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Abstract

The purpose of this thesis is threefold: �rstly to introduce the reader to the basic principles
of noncommutative geometry which are requisite for the construction of models of physics in
this formalism. Secondly, in order to lend context to the models constructed in this thesis,
two possible extensions of the Standard Model are brie�y introduced. Namely, the Pati-
Salam grand uni�ed theory and supersymmetry, both of which have deservedly received
signi�cant attention over the years. And thirdly, to present in some detail several works to
which I have contributed, and which advances the development and study of these models
in the context of noncommutative geometry.

Streszczenie

Niniejsza praca ma trzy cele: po pierwsze, zapozna¢ czytelnika z podstawowymi zasadami
geometrii nieprzemiennej, niezb¦dnymi do budowy modeli �zyki w tym formalizmie. Po
drugie, aby nada¢ kontekst modelom skonstruowanym w tej pracy, pokrótce przedstawiono
dwa mo»liwe rozszerzenia Modelu Standardowego: teori¦ wielkiej uni�kacji Pati-Salama
oraz supersymetri¦, które przez lata przyci¡gaªy znacz¡ce zainteresowanie. Trzeci cel to
przedstawi¢ szczegóªowo szereg prac, do których wniosªem swój wkªad, a które posuwaj¡
naprzód badania tych teorii w kontek±cie geometrii nieprzemiennej.
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Chapter 1

Introduction

Let's begin with an introductory overview of the primary topics to be discussed in this
work, and the essential language and tools with which the reader should be equipped before
proceeding to subsequent chapters.

1.1 Noncommutative geometry

Noncommutative geometry (NCG) is a relatively new branch of mathematics, the bulk of
which was worked out in the latter half of the previous century by French mathematician
Alain Connes [1]. In its essence, noncommutative geometry tells us how to abstract all
pertinent information about a classical di�erentiable manifold to the level of operators and
abstract algebras of functions de�ned over its coordinates. Furthermore, Connes goes on
to formulate a set of conditions for which the converse is also achieved. Via his celebrated
reconstruction theorem, one may recover the geometric information about the underlying
manifold from a set of purely algebraically de�ned quantities.

In the formalisms of operator theory and abstract algebra there is no need to restrict
to the study of commutative algebras only, thus by considering noncommutative algebras,
a broader class of �geometric spaces" is studied, for which a classical geometric description
is impossible. Such spaces are frequently referred to as noncommutative geometries or
noncommutative manifolds. As it turns out, it is in this class of noncommutative spaces
(or more correctly a restricted subclass known as almost-commutative manifolds or AC-

manifolds) in which Connes found a uni�ed theory of the complete Standard Model (SM)
of particle physics coupled with classical (Einsteinian) gravity [2].

Due to the enormity and mathematical depth of the subject, the reader is referred to
the existing literature for a more comprehensive introduction [3, 4] and instead herein is
given only a rapid overview of the elements which will be necessary for what follows.

As previously stated, due to its success in producing the SM, the recipes in this thesis
will, in each case, follow the AC-geometry approach with conditions suitably relaxed to
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accommodate a particular extension of the Standard Model. With this in mind, recall that
the AC-geometry approach begins with a total space of the form

M × F, (1.1)

where M is a compact Reimannian spin manifold and F is some �nite, discrete topological
space.

The next step is to pass to a set of algebraic structures which equivalently describes
this space, known as a spectral triple. This is done in 2 steps. First, to M and F , associate
the spectral triples

M≡ (AM ,HM ,DM ) and F ≡ (AF ,HF ,DF ), (1.2)

whereM consists of a unital, associative ∗-algebra, AM , faithfully represented on a Hilbert
space of bounded operators, HM , and a Hermetian operator, DM : HM → HM , often taken
to be a Dirac operator, with compact resolvent, and such that [DM , a] is bounded for any
a ∈ AM , and where F consists of a �nite dimensional, unital, associative ∗-algebra, AF ,
faithfully represented on a �nite dimesional Hilbert space, HF , upon which acts a symmetric
operator DF . Then the spectral triple encoding the geometric structure of the total space
is given by the tensor product

M⊗F ≡ (A,H,D) ≡ (AM ⊗AF ,HM ⊗HF ,DM ⊗DF ), (1.3)

where D ≡ DM⊗DF ≡ DM⊗1F +γM⊗DF is called the Dirac operator of the AC-manifold.
A spectral triple is said to be even if the Hilbert space is equipped with a Z2-grading

(an operator γ : H → H, such that γ2 = 1 ) which satis�es [γ, a] = 0 and {γ,D} = 0.
Also, a spectral triple is called real, if the Hilbert space admits a real structure, that is, an
anti-unitary operator, J : H → H such that J2 = ε, JD = ε′DF , and in the case that the
spectral triple is even, Jγ = ε′′γJ , where ε, ε′, and ε′′ are each ±1 and together determine
the KO-dimension of the spectral triple. Moreover, it is required that the commutant

property (or 0th-order condition) and the 1st-order condition hold,

[a, b◦] = 0, and [[D, a], b◦] = 0, (1.4)

where a, b ∈ A, and b◦ ≡ Jb∗J−1 implements a right action of A on H.
Finally then, the object of central importance to this story, namely a real, even spectral

�triple�
(A,H,D; γ, J), (1.5)

where γ ≡ γM ⊗ γF , and J ≡ JM ⊗ JF , may be written down (generally).
In noncommutative geometry, the gauge �elds arise by consideringMorita (self-)equivalence

of the algebra, meanwhile the gauge group implements unitary equivalence of spectral triples
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(which is itself an instantiation of Morita equivalence). Brie�y, the above real, even spectral
triple is equivalent, up to Morita self-equivalence, to

(A,H,DA; γ, J), (1.6)

where DA = D + A + ε′JAJ−1 is the inner �uctuated Dirac operator and A ∈ Ω1
D(A) ≡

{
∑

i ai[D, bi] : ai, bi ∈ A} are the gauge �elds, or inner �uctuations of the Dirac operator,
D. Meanwhile,

(A,H, UDU∗; γ, J), (1.7)

is a unitarily equivalent triple obtained by an element of the gauge group U = uJuJ−1

where u is a unitary element of A. Ultimately, UDU∗ = DA for A = u[D, u∗].
Physics then emerges from the noncommutative formalism from the action functional,

S = Sb + Sf ≡ Tr
(
f

(
DA
Λ

))
+ 〈ξ,DAξ〉 , (1.8)

where ξ ∈ H and f is some su�ciently well behaved function. This action consists of the
spectral action, Sb, responsible for the bosonic terms, and the fermionic action, Sf , taking
care of fermionic particle content. The former is usually evaluated by heat kernal methods
and is spectral in the sense that it counts eigenvalues of the �uctuated Dirac operator up
to some predetermined cut-o�, Λ.

1.2 Pati-Salam and L-R symmetric models

The Standard Model of Particle Physics is the preeminent theory of fundamental con-
stituents and their interactions. It has been experimentally tested and veri�ed to be ac-
curate with a very high degree of precision. Nevertheless, there are several open questions
which, to date, the Standard Model has left unresolved. Among them, several are related
to the masses of neutrinos and the seesaw mechanism [5], and others to baryon asymmetry
[6]. Nowadays, there is also a tremendous set of cosmological data [7] which suggest the
existence of dark matter. Several attempts to explain the aforementioned questions have
already been proposed. Due to the proven success of the Standard Model, most of them
are extensions thereof and are known as theories which go Beyond the Standard Model. An
interesting one, which has already been under consideration for several years and intensively
studied by several physicists, is the model introduced by J.C. Pati and A. Salam [8].

The Pati-Salam model is a Yang-Mills-type model based on the SU(2)R×SU(2)L×SU(4)
gauge group. It extends the usual Standard Model by e.g. introducing leptoquark symmetry
and left-right symmetry. It was also considered to explain the origin of parity symmetry
breaking [9], [10].

Models which describe theories of Particle Physics are traditionally constructed in the
Lagrangian formalism, i.e. the form of the action is postulated based upon the desired

11



symmetries of the resulting model. A possible geometrical explanation for the structure of
such theories is provided by spectral geometry. The Standard Model has been studied for
several years in the framework of almost-commutative geometry (see e.g. [11],[12] and [2])
but some puzzles remain unsolved, not only for the product spectral triple, but also for
its �nite part. Recently, in [13], it was proposed to consider the �nite spectral triple for
the Standard Model as the shadow of some pseudo-Riemannian triple in such a way that
the pseudo-Riemannian structure leads to the existence of some nontrivial grading on the
Riemannian triple.

The Pati-Salam model has been considered as a noncommutative geometry by several
authors, see e.g. [14],[15],[16],[17] and [18]. As a survey of the historical development
of these methods and their applications in Particle Physics, [19] is also recommended.
Reduced versions of the Pati-Salam models, i.e. the Left-Right Symmetric Models, were also
considered in the framework of noncommutative geometry, �rstly as potentially interesting
examples for the Connes-Lott scheme of spectral geometry, but then also from the point of
view of possible physical applications � see e.g. [20],[21],[22] and [23]. However, since some
of the fundamental axioms of noncommutative geometry were not satis�ed, such models
were not satisfactory. Later on, due to the trend of relaxing some of the axioms, e.g. the
�rst-order condition, and further development of the spectral theory in their absence (see
e.g. [24]), the family of Pati-Salam models was analyzed.

1.3 Supersymmetry

Simply stated, supersymmetry (SUSY) is a proposed symmetry of nature that relates to
each boson (a particle with integer spin) an associated partner particle with half-integer
spin (a fermion), and vice versa. Although initially posited as a meson/baryon symmetry
in the theory of hadrons [25], it was reincarnated several years later as a global spacetime
symmetry in the context of quantum �eld theories (QFTs). It is perhaps in the work of
Julius Wess and Bruno Zumino [26], that supersymmetry really came of age. Their work
provided the �rst example of a four-dimensional, supersymmetric quantum �eld theory with
interactions.

While the de�ning principle of supersymmetry is concisely stated, its simplicity is dis-
proportionate to its value. With the additional principle of supersymmetry, many of the
curiosities and apparent inconsistencies of the SM are readily explained. The unexpectedly
low mass of the Higgs particle, the hierarchy problem, and the non-uni�cation of the gauge
coupling constants at high energies, to name a few. Additionally, SUSY provides a can-
didate for the particle(s) responsible for dark matter, the only possible �workaround" for
the Coleman-Madula theorem, and a ray of hope for (potentially) physically relevant string
theories which without SUSY, would be out of business [27, 28].

A particularly pleasing formulation of SUSY arises from the notion of superspace. One
may argue that this should be the natural starting point for combining SUSY with NCG
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since it elegantly encodes the SUSY transformations as geometric translations of its coordi-
nates [29, 30]. Essentially, a superspace is obtained by adding one or more anticommuting
coordinates to an ordinary manifold. The component �elds of a multiplet of particles and
their superpartners are encoded in a single object called a super�eld, which is a function of
the superspace coordinates. Then, in�nitesimal translations of the superspace coordinates
correspond with global supersymmetry transformations, transforming bosonic component
�elds into fermionic ones, and vice versa. Moreover, for a super�eld that has been written
in an expansion of its anticommuting coordinates, the variation of the highest order term,
with respect to SUSY transformations, is always a total derivative, making it a natural
choice for building the action of a supersymmetric model of physics.

1.4 Summary of results

The following chapters present the details of several projects to which I have contributed
and whose aim is to advance the development and study of physics beyond the Standard
Model by using mathematical techniques drawn from and inspired by noncommutative
geometry [31, 32, 33].

In Chapter 2 we analyze the �nite part of the pseudo-Riemannian spectral triple for
the Pati-Salam model and determine the possible pseudo-Riemannian structures which
may exist for the various permissible gradings of the input algebra. Given that this triple
should �restrict" to a Riemannian triple with an additional grading, we argue that the
allowed pseudo-Riemannian structures restrict the family of Pati-Salam models to the Left-
Right symmetric ones, i.e. No-go for lepto-quarks. Furthermore, the induced grading on
the Riemannian triple greatly reduces the freedom of admissible Dirac operators. These
restrictions are identi�ed, and we note that this class of Dirac operators still allows for
the existence of SU(2)-doublets of right-handed particles. Thus, still allowing for physics
beyond the Standard Model.

In Chapter 3, with an eye toward its application as the Dirac operator for a superspace
based spectral triple, we factorize the ordinary Dirac operator on Minkowski space and
show that a particular solution of its action on a restricted space of super�elds is a massless
spinor super�eld together with a Maxwell gauge �eld. We then examine and discuss the
implications of this factorization on the total-space Dirac operator of a spectral triple in
the usual AC-geometry approach to noncommutative model building.

And �nally, in Chapter 4, a possible framework for incorporating SUSY in its super-
space formulation into the AC-geometry approach to noncommutative geometry is pro-
posed. Working in an example superspace and together with a 2-point �nite space, the
input data of the �spectral triple" is examined, i.e. the unital, associative Grassmann alge-
bra, its representation on a (super) Hilbert space, gradings, real structure (charge conjuga-
tion), and a candidate Dirac operator. Also, the fermionic action for a simply chosen inner
product and the dimensionally meaningful term of the spectral action are both calculated.
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Chapter 2

Pseudo-Riemmanian �nite spaces for

PS models

In this chapter, the pseudo-Riemannian structure of the �nite triple for the Pati-Salam
model is considered, in the sense introduced in [13]. Further, the �nite spectral triples for
such models are analyzed, possible pseudo-Riemannian structures are discussed and are
shown to be related to the grading that distinguishes leptons from quarks, and it is argued
that the existence of this pseudo-Riemannian structure restricts the family of Pati-Salam
models to the Left-Right symmetric ones. The pulished version of these results can be
found in [31]

2.1 Finite spectral triples for Pati-Salam models

In this section we consider the �nite spectral triple for the family of Pati-Salam models. We
discuss algebras and their commutants, di�erent choices of chiral structures and possible
Dirac operators.

2.1.1 Spectral data

The algebra for the Pati-Salam model is of the form

A = HR ⊕ HL ⊕M4(C), (2.1)

where HL and HR respectively denote left and right chiral copies of the quaternion algebra.
Consider F = M4(C) with the inner product 〈v, w〉 = Tr(v∗w) (where v∗ denotes the
Hermitian conjugate of v ∈ F ). The elements, v in F can be presented in the following
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form

v =


νR u1

R u2
R u3

R

eR d1
R d2

R d3
R

νL u1
L u2

L u3
L

eL d1
L d2

L d3
L

 . (2.2)

Let H = F ⊕F ∗ be the Hilbert space for the model we consider here, where F ∗ is the dual
representation to F . Following [34] we can identify

EndC(H) ∼= M4(C)⊗M2(C)⊗M4(C), (2.3)

where the matrix algebra is represented on H as

π̃ (α⊗ 12 ⊗ β)

[
v
w

]
=

[
αvβt

αwβt

]
, (2.4)

and

π̃

(
14 ⊗

[
a b
c d

]
⊗ 14

)[
v
w

]
=

[
av + bw
cv + dw

]
, (2.5)

for all α, β, v, w ∈M4(C) and a, b, c, d ∈ C.
Therefore, we have to represent all operators acting on H as elements of this tensor

product space, and also �nd the form of the representation π : A → EndC(H) in this
language.

Let eij be the matrix that has 1 in the entry (i, j) and zero otherwise. Then the grading
γ has the following matrix representation

γ =

[
12

−12

]
⊗ e11 ⊗ 14 + 14 ⊗ e22 ⊗

[
−12

12

]
. (2.6)

There is also another possible choice of grading [35], for which left-handed leptons have
the same parity as right-handed quarks, and vice versa for the opposite chirality:

γ? =

[
12

−12

]
⊗ e11 ⊗

[
1
−13

]
+

[
−1

13

]
⊗ e22 ⊗

[
12

−12

]
. (2.7)

With respect to the decomposition H = F ⊕ F ∗, let J be the real structure, i.e.

J

[
v
w

]
=

[
w∗

v∗

]
. (2.8)

It is used to de�ne the opposite representation [34]. For ξ = π̃

(
α⊗

[
a b
c d

]
⊗ β

)
we take

ξ◦ = Jξ∗J−1 = π̃

(
βt ⊗

[
d b
c a

]
⊗ αt

)
. From now on we will omit the π̃ symbol for the

representation of an endomorphism.
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The elements of the algebra A = HR ⊕ HL ⊗M4(C) are represented on H as

π(q1, q2,m) =

[
q1

q2

]
⊗ e11 ⊗ 14 +m⊗ e22 ⊗ 14, (2.9)

where q1 ∈ HR, q2 ∈ HL and m ∈M4(C).
Notice that γ? does not commute with this representation of the algebra A unless the

symmetry following from M4(C) is broken into C⊕M3(C).
Therefore, here we are considering two algebras. The �rst one being HR ⊕HL ⊕M4(C)

which we refer to as corresponding to an unreduced Pati-Salam model, and the second one
HR ⊕ HL ⊕ C⊕M3(C), which we will call reduced.

Since the Dirac operator D ∈ EndC(H), it is of the form

D =
∑
i,j=1,2
1≤k≤K

Dk
1ij ⊗ eij ⊗Dk

2ij , (2.10)

with Dk
1ij , D

k
2ij ∈ M4(C), for some natural number K. From now on, summations will be

understood to be over the entire range of all indices unless explicitly stated otherwise.

2.1.2 Commutants

We now consider the commutants of several algebras related to the unreduced and reduced
Pati-Salam models. These results will be crucial to the discussion in section 2.2.3.

Notice �rst, that for any (real or complex) matrix algebra A contained in MN (C) for
some N , the commutant A′ is the same as A′

C
, where AC denotes the complexi�cation of

A.
By a straightforward computation we can check that the commutant of the algebra of

elements
[
q1

q2

]
, with q1, q2 ∈ H is the algebra with elements

[
α12

β12

]
, where α, β ∈ C.

We denote this algebra by C1.

In a similar manner, the commutant of the algebra of elements
[
λ

n

]
, with λ ∈ C,

n ∈M3(C) is the algebra with elements
[
α

β13

]
, where α, β ∈ C. We denote this algebra

by C2.
Furthermore, notice that M4(C)′ ∼= C. Therefore, we can describe the commutants of

the Pati-Salam algebra for the unreduced (i.e. with A = HR ⊕ HL ⊕M4(C)) case, and the
reduced one (i.e. with A = HR ⊕ HL ⊕ C⊕M3(C)).

Proposition 2.1.1. The commutant (HR ⊕ HL ⊕M4(C))′ in EndC(H) is the algebra gen-

erated by elements of the form

A1 ⊗ e11 ⊗ E1 + 14 ⊗ e22 ⊗ E2, (2.11)

where A1 ∈ C1 and E1, E2 ∈M4(C).
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Proof. Any element of the considered algebra may be represented as

π(q1, q2,m) =

[
q1

q2

]
⊗ e11 ⊗ 14 +m⊗ e22 ⊗ 14, (2.12)

with q1, q2 ∈ H and m ∈M4(C). It is enough to �nd which elements of the form

A1 ⊗ e11 +A2 ⊗ e12 +A3 ⊗ e21 +A4 ⊗ e22 ∈M4(C)⊗M2(C) (2.13)

commute with
[
q1

q2

]
⊗ e11 +m⊗ e22 for all q1, q2 and m.

The only possible solutions are with A1 ∈ C1, A4 ∼ 14 and A2 = A3 = 0.

In a perfectly similar way, we get the following

Proposition 2.1.2. The commutant (HR ⊕ HL ⊕ C⊕M3(C))′ in EndC(H) is the algebra

generated by elements of the form

A1 ⊗ e11 ⊗ E1 +A2 ⊗ e22 ⊗ E2, (2.14)

where A1 ∈ C1, A2 ∈ C2 and E1, E2 ∈M4(C).

2.1.3 Dirac operators and reality

Let us now consider self-adjoint Dirac operators that commute with the real structure J .
Because DJ = JD, we have D = JDJ−1 = (D∗)◦, but since D = D∗, the necessary
condition that has to be satis�ed is D = D◦. Notice that this is a weaker condition than
the original two together. Therefore, we will consider them separately.

Observe �rst, that the Dirac operator D =
∑
Dijklrsekl ⊗ eij ⊗ ers is self-adjoint if and

only if Dijklrs = D̄jilksr for all indices.
Suppose now that DJ = JD, i.e. D = JDJ−1. We may write the Dirac operator as

D = D11 +D12︸ ︷︷ ︸
D0

+D22 +D21︸ ︷︷ ︸
D1

, (2.15)

where
Dij =

∑
k

Dk
1ij ⊗ eij ⊗Dk

2ij , (2.16)

as previously described in (2.10). Notice that for an operator X of the form A⊗
(
a b
c d

)
⊗B

we have

JXJ−1 = B ⊗
(
d̄ c̄
b̄ ā

)
⊗A, (2.17)

so it follows that D1 = JD0J
−1. Moreover, as a result we immediately get the following
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Proposition 2.1.3. The Dirac operator D =
∑
Dijklrsekl ⊗ eij ⊗ ers commutes with J if

and only if

D11klrs = D̄22rskl, and D12klrs = D̄21rskl, (2.18)

for all k, l, r, s.

Let A be an operator such that AJ = αJA for some α = ±1. Moreover, suppose that
A = A11 +A22, where

Aij =
∑
k

Ak1ij ⊗ eij ⊗Ak2ij , (2.19)

for some Aklij ∈M4(C). Then we have the following

Lemma 2.1.4. [A,D] = 0 if and only if [A,D0] = 0. And analogously for anticommutators.

Proof. Observe that [A,D] = [A,D0] + αJ [A,D0]J , since J2 = id. Furthermore, [A,D0]
only contains terms with · · · ⊗ e11 ⊗ · · · and · · · ⊗ e12 ⊗ · · · , while J [A,D0]J only contains
terms with · · · ⊗ e21 ⊗ · · · and · · · ⊗ e22 ⊗ · · · .

2.1.4 Dirac operators for γ

Since we are interested in Dirac operators that commute with the real structure J we can
write D = D0 + JD0J

−1. We �rst consider all Dirac operators D that anticommute with
γ, given by (2.6), as a grading. It is enough to restrict ourselves to the D0 part.

We have the following

Proposition 2.1.5. D = D0 + JD0J
−1 anticommutes with γ if and only if D0 is of the

form

D0 =
∑
k

{[
02 Xk

Yk 02

]
⊗ e11 ⊗Ak +

[
Pk Qk
02 02

]
⊗ e12 ⊗

[
Zk 02

Tk 02

]
+

+

[
02 02

Uk Vk

]
⊗ e12 ⊗

[
02 Wk

02 Sk

]}
,

(2.20)

where Xk, Yk, Zk, Tk, Uk, Vk,Wk, Sk, Pk, Qk ∈M2(C) and Ak ∈M4(C).

Proof. Notice that

γ =
∑
n=1,2

(enn⊗e11⊗emm−emm⊗e22⊗enn)+
∑
n=3,4

(emm⊗e22⊗enn−enn⊗e11⊗emm). (2.21)

Let us write D as D =
∑
D̂ijklrs, where D̂ijklrs = Dijklrsekl ⊗ eij ⊗ ers. Simple

computation shows that

Dγ =
∑
n=1,2

(
D̂i1knrm − D̂i2kmrn

)
+
∑
n=3,4

(
D̂i2kmrn − D̂i1knrm

)
, (2.22)
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and
γD =

∑
n=1,2

(
D̂1jnlms − D̂2jmlns

)
+
∑
n=3,4

(
D̂2jmlns − D̂1jnlms

)
, (2.23)

hence by direct inspection we see that the Dirac operator has to be of the claimed form.

2.1.5 Dirac operators for γ?

Again, we are considering all Dirac operators which commute with J , and therefore of the
form D = D0 +JD0J

−1, but now which anticommute with γ?, given by (2.7), as a grading.
This time we have,

Proposition 2.1.6. D = D0 + JD0J
−1 anticommutes with γ? if and only if D0 is of the

form

D0 =
∑
k


[
Xk

Yk

]
⊗ e11 ⊗


α1k α2k α3k

β1k

β2k

β3k

+

[
Zk

Tk

]
⊗ e11 ⊗

[
γk

Ck

]
+

+

δ1k

δ2k

Pk

⊗ e12 ⊗
[
σ1k σ2k

Ek

]
+

 Fk
µ1k

µ2k

⊗ e12 ⊗
[

ν1k ν2k

Gk

] ,

(2.24)

where Xk, Yk, Zk, Tk ∈ M2(C), Ek, Gk ∈ M3×2(C), Pk, Fk ∈ M2×3(C), Ck ∈ M3(C), and
αlk, βlk, γk, δlk, σlk, µlk, νlk ∈ C.

Proof. As before, let us �rst write the grading in a more convenient form,

γ? =
∑
n=1,2

(enn ⊗ e11 ⊗ e11 − e11 ⊗ e22 ⊗ enn) +
∑
n=3,4
m=2,3,4

(enn ⊗ e11 ⊗ emm − emm ⊗ e22 ⊗ enn)+

+
∑
n=3,4

(e11 ⊗ e22 ⊗ enn − enn ⊗ e11 ⊗ e11) +
∑
m=1,2
n=2,3,4

(enn ⊗ e22 ⊗ emm − emm ⊗ e11 ⊗ enn).

(2.25)

For D =
∑
D̂ijklrs notice that

Dγ? =
∑
n=1,2

(
D̂i1knr1 − D̂i2k1rn

)
+

∑
n=3,4
m=2,3,4

(
D̂i1knrm − D̂i2kmrn

)
+

+
∑
n=3,4

(
D̂i2k1rn − D̂i1knr1

)
+

∑
m=1,2
n=2,3,4

(
D̂i2knrm − D̂i1kmrn

)
,

(2.26)
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and likewise

γ?D =
∑
n=1,2

(
D̂1jnl1s − D̂2j1lns

)
+

∑
n=3,4
m=2,3,4

(
D̂1jnlms − D̂2jmlns

)
+

+
∑
n=3,4

(
D̂2j1lns − D̂1jnl1s

)
+

∑
m=1,2
n=2,3,4

(
D̂2jnlms − D̂1jmlns

)
.

(2.27)

Therefore, a straightforward comparison shows that D anticommutes with γ? if and only if
it is of the claimed form.

2.2 Pseudo-Riemannian Structures

Let us recall that a pseudo-Riemannian spectral triple (A,H,D, γ, J, β), of signature (p, q),
is a system consisting of an algebra A, Hilbert space H, Dirac operator D, Z/2Z-grading
γ, real structure J and an additional grading β ∈ End(H) such that β∗ = β, β2 = 1 and
which commutes with the representation of A and de�nes a Krein structure on the Hilbert
space. These objects are supposed to satisfy several conditions that are collected in [13],
section II. For our purposes it is enough to recall that β has to satisfy βγ = (−1)pγβ and

βJ = (−1)
p(p−1)

2 εpJβ, where DJ = εJD and ε = ±1 depending on the KO-dimension of
the triple.

Furthermore, we assume that D is β-selfadjoint, i.e. D∗ = (−1)pβDβ. We say that the
triple is time-oriented if β can be presented as the image of a certain Hochschild p-cycle.

Out of the pseudo-Riemannian spectral triple (A,H,D, γ, J, β) one can construct its
Riemannian restriction, i.e. a triple (A,H, D+, γ, J, β) with D+ = 1

2(D + D∗) which is
a self-adjoint operator and βD+ = (−1)pD+β. This spectral triple is of the same KO-
dimension as the one we started with.

As was noticed in [13] the spectral triple for the Standard Model can be treated as
a Riemannian restriction of some pseudo-Riemannian triple, with an additional grading
originating from the time-orientation on the pseudo-Riemannian level. The existence of
such a grading results in a restriction on the number of possible Dirac operators, compatible
with the other elements of the triple.

Here we are looking for similar e�ects in the case of Pati-Salam models. From now on
we will denote D+ by D, and since the spectral triple for the Pati-Salam models has to be
of KO-dimension 6, we take the signature to be (0, 2). We are looking for all possible βs
and (self-adjoint) Dirac operators D such that βD = Dβ.

Therefore we are looking for β of the form

β = π(q1, q2,m)Jπ(q′1, q
′
2,m

′)∗J−1, (2.28)

with q1, q2, q
′
1, q
′
2 ∈ H and m,m′ ∈M4(C) for the unreduced case, and

β = π(q1, q2, λ, n)Jπ(q′1, q
′
2, λ
′, n′)∗J−1, (2.29)
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with q1, q2, q
′
1, q
′
2 ∈ H, λ, λ′ ∈ C and n, n′ ∈M3(C) in the reduced case.

For simplicity we have assumed here that β is a 0-cycle containing only one summand.
We postpone the discussion about the more general situation until section 2.2.3.

Moreover, we require that

βγ = γβ, βJ = Jβ. (2.30)

2.2.1 The unreduced Pati-Salam model

Let us start with this case �rst. Then β can be represented as

β =

[
q1

q2

]
⊗ e11 ⊗m′t +m⊗ e22 ⊗

[
q′t1

q′t2

]
. (2.31)

Since β is a 0-cycle, it commutes with the grading by construction. Notice the fact that β
commutes both with the algebra and the opposite algebra (since βJ = Jβ and the order
zero condition holds) �xes all matrices q1, q2, q

′
1, q
′
2 and m,m′ to be proportional to the

identity, and moreover, it enforces m = m′t and qi = q′ti for i = 1, 2. The condition β2 = 1
�xes all these proportionality factors to be a sign.

Therefore, the only possible pseudo-Riemannian structures are

β = π(η112, η212, η314)Jπ(η112, η212, η314)J−1 (2.32)

with η1, η2, η3 = ±1.
So, up to the trivial rescaling by a factor of−1 there are only two such possible operators:

π(12, 12, 14)Jπ(12, 12, 14)J−1, and π(12,−12, 14)Jπ(12,−12, 14)J−1. (2.33)

The �rst of these is the identity operator, so it commutes with everything. This is the
trivial case in which we are not interested.

Compatible Dirac operators for the unreduced Pati-Salam model

We are looking for all possible generic Dirac operators D (not necessarily anticommuting
with a grading) such that Dβ = βD. Moreover, we already assume that D commutes with
J , so it is of the form D0 + JD0J

−1. For such a D, we get the following

Proposition 2.2.1. The Dirac operator D = D0 + JD0J
−1 commutes with

β = π(12,−12, 14)Jπ(12,−12, 14)J−1 =

=

[
12

−12

]
⊗ e11 ⊗ 14 + 14 ⊗ e22 ⊗

[
12

−12

]
,

(2.34)
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if and only if D0 is of the following form

D0 =
∑
k

{[
X̃k 02

02 Ỹk

]
⊗ e11 ⊗ Ãk +

[
P̃k Q̃k
02 02

]
⊗ e12 ⊗

[
Z̃k 02

T̃k 02

]
+

+

[
02 02

Ũk Ṽk

]
⊗ e12 ⊗

[
02 W̃k

02 S̃k

]}
,

(2.35)

where X̃k, Ỹk, P̃k, Q̃k, Z̃k, T̃k, Ũk, Ṽk, W̃k, S̃k ∈M2(C) and Ãk ∈M4(C).

Proof. Following a similar argument as that used to prove Propositions 2.1.5 and 2.1.6, but
with β replacing γ or γ?, we �rst write

β =
∑
n=1,2

enn ⊗ e11 ⊗ emm −
∑
n=3,4

enn ⊗ e11 ⊗ emm+

+
∑
m=1,2

enn ⊗ e22 ⊗ emm −
∑
m=3,4

enn ⊗ e22 ⊗ emm.
(2.36)

Noticing that for D =
∑
D̂ijklrs we have

Dβ =
∑
n=1,2

D̂i1knrm −
∑
n=3,4

D̂i1knrm +
∑
m=1,2

D̂i2knrm −
∑
m=3,4

D̂i2knrm, (2.37)

and similarly

βD =
∑
n=1,2

D̂1jnlms −
∑
n=3,4

D̂1jnlms +
∑
m=1,2

D̂2jnlms −
∑
m=3,4

D̂2jnlms. (2.38)

The result follows from a straightforward comparison of these expressions.

Physical consequences of the unreduced Pati-Salam model with γ

Since D anticommutes with γ, we see that the only possibility for such a D to commute with
the nontrivial β discussed above is that terms of the form · · · ⊗ e11⊗ · · · and · · · ⊗ e22⊗ · · ·
must vanish.

Here we are looking for possible extensions of the Standard Model, for which the Dirac
operator contains terms of the form[

Ml

M †l

]
⊗ e11 ⊗ e11 and

[
Mq

M †q

]
⊗ e11 ⊗ (14 − e11), (2.39)

which encode the Yukawa parameters for leptons and quarks. Therefore, physically accept-
able extensions of the Standard Model, i.e. those that can be reduced to the Standard
Model after imposing additional conditions on terms of the Dirac operator, also have to
contain these terms. Therefore, no Pati-Salam model with the algebra HR ⊕ HL ⊕M4(C),
grading γ, and with the pseudo-Riemannian structure β is physically acceptable.

23



2.2.2 The reduced Pati-Salam model

In this case

β =

[
q1

q2

]
⊗ e11 ⊗

[
λ′

n′t

]
+

[
λ

n

]
⊗ e22 ⊗

[
q′t1

q′t2

]
. (2.40)

As before, since β is a 0-cycle, it commutes with the grading, and commutation with the
algebra, the fact that β2 = 1 and that it commutes with J �xes all matrices qi = q′i = ±12,
for i = 1, 2, λ = λ′ = ±1 and n = n′ = ±13. Therefore, up to trivial rescaling we have the
following four cases

π(12, 12, 1, 13)Jπ(12, 12, 1, 13)J−1, π(12,−12, 1, 13)Jπ(12,−12, 1, 13)J−1,

π(12, 12, 1,−13)Jπ(12, 12, 1,−13)J−1, π(−12, 12, 1,−13)Jπ(−12, 12, 1,−13)J−1.
(2.41)

Only three of them are nontrivial, and the case with β = π(12,−12, 1, 13)Jπ(12,−12, 1, 13)J−1

is exactly the same as the one discussed in subsection 2.2.1.

Compatible Dirac operators for the reduced Pati-Salam model

Now, we will discuss restrictions on a generic Dirac operator (not necessarily anticommuting
with a grading) which follow from commutation with the nontrivial βs allowed in the case
of the reduced Pati-Salam model. As before, we assume that D commutes with the real
structure so that it is of the form D0 + JD0J

−1. For the two remaining cases in (2.41) we
get the following results. Firstly, we have

Proposition 2.2.2. The Dirac operator D = D0 + JD0J
−1 commutes with

β = π(−12, 12, 1,−13)Jπ(−12, 12, 1,−13)J−1 =

=

[
−12

12

]
⊗ e11 ⊗

[
1
−13

]
+

[
1
−13

]
⊗ e22 ⊗

[
−12

12

]
(2.42)

if and only if D0 is of the form

D0 =
∑
k


[
X̃k

Ỹk

]
⊗ e11 ⊗

[
γ̃k

C̃k

]
+

[
Z̃k

T̃k

]
⊗ e11 ⊗


α̃1k α̃2k α̃3k

β̃1k

β̃2k

β̃3k

+

+

δ̃1k

δ̃2k

P̃k

⊗ e12 ⊗
[
σ̃1k σ̃2k

Ẽk

]
+

 F̃k
µ̃1k

µ̃2k

⊗ e12 ⊗
[

ν̃1k ν̃2k

G̃k

] ,

(2.43)

where X̃k, Ỹk, Z̃k, T̃k ∈ M2(C), Ẽk, G̃k ∈ M3×2(C), P̃k, F̃k ∈ M2×3(C), C̃k ∈ M3(C), and
α̃lk, β̃lk, γ̃k, δ̃lk, σ̃lk, µ̃lk, ν̃lk ∈ C.

24



Proof. It follows from a by now familiar computation that, for D =
∑
D̂ijklrs,

Dβ =−
∑
n=1,2

D̂i1knr1 +
∑
n=1,2
m=2,3,4

D̂i1knrm +
∑
n=3,4

D̂i1knr1 −
∑
n=3,4
m=2,3,4

D̂i1knrm−

−
∑
m=1,2

D̂i2k1rm +
∑
m=3,4

D̂i2k1rm +
∑

n=2,3,4
m=1,2

D̂i2knrm −
∑

n=2,3,4
m=3,4

D̂i2knrm,
(2.44)

and

βD =−
∑
n=1,2

D̂1jnl1s +
∑
n=1,2
m=2,3,4

D̂1jnlms +
∑
n=3,4

D̂1jnl1s −
∑
n=3,4
m=2,3,4

D̂1jnlms−

−
∑
m=1,2

D̂2j1lms +
∑
m=3,4

D̂2j1lms +
∑

n=2,3,4
m=1,2

D̂2jnlms −
∑

n=2,3,4
m=3,4

D̂2jnlms.
(2.45)

Comparing these two expressions we get the claimed result.

Similarly,

Proposition 2.2.3. The Dirac operator D = D0 + JD0J
−1 commutes with

β = π(12, 12, 1,−13)Jπ(12, 12, 1,−13)J−1 =

=

[
12

12

]
⊗ e11 ⊗

[
1
−13

]
+

[
1
−13

]
⊗ e22 ⊗

[
12

12

]
(2.46)

if and only if D0 is of the form

D0 =
∑
k

Ãk ⊗ e11 ⊗
[
γ̃k

C̃k

]
+


δ̃1k

δ̃2k 04×3

δ̃3k

δ̃4k

⊗ e12 ⊗


σ̃1k σ̃2k σ̃3k σ̃4k

03×4

+

+
[
04×1 F̃k

]
⊗ e12 ⊗

[
01×4

G̃k

]}
,

(2.47)

where Ãk ∈M4(C), G̃k ∈M3×4(C), F̃k ∈M4×3(C), C̃k ∈M3(C), and γ̃k, δ̃lk, σ̃lk ∈ C.
Proof. In a similar manner to the previous cases we compute

Dβ =
∑(

D̂i1klr1 + D̂i2k1rs

)
−

∑
m=2,3,4

(
D̂i1klrm + D̂i2knrs

)
, (2.48)

and
βD =

∑(
D̂1jkl1s + D̂2j1lrs

)
−

∑
m=2,3,4

(
D̂1jklms + D̂2jnlrs

)
. (2.49)

The result follows from a straightforward comparison of these terms.
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Physical consequences of the reduced Pati-Salam model with γ?

Notice that since it is required of the Dirac operator to anticommute with the grading
γ?, and moreover any physically interesting model should be an extension of the Standard
Model, we conclude that the only possibility is therefore the β from Proposition 2.2.3, in
which case the freedom of possible Dirac operators D = D0 + JD0J

−1 is reduced to those
with D0 of the form

D0 =
∑
k

{[
Zk

Tk

]
⊗ e11 ⊗

[
γk

Ck

]
+

+


δ1k

δ2k 04×3

0
0

⊗ e12 ⊗

σ1k σ2k 0 0

03×4

+

[
02×1 02×3

02×1 E1k

]
⊗ e12 ⊗

[
01×2 01×2

03×2 F1k

]

+


0
0 04×3

δ3k

δ4k

⊗ e12 ⊗

0 0 σ3k σ4k

03×4

+

[
02×1 E2k

02×1 02×3

]
⊗ e12 ⊗

[
01×2 01×2

F2k 03×2

] ,

(2.50)

where Tk, Zk ∈M2(C), Ck ∈M3(C), Elk ∈M2×3(C), Flk ∈M3×2(C) and γk, σlk, δlk ∈ C.
We can treat this model as an extension of the Standard Model with modi�ed chiralities,

i.e. in which left-handed (resp. right-handed) leptons have the same parity as right-handed
(resp. left-handed) quarks. Therefore, the only compatible extension beyond the Standard
Model and contained within the family of Pati-Salam models which have γ? as a grading, and
possesses a pseudo-Riemannian structure in the sense of the existence of a one-term 0-cycle
β, is precisely the reduced Pati-Salam model with exactly the same pseudo-Riemannian
structure which was uniquely possible in the case of the Standard Model [13]. Since γ?
explicitly breaks the SU(4)-symmetry into U(1)×U(3), it is not surprising that the resulting
class of models also has this property. Nevertheless, it is worth noting that there is exactly
one (up to an irrelevant global sign in β) such possibility, and moreover that it is consistent
with the one that is known to be the only possibility in the case of the Standard Model.
Furthermore, we observe that the pseudo-Riemannian structure still allows for the existence
of SU(2)-doublets of right-handed particles. This is an interesting feature. Notice also, that
there are further restrictions on the entries of the compatible Dirac operators which follow
from the assumption of self-adjointness. These restrictions are summarized at the beginning
of Section 2.1.3.

Physical consequences of the reduced Pati-Salam model with γ

Since the grading γ is compatible with the unreduced Pati-Salam model, it is also compatible
with the reduced model. Therefore we can consider Dirac operators that anticommute with
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γ and commute with β for this case. For the nontrivial βs we see that only one of them,
i.e. β from Proposition 2.2.3, is compatible with the requirement of being an extension of
the Standard Model. For this choice we have the following

Proposition 2.2.4. The Dirac operator D = D0 + JD0J
−1 that commutes with β and

anticommutes with γ has to be of the same form as in (2.50), i.e. exactly the same form as

in the case with γ?.

Moreover, notice that the only β which is admissible in this case is exactly the same
one that prevented the existence of leptoquarks in the Standard Model [13]. Therefore, the
only possible extension of the Standard Model contained within the family of Pati-Salam
models, which takes into account the pseudo-Riemannian structure for �nite triples in the
sense de�ned in [13], has to be of the reduced form. That is, the SU(4)-symmetry is broken
into a U(1) × U(3)-symmetry. Therefore, instead of the full SU(2)R × SU(2)L × SU(4)
Pati-Salam gauge group we must reduce to the case with SU(2)R × SU(2)L ×U(1)×U(3).
In this extension the right particles are doublets under the SU(2)-symmetry, and leptons
are separated from quarks, i.e. they are not the fourth color, so there are no leptoquarks.
In a similar manner to the previous case, there are further restrictions on the entries of
the compatible Dirac operators which follow from the assumption of self-adjointness � see
Section 2.1.3.

2.2.3 Generic β-structures

Here we are looking for all possible βs that are 0-cycles and which satisfy all required
conditions but we do not assume these operators to consist of only one term.

The unreduced Pati-Salam model

Since we require that β commutes with the representation of the unreduced Pati-Salam
algebra it follows from Proposition 2.1.1 that

β =

[
12

02

]
⊗ e11 ⊗ E1 +

[
02

12

]
⊗ e11 ⊗ E2 + 14 ⊗ e22 ⊗ F, (2.51)

where E1, E2, F ∈M4(C).
Since β2 = 1, we get

F 2 = 14,

[
12

02

]
⊗ E2

1 +

[
02

12

]
⊗ E2

2 = 116, (2.52)

hence E2
1 = E2

2 = 14. Since β commutes with J , this implies that

F̄ ⊗ 14 =

[
12

02

]
⊗ E1 +

[
02

12

]
⊗ E2. (2.53)
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Let us write F =

[
F 11 F 12

F 21 F 22

]
, then (2.53) is equivalent to the following set of conditions

[
F11 F12

F21 F22

]
⊗ 14 =

[
12 ⊗ E1

12 ⊗ E2

]
(2.54)

Therefore F12 = F21 = 02, F11 ⊗ 14 = 12 ⊗ E1 and F22 ⊗ 14 = 12 ⊗ E2, so

E1 = η114, F11 = η112, E2 = η214, F22 = η212, (2.55)

for some nonzero complex numbers η1 and η2. Notice that since β∗ = β and β2 = 1 the
zero solutions are not allowed, and moreover we deduce that both η1 = ±1 and η2 = ±1.
Therefore,

β =

[
η112

η212

]
⊗ e11 ⊗ 14 + 14 ⊗ e22 ⊗

[
η112

η212

]
, (2.56)

for some η1, η2 being ±1.
Notice that all such βs are 0-cycles, and there are (up to a trivial rescaling) only two

possibilities:

π(12, 12, 14)Jπ(12, 12, 14)J−1, π(12,−12, 14)Jπ(12,−12, 14)J−1. (2.57)

These are exactly the same as under the assumption of β being only a one-term 0-cycle,
i.e. the conclusion of section 2.2.1 remains valid for more general βs.

The reduced Pati-Salam model

In a similar manner, since we require that β commutes with the representation of the
reduced Pati-Salam algebra, it follows from Proposition 2.1.2 that

β =

[
12

02

]
⊗e11⊗E1+

[
02

12

]
⊗e11⊗E2+

[
1

03

]
⊗e22⊗F1+

[
0

13

]
⊗e22⊗F2, (2.58)

where E1, E2, F1, F2 ∈M4(C). Since β2 = 1, we infer that

E2
1 = E2

2 = 14 = F 2
1 = F 2

2 . (2.59)

Now, from the condition βJ = Jβ, repeating the previously used argument, we end up with
the following form of β:

β =

[
12

02

]
⊗ e11 ⊗

[
η1

η213

]
+

[
02

12

]
⊗ e11 ⊗

[
η3

η413

]
+

+

[
1

03

]
⊗ e22 ⊗

[
η112

η312

]
+

[
0

13

]
⊗ e22 ⊗

[
η212

η412

]
,

(2.60)
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where ηi = ±1 for i = 1, ..., 4. There are only eight independent (i.e. up to a global sign)
possibilities. They are listed below:

β1 = id, (2.61)

β2 =

[
12

02

]
⊗ e11 ⊗ 14 +

[
02

12

]
⊗ e11 ⊗

[
1
−13

]
+

+

[
1

03

]
⊗ e22 ⊗ 14 +

[
0

13

]
⊗ e22 ⊗

[
12

−12

]
,

(2.62)

β3 =

[
12

−12

]
⊗ e11 ⊗ 14 + 14 ⊗ e22 ⊗

[
12

−12

]
, (2.63)

β4 =

[
12

02

]
⊗ e11 ⊗ 14 +

[
02

12

]
⊗ e11 ⊗

[
−1

13

]
+

+

[
1

03

]
⊗ e22 ⊗

[
−12

12

]
+

[
0

13

]
⊗ e22 ⊗ 14,

(2.64)

β5 =

[
12

02

]
⊗ e11 ⊗

[
1
−13

]
+

[
02

12

]
⊗ e11 ⊗ 14+

+

[
1

03

]
⊗ e22 ⊗ 14 +

[
0

13

]
⊗ e22 ⊗

[
−12

12

]
,

(2.65)

β6 =

[
12

−12

]
⊗ e11 ⊗

[
1
−13

]
+

[
1
−13

]
⊗ e22 ⊗

[
12

−12

]
, (2.66)

β7 = 14 ⊗ e11 ⊗
[
1
−13

]
+

[
1
−13

]
⊗ e22 ⊗ 14, (2.67)

β8 =

[
12

02

]
⊗ e11 ⊗

[
1
−13

]
+

[
02

−12

]
⊗ e11 ⊗ 14+

+

[
1

03

]
⊗ e22 ⊗

[
12

−12

]
+

[
0
−13

]
⊗ e22 ⊗ 14.

(2.68)

All of the above are 0-cycles (more precisely: β = π(12, 02, η1, η213)Jπ(12, 02, η1, η213)J−1+
π(02, 12, η3, η413)Jπ(02, 12, η3, η413)J−1 ), but only four of them are images of all non-zero
elements of the algebra: β1, β3, β6 and β7. These are exactly the same cases we had in
the case of the single term 0-cycles. Moreover, an analogous computation to before shows
that βs which are not of the one term type do not allow for physically acceptable Dirac
operators in the sense explained in Section 2.2.1. The reason is that the restrictions on the
· · · ⊗ e11 ⊗ · · · and · · · ⊗ e22 ⊗ · · · terms that follow from the fact that the coexistance of
β and γ (or γ?) requires that such terms contain matrices that are simultaneously block-
diagonal and anti-diagonal. To sum up, the conclusion in Section 2.2.2 remains valid when
more general βs are considered.
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The Standard Model

Let us now discuss the generic case for the Standard Model. In [13] the one term case
was discussed. Now, mirroring the above computation we can get the following family of
possible βs:

β =

[
1

03

]
⊗ e11 ⊗

[
η1

η213

]
+

0
1

02

⊗ e11 ⊗
[
η3

η413

]
+

+

[
02

12

]
⊗ e11 ⊗

[
η5

η613

]
+

[
1

03

]
⊗ e22 ⊗

η1

η3

η512

+

+

[
0

13

]
⊗ e22 ⊗

η2

η4

η612

 ,
(2.69)

where ηi = ±1, for i = 1, ..., 6. This straightforward check shows that the only case in which
β is a 0-cycle and allows for an extension of the Standard Model (in the previously discussed
sense) is of the one term type and is exactly the same β that prevented the existence of
leptoquarks in [13]. Therefore, the validity of the conclusion therein is maintained when
generalizing to allow, from the outset, for more general βs.

2.3 Conclusions

We have discussed a role which may be played by the existence of pseudo-Riemannian
structures for the �nite spectral triples associated with the family of Pati-Salam models.
We have shown that their existence reduces the algebra to HR ⊕HL ⊕C⊕M3(C). Despite
the fact that the existence of the additional grading as the shadow of a pseudo-Riemannian
structure does not determine the Dirac operator uniquely, we have a huge reduction of the
possible choices.

We would like to stress that due to such a reduction, the family of Left-Right Symmetric
(LRS) models appears to be the interesting one. This class of models was broadly considered
both from theoretical and phenomenological points of view - see e.g. [5], [9],[10], [36], [37],
[38] and [39]. In such models the gauge group is

SU(2)R × SU(2)L × SU(3)×U(1)B−L. (2.70)

The chiral fermions consist of three families of quarks and leptons, and are given by

qL =

(
1, 2, 3,

1

3

)
, qR =

(
2, 1, 3,

1

3

)
, lL = (1, 2, 1,−1) , lR = (2, 1, 1,−1) ,

(2.71)
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where the parameters denote the quantum numbers under SU(2)R, SU(2)L, SU(3) and
U(1)B−L gauge groups, respectively [5].

The charge of a particle in such a model is de�ned as Q = I3L + I3R + B−L
2 , where I3

is the third component of an SU(2)-isospin.
The Left-Right Symmetric models were also considered from the point of view of

noncommutative geometry, initially as possibly interesting examples for the Connes-Lott
scheme, but later on also as possible extensions of the Standard Model � see e.g. [20],[21],[22]
and [23]. The main interest was in the determination of whether, in this framework, such
models provide a mechanism to explain the origin of parity symmetry breaking. In [20]
it was argued that in the almost-commutative Yang-Mills-Higgs models, parity cannot be
spontaneously broken. This followed from the requirement that Poincaré duality must be
satis�ed.

The family of reduced Pati-Salam models generalizes both the Left-Right Symmetric
Models and also the Chiral Electromagnetism Model [20]. The latter contains the U(1)R×
U(1)L gauge group instead of the SU(2) ones. This theory played the role of a toy model
for the application of the Connes-Lott scheme to LRS theories.
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Chapter 3

A Superspace Dirac Operator in

NCG from the �factorization" of the

Ordinary Dirac Operator

The previous chapter was focused on aspects of Pati-Salam and L-R symmetric models
in the context of NCG. But this is merely one possible extension of the Standard Model
which has the potential to explain several of the unresolved questions in modern physics
and make new, testable physical predictions. Another possible class of extensions to the
Standard Model, namely supersymmetric models, will be the motivating topic of the next
chapters.

In 1928 P.A.M. Dirac reported his now-famous procedure for deriving an equation gov-
erning the quantum mechanical properties for particles with half-integer spin [40]. The
process he pioneered may be essentially described as taking the �square root" of the Klein-
Gordon equation.

The natural question, whether this process is iterable, was posed and solved by the use
of superspace coordinates and their (�rst-order) derivatives [41]. A series of papers followed,
studying the free and interacting forms of the resulting equations acting on (super)spaces
of super�elds [42, 43, 44, 45, 46].

As we have already seen in the previous chapters, the mathematical tools and methods
of noncommutative geometry are well suited to developing models of theoretical physics.
It bears repeating that it is a certain subclass of noncommutative geometries, known as
almost commutative (AC) geometries, which is practically tailor-made for the description
of such physical models. This adaptation was pioneered in [47], but again, for the working
physicist, we also recommend the presentation in [4].

As will be presented in the next chapter, I have recently proposed an alternative proce-
dure for the construction of physical models which exhibit supersymmetry (arising from an
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underlying superspace), and within the framework of noncommutative geometry (up to and
including a spectral action), [33]. Of central importance to this framework is the notion
of a suitable Dirac operator. Given that the natural geometric setting for supersymmetry
may well be superspace [27, 28], we expect that any Dirac operator which is claimed to
govern the dynamics of particles in a supersymmetric model, should, in an essential way,
take into account superspace coordinates and their derivatives.

One possibility could be to construct a superspace Dirac operator associated with the
underlying superspace spin bundle. This would be a sort of �inside-out" approach where the
fundamental space under consideration is a superspace exhibiting supersymmetry through
in�nitesimal global translations of its coordinates. Considered in this way, supersymmetry
is an explicit, unavoidable property of the model.

Alternatively, inspired by the procedure outlined in [41], one may consider an �outside-
in" approach. This time, the basic ingredients are those of the usual AC-geometry ap-
proach for obtaining physical models from NCG, i.e. the underlying space is an ordinary
Riemannian spin manifold and the Dirac operator is the spin connection acting �berwise
on square-integrable sections of the spin bundle. Supersymmetry and the gauge �elds then
emerge when considering the action of the �square root" of the (possibly un�uctuated!)
total space Dirac operator on a restricted space of spinor super�elds.

We now proceed to construct such an operator via the latter, �outside-in" approach.
The content of this chapter is based on the paper [32].

3.1 Factorization of the Dirac operator

3.1.1 Minkowski space � the Szwed approach

Using two-component spinor notation (ofttimes referred to as Van der Waerden notation)
and the chiral representation for the Dirac matrices (for the conventions see [48]), one can
write the Dirac equation in four dimensional Minkowski space as

−

(
iσ̄µ α̇β∂µ mδα̇

β̇

mδβα iσµ
αβ̇
∂µ

)(
ψβ

χ̄β̇

)
≡ D

(
ψ
χ̄

)
= 0. (3.1)

Taking a �square root� of the Dirac operator corresponds to the construction of an operator,
A, which satis�es

A†A = D. (3.2)

If one requires A to be a local operator and to contain space-time derivatives, then, since
there is no second order derivative in the Dirac operator, one is compelled to assume that
the coe�cients of ∂µ in A are nilpotent. Therefore one is lead to consider the operator A
as acting on a superspace with the coordinates (xµ, θα, θ̄α̇).
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There are several �rst order di�erential operators which can be de�ned on this space.
In particular, the spinorial ones,

Dα = ∂/∂θα + iσµαα̇θ̄
α̇∂µ,

D̄α̇ = −∂/∂θ̄α̇ − iθασµαα̇∂µ. (3.3)

satisfy an algebra with relations given by

{Dα, Dβ} =
{
D̄α̇, D̄β̇

}
= 0,{

Dα, D̄β̇

}
= −2iσµαβ̇∂µ. (3.4)

If we now de�ne 2× 2 matrices

Aβα =

(
Dβ −D̄β̇

D̄α̇ Dα

)
, (3.5)

then

(Aαβ)†Aβα =

(
{Dβ, D̄α̇} D̄β̇D̄

α̇ +DβDα

D̄β̇D̄
α̇ +DβDα {Dα, D̄β̇}

)
. (3.6)

In particular

(Aαα)†Aαα = −2

(
iσ̄µα̇α∂µ M
M iσµαα̇∂µ

)
(3.7)

with

M = −1

4

(
D̄D̄ +DD

)
≡ −1

4

(
D̄α̇D̄

α̇ +DαDα

)
. (3.8)

The equality (3.7) was the motivation in [41, 44] for postulating the following set of
equations as a �square root� of the Dirac equation:

Dαψα − D̄α̇χ̄
α̇ = 0, D̄α̇ψα +Dαχ̄

α̇ = 0, (3.9)

in which the spinors ψα and χ̄α̇ are considered to be functions of the superspace coordinates
(xµ, θα, θ̄α̇), and are subject to the additional constraint(

DD + D̄D̄
)
ψα + 4mψα =

(
DD + D̄D̄

)
χ̄α̇ + 4mχ̄α̇ = 0. (3.10)

The solution set of these equations turned out to be nonempty and interesting. In
particular, a simple case in which ψα = χα corresponds to the Maxwell super�eld [44].
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3.1.2 4d Euclidean space

It is essential to the noncommutative methods, which we intend to employ in section 3,
that the �total-space" Dirac operator is Hermitian. Therefore we proceed in a Riemannian
signature and, for simplicity, choose to work in 4-dimensional Euclidean space.

In particular, in this setting the Lorentz transformations are the 4-dimensional rotations
characterized by the symmetry group SO(4). Their spin representation is given by the
universal covering Lie group, Spin(4) ∼= SU(2) × SU(2) and the corresponding Cli�ord
algebra is isomorphic to the Lie algebra of in�nitesimal generators, su(2)⊕su(2). This may
be understood by straightforward extension of a similar calculation in 3 dimensions which
can be followed in appendix D.

After de�ning

σm ≡ (iτ1, iτ2, iτ3,12) and σ̃m ≡ (−iτ1,−iτ2,−iτ3,12), (3.11)

where τi are the Pauli matrices, it is immediate to check that the Hermitian matrices

γmE ≡
(

0 σm

σ̃m 0

)
(3.12)

generate the Cli�ord algebra of 4-dimensional Euclidean space,

{γmE , γnE} = 2δmn14. (3.13)

Furthermore, this algebra possesses a natural grading induced by the operator

γ5
E ≡ γ1γ2γ3γ4 =

(
−12 0

0 12

)
. (3.14)

The Euclidean Dirac operator has the form

D = iγmE ∂m +m14 =

(
m12 iσm∂m
iσ̃m∂m m12

)
(3.15)

and acts on a bispinor

Ψ =

(
ψ
χ̃

)
. (3.16)

As for the spinorial indices, we declare

ψ = (ψα) , χ̃ =
(
χ̃α̇
)
,

σ̃m =
(
σ̃mα̇α

)
, σm = (σmαα̇)

(3.17)

which allows us to present the Dirac equation as

iσ̃mα̇α∂mψα +mχ̃α̇ = 0,

iσmαα̇∂mχ̃
α̇ +mψα = 0.

(3.18)
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Unlike the Minkowski case, the spinors ψ and χ̃ transform independently under the
action of Spin(4). Indeed, if we parameterize a matrix L ∈ SO(4) as L = expω (with
ωmn = −ωnm) then

ψ′α(x) = M β
α ψβ

(
L−1x

)
, χ̃′α̇ = W α̇

β̇
χ̃β̇
(
L−1x

)
(3.19)

where

M(L) = exp
(

1
8ωmn(σmσ̃n − σnσ̃m)

)
, W (L) = exp

(
1
8ωmn(σ̃mσn − σ̃nσm)

)
, (3.20)

are distinct operators. i.e., M(L) depends on ωmn only through a combination

3∑
j=1

( 3∑
k=1

k−1∑
l=1

εjklωkl + ωj4

)
τj (3.21)

while W (L) depends on ωmn through a combination

3∑
j=1

( 3∑
k=1

k−1∑
l=1

εjklωkl − ωj4
)
τj . (3.22)

In order to construct a relevant superspace, we introduce two constant (anticommuting)
spinors ξα and ζ̃α̇. By construction, under the action of Spin(4) we have

ξα →M β
α ξβ, ζ̃α̇ →W α̇

β̇
ζ̃ β̇ (3.23)

and thus ξα and ζ̃α̇ are necessarily complex, i.e. we may treat ξα and ξ
β

= (ξβ)† , as well

as ζ̃α̇ and ζ̃ β̇ =
(
ζ̃ β̇
)†
, as independent Grasmann variables.

For the Levi-Civita tensor we adapt the convention ε12 = ε1̇2̇ = ε21 = ε2̇1̇ = 1. In e�ect

εαβεβγ = δαγ , εα̇β̇ε
β̇γ̇ = δγ̇α̇

and
εα̇β̇εαβσm

ββ̇
= σ̃mα̇α. (3.24)

Let us now de�ne the spinorial derivatives

Dα =
∂

∂ξα
+ i ζ̃ β̇ σ̃

mβ̇α ∂m, D̃α̇ =
∂

∂ζ̃α̇
+ i ξ̄β σmβα̇ ∂m, (3.25)

and consequently

Dα =
∂

∂ξ̄α
+ i σm

αβ̇
ζ̃ β̇ ∂m, D̃α̇ =

∂

∂ζ̃α̇

+ i σ̃mα̇β ξβ ∂m. (3.26)
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They satisfy an algebra{
Dα, D̃α̇

}
= 2i σ̃mα̇α ∂m,

{
Dα, D̃α̇

}
= 2i σmαα̇ ∂m, (3.27)

with all the remaining anticommutators vanishing. Moreover, if we de�ne

Qα =
∂

∂ξα
− i ζ̃ β̇ σ̃

mβ̇α ∂m, Q̃α̇ =
∂

∂ζ̃α̇
− i ξ̄β σmβα̇ ∂m, (3.28)

and

Qα =
∂

∂ξ̄α
− i σm

αβ̇
ζ̃ β̇ ∂m, Q̃α̇ =

∂

∂ζ̃α̇

− i σ̃mα̇β ξβ ∂m, (3.29)

then it is immediate to check that all of the anticommutators involving one of the operators
(3.25) or (3.26), and one of the operators (3.28) or (3.29), vanish. In e�ect, all equations
formulated in terms of derivatives (3.25) and (3.26) are invariant under the (supersymmetry)
transformations generated by (3.28) and (3.29).

We next promote ψα and χ̃α̇ to spinor valued functions on the Euclidian superspace

with coordinates (x, ξα, ξ̄
α, ζ̃α̇, ζ̃α̇) and, guided by (3.9), subject them to the following set

of equations:
Dαψα + D̃α̇χ̃

α̇ = 0 (3.30)

and
D̃α̇ψα +Dαχ̃

α̇ = 0. (3.31)

In (3.30) the indices are summed over (so that the l.h.s. is a scalar), while (3.31) is a
vanishing condition for a certain tensor, and thus also has an invariant meaning.

From (3.27), (3.30) and (3.31) we get

iσ̃mα̇α∂mψα + M̃ α̇
β̇
χ̃β̇ = 0, (3.32)

iσmαα̇∂mχ̃
α̇ +M β

α ψβ = 0. (3.33)

where
M β
α =

1

2

(
δβα D̃α̇D̃

α̇ +DαD
β
)
, M̃ α̇

β̇
=

1

2

(
δα̇
β̇
DαDα + D̃α̇D̃β̇

)
. (3.34)

We conclude that (3.30) and (3.31) imply Dirac equations for the (super) spinors ψα and
χ̃α̇ on the subspace of super�elds satisfying

M β
α ψβ = mψα, M̃ α̇

β̇
χ̃β̇ = mχ̃α̇. (3.35)

To see that there exist nontrivial solutions of the set of equations (3.32), (3.33) and
(3.35) we consider a simple case

χ̃α̇ =
∂ψα
∂ξ̄β

=
∂ψα

∂ζ̃ β̇
= 0. (3.36)
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Equation

D̃α̇ψα = 0 (3.37)

then implies that ψα depends on ζ̃α̇ only through a combination of the form

ym = xm − iζ̃α̇σ̃mα̇αξα. (3.38)

If we take
ψα(x, ξα, ζ̃

α̇) = λα(y) + Fmn(y)(σmσ̃n) β
α ξβ, (3.39)

then, since

Dαym = 2iζ̃α̇σ̃
mα̇α, (3.40)

we get

Dαψα = Tr(σmσ̃n)Fmn(y) + 2iζ̃α̇σ̃
mα̇α∂mλα(y) + 2iζ̃α̇ξβ(σ̃pσmσ̃n)α̇β∂pFmn(y). (3.41)

Vanishing of the second term on the r.h.s. of formula (3.41) implies that λα satis�es the
massless Dirac equation,

iσ̃mα̇α∂mλα = 0, (3.42)

meanwhile, vanishing of the �rst term implies that the tensor Fmn is antisymmetric, and
consequently the identity

σ̃pσmσ̃n = εpmnr σ̃r + δmpσ̃n + δmnσ̃p − δnpσ̃m, ε1234 = 1, (3.43)

applied to the last term, gives

εrpmn∂pFmn = 0, ∂mFmn = 0. (3.44)

We conclude that a particular solution of the postulated set of equations is a spinor su-
per�eld with component �elds consisting of a massless spinor �eld and a Maxwell gauge
�eld.

Since the matrices (3.20) are unitary with unit determinant, the spinors ξα ≡ εαβξβ

and ξ̄α (as well as ζ̃α̇ ≡ εα̇β̇ ζ̃
β̇ and ζ̃α̇) transform in the same way under Spin(4). We can

therefore construct spinorial derivatives

Dα =
∂

∂ξα
+ i ζ̃β̇ σ̃

mβ̇α ∂m, D̃α̇ =
∂

∂ζ̃α̇
+ i ξβ σmβα̇ ∂m, (3.45)

and corresponding supercharges

Qα =
∂

∂ξα
− i ζ̃β̇ σ̃

mβ̇α ∂m, Q̃α̇ =
∂

∂ζ̃α̇
− i ξβ σmβα̇ ∂m, (3.46)
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without invoking conjugated Grasmann variables. Then the set of equations:

Dαψα + D̃α̇χ̃
α̇ = 0, (3.47)

and
D̃α̇ψα +Dαχ̃

α̇ = 0, (3.48)

where Dα = Dβεβα and D̃α̇ = D̃β̇ε
β̇α̇, imposed on �analytic�, spinorial super�elds

ψα = ψα(x, ξ, ζ̃), χ̃α̇ = χ̃α̇(x, ξ, ζ̃), (3.49)

is invariant with respect to both Spin(4) and supersymmetric transformations (generated by
(3.46)) and implies the Dirac equation (3.18) on a subspace satisfying the �mass� constraints

1

4

(
δβαε

γ̇α̇
[
D̃α̇, D̃γ̇

]
+ εγα

[
Dγ , Dβ

])
ψβ = mψα,

1

4

(
δα̇
β̇
εγα
[
Dα, Dγ

]
+ εγ̇α̇

[
D̃γ̇ , D̃β̇

])
χ̃β̇ = mχ̃α̇.

(3.50)

Nontrivial solutions of (3.47), (3.48) and (3.50) with m = 0 can be found (even if by
�brute force�, i.e. expanding ψα and χ̃α̇ in a series of non-vanishing powers of ξ and ζ̃
and then working out and solving the resulting di�erential equations for the coe�cient
functions). Notice that necessarily both ψα and χ̃α̇ are nonzero. Indeed, for χ̃α̇ = 0
equations (3.47) and (3.48) imply

Dαψα = 0, D̃β̇ψα = 0, (3.51)

which is inconsistent since the anticommutator {Dα, D̃β̇} does not vanish.

3.2 Almost-commutative geometry

As was already introduced and utilized in the preceding chapters, we again turn to the
AC-manifold subclass of noncommutative geometries to examine the implications of taking
such a factorized form of the Dirac operator in the framework of NCG. Starting from a
�total-space" spectral triple of the form

(A⊗AF ,H⊗HF , DAC), (3.52)

and in the context of our 4-dimensional Euclidean space, we have a total space Dirac
operator of the form

DAC = D ⊗ 1N + γ5
E ⊗DF , (3.53)
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where D is the Euclidean Dirac operator de�ned in (3.15), γ5
E is of the form given in (3.14),

and DF is a �nite Dirac operator on CN , i.e. a Hermitian N ×N matrix. Therefore, DAC

can be explicitly written as a 4N × 4N matrix, acting on bispinors of the form

Ψ =

(
ψ
χ̃

)
, (3.54)

where
ψ = (ψiα) , χ̃ =

(
χ̃α̇i
)
, i = 1, . . . , N, (3.55)

and the Dirac equation can be written in the form

i σ̃mα̇α∂mψiα +mχ̃α̇i + (DF )ij χ̃
α̇
j = 0,

i σmαα̇∂mχ̃
α̇
i +mψiα − (DF )ij ψjα = 0.

(3.56)

Now, consider the algebra{
Dα
i , D

β
j

}
= 2εαβZij , Zij = −Zji,{

D̃iα̇, D̃jβ̇

}
= 2εα̇β̇Z̃ij , Z̃ij = −Z̃ji,

(3.57)

together with {
Dα
i , D̃

α̇
j

}
= 2i δij σ̃

mα̇α ∂m,
{
Diα, D̃jα̇

}
= 2i δijσ

m
αα̇ ∂m, (3.58)

where Diα = Dβ
i εβα and D̃α̇

j = D̃jβ̇ε
β̇α̇. It can be realized as an algebra of di�erential

operators on a superspace with coordinates (xm, ξiα, ζ̃
α̇
i ) :

Dα
i =

∂

∂ξiα
+ iζ̃iα̇σ̃mα̇α∂m + Zijξ

α
j ,

D̃iα̇ =
∂

∂ζ̃α̇j
+ iξαi σ

m
αα̇∂m + Z̃ij ζ̃jα̇.

(3.59)

The corresponding supercharges, anticommuting with derivatives (3.59), have the form:

Qαi =
∂

∂ξiα
− iζ̃iα̇σ̃mα̇α∂m − Zijξαj ,

Q̃iα̇ =
∂

∂ζ̃α̇j
− iξαi σmαα̇∂m − Z̃ij ζ̃jα̇.

(3.60)

If we postulate equations of the form

Dα
i ψjα + D̃jα̇χ̃

α̇
i = 0,

D̃β̇
i ψiα +Diαχ̃

β̇
i = 0,

(3.61)
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then, using (3.58), we can conclude that solutions of (3.61) satisfy the Dirac equation,
(3.56), provided that the �mass" conditions

(mδij + (DF )ij) χ̃
α̇
j =

1

2

(
δα̇
β̇
Dα
i Djα + δijD̃

α̇
k D̃kβ̇

)
χ̃β̇j ,

(mδij − (DF )ij)ψjα =
1

2

(
δβαD̃iα̇D̃

α̇
j + δijDkαD

β
k

)
ψjβ,

(3.62)

are satis�ed. With the help of (3.57), equations (3.62) can be alternatively presented as

(mδij + (DF )ij − Zij) χ̃α̇j =
1

4

(
δα̇
β̇
εβα
[
Dα
i , D

β
j

]
+ δijε

γ̇α̇
[
D̃kγ̇ , D̃kβ̇

])
χ̃β̇j , (3.63)

and (
mδij − (DF )ij − Z̃ij

)
ψjα =

1

4

(
δβαε

β̇α̇
[
D̃iα̇, D̃jβ̇

]
+ δijεγα

[
Dγ
k , D

β
k

])
ψjβ. (3.64)

The simplest solutions of these equations (and, most likely, the only that is consistent with
(3.61), although the general proof of this claim is still missing) correspond to a situation
in which both the l.h.s. and the r.h.s. of (3.63) and (3.64) vanish. This implies that the
constructed framework, which reconciles non-commutative geometry with supersymmetry
in a simple setting, requires the �nite part of the Dirac operator (3.53) to be antisymmetric
and expressible through central charges of the algebra (3.57, 3.58) as

(DF )ij = Zij = −Z̃ij . (3.65)

It is worth recalling that in the usual development via the AC-geometry approach to
noncommutative geometry, the �nite spectral triple only contains data about the fermionic
particle content of the model. The bosonic particle content of the theory, or gauge �elds,
are then given by the inner �uctuations which arise through consideration of Morita equiv-
alences of the algebra. The Morita (self-)equivalent total-space spectral triple is then com-
prised of the algebra, Hilbert space, and the ��uctuated" Dirac operator taking into account
the gauge �elds. While we have seen that gauge �elds arise naturally through the �factor-
ization" procedure which we have herein described, one could also consider the implications
of factorizing the �uctuated Dirac operator.
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Chapter 4

Superspace SUSY in NCG with

spectral action

In the �rst two sections of this chapter, the approach and results of two noteworthy examples
from the literature will be brie�y summarized. Each typi�es a particular approach to
building supersymmetric models in the context of noncommutative geometry. The �rst is
predicated upon obtaining a supersymmetry invariant spectral action through appropriate
modi�cation of the particle content. Meanwhile, the second approach slightly relaxes the
axioms of noncommutative geometry to accommodate a supermanifold as the base space
for the data of the spectral triple. This second approach avoids passing to a Riemannian
signature by using algebraic techniques, rather than spectral ones, to build an action. The
rest of the chapter is based on the the work published in [33], and presents a proposal for
incorporating a superspace formulation of the principle of supersymmetry into the formalism
of noncommutative geometry with a spectral action.

4.1 Spectral models of SUSY in NCG

With the exception of [49], the work by Wim Beenakker, Thijs van den Broek, and Wal-
ter D. van Sujlekom, Supersymmetry and Noncommutative Geometry [50], seems to be the
only previous attempt to reconcile NCG with SUSY which makes use of the spectral action.
Starting from the requirement that the resulting spectral action functional be supersym-
metric, Beeneker et al. provide a classi�cation of all supersymmetric AC-geometries whose
particle content this ensures. Meanwhile avoiding mention of super�elds or supermanifolds.

They accomplish this by employing the so-called Krajewski diagrams which were intro-
duced as a tool for categorizing �nite spectral triples, [51], but which they cleverly note, can
also be used to compute the values of the traces of the powers of the �nite Dirac operator
which appear in the action functional. The key observation which allows for the construc-
tion these terms being: It is only the continuous, closed loops with n edges in a Krajewski
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diagram that contribute to the trace of the nth power of DF .
With this knowledge in hand, they then proceed to outline and follow a procedure for

identifying the irreducible �building blocks" of potentially supersymmetric models. It is
interesting to note that the action corresponding to a particular building block may not,
itself, be supersymmetric, but rather, the building blocks are constructively supersymmet-
ric. That is, they are de�ned in such a way that a total action may become supersymmetric
again by introducing a proper combination of additional building blocks. In the end, �ve
such �irreducible building blocks" are identi�ed.

Since not all possible combinations of the �ve building blocks should result in a super-
symmetric action, a strategy is developed to determine a list of requirements that must be
ful�lled for it to be so. In particular, an o�-shell version of a particular on-shell spectral
action is written down using the auxiliary �elds and undetermined coe�cients, and then
constraints are determined from the requirement that the fermionic action, as well as the
o�-shell action, be supersymmetric. These constraints are then used as requirements for
the coe�cients of the on-shell spectral action to be supersymmetric, thus ensuring that the
noncommutative spectral action is the on-shell counterpart of a supersymmetric o�-shell
action.

By following this procedure as it is applied to several constructively supersymmet-
ric examples built from the �ve irreducible building blocks previously identi�ed, a list of
requirements is given, e�ectively providing a litmus test for potentially supersymmetric
models arising from the class of almost commutative geometries. It is observed that such a
restrictive set of conditions severely limits the number of supersymmetric models which can
be constructed in this way, meanwhile instantly elevating the status of any model which
can successfully navigate this prohibitively demanding gauntlet.

Finally, after a brief detour to explore the concept of soft supersymmetry breaking in
the spectral action, it is shown that an AC-geometry version of the minimally supersym-
metric Standard Model fails to have a spectral action which is supersymmetric according
to the previously identi�ed criteria. This is a sort of No-go theorem that is speci�c to
the MSSM, and in no way precludes the existence of other, AC-geometry-based models of
supersymmetry.

4.2 Superspace models of SUSY in NCG

Several attempts have been made to combine SUSY with NCG that do relax the de�nition
of AC-manifold su�ciently to allow an algebra of super�elds over a supermanifold to be
the primary object of study, but with the exception [49], they do not employ the spectral
action [52, 53, 54, 55].

A particularly noteworthy example of this type of formulation can be found in the work
of W. Kalau and M. Waltze [54]. Starting from the usual notion of a spectral triple,
they proceed to de�ne the input parameters of a spectral triple which determines the
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(noncommutative) geometry of a supermanifold.
Namely, the unital associative algebra which they choose is given by the usual algebra

of super�elds, enlarged by taking spinor doublets as generating elements. Likewise, the
supersymmetric generators and involution operator are naturally extended. This algebra is
then faithfully represented on an appropriate (super) Hilbert space, and an inner product is
de�ned in terms of the Berezin integral, projecting the product super�eld onto the highest
order component of its expansion in terms of Grassmann variables. Finally, they propose
that the correct Dirac operator to employ should be one which is constructed from the
superspace covariant derivatives related with the supersymmetry generators, and which
takes into account the commutation relations of the �Cli�ord algebra" also generated by
them. They claim that such an operator has a natural interpretation as the �square root"
of the ordinary Dirac operator.

In order to avoid the necessity of invoking the noncommutative analogue of the integral,
the so-called Dixmier trace, which is not well-de�ned for non-Euclidean spaces, Kalau and
Waltze turn to the development of a generalized di�erential algebra and corresponding
super-Cli�ord algebra in order that they may use the result to construct the necessary
elements for a Yang-Mills theory, namely a covariant derivative and a curvature tensor.
The bene�t of this approach is that this construction is signature agnostic and thus their
results hold for pseudo-Riemannian spaces.

4.3 SUSY on a superspace

The superspace R3|2 is a coordinate space described by three commuting (bosonic) coordi-
nates, say x0, x1, x2, and two independent, anticommuting (fermionic) coordinates, say θ1

and θ2 which are assumed to form a spinor of the 3 dimensional Lorentz group. In the super-
space construction, the global supersymmetry transformations correspond to translations
of the superspace coordinates of the form

δθα ≡ εα and δxm ≡ θα(γm)αβε
β, (4.1)

in accordance with the transformation properties of θα and xm under Lorentz transfor-
mations. Component �elds of a supermultiplet (an irreducible representation of the su-

persymmetry algebra) are combined into a function of the superspace coordinates called a
super�eld,

S(x, θ) = f(x) + gβ(x)θβ + h(x)θθ, (4.2)

for some component functions f, g, h. Here the convention adopted is

θθ ≡ θ2θ1 =
1

2
εαβθ

βθα =
1

2
θαθ

α, where ε12 = −ε21 = ε12 = −ε21 = 1. (4.3)

Comparing the two expressions for the in�ntesimal variation of S under supersymmetry
transformations:

δS(x, θ) = δf(x) + δgβ(x)θβ + δh(x)θθ (4.4)
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and
δS(x, θ) = S(x+ δx, θ + δθ)− S(x, θ), (4.5)

it is seen, in particular, that

δh(x) = ∂m

(
gβ(γmε)β

)
. (4.6)

The fact that the θθ component of a super�eld transforms as a total derivative implies that
the integral, ∫

h d3x ≡
∫
Sθθ d

3x, (4.7)

is invariant under supersymmetry transformations.
The in�nitesimal supersymmetry variation of a super�eld can be expressed through a

�rst order di�erential operator Qβ. Indeed, writing

δS = [εβQβ, S], (4.8)

implies
Qβ = −∂β + (θγm)β∂m. (4.9)

It is also useful to de�ne the superspace covariant derivative (or super-covariant derivative),

Dα = ∂α + (θγm)α∂m, (4.10)

which anticommutes with the generator of supersymmetry transformations,

{Dα, Qβ} ≡ DαQβ +DβQα = 0, (4.11)

and squares to a proportion of the spinorial derivative,

{Dα, Dβ} = −2(γm)αβ∂m. (4.12)

The present construction will utilize a spinor super�eld,

Ψα(x, θ) = ψα(x) + Fαβ(x)θβ + χα(x)θθ, (4.13)

which under Lorentz transformations changes as Ψ′(x, θ) = S(L)Ψ(L−1x, S(L)−1θ). The
in�nitesimal supersymmetry transformations of the component �elds of Ψ(x, θ) read

δψα =Fαβε
β,

δFαβ =∂mψ
α(γmε)ρερβ − χαεβ,

and δχα =∂mF
α
β(γmε)β.

46



The components of the spinor super�eld do not form an irreducible representation of the
supersymmetry transformation. They may be constrained by requiring DαΨα = 0. This is
compatible with the supersymmetry transformation of Ψ since, thanks to (4.11),

DαΨα = 0 ⇒ DαδΨ
α = DαεβQ

βΨα = εβQ
βDαΨα = 0. (4.14)

Explicitly,

DαΨα = ∂αΨα + θβ(γm)β α∂mΨα

= Fαα − θβχβ + θβ(γm)β α∂mΨα + (γm)β α∂mF
α
βθθ,

so that the components of the chiral spinor super�elds, Ψ̃α, de�ned by the relation DαΨ̃α =
0, satisfy

TrF ≡ Fαα = 0,

χβ = (γm)βα∂mψ
α,

and Tr [γa∂aF ] ≡ (γm)βα∂mF
α
β = 0,

and transform according to the rule

δψα =Fαβε
β,

and δFαβ =∂mψ
α(γmε)ρερβ − (γm)αρ∂mψ

ρ(x)εβ.

For now, take the Dirac operator to be the usual spinorial derivative on 3d Minkowski
spacetime,

DM ≡ D = iγm∂m, (4.15)

and it will act on the Hilbert space of chiral spinor super�elds Ψ̃(x, θ) over R3|2. The chiral
restricted fermionic action is then taken to be〈

Ψ̃,DM Ψ̃
〉
≡
(

Ψ̃,DM Ψ̃
)
. (4.16)

The coe�cient of the term which has the highest order in the Grassmann variables, once
passed to the action integral, is by construction invariant under a supersymmetry transfor-
mation, and it is calculated to be〈

Ψ̃,DM Ψ̃
〉
θθ

= 〈ψ, iγm∂mχ〉+ 〈F1 + F2, iγ
m∂m(F1 − F2)〉+ 〈χ, iγm∂mψ〉 . (4.17)

4.4 The spectral triple

4.4.1 The Grassmann algebra

The Grassmann algebra, Λ∞(C), (hereafter abbreviated as Λ∞), is the unital, associative
algebra generated by a countably in�nite set of anti-commuting variables ξi, that is,

ξiξj + ξjξi = 0, for all i, j ∈ N. (4.18)

47



Each element g ∈ Λ∞ may be written as the sum of its body and soul, g = gB + gS ∈
ΛB∞ ⊕ ΛS∞, where

gS =
∞∑
k=1

1

k!
ci1i2...ikξ

i1ξi2 . . . ξik , and gB, ci1i2...ik ∈ C. (4.19)

Alternatively, Λ∞ may be decomposed into the direct sum of an even subalgebra and an
odd subset, Λ∞ = Λe∞ ⊕ Λo∞, where Λe∞ consists of ΛB∞ and elements of ΛS∞ with an even
number of generating elements, ξi, and likewise Λo∞ consists of elements of ΛS∞ with an
odd number of generating elements. The preceding is an example of a Z2-grading. An
object which carries such a grading is often referred to (especially in physics literature) as
a super-object. i.e. A Z2-graded algebra is a superalgebra.

There are several possible involutive maps on Λ∞ which make it a ∗-algebra, i.e. for
any g, h ∈ Λ∞, (gh)∗ = h∗g∗ and (g∗)∗ = g. For now, de�ne ∗ : Λ∞ → Λ∞ to be
g 7→ g∗ = g∗B + g∗S , where g

∗
B is ordinary complex conjugation, and

g∗S =
∞∑
k=1

1

k!
c∗i1i2...ikξ

ikξik−1 . . . ξi1 =
∞∑
k=1

(−1)
k(k−1)

2

k!
c∗i1i2...ikξ

i1ξi2 . . . ξik . (4.20)

The group of unitary elements of the Grassmann algebra is U(Λ∞) = {u ∈ Λ∞ | uu∗ =
u∗u = 1}, and since for u ∈ U(Λ∞), uB 6= 0, Grassmann unitaries are logarithmic, that is,
they are expressible as u = eig for some real Grassmann number g, i.e. g ∈ Λ∞ satisfying
g = g∗.

For further discussion about the super Hilbert space structure of the Grassmann algebra
please refer to appendix A.

4.4.2 3d Minkowski spacetime

In order to present the following ideas in a simple setting we choose to work in a three-
dimensional space with metric signature (p, q) = (1, 2), e.g. η = diag(1,−1,−1). In this
case the universal cover of the Lorentz group is the group SL(2,R) and the Dirac matrices
(i.e. generators of a matrix representation of the even graded Cli�ord algebra Cle1,2(R)) may
be expressed via Pauli matrices, as

γ0 = σ2, γ1 = iσ3, γ2 = iσ1. (4.21)

The spin representation of Lorentz transformations, (i.e. L such that LTηL = η), is
constructed in the standard way,

S(L) = exp

{
1

4

∑
a<b

ξab[γ
a, γb]

}
, where ξab = −ξba, (4.22)
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and satis�es
S−1(L)γm

′
S(L) = Lm

′
mγ

m, (4.23)

which guarantees covariance with the spinorial derivative D ≡ iγm∂m. Explicitly, D acts
on spinors as Dψα(x) = i(γm)αβ∂mψ

β(x), which transform under Lorentz transformations

as ψα
′
(x) = S(L)α

′
αψ

α(L−1x), so covariance means D′ψ′(x′) = S(L)Dψ(x).
For a Lorentz invariant, hermitian inner product, take (ξ, ψ) ≡ iξ̄ψ, where ξ̄ ≡ ξ†γ0.

D is hermitian with respect to this product, i.e. (Dχ,ψ) = (χ,Dψ), and moreover, the
complex conjugation operator, C, which acts by Cψ = ψ∗ is an anti-unitary operator, i.e.
(Cχ,Cψ) = (χ, ψ)∗.

For more details of this calculation please refer to appendix B.

4.4.3 N-point superspace and the distance function

Take the (unital, associative) ∗-(super)algebra Λ(F ) of Grassmann number (Λ∞) valued
functions over a �nite topological space F consisting of N distinct points and endowed with
the discrete topology. Let this algebra be equipped with pointwise linear multiplication,
addition, and with involution as de�ned in (4.20), i.e. for any f, g ∈ Λ(F ) and λ ∈ C,

(f + g)(x) = f(x) + g(x), (4.24a)

(λf)(x) = λf(x), (4.24b)

(fg)(x) = f(x)g(x). (4.24c)

Notice that for the case of a �nite discrete space F , the map

Λ(F ) 3 ϕ 7→ (ϕ(1), ϕ(2), . . . , ϕ(N)) ∈ ΛN ≡ Λ⊕ Λ⊕ · · ·N-copies · · · ⊕ Λ, (4.25)

is a ∗-algebra isomorphism, Λ(F ) ' ΛN . The above copies of the Grassmann algebra may
conveniently arranged as entries along the main diagonal of an N ×N matrix

ϕ(1) 0 · · · 0
0 ϕ(2) · · · 0
...

...
. . .

...
0 0 · · · ϕ(N)

 , (4.26)

so that pointwise multiplication and addition are simply matrix multiplication and addition,
respectively.

Now, if F is endowed with a metric dij , then there exists a representation, π, of Λ(F )
on a �nite dimensional Hilbert space, and a bounded symmetric operator, D, such that

dij = sup
f∈ΛN

{|f(i)− f(j)| : ||[D, π(f)]|| ≤ 1} . (4.27)
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This claim follows from the equality

||[D,π(f)]|| = max
k 6=l

{
1

dkl
|φ(k)− φ(l)|

}
, (4.28)

which is proved by an induction argument following [4] Thm 2.18. pp 19-20. Therefore, it
also makes sense in the present context to speak of the Dirac operator as a fundamental
object which determines the geometry of a superspace.

Henceforth, F is taken to be a 2-point discrete space.

4.4.4 The total space �spectral triple"

All the ingredients are now available to construct the spectral triple for the total space
which is to be presently considered. The base space spectral triple is characterized by the
algebraic data

M3|2 ≡
(
AM = Λe∞,HM ,DM = iγm∂m; γM ≡

(
1 0
0 −1

)
, JM ≡

(
G 0
0 G

))
, (4.29)

where HM is a (super) Hilbert space of spinor super�elds, (4.13), where γM implements
the Z2-grading of the Grassmann algebra, and where G denotes the Grassmann involution
operator, (4.20). And the �nite space spectral triple is

FF ≡
(

(Λe∞)2, (Λo∞)2,DF = 0, γF =

(
1 0
0 −1

)
, JF =

(
0 G
G 0

))
, (4.30)

where the form of JF presented here is one of several possible, to be discussed in the
subsequent section, and DF = 0 follows from the spectral triple for a 2-point �nite space
with 2 dimensional Hilbert space representation being equipped with such a real structure,
JF . The resulting triple for the total space is then

M3|2 ⊗FF ≡
(
A = (Λe∞)2,H = (Ψ(x, θ))2,D = DM ⊗ 1F ; γ = γM ⊗ γF , J = JM ⊗ JF

)
.

(4.31)
It should be stressed that the tensor product used here, and in all that follows is the graded
tensor product over the Grassmann algebra rather than the usual one.

4.5 Inner �uctuations and the spectral action

4.5.1 Fluctuating the Dirac operator

The Dirac operator for the total space, D = DM ⊗1F , where DM = iγm∂m, may be written
in a matrix form for a 2 point �nite space geometry, as

D = iγm
(
∂m 0
0 ∂m

)
. (4.32)
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To calculate DA = D +A+ JAJ−1 the form of A ∈ Ω1
D(A) ≡ {a[D, b] : a, b ∈ A = (Λe∞)2}

is needed. So, taking

a =

(
a1 0
0 a2

)
and b =

(
b1 0
0 b2

)
, (4.33)

gives

A = a[D, b] =

(
ia1γ

m∂mb1 0
0 ia2γ

m∂mb2

)
. (4.34)

Now, the anti-unitarity of JF implies that it must be of the form JF = U ◦G, where U is
a unitary operator on HF , i.e. a representation of unitary elements, ui, of the algebra AF .
In the case of a Grassmann number valued algebra over a 2 point �nite space geometry, the
restrictions u1u

∗
2 = u2u

∗
1 = −1 and u1u

∗
1 = u2u

∗
2 = −1 which arise from the possibility that

J2
F = −1F , cannot be satis�ed except trivially, and thus such choices of JF are excluded in

the present situation.

However, using JF =

(
0 G
G 0

)
,

JAJ−1 =

(
ia∗2γ

m∂mb
∗
2 0

0 ia∗1γ
m∂mb

∗
1

)
. (4.35)

Then, the fact that A+JAJ−1 is traceless, (this follows from the hermiticity of A), implies
that

(ai∂mbi)
∗ = −ai∂mbi, (4.36)

and so,

A+ JAJ−1 =

(
iγm(a1∂mb1 − a2∂mb2) 0

0 −iγm(a1∂mb1 − a2∂mb2)

)
. (4.37)

Thus, the �uctuated Dirac operator for this choice of JF is

DA = iγm
(
∂m 0
0 ∂m

)
+

(
γmAm 0

0 −γmAm

)
(4.38a)

= D + γmAm ⊗ γF where Am = i(a1∂mb1 − a2∂mb2). (4.38b)

Similarly,

JAJ−1 =

(
ia∗1γ

m∂mb
∗
1 0

0 ia∗2γ
m∂mb

∗
2

)
, (4.39)

is obtained by using JF =

(
G 0
0 G

)
. This time, the previously invoked trace free condi-

tion results in a trivial �uctuation, i.e. DA = D. Instead, let a1DMb1 = −a2DMb2 and
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(a1DMb1)∗ = −(a1DMb1)∗ so that A + JAJ−1 is again traceless as required. Changing
labels so that a2 = −a1 and b2 = b1,

A+ JAJ−1 =

(
iγm(a1∂mb1 − a∗1∂mb∗1) 0

0 −iγm(a1∂mb1 − a∗1∂mb∗1)

)
. (4.40)

As before then, the �uctuated Dirac operator for this choice of JF may be written as

DA = iγm
(
∂m 0
0 ∂m

)
+

(
γmAm 0

0 −γmAm

)
(4.41a)

= D + γmAm ⊗ γF where this time Am = i(a1∂mb1 − a∗1∂mb∗1). (4.41b)

4.5.2 The gauge group and chiral super�eld covariance

Considering the �nite space, FF , associated with the 2-point discrete topological space F ,
take U(AF ) to be the unitary elements of AF , i.e. u ∈ U(AF ) which have the form

u =

(
u1 0
0 u2

)
=

(
eig

(1)
0

0 eig
(2)

)
, (4.42)

where g(1) and g(2) are real, even, Grassmann elements, i.e. g(i) = (g(i))∗ and g(i)a = ag(i)

for any a ∈ AF .
Now recall the adjoint map Ad: U(AF ) 3 u 7→ UF ≡ π(u)JFπ(u)J∗F ∈ End(HF ),

and note that for brevity the representation symbol π will be implicit when no danger of

confusion is present. Then, for h =

(
h1

h2

)
∈ HF it is readily checked that:

U∗FUF = UFU
∗
F = 1F , (4.43a)

U∗FγUF = γ, (4.43b)

U∗FJFUF = JF , (4.43c)

UFh =

(
u1h1u

∗
2

u2h2u
∗
1

)
. (4.43d)

Given the last property above, computing Ker(Ad) = {u ∈ U(AF ) : UFh = h for all h ∈
HF } yields the conditions g(1) = g(2) ≡ ge, i.e. an element of the kernel has the form,

Ker(Ad) ∈
(
eige 0
0 eige

)
. (4.44)

Now, the gauge group of A is de�ned to be

G(M3|2 ⊗FF ) ≡ {U = uJuJ∗|u ∈ U(A)}, (4.45)

52



but G(AM ) is trivial, and since Ker(Ad) = U(AF )JF ≡ {u ∈ AF : uJF = JFu
∗}, the gauge

group of the �nite space is given by

G(FF ) = U(AF )/Ker(Ad). (4.46)

It is immediate to calculate that an element u ∈ G(FF ) is of the form

u =

(
e

i
2
g 0

0 e−
i
2
g

)
, (4.47)

where g ≡ g(1) − g(2), and, if U = uJFuJ
∗
F , then

Uh =

(
eigh1

e−igh2

)
. (4.48)

It is interesting to note that the chiral restriction imposed on a superspinor is not
consistent with gauge covariance. Indeed, the compatibility condition

eigDαΨ̃α = DαeigΨ̃α, (4.49)

is satis�ed if and only if Dαg = 0. In the case of a real, even super�eld g the latter condition
yields, after a short calculation, that g has to be a real, constant element of Λ∞.

4.5.3 The fermionic action

Since there is no concern with regards to the so-called fermion doubling problem which is
encountered when one reproduces the standard model by the techniques of NCG, here the
fermionic action is taken in it's original form:

〈ξ,DAξ〉 , (4.50)

for ξ ∈ H = HM ⊗HF . Such elements have the form

ξ = Ψ(x, θ)⊗ h = Ψ+ ⊗ e+ Ψ− ⊗ ē, (4.51a)

=

(
Ψ⊗ h1 0

0 Ψ⊗ h2

)
=

(
Ψ+ 0
0 Ψ−

)
, (4.51b)

where {e, ē} is an orthonormal basis for HF , such that e ∈ H+
F and ē ∈ H−F , (i.e. γF e = e

and γF ē = −ē), and such that JF e = ē and JF ē = e. Also, recall that each Ψ± ∈ HM is a
super-spinor with the form

Λo∞ 3 Ψα
±(x, θ) = ψα±(x) + Fα± β(x)θβ + χα±(x)θθ, (4.52)

which means that ψα±(x), χα±(x) ∈ Λo∞ and Fα± β(x) ∈ Λe∞.
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Given the �uctuated Dirac operator given in (4.38a) and (4.38b), the fermionic action
is calculated to be

〈ξ,DAξ〉 = 〈ξ, (DM ⊗ 1F )ξ〉+ 〈ξ, (γmAm ⊗ γF )ξ〉 . (4.53)

For the �rst term,

〈ξ, (DM ⊗ 1F )ξ〉 = 〈Ψ+,DMΨ+〉 〈e, e〉+ 〈Ψ−,DMΨ−〉 〈ē, ē〉 (4.54a)

= 〈Ψ+,DMΨ+〉+ 〈Ψ−,DMΨ−〉 (4.54b)

≡ 〈Ψ±,DMΨ±〉 , (4.54c)

and similarly the second term,

〈ξ, (γmAm ⊗ γF )ξ〉 = 〈Ψ+, γ
mAmΨ+〉+ 〈Ψ−, γmAmΨ−〉 (4.55a)

≡ 〈Ψ±, γmAmΨ±〉 . (4.55b)

As before, supersymmetry invariance of the action under a supersymmetry transforma-
tion is guaranteed for terms which are of highest order in the Grassmann variables. But
since Am = i(a1∂mb1 − a2∂mb2) where ai, bi ∈ Λe∞ for i = 1, 2, Am is itself represented by
an even super�eld on R3|2 and can be written in the form

Am = Am + λm,αθ
α + Bmθθ, (4.56)

for some independent �elds Am, λm,α, and Bm.
In these terms

〈ξ, (γmAm ⊗ γF )ξ〉θθ = 〈ψ±, γmBmψ±〉+
〈
ψ±, γ

mλm,[2F± 1]

〉
+ 〈ψ±, γmAmχ±〉

+
〈
F± [1, γ

mλm,2]ψ±
〉

+
〈
F± [2, γ

m
AmF± 1]

〉
+ 〈χ±, γmAmψ±〉 .

(4.57)

And �nally, we may write down the complete supersymmetry invariant fermionic action

〈ξ,DAξ〉θθ = 〈ψ±,DMχ±〉+
〈
F± [2,DMF± 1]

〉
+ 〈χ±,DMψ±〉

+ 〈ψ±, γmBmψ±〉+
〈
ψ±, γ

mλm,[2F± 1]

〉
+ 〈ψ±, γmAmχ±〉

+
〈
F± [1, γ

mλm,2]ψ±
〉

+
〈
F± [2, γ

m
AmF± 1]

〉
+ 〈χ±, γmAmψ±〉 . (4.58)

4.5.4 The spectral action

Within the Connes approach, the dynamics of a gauge �eld is encoded in the spectral action,

SA = Trf(DA), (4.59)
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where f is a smooth, rapidly vanishing function whose moments determine the parameters
(e.g. coupling constants) of the discussed model. For a detailed calculation of the heat
kernal expansion in a simple case please refer to appendix C.

However, in the present context of a 3 dimensional Minkowski space, heat kernel meth-
ods are problematic. Firstly, as was discussed at the beginning of this chapter, for spaces
with non-Euclidean signature the Dixmier trace is not de�ned. But, even if we passed to
a Euclidean signature, e.g. by means of a Wick rotation, in the case of a 3-dimensional
space, the dimensionally meaningful term is the one containing the trace of the third power
of the �uctuated Dirac operator. Therefore, in the present situation of a �at (super)space,
it is enough to note that the calculation of SA essentially trivializes, and boils down to
calculating the trace of the third power of the �uctuated Dirac operator.

Since

(DA)3 =
i

2

(
−∂2∂m + (A ·A)∂m + 2Am(A · ∂) + ∂m(A ·A) +Am(∂A)

)
γm ⊗ 1F (4.60a)

− 1

2

(
2Am∂

2 + 2(A · ∂)∂m + (∂A)∂m + 2∂m(A · ∂) + ∂m(∂A)− 2(A ·A)Am
)
γm ⊗ γF

(4.60b)

− 1

2
∂pFmn (γp [γm, γn])⊗ γF +

i

2
ApFmn (γp [γm, γn])⊗ 1F , (4.60c)

where Fmn = ∂mAn − ∂nAm, we get

SA ∼
∫

εpmnApFmnd
3x. (4.61)

The SUSY invariant action in the gauge sector is thus of the form

(SA)θθ =
1

g

∫
εpmn (Ap(∂mBn − ∂nBm) + Bp(∂mAn − ∂nAm)− λp,α(∂mλ

α
n − ∂nλαm)) ,

(4.62a)

where g is a coupling constant. This action is again automatically invariant under the
SUSY transformation of Am, λm,α and Bm de�ned by

δAm(x, θ) = δAm + δλm,αθ
α + δBmθθ = Am(x+ δx, θ + δθ)−Am(x, θ), (4.63)

where δx and δθ are of the form (4.1).

4.6 Conclusions

The preceding sections propose and exemplify a strategy for the incorporation of a super-
space formulation of the principle of supersymmetry into the formalism of noncommutative
geometry, up to and including the spectral action. This has been done in as simple a setting
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as possible, not solely for computational convenience, but as well, so as to avoid obfuscation
of the guiding principles and machinery of the noncommutative method.

In fact, the perspicacious reader will have undoubtedly (and rightly) noted that there
is nothing truly noncommutative in the example which is presently investigated. Through
consideration of a less trivial �nite space (e.g. Supermatrix algebras), one may introduce
noncommutativity into the picture and expect the resulting theory to have a richer structure
(e.g. non-abelian gauge �elds and a Higgs sector analogue).

It is also worth noting that some care was taken to avoid mentioning the KO-dimension
of the spaces used in the above construction. The reason being that it is not clear what
should be the analogous notion in the context of this proposed program which includes
anti-commuting variables in an essential way.

On a related note, the Dirac operator being considered here is a somehow naive choice as
it only contains derivatives of the commuting coordinates. A consequence of this choice, it
should be emphasized, is that the resulting �eld theory is nothing like a physically relevant
one. For example, electrodynamics is the usual result of the AC-geometry approach when
a 2-point �nite space is considered. But by choosing the spinorial derivative as Dirac
operator, absent are terms of the form ψαDψα. It is expected that an honest superspace
Dirac operator built from supercovariant derivatives will further extend the richness, and
it is hoped, the physical relevance, of any theory developed according to this strategy.
One possible recipe for the construction of such an operator was the topic of the previous
chapter.

56



Appendices

57





Appendix A

The Grassmann algebra as a super

Hilbert space

We are in search of a module over a �nitely generated Grassmann algebra with a Grassmann
number valued inner product.

A.1 Λn

Take the �nitely generated Grassmann algebra, Λn to be the unital, associative algebra (over
C) generated by 1 ∈ C and a �nite set of anti-commuting symbols {ξi1 , ξi2 , . . . , ξin} where
the set (i1, i2, . . . , in) ∈Mn := {(m1,m2, . . . ,mk) : 1 ≤ k ≤ n,mi ∈ {1, 2, . . . , n}, 1 ≤ m1 <
· · · < mk ≤ n} is a particular choice of generating basis.

Recall that each element g ∈ Λn may be written as the sum of it's body and soul,
g = gB + gS ∈ ΛBn ⊕ ΛSn , where

gS =

n∑
k=1

1

k!
gi1i2...ikξ

i1ξi2 . . . ξik , and gB, gi1i2...ik ∈ C.

There are several possible de�nitions of an involutive map on Λn which would make
Λn a ∗-algebra, i.e. for any g, h ∈ Λn, (gh)∗ = h∗g∗ and (g∗)∗ = g. For now we'll adopt
∗ : Λn → Λn with g 7→ g∗ = g∗B + g∗S , where g

∗
B is ordinary complex congugation, and

g∗S =

n∑
k=1

1

k!
g∗i1i2...ikξ

ikξik−1 . . . ξi1 =
n∑
k=1

(−1)
k(k−1)

2

k!
g∗i1i2...ikξ

i1ξi2 . . . ξik .

Another useful way of thinking about Λn is as a direct sum of complex vector spaces,

Λn =

n⊕
r=0

Vr where Vr = spanC{ξi1 , ξi2 , . . . , ξir}.
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Thus, each g ∈ Λn may be written as g =
∑n

r=0 gr where each gr ∈ Vr.
There is an isomorphism ? : Λn → Λn de�ned on elements ξi1ξi2 . . . ξid by

?
[
ξi1ξi2 . . . ξid

]
:= ξj1ξj2 . . . ξjn−d ,

where (j1, . . . , jn−d) is chosen so that (i1, . . . , id, j1, . . . , jn) is an even permutation of
(1, 2, . . . , n). ? extends to all of Λn by requiring conjugate linearity, i.e ? [αg] = α∗ ? [g] for
α ∈ C and g ∈ Λn, and that ? be a real linear transformation.

A.2 Norms

A simple and natural choice could be to take the Rogers norm,

|g|1 := |gb|+
n∑

(m1,...,mk)∈Mn

k=1

|gi1i2...ik |

which is submultiplicative, i.e. |gh|1 ≤ |g|1|h|1 for all g, h ∈ Λn, which means that Λn with
norm | · |1 is a (complex) Banach space called the Rogers algebra and denoted Λn(1). But
since this norm depends implicitly on the choice of generating basis, and given that Grass-
mann number valued quantities are not physically observable, there may be no universally
preferred basis for generating a Grassmann algebra.

A norm which is trivially independent of the generators is the body norm,

||g||B := |gB|

but this norm essentially erases any pertinent information (physical or otherwise) which
may be contained in the soul of the Grassmann number.

An alternative norm, possibly due to Whitney, and well described by Federer, called
the mass norm is constructed starting from the vector space norm, || · ||r on Vr given by

||gr||r := inf

 ∑
(m1,...,mr)∈Mn

|gi1i2...ir |

 ,

where the in�mum is over all possible generating basis choices. || · ||r is submultiplicative
across vector spaces in the following way.

||prqs||r+s ≤ ||pr||r||qs||s, for all pr ∈Wr and qs ∈ Vs.

So the mass norm, de�ned to be

||g|| :=
n∑
r=0

||gr||r, for all g ∈ Λn,
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is, by construction, independent of the choice of generating basis, and is submultiplicative
by the inherited submultiplicativity of the vector space norm. Explicitly,

||pq|| =
∑
r

||(pq)||r

≤
∑
r

∑
k≤r
||pr−kqk||r

≤
∑
r

∑
k≤r
||pr−k||r−k||qk||k

≤
∑
r

∑
k

||pr||r||qk||k

= ||p||||q||.

One may now notice that ||g||B ≤ ||g||. (Note that gB ≡ g0).

A.3 Hilbert Λn-Modules

A pre-Hilbert Λn-module is a Z2-graded (left/right/bi) Λn-module, call it E and denote the
grading by E = E0⊕E1 into even and odd subsets, respectively, together with a Λn-valued
inner product, 〈·, ·〉 : E × E → Λn, which, for e, ei ∈ E and α ∈ C satis�es

1. 〈e1 + e2, e3 + e4〉 = 〈e1, e3〉+ 〈e1, e4〉+ 〈e2, e3〉+ 〈e2, e4〉,

2. 〈e1, αe2〉 = α〈e1, e2〉 = 〈α∗e1, e2〉,

3. 〈e1, e2〉B = 〈e2, e1〉∗B = 〈e2, e1〉B,

4. 〈e, e〉B ≥ 0 for all e ∈ E, and 〈e, e〉 = 0 if and only if e = 0.

Conditions 1 and 2 constitute sesquilinearity. We note that these are the conditions of
Rudolph, who points out that the sesqui-Λn-linearity (i.e. an additional property requiring,
in the right Λn-module case, 〈e1, e2g〉 = 〈e1, e2〉g for g ∈ Λn) taken by DeWitt and others
is too restrictive for his purposes working in the functional Schrödinger representation of
spinor quantum �eld theory. Since it is not yet clear what we will be required for us,
we start with the most general situation. Condition 3 simply says the body is Hermetian,
meanwhile condition 4 says the inner product is de�nite and has positive body. Again there
are some generalizations here compared with the original assumptions of DeWitt, whose
utility in our present situation we may debate. It's perhaps worth noting that van Sujlekom
includes such a sesqui-Λn-linearity requirement in his de�nition of a Hilbert bimodule (2.9
in his book).

Now, we may use the inner product to de�ne a norm on our (pre)-Hilbert Λn-module
E in terms of whichever norm we choose on Λn: ||e||2 := ||〈e, e〉||Λn .
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Example 1: Arising from the Rogers norm,

||e||1 = ||〈e, e〉|1,

and Example 2: arising form the mass norm,

||e||2 = ||〈e, e〉||.

A pre-Hilbert Λn-module E with norm || · ||E is a Hilbert Λn-module if it is complete
with respect to its norm. In our present case of �nitely generated Grassmann algebras this
is trivially true and all pre-Hilbert Λn-modules are Hilbert Λn-modules.

This would be a good place to discuss Hilbert Λn-module morphisms and Morita equiv-
alences. But it is a work in progress and for brevity we press on.

A.4 Super (pre)-Hilbert Space

A pre-Hilbert Λn-module, H is a super pre-Hilbert Λn-module if the inner product on H
is continuous. (i.e. continuous in the norm topology; if there exists a c > 0 such that
||〈e1, e2〉||Λn ≤ c||e1||E ||e2||E). If H is complete with respect to the norm then H is a super
Hilbert space.

Example: The Grassmann algebra Λn equipped with the mass norm || · || becomes a
super Hilbert space with the inner product 〈·, ·〉 given by

〈p, q〉 := ? [p ? [q]] .

Reference material for the content of this appendix can be found in [56, 30, 29, 57, 58, 4]
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Appendix B

3D Minkowski signature

If we take as our metric η = diag(1,−1,−1), and L preserving η, i.e. satisfying LTηL = η,
then we may write L = eA where A satis�es (ηA)T = −ηA. Any such A may be written as
a combination

A = ξ01K01 + ξ02K02 + ξ12K12

where

K01 =

0 1 0
1 0 0
0 0 0

 , K02 =

0 0 1
0 0 0
1 0 0

 , and K12 =

0 0 0
0 0 1
0 −1 0

 .

We may verify the algebra relations

[K01,K02] = K12, [K01,K12] = K02, and [K12,K02] = K01.

Also, by de�ning K01 = K10,K02 = K20, and K12 = −K21, together with ξ10 = ξ01, ξ02 =
ξ20, and ξ12 = −ξ21, then the above algebra relations may be written more compactly, as

[Kab,Kbc] = Kac, and also A =
1

2

2∑
a,b=0

ξabKab.

Now, the spin representation of the Lorentz transformations in the Minkowski signature
case will be

S(L) = exp

{
1

2

∑
a<b

ξabτab

}
satisfying

S−1(L)γa
′
S(L) = La

′
aγ

a
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for some matrices τab, and for γa chosen such that they generate a matrix representation
of Cl1,2(R). Thus we take

γ0 =

(
0 −i
i 0

)
= σ2, γ1 =

(
i 0
0 −i

)
= iσ3, and γ2 =

(
0 i
i 0

)
= iσ1,

and as the label suggests, σ1, σ2, and σ3 are the usual Pauli matrices. To linear order,

L = 1 +A =

 1 ξ01 ξ02

ξ01 1 ξ12

ξ02 −ξ12 1

 ,

and the RHS of the above condition yields

δγ0 = ξ01γ
1 + ξ02γ

2, δγ1 = ξ10γ
0 + ξ12γ

2, and δγ2 = ξ20γ
0 − ξ12γ

1.

Meanwhile, also to linear order,

S(L) = 1 +
1

2
ξ01τ01 +

1

2
ξ02τ02 +

1

2
ξ12τ12, and S−1(L) = 1− 1

2
ξ01τ01−

1

2
ξ02τ02−

1

2
ξ12τ12

so that with the same level of accuracy, the LHS gives

S−1(L)γaS(L) = γa − 1

2
ξ01[τ01, γ

a]− 1

2
ξ02[τ02, γ

a]− 1

2
ξ12[τ12, γ

a].

Comparing LHS and RHS we immediately see

[τ12, γ
0] = 0, [τ02, γ

1] = 0, and [τ01, γ
2] = 0,

which means that τ12 = aσ2, τ02 = bσ3 and τ01 = cσ1 for some complex numbers a, b, and
c. Furthermore, recalling the identity [σa, σb] = 2iεabcσc and comparing terms with like
coe�cients for γ0, we get equations

γ1 = iσ3 = −1

2
[τ01, γ

0] = −1

2
[τ01, σ2], which implies τ01 = −σ1 =

1

2
[γ0, γ1]

and

γ1 = iσ1 = −1

2
[τ02, γ

0] = −1

2
[τ02, σ2], which implies τ02 = σ3 =

1

2
[γ0, γ2].

Similarly, comparing coe�cients for γ1 leads to

γ2 = iσ1 = −1

2
[τ12, γ

1] = −1

2
[τ01, iσ3], which implies τ12 = iσ2 =

1

2
[γ1, γ2].

Perhaps unsurprisingly in retrospect, we observe that these matrices are linearly indepen-
dent, real, and traceless, that is, they form a basis for the Lie algebra sl(2,R). And �nally
we are ready to write down the spin representation of the Lorentz transformations in three
dimensions with Minkowski signature.

S(L) = exp

{
1

4

∑
a<b

ξab[γ
a, γb]

}
.
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Appendix C

The Spectral Action for d=2

In this section we will use several well known facts to obtain a perturbative expansion for
the bosonic spectral action in terms of a postive even function, f , its moments fd−k :=∫∞

0 u(d−k)−1f(u)du, and a cut-o� parameter Λ. To begin, the bosonic spectral action is
de�ned to be

Sb := Tr

(
f

(
Dω
Λ

))
.

Given that D2
ω is a generalized Laplacian, we have the following expansion in t, known

as the heat expansion

Tr

(
e−tD

2
ω

)
≈
∑
k≥0

t
k−d
2 ak(D2

ω), where ak(D2
ω) =

∫
M
ak(x,D2

ω)
√
|g|ddx.

Here d is the dimension of the manifold (d = 2 in this example,) the trace is taken over
the Hilbert space L2(M, S) of square integrable sections of the spinor bundle, and the
coe�cients ak(x,D2

ω) are the Seeley-DeWitt coe�cients, the �rst two of which are, in our
case

a0

(
x,D2

ω

)
=

1

2π
, a1

(
x,D2

ω

)
= 0, a2

(
x,D2

ω

)
=
−1

24π
s,

where s is the scalar curvature of the Levi-Civita connection, ∇.

Now, given a function h(s), and its Laplace transform

g(v) =

∫ ∞
0

e−svh(s)ds,

we can write

g(tD2
ω) =

∫ ∞
0

e−stD
2
ωh(s)ds.
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Then, taking its trace and using the heat expansion yields

Tr
[
g(tD2

ω)
]

=

∫ ∞
0

Tr

(
e−stD

2
ω

)
h(s)ds

≈
∫ ∞

0

∑
k≥0

(st)
k−d
2 ak(D2

ω)h(s)ds

=
∑
k≥0

t
k−d
2 ak(D2

ω)

∫ ∞
0

s
k−d
2 h(s)ds.

Notice that for t small and in the case of our example d = 2, terms with k > 2 vanish
and the k = 2 term in this sum is just a2(D2

ω)g(0). The remaining terms may be rewritten
by performing a Mellin transform, that is, by using the de�nition of the Γ-function as the
analytic continuation of

Γ(z) =

∫ ∞
0

rz−1e−rdr

and letting z = 2−k
2 and r = sv, to get

Γ

(
2− k

2

)
=

∫ ∞
0

(sv)
2−k
2
−1e−svd(sv) = s

2−k
2

∫ ∞
0

v
2−k
2
−1e−svdv,

and thus

s
k−2
2 =

1

Γ
(

2−k
2

) ∫ ∞
0

v
2−k
2
−1e−svdv.

By substituting this into the heat expansion and performing the integral over s we obtain

Tr
[
g(tD2

ω)
]
≈ a2(D2

ω)g(0) +
∑

0≤k<2

t
k−2
2 ak(D2

ω)
1

Γ
(

2−k
2

) ∫ ∞
0

h(s)

∫ ∞
0

v
2−k
2
−1e−svdvds

= a2(D2
ω)g(0) +

∑
0≤k<2

t
k−2
2 ak(D2

ω)
1

Γ
(

2−k
2

) ∫ ∞
0

v
2−k
2
−1g(v)dv.

Choosing the function g(v) so that g(u2) = f(u) and letting v = u2, the integral in the
series is just∫ ∞

0
v

2−k
2
−1g(v)dv =

∫ ∞
0

u2−k−2f(u)2udu = 2

∫ ∞
0

u2−k−1f(u)du = 2f2−k.

and �nally, setting t = Λ−2, and putting in the Seeley-DeWitt coe�cients the spectral
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action is

Sb = Tr

[
f

(
Dω
Λ

)]
= Tr

[
g
(
Λ−2D2

ω

)]
≈ a2(D2

ω)f(0) + 2
∑

0≤k<2

Λ2−kak(D2
ω)

1

Γ
(

2−k
2

)f2−k +O(Λ−1)

= a2(D2
ω)f(0) + 2Λ2a0(D2

ω)
1

Γ(1)
f2 +O(Λ−1)

=

∫
M

(
f2Λ2

π
− f(0)

24π
s

)√
|g|d2x+O(Λ−1)
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Appendix D

Riemannian signature

If we take a positive de�nite metric g = diag(1, 1, 1), and L satisfying LTgL = g, then
we may write L = eA where A is skew-symmetric, (i.e. AT = −A). Any such A may be
written as a combination

A = ξ1K1 + ξ2K2 + ξ3K3

where

K1 =

 0 1 0
−1 0 0
0 0 0

 , K2 =

0 0 −1
0 0 0
1 0 0

 , and K3 =

0 0 0
0 0 1
0 −1 0


form a basis for skew-symmetric 3 × 3 matrices with real entries. We may calculate the
algebra relations

[K1,K2] = K3, [K3,K1] = K2, and [K2,K3] = K1.

Or, more compactly,
[Ka,Kb] = εabcKc

where εabc is the usual Levi-Civita symbol.
Now, the spin representation of the Lorentz transformations in the Riemannian signature

case will be

S(L) = exp

{
1

2

3∑
a=1

ξaτa

}
satisfying

S−1(L)γa
′
S(L) = La

′
a γ

a

for some matrices τa. To linear order, the right hand side yields

δγ1 = ξ1γ
2 − ξ2γ

3, δγ2 = −ξ1γ
1 + ξ3γ

3, and δγ3 = ξ2γ
1 − ξ3γ

2.
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Meanwhile, also to linear order,

S(L) = 1 + ξ1τ1 + ξ2τ2 + ξ3τ3, and S−1(L) = 1− ξ1τ1 − ξ2τ2 − ξ3τ3

so that with the same level of accuracy

S−1(L)γaS(L) = γa − 1

2
ξ1[τ1, γ

a]− 1

2
ξ2[τ2, γ2]− 1

2
ξ3[τ3, γ

a].

Comparing LHS and RHS we immediately see that

[τ3, γ
1] = 0, [τ2, γ

2] = 0, and [τ1, γ
3] = 0.

So, taking

γ1 = σ1 =

(
0 1
1 0

)
, γ2 = σ2 =

(
0 −i
i 0

)
, and γ3 = σ3 =

(
1 0
0 −1

)
,

and recalling the identity for the Pauli matrices which says that [σa, σb] = εabcσc, we �nd
by comparing terms with like coe�cients in the LHS and RHS that

τ1 = iσ1, τ2 = iσ2, and τ3 = iσ3.

In retrospect this is unsurprising since Lorentz transformations in Euclidean 3-space are
just rotations, and we expect the rotation group SU(2) to be our spin representation; and
of course the in�nitesimal generators may be taken to be the standard basis for the Lie
algebra su(2), (i.e. iσ1, iσ2, iσ3).
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