition to the earlier findings 
that the trigonal warping term modifies the density of states 
[24] and transport properties [13] also for Fermi energies �
1 meV, we show here that signatures of trigonal warping may 
still be visible in thermoelectric characteristics for the band 
gaps as large as ∆ ∼ 100 meV.

Next, the analysis is supplemented by determining the total 
(i.e. electronic and phononic) thermal conductance, making it 
possible to calculate the dimensionless figure of merit (ZT). 
The behavior of maximal ZT with the increasing gap can also 
be interpreted in terms of the step-function model, provided 
that we supplement the model with the scaling rule for the typ-
ical transmision probability for an open channel near the min-
imum of the conduction band (or the maximum of the valence 
band), which is ∝ ∆−0.5 (for large ∆). This can be attributed 
to the Mexican-hat like shape of the dispersion relation.

Although some other two-dimensional systems with 
the Mexican-hat like (or quartic) [15] dispersion also show 
enhanced thermoelectric properties, two unique features of 
BLG are worth to stress: (i) the possibility of tuning both 
the chemical potential and the band gap in a wide range, and 
(ii) the ballistic scaling behavior of transport characteristics 
with a barrier width. It is also worth to stress that the value of 
ZT  >  1 (or ZT  >  3 in the absence of out-of-plane vibrations) 
is reached at T  =  1 K for a moderate bandgap ∆ ≈ 10 meV, 
correponding to the electric field of ≈3 mV Å

−1
, making it 

possible to consider an experimental setup in which the spon-
taneous electric field from a specially-choosen substrate (e.g. 
ferroelectric) is employed to reduce the energy-consumption 
in comparison to a standard dual-gated setup [30].

High values of ZT at a 1 K temperature may not have 
practical device implications per se, however, we hope that 
scaling mechanisms identified in our work will help to find 
the best thermoelectric among graphene-based (and related) 
systems. The necessity to reduce the phononic part of the 
thermal conductance with a simultaneous increase of the 
maximal accesible band gap (possibly in a setup not involving 
an extra power supply to sustain the perpendicular electric 
field), further accompanied by some magnification of the 
electric-conductance step on the band boundary, strongly sug-
gests to focus future studies on graphene-based van der Waals 
heterostructures.
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I. DISPERSION RELATION, THE ACTUAL BANDGAP, AND DOPING

The Hamiltonian H given by Eq. (4) in the main text leads to the dispersion relation for electrons [1]

E
(e)
± (k) =

[
1

2
t2⊥ +

1

4
U2 + ~2

(
v2
F +

1

2
v2

3

)
k2 ±

√
Γ(k)

]1/2

,

with Γ(k) =
1

4

(
t2⊥−~2v2

3k
2
)2

+ ~2v2
F k

2
(
t2⊥+U2+~2v2

3k
2
)

+ 2ξ t⊥~3v3v
2
F k

3 cos 3ϕ, (S1)

where ± refers to the upper/lower band, k ≡ (kx, ky) is the wavevector, with k = 0 referring to the K or K’ point
(marked by ξ = 1 or ξ = −1, respectively), k ≡ |k|, and the angle 0 6 ϕ < 2π is the argument arg z of a complex
number z = kx + iky. For holes, we simply have E(h)

± (k) = −E(e)
± (k). This is a consequence of the combined particle-

hole-reflection symmetry, which is preserved as we have neglected the next-nearest neighbor intralayer hopping (t2).
The precise value of t2 (∼ t⊥) is difficult to determine for BLG [2]; however, its effects are insignificant when discussing
the band structure for |E| � t⊥.

The value of a band gap ∆ can be determined numerically via

∆

2
= minE(e)

− (k) = −maxE(h)
− (k). (S2)

For v3 6= 0 the band gap can be approximated as follows

∆ ≈ ∆0

(
1−∆0

√
2v3

t⊥vF
−∆2

0

5v2
3

4U2v2
F

)
, with ∆0 =

|U |t⊥√
U2 + t2⊥

(S3)

(∆0 is the exact value of a gap in the absence of trigonal warping). Although its accuracy is better then 0.5% for
t′ = 0.3 eV and |U | 6 300meV, the approximating Eq. (S3) is insufficient to present the numerical data in the energy
scale used in Fig. 1(e) in the main text; instead, we have determined ∆ for a given U directly by performing the
minimization in Eq. (S2) numerically.

In general, ∆ < |U | for |U | > 0, leading to a peculiar (the Mexican hat-like) profile of the dispersion relation for
E

(e)
− (k) and E(h)

− (k) bands in the presence of a gap (see the second paper in Ref. [1]).
The dispersion relation given by Eq. (S1) also allows us to define the density of states at the Fermi energy (EF ) in

a compact form

ρ(EF ) ≡ ρ(e)(EF ) + ρ(h)(EF ) =
1

π2

∑
c=e,h
m=±

∣∣∣∣ ∂∂E A(c)
m (E)

∣∣∣∣
E=EF

, (S4)

where we took into account spin and valley degeneracies (gs = gv = 2) and A(e,h)
± (EF ) denotes the area bounded

by the Fermi surface in the (kx, ky) plane. (In case E = EF is beyond the energy range of a given band, we put
A(c)
m (E) = 0.) In particular, for v3 = 0 and max(0, |EF | −∆/2)� t⊥, we have

ρ(EF ) ≈ t⊥
π(~vF )2

Θ (|EF | −∆/2) , (S5)

with Θ(E) being the Heaviside step function. The prefactor in Eq. (S5) is often written in a form 2meff/(π
2~), with

the effective mass meff ≈ 0.033me (where me is the free-electron mass) coinciding with the standard cyclotronic mass
mC(EF ) = (π~2/2)ρ(EF ). Integrating Eq. (S5) over the energy, we obtain the physical carrier concentration (or
doping) given by Eq. (5) in the main text.
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At finite temperatures (T > 0), the effective carrier concentration can be defined via its relation to the Hall
resistance, namely RH = −1/(eneff) (with the electron charge −e), leading to

neff = ne − nh =

∫ ∞
0

dEρ(E)fFD(µ, T,E)−
∫ 0

−∞
dEρ(E) [1− fFD(µ, T,E)] , (S6)

where ne (nh) is the concentration of electrons (holes) and fFD(µ, T,E) = 1/ [ exp ((E−µ)/kBT ) + 1 ] is the Fermi-
Dirac distribution function for a given electrochemical potential µ.

II. TRANSMISSION PROBABILITY

A. A semi-inifinite system in BLG

In the case of an abrupt potential barrier separating weakly- and heavily doped regions (see Fig. 1(a) in the main
text) we start from the substitution in the Hamiltonian (see Eq. (4) in the main text) p → p + eA, with a vector
potential A = (Ax, Ay) (not further specified, since it is disregarded in the forthcoming calculations). The i-th
component of the current (with i = x or y) corresponding to the Hamiltonian H reads, for the K valey,

ji (ψ) = ψ† · ∂H
∂Ai

∣∣∣∣
Ai→0

· ψ with
∂H

∂Ai

∣∣∣∣
Ai→0

= evF

 0 1 0 0
1 0 0 ν
0 0 0 1
0 ν 1 0

 , (S7)

where we have defined a dimensionless parameter ν = v3/vF .
Next, the transmission probability can be found by simple mode-matching of wavefunctions in the heavily- and

weakly-doped regions. Although deriving the corresponding functions is not a challenging task, they cannot be
presented in a closed form. Below, we briefly present a procedure for finding the solutions corresponding to waves
moving in desired directions (i.e., to the left or to the right):

(i) The wavefunctions satisfying the Dirac equation Hψ (x, y) = Eψ (x, y) can be found algebraically in
to the momentum representation, πi = ~ki. The general solution has a form of a spinor ψ (x, y) =

exp [i (kxx+ kyy)] (ψ1, ψ2, ψ3, ψ4)
T . There are four independent solutions, each corresponding to a different value of

kx (for a system with periodic boundary conditions the transverse wave number ky = 2πn/W , with n = 0,±1,±2, ...,
and W being the width of the system).

(ii) In order to determine the corresponding direction of propagation for a given solution of the Dirac equation,
one needs to follow the subsequent two-step procedure. First, one has to check a sign of the current employing Eq.
(S7). The positive (or negative) sign indicates the transmitted/incoming (or reflected) wave. Second, when dealing
with the wavefunction carrying zero current, it is important to check the sign of the imaginary part of kx. Positive
(or negative) Im (kx) corresponds to a solution decaying exponentially to the right (or to the left). When discussing
the transmission through a single barrier separating the heavily- and weakly doped regions we can, however, limit
ourselves to the solutions with real kx 6= 0 (which are normalizable with respect to the carried current). Out of four
solutions of the Dirac equation, there are at most two carrying a positive or negative current.

(iii) Subsequent calculation of the transmission probability becomes similar to the one usually performed for systems
containing a sample area between two highly-conducting contacts. In the contact region, here modelled as heavily-
doped bilayer graphene (for x < 0) the wavefunction takes a form

ψI (x) = ψ
1(2)
R,I (x) + r

1(2)
1 ψ1

L,I (x) + r
1(2)
2 ψ2

L,I (x) , (S8)

while the wavefunction in the weakly-doped sample area (x > 0) reads

ψII (x) = t
1(2)
1 ψ1

R,II (x) + t
1(2)
2 ψ2

R,II (x) . (S9)

The lower indexes, R and L, refer to the waves moving to the right (jx > 0) and to the left (jx < 0), respectively. The
upper indexes, 1(2), correspond to the two subbands. The parameters r1(2)

1 , r1(2)
2 , t1(2)

1 , t1(2)
2 are closely related to the

reflection and transmission probabilities and can be calculated via mode-matching at x = 0, namely: ψI (0) = ψII (0).
The final transmission probability is given by a sum over the all possible current ratios

Tky =
∑
m,n

|tmn |
2
jx
(
ψnR,II

)
/jx
(
ψmR,I

)
. (S10)

The comparison of the Landauer-Büttiker conductance, following from Eq. (S10), with the number of open channels,
which is determined solely by the dispersion relation given by Eq. (S1), is presented in Fig. 1.
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FIG. 1: The conductance (top) and the number of open channels (bottom) for an abrupt potential barrier in BLG, corresponding
to the width W = 103 l⊥ = 1.77µm and the trigonal-warping strength t′ = 0.3 eV, displayed as functions of the chemical
potential. The electrostatic bias between the layers (U) is specified for each line. Right panels are zoom-ins, for low values of
µ−∆/2, for the data shown in left panels.

B. Mode-matching for a rectangular sample

In order to determine the transmission probability at a given energy: T (E), for a rectangular sample attached
to the two heavily-doped regions (the leads), we employ the computational scheme similar to the presented in Ref.
[3]. However, at finite-precision arithmetics, the mode-matching equations become ill-defined for sufficiently large L
and µ, since they contain both exponentially-growing and exponentially-decaying coefficients. This difficulty can be
overcome by dividing the sample area (0 < x < L) into Ndiv consecutive, equally-long parts, and then matching the
wave functions for all (Ndiv+1) interfaces. Typically, using the double-precision arithmetic, we put Ndiv = 20 for L =
W/20 = 104 l⊥. The necessary number of different transverse momenta ky = 2πq/W (where q = 0,±1,±2, . . . ,±qmax)
varies with the energy E, scaling roughly as 2qmax +1 ∝

√
|E| −∆/2 (for |E| > ∆/2). For instance, to determine

T (E) with a 10-digit accuracy for ∆ = U = 0 we took: 1955 6 2qmax +1 6 8149, with the lower (upper) value
corresponding to E = 0 and t′ = 0.1 eV (E = 2meV and t′ = 0.35 eV).

III. SIMPLIFIED MODELS FOR TRANSMISSION-ENERGY DEPENDENCE

A. Basic definitions

For sufficiently large ∆, transmission spectra T (E) for either the single-barrier or the rectangular-sample case
show essentially abrupt switching near E ≈ ∆/2, with some secondary details becoming irrelevant when calculating
thermoelectric properties at nonzero temperature. Therefore, one can consider a family of simplified models for
transmission-energy dependence, as given by Eq. (13) in the main text

T (α)(E) = C(α)(∆)×

{
δ(E − 1

2∆) + δ(E + 1
2∆) for α = 0

Θ(|E| − 1
2∆)

(
|E| − 1

2∆
)α−1 for α > 0

, (S11)

with δ(x) being the Dirac delta function, and Θ(x) being the Heaviside step function. A compact form of Eq. (S11)
implies that the prefactor C(α)(∆) is dimensionless for α = 1 only; in general, we have

[
C(α)(∆)

]
= eV−α+1 (for α > 0).
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The cummulants Ln, determining the thermoelectric properties via Eqs. (8)–(10) in the main text, are well-defined
for the transmision-energy dependence of the form T (α)(E) (S11) with arbitrary α > 0. Substituting the derivative
of the Fermi-Dirac distribution function

−∂fFD

∂E
=

1

4 cosh2 [ (E − µ)/2kBT ]
· 1

kBT
, (S12)

and introducing the dimensionless variables

t =
E

kBT
, v =

µ

kBT
, u =

∆

2kBT
, (S13)

we can write

L(α)
n =

gsgv
h

(kBT )
n

4

∫
dt (t−v)n T (α)(t · kBT ) cosh−2

(
t− v

2

)
≡ gsgv

h
(kBT )

n+α−1 C(α)(∆)L(α)
n , (S14)

where the last factor (L(α)
n ) is dimensionless and C–independent. Explicitely, we obtain

L(0)
n =

1

4
(u− v)n cosh−2

(
u− v

2

)
+

1

4
(−u− v)n cosh−2

(
−u− v

2

)
, (S15)

L(α)
n =

1

4

∫ ∞
y

dt (t− v)n(t− u)α−1 cosh−2

(
t− v

2

)
+

1

4

∫ −y
−∞

dt (t− v)n(−t− u)α−1 cosh−2

(
t− v

2

)
(α > 0).

(S16)

B. Maximal absolute thermopower

Subsequent approximations, performed when calculating L(α)
n for y � 1, depend on mutual relation between x and

y. In particular, for the Seebeck coefficient, we first rewrite Eq. (9) from the main text as follows

S =
kB
e
L(α)

1

/
L(α)

0 . (S17)

Since the maximal |S| is expected for |v| � u, we can employ the approximation

1

4
cosh−2

(
t− v

2

)
≈

{
e−t+v for u < t <∞,
et−v for −∞ < t < −u,

(S18)

(valid for u± v � 1), in order to get closed-form approximating expressions for the first three cumulants

L(α)
0 ≈ ev−u + e−v−u, (S19)

L(α)
1 ≈ ev−u(−v + u+ α)− e−v−u(v + u+ α), (S20)

L(α)
2 ≈ ev−u [(v − u)(v − u− 2α) + α(α+ 1)] + e−v−u [(v + u)(v + u+ 2α) + α(α+ 1)] . (S21)

The right-hand side of Eq. (S17) can now be approximated by

S ≈ kB
e

[ (u+ α) tanh v − v ] , (S22)

with the maximal absolute value

|S|max (kB/e)
−1 ≈

√
(u+ α)(u+ α− 1)− ln

(√
u+ α+

√
u+ α− 1

)
, (S23)

appearing for

v|S|max ≈ ± ln(
√
u+ α− 1 +

√
u+ α). (S24)

These are Eqs. (14) and (15) in the main text.
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C. Thermoelectric figure of merit (ZT ) for T → 0

Similarly, neglecting the phononic part of the thermal conductivity (or, equivalently, taking the T → 0 limit) we
can express the thermoelectric figure of merit as follows

ZT (T → 0) = ZTel ≡
GS2T

Kel
=

(
L(α)

1

)2

L(α)
0 L

(α)
2 −

(
L(α)

1

)2 . (S25)

This time, the approximation of Eqs. (S19)–(S21) does not lead to closed-form expressions for ZT (α)
el,max; least-square

fitting of power-law formulas for 10 6 u 6 30 brought us to

ZT
(α=1)
el,max ≈ 0.192(2) · u2.374(3), ZT

(α=2)
el,max ≈ 0.1809(4) · u2.217(1), (S26)

with standard deviations for the last digit specified by numbers in parentheses. For T > 0, we generally have
ZT < ZTel,max, and the unlimited increase of ZT with u is not observed; however, we have ZT ∼ ZT

(α=1)
el,max (up to

the order of magnitude) for T = 1K and u ∼ 1.

D. ZT at finite temperatures and the power factor

In contrast with the T → 0 limit discussed above, for any T > 0 there exists a value of ∆, above which the electronic
part of the thermal conductance is suppressed (Kph > Kel). In turn, for u� 1 (being equivalent to ∆� kBT > 0),
one can expect that the figure of merit

ZT (∆� kBT > 0) ≈ ZTph ≡
GS2T

Kph
=

T

Kph(T )

L2
1

T 2L0
, (S27)

where we have emphasised that the phononic part of thermal conductance depends only on temperature, Kph =
Kph(T ). Subsequently, when looking for the maximal ZT as a function of the chemical potential µ at a fixed T , one
need to focus on the maximal power factor which is, for the transmission-energy dependence of the form T (α)(E)
(S11), given by (

GS2
)(α)

max
=
gsgv
h

k2
B(kBT )α−1 C(α)(∆)

[(
L(α)

1

)2/
L(α)

0

]
max

. (S28)

DefiningM(α)
max =

[(
L(α)

1

)2/
L(α)

0

]
max

, we restore the structure of Eq. (19) in the main text.

As the maximal ZT corresponds to vZTmax ∼ u, the approximating Eq. (S18) cannot be applied in this case. Instead,
for u� 1 we have

L(α)
n ≡ L(α)

n,+ + L(α)
n,− ≈ L

(α)
n,+, (S29)

where the parts L(α)
n,+ and L(α)

n,− are the integrals over t > 0 and t < 0 (respectively) in Eq. (S16). The results are

M(α=1)
max ≈ 1.265, M(α=2)

max ≈ 4.060, (S30)

corresponding to

vZTmax ≈ u− 1.145 for α = 1, or vZTmax ≈ u+ 0.668 for α = 2. (S31)

The above Eqs. (S30) and (S31) are equivalent to Eqs. (16) and (17) in the main text.

IV. PHONONIC PART OF THE THERMAL CONDUCTIVITY

A. Brief overview

Here we overwiew the Callaway method [4], further modified by Alofi and Srivastava [5, 6] in order to determine
the phononic part of the thermal conductance Kph; see Eq. (12) in the main text. For the sake of consistency with
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TABLE I: Parameters used in our numerical calculations. Most of the values are taken from Refs. [8, 9].

Symbol Numerical value Units
L 1.77 × 10−5 m
d 3.3544 × 10−10 m
Vm 5.3 × 10−6 m3/mol
vl 2.16 × 104 m/s
vt 1.4 × 104 m/s
b 3.13 × 10−7 m2/s
ζ 946091a or 0 b m2/s2

BN 3.18 × 10−25 sK−3

BU 4.77 × 10−25 sK−3

α 3 –
Ad 0.00169 –
ωD
LA 472.6 THz
ωD
TA 306.4 THz
ωD
ZA 149.9 THz
Θ̄ 2365.4 K

aBLG; bMLG.

the notation of Refs. [5, 6], let us define the thermal conductivity for a rectangular BLG sample

κel,ph =
L

2d

Kel,ph

W
, (S32)

with el (ph) denoting the electronic (phononic) part, L and W the sample length and width (respectively), and
d = 0.335 nm the separation between graphene layers. (For the remaining model parameters, see Table I.)

The phononic part of the thermal conductivity — in the remaining of this section simply denoted as κ ≡ κph —
can be calculated in the two steps, earlier presented in Ref. [6]:

In the first step, sufficient for the case of low temperatures, one can simply use the Debye approximation, in which
a relevant element of the conductivity tensor reads

κDx,x =
~2d

2VmkBT 2

∑
p

∫ ωD,p

0

dω ω2v2
pτpDp (ω)n (ω) [n (ω) + 1] , (S33)

where Vm (= 5.3 × 10−6 m3/mol) is the molar volume, n (ω) is the Bose-Einsten distribution function, ωD,p is the
Debye frequency (with the index p labeling phonon polarization, p = LA, TA, or ZA; the corresponding phonon
frequencies are listed in Table I). The relaxation time τp, group velocity vp and density of states Dp (ω) are defined
in next three subsections.
The second step, necessary at higher temperatures, requires one also to calculate a correction originating from the

momentum conservation in the three-phonon processes of the type N . Such a correction reads

κcorrx,x =
~2d

2VmkBT 2

∑
p

{∫ ωD,p

0
dω ω2v2

pτpτ
−1
N Dp (ω)n (ω) [n (ω) + 1]

}2∫ ωD,p

0
dω ω2v2

pτpτ
−1
N

(
1− τpτ−1

N

)
Dp (ω)n (ω) [n (ω) + 1]

, (S34)

where τN = BNω
2T 3 (here BN = 3.18 × 10−25 sK−3 is a parameter fitted to the experimental data) denotes the

relaxation time for three-phonon processes of the type N . The prefactor 1/2, in both κDx,x and κcorrx,x , originates from
averaging the group velocity over possible directions (we focus here on the in-plane heat transfer, see Ref. [7]).

B. Relaxation times

We take into account the three main sources of the phonon scattering: boundaries (index bs), point defects and iso-
topes (pd), and three-phonon scattering processes (anh). Assuming that these mechanisms are mutually independent,
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we employ the Matthiessen rule to write down the formula for the total relaxation time τp:

τ−1
p = τ−1

p, bs + τ−1
p, pd + τ−1

p, anh. (S35)

The elements on the right-hand side of Eq. (S35) are given by:

τ−1
p, bs = vp/L,

where L is the length of the system [8], vp is the group velocity for phonons of the polarization p,

τ−1
p, pd =

2π

ω2
D,p

ω3Ad,

where ωD,p is the Debye frequency for the polarization p, Ad is a parameter quantifying the concentration of impurities
(i.e., point defects or C13 atoms), and

τ−1
p, anh =

{
BN +BU exp

[
−Θ̄/ (αT )

]}
ω2T 3,

with the parameters BU = 4.77 × 10−25 sK−3 and BN = 3.18 × 10−25 sK−3 (adjusted to match the results of Ref.
[5]), α = 3, and Θ̄ = 2365.4K being the Debye temperature averaged over the polarizations p = LA, TA, ZA.

C. Group velocities

The group velocity vp is defined as a derivative of the frequency ωp over the wave vector q,

vp =
∂ωp
∂q

. (S36)

In the case of monolayer graphene, group velocities for acoustic phonons are given by

vMLG
LA = vl, (S37)
vMLG
TA, = vt, (S38)

vMLG
ZA = 2

√
bωZA, (S39)

where vl = 2.16× 104 m/s, vt = 1.4× 104 m/s, and b = 3.13× 10−7 m2/s. In the case of bilayer graphene, it becomes
necessary to take the coupling between the layers into account. This alters only the expression for vZA, leading to

vBLGLA = vl, (S40)
vBLGTA = vt, (S41)

vBLGZA = γ
√
γ−ζ

(√
2ωZAb

)−1

, (S42)

where γ =

√
ζ2 + (2bω)

2, and ζ = 946091m2/s is a parameter quantifying the coupling between the layers. Taking
the ζ → 0 limit, we obtain the expression for decoupled layers. In such a case, group velocities for monolayer (MLG)
and bilayer graphene (BLG) are the same.

D. Phononic density of states

In the case of LA or TA polarization, the density of states (DOS) reads

Dp (ω) =

{
arcsin (ω/ωz) (Vm/d)ω/ (πvp)

2
, ifω ≤ ωz,

(Vm/d)ω/
(
2πv2

p

)
, ifω > ωz,

(S43)

where ωz = 5.8THz for BLG (or ωz = 0 for MLG). In the case of ZA polarization, we have

DZA (ω) =

(Vm/d)ω/
(
2π2bω′z

) ∫ arcsin(2bω/γ)

0

{
1− [γ sin (φ) / (2bω′z)]

2
}−1/2

dφ, if ω ≤ ω′z,

(Vm/d)ω/
(
π2γ

) ∫ π/2
0

{
1− [2bω′z sin (φ) /γ]

2
}−1/2

dφ, ifω > ω′z,
(S44)

where ω′z = 14.48THz for BLG (or ω′z = 0 for MLG).
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E. An abrupt interface

In the limit of L → 0, our model of thermal conductivity is noticeably simplified: The three-phonon scattering
processes, as well as the contributions from impurities and boundaries, become irrelevant (namely, we can put τ−1

p →
τ−1
p, bs, τ

−1
p, pd → 0, and τ−1

p, anh → 0 in Eq. (S35)). In turn, Eq. (S33) simplifies to

κ0
x,x =

~2Ld

2VmkBT 2

∑
p

∫ ωD
p

0

dωω2vpDp (ω)n (ω) [n (ω) + 1] , (S45)

showing an explicit linear dependence of the thermal conductivity on the length L, and leading to a finite thermal
conductance per unit width, Kph/W = (2d/L)κ0

x,x [see also Eq. (S32)].
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Abstract
TheCorbino geometry allows one to investigate the propagation of electric current along ap–n
interface in ballistic graphene in the absence of edge states appearing for the familiarHall-bar
geometry. Using the transfermatrix in the angular-momentum spacewe find that for sufficiently
strongmagnetic fields the current propagates only in one direction, determined by themagneticfield
direction and the interface orientation, and the two valleys,K andK′, are equally occupied. Spatially-
anisotropic effectivemassmay suppress one of the valley currents, selected by the external electric
field, transforming the system into amesoscopic version of the valley filter. Thefilteringmechanism
can be fully understoodwithin the effectiveDirac theory, without referring to atomic-scale effects
which are significant in proposals operating on localized edge states.

1. Introduction

One-dimensional conduction channels associatedwith edge states are often considered as background for solid-
state quantum information processing not only in systems showing the quantumHall effect [1–8], but also in
graphene [9, 10] or transitionmetal dichalcogenide nanoribbons [11]. The aforementioned nanostructures are
formed of two-dimensionalmaterials that host an additional electronic valley degree of freedom, allowing
dynamic control and the development of valleytronic devices [12], such as the valley filter [13, 14].

The operation of early proposed valleyfilters in graphene, employing the constrictionwith zigzag edges [13]
or the line defect [15], was strongly affected by atomic-scale defects [16] and localmagnetic order [17]. To
overcome these difficulties, alternative proposals utilizing strain-induced pseudomagnetic fields [18–23],
disorder and curvature effects in carbon nanotubes [24], or various types of domainwalls in graphene, bilayer
graphene [25], or topological systems [26, 27], were put forward. Despite such theoretical and computational
efforts the experimental breakthrough is stillmissing, although some recent progress can be noticed [28–30].
Therefore, conceptually novelmechanisms of valley filtering are very desired.

In this paper, we explore the possibility of valley filtering for peculiar edge statesmixing Landau levels from
both sides of the p–n interface in the quantumHall regime [4–6]. Such unconventional edge states can be
regarded as degenerate versions of snake states, recently observed in ultraclean graphene devices [31, 32] (see
figure 1). As the charge density is centered far fromphysical edges of the system, and transport is essentially of
amesoscopic, rather than nanoscopic, nature (i.e. thewavefunction varies on a length scale given by themagnetic

length = l eB aB , with a=0.246 nmbeing the lattice parameter; see [33]), some of the above-
mentioned obstacles in sustaining the valley polarization of currentmay be overcome. Additionally, the Corbino
geometry [34–37] allows one to eliminate conventional edge states,making it possible to fully control the spatial
distribution of electric current via external electric andmagnetic fields.

Possible classical carrier trajectories for weak-to-moderatemagnetic fields are depicted schematically in the
top andmiddle panels offigure 1. Snake states (bottompanel) cannot be understood fully classically, as they
involve relativistic Klein tunneling through the region of an opposite polarity. In the quantumHall regime the
currentflows along one section of the p–n interface only (see figure 2). The physicalmeaning of a‘weak’,
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‘moderate’, or ‘strong’,field is determined bymutual relations between the characteristic sample length
º -L R Ro i (with the outer disk radiusRo and the inner radiusRi), themagnetic length lB (µ -B 1 2), and the

cyclotron radius rc (µ -B 1)2. In turn, the larger the disk size the lowerfield is required to eliminate currents
distant from the p–n interface, providing the sake of scalabilitymissing in previously proposed nanoscopic valley
filters3.

We show, using the numerical transfer-matrix technique, that the presence of anon-uniform staggered
potential, introducing the position-dependentmass term in the effectiveDirac equation for low-energy
excitations [38], leads to aspatial separation of valley currents and that the valley polarizationmay be controlled
by changing the gate potentials (see figure 3). Although to set astaggered potential one needs to initiallymodify
the sample on amicroscopic level, e.g. by chemical functionalization [39–41] or the adsorption of hexagonal
boron nitride (h-BN) [42, 43], the operation of such amesoscopic valley filter is then fully-electrostatically
controlled.We furtherfind, that the constantmagnetic field of 1 T is sufficient to obtain anearly perfect
polarization in the disk of a400 nmdiameter.What ismore, the filter operation can be directly attributed to
apeculiar combination of symmetry breakings for theDiracHamiltonian: Themass term breaks the effective

Figure 1.Classical and quasiclassical trajectories (schematic) for electrons (blue lines with arrows) and holes (red lineswith arrows) in
grapheneCorbino disk containing ap–n junction (black dash-dot line) placed in aweak (top panel), moderate (middle panel), and
strong (bottompanel)magnetic field = ( )B B0, 0, , withB>0. Left and right subplots correspond to the opposite polarity of
avoltage source driving acurrent between circular leads (shadow areas). The coordinate systemused in the calculations is also shown.

2
Related to the local carrier concentration via  p= = ∣ ∣r k eB n lc B

2, with p= ∣ ∣k n being thewave vector.
3
For r lc B, quantum effects dominate andmay fully eliminate themoderate-field range (seemiddle panel in figure 1) for smaller disks. As

rc is related to the carrier concentration, particular scenario of theclassical-to-quantum transition also depends on the electrostatic potential
profile.

2
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time-reversal symmetry in asingle valley (symplectic symmetry), whereas themagnetic field breaks the true time-
reversal symmetry (involving the valley exchange). Together, these two symmetry-breaking factors lead to the
inequivalence of valleys, providing an opportunity to produce nonequilibrium valley polarization of current.

Referring to the above scenariomay also partly explain the valley polarization occurrence in nanobubbles
[20, 21], since geometric deformations usually led to anonzeromass term [44]. However, in such systems,

Figure 2.QuantumHall states propagating along ap–n junction in the strong-field limit, forB>0 (top) andB<0 (bottom).
Diagonal double arrows indicate the system symmetry upon asimultaneous time reversal andmagneticfield inversion.

Figure 3.The separation of valley currents (top) and the valley polarization (bottom). Aconstant staggered potential induces the
effectivemassM>0 in the upper half of the disk (dotted area). Gate electrodes (not shown) tune the doping in the lower half which is
undoped (top), p-doped (bottom left), or n-doped (bottom right).

3
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valley-dependent gaugefields play adominant role, so an interpretation in terms of basic symmetry breakings is
not as clear as in the realmagnetic field case considered here.

The paper is organised as follows: in section 2, we briefly present the effective Dirac theory and the transfer
matrix approach to the scattering problem in the angular-momentum space (adjusted to theCorbino-disk
symmetry). In section 3, we discuss our numerical results concerning the current distribution and valley filtering
in the presence of external electromagnetic field and the staggered potential. The conclusions are given in
section 4.

2.Model andmethods

2.1. The effectiveDirac equation
Let us start by considering a ring-shaped sample, characterized by the inner radiusRi and the outer radiusRo,
surrounded bymetallic contactsmodelled by heavily-doped graphene areas (we setRo=4Ri=200 nm for all
systems considered in the paper). Sincewe focus on smooth (or long-range) disorder, the intervalley scattering
can be neglected and one can consider the single-valleyDirac equation

 xp s p s y f f f s y f+ = - -( ) ( ) [ ( ) ( ) ] ( ) ( )r E r r r, , , , , 1x x y y z

where x = 1 (−1) is the valley index forK ( ¢K ) valley,σα (withα=x, y, z) is the Paulimatrix,
p = - ¶ +a a a( )v i eAF is the gauge-invariantmomentumoperatorwith » -v 10 m sF

6 1 the Fermi velocity,
E denotes the Fermi energy, and  f( )r, and f( )r, are position-dependent electrostatic potential energy and
mass (respectively) in polar coordinates f( )r, .We choose the symmetric gauge = -( )A y x,B

2
with a uniform

magnetic fieldB. Furthermore, ¹B 0 for the disk area (Ri<r<Ro) only; inside the leads (r<Ri or r>Ro)
we simply setB=0, as the value ofB becomes irrelevant in the high-doping limit (see e.g. [34]).

In the case of a systemwith cylindrical symmetry (namely,  andbeingf-independent), the
Hamiltonian in equation (1) commutes with the angular-momentumoperator,  x s= - ¶ +fL i 2z z , and
thewavefunction can be expressed as a product of radial and angular parts

y f j f q
q
q

= º xs f-
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

( )
( ) ( )( )r r e
r

r
, , 2l l l

i l A l

B l

2 ,

,

z

where l is an half-odd integer, andA (B) labels the upper (lower) spinor element.

2.2.Mode-matching in the angular-momentum space
To solve the scattering problemnumerically we simplify here, for the case of amonolayer, themethod earlier
developed for theCorbino disk in bilayer graphene [45].

If  or in equation (1) isf-dependent the cylindrical symmetry is broken, however, one still can employ
the angular-momentum eigenfunctions to represent ageneral solution as asuperposition

åy f y f=( ) ( ) ( )r r, , , 3
k

k

with y f( )r,k given by equation (2) (see also appendix A).
Substituting the above into equation (1)we obtain

  å åy f x s f s f y f¶ - = - -[ ( )] ( ) { [ ( )] ( )} ( ) ( )v f r r i E r r r, , , , , 4
k

F r
k

k
k

x y k

where x s= + --
´( ) [ ( ) ( ) ]f r k r l r r2 1 2k

B z
2

2 2 , themagnetic length = ( )l eBB , and  ´n n is the n×n
identitymatrix.Multiplication over the conjugate angular wavefunction *j f( )l and subsequent integration over
the polar anglef leads to


 ås

x
q x s s q¶ - - = - -

⎡
⎣⎢

⎤
⎦⎥( ) ( ) [ ( ) ( )] ( ) ( )f r i

E

v
r i r r r , 5r

l
x

F
l

k
x lk y lk k

with

 òp
f f=

p
f-( ) [ ( ) ( )] ( )( )r d r v e

1

2
, , 6lk F

i k l

0

2

and

 òp
f f=

p
f-( ) [ ( ) ( )] ( )( )r d r v e

1

2
, . 7lk F

i k l

0

2

(Notice that the angular dependence of  or introduces themode-mixing in our scattering problem.)
The general solution of equation (5) can bewritten as a vector

q q q q q= ¼ ¼( ) [ ( ) ( ) ( ) ( )]r r r r r, , , , ,l
A

l
A

l
B

l
B T

min max min max
, with cutoff angular-momentumquantumnumbers

4
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lmin and lmax. (Hereinafter, = - +L l l 1max min is the total number of transmissionmodes.) Subsequently, one
canwrite


    q qxs x s s s¶ + - Ä = Ä - Ä - Ä´ ´

⎡
⎣⎢

⎤
⎦⎥{[ ( )] } ( ) ( ) ( )r r i

E

v
i r1 2 , 8r L L z

F
x L L x y2 2

where  Ä is the Kronecker product ofmatrices  and , and the diagonalmatrix

 = +
+

+ +
⎛
⎝⎜

⎞
⎠⎟ ( )l

r

r

l

l

r

r

l

l

r

r

l
diag

2
,

1

2
, ...,

2
. 9

B B B

min
2

min
2

max
2

Once the scatteringmatrix is determined (see appendix A for details), transport properties of the system can
be calculatedwithin the Landauer–Büttiker formalism in the linear-response regime [46, 47]. In particular, the
electrical conductance and valley polarization are given by

å= =
-

+x
x

x x

x x=

= =-

= =-
( )G G T

T T

T T
Tr ,

Tr Tr

Tr Tr
, 100

1

1 1

1 1

where =G e h20
2 , the prefactor 2marks the spin degeneracy (weneglect the Zeeman effect4), and =x x x

†T t t
with xt being the transmissionmatrix for one valley.We further neglect the electron–electron interaction and
electron–phonon coupling, which is acommon approach to nanosystems inmonolayer graphene close to the
Dirac point, as the scattering processes associatedwith thesemany-body effects are usually slower than the
ballistic-transport processes [48, 49].

Thematrix t is also employedwhen calculating the radial current density, which is given by

åf y f f y f=( ) ( ) ( ) ( ) ( )†j r ev r J r, , , , 11r F
l

l r l

with the radial current density operator

f xs f s f= +( ) ( )J cos sin , 12r x y

and y f x= å x
xs f-( ) ( ) ( )( )r e rt, 1,l k l k

i k T
,

2z being the transmittedwavefunction in the outer contact
(r>Ro). Thematrix element x( )t l k, denotes the transmission probability amplitude from channel k to l.
Similarly, the Cartesian components of the current density f =( ) ( )j r j j, ,x y are calculated by replacing the
operator Jr in equation (11) by

xs s= = ( ) ( )J Jor respectively . 13x x y y

3.Quantum transport in crossed electric andmagneticfields

3.1.Definitions
In order to study arole of the p–n junction in quantum transport through graphene-basedCorbino disk, we
choose the electrostatic potential energy as follows

 f f f= - -( ) ( ) ( )r e r, sin , 14V

where  is the electric field (we further define ºV e Ro) and the anglefV defines the crystallographic
orientation of the p–n interface [50, 51]. Furthermore, we investigate how the transport is affected by themass
term

 f f f p f f= Q - Q + -( ) ( ) ( ) ( )r M, , 15M M

with the angle fM specifying themass arrangement, andQ( )x being theHeaviside step function. Themass term
given by equation (15) is restricted to ahalf of the disk, f f p fÎ +[ ],M M , seefigure 4. In the heavily-doped
contact regions,  f f= =( ) ( )r r, , 0.

It is worth tomention that we have also considered other functional forms of themass term, including
 f( )r, smoothly varyingwith the distance fromap–n junction, always finding aparameter range inwhich
the valley-filteringmechanism that we describewas highly efficient. Even for asimplemodel given by
equation (15), changing the Fermi energy (E) allows one to shift ap–n interface (  f- =( )E r, 0)with respect
to themass boundary, leading to arich phase diagramdiscussed later in this section.

The specific forms of the potential energy  f( )r, and themass term f( )r, , given by equations (14) and
(15), lead to thematrix elements

4
For =B 1 T the Zeeman splitting is mD = »E g B 0.1Z B meV [with »g 2 and m = ( )e m2B e the Bohrmagneton] and cannot affect

thefilter operation appearing at the potential andmass-term amplitudes of ~V M 10 meV.
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3.2.QuantumHall regime in themassless case
Weconsider now the case ofM=0 in equation (15). The Fermi energy is set as E=0 and thus the p–n interface
overlapswith the disk diameter (ypn=0) for any ¹V 0.

Formoderate values of the electric field ( <∣ ∣V 10 meV) andweakmagnetic fields themagnetoconductance
behavior is the same as in acase without the p–n junction [34], see figure 5. The increase ofG at weakmagnetic
fields, visible for =∣ ∣V 10 meV, indicates the system is close to the ballistic transport regime. This occurswhen
the (position-dependent) cyclotron diameter  -( )r y R R2 0,c o i, enhancing vertical currents along the
classical trajectories (see the top panel infigure 1). For our choice of the parameters, the cyclotron radius,


=

-( ) ∣ ( )∣ ( )r x y
E x y

eBv
,

,
, 18c

F

is bounded by ( ) ( )∣ ∣ ( )r y R R V eBv0,c i o F along the vertical diameter (x= 0) and for  ∣ ∣R y Ri o.
Another apparent feature of the data presented infigure 5 is arapid conductance drop, occurring for any

¹V 0 at sufficiently highfield. Unlike in auniformly-doped disk out of the charge-neutrality point, whereG
vanishes in thehigh-field limit [34], hereG approaches the value of e h4 2 (i.e. the conductance quantumwith
spin and valley degeneracies) signalling the crossover frompseudodiffusive to quantum-hall transport regime.
The limiting value ofG reproduces the experimental result of [36], and can be easily explained by analysing
symmetries of theDirac theory [52].

Abitmore detailed view of the effect is providedwith the evolution of angle-dependent current density at
the outer disk edge (r=Ro)with increasing field, presented infigure 6(a).We choose ahigh electric field
(V=50 meV) to ensure the systemundergoes acrossover directly fromballistic to quantum-Hall transport
regime, as the contribution from evanescent waves is negligible. ForB=0 (red line) the currentflows in
directions alongwhich the doping is extremal, namely,f=±π/2. For higherfields the transport is dominated

Figure 4. (a)Electrostatic potential energy  f( )r, given by equation (14)withfV=0, corresponding to ahomogeneous electric
field = ( )E 0, . (b)Themass term f( )r, given by equation (15)withfM=0 (i.e. = ¹M 0 in the upper half of the disk
only). (c)Cross sections of the electrostatic potential energy ( )y (blue line) and the effective potentials  ( ) ( )y y (black solid or
dashed line) along the disk diameter: x=0,  -R y Ro o, for someV,M>0. Red linemarks the Fermi energyE. The expressions
for ypn (the position of a p–n interface), following from  =( )y Epn , and ( )yeff (forwhich   = E ) are also given. (The inner-lead
edges, y=±Ri, are omitted for clarity.)
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by asingle direction, for which  f =( )r, 0 (i.e.f=π), with some secondary currents at f p∣ ∣ 2 visible for
B=1/2 T (green line), and vanishing forB=1 T (blue line). This picture is in agreement with the results of
previous theoretical studies (see [52] and appendix B for details).

As themagnetic length at 1Tesla field = »( )l B 1 T 26B nm is still comparable with the system size (in
particular, the inner radiiRi=50 nm), the transport cannot be understood classically or quasiclassically.
Therefore, several features depicted schematically infigure 1 (such as the orbits in themiddle panel)have no
correspondants in numerical results presented infigure 6(a). However, an apparent asymmetry of the current
distribution for ¹B 0 is directly linked to the left-rightmirror symmetry breaking, also present in the classical
level: both the trajectories and quantum-hall edge states are symmetric upon asimultaneous left-right reflection
and thefield inversion (see figure 2); the same applies to the voltage-source polarity (or time) reversal combined
with themagnetic field inversion.

Figure 5.Magnetoconductance of the Corbino diskwith = =R R4 200o i nm,E=M=0, and different values of the in-plane
electric field  (quantified by ºV e Ro). Notice that the conductance (G) approaches the one quantumvalue ( e h4 2 ) for any ¹V 0
at sufficiently highmagnetic field (B).

Figure 6.Parametric plots of the current density f º=( )∣ ( )j r j j, ,r R x yo [see equation (13)], where  f p<0 2 , for the same setup as
in figure 5with the electrostatic potential andmassmagnitudes (V andM) varied between the subplots. Line colours (same for each
subplot)mark differentmagneticfields:B=0 (red),B=1/2 T (green), andB=1 T (blue). (a) ForM=0, the results are identical
for both valleys. Arelatively large value ofV=50 meV eliminates the pseudodiffusive charge-transport regime. At 1 T field, the
distribution resembles the analytical result for an infinite planewith the p–n junction, see figure B2 in appendix B. (b) ForV=0 and
M=10 meV, the separation of valley currents appears. Solid and dashed lines correspond to distinct contributions from the two
valleys (K,K′); dotted lines depict the current density summarized over the valleys ( + ¢K K ). (c) ForM=10 meV andV=±1 meV
(top/bottompanel), polarity of the p–n junction allows one to select one of the valley currents and suppress the other. (The
summarized current density is omitted for clarity.)
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3.3.Mass term and the valleyfilter operation
So far, we have putM=0 in equation (15) and the transport characteristics were identical for both valleys (K
andK′). A different picture emerges in the systemwith nonzero and spatially-varyingmass term (the ¹M 0
case). Our simplifiedmodel, inwhich themass is present only in the upper half of the system (see figure 4),
already allows to demonstrate themesoscopic valley-filteringmechanism. In this subsection, we present the
central results of the paper, providing aquantitative description of the effects depicted schematically infigure 3.

Quite surprisingly, even at zero electric andmagnetic fields the currents corresponding to different valleys
arewell separated (see figure 6(b)). This can be interpreted as azero-doping version the edge-state formation
(the Fermi energy isfixed atE= 0). As themass opens aband gap in the upper half of the disk (0<f<π),
there are no extended states available, and the current is pushed away towards the lower half (−π<f<0). In
turn, the border between areaswith = 0 and ¹ 0 plays arole of an artificial edge of the system (notice
that the p–n junction is absent forV= 0). The total current distribution (dotted lines in figure 6(b)) is
approximately uniform in the lower half of the disk (as this part is in the pseudodiffusive charge-transport
regime), with some localmaxima forf≈0 andf≈−π, signaling contributions from the zero-energy edge
states. The emergence of such states is well-described in graphene literature, see e.g. [53]; their analogs in bilayer
graphene in aposition-dependent perpendicular electric fieldwere also discussed [25]. Abasic reasoningwhy
electrons in different valleys prefer opposite directions of propagation is given in appendix C.

Adirect link between the valley polarization of current and the direction of propagation for zero-energy
edge states leads to the spatial separation of valley currents, which is apparent even in our relatively small system,
forwhich the role of evanescent waves is still significant (andmanifests itself by a nonozero current density for
any−π<f<0).

Next, the valley-filteringmechanism is demonstrated by creating the p–n interface in apresence of themass
term ( ¹V 0, ¹M 0). Figure 6(c) shows astrong suppression of one of the valley currents in relatively weak
electric andmagnetic fields (and the valley is selected by a sign ofV ), provided that themass term is sufficiently
strong. The valley polarization  gradually increases with themagnetic field, becoming almost perfect for
B=1 T (see figure 7).

The operation of our valley filter is characterized in details by the numerical results presented in figure 8,
wherewe havefixedV=1 meV, and visualized the transport characteristics in the Fermi energy-mass (E–M)
parameter plane, for three selected values of themagnetic field (B= 0, 1/2, and 1 T). Notice that varying E
corresponds to avertical shift of the p–n interface; in particular, for E=VRi/Ro=0.25 meVwe have
ypn=−Ri (seefigure 4) and the p–n interface is atangent line to the inner disk edge at the lower (i.e.mass-free)
half. At zeromagnetic field, the densitymaps shown in bottompanels are perfectly uniform, and no valley
polarization is visible. For higher fields, distinct regions of the ‘phase diagram’ are formed, including the
unpolarized highly-conducting region ( »G G2 0,  » 0) at the central-bottompart of each subplot, the two
polarized highly-conducting regions (G≈G0,  » 1)near the upper corners, and the two tunneling regions
(G≈0,  » 0)near the lower corners. At 1 Tfield (top panels), the boundaries between above-mentioned
regions are alreadywell-developed.

Some further insights into relations connecting the diagram structure and characteristic features of the
effective potential profile,    f f º ( ) ( ) ( ) ( )r r y y, , in equation (1), are given infigure 9. In brief,
the boundaries between regions on the E–M diagram can be attributed to the situations when the p–n line is

Figure 7.Conductance (left) and valley polarization (right)defined by equation (10) for theCorbino diskwith both themass term and
the p–n interface displayed as functions of themagneticfield. Remaining systemparameters are same as in figure 6(c).
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atangent to the inner disk edge at themass-free part, ypn=−Ri (vertical dashed line), or when the Fermi energy
is equal to the effective potential along atangent line to the inner disk edge at the nonzeromass part, =( )y Rieff
(diagonal solid lines). The sketch offigure 9 corresponds to the high-field limit, inwhich l RB i and varying E
may lead to an abrupt switching between the regions. In afinite-field situation (seefigure 8),finite widths of
quantumHall states result in blurs (and shifts) of the boundaries, with ageneral trend to expand the unpolarized
highly-conducting regionwith decreasingB.

Numerous experimental realizations of anon-uniformmass inmonolayer graphene [39–43] suggest to
focus on aconstant and relatively largeM?1 meV. In such acase, themagnetic field ofB=1 T allows one to
control the valley polarization of current independently by tuning the Fermi energy (E) or by reversing the p–n
junction polarity (  -V V ).

It is alsoworth stressing, that high valley polarization remains unaffectedwhen the p–n interface ismoved by
adistance ofD » =y R 50i nmaway from themass boundary, allowing us to coin the termofmesoscopic
valley filter.

4. Conclusions

Wehave demonstrated, as aproof of principle, that theCorbino disk inmonolayer graphenemodified such that
themass term in effectiveDirac equation is present in ahalf of the disk (leading to the energy gap of1 meV)
may act as ahighly efficient valley filter, when placed in crossed electric andmagnetic fields inducing ap–n
interface close to themass-region boundary. Although introducing themass term involves amicroscopic

Figure 8.Conductance (left) and valley polarization (right) forV=1 meV as functions of the Fermi energy (E) and themass term
(M). The value ofmagnetic field (B) is varied between the panels. Remaining systemparameters are same as infigure 5.
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modification of asample, the output (valley) polarization of currentmay be controlled electrostatically in
constantmagnetic field, alternatively by: (i) inverting the p–n junction polarity, or (ii) shifting the p–n linewith
respect to themass boundary by tuning aglobal doping of asample. Themagnetic field of 1 T is sufficient to
obtain the polarization better than 99% for the device size (namely: the outer disk diameter) of 400 nm.

An additional interesting feature of the system is that the currents belonging to different valleys are spatially
separated, flowing in opposite directions along the p–n interface. In the absence of ap–n interface, there are two
equal currents propagating along themass boundary; in-plane electricfield amplifies one of these currents and
suppresses the other. Thefilteringmechanism is directly linked to global symmetry breakings of theDirac
Hamiltonian, and therefore we expect it to be robust against typical perturbations in real experiments.

For instance, the operation ofmesoscopic valley filter whichwe have described should not be noticeably
affected by the long-range (or smooth) impurities, as they generally do not introduce the intervalley scattering
[54, 55]. (In contrast, short-range impuritiesmix the valleys andmay restore the equilibrium valley occupation.)
Recent experimental works on ultraclean graphene p–n junctions [31, 32] allow us to believe that such systems,
accordinglymodified to induce aposition-dependent quasiparticlemass,may also act as highly-efficient
mesoscopic valley filters. Since the valley filtering takes place in aproximity of the p–n interface, which can be
shifted (or bent) during an experiment by using external gates, we anticipate thatmore complexmultiterminal
geometrywillmake it possible to setup afewfilters in series in order to independently produce and detect valley-
pseudospin polarization bymeans of nonlocalmeasurements. Numerical simulations for themultiterminal
geometry are, however, beyond the scope of this paper.
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AppendixA. Transfermatrix approach

Ageneral wavefunction corresponding to the lth transmission channel is given by a linear combination of two
linearly-independent spinor functions

Figure 9. Sketch of the high-field ‘phase diagram’ for someV>0 (see top panel infigure 8)with distinct regions characterized by
dimensionless conductance g=G/G0 and the polarization  , with the boundaries given bymutual relation between the Fermi
energy and the potentials (   and  ) at the inner disk edge: =( )y Rieff (solid lines) and = -y Ripn (dashed line). (See also
figure 4(c)).
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q q q= +( ) ( ) ( ) ( )r a r a r , A1l l l l l
1 1 2 2

where aal (α=1, 2) are arbitrary complex amplitudes and q q q=a a a( ) [ ] ( )r r,l
A

l
B

l T
, , is a normalized spinor

functionwithA andB being the sublattice indices. The normalization has to be carried out in such away that the
total current remains constant (i.e. l,α–independent). To satisfy this condition, wewrite down the current
density for the lth transmission channel

q xs j s j q= +


[ ( )] · [ ( ) ( )] · ( ) ( )†j ev r rcos sin . A2l F
l

x y
l

In principle, it is sufficient to normalize only thewavefunctions in the leads since the relation between them
(namely: between the incoming, the transmitted, and the reflectedwavefunction)ultimately definesmatrices r
and t. Current conservation guarantees that amplitudes rmn and tmn preserve the probabilistic interpretation.
Therefore, adirect normalization for thewavefunctions in the sample area is not essential for the successful
modematching.

Next, it is convenient to present acomplete set of wavefunctions as a vector with each element
corresponding to a different transmission channel. Since only a limited number of channels contributes
significantly to the quantum transport, one can look for atruncated solution by introducing the cutoff-
transmission channels lmin and lmax such that Î [ ]l l l,min max . The total number of transmission channels,

= - +( )M l l 1max min , is chosen to be large enough to reach the convergence. In such anotation, we canwrite

q = ( )( ) ( ) ( )a
ar r , A31

2

where( )r is a 2M×2Mmatrix, = ¼a a a[ ]a a a, ,l l Tmin max . The explicit formofmatrix( )r will be presented
later. The notation of equation (A3) is convenient when dealingwith asystemwithmodemixing introduced by
aposition-dependent potential.

We are primarily interested in arelation between the two sets of amplitudes definingwavefunctions at
different radii, say: r andRi. Such arelation can bewritten introducing a propagator ( )r R, i ,

q q=( ) ( ) ( ) ( )r r R R, . A4i i

The propagator ( )r R, i can be found by substituting equations (A4) into (8) from themain text (theDirac
equation). The resulting equation takes the following form

  ¶ =( ) ( ) ( ) ( )r R r r R, , , A5r i i

with an initial condition  = ´( )R R,i i M M2 2 . Thematrix ( )r in equation (A5) carries the complete
information about the potential and themass term in the system.

Formally, equation (A5) defines 2M independent systems of 2M ordinary differential equations, each of
which describing acolumn in thematrix ( )r R, i .We have employed afixed-step explicit RungeKuttamethod
of the 4th order [56]. Both the step-size aswell as the number of transmission channelsM are adjusted to reach
the numerical convergence; in practice, these parameters depend on the system size, as well as on themagnetic
field, in an approximately linearmanner similarly as in the case of bilayer graphene (see [45]).

Once the propagator for the sample area ( )R R,o i is determined, we can translate it onto atransfermatrix,
connecting thewavefunctions in the leadswithwavefunctions in the sample area, via themode-matching




f f
f
f

=
=
=

( ) ( )
( ) ( )
( ) ( ) ( )

R R

R R R

R R R

,

, , A6
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o
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o

o i
S
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where f =( ) ( )aR rL
o L . As the doping in the leads is set to infinity, thematrix ( )rL can be presented as a

Kronecker product  = Ä ´( ) ( )r rL M M (we have omitted the phase constants as they are insignificantwhen
calculating the transport properties), where

 x x= -
⎡
⎣⎢

⎤
⎦⎥( ) ( )r

r

1 1 1
. A7

Columns in thematrix ( )r represents independent wavefunctions, corresponding to different directions of
propagation (incoming and outgoingwaves). The transfermatrix is thus given by

   = - ( ) ( ) ( ) ( )R R R R, . A8L o o i L i
1

Finally, the transmission properties of the system can be obtained by retrieving the scattering-matrix
elements from . The transfermatrix can be expressed by blocks of the scatteringmatrix as follows

 =
¢ ¢

- ¢ ¢ ¢

- -

- -

⎡
⎣⎢

⎤
⎦⎥

( ) · ( )
( ) · ( )

( )
†t r t

t r t
, A9

1 1

1 1
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where t and r are the transmission and reflectionmatrix (respectively) for awavefunction incoming from the
inner lead; similarly, ¢t and ¢r are the transmission and reflectionmatrix for awavefunction incoming from the
outer lead.

Appendix B. Solutions for an infinite graphene plane

The clear asymmetry of acurrent propagating along the p–n junction in the quantumHall regime (see
figure 6(a) in themain text) illustrate an intrinsic feature that is not related to theCorbino geometry. In this
appendixwe derive analytically the eigenfunctions for the low-energyHamiltonian of graphene in crossed
electric andmagnetic fields





xp p
xp p

=
- -
+ -

⎛
⎝⎜

⎞
⎠⎟ ( )H

e x i

i e x
, B1

x y

x y

where p = - ¶ +a a ai eA with the Landau gauge = ( )BxA 0, , and themass term is neglected for simplicity.
(Notice that the electrostatic potential energy term in equation (B1) corresponds tofV=π/2 in equation (14)).
It is clear now that theHamiltonian (B1) is invariant under the time reversal combinedwith themagnetic field
inversion, namely

 x x- - = x x
-( ) ( ) ( )H B H B, , , B21

where  s=x 0 is asingle-valley time reversal operator with  denoting complex conjugation. (In the four-
component notation, the full time reversal is  t= Ä xx , where tx is the Paulimatrix acting on valley degrees
of freedom.)

Due to the translation symmetry in the y-direction,H (B1) also commutes with - ¶i y and thuswe can
choose thewavefunction as Y = F( ) ( ) ( )x y x ik y, exp y , with thewavenumber ky, reducing the scattering
problem to asingle-dimensional one. The correspondingDirac equation reads



 

 
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eB e
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F

One can further simplify the above equation introducing the dimensionless variable c = +-l x l kB B y
1 , where

= ∣ ∣l e BB is themagnetic length.Without loss of generality, we can suppose thatB>0. Equation (B3) can
nowbewritten as

gc x c
x c gc

e
- - ¶ +

- ¶ - -
F = F

c

c

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( ) ( ) ( )
i

i
x x , B4

wherewe have defined g = ( )el vB F
2 and e g= -[ ( ) ]l E v kB F y .When considering an infinite graphene

planewe can choose (without loosing the generality) the zero Fermi energy (EF=0), what leads to

e g= - ( )l k . B5B y

Following [57, 58], wefind the solutions of equation (B4) by solving an auxiliary eigensystem

j e j=( ) ( ) ( )x x B62

for the operator

 e= + -( ˜ ) ˜ ( )H H HH , B7

where s s=H̃ Hz z , which is chosen such that each eigenfunction of satisfies equation (B4) aswell.
Equation (B6) can rewritten as follows

xg
xg

e
-

-
=-

+

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

O i

i O
u
v

u
v , B82

where egc e g c x= + - - + ¶ c( )O 2 12 2 2 2 , and u, v are spinor elements of thewavefunction j ( )x .
We can nowwrite down the fourth-order differential equation for u, namely

g + =+ - ( )u O O u 0, B92

being equivalent to the set of two second-order equations

g gec e g c- =  + - - + ¶c [ ( ) ] ( )u u1 2 1 . B102 2 2 2 2
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The solutions are

r r= +


-  +


- -( ) ( ) ( )( ) ( )u a b iD D , B11w w1 1 2 1 1 2

where n ( )xD is the parabolic cylinder function [59], r c g c ge g= - - - -( )( )2 12 2 3 4,
e g= - -( )w 1 22 2 3 2 , and a±, b±are arbitrary constants. Sincewe are interested in square-integrable

wavefunctions, we set b±=0.Using equation (B8), we obtain the full formof the spinor function

r
x g g
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Both the solutions + +( )u v, T and - -( )u v, T , as well as their arbitrary linear combination, satisfy
equation (B8). Therefore, we construct an eigenfunction of equation (B6), corresponding to an eigenvalue
ε2>0, by taking [60]
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where e x g g g= + - -[ ] [ ( ) ]c 1 1 2 12 2 3 4 , andA is the normalization constant
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The case of ε2=0 (the zeromode) is slightly different, and it is instructive to consider it separately. The
corresponding solution of equation (B6) reads

j =e
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In a general case, the normalization ofj ( )x leads also to adiscrete spectrumof eigenvalues

e g= -( ) ( )n2 1 , B17n
2 2 3 2

with n=0, 1, 2, ...; see [50, 57, 58]. The above, togetherwith equation (B5), implies thewavenumber
quantization

g
g

= 
-( )

( )( )k
n

l

2 1
. B18y

n

B

2 3 2

We further notice that the zeromode (n= 0) lacks the additional twofold degeneracy of highermodes (n>0).
Explicit forms of wavefunctions, given above by equations (B13) and (B15), allows one to calculate the

probability density j∣ ( )∣x 2 (see figure B1) as well as the local current density j s j= ( ) · · ( )†j x xy y (see
figure B2).

Aswe have neglected themass term throughout this Appendix, the physical quantities displayed infigures B1
andB2 are same for both valleys,K and ¢K , indicated by ξ=1 or ξ=−1 (respectively) in equation (B1). Also,
the probability density j∣ ( )∣x 2 is affected by the direction of electric field, indicated by  gºsgn sgn , only in
away that the two solutions for n>0, characterized by opposite wavenumbers (ky and−ky) are exchanged
upon g g - , see figure B1. In contrast, the current density jy(x) also changes sign upon g g - , see figure
B2. Revisiting the derivation forB<0, one quickly canfind that j∣ ( )∣x 2 and jy(x) are affected by themagnetic
field inversion (  -B B) atfixed γ in the sameway as by the electric field inversion (g g - ) atfixedB.

Another striking feature of the results presented infigure B2 is that for either the n=0 or n>0modes, the
total current (integrated over x)flows in one direction only, determined by the signs of  andB. For n>0, this
can be attributed to the fact that solutions with ky>0 and ky<0 are localized at the opposite sides of ap–n
interface, resulting in the same sign of the group velocity. For n=0, the solution given by equation (B15) can be
regarded as alinear combination of edge states fromboth sides of the interface, for which the current density is
centered precisely at the interface line (as depicted schematically infigure 2 in themain text).

We now comment on the relation between solutions for an infinite planewith trajectories depicted in
figure 1.

The snake states (bottompanel infigure 1) can be represent as linear combinations of the solutionswith
n=0 and n>0, having aproperty that the full combination propagates in the same direction as each of its
components. On the other hand, classical trajectories propagating in the direction (approximately)
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perpendicular to the interface (top panel infigure 1) represent finite-size effects having no analogs in an infinite
plane.Most intriguing are the trajectories depicted in themiddle panel offigure 1, propagating in both directions
along the interface. Formally, this is possible since the total current, considered as aquadratic form, is neither
positively nor negatively defined, and thus ageneric quantum state composed of eigenstates with different n-s
may also carry the current in opposite direction then each of the components.

In real sample of afinite size, edge states associatedwith ap–n junction derived in this appendix are always
accompanied by edge states close to aphysical systemboundary transporting the charge in opposite direction,
see figure B3(a).When adisk-shaped sample is clampedwith circular electrodes, forming theCorbino setup,
edge currents are eliminated by the outer lead and the schematic current distribution for the lowestmodes,
visualized infigure B3(b), may be closely reproduced by the physical current density (seefigure 6(a) in themain
text). Remarkably, the familiar Fleming’s left hand rule, relating the directions of the current, themagnetic field,

Figure B1. Probability density j∣ ( )∣x 2 for ξ=1 (theK valley),B=1 T, and γ=1/2 (top) or γ=−1/2 (bottom).

Figure B2.Current density jy(x) for ξ=1 (theK valley),B=1 T, and γ=1/2 (top) or γ=−1/2 (bottom).
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and the charge displacement (or the in-plane electric field) has also aversion for graphene p–n junction in the
quantumHall regime, seefigure B3(c).

AppendixC.Mass confinement and the valley separation

Weargue here that themechanismbehind spatial separation of currents in different valleys, appearing for
anonzeromass term (see figure 6(b) in themain text), can essentially be understood by analyzing the zero-
energywavefunction in the presence of infinitemass confinement proposed in the seminal work by Berry and
Mondragon [61].

In the absence of electric field ( = 0), ageneral zero-energy solution of equation (B3) for ξ=1 (theK
valley) can bewritten as [62]

F = +x c

c
=

=
-

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( ) ( )[ ] x C

e
C e0

0
, C1k0, , 1

0
1 2 2

2

y 2

2

withC1 andC2 being arbitrary complex numbers, and c = +-l x l kB B y
1 again. For ξ=−1 (the ¢K valley), the

two basis solutions on the right-hand side of equation (C1) have interchanged spinor components.
Neglecting the intervalley scattering, one can show that confinement of the carriers in abounded domain

implies zero outward current at any point of the boundary at each valley (ξ=±1), namely

xs a s a= á + ñ =a Fx ( )( )j cos sin 0, C2x yn

where a a a=( ) ( )n cos , sin is the unit vector normal to the boundary, and the spinorwavefunction
F = F Fx x x( ),A B

T
, , . Equation (C2) can be rewritten as

 x a aF F + F F =x x x x( ) ( ) ( )cos Re sin Im 0, C3A B A B, , , ,

which is equivalent to

 a
F

F
=x

x

x⎛
⎝⎜

⎞
⎠⎟ ( ) ( )i iexp , C4

B

A

,

,

where  is real and depends on the physical nature of the confinement [61].
Infinitemass confinement at x=0, restricting thewavefunction to the right hemiplane (x>0),

corresponds to  = 1 andα=π in equation (C4) and leads to the boundary condition

xF = Fx x= =∣ ∣ ( )i . C5A x B x, 0 , 0

Subsequently, the coefficients in equation (C1) follow

x= -x x ( ) ( )C i C k lexp . C6y B,2 ,1
2 2

The vertical current density for the zero-energy solution is

s x= á ñ = - -xF x
= ∣ ∣ ( ) ( )[ ]j C k l2 exp , C7y y y B,1

2 2 2
ky0, ,

0

where the last equality follows from equation (C6).

Figure B3. (a)Edge states in afinite disk-shaped graphene samplewith ap–n interface in the quantumHall regime (schematic). (b)
Azoom-in of the interface regionwith band structure schemes. Open circlesmark the two states on the Fermi level with opposite
wavenumbers (ky<0 and ky>0) having equal group velocities (vg). (Notice that the direction electric current is opposite to vg as the
electron charge is−e.) (c)Aversion of the Fleming’s left hand rule showingmutual relation between directions of themagneticfieldB,
the in-plane electric field  , and the current Inear the interface. The coordinate systemused in appendix B is also shown.
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Clearly, the uniform current in equation (C7) changes sign upon the valley exchange (x x - ), providing
aqualitative understanding of the valley separation, as the effect associatedwith zero-energymode should
overrule the effects originating fromhighermodes for ageneric system close to the charge-neutrality point
(allowing for ∣ ∣k l 1y B ).
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We study the ballistic conductivity of bilayer graphene in the presence of symmetry-breaking terms in an
effective Hamiltonian for low-energy excitations, such as the trigonal-warping term (γ3), the electron-hole
symmetry-breaking interlayer hopping (γ4), and the staggered potential (δAB). Earlier, it was shown that
for γ3 �= 0, in the absence of remaining symmetry-breaking terms (i.e., γ4 = δAB = 0), the conductivity (σ )
approaches the value of 3σ0 for the system size L → ∞ [with σ0 = 8e2/(πh) being the result in the absence
of trigonal warping, γ3 = 0]. We demonstrate that γ4 �= 0 leads to the divergent conductivity (σ → ∞) if
γ3 �= 0, or to the vanishing conductivity (σ → 0) if γ3 = 0. For realistic values of the tight-binding model
parameters, γ3 = 0.3 eV, γ4 = 0.15 eV (and δAB = 0), the conductivity values are in the range σ/σ0 ≈ 4 − 5
for 100 nm < L < 1 μm, in agreement with existing experimental results. The staggered potential (δAB �= 0)
suppresses zero-temperature transport, leading to σ → 0 for L → ∞. Although σ = σ (L) is no longer universal,
the Fano factor approaches the pseudodiffusive value (F → 1/3 for L → ∞) in any case with nonvanishing
σ (otherwise, F → 1), signaling the transport is ruled by evanescent waves. Temperature effects are briefly
discussed in terms of a phenomenological model for staggered potential δAB = δAB(T ) showing that, for
0 < T � Tc ≈ 12 K and δAB(0) = 1.5 meV, σ (L) is noticeably affected by T for L � 100 nm.

DOI: 10.1103/PhysRevB.101.125425

I. INTRODUCTION

The universal conductivity of monolayer graphene (MLG),
σMLG = 4e2/(πh) (with the elementary charge e and the
Planck constant h), accompanied by the pseudodiffusive shot
noise (quantified by the Fano factor F = 1/3), is one of the
most recognizable landmarks of the Dirac nature of electrons
that dwell in this material [1–5]. These unique characteristics
are linked to the dominant role of transport via evanescent
waves in graphene near the charge-neutrality point [6]. What
is more, the effective Hamiltonian for low-energy excitations,

HMLG = vF (pxσx + pyσy), (1)

where vF = √
3 t0a/(2h̄) ≈ 106 m/s is the energy-

independent Fermi velocity (with t0 ≈ 3 eV the nearest-
neighbor hopping integral and a = 0.246 nm the lattice
spacing), p j = −ih̄∂ j are in-plane momentum operators, and
σ j are the Pauli matrices acting on the sublattice degree of
freedom (with j = x, y), possesses several symmetries which
are crucial for the simplicity of transport properties. (We
further note that the absence of valley-coupling factors is
supposed throughout the paper, and the discussion is limited
to the K valley.) These include the rotational invariance
(RI), the electron-hole symmetry (EHS), and the sublattice
equivalence (SE), which is embedded in the so-called
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symplectic symmetry (or time-reversal symmetry in a single
valley) [7,8].

In bilayer graphene (BLG) the situation is more complex
due to the couplings between the layers [9–13]. Histori-
cally, the effective Hamiltonians for BLG were constructed
by taking only the leading tight-binding parameters of the
Slonczewski-Weiss-McClure model [14,15], which are indi-
cated in Fig. 1(a).

Even in the simplest possible approach [9,10], including
the nearest-neighbor interlayer hopping γ0 (being numerically
different than t0) and the direct interlayer hopping γ1, SE is
already eliminated due to the inequivalence of sites connected
by γ1 (dimer sites) and the remaining ones (nondimer sites),
giving an opportunity to open the band gap by perpendicular
electric field introducing the layer inequivalence [16]. (The
second-nearest-neighbor interlayer hopping, formally break-
ing EHS, is usually omitted as—in the low-energy limit—it
only shifts the charge-neutrality point by a constant value; see
Ref. [17].) Quite surprisingly, the approach of Refs. [9,10]
leads to the conductivity σ0 = 2σMLG = 8e2/(πh) and F =
1/3 (in the absence of a gap), as one could expect for two
decoupled layers. The results are also size independent, pro-
vided that W � L � l⊥, with the sample width W , the length
L marked in Fig. 1(b), and l⊥ = √

3 aγ0/(2γ1) ≈ 1.77 nm
being a new length scale due the coupling between the
layers.

Next, skew-interlayer hopping (or the trigonal-warping
term) γ3 [18] breaks RI, leading to the appearance of three
additional Dirac cones at each valley [16]. The effect of γ3

on quantum transport is also significant [11–13]; namely, the
conductivity σ (L) is no longer universal but length dependent,
approaching the value of 3σ0 for large L [19]. In contrast,
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FIG. 1. (a) Tight-binding parameters for Bernal-stacked bilayer
graphene, (b) schematics of the system studied in the paper, and
(c) outline of our results for the conductivity σ and the Fano factor
F . The limits of σ and F in (c) correspond to L → ∞ at a fixed
W/L � 1, indicating the following transport regimes: the standard
pseudodiffusive (SPD), the asymptotic pseudodiffusive (APD), the
divergent pseudodiffusive (DPD), the marginally conducting (MC),
and the semiconducting (SC). Approximate equalities are used in
the cases when the limiting values are closely approached in the
mesoscopic range 100 nm � L � 1 μm.

the Fano factor is unaffected (i.e., F = 1/3), showing that the
pseudodiffusive nature of charge transport in BLG cannot be
attributed any particular value of σ .

In this paper, we complement the previous studies of bal-
listic charge transport in BLG by examining numerically the
effect of EHS-breaking interlayer hopping γ4 on the σ (and
F ) dependence on L. The results show that for γ4 �= 0, σ (L)
may be either divergent (for γ3 �= 0) or vanishing (for γ3 = 0)
with L → ∞ (with F ≈ 1/3 in the first case or F → 1 in
the second case), as marked schematically in Fig. 1(c). These
findings extend the collection of possible behaviors associated
with transport via evanescent waves in graphene-based sys-
tems. The role of an intrinsic (i.e., not related to the external
electric field but rather interaction induced) band gap reported
by some experimental works [20–23] (and parametrized here
by the staggered potential δAB) is also discussed.

The remaining part of the paper is organized as follows.
In Sec. II we present the model Hamiltonian and discuss
how each of the symmetry-breaking terms (γ3, γ4, or δAB)
affects the low-energy dispersion relation. Then, in Sec. III
we demonstrate, by means of numerical mode matching for
the Dirac equation, the behavior of σ and F with growing
L separately in the presence and in the absence of each

symmetry breaking. The concluding remarks are given in
Sec. IV.

The numerical results presented in the main text are sup-
plemented with the explicit mode-matching analysis for the
special cases of γ3 �= 0, γ4 = δAB = 0 (Appendix A) and γ3 =
δAB = 0, γ4 �= 0 (Appendix B).

II. THE MODEL

We start from the minimal version of the four-band Hamil-
tonian [16], in which all the symmetry breakings mentioned
in Sec. I are quantified by independent parameters:

HBLG =

⎛
⎜⎜⎜⎝

δAB/2 v0π γ1 −v4π
†

v0π
† −δAB/2 −v4π

† v3π

γ1 −v4π −δAB/2 v0π
†

−v4π v3π
† v0π δAB/2

⎞
⎟⎟⎟⎠, (2)

where π = e−iθ (px + ipy), π† = eiθ (px − ipy), with the angle
θ (between an armchair direction and the x axis) defining the
crystallographic orientation of the sample, v0 = √

3aγ0/(2h̄),
v3 = v0γ3/γ0, and v4 = v0γ4/γ0. In the forthcoming numer-
ical discussion, we set θ = π/4, γ0 = 3.16 eV, and γ1 =
0.381 eV [24]; for each of the remaining parameters the
cases of zero and nonzero value are studied independently to
demonstrate the impact of a particular symmetry breaking on
ballistic transport. Namely, we took γ3 = 0 or 0.3 eV, γ4 = 0
or 0.15 eV, and δAB = 0 or 1.5 meV.

Our specific choice of the staggered potential δAB in
the Hamiltonian HBLG (2) follows from the demand that it
opens a band gap without breaking EHS, which is solely
controlled by γ4. (In the parametrization of Ref. [16] the
energy difference between dimer and nondimer sites V also
breaks EHS; here we set V = 0). Physically, δAB represents
the irreducible part of a gap (i.e., one that cannot be closed
by external electric fields) and can be attributed to charge or
spin order which may appear in the BLG ground state when
electron-electron repulsive interactions are taken into account
[25,26].

In Fig. 2 we present the low-energy band structure fol-
lowing from the Hamiltonian HBLG (2) by displaying the
cross sections, for py = h̄ky = 0, of dispersion relations for
eight different combinations of symmetry-breaking parame-
ters γ3, γ4, and δAB. An apparent feature visible in Fig. 2(a)
is the energy shift of a secondary Dirac cone (same for
all three secondary cones) due to EHS breaking for γ4 �= 0
[see Fig. 2(c) for a comparison], making it impossible (for
γ3 �= 0 and δAB = 0) to achieve the exact zero-doping case,
in which the transport is fully carried by evanescent waves.
In contrast, for γ3 = 0 [see Figs. 2(e) and 2(f)], the effects
of γ4 are marginal (apart from clear electron-hole asymme-
tries visible for γ4 �= 0), and the zero-doping case can be
achieved for both γ4 = 0 or γ4 �= 0. For δAB �= 0, we have
an indirect band gap for γ4 �= 0 and γ4 �= 0 [see Fig. 2(b)],
or direct band gaps in the remaining cases, allowing one
to obtain the zero doping by adjusting the Fermi level to
the gap.

The consequences of these features for BLG transport
properties are discussed next.
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FIG. 2. (a)–(f) Band energies for the Hamiltonian HBLG given by Eq. (2) with θ = 0. Solid lines correspond to the parameters (δAB, γ3, γ4)
specified in each panel. The dashed black line in (a) marks the parabolic correction due to the electron-hole symmetry breaking interlayer
hopping γ4 (see the explicit formula with m = γ1/2v2

0). The dashed red lines in (e) and (f) depict the reference band structure for γ3 = γ4 = 0.
The wavenumber kx = px/h̄ is specified in units of kl = 2

3

√
3 γ1γ3/(aγ 2

0 ) ≈ 0.05 nm−1, being the kx position of a secondary Dirac cone
calculated for the parameters as listed in (c). Each panel displays the cross section taken at ky = 0.

III. RESULTS AND DISCUSSION

A. Zero-temperature charge transport

We employ the Landauer-Büttiker expressions for zero-
temperature conductivity and the Fano factor in the linear-
response regime [27], namely,

σ (T →0) = g0L

W
Tr(tt†), (3)

F = Tr[ tt†(1−tt†)]

Tr(tt†)
, (4)

with the conductance quantum g0 = 4e2/h accounting for
spin and valley degeneracies. In order to determine the trans-
mission matrix at a given Fermi energy, t = t(E ), for a
rectangular sample attached to the two heavily doped regions,
we employ the computational scheme similar to that presented
in Ref. [13], with a numerical stabilization introduced in
Ref. [28]. In brief, at finite-precision arithmetics, the mode-
matching equations may become ill defined for sufficiently
large L, as they contain both exponentially growing and expo-
nentially decaying coefficients. This difficulty is overcome by
dividing the sample area into Ndiv consecutive, equally long
parts and matching the wave functions for all (i.e., Ndiv + 1)
interfaces. Typically, using the double-precision arithmetic,
we put Ndiv = 	L/(40 l⊥)
 + 1, with 	x
 denoting the floor
of x.

Our numerical results for E = 0 are presented in Figs. 3
and 4. As the debate on the ground-state nature of BLG is
currently ongoing [26] and the existing experimental results
are far from being consistent [20–23,29,30], we examine eight

possible scenarios by setting different values of the parameters
(δAB, γ3, γ4) in the low-energy Hamiltonian HBLG (2), corre-
sponding to the dispersion relations presented in Sec. II.

The behavior of transport properties is relatively simple
for δAB = 1.5 meV (coinciding with the gap reported in
Refs. [22,23]); we observe a fast decay of σ (L) with growing
L, accompanied by F → 1 (see the blue lines in Figs. 3 and 4),
indicating the insulating (or semiconducting) behavior. The
remaining parameters (γ3 and γ4) are essentially meaningless
in such a case; a slightly elevated conductivity (namely, σ >

σ0) is visible for γ3 = 0.3 eV and L < 100 l⊥, due to the
finite-size effects.

In a gapless case (δAB = 0) we identify four apparently dif-
ferent behaviors of σ (L), depending on whether the remaining
parameters (γ3 and γ4) take zero- or nonzero values.

For δAB = 0 and γ3 = 0.3 eV, the values of σ (L) are
generically elevated (above σ0) for any L [black lines in
Figs. 3(a) and 3(b)], with the Fano factor F ≈ 1/3 [black
lines in Figs. 4(a) and 4(b)]. Starting from L ≈ 2000 l⊥, one
can further distinguish the behaviors for γ4 = 0.15 eV [solid
black line in Fig. 3(a)], for which σ (L) grows approximately
linearly with L, and for γ4 = 0 [dashed black line], for which
σ (L) approaches the value of 3σ0.

For γ4 = 0.15 eV, the energy shift of three secondary
Dirac cones [see Fig. 2(a)] is equal to

�El = h̄2k2
l v4

mv0
= 2

γ1γ
2
3 γ4

γ 3
0

≈ 0.33 meV, (5)

where m = γ1/2v2
0 and kl = γ1v3/h̄v2

0 , leading to a nonzero
number of propagating modes (open channels) at zero energy,
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FIG. 3. Conductivity [in units of σ0 = 8e2/(πh)] as a function of length L (in units of l⊥ = h̄v0/γ1 = 1.77 nm) at a fixed W/L = 20. The
trigonal warping strength is (a, b) γ3 = 0.3 eV or (c, d) γ3 = 0. Bottom panels are zoom-ins, for small L, of the data presented in top panels.
Solid (or dashed) lines in all panels are for γ4 = 0.15 eV (or γ4 = 0); the staggered potential is δAB = 0 (black lines) or δAB = 1.5 meV (blue
lines), as indicated with arrows in (b) and (d). The red circle in (b) marks the experimental results of Ref. [29]. Dash-dotted lines in (a) and
(b) depict the approximate upper bound given by Eq. (7) in the main text. The line-color encoding shown in (c) is same for all panels.

which can be approximated as [28]

Nopen(E =0) ≈ 0.68
�El W

h̄v3
. (6)

Subsequently, the excess conductivity from secondary Dirac
cones can roughly be bounded as

σ (L) − σ0 � g0NopenL

W
= 9.6 × 10−3 σ0

L

l⊥
, (7)

FIG. 4. (a)–(d) The Fano factor F as a function of L. The system parameters and the line-color encoding are the same as in Fig. 3.
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with the rightmost equality corresponding to W/L = 20 and
σ0 on the left-hand side representing a contribution from
evanescent waves in the primary Dirac cone [see the dash-
dotted lines in Figs. 3(a) and 3(b)]. The transmission reduction
for propagating modes, approximately by a factor of 2, can
be attributed to the additional backscattering appearing in
the double-barrier geometry, which is usually much weaker
for a single barrier [31]. A secondary feature of σ (L) is a
quasiperiodic oscillation due to the Fabry-Pérot resonances
appearing for L = n�L, where n = 1, 2, . . . , and (up to the
order of magnitude) �L ∼ π h̄v3/�El ≈ 340 l⊥ [28].

None of these effects is present for γ4 = 0, for which
the conductivity follows the scenario earlier described in
Refs. [12,13]. (In Appendix A, we present the analytical
derivation explaining why σ (L) → 3σ0 for L → ∞ and ar-
bitrarily small γ3 �= 0.) We further notice that the available
experimental value in Ref. [29], reporting σ ≈ 2.5σ0 for L ≈
400 nm = 226l⊥ [red circle in Fig. 3(b)], is equally close to
both the results for γ4 = 0 and 0.15 eV, and the determination
of γ4 via conductivity measurements requires a sample length
exceeding L � 2 μm.

For δAB = γ3 = 0, the conductivity behavior with growing
L is a bit more peculiar.

If γ4 = 0, we simply have σ (L) = σ0 and F = 1/3 for any
L � l⊥ [see dashed black lines in Figs. 3(c), 3(d), 4(c), and
4(d)], reproducing the analytical results of Refs. [9,10].

In contrast, if γ4 = 0.15 eV (solid black lines) we observe
a slow power-law decay of σ (L) with growing L, which can be
approximated as σ (L) ∝ L−2.0 for L � 1000 l⊥, accompanied
by F → 1. Notice that the Fano factor is F ≈ 1/3 in the
range of L � 300 l⊥ shown in Fig. 4(d); the convergence
to 1 becomes visible for L � 1000 l⊥ [see Fig. 4(c)]. Un-
like for nonrelativistic electrons [32], we still obtain a finite
σ (L) in the limit of infinite doping in the leads at fixed
W and L, signaling the relativistic nature of charge carri-
ers. The vanishing conductivity for L → ∞ at a fixed W/L,
in the absence of a gap, clearly represents a remarkable feature
of the results, providing an opportunity to verify the γ3 = 0
model as put forward in Ref. [21] within ballistic transport
experiments. A further reasoning that such a behavior appears
generically for γ3 = 0 and γ4 �= 0 is given in Appendix B.

B. Finite-temperature effects

For T > 0 and in the linear-response regime the elec-
tronic noise is dominated by the Nyquist-Johnson term of
S(0) ≈ 4kBT σW/L [27], and the Fano factor becomes irrel-
evant. Therefore, we limit our discussion to the temperature-
dependent conductivity, which is given by

σ (T >0) = g0L

W

∫
dETr

(
tt†

)(−∂ fFD

∂E

)
, (8)

where fFD(μ, T, E ) = [ exp((E − μ)/kBT ) + 1 ]−1 is the
Fermi-Dirac distribution function for a given chemical poten-
tial μ, and the remaining symbols are the same as in Eq. (3).

Numerical integration in Eq. (8) is performed, for μ = 0,
by taking the energy range of −EM � E � EM, with a cut-
off energy EM = 0.05 eV (i.e., EM > 48 kBT for T � 12 K)
being sufficiently high to reach a convergence up to the
machine roundoff errors. Additionally, when calculating the

transmission matrix t(E ), we parametrize the staggered po-
tential in the effective Hamiltonian HBLG (2) as follows:

δAB(T ) = δAB(0)

{
tanh

(
1.74

√
TC
T − 1

)
if T � TC

0 if T > TC,

(9)

with TC = 12 K and δAB(0) = 1.5 meV reproducing the tem-
perature dependence of a gap reported in Refs. [22,23]. (The
gapless case δAB(0) = 0 is considered separately.)

Our numerical results, for T = 0 and the selected tem-
peratures 0 < T � TC , are presented in Fig. 5. Similarly as
in the previous section, the data sets for γ3 = 0.3 eV [see
Figs. 5(a) and 5(b)] and for γ3 = 0 [see Figs. 5(c) and 5(d)]
are displayed separately. This time, we limit the presentation
to the γ4 = 0.15 eV case for clarity (solid lines in all panels),
as the curves for γ4 = 0 closely follow their γ4 = 0.15 eV
counterparts, with the exception of γ3 = δAB(0) = 0 and T =
0 [see dashed line in Fig. 5(c)], when the conductivity sup-
pression in the presence of EHS symmetry breaking (γ4 �= 0)
is clearly visible.

An apparent feature of the results presented in Fig. 5(a)
is that the curves for different temperatures closely follow
each other up to L � 120 l⊥, above which σ (L) grows no-
ticeably faster with L for higher T . [Notice that the T = 0
curve also shows approximately linear growths with L, which
manifests itself for L � 103 l⊥; see Fig. 3(a).] The position
of a coalescence point, L ≈ 120 l⊥, can be attributed to fact
that above such a length the quantum-size effects are less
significant, allowing the finite-temperature effects to dominate
transport properties. This can be rationalized taking into ac-
count the time-energy uncertainty relation limiting the energy
resolution,

δE � h̄

2τflight
= h̄v3

2L
, (10)

with τflight ≈ L/v3 being the ballistic time of flight [28],
together with the fact that the energy of thermal excitations
is kBT � �El for T � 4 K, with �El given by Eq. (5).
Subsequently, one can expect that the propagating modes in
secondary Dirac cones are employed (by thermal excitations)
provided that δE 
 �El � kBT , leading to

L

l⊥
� γ 2

0

4γ3γ4
≈ 55. (11)

For γ3 = 0 the above reasoning no longer applies; however,
a relatively flat σ dependence on L for T > 0 [see Fig. 5(c)]
coincides with the divergent lower bound for L in Eq. (11).
In such a case, one should rather estimate the time of flight
(up to the order of magnitude) as τflight ∼ L/v0. In turn, the
condition kBT � δE allowing the conductivity enhancement
by thermal excitations is equivalent to

L

l⊥
� γ1

2kBT
≈ 2200 K

T
, (12)

giving, for instance, L � 440 l⊥ for T = 5 K. The lower
bound for L in Eq. (12) allows one to understand why tem-
perature effects on σ (L) are noticeably weakened for γ3 = 0,
comparing to the γ �= 0 case.
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FIG. 5. (a)–(d) Conductivity as a function of L for temperatures T = 0 K, T = 5 K, T = 10 K, and T = TC = 12 K [see Eq. (9) in the
main text] indicated by labels in (a) and (b) for all panels. The parameters γ3 and δAB(0) are specified for each panel; the parameter γ4 = 0.15 eV
for all lines, with the exception of a dashed line for T = 0 in (c), for which γ4 = 0 (as marked with an arrow).

In the presence of a staggered potential, δAB(0) = 1.5 meV,
the primary temperature effects on σ (L) visible in Figs. 5(b)
and 5(d) can be attributed to the gap closing for T ap-
proaching TC [see Eq. (9)]. The characteristic system length,
above which the value of δAB becomes significant, derived
from the condition for the energy uncertainty δE 
 δAB(0),
reads

L

l⊥
�

{
1
2γ1γ3/γ0δAB(0) ≈ 12.1 if γ3 �= 0
1
2γ1/δAB(0) ≈ 127 if γ3 = 0,

(13)

where we have estimated τflight ≈ L/v3 (if γ3 �= 0) or τflight ∼
L/v0 (if γ3 = 0). This time, our numerical results show that
the temperature effects are visible for significantly shorter
systems in the γ3 = 0.3 eV case, comparing to the γ3 = 0
case, in a qualitative agreement with the estimation given in
Eq. (13).

IV. CONCLUDING REMARKS

We have investigated, by calculating ballistic transport
characteristics within the Landauer-Büttiker formalism, the
role of symmetry-breaking terms in the effective Hamiltonian
for bilayer graphene. Three such terms, the trigonal warping
(γ3), the electron-hole symmetry-breaking interlayer hopping
(γ4), and the staggered potential (δAB) quantifying a spon-
taneous band gap, are independently switched on and off,
resulting in different behaviors of the conductivity (σ ) and
the Fano factor (F ) with the increasing system length (L) at
a fixed width-to-length ratio (W/L).

In the absence of a gap (δAB = 0), one can identify three
different quantum-transport regimes characterized by the
pseudodiffusive shot-noise power, F = 1/3: (i) the standard
pseudodiffusive regime, characterized by σ (L) = σ0 [with
σ0 = 8e2/(πh) being a double conductivity of a monolayer]
and occurring for γ3 = γ4 = 0, (ii) the asymptotic pseudodif-
fusive regime, with σ (L) → 3σ0 for L → ∞, occurring for
γ3 �= 0 and γ4 = 0, and (iii) the divergent pseudodiffusive
regime, with σ (L) → ∞ for L → ∞, occurring for γ3 �= 0
and γ4 �= 0. Additionally, for γ3 = 0 and γ4 �= 0, the system
can be regarded as a marginal conductor, with σ (L) → 0
(showing a power-law decay) and F → 1 for L → ∞.

In the presence of a staggered potential at T = 0 (δAB(0) >

0), a semiconducting behavior is observed regardless of the
remaining parameters (γ3 and γ4); i.e., σ (L) → 0 (showing
the exponential decay) and F → 1 for L → ∞. For T > 0, a
zero-gap behavior is gradually restored (for any combination
of γ3 and γ4) when the energy of thermal excitations kBT �
δAB(0).

We hope that our numerical results will help verify the
bilayer graphene models proposed in the literature, as soon
as ballistic samples of the length L � 1 μm become avail-
able. So far, conductivity measurements for shorter samples
[29] suggest that the models neglecting the trigonal warping
(γ3 = 0) cannot correctly reproduce transport properties in the
mesoscopic range, but conclusive information concerning the
value of γ4 is missing.

Apart from the material-science aspects outlined above,
the asymptotic conductivity behavior suggests that bilayer
graphene represents a model case when discussing the
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generality of spontaneous symmetry breaking in quantum
systems [33,34]. When σ is considered as an order parame-
ter, our findings can be summarized by putting forward the
noncommuting order of limits, as L → ∞ and the relevant
symmetry breakings vanish, namely,

lim
L→∞

lim
d→∞

lim
δAB→0

σ = lim
L→∞

lim
δAB→0

lim
d→∞

σ = σ0, (14)

lim
d→∞

lim
L→∞

lim
δAB→0

σ = ∞, (15)

lim
d→∞

lim
δAB→0

lim
L→∞

σ = lim
δAB→0

[ · · · ] σ = 0, (16)

where we have introduced the distance between the layers
d (with d → ∞ corresponding to simultaneous limits of
γ3 → 0 and γ4 → 0 [35]), and the dots [· · · ] in Eq. (16)
mark that the order of the two remaining limits is arbi-
trary in such a case. From this perspective, it becomes
clear that both the sublattice and the combined rotational-
electron-hole symmetry breakings may appear sponta-
neously, as consequences of the layer stacking in graphene
(d = const < ∞).

The peculiar cases of γ3 �= 0 or γ4 �= 0 in the absence of
other symmetry breakings (i.e., δAB = γ4 = 0 or δAB = γ3 =
0) do not seem to have as clear a physical interpretation.
However, in heterostructures containing graphene, a variety
of spontaneous symmetry breakings may appear due to the
couplings to surrounding layers, encouraging one to consider
also anomalous parameter configurations.

Our considerations are limited to Bernal-stacked bilayer
graphene, since other stacking usually opens the band gap
leading to the vanishing conductivity. One notable excep-
tion is the magic-angle twisted bilayer graphene [36–40]
showing a gapless band structure. However, the role of
electron-electron interaction in such a system is more sig-
nificant; in particular, the ground state near the charge-
neutrality point is a correlated insulator [38–40]. There-
fore, we expect the vanishing zero-energy conductivity
to appear generically in bilayer graphene for non-Bernal
stackings.
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APPENDIX A: TRANSMISSION THROUGH BILAYER
GRAPHENE IN THE PRESENCE OF TRIGONAL

WARPING (γ3 �= 0, γ4 = 0)

Here, we present the analytical derivation of the total
transmission (i.e., transmission probability summed over nor-
mal modes), coinciding with the Landauer-Büttiker con-
ductivity [see Eq. (3) in the main text] σ (L) → 3σ0 in
the limit of L,W → ∞, at W/L = const � 1. Some par-
tial results were earlier reported in Ref. [12], but the
full derivation, to our best knowledge, is missing in the
literature.

The dispersion relation for the Hamiltonian given by
Eq. (2) in the main text, with δAB = γ4 = 0, takes the form

E2 = γ 2
1

2
+

(
v2

0 + v2
3

2

)
p2 ±

√

, (A1)


 = 1
4

(
γ 2

1 − v2
3 p2

)2 + v2
0 p2

(
γ 2

1 + v2
3 p2

)
+ 2γ1v3v

2
0 p3 cos(3ϕ), (A2)

where p =
√

p2
x + p2

y and we have set θ = 0 for simplicity
(later, we show that the physical results are independent of the
lattice orientation in the L → ∞ limit).

In the vicinity of zero energy (|E | → 0), there are four
solutions of the above equation corresponding to four Dirac
cones: the central cone, located at p = (px, py) = (0, 0), and
three satellite cones, located (in polar coordinates) at p =
γ1v3/v

2
0 , ϕ = 0, 2π/3, 4π/3. Below, we calculate the trans-

mission of the system assuming that the states corresponding
to different Dirac cones do not interfere among themselves.
Physically, such a supposition corresponds to the conditions
for the energy and system sizes

|E |, h̄v3

L
,

h̄v3

W

 EL, (A3)

where the Lifshitz energy EL = 1
4γ1(v3/v0)2. For γ0 =

3.16 eV, γ1 = 0.381 eV, and γ3 = 0.3 eV [24], we have EL ≈
1 meV, and the last two conditions in Eq. (A3) are equivalent
to L, W � 4ł⊥γ3/γ0 = 75 nm.

Expanding the dispersion relation given by Eqs. (A3) and
(A4) up to second order around p = (0, 0), we obtain

E2 = v2
3

(
p2

x + p2
y

)
. (A4)

Thus, the central Dirac cone has an isotropic dispersion re-
lation, closely resembling the dispersion relation following
from the monolayer graphene Hamiltonian [see Eq. (1) in the
main text]; in fact, the only difference is the proportionality
coefficient v3 instead of vF .

Now, we write the effective single-cone Hamiltonian, cor-
responding to the dispersion relation given by Eq. (A4):

Hcentral =
(

0 v3π

v3π
† 0

)
. (A5)

Solving the scattering problem for a rectangular sample de-
scribed by the above Hamiltonian with heavily (infinitely)
doped leads one gets the formula for the transmission coef-
ficient as a function of the transverse momentum (ky = py/h̄):

T (ky) = 1

cosh2(kyL)
. (A6)

For the periodic boundary conditions, the transverse mo-
mentum gets quantized values, k( j)

y = 2π j/W , with j =
0,±1,±2, . . . . For W � L, one can approximate the sum
over k( j)

y by an integral, obtaining the total transmission

∑
j

T
(
k( j)

y

) ≈ W

2π

∫ +∞

−∞
T (ky) dky = 1

π

W

L
. (A7)

Next, we expand (up to second order) the dispersion rela-
tion around p = (γ1v3/v

2
0, 0) (i.e., the satellite Dirac cone at
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ϕ = 0), arriving at

E2 = v2
3

(1 + (v3/v0)2)2

(
p2

x + 9p2
y

)
. (A8)

The corresponding single-cone Hamiltonian reads

H (ϕ=0)
satellite =

(
0 v3(px + i3py)

v3(px − i3py) 0

)
. (A9)

This time, solving the scattering problem for a rectangular
sample we get the transmission coefficient

T (ky) = 1

cosh2(3kyL)
, (A10)

and the integration over ky leads to

W

2π

∫ +∞

−∞
T (ky) dk = 1

3π

W

L
. (A11)

The calculations for remaining Dirac cones at ϕ �= 0 are
more involved, yet straightforward. Generalizing the above
reasoning for p = γ1(v3/v

2
0 )(cos ϕ, sin ϕ), we get

E2 = v2
3

(1 + (v3/v0)2)2

[
p2

x + p2
y + 8(px sin ϕ + py cos ϕ)2

]
,

(A12)

and

H (ϕ)
satellite = (ασx + βσy), (A13)

where

α = px cos ϕ − py sin ϕ, (A14)

β = −3px sin ϕ − 3py cos ϕ. (A15)

Finally, we have

T (ky) = 1

cosh2[3kyL/(5 − 4 cos(2ϕ))]
(A16)

and

W

2π

∫ +∞

−∞
T (ky) dk = 5 − 4 cos(2ϕ)

3π

W

L
. (A17)

Summing up the contributions from all four Dirac cones,
we obtain the total transmission

Ttotal = 6W

πL
. (A18)

Substituting the above into Eq. (3) in the main text, we
obtain σ = 3σ0 in physical units. Remarkably, the result is
independent of the lattice orientation, as we have cos(ϕ) +
cos(ϕ + 4π/3) + cos(ϕ − 4π/3) = 0 for any real value of ϕ.
(Notice that the summation of independent contributions from
four Dirac cones, performed above, instantly reproduces the
limit of L,W → ∞.)

Similarly, for the Fano factor we have

F = 1 −
∑

cones

∫
dky[ T (ky) ]2∑

cones

∫
dky T (ky)

= 1

3
. (A19)

FIG. 6. Conductivity (top) and the Fano factor (bottom) obtained
from Eq. (B3) for (kF l⊥)2 = 0.2 and γ4 = 0.15 eV (solid blue lines),
or γ4 = 0 (dashed blue lines). The corresponding results for the four-
band model are reproduced from Figs. 3(c) and 4(c) for a comparison
(solid and dashed black lines).

APPENDIX B: THE EFFECT OF γ4 �= 0 TUNNELING IN
THE ABSENCE OF TRIGONAL WARPING (γ3 = 0)

In this section, we consider the case complementary to the
analyzed in Appendix A. The Hamiltonian given by Eq. (2) in
the main text, for δAB = γ3 = 0, reduces to

HBLG =

⎛
⎜⎜⎜⎝

0 v0π γ1 −v4π
†

v0π
† 0 −v4π

† 0

γ1 −v4π 0 v0π
†

−v4π 0 v0π 0

⎞
⎟⎟⎟⎠, (B1)

leading to the two low-energy bands (with E = 0 for p = 0)
and the two high-energy bands (with E = ±γ1 for p = 0) in
the dispersion relation. For low energies, one can write the
effective two-band Hamiltonian (see Ref. [16])

H2band = 1

2m

(
μ4ππ† −(π )2

−(π†)2 μ4π
†π

)
, (B2)

where m = γ1/2v2
0 and μ4 = 4mv0v4/γ1 = 2v4/v0.

Now, we follow the approach proposed by Katsnelson in
Ref. [9], performing the mode matching for two interfaces
between heavily and weakly doped areas (the leads and the
sample), separated by a distance L. For a fixed but finite

125425-8
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doping in the leads (quantified by the Fermi wavenumber kF ),
elementary analysis leads to the following formula for the

transmission coefficient for a given transverse wavenumber ky

(conserved at both the interfaces):

T (ky) = 16ζ 2{(−1 − μ4)kF L ζ cosh(ζ ) − μ4[(−1 − μ4)kF L + 2ζ 2] sinh(ζ )}2

4ζ 2[ζ cosh(2ζ ) − μ4kF L sinh(2ζ )]2 + (kF L)2{−2kF L ζ 2 + μ2
4kF L[cosh(2ζ ) − 1] − 2μ4ζ sinh(2ζ )}2

, (B3)

where we have defined ζ = kyL.
Changing the variables according to T (ky) ≡ T (ζ , L) we

find that the Landauer-Büttiker conductivity, for a fixed
W/L � 1, is bounded by

σ (L) = 1

2π

∫
dζ T (ζ , L) � const

L2
(for μ4 �= 0), (B4)

vanishing in the L → ∞ limit. For μ4 = 0, the conductivity
σ (L) ≈ (π/4)σ0, and the Fano factor F ≈ 1 − 2/π for L �

l⊥, being numerically close to the results by Snyman and
Beenakker [10].

The approximate upper bound for μ4 �= 0, given in
Eq. (B4), is further supported with the numerical results
presented in Fig. 6, where we have set the doping in the
leads such that (kF l⊥)2 = 0.2 (after Ref. [10]), and W/L = 20.
Numerical calculations for the full four-band model given
the Hamiltonian HBLG (B1) leads to a noticeably faster but
also a power-law decay of the conductivity, which can be
approximated as σ (L) ∝ L−2.0 for L � 1000 l⊥.
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The Aharonov-Bohm effect allows one to demonstrate the physical meaningfulness of magnetic vector
potential bypassing the current in zero magnetic field regions. In the standard (a two-slit-like) setup, a conducting
ring is pierced by magnetic flux and the quantum interference for an electron passing simultaneously through
the two ring arms is observed. Here we show, by analyzing transport via evanescent waves, that the ballistic
Corbino disk in graphene subjected to a solenoid magnetic potential may exhibit conductance oscillations of the
Aharonov-Bohm kind although the current flows through a single conducting element only.

DOI: 10.1103/PhysRevB.101.245429

I. INTRODUCTION

Quantum transport through the Corbino disk in graphene
has been addressed both theoretically [1–7] and experimen-
tally [8–12] by numerous authors, as the egde-free geometry
allows one to probe the mesoscopic aspects of graphene, such
as transport via evanescent waves [13], even in nanometer-
scale devices. At zero magnetic field, conductance of ultra-
clean ballistic disks as a fuction of the carrier concentration
[10] shows good agreement with the basic mode-matching
analysis of Ref. [1]. At nonzero field, periodic (approximately
sinusoidal) magnetoconductance oscillations were predicted
[2,3] but experimental confirmation of such a remarkable
quantum-interference phenomenon is missing.

Theoretical analysis of Ref. [2] employs the rotational
symmetry of the problem, resulting in the total angular mo-
mentum conservation (Jz = h̄ j, with j = ±1/2,±3/2, . . . ,
the angular-momentum quantum number). In the case of an
undoped disk of the inner radius R1 and the outer radius R2,
the Landauer-Büttiker transmission probabilities [14,15] read

Tj = 1

cosh2[ln(R2/R1)( j + �d/�0)]
, (1)

where �d = π (R2
2 − R2

1)B is the flux piercing the disk with
a uniform magnetic field B, and �0 = 2(h/e) ln(R2/R1) de-
fines the conductance-oscillation period. Further analysis
shows that the formula equivalent to Eq. (1) can also be
derived if the carrier concentration (hereinafter quantified
by the Fermi energy EF , with EF = 0 corresponding to
the charge-neutrality point) is adjusted to any Landau level,
En = sgn(n)vF

√
2|n|eB, with n = 0,±1,±2, . . . , and vF ≈

106 m/s being the energy-independent Fermi velocity in
graphene.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Away from Landau levels the transmission is strongly
suppressed [2,7]. For instance, in the vicinity of the charge-
neutrality point (n = 0) magnetoconductance oscillations may
be observed in the magnetic field range limited by

|�d | � 2h

e
ln

(
1

kF R1

)
= h

e
ln

(
1

π |nC |R2
1

)
, (2)

where we have further defined kF = |EF |/(h̄vF ) and the
outermost right equality follows from the relation between
the Fermi wave number and the carrier concentration (nC),
namely, kF = √

π |nC |, including the fourfold (spin and val-
ley) degeneracy of each quasiparticle level. On the other
hand, the current flow through the system leads to carrier
density fluctuations of the order of δnC ∼ 1/(πR2

2), even in
the absence of the charge inhomogeneity usually appearing
due to the electron-hole puddle formation at low densities
[16]. Taking the above as the lower bound to |nC | in Eq. (2),
one immediately obtains |�d | � �0, suggesting it may be
difficult (or even impossible) to observe the magnetoconduc-
tance oscillations in the linear-response regime. A proposal to
overcome this difficulty by going beyond the linear-response
regime was put forward [17].

A separate issue concerns the role of electron-electron in-
teractions, which is usually marginal when discussing ballistic
systems in monolayer graphene [18,19], in agreement with
fundamental considerations [20,21], but may lead to Wigner
crystallization or the appearance of fractional quantum Hall
phases, in case the bulk density of states is strongly modified
due to the Landau quantization [10,22,23].

Generally speaking, uniform magnetic fields, although be-
ing most feasible to generate at micrometer scale, do not seem
to provide a realistic opportunity to observe magnetoconduc-
tance oscillations in graphene-based Corbino disks. Therefore
it is worth to consider other field arrangemets, in which phase
effects may overrule orbital effects (such as Landau level
formation). In this paper, we focus on the case of a disk whose
inner area is pierced by a long solenoid (see Fig. 1), generating
the flux �i. Earlier, it was shown by Katsnelson [3,24] that for
zero doping (EF = 0) the transmission probabilities are given
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i

Is

x y

z

I

R2 R1

V

FIG. 1. Schematic of the Corbino disk in graphene of the inner
radius R1 and the outer radius R2, contacted by two electrodes (thick
black circles). A voltage source (V ) drives the current (I) through
the disk. A separate gate electrode (not shown) allows the carrier
concentration in the disk to be tuned around the neutrality point. A
long solenoid, carrying the current Is, generates the flux �i piercing
the inner disk area. The coordinate system is also shown.

by Eq. (1) after substituting

�d ≡ �i and �0 ≡ �AB, (3)

with �AB = h/e being the familiar Aharonov-Bohm flux
quantum [25]. However, the analysis of such a system away
from the charge-neutrality point (EF �= 0) is missing.

The remaining part of the paper is organized as follows. In
Sec. II, we present the results of the mode-matching analysis
for the system of Fig. 1 at arbitrary doping and flux. Next, in
Sec. III, the numerical discussion of the conductance oscil-
lations is provided. The effect of electrostatic field breaking
cylindrical symmetry of the problem is considered in Sec. IV.
The conclusions are given in Sec. V.

II. SOLUTION FOR ARBITRARY DOPING AND FLUX

Our analysis starts from the Dirac Hamiltonian in a single
valley (K), which is given by

H = vF (p + eA) · σ + U (r), (4)

where p = −ih̄(∂x, ∂y) is the in-plane momentum operator,
the electron charge is −e, the magnetic vector potential of a
solenoid is written in the symmetric gauge [26]

A = (Ax, Ay) = �i

2π

(
− y

r2
,

x

r2

)
, (5)

and σ = (σx, σy) with σx and σy being the Pauli matrices. We
further suppose that the electrostatic potential energy U (r)
depends only on r =

√
x2 + y2; namely, we put U (r) = 0 in

the disk area (R1 < r < R2), or U (r) = U∞ otherwise. Since
Hamiltonian (4) commutes with the total angular momentum
operator, Jz = −ih̄∂ϕ + h̄σz/2, the energy eigenfunctions can
be chosen as eigenstates of Jz

ψ j (r, ϕ) = ei( j−1/2)ϕ

(
χ j,A(r)

χ j,B(r)eiϕ

)
, (6)

where j is a half-odd integer, two spinor components (A, B)
correspond to the sublattice degree of freedom, and we have
introduced the polar coordinates (r, ϕ). The Dirac equation
now can be written as Hj (r)χ j (r) = Eχ j (r), where χ j (r) =
[χ j,A(r), χ j,B(r)]T , and

Hj (r) = −ih̄vF σx∂r + U (r)

+ h̄vF σy

( j−1/2
r + e�i

hr 0
0 j+1/2

r + e�i
hr

)
. (7)

For a piecewise-constant potential energy U (r) and the
electron-doping case, E > U (r), the eigenfunctions of Hj (r)
(7) for the incoming (i.e., propagating from r = 0) and out-
going (propagating from r = ∞) waves are given, up to the
normalization, by

χ in
j =

(
H (2)

ν( j)−1/2(kr)

iH (2)
ν( j)+1/2(kr)

)
, χout

j =
(

H (1)
ν( j)−1/2(kr)

iH (1)
ν( j)+1/2(kr)

)
, (8)

where

ν( j) = j + �i/�AB, (9)

H (1,2)
ν (ρ) is the Hankel function of the (first, second) kind, and

k = |E − U (r)|/(h̄vF ). The solution for the disk area can be
represented as

χ
(d )
j = Ajχ

in
j (kF r) + Bjχ

out
j (kF r), R1 <r <R2, (10)

with Aj and Bj being arbitrary constants, and the Fermi wave
number kF = |E |/(h̄vF ). For the hole doping case, E < U (r),
the wave functions are replaced by χ̃

in(out)
j = [χ in(out)

j ]
�
, where

we use the relation H (2)
ν = [H (1)

ν ]�.
The heavily doped graphene leads are modeled here by

taking the limit of U (r) = U∞ → ± ∞ for r < R1 or r > R2.
The corresponding wave functions can be simplified to

χ
(1)
j = e±ik∞

√
r

(
1
1

)
+ r j

e∓ik∞
√

r

(
1

−1

)
, r < R1, (11)

χ
(2)
j = t j

e±ik∞
√

r

(
1
1

)
, r > R2, (12)

where we have introduced the reflection (transmission) ampli-
tudes r j (t j) and k∞ = |E − U∞|/(h̄vF ) → ∞.

Solving the mode-matching conditions, χ
(1)
j (R1) =

χ
(d )
j (R1) and χ

(d )
j (R2) = χ

(2)
j (R2), we find the transmission

probability for jth mode

Tj = |t j |2 = 16

π2k2R1R2

1[
D

(+)
ν( j)

]2 + [
D

(−)
ν( j)

]2 , (13)

where ν( j) is given by Eq. (9) and

D(±)
ν = Im

[
H (1)

ν−1/2(kR1)H (2)
ν∓1/2(kR2)

± H (1)
ν+1/2(kR1)H (2)

ν±1/2(kR2)
]
. (14)

III. RESULTS AND DISCUSSION

The linear-response conductance is calculated according to
the Landauer-Büttiker formula [14,15]

G = I

V
= g0

∑
j=±1/2,±3/2,...

Tj, (15)
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FIG. 2. Conductance as a function of the doping (top) and the
flux piercing the inner disk area (bottom) for the radii ratio R2/R1 =
5. (Top) Different lines correspond to �i = 0 (blue solid line) and
�i = �AB/2 (red dashed line). Inset presents a zoom-in, for low
dopings, with an additional black dash-dot line depicting the conduc-
tance averaged over �i. (Bottom) The doping is varied from kF R1 =
0 to kF R1 = 0.5 and specified for each solid line on the plot. Dashed
line marks the pseudodiffusive conductance Gdiff = 2g0/ ln(R2/R1),
with g0 = 4e2/h.

where the conductance quantum g0 = 4e2/h, with the factor 4
accounting for spin and valley degeneracy, and the summation
over modes is performed numerically up to the machine
round-off errors [27]. Our numerical results are presented in
Figs. 2 and 3.

The asymptotic properties of the Hankel functions [28]
in Eq. (13) lead to Tj ≈ 1 for kF R1 − ν( j) 
 1, with ν( j)
given by Eq. (9), or to Tj ≈ 0 for ν( j) − kF R1 
 1. In turn,
the conductivity can by approximated as G ≈ 2g0kF R1 for
kF R1 
 1 and R2 
 R1 (see top panel in Fig. 2), with an
excess value of ∼g0R1/R2 (up to the order of magnitude)
representing the contribution from evanescent waves.

Furthermore, the structure of Eqs. (9), (13), (14), and (15)
results in perfectly periodic functional dependence of G(�),

0
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G > 0

G < 0

10

FIG. 3. (Top) Magnitude of the conductance oscillations, 
G =
G(�AB/2) − G(0), displayed as a function of the doping for selected
values of the radii ratio (specified for each line). Notice that the data
sets for R2/R1 = 5 and 10 (blue solid lines) are subjected to vertical
shifts of 0.25 and 0.5g0 (respectively). Red dashed line shows the
actual 
G = 0 for each case. (Bottom) Nodal lines (black solid) of

G as a function of the doping and the radii ratio, separating the
areas with 
G > 0 (white) and 
G < 0 (shadow).

with a period �AB, at arbitrary doping (see Fig. 2). Quite
surprisingly, the magnitude of the conductance oscillations


G = G(�AB/2) − G(0), (16)

takes relatively large absolute values (namely, |
G| > 0.1 g0)
not only in small vicinity of the charge neutrality-point, but
also at higher dopings (see Fig. 3), signaling the importance of
transport via evanescent waves again. [Notice that the differ-
ence between G(�AB/2) and G(0), defining 
G via Eq. (16),
is governed by only a few modes for which kF R1 ≈ ν( j) and
thus Tj’s are neither ≈0 nor ≈1.] A systematic growth of 
G
with R2/R1 is visible for kF → 0 (with 
G ≈ g0 for R2 

R1), in consistency with earlier predictions of Refs. [2,3] for
the uniform magnetic field case.

For each radii ratio, one can find a unique series of discrete
doping values for which 
G = 0, resulting in G(�i ) = const.
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For instance, if R2/R2 = 5, the first five nodes of 
G corre-
spond to

(kF R1)
G=0 = 0.322, 0.598, 0.814, 0.987, 1.137. (17)

Below the first nodal value (i.e., |kF R1| < 0.322), we have

G > 0 [or, equivalently, G(�AB) > G(0), see Eq. (16)];
then, the sign of 
G alternates with growing kF R1, as indi-
cated in the bottom panel in Fig. 3.

It is also visible in Fig. 3 that the pattern of nodal lines
is rather irregular, as one could expect since 
G can be
regarded as the rational expression containing Bessel func-
tion. Typical separation between the first nodes of 
G in
Eq. (17) can (roughly) be approximated as 
kF R1 ≈ 0.3,
which corresponds, for the physical size of R1 = 50 nm,
to the energy interval of 
EF /kB ≈ 40K (with the Boltz-
mann constant kB). In turn, the conductance oscillations
should be observable in comparable or higher temperatures
then the standard Aharonov-Bohm effect in graphene rings
[29,30].

IV. CONDUCTANCE OSCILLATIONS IN THE
ABSENCE OF CYLINDRICAL SYMMETRY

So far, the discussion was limited to the case of a perfect
cylindrical symmetry, allowing us to calculate the transmis-
sion probabilities Tj [see Eq. (13)] analytically by solving
the scattering problem separately for each ( jth) angular-
momentum mode. In real system, several factors may break
the cylindrical symmetry, resulting in the mode mixing. In
particular, both the spatial corrugations of a graphene sheet
and charge-donating impurities placed in the substrate lead
to the charge density fluctuations (i.e., p-n puddles) [16,31–
33]. For best existing devices, carrier density fluctuations are
δn < 1011 cm2 near the neutrality point, corresponding to
the electrostatic potential fluctuation of the order of δU ∼
10 meV.

Here we test numerically, how robust the effects described
in Sec. III are against the cylindrical symmetry breaking.
For this purpose, the electrostatic potential energy in the
Hamiltonian (4) is replaced by [7]

U (r, ϕ) = −U0r

R2
sin ϕ, R1 < r < R2. (18)

In the leads, r < R1 or r > R2, we set U (r, ϕ) = U∞ again.
The potential amplitude (without loss of generality, we sup-
pose U0 � 0) defines the Fermi energy range, −U0 < EF <

U0, for which a p-n interface is present in the disk area (see
Fig. 4). A special case of U0 = 0 restores the uniform-doping
case considered in Sec. III.

Regardless of the value of U0, angular-momentum eigen-
functions of the form given by Eqs. (6), (11), and (12), still
represent the correct solutions in the leads. Therefore the
numerical mode matching can be performed in the angular-
momentum space, employing the transfer matrix approach
presented with details in Ref. [7]. Since the Fermi wave num-
ber kF = |EF − U (r, ϕ)|/(h̄vF ) is now position-dependent,
the numerical results presented in Fig. 4 are parametrized
by EF and U0. In order to specify these quantities in the
physical units, we fixed the disk dimensions at R1 = 50 nm
and R2 = 5R1 = 250 nm [34]. However, it is worth to stress

FIG. 4. Conductance for �i = 0 (top) and the oscillation magni-
tude (bottom) displayed as functions of the Fermi energy for the disk
radii R1 = R2/5 = 50 nm and the electrostatic potential amplitude
[see Eq. (18)] varied from U0 = 0 to 30 meV with the steps of
10 meV. Top: Two insets show the positions of a p-n interface in
the disk area for U0 = 20 meV and the two different values of EF .
(Bottom) The data sets for U0 > 0 (solid lines) are subjected to
vertical shifts; black dashed lines show the actual 
G=0.

that the transport characteristics are determined by the dimen-
sionless parameters, EF R1/(h̄vF ) (also displayed in Fig. 4),
U0R1/(h̄vF ), and the radii ratio R2/R1, and therefore remain
invariant upon the scaling R1(2) → λR1(2), EF → EF /λ, and
U0 → U0/λ, with a real λ > 0.

If the system is close to the charge-neutrality point,
namely for |EF | < U0R1/R2, the conductance is noticeably
enhanced with growing U0 (see top panel in Fig. 4), as
the propagation through heavily p-doped and n-doped areas
supplements the transport via evanescent waves. (We further
notice that the largest considered U0 = 30 meV corresponds
to U0R1/(h̄vF ) ≈ 2.6 � R2/R1, and thus the system, at zero
field, can be regarded as being in the crossover range between
the pseudodiffusive and the ballistic charge transport regimes
[35].) For higher |EF |, the effect of U0 becomes negligible,
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and G ≈ 2g0〈kF 〉R1 with 〈kF 〉 = |EF |/(h̄vF ) being the aver-
age Fermi wavenumber on the inner disk edge (r = R1).

The magnetoconductance oscillations magnitude (see bot-
tom panel in Fig. 4) are diminished for |EF | < U0R1/R2 with
growing U0. This observation can be rationalized by taking
into account that at zero magnetic field main currents flow
along the ϕ ≈ ±π/2 directions (i.e., towards the regions of
extreme doping), for which the magnetic phases associated
with the vector potential given by Eq. (5) vanish. In contrast,
for the unipolar doping (|EF | > U0) the oscillations are only
weakly affected by growing U0, and the magnitudes of 
G >

0.1 g0 appear for wide range of the doping.

V. CONCLUSIONS

We have demonstrated, performing the numerical anal-
ysis of the exact formula for transmission probability for
electron with a given angular momentum tunneling through
the Corbino disk in graphene, that the conductance (as a
function of magnetic flux piercing the disk) shows peri-
odic oscillations of the Aharonov-Bohm kind. Unlike for a
uniform magnetic field considered in Refs. [2,3], when similar
oscillations appear at discrete Landau levels only, the disk in
a solenoid magnetic potential shows the oscillations for any

Fermi energy except from a discrete energy set, defined by
the disk radii (R1 and R2), the Fermi velocity in graphene
(vF ) and the Planck constant (h̄), for which the conductance is
flux-independent.

Most remarkably, away from the charge-neutrality point
the conductance oscillations may show a significant magni-
tude (
G > 0.1 g0, with g0 = 4e2/h) starting from moderate
radii ratios R2/R1 � 2, being comparable to the actual ex-
perimental values, see Refs. [9,10]. At the charge neutrality
point, the oscillation magnitude grows with the radii ratio,
approaching 
G ≈ g0 for R2 
 R1.

Also, we find out that the conductance oscillations are
well-pronounced in the presence of a position-dependent elec-
trostatic potential that breaks the cylindrical symmetry and
introduces the mode mixing. Some suppression of the effect
is predicted for ambipolar dopings (i.e., with a p-n junction in
the disk area), but the oscillations are restored away from the
charge neutrality point (for unipolar dopings).
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Adiabatic quantum pumping in buckled graphene
nanoribbon driven by a kink ∗
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We propose a new type of quantum pump in buckled graphene nanorib-
bon, adiabatically driven by a kink moving along the ribbon. From a prac-
tical point of view, pumps with moving scatterers present advantages as
compared to gate-driven pumps, like enhanced charge transfer per cycle
per channel. The kink geometry is simplified by truncating the spatial ar-
rangement of carbon atoms with the classical φ4 model solution, including
a width renormalization following from the Su-Schrieffer-Heeger model for
carbon nanostructures. We demonstrate numerically, as a proof of concept,
that for moderate deformations a stationary kink at the ribbon center may
block the current driven by the external voltage bias. In the absence of
a bias, a moving kink leads to highly-effective pump effect, with a charge
per unit cycle dependent on the gate voltage.

1. Introduction

The idea of quantum pumping, i.e., transferring the charge between elec-
tronic reservoirs by periodic modulation of the device connecting these reser-
voirs [1], has been widely discussed in the context of graphene nanostructures
[2, 3, 4, 5, 6, 7, 8]. Since early works, elaborating the gate-driven pumping
mechanism in graphene [2] and bilayer graphene [3], it becomes clear that
the transport via evanescent modes may significantly enhance the effective-
ness of graphene-based pumps compared to other quantum pumps. Other
pumping mechanisms considered involves laser irradiation [4], strain fields
[5], tunable magnetic barriers [6], Landau quantization [7], or even sliding
the Moiré pattern in twisted bilayer graphene [8].

It is known that quantum pump with a shifting scatterer may show
enhanced charge transfer per cycle in comparison to a standard gate-driven

∗ Presented at 45. Zjazd Fizyków Polskich, Kraków 13–18 września 2019.
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x

U(x)

U∞

U0

EF

Fig. 1. Buckled graphene nanoribbon as a quantum pump. (a) Typical pumping
cycles (schematic) for a single channel characterized by the complex transmission
amplitude, t = Re t + i Im t. Blue solid line enclosing the area Ac shows one-
parameter cycle allowed for a standard gate-driven pump, red dashed line corre-
sponds to the cycle involving a shift of a scatterer. (b) Flat ribbon with armchair
edges attached to heavily-doped graphene leads (shaded areas). The ribbon width
W = 5 a (with a = 0.246 nm the lattice spacing) and length L = 11.5

√
3 a are

chosen for illustrative purposes only. A cross section of buckled ribbon, charac-
terized by the reduced width W ′ < W and the buckle height H > 0, and the
electrostatic potential energy profile U(x), are also shown. (c) Band structure of
the infinite metallic-armchair nanoribbon of W = 10 a width, same as used in the
computations.

pump [1], see also Fig. 1(a)1. Motivated by this conjecture we consider

1 In the simplest case of a one-parameter driven, one-channel pump, the charge per
cycle is given by Q = (e/π)Ac, with Ac being the ±area enclosed by the contour in
the (Re t, Im t) plane (where t is a parameter-dependent transmission amplitude).
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a buckled nanoribbon, see Fig. 1(b), similar to the one studied numerically
by Yamaletdinov et. al. [9, 10] as a physical realization of the classical φ4

model and its topological solutions (kinks) connecting two distinct ground
states. Our setup is supplemented with two heavily-doped graphene leads,
attached to the clamped edges of a ribbon, allowing to pass electric current
along the system.

2. Model and methods

The analysis starts from the Su-Schrieffer-Heeger (SSH) model for the
ribbon, including the hopping-matrix elements corresponding to the nearest-
neighbor bonds on a honeycomb lattice [11, 12, 13, 14]

Hribbon = ⇒t0
∑
〈ij〉,s

exp

(
⇒β δdij

d0

)(
c†i,scj,s + c†j,sci,s

)
+

1

2
K
∑
〈ij〉

(δdij)
2 , (1)

with a constrain
∑
〈ij〉 δdij = 0, where δdij is the change in bond length,

and d0 = a/
√

3 is the equilibrium bond length defined via the lattice spacing
a = 0.246 nm. The equilibrium hopping integral t0 = 2.7 eV, β = 3 is the
dimensionless electron-phonon coupling, and K ≈ 5000 eV/nm2 is the spring
constant for a C-C bond. The operator c†i,s (or ci,s) creates (or annihilates)
a π electron at the i-th lattice site with spin s.

In order to determine the spatial arrangement of carbon atoms in a buck-
led nanoribbon, {Rj = (xj , yj , zj)}, we first took the {xj} and {yj} coordi-
nates same as for a flat honeycomb lattice in the equilibrium and set {zj}
according to

z = H tanh

(
y ⇒ y0

λ

)
sin2

(πx
W

)
, (2)

representing a topologically non-trivial solution of the φ4 model, with H
the buckle height, W the ribbon width, y0 and λ the kink position and size
(respectively). Next, x-coordinates are rescaled according to xj → xjW

′/W ,
withW ′ adjusted to satisfy

∑
〈ij〉 δdij = 0 in the y0 → ±∞ (“no kink”) limit.

In particular, H = 2a and W = 10a corresponds to W ′/W = 0.893. We
further fixed the kink size at λ = 3a (closely resembling the kink profile
obtained from the molecular dynamics in Ref. [9]); this results in relative
bond distorsions not exceeding |δdij |/d0 6 0.08. Full optimization of the
bond lengths in the SSH Hamiltonian (1), which may lead to the alternating
bond pattern [14], is to be discussed elsewhere.

Heavily-doped graphene leads, x < 0 or x > W ′ in Fig. 1(b), are modeled
as flat regions (dij = d0) with the electrostatic potential energy U∞ =
⇒0.5t0 (compared to U0 = 0 in the ribbon), corresponding to 13 propagating
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modes for W∞ = 20
√

3a and the chemical potential µ0 = EF ⇒ U0 = 0.
The scattering problem if solved numerically, for each value of the chemical
potential µ0 and the kink position y0, using the Kwant package [15] allowing
to determine the scattering matrix

S(µ0, y0) =

(
r t′

t r′

)
, (3)

which contains the transmission t (t′) and reflection r (r′) amplitudes for
charge carriers incident from the left (right) lead, respectively.

The linear-response conductance can be determined from the S-matrix
via the Landuer-Büttiker formula [1], namely

G = G0Tr tt† =
2e2

h

∑
n

Tn, (4)

where G0 = 2e2/h is the conductance quantum and Tn is the transmission
probability for the n-th normal mode. Similarly, in the absence of a volt-
age bias, the charge transferred between the leads upon varying solely the
parameter y0 is given by

∆Q = ⇒ ie
2π

∑
j

∫
dy0

(
∂S

∂y0
S†
)

jj

, (5)

where the summation runs over the modes in a selected lead. Additionaly,
the integration in Eq. (5) is performed for a truncated range of ⇒Λ 6 y0 6
L+ Λ, with Λ = 250 a� λ for L = 75.5

√
3 a.

3. Results and discussion

In Fig. 1(c) we depict the band structure for an infinite (and flat) metallic-
armchair ribbon of W = 10 a width. It is remarkable that the second and
third lowest-lying subband above the charge-neutrality point (as well as the
corresponding highest subbands below this point) show an almost perfect de-
generacy near their minima corresponding to E(2,3)

min ≈ 0.25 t0, which can be
attributed to the presence of two valleys in graphene. For higher subbands,
the degeneracy splitting due to the trigonal warping is better pronounced.

The approximate subband degeneracy has a consequence for the conduc-
tance spectra of a finite ribbon, presented in Fig. 2: For both the flat ribbon
(H = 0) and a buckled ribbon with no kink (H = 2a, y0 → ⇒ ∞) the
conductance G ≈ G0 for |µ0| < E

(2,3)
min and quickly rises to G/G0 ≈ 2.5⇒3

for µ > E
(2,3)
min . For µ < 0 the quantization is not so apparent, partly
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Fig. 2. Conductance of the ribbon with W = 10 a as a fuction of the chemical
potential. The remaining parameters are L = 75.5

√
3 a and Wlead = 20

√
3 a.

Different lines (same in two panels) correspond to the flat ribbon geometry, H = 0,
W ′ = W (black dashed), the buckled ribbon with H = 2a and y0 = L/2 (blue
solid) or y0 → ⇒∞ (orange solid); see Eq. (2). Bottom panel is a zoom-in of the
data shown in top panel.

due the presence of two p-n interfaces (at x = 0 and x = W ′) leading to
stronger-pronounced oscillations (of the Fabry-Perrot type), and partly due
to a limited number of propagating modes in the leads. For a kink posi-
tioned at the center of the ribbon (H = 2a, y0 = L/2) the conductance
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Fig. 3. Charge transferred upon adiabatic kink transition calculated from Eq.
(5), for varying buckling amplitude H/a = 1, 2 (specified for each line in the
plot), displayed as a function of the chemical potential. Dashed line shows the
approximation given by Eq. (6). Remaining parameters are same as in Fig. 2.

is strongly suppressed, G � G0, in the full |µ0| < E
(2,3)
min range (with the

exception from two narrow resonances at µ0 = ±0.1327 t0, which vanishes
for y0 6= L/2) defining a feasible energy window for the pump operation.

In Fig. 3 we display the charge transferred between the leads at zero
bias, see Eq. (5), when slowly moving a kink along the ribbon (adiabatic kink
transition). In the energy window considered, the ribbon dispersion relation
consists of two subbands with opposite group velocities, E(1)

± = ±~vFky, see
Fig. 1(c). Therefore, the total charge available for transfer at the ribbon
section of Leff = L⇒Winfty length can be estimated (up to a sign) as

Qtot

e
≈ |µ0|

~vF
Leff

π
= 35.3

|µ0|
t0

, (6)

where vF =
√

3 t0a/(2~) ≈ 106 m/s is the Fermi velocity in graphene and
we put L⇒Winfty = 55.5

√
3 a. For the strongest deformation (H = 2a) the

kink almost perfectly blocks the current flow, and the charge transferred is
close to the approximation given by Eq. (6); see Fig. 3.

4. Conclusion

We have investigated, by means of computer simulations of electron
transport, the operation of adiabatic quantum pump build within a topo-
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logical defect moving in buckled graphene nanoribbon. We find that the
pump effectiveness is close to the maximal (corresponding to a kink per-
fectly blocking the current flow) for moderate bucklings, with relative bond
distortions not exceeding 8%. As topological defects generally move with
negligible energy dissipation, we hope our discussion will be a starting point
to design new graphene-based energy conversion devices.
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A quantum pump in buckled graphene ribbon with armchair edges is discussed numerically. By solving
the Su-Schrieffer-Heeger model and performing the computer simulation of quantum transport we find that
a kink adiabatically moving along the metallic ribbon results in highly-efficient pumping, with a charge per kink
transition close to the maximal value determined by the Fermi velocity in graphene. Remarkably, insulating
nanoribbon show the quantized value of a charge per kink (2e) in relatively wide range of the system parameters,
providing a promising candidate for the quantum standard ampere. We attribute it to the presence of a localized
electronic state, moving together with a kink, whose energy lies within the ribbon energy gap.

I. INTRODUCTION

Nanoscale electromechanical devices based on novel two-
dimensional materials, such as graphene, constitute a specific
class of systems being interesting both due to their fundamen-
tal and technological aspects [1, 2]. In attempt to improve
electromechanical characteristics of such devices, one need
to address fundamental issues concerning the structure of ef-
fective Hamiltonian at nanoscale, including tight-binding pa-
rameters [3], elastic coefficients [4, 5], and electron phonon-
coupling [6]. Numerous works have addressed the idea of
quantum pumping in graphene nanostructures [7–15], em-
ploying various physical mechanisms. These include gate-
driven pumping [7, 8], laser light [9], strain-induced fields
[10], tunable magnetoresistance [11], quantum Hall states
[12], but also electromechanical effects accompanying sliding
Moiré patterns in twisted bilayer [13, 14], or (most recently)
moving kink in buckled graphene nanoribbon [15].

As generic quantum pump transfers electric charge between
two reservoirs at zero external bias, solely due to periodic
modulation of the device connecting the reservoirs [16], new
fundamental and practical aspects of any particular pumping
mechanism may be unveiled with the charge quantization at
nanoscale. Various single-electron pumps were considered as
candidates for quantum standard ampere [17–19]: In case the
charge pumped per cycle is perfectly quantized (i.e., equal to
Q = ne, with n integer) in a considerably wide range of driv-
ing parameters, the output current delivered by the device is
IP = nefP , with fP being the external frequency, and the
SI unit of current can be re-defined by fixing the elementary
charge e at 1.602176634×10|19 A·s, with the second defined
via the ground-state hyperfine transition frequency of the ce-
sium 133 atom, ∆νCs = 9 192 631 770 Hz [20, 21].

So far, single-electron pumps with potential to operate
as standard ampere are predominantly based on gate-driven
quantum dot systems [19]. We argue here, presenting the
results of computer simulation of quantum transport, that
electromechanical pump based on buckled graphene ribbon,
which has recently attracted some attention as a physical real-
ization of the classical φ4 model and its topological solutions
(kinks) connecting two distinct ground states [22, 23], may
also be considered as a promising counterpart to the above-
mentioned single-electron pumps.

Earlier [15], we have shown that the system similar to the
presented in Fig. 1 consisting of metallic graphene nanorib-
bon with armchair edges coupled to heavily-doped graphene
leads may operate as efficient quantum pump, but the charge
per cycle is not quantized. Here, the discussion is supple-
mented by (i) taking the case of insulating nanoribbon into ac-
count, and (ii) by optimizing atomic bond lengths in a frame-
work of the Su-Schrieffer-Heeger (SSH) model [24] including
electron-phonon coupling of the Peierls type [25]. As a result,
we find that for an insulating ribbon a single electronic state
localized at the kink is well-separated from extended states,
and the charge pumped is quantized. Topological aspects of
the system are crucial to understand the charge pump opera-
tion, since the electron-phonon coupling leads to the peculiar,
arrangement of shorten (lengthen) bonds being perpendicular
(parallel) to the main ribbon axis in the kink area, resulting in
the electron localization.

We also show in this paper that, although the kink shape is
well-described within the standard molecular dynamics po-
tentials for graphite-based systems (as implemented in the
LAMMPS package [26]), for accurate modeling of quantum
transport phenomena one needs to include small corrections
to the bond length (up to a few percents the kink area), fol-
lowing from electron-phonon coupling. A minimal quantum-
mechanical Hamiltonian, of the SSH type, allowing one to
model both the kink shape and the transport, is proposed.

Remaining part of the paper is organized as follows. In Sec.
II, we present the model Hamiltonian and our method of ap-
proach. In Sec. III, we discuss quantum states of a finite sec-
tion of buckled ribbon (i.e., closed system) with a kink. The
conductance, and the adiabatic pumping in the ribbon coupled
to the leads (open system) is analyzed numerically in Sec. IV.
The conclusions are given in Sec. V.

II. MODEL AND METHODS

A. The Hamiltonian

Our analysis starts from the Su-Schrieffer-Heeger (SSH)
Hamiltonian for graphene nanostructures [24, 28, 29], with
potential energy describing the covalent bonds [4]

HSSH = T + Vbonds + Vangles, (1)
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Figure 1: Buckled graphene ribbon as a quantum pump. Top:
Nanoribbon buckled by changing the distance between fixed arm-
chair edges from the equilibrium width of W = 11 a (with a =
0.246 nm the lattice spacing) to W ′ = 0.9W , attached to heavily-
doped graphene leads (red), each of width W∞, separated by dis-
tance L1. The total ribbon length is L = L1 + 2W∞ + 2Ls, where
Ls denotes distance between the free ribbon edge and the lead edge.
The kink is formed near the ribbon center. The ammeter detects the
current driven by a moving kink. The gate electrode (not shown)
is placed underneath to tune the chemical potential µ0 in the ribbon
area. The schematic potential profile U(x) (bottom left) and the co-
ordinate system (top left) are also shown. Inset: Band structure of
the infinite flat ribbon with armchair edges for W = 11 a (solid blue
lines) and W = 10 a (dashed red lines).
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Figure 2: (a) Short section of a nanoribbon of W = 5 a width. Two
rows of carbon atoms near each armchair edge (open symbols on dot-
ted areas) are fixed implementing the clamped boundary conditions.
Remaning atoms (full symbols) are adjusted to minimize the ground-
state energy. (b) Bond lengths (dij) and angles (θ](j)) used in the
system Hamiltonian [see Eqs. (1), (2), (3), (4)]. (c) The out-of-plane
deformation parametrized by the sum of three angles with a common
vertex j, related to a tetrahedron height h2 ∝ 2π −

∑
](j) θ](j).

where

T = ⇒t0
∑

〈ij〉,s
e|βδdij/d0

(
c†i,scj,s + c†j,sci,s

)
, (2)

Vbonds =
1

2
Kd

∑

〈ij〉
(dij ⇒ d0)

2
, (3)

Vangles =
1

2
Kθ

∑

j

∑

](j)

(
θ](j) ⇒ θ0

)2

+ Vδ
∑

j


2π ⇒

∑

](j)

θ](j)


 , (4)

with a constrain
∑

〈ij〉
dij ≡ C (= const.) . (5)

The kinetic-energy operator for π electrons T (2) in-
cludes the hopping-matrix elements (tij) corresponding to the
nearest-neighbors on a honeycomb lattice (denoted by using
brackets 〈ij〉), with the equilibrium hopping integral t0 =
2.7 eV. The change in bond length, δdij = dij ⇒ d0, is calcu-
lated with respect to the equilibrium bond length d0 = a/

√
3,

with a = 2.46 Å being the lattice spacing. The operator c†i,s
(or ci,s) creates (or annihilates) a π electron at the i-th lattice
site with spin s. The electron-phonon coupling, quantified by
the dimensionless parameter β = ⇒ ∂ ln tij/∂ ln dij |dij=d0

(to be specified later), is represented by the exponential factor
in Eq. (2) replacing standard Peierls form (1 ⇒ βδdij/d0) in
order to prevent tij from changing the sign upon strong lattice
deformation.

The next two terms in Eq. (1), Vbond (3) and Vangles (4), ap-
proximates the potential energies for the bond stretching and
bond angle bending (respectively); see Fig. 2. The parameters
Kd = 40.67 eV/Å2, Kθ = 5.46 eV/rad2, and θ0 = π/3, are
taken from Ref. [4] and restore the actual in-plane elastic co-
efficients of bulk graphene in the case of β = 0. Otherwise
(for β 6= 0), a correction to the potential energy per bond can
be estimated as

(Nb)
|1 ∂

2〈T 〉
∂d2

ij

∣∣∣∣∣
{dij=d0}

=
βt0
d2

0

∑

s

〈
c†i,scj,s + c†j,sci,s

〉

≈ β × 1.405 eV/Å2 � Kd (for β ∼ 1), (6)

with the number of C-C bonds Nb. The second approx-
imate equality in the above is obtained by substituting∑
s

〈
c†i,scj,s + c†j,sci,s

〉
≈ 1.050 (with i and j the nearest

neighbors), being the value for a perfect, bulk graphene sheet
at the half electronic filling [30].

The expression for Vangles (4) consists of two terms,
each involving summation over the three angles ](j) having
a common vertex at a given lattice site j (see Fig. 2). First
term, ∝ Kθ, represents the harmonic approximation for in-
plane bond angle bending. For out-of plane deformations,
quantified by the height hj of a tetrahedron formed by j-th site



3

and its three nearest neighbors, this term represents a fourth-
order correction to the potential energy. A realistic description
of out-of-plane deformations requires a correction of the∼ h2

j

order (for hj � d0). Here we propose a term proportional to
the excess angle,

δj = 2π ⇒
∑

](j)

θ](j) ≈ 3
√

3

(
hj
d0

)2

, (7)

with the coefficient Vδ ≈ t0 = 2.7 eV roughly approximating
the bending rigidity of graphene [5, 6]. The main advantage of
such an approach is that it requires no computationally expen-
sive operations since the four-body term (∝ Vδ) depends only
on angles (θ](j)) earlier determined for the three-body term
(∝ Kθ). The validity of our approach, in comparison with
standard molecular dynamics treatments [22, 23], is discussed
later in this paper.

B. The optimization procedure

Throughout the paper, we compare the results obtained in
the absence of electron phonon coupling, β = 0, and for the
dimensionless parameter β = 3. In the former case, electronic
and lattice degrees of freedom are decoupled, and one simply
need to solve a purely classical minimization problem for the
potential energy part of the Hamiltonian HSSH (1), given by
Vbonds +Vangles [see Eqs. (3) and (4)]. For the latter case, the
average kinetic energy can be calculated as

〈T 〉 = ⇒t0
∑

〈ij〉,s
exp

(
⇒β δdij

d0

)〈
c†i,scj,s + c†j,sci,s

〉

= 2
∑

ij

tij
∑

16k6Nel/2

[
ψ

(i)
k

]?
ψ

(j)
k

= 2
∑

16k6Nel/2

Ek, (8)

where the factor 2 in the last two expressions follows from
a spin degeneracy, tij = ⇒t0 exp(⇒βδdij/d0) if i and j are
the nearest neighbors (otherwise, tij = 0), and ψ(j)

k denotes
the probability amplitude for the k-th eigenstate of the kinetic
energy operator T (2) at j-th lattice site. We further suppose
that the eigenstates are ordered such that the energies E1 6
E2 6 · · · 6 ENat

, with the number of atoms Nat, and that
the number of electrons Nel is even for simplicity.

In both cases (β = 0 and β = 3), the numerical minimiza-
tion of the ground-state energy

EG = EG({Rj}) = 〈HSSH〉, (9)

with respect to atomic positions {Rj}, is performed employ-
ing the modified periodic boundary conditions in y-direction
(see Fig. 1). Namely, the system is invariant upon y 7→ y + L
and z 7→ ⇒ z, forcing the kink formation in a buckled rib-
bon. The outermost two rows of atoms near each armchair
edge are fixed during the minimization (see Fig. 2), and buck-
ling of the ribbon is realized by changing the distance be-
tween the fixed edges [see Fig. 2(a)] from W to W ′ < W .

Furthermore, the number of electrons is fixed at Nel = Nat,
with Nat = 3600 for metallic armchair ribbon (W = 10 a,
L = 90

√
3 a) or Nat = 3960 for insulating armchair ribbon

(W = 11 a, L = 90
√

3 a). Although in open system, cou-
pled to the leads, the average Nel varies with the chemical
potential, such fluctuations (typically, limited to ∆µ < 0.1 eV
or, equivalently, ∆Nel/Nat ≈ 0.18 (∆µ/t0)2 < 2 × 10|4;
see Ref. [31]) are insignificant when determining the optimal
bond lengths. Alternatively, one can interpret the β = 0 case
as a hypothetical Nel = 0 situation, leading to bond length
modifications not exceeding a few percents (see below).

For a fixed W ′/W ratio and the kink position y = y0, the
computations proceed as follows.

The initial arrangement of carbon atoms is given by

R
(0)
j =

(
x

(0)
j , y

(0)
j , z

(0)
j

)
, j = 1, 2, . . . , Nat, (10)

where

x
(0)
j = XW,W ′(x̃j),

y
(0)
j = ỹj , (11)

z
(0)
j = H tanh

(
ỹj ⇒ y0

Λ

)
sin2

(
πx̃j
W

)
,

with (x̃j , ỹj) being the coordinates of j-th atom on a flat hon-
eycomb lattice, and the scaling function

XW,W ′(x) =





x, for x < 0,

(W ′/W )x, for 0 6 x < W,

x⇒W+W ′, for x >W.

(12)

The buckle height H in Eq. (11) is adjusted such that C =
Nbd0 in Eq. (5). The kink size is fixed at Λ = 5 a, roughly
approximating the kink profiles reported in Refs. [22, 23].

At first step, we minimize the potential energy term
Vbonds + Vangles, ignoring a constrain given by Eq. (5). This
gives us the solution for β = 0 in the HamiltonianHSSH (1).

Next step, performed only if β > 0, involves a further ad-
justment of atomic positions {Rj} such that full ground-state
energy EG (9) reaches a minimum. In practice, we determine
hopping parameters {tij}, wavefunctions

{
ψ

(j)
k

}
, and corre-

lation functions
{
〈c†iscjs〉

}
[see Eq. (8)] for given {Rj}-s,

and then find (within the gradient descent method) a condi-
tional minimum of EG with respect to {Rj} at fixed values of{
〈c†iscjs〉

}
-s, satisfying a constrain given by Eq. (5). The pro-

cedure is iterated until the numerical convergence is reached.
Typically, after 3–4 iterations the atomic positions {Rj}-s are
determined with the accuracy better then 10|5 a.

C. Comparison with LAMMPS results

A brief comparison of the kink shape following from the
numerical procedure described above with the corresponding
output produced by the LAMMPS Molecular Dynamics Sim-
ulator [26, 27] is presented in Fig. 3.
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Figure 3: Spatial arrangement of carbon atoms after the optimiza-
tion procedure presented in Sec. II B compared with the LAMMPS
output. (a,b) Maximal displacement of an atom along (a) x-axis or
(b) y-axis in the coordinate system of Fig. 1, after the optimization
starting from initial coordinates x = x(0), y = y(0) [see Eqs. (10),
(11)]. Open (or closed) symbols correspond to β = 0 (or β = 3).
Red dashed lines show the LAMMPS results for comparison [26, 27].
(c)–(e) C-C bonds after the optimization projected onto the x–z plane
for (c) β = 0, (d) β = 3, and (e) the LAMMPS results. [Notice that
difference in scales for x and z axes visually amplifies the buckling.]
The system parameters are L = 90

√
3 a, W = 11 a, W ′/W = 0.9,

and the kink position is y0 = (3/8)L ≈ 58.5 a for all cases.

In order to quantify the difference in atomic arrangements
obtained within different approaches, we choose the maxi-
mal absolute displacement of atom along the x (and y) axis,
max |x ⇒ x(0)| (and max |y ⇒ y(0)|), where the maximum is
taken for a subset of atoms with equal initial y(0) coordinates;
see Figs. 3(a) and 3(b). It is sufficient to display the data cor-
responding to a vicinity of the kink, 30 6 y(0)/a 6 90, since
far away from the kink position (being fixed at y0 ≈ 58.5 a)
both the quantities considered become y(0)-independent. (As
free boundary conditions are applied in case the LAMMPS
package is utilized, some y(0)-dependences reappear near the
free zigzag edges, but they are much smaller in magnitude
than dependencies in the kink area.)

It is clear from Figs. 3(a) and 3(b) that the LAMMPS results
(see red-dashed lines) are closer to the obtained with our op-
timization procedure in the presence of electron-phonon cou-
pling, β = 3 (solid symbols), then for β = 0 (open symbols).
Also, x–z views of the system, presented in Figs. 3(c), 3(d),
and 3(e), show that approximate mirror symmetry of the kink
appears for β = 3 [see Fig. 3(d)] and for the LAMMPS results
[Fig. 3(e)], but is absent for β = 0 [Fig. 3(c)].

The above observations can be rationalized taking into ac-
cout that four-body (dihedral) and long-range Lennard-Jones
potential energy terms are included in the LAMMPS pack-
age but absent in our model Hamiltonian HSSH (1). In the
presence of electron-phonon coupling (β > 0), however, the
average kinetic energy 〈T 〉 (8) can be interpreted as an effec-

tive long-range (and “infinite-body”) attractive interaction be-
tween atoms, restoring some features related to the Lennard-
Jones forces in molecular dynamics (including an approxi-
mate mirror symmetry of the kink).

III. QUANTUM STATES IN CLOSED SYSTEM WITH
PERIODIC BOUNDARY CONDITIONS

A. Bond-length modulation

Before discussing the electronic structure of the system, we
briefly describe small corrections to the bond lengths appear-
ing in the kink area due to electron-phonon coupling (see Fig.
4), which are essential to understand the results presented in
the remaining parts of the paper.

In Figs. 4(a) and 4(b) we visualize the spatial arrangements
of shorten and lengthen bonds; namely, dij < 〈dij〉i,j=1...Nat

(thick black lines) and dij > 〈dij〉 (thin red lines), where
the average bond length 〈dij〉 = 0.998 d0 for β = 0 and
W ′/W = 0.9, or 〈dij〉 ≡ d0 for β = 3 due to a constrain
imposed [see Eq. (5)]. Apparently, in the presence of electron-
phonon coupling (β = 3) a large rectangular block is formed
in the kink area [i.e., for |y ⇒ y0| . 7 a; see Fig. 4(b)], in
which almost all bonds oriented in the zigzag direction are
shorten (resulting in the hopping element |tij | > t0) and al-
most all remaining bonds are lengthen (|tij | < t0). In the
absence of electron-phonon coupling (β = 0) the situation
is less clear [Fig. 4(a)], with a few smaller blocks of shorten
or lengthen bonds forming more complex patterns, some of
which are isotropic, and some show various crystallographic
orientations.

The qualitative finding presented above is further sup-
ported with statistical distributions of the relative bond length
(dij/d0), determined using all Nb = 5749 bonds in the sys-
tem (for L = 90

√
3 a and W = 11 a) and displayed in Figs.

4(c) and 4(d). In particular, the distribution for β = 3 [Fig.
4(d)] is significantly wider than for β = 0 [Fig. 4(c)]. Also,
bimodal structure of the distribution is visible in the presence
of electron-phonon coupling, suggesting that two distinct pop-
ulations of shorten and lengthen bonds are formed in this case.

The position dependence of the bond-length modulation is
illustrated in Figs. 4(e) and 4(f), where we display the mean
〈dij〉 the variance Var (dij) calculated for bonds connecting
atoms in a single zigzag line (parallel to the x direction) as
functions of a mean y-position of carbon atoms in the line. It
is clear that significant bond-length modulations (however, not
exceeding a few percents of d0) appear only in a small vicinity
of the kink position, |y ⇒ y0| . 7 a, and that the modulations
and noticeably stronger for β = 3 (solid symbols) than for
β = 0 (open symbols). Remarkably, the LAMMPS results
(red-dashed lines) now indicate much weaker bond-length
modulations than our numerical results (regardless β = 0 or
β = 3) but are significantly closer to the β = 0 results then
to the β = 3 results. This shows that the quantum-mechanical
nature of the Hamiltonian HSSH (1), relevant for spacial ar-
rangement of carbon atoms only if β 6= 0, is crucial for an
accurate description of bond-lengths corrections.
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Figure 4: Bond-length modulation for the same system parameters
as in Fig. 3. (a) Shorten (thick black) and lengthen (thin red) bonds
projected on the (x, y) plane for in the absence of electron-phonon
coupling [i.e., β = 0 in Eq. (1)]. (b) Same as (a) but for β = 3. (c)
and (d) Statistical distributions of the relative bond length for β = 0
and β = 3. (e) Average bond length distortion displayed as a func-
tion of y coordinate for β = 0 (open circles) and β = 3 (full circles).
Red dashed line shows the LAMMPS results. (f) Bond length varia-
tion vs. y presented with the same symbols (lines) as in (e).

B. The current blocking

In order to understand how the bond-length modulation
may affect the transport properties, we focus now on the Dirac
points (K and K ′) and changes in their positions in the first
Brillouin zone due to strain-induced fields (see Fig. 5).

Revisiting the derivation of an effective Dirac equation for
graphene one finds that weak deformations introduce peculiar
gauge fields, with the vector potential for K valley [6]

AK ≡
(
AK,x
AK,y

)
=
cβ

d0

(
uxx ⇒ uyy
⇒2uxy

)
, (13)

where c is a dimensionless coefficient of the order of unity,
uij = 1

2 (∂iuj + ∂jui) (with i, j = x, y) is the symmetrized
strain tensor for in-plane deformations [32] and the coordinate
system is chosen as in Fig. 1 (i.e., such that the x axis cor-
responds to a zigzag direction of a honeycomb lattice). For
the K ′ valley, the strain-induced field has an opposite sign
(namely, AK′ = ⇒AK).
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Figure 5: Schematic illustration of the mechanism of current block-
ing (or electron localization) in metallic (or insulating) graphene
nanoribbon with a kink. Top: Relative modification of the bond
lengths in the kink area shifts each Dirac point (K and K′) in the
momentum space by ±δA. Bottom: Transverse momentum quanti-
zation near the K point (blue solid or red dashed lines, separated by
∆kx, correspond to the insulating or the metallic case, respectively)
combined with the K-point shift may locally turn metallic nanorib-
bon into insulating one or vice versa.

For an approximately uniform compression along the x di-
rection occurring in the kink area, we have ux ≈ (W ′/W )x,
uy = y, and the K point is shift by δA ∝ ⇒ (1⇒W ′/W )k̂x
with k̂x being a unit vector in the kx direction, while the K ′

point is shift by ⇒δA, as visualized in top panels of Fig. 5.
Away from the kink area, buckling without changing bond
lengths does not create strain-induced fields (δA ≈ 0) [33].

Additionally, a finite size along the x direction introduces
the well-known geometric quantization, with the discrete val-
ues of quasimomentum kx, separated by ∆kx ∼ π/W (see
bottom panels in Fig. 5). In principle, for a particular combi-
nation of δA and ∆kx, a nanoribbon may locally change its
character from metallic to insulating (or vice versa). In more
general situation, if δA and ∆kx are not precisely adjusted to
alter the system properties at E = 0, one can find some finite
energies (E > 0 for electrons or E < 0 for holes), for which
quantum states are available only away from the kink area (or
only in the kink area). A direct illustration is provided with
the density of states discussed next.

C. Density of states

We consider here two nanoribbons with armchair edges,
one of the width W = 10 a (the metallic case) and the other
of W = 11 a (the insulating case). The system length is
L = 90

√
3 a in both cases, with modified periodic bound-

ary conditions (see Sec. II B) applied for both lattice and elec-
tronic degrees of freedom. The two values of β = 0 and
β = 3 in the Hamiltonian HSSH (1) are considered; the buck-
ling magnitude is fixed at W ′/W = 0.9. The above param-
eters allow us to define the two energy scales: The subband
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Figure 6: Electronic density of states as a function of energy for
a finite section (L = 90

√
3 a) of (a,b) metallic [W = 10 a] and (c,d)

insulating [W = 11 a] ribbons with armchair edges, W ′/W = 0.9,
and a single kink. The bond lengths are optimized for (a,c) β = 0
or (b,d) β = 3. Arrow in (d) indicates one of the localized states,
at E = 0.04 t0, appearing in the gap area. The level broadening
parameter [see Eq. (17)] is ε = 5 · 10−3 t0.

splitting

∆EW = ~vF∆kx ≈ 0.3 t0, (14)

and the longitudinal quantization

∆EL = 2π~vF /L ≈ 0.03 t0. (15)

In Fig. 6, we display the electronic density of states

ρ(E) =
∑

n

δ(E ⇒ En), (16)

with En denoting the n-th eigenvalue of the kinetic-energy
operator T given by Eq. (2), for all four combinations of β
and W . For plotting purposes, the δ function is smeared by
a finite ε; namely, we put

δ(x)→ 1

π

ε

x2 + ε2
, (17)

where ε = 5 · 10|3 t0.
Since ∆EW � ∆EL, metallic [see Figs. 6(a) and 6(b)] or

insulating [see Figs. 6(c) and 6(d)] character of the ribbon can
still be recognized from the ρ(E) spectrum of its finite section:
in the former case, ρ(E) is elevated for any E, whereas in the
later case, we have ρ(E) ≈ 0 in a vicinity of E = 0.

The effects of electron-phonon coupling can be summa-
rized as follows. In the metallic case, bond length modulation
results in small splittings of the electronic levels [see Fig. 6(b)
for β = 3], originally showing approximate degeneracy [see
Fig. 6(a) for β = 0], due to amplified scattering between the
ky and⇒ky states occurring in the kink area. In the insulating
case, we have two energy levels, appearing for β = 3 [see
Fig. 6(d)] but absent for β = 0 [see Fig. 6(c)], one for elec-
trons (marked with red arrow) and one for holes, which occur

y0=(3/8)L

Figure 7: Local density of states for E = 0.04 t0 for W = 10 a
(left) and W = 11 a (right). Red horizontal line indicates the kink
position. The bond lengths are optimized for β = 3. Remaining
system parameters are same as in Fig. 6.

in the gap range and are well-separated from other levels, sug-
gesting that they are associated with localized states.

The above expectation is further supported with local den-
sity of states (presented Fig. 7)

ρloc(Rj , E) =
∑

n

∣∣∣ψ(j)
n

∣∣∣
2

δ(E ⇒ En), (18)

where the δ function is represented via Eq. (17) and the re-
maining symbols are same as in Eq. (8). Adjusting the en-
ergy to the isolated electronic level appearing in the insulat-
ing case (W = 11 a) at E = 0.04 t0, we immediately find
that the corresponding quantum state is strongly localized in
the kink area (see right panel in Fig. 7). In the metallic case
(W = 10 a), the value of E = 0.04 t0 belongs to a continuum
of extended states in the lowest subband, but the correspond-
ing ρloc(Rj , E) profile shows a clear suppression in the kink
area (see left panel in Fig. 7), allowing one to expect that the
current propagation in y-direction may be blocked, in the pres-
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Figure 8: (Top to bottom) Buckled graphene ribbon with a kink,
originally placed at y0 = 3

8
L, subjected to seven consecutive shifts

y 7→ y + L/4, visualizing the full pumping cycle (kink and antikink
transition upon y 7→ y+ 2L) as seen in the (y, z) plane. A modified
periodic boundary conditions (i.e., y 7→ y+L, z 7→ −z) are applied.
The system parameters are W = 11 a, W ′/W = 0.9, and L =
30
√

3 a. (Notice that a short ribbon is chosen here for illustration
only; in the forthcoming calculations we set L = 90

√
3 a). The

bond lengths are optimized for β = 3.

ence of a kink, for a whole energy window corresponding to
the lowest (or highest) subband for electron (or holes).

IV. CONDUCTANCE AND ADIABATIC PUMPING IN
OPEN SYSTEM

In this section we present central results of the paper con-
cerning transport properties of the open system (finite section
of a nanoribbon attached to the leads) presented in Fig. 1.

A. Simulation details

So far, we have discussed several characteristics of the
closed system with modified periodic boundary conditions
in the y-direction (see Sec. III), making the kink position
(y0) irrelevant for global characteristics, such as the den-
sity of states. Now, we use the atomic positions {Rj} =
{(xj , yj , zj)} obtained with the optimization procedure de-
scribed in Sec. II B (again, we consider the cases without and
with the electron-phonon coupling, β = 0 and β = 3) for
y0 = 3

8L. Next, the kink is placed at the desired position (say,
y0 +∆y) by applying a shift to all y coordinates, y 7→ y+∆y.
A series of consequitive shifts, such as visualized in Fig. 8,
emulates the kink motion (including full kink and antikink
transitions) in a real system. In case the shift is commensurate
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Figure 9: Conductance of graphene ribbon attached to the leads (see
Fig. 1) with L = 90

√
3 a, W∞ = 17.5

√
3 a, Ls = 7.5

√
3a, and

L1 = 40
√

3 a, displayed as a function of the chemical potential. The
ribbon with is (a,b) W = 10 a or (c,d) W = 11 a. Blue solid lines
in all plots are for W ′/W = 0.9, the kink position y0 = (3/8)L,
and the bond lengths optimized for (a,c) β = 0, or (b,d) β = 3; red
dashed lines correspond to a flat ribbon case (W ′=W ).

with the longitudinal ribbon periodicity, ∆y =
√

3na with
n-integer, we simply apply modified periodic boundary con-
ditions for all atoms, for which yj + ∆y < 0 or yj + ∆y > 0.
Otherwise (i.e., if ∆y 6= na), atomic positions after a shift
{Rj}∆y are determined via third-order spline interpolation
using {Rj}√3(n0|1)a, {Rj}√3n0a

, . . . , {Rj}√3(n0+2)a, with
n0 = b∆y/(

√
3a)c, and bxc the foor function of x.

The hopping-matrix elements (tij) in Eq. (8) are then deter-
mined using atomic positions after a shift, {Rj}∆y , but we set
tij = 0 in case i and j are terminal atoms from the opposite
zigzag edges (i.e., periodic boundary conditions are no longer
applied for electronic degrees of freedom).

The leads, positioned at the areas of x < 0 and x > W ′

in Fig. 1, are modeled as perfectly flat (i.e., tij = ⇒t0 for the
nearest neighbors i and j) and heavily doped graphene areas,
with the electrostatic potential energy U∞ = ⇒0.5 t0 (com-
pared to U0 = 0 in the ribbon area, 0 < x < W ′), each of
the width W∞ = 17.5

√
3 a (corresponding to 11 propagat-

ing modes for E = 0). What is more, both leads are offset
from the free ribbon edges by a distance of Ls = 7.5

√
3 a,

suppressing the boundary effects. The scattering problem is
solved numerically, for each value of the chemical potential
µ = E⇒U0 and the kink position y0, using the KWANT pack-
age [34] in order to determine the scattering matrix

S(µ, y0) =

(
r t′

t r′

)
, (19)

which contains the transmission t (t′) and reflection r (r′)
amplitudes for charge carriers incident from left (right) lead.
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B. Landauer-Büttiker conductance

The linear-response conductance is determined from the S-
matrix via the Landauer-Büttiker formula [35, 36], namely

G = G0Tr tt† =
2e2

h

∑

n

Tn, (20)

where G0 = 2e2/h is the conductance quantum and Tn is the
transmission probability for the n-th normal mode.

In Fig. 9, we compare the conductance spectra for the same
four combinations of parameters W and β as earlier used
when discussing the density of states (see Fig. 6). This time,
results for a buckled ribbon, with W ′/W = 0.9 and a kink
placed at y0 = 3

8L, are compared with the corresponding re-
sults for a flat ribbon (solid blue and dashed red lines in Fig. 9,
respectively). In the metallic case, electron-phonon coupling
strongly suppresses the transport in the presence of a kink
[Fig. 9(b)]; the effect of a kink is much weaker in the ab-
sence of electron-phonon coupling [Fig. 9(a)]. Similar effects
can be noticed in the insulating case, provided that the chemi-
cal potential is adjusted to the first conductance step above (or
below) the gap range [Figs. 9(c) and 9(d)].

C. The pumping spectra

In the absence of a voltage bias between the leads, the
charge transferred solely due to adiabatic kink motion (i.e.,
by varying the parameter y0) can be written as [16]

∆Q = ⇒ ie
2π

∑

j

∫
dy0

(
∂S

∂y0
S†
)

jj

, (21)

where the summation runs over the modes in a selected (out-
put) lead.

Numerical results for ∆Q(µ), obtained by shifting the kink
from y0 = 0 to y0 = L, are presented in Fig. 10. Although the
current blocking in the metallic case is far from being perfect
[see Fig. 9(b)], the related pumping mechanism for W = 10 a
appears to be rather effective (see top panel in Fig. 10), with
∆Q(µ) approaching the total charge available for transfer in
a section of the length Leff , a value of which can be approxi-
mated by [37]

Qkink

e
≈ gs

Leff |µ0|
π~vF

=
4

π

Leff |µ0|√
3 t0a

, (22)

where vF =
√

3 t0a/(2~) ≈ 106 m/s is the Fermi velocity
in graphene and we put L1 6 Leff 6 L1 + W∞, estimating
the effective length of a ribbon section between the leads (see
shaded area in Fig. 10).

Significant changes to the ∆Q(µ) spectra are observed in
the insulating case of W = 11 a (see bottom panel in Fig.
10). Namely, there is an abrupt switching between ∆Q ≈ 0
near the center of a gap (at µ = 0) and ∆Q ≈ 2e appear-
ing for µ exceeding the energy level localized in the kink
area [see Fig. 6(d)]. The value of ∆Q ≈ 2e remains unaf-
fected until µ approaches a bottom of the lowest electronic
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Figure 10: Charge pumped per each kink (or antikink) transition as
a function of the chemical potential for (top) W = 10 a and (bot-
tom) W = 11 a. The bond lengths are optimized for β = 3. The
ratio W ′/W is varied between the lines with the steps of 0.01; the
maximal and minimalW ′/W are specified at each plot. Shaded area
(top) marks the total charge available for pumping, approximated by
Eq. (22) with L1 6 Leff 6 L1 + W∞. Inset (bottom) shows maxi-
mal absolute bond distortion, as a function ofW ′/W , forW = 10 a
(open symbols) and W = 11 a (closed symbols); lines in the inset
are drawn to guide the eye only.

subband [corresponding to the first conductance step in Fig.
9(d)]. For higher µ, the picture becomes qualitatively sim-
ilar to this for a metalic case, with ∆Q(µ) systematically
growing with µ and degreasing with W ′/W . Noticeably, the
plateau with ∆Q ≈ 2e is well-developed starting from mod-
erate bucklings, W ′/W ≈ 0.95. For W ′/W ≈ 0.9, deviation
from the quantum value in the plateau range is of the order of
|∆Q ⇒ 2e| ∼ 10|4 e, and can be attributed to the finite-size
effects. Some stronger deviations may appear in a more real-
istic situation due to the finite-temperature and non-adiabatic
effects, which are beyond the scope of this work.

In both (metallic and insulating) cases, the stability of nu-
merical integration in Eq. (21) substantially improves for the
lead offsets Ls & 5 a (being comparable with the kink size),
for which parts of the ribbon attached to the leads, together
with a section between the leads, are (almost) uniformly buck-
led for either y0 ≈ 0 or y0 ≈ L.

In Fig. 10, we also display maximal bond distortions for
different bucklings (see the inset), showing that local defor-
mations |δdij | < 0.1 d0 for all 0.9 6W ′/W < 1.



9

V. CONCLUSIONS

We have demonstrated, by means of computer simulations
of electron transport, that buckled graphene nanoribbon with
a topological defect (the kink) moving along the system may
operate as adiabatic quantum pump. The pump characteris-
tic depend on whether the ribbon is metallic or insulating.
In the former case, even for moderate bucklings (with rela-
tive bond distortions below 10%) the kink strongly suppresses
the current flow, and shifts the electric charge when moving
between the leads attached to the system sides. In turn, the
charge pumped per cycle is not quantized. For insulating rib-
bon, there are electronic states localized near the kink (with
energies lying within the energy gap) which can be utilized to
transport a quantized charge of 2e per kink transition (with the
factor 2 following from spin degeneracy), providing a candi-
date for the quantum standard ampere.

Remarkably, the current suppression, and subsequent ef-
fects we have described, are visible after the bond lengths op-
timization for the Su-Schrieffer-Heeger model is performed,
introducing significantly stronger bond distortions than the
classical (a molecular-dynamics-like) model optimization.
Therefore, electron-phonon coupling appears to be a crucial
factor for utilizing the moving kink for adiabatic quantum
pumping in buckled graphene ribbons.
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