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Abstract

Hadron therapy is an acknowledged technique for cancer tumor treatment based
on electromagnetic interaction of ions with matter. Unlike conventional radiother-
apy, charged particles, such as protons and heavy ions deposit the maximum energy
(Bragg peak) at the end of their trajectory as they penetrate matter. This property
allows for the effective destruction of the tumor during the treatment. Most of the
energy is deposited in the tumor with a significantly reduced dose to the surrounding
healthy tissue. This advantage made hadron therapy a better therapeutic option
compared to conventional radiotherapy. However, due to inter- and intra-fractional
anatomical changes of the human body, it is necessary to vary the proton and heavy
ion beam energies by applying relatively large safety margins in treatment plans.
Therefore, the development of online monitoring during hadron therapy is one of the
most important challenges, which may result in a reduction of the safety margins,
leading to more effective treatment. Since all primary protons are stopped within
the tissue, the only way to control dose deposition is to detect secondary particles,
such as prompt gamma emitted immediately after nuclear reactions take place. The
good correlation between the prompt gamma emission and the range of the incident
proton beam made prompt gamma detection as one of the most promising options
for hadron therapy monitoring.

The aim of the SiFi-CC project is to develop an online method for monitoring
dose distribution in proton therapy. The method under development is based on
the detection of prompt gamma radiation emitted from a patient’s body during ir-
radiation. For this purpose, a prototype of a Compton camera is constructed, made
of scintillating fibers of heavy materials. This work used a predetermined design
of the detector and advanced Monte-Carlo simulations of detector responses made
with the use of Geant4 software.

My research, as a member of SiFi-CC research group, was concentrated on the
development of programming frameworks for machine learning and image recon-
struction. In order to obtain a detailed insight into the expected response of the
SiFi-CC detector, it is crucial to implement such software frameworks already in the
initial phase.

The most important part of the dissertation was devoted to a software framework
design for the classification of pseudo-data generated by the Geant4 simulations.
The detection system response simulations were performed for a spot-scanning with
a 180 MeV proton beam impinging on the PMMA phantom. The gamma radiation
emitted from the excited nuclei interacted with the material of the proposed SiFi-
CC detector, providing information about the coordinates of the interaction and the
deposited energy. Machine learning software based on the TMVA multivariate data
analysis toolkit developed at CERN was used to analyze the obtained pseudo-data.
Given the probabilities of the different gamma radiation interaction processes in
the detector, combinations of interaction positions and deposited energies are as-
signed either to Compton scattering or to background. This study investigated the
performance of three different machine learning models, including Boosted Decision
Tree (BDT), Multilayer Perceptron (MLP) Neural Network and k-Nearest Neigh-
bors (k-NN). It turned out that the BDT classifier excels in signal and background
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separation compared to the other two models. Therefore, in the analysis phase, the
BDT classifier was used to identify Compton scattering events. The performance
stability and robustness of the BDT classifier were studied during the analysis phase
using well-known evaluation metrics, such as recall, efficiency and purity.

The second part of the dissertation concerns the reconstruction of the prompt
gamma emission profile, containing information on the deposited dose distribution
in a proton therapy treatment. For this purpose, software was prepared based on
the algorithm of List-Mode Maximum Likelihood Estimation Maximization (LM-
MLEM). Then, the LM-MLEM algorithm was used to reconstruct the gamma source
position. This allowed to determine the distal edge of the Bragg peak for the proton
beam stopped within the phantom.

Thanks to the use of machine learning, a very good selection of Compton scat-
tering events in relation to the background events was obtained. As a result, a very
good agreement was achieved between the position of the reconstructed distal edge
and the position of this edge obtained in the simulations. Finally, it has been shown
that it is possible to determine the position of the distal edge with a resolution of 3.5
mm FWHM. The results of this work show that the use of the SiFi-CC prototype is
a promising approach to determine the location of the distal edge of the Bragg peak.
The methods developed in this work also allow to optimize the configuration of the
Compton camera prototype, which may allow for even better determination of the
location of the distal edge of the Bragg peak. In addition, the developed software
can also be applied to real data measured with the SiFi-CC detector. This should
allow the proton therapy to be accurately monitored, leading to a reduction in side
effects.

iii



Dedicated to my wife and parents.

iv



Acknowledgments

I would like to thank Aleksandra Wrońska, without whom this project would have

never come to fruition. Andrzej Magiera for his patience, guidance, and insight over

the past four years. Katarzyna Rusiecka and Jonas Kasper, who have provided their

generous insight into my project development.

I also would like to thank my Father and Mother who have successfully injected

in me the excitement in sciences, and always enormously support me in my life. I

am also grateful to both of my Brothers for all the nice moments we have spent

together and strongly motivating me to achieve my goals.

And, most importantly I would like to express my deep gratitude to my beloved

Wife Maryam who is my inexhaustible source of support, inspiration, motivation,

and love.

This work was supported by the Polish National Science Centre (grant number

2017/26/E/ST2/00618) and the financial resources for research or development work

and related tasks for the development of doctoral students, DSC and MNS grants

with numbers of K/DSC/004987 and N17/MNW/000009, respectively.

v





Contents

Glossary viii

List of Figures ix

List of Tables xi

1 Introduction 1

2 Theoretical background 4
2.1 Principles of ion beam therapy . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Compton Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Compton Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Geant4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 Back-Projection . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.2 LM-MLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.1 Boosted Decision Tree . . . . . . . . . . . . . . . . . . . . . . 15
2.6.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . 17
2.6.3 k-Nearest Neighbour . . . . . . . . . . . . . . . . . . . . . . . 20

3 Materials and Methods 22
3.1 SiFi-CC Detector Design . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Optimization of SiFi-CC Geometry . . . . . . . . . . . . . . . . . . . 23

3.2.1 A Simple Compton Camera . . . . . . . . . . . . . . . . . . . 24
3.2.2 Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Analysis Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Results 39
4.1 SiFi-CC Design Optimization . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Influence of inter-detector distance and source-scatterer dis-
tance on the detector response . . . . . . . . . . . . . . . . . . 40

4.1.2 Influence of the scatterer and absorber size on the detector
response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vi



Contents Contents

4.1.3 Influence of the lateral position of the source in the FOV on
the detector response . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.4 Design Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 SiFi-CC Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Target Variables . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Variables Correlations . . . . . . . . . . . . . . . . . . . . . . 45
4.2.3 Machine Learning Models . . . . . . . . . . . . . . . . . . . . 46
4.2.4 Hyperparameters Tuning . . . . . . . . . . . . . . . . . . . . . 48
4.2.5 Classifiers’ Performances Evaluation . . . . . . . . . . . . . . . 59
4.2.6 BDT Classifiers Training . . . . . . . . . . . . . . . . . . . . . 60

4.3 Analysis Phase and Evaluation . . . . . . . . . . . . . . . . . . . . . 62
4.3.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.2 Cut Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.3 Energy Regression . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.4 Fake Events and Duplicates Exclusion . . . . . . . . . . . . . 68
4.3.5 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.6 Image Reconstruction Assessment . . . . . . . . . . . . . . . . 71

5 Discussion and Conclusions 78

Bibliography 81

vii



Glossary

AUROC Area Under Receiver Operating Characteristic.

BDT Boosted Decision Tree.

BDTG Gradient Boosted Decision Tree.

FOV Field Of View.

IDD Inter-Detector Distance.

k-NN k-Nearest Neighbour.

LM-MLEM List Mode Maximum Likelihood Expectation Maximization.

MLEM Maximum Likelihood Expectation Maximization.

MLP Multilayer Perceptron.

PG Prompt Gamma.

PSF Point Spread Function.

RE Recoil Electron.

ROC Receiver Operating Characteristic.

SiFi-CC SiPMs and scintillating Fiber-based Compton Camera.

SP Scattered Photon.

SSD Source-Scatterer Distance.

viii



List of Figures

2-1 Depth-dose profile for photons, protons and carbon ions in water . . . 5
2-2 Comparison of treatment plans for a skull . . . . . . . . . . . . . . . 5
2-3 Klein-Nishina cross-section . . . . . . . . . . . . . . . . . . . . . . . . 7
2-4 Principle of a Compton camera . . . . . . . . . . . . . . . . . . . . . 8
2-5 Illustration of the three possible cases of conic section intersecting the

image plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2-6 Depiction of an example of a 2D tracked conic section. . . . . . . . . 12
2-7 Illustration of the LM-MLEM algorithm. . . . . . . . . . . . . . . . . 13
2-8 The difference between classical programming and machine learning

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2-9 Schematic view of a decision tree . . . . . . . . . . . . . . . . . . . . 16
2-10 Multilayer perceptron (MLP) with two hidden layers . . . . . . . . . 18
2-11 Illustration of an artificial neural network training phase . . . . . . . 19
2-12 The k-NN algorithm for a case study with three discriminating input

features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3-1 The proposed Compton camera setup. . . . . . . . . . . . . . . . . . 23
3-2 A simple detection setup used for geometry optimization. . . . . . . . 24
3-3 The plot of Klein-Nishina cross-section as a function of the scattering

angle 𝜃 for photons with 1, 4.44 and 10 MeV energies. . . . . . . . . . 25
3-4 The energy resolution as a function of energy deposit for a 10 cm long

LuAG(Ce) fiber with a square cross-section. . . . . . . . . . . . . . . 27
3-5 Energy spectrum of prompt gamma rays along the beam axis pro-

duced during the irradiation of the PMMA phantom by a 180 MeV
proton beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3-6 A flowchart of the signal/background classification of simulated data
by Geant4 before the training phase. . . . . . . . . . . . . . . . . . . 32

3-7 The Compton event classes for the first half of all statistics. . . . . . 33
3-8 The internal scattering angle as a feature. . . . . . . . . . . . . . . . 35
3-9 The illustration of the integral probability of Compton interaction for

three different photon’s energies of 1, 2 and 4 MeV as a function of
scattering angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4-1 The 𝜎𝑥 values of the PSF along the proton beam axis for different
IDD and SSD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4-2 The 𝜎𝑥 of the PSF for different widths of scatterer and absorber. . . . 41

ix



List of Figures List of Figures

4-3 Influence of the lateral source position in the field of view of the
camera on 𝜎𝑥 of the PSF. . . . . . . . . . . . . . . . . . . . . . . . . 42

4-4 Two-dimensional profile of the fraction of events reconstructed for
given source positions in the geometrical simulations. . . . . . . . . . 43

4-5 The correlation coefficient matrices of all available variables for each
event class, generated by TMVA framework. . . . . . . . . . . . . . . 47

4-6 The overtraining check using the Kolmogorov-Smirnov test for BDT
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4-7 The MLP convergence test for each event class. . . . . . . . . . . . . 53
4-8 The MLP architecture for the event class with 4 cluster hits. . . . . . 54
4-9 The overtraining check using the Kolmogorov-Smirnov test for MLP

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4-10 The overtraining check using the Kolmogorov-Smirnov test for k-NN

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4-11 The comparison of ROC curves among all trained models for each

event class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4-12 The comparison of ROC curves of the trained BDT models using

different numbers of features for each event class. . . . . . . . . . . . 61
4-13 The relationship between the primary energy of PG and energy sum

of background (bad Compton events) for each event class from the
first half of data sample. . . . . . . . . . . . . . . . . . . . . . . . . . 65

4-14 The relationship between the PG primary energy and energy sum of
Compton events for each event class from the first half of data sample. 66

4-15 The relationship between the primary energy of PG and recovered
energy sum of background (bad Compton events) for each event class
from the first half of data sample. . . . . . . . . . . . . . . . . . . . . 67

4-16 The event topology comparison of the predicted Compton events by
two BDT models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4-17 The energy difference between the recovered energy sum of predicted
Compton events by two BDT models and the PGs from Geant4 sim-
ulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4-18 The pixel-wise convergence rule for the LM-MLEM algorithm. . . . . 72
4-19 The comparison of predicted Compton events reconstruction using

energy sum and recovered energy sum of the predictions. . . . . . . . 73
4-20 The reconstructed position distribution of predicted Compton events

obtained from training the BDT using all possible features. . . . . . . 73
4-21 The depth-dose profile of predicted Compton events along the beam

axis (𝑥-axis) for the models, the correctly classified Compton events,
and the Compton events from Geant4 simulation. . . . . . . . . . . . 74

4-22 1D depth profile of PG falloff behavior with its sigmoidal curve fitting
for a random subset of the data. . . . . . . . . . . . . . . . . . . . . . 76

4-23 The distal dose edge position for a 180 MeV proton beam obtained
from 30 random subsets of the BDT model output. . . . . . . . . . . 77

x



List of Tables

4.1 Assessment of three models’ properties. . . . . . . . . . . . . . . . . . 48
4.2 Hyperparameters of the BDT model. . . . . . . . . . . . . . . . . . . 49
4.3 The ROC curve integral with different number of trees for all event

classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 The comparison of signal efficiency obtained from test sample and

training sample at different background efficiency. . . . . . . . . . . . 50
4.5 Hyperparameters of the MLP model. . . . . . . . . . . . . . . . . . . 52
4.6 The final configuration of the MLP model. . . . . . . . . . . . . . . . 55
4.7 The comparison of signal efficiency obtained from test sample and

training sample in training the MLP model. . . . . . . . . . . . . . . 55
4.8 The final configuration of the k-NN model for each event class. . . . . 57
4.9 The comparison of signal efficiency obtained from test sample and

training sample at different background efficiency. . . . . . . . . . . . 58
4.10 The AUROC values for different trained classifiers. . . . . . . . . . . 60
4.11 The AUROC values of the BDT models trained using two different

number of features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.12 The final configuration of the Genetic Algorithm. . . . . . . . . . . . 64
4.13 Final parameter configuration of the BDTG model. . . . . . . . . . . 67
4.14 Evaluation results of the two BDT models. . . . . . . . . . . . . . . . 70

xi





Chapter 1

Introduction

Based on the Global Cancer Observatory’s report [1], cancer is the second most

cause of death in Europe, with more than 1.9 million death records within 2020 in

Europe. Moreover, more than 4 million new cases has been registered in Europe up

to now. Because of these all facts, cancer treatment has been an ongoing research

field for decades.

Around 50% of all cancer patients receive radiation treatment as one of the well-

known methods of treating cancer tumors [2]. In traditional radiation therapy, a

beam of high energy photons is used to kill the tumors cells [3]. In this method,

the photon’s energy falls exponentially as it goes to the deeper organs. Therefore,

the tumors will not receive the dose effectively and a large volume of healthy tissues

is irradiated. On the contrary, ion radiation therapy is a different approach where

protons or heavy ions are used rather than photons to maximize the radiation dose

to cancer tumors while minimizing the exposure to other tissues [4]. The most im-

portant advantage in ion radiation therapy is that they release most of their energy

at a certain point called Bragg peak [5]. This allows us to precisely kill the tumor

cells with minimum radiation dose exposure to surrounding tissues. Since a small

deviation in locating the Bragg peak may have a significant effect on the tissues

surrounding the tumor, it is crucial to locate the Bragg peak position accurately [6].

Currently the only technique which is used in clinical application is positron

emission tomography (PET) imaging [7]. This approach is based on the detection of

photons generated by the annihilation of delayed positrons emitted from fragments
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Chapter 1. Introduction

such as 11C or 15O produced during the therapy. There are two strategies includ-

ing in-beam and offline PET measurements applied in clinical centers [8]. However,

in both cases, the reconstructed image quality of positron activity distribution is

degraded because of the low effective activity (much lower than in standard PET

examination), and the washout effect caused by metabolism [9]. Therefore, online

dose and range monitoring of ion beams during the treatment fraction is not possible

with the current technology [10]. Another promising approach based on detection

of prompt gamma (PG)s emitted in nuclear reactions of ions with the atomic nuclei

of tissue is under investigation. As they are emitted almost immediately (within

times below ns), their distribution is not affected by physiological processes (there

is no washout effect). Therefore, it could provide an online monitoring for dose

distribution during hadron therapy.

The Silicon Photo Multiplier (SiPM) and scintillating Fiber-based Compton

Camera (SiFi-CC) is a concept for an online monitoring tool for the Bragg peak

position. It is a joint collaboration effort between working groups from the Jagiel-

lonian University in Poland and RWTH Aachen University in Germany. The col-

laboration is developing the SiFi-CC detection system to reconstruct the positions

of PG emissions during proton therapy, leading to measure Bragg peak location

precisely [11, 12].

Along with the Compton interactions, many other gamma interactions occur

within the SiFi-CC detector. This dissertation aims to introduce a machine learning

model to identify the Compton events among many gamma interactions from sim-

ulated data of the SiFi-CC. Then, an image reconstruction algorithm based on the

list-mode Maximum Likelihood Expectation Maximization (LM-MLEM) is used to

reconstruct the events selected by the model, locating consequently the Bragg peak

distal falloff position. This study could help assess the performance and optimize

the feasible geometric configuration of SiFi-CC allowing for more precise monitoring

of proton therapy. These frameworks can be also used in the analysis of real data

measured during the treatment.

The dissertation consists of four chapters which I introduce them shortly here.

In Theoretical background chapter, a literature review about the history of ion beam

2



Chapter 1. Introduction

therapy and the physics behind the Compton effect and its capabilities in ion therapy

monitoring are introduced. Finally, a full description about image reconstruction

and machine learning frameworks used in this project is provided. In Materials

and Methods chapter, I introduce the detection setup simulation, the development

of machine learning, and the image reconstruction frameworks implemented in this

work. Later, the results of my work are presented in Results chapter. Finally, in

the last chapter (Discussion and Conclusions), I discuss results obtained via the

proposed methods and the feasibility of the proposed Compton camera in clinical

applications.
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"if I have seen further it is by stand-

ing on the shoulders of Giants."

Isaac Newton, 1675

Chapter 2

Theoretical background

This chapter introduces the theoretical background needed for this thesis. A brief

introduction of the ion beam therapy history, the Compton effect physical aspects,

and the simulation framework is presented. Finally, an in-depth introduction about

the machine learning and image reconstruction frameworks is presented.

2.1 Principles of ion beam therapy

Ion beam therapy for treating cancer patients is widely considered a superior form of

radiotherapy compared to conventional treatments using high energy X-rays. This is

due to the characteristic dose deposition induced by protons, which exhibits a sharp

peak near the stopping point, the so-called Bragg peak, resulting in a decrease of the

volume of healthy tissues irradiated to intermediate and low doses [13, 14]. Figure 2-

1 illustrates that carbon ions and protons deposit a maximum of energy at the end

of their path within the matter called the Bragg peak, while the dose deposited by

photons decreases exponentially. Another advantage of ion beam therapy compared

to the conventional radiotherapy is to deliver a homogeneous dose to the tumor with

a largely reduced dose to the surrounding tissue using only a few irradiation fields

(see Figure 2-2). We observe indeed a large reduction in the total dose to the healthy

tissues and organs at risk.
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Chapter 2. Theoretical background 2.1. Principles of ion beam therapy

Figure 2-1: Depth dose distribution for
photons, protons and carbon ions in wa-
ter [15].

Figure 2-2: Comparison of treatment
plans for a large target volume in the
base of the skull. Left: Plan for pro-
ton beam (two fields). Right: Plan for
photon therapy (nine fields) [16].

Nevertheless, ion therapy requires more precise application in the therapeutic

stage due to the presence of the Bragg peak. It means that a small deviation can

have a significant destructive impact, especially in the treatment of tumors located

in critical parts of the body, such as the brain. Minor patient positioning errors,

patient anatomical changes, and translation of computed tomography (CT) to water

equivalent units may introduce uncertainties between the treatment plan and the

actually applied dose distribution [17]. Safety margins ranging from a few millime-

ters up to over a centimeter depending the tumor’s location are applied during ion

therapy. To reduce safety margins and destroy tumor precisely, it is very impor-

tant to verify the Bragg peak position, preferably even during treatment, to be sure

that the dose is delivered as planned [18]. Therefore, the online monitoring tools are

needed to control the deposited dose distribution during ion therapy treatments [14].

Several approaches have been implemented for in vivo monitoring of proton ther-

apy dose delivery and proton beam range verification. Positron emission tomography

(PET) is currently the only method used for dose verification, which involves the

detection of 511 keV gamma rays resulting from positron emission decay of proton-

induced radioactive nuclides such as 11C, 13N, and 15O [7]. However, this approach

is suffering from the low quality of the reconstructed activity images due to low

effective activity within the patient body and the washout effect caused by physio-

logical processes. Another promising candidate for dose monitoring is detection of

PGs emitted in nuclear reactions of protons with tissue’s atomic nuclei [17]. It has
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Chapter 2. Theoretical background 2.2. Compton Effect

been observed that the number of PG is much larger than the number of emissions

resulting from PET isotope decay [19]. Furthermore, the absence of washout effects

in PG measurement [20] and well correlation between the proton range and PG

distribution [21–24] are other important advantages which make measuring PGs as

a viable method for clinical application.

2.2 Compton Effect

The Compton effect is an incoherent scattering of a photon on an electron. The

photon with an incident energy 𝐸0 is scattered at an angle 𝜃 and its energy 𝐸1 after

scattering is calculated as follows:

𝐸1 =
𝐸0

1 + 𝐸0

𝑚𝑒𝑐2
(1 − cos 𝜃)

, (2.1)

where 𝑚𝑒𝑐
2 is the electron rest energy. The probability distribution of the Compton

scattering polar angle 𝜃 of the photon on a free electron is described by the Klein-

Nishina cross section given in eq. (2.2).

𝑑𝜎e

𝑑Ω
= 𝑟20

1 + cos2 𝜃

2(1 + 𝛼(1 − cos 𝜃))2

(︃
1 +

𝛼2(1 − cos 𝜃)2

[1 + 𝛼(1 − cos 𝜃)](1 + cos2 𝜃)

)︃
, (2.2)

where 𝛼 = 𝐸0

𝑚𝑒𝑐2
and 𝑟0 is the classical electron radius given by 𝑟0 = 𝑒2

4𝜋𝜀0𝑚𝑒𝑐2
, e

is the elementary charge, 𝜀0 is the vacuum permittivity and 𝑑Ω is an infinitesimal

solid angle. As it is shown in Figure 2-3, at lower energy, the forward scattering

and back-scattering probabilities are comparable. On the contrary, as the energy

increases, the probability of forward scattering is higher.

From eq. (2.1) and eq. (2.2), it is assumed that the struck electron is unbound

and at rest. However, the electron binding energy can be included in the differential

cross-section. In this way, the Klein-Nishina formula is multiplied by function 𝐷

called the incoherent scattering function as a correction for the Klein-Nishina cross

section. This correction function 𝐷 depends on the transferred momentum to the

electron after Compton scattering, and the atomic number of target.
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The function 𝐷 decreases the Compton scattering cross section at small scatter-

ing angles, and increases it at large angles. The presence of the struck electron’s

momentum introduces an uncertainty in the energy spectrum of the scattered pho-

tons. Therefore, for a given scattering angle, the value of the scattered photon

energy 𝐸1 is not unique, leading to the Doppler broadening effect which is an in-

teresting research topic in the electronic structure of atoms, molecules and solids.

Figure 2-3: Klein-Nishina cross-section as a function of the Compton scattering
angle 𝜃 for three different photon energies. The higher the energy is, the smaller the
average Compton scatter angle is [25].

2.3 Compton Camera

Compton camera generally consists of two detection modules. A PG interacts via a

Compton effect in the first module “the scatterer”, and subsequent interaction of the

scattered photon occurs in the second module “the absorber”. According to eq. (2.1),

7
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the deposited energies in the scatterer 𝐸scat and in the absorber 𝐸abs are calculated

as follows:

𝐸scat = 𝐸0 − 𝐸1, (2.3)

𝐸abs = 𝐸0 − 𝐸scat = 𝐸1. (2.4)

The eq. (2.4) is valid only when the scattered photon is fully absorbed in the

absorber. Using the deposited energies and the positions of the interactions make

it possible to reconstruct the cone containing its incident trajectory accurately (see

Figure 2-4). The reconstructed cone’s apex is the interaction points in the scatterer.

The cone’s axis is formed by the interaction points in the scatterer and in the

absorber. The source of the photon is limited to the cone’s surface determined by

the scattering angle 𝜃. Finally, the intersection of several of these cones surfaces

enables reconstruction of PG emission distribution.

Figure 2-4: Principle of a Compton camera [26], see text for more details.

2.4 Geant4 Simulation

Geant4 is a popular toolkit, which was developed through an international collabo-

ration. It allows us to simulate the passage of particles through matter by using a

8
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Monte-Carlo method and is used in the field of ion beam therapy for the simulation

of both proton and carbon beams. It is a common practice in experimental science

to design and simulate complex detectors for studying their behaviors and proper-

ties [27–29].

The proposed Compton camera design has been implemented and simulated with

Geant4 in order to have a detailed insight into the response expected from our pro-

totype SiFi-CC detector. Moreover, it is possible to simulate and study different

possible geometries, building materials, and arrangements before actually building

them [11, 29]. As a result, different setups of the SiFi-CC prototype are analyzed and

optimized faster and at a lower cost. The Geant4 simulations have been performed

as a part of another Ph.D. project [30].

2.5 Image Reconstruction

Several different image reconstruction methods have been investigated since the

Compton camera was proposed for the gamma imaging of sources in medicine [31].

There are two main approaches including analytical and iterative algorithms [32–35].

The analytical methods aim to find an analytical solution for the detection model.

Then, the solution is discretized and often solved using algorithms such as filtered

back-projection and linograms. Two significant limitations of this approach refer to

the fact that many imaging systems can not be reliably modeled, and the solution

may be too difficult to be derived analytically.

In the iterative methods, the detection model is firstly discretized. Then, the

solution is provided using iterating algorithms. In this approach, a greater number

of imaging devices can be modeled. However, the uniqueness and the exactness of

the solution is lost. Moreover, an iterative process can be very computationally

intensive.

The main challenge for both kind of approaches is the computational power

needed. Here, we first present an overview of the back-projection method and

then describe the List Mode Maximum Likelihood Expectation Maximization (LM-

MLEM) algorithm used for Compton imaging.

9
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2.5.1 Back-Projection

The back-projection of Compton cones calculated from the coincidence events is the

simplest analytical image reconstruction method to the Compton imaging problem.

Assuming the complete energy deposition in scatterer and absorber due to Compton

scattering (see eq. (2.4)), one can reconstruct a cone surface on which the source

location lies.

A simple back-projection reconstruction method consists of the segmentation

of the source space into voxels and the determination of the number of cones in-

tersecting each voxel in image space volume. To simplify the complexity of the

intersections’ computation of a cone surface with a 3D segmented image space, we

use the method adapted from [36] for the back-projection of cones on a 2D seg-

mented image plane. The 3D image reconstruction can be obtained by applying the

method to each individual image plane. The plane-cone intersection problem can

be solved analytically. The intersection of the Compton cone and the image volume

is solved by:

cos 𝜃 =
(−→𝑟 −−→𝑟𝑠 ) · (−→𝑟𝑠 −−→𝑟𝑎)

|−→𝑟 −−→𝑟𝑠 | · |−→𝑟𝑠 −−→𝑟𝑎 |
. (2.5)

where the −→𝑟 vector corresponds to all possible positions of the photon source, −→𝑟𝑠
vector is the Compton cone vertex in the scatterer, and −→𝑟𝑎 vector is the interaction

position of the scattered photon in the absorber. The (−→𝑟𝑠 − −→𝑟𝑎) vector forms the

cone axis, and −→𝑛 = (−→𝑟𝑠−−→𝑟𝑎)
|−→𝑟𝑠−−→𝑟𝑎| is its axis direction vector. Therefore, the final form of

eq. (2.5) will be given by:

cos2 𝜃 · |−→𝑟 −−→𝑟𝑠 |2 = (−→𝑛 · (−→𝑟 −−→𝑟𝑠 ))2. (2.6)

Solution of eq. (2.6) for each event define a cone surface on which all possible

photon source points lie. The image volume is divided into many slices, then the

intersection of the cone with each slice can be calculated. The intersection of a cone

with a plane is an ellipse. Therefore, three cases are possible as shown in figure

Figure 2-5 : i) the conic section is completely inside the image plane, ii) the conic
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section is completely outside the image plane, iii) conic section arcs are inside the

image plane.

x

y

Figure 2-5: Illustration of the three possible cases of conic section intersecting the
image plane. The conic section can be inside the image plane, partially included in
or outside of the image plane.

In this method, the intersections of the ellipses are computed with the the edges

of the segmented image plane, depending on whether they are on a vertical or a

horizontal border. Next, the pixels containing the intersections are searched for and

the length of the track in each pixel is calculated. In this way, an estimate of the

reconstructed conic section is obtained (see Figure 2-6). This process continues until

the last event is processed. Therefore, the back-projections of all events are weighted

by segment length and these weights are summed up in each pixel to show the prob-

ability of the source position distribution. In section 3.2.2, it will be explained in

more detail.
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Figure 2-6: Depiction of an example of a 2D tracked conic section (exaggerated
view). Here, the 𝑥𝑦-plane is intersected by a Compton cone. The blue and red
dots represent the intersection points between the grid and the conic section on the
horizontal and vertical borders, respectively. The green lines are the approximated
arc length in each intersected pixel of the image plane.

2.5.2 LM-MLEM

Most of the iterative image reconstruction methods are based on the Maximum

Likelihood Expectation Maximization (MLEM) [36–38]. In MLEM method, the

system matrix of a Compton camera consists of all possible combinations of bins

in scatterer and absorber which are equal to the total number of detector bins.

Therefore, for a Compton camera with a large number of bins, the MLEM needs

an unrealistic large computer memory and it will be time-consuming. Due to this

fact, the list-mode MLEM (LM-MLEM) method was proposed and implemented for

Compton camera by Wilderman [36, 39]. It provides a computational advantage in

comparison with the binned MLEM approach [36, 40–42].

Here, the number of system matrix elements depends on the considered field of

view (FOV) dimensions and the number of detected coincidence events. In other

words, the system matrix is a matrix with rows of total number of detected events

and columns of the total number of FOV dimensions. The LM-MLEM begins with an
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initial approximation of the source distribution 𝐼0𝑗 obtained from the segment length

weighted back-projection. Then, it can be subsequently improved by applying the

recursive equation as follows:

𝐼𝑛+1
𝑗 = 𝐼𝑛𝑗 .𝐶

𝑛
𝑗 (2.7)

𝐶𝑛
𝑗 =

1

𝑠𝑗

𝑁𝑒𝑣𝑒𝑛𝑡𝑠∑︁
𝑖=1

𝑡𝑖𝑗∑︀𝑀𝑖

𝑘=1 𝑡𝑖𝑘𝐼𝑘
. (2.8)

where 𝑁𝑒𝑣𝑒𝑛𝑡𝑠 is the total number of detected events, 𝑠𝑗 is the detection sensitivity

(i.e. the probability for FOV voxel 𝑗 which an event can be successfully detected)

which compensates for the loss of emitted photons in distant voxels. 𝑡𝑖𝑗 refers to

the element of the Compton camera system matrix and represents the transition

probability (i.e. segment length weight in voxel 𝑗 for the detected event 𝑖). 𝑀𝑖 is

the number of voxels in FOV intersected by the back-projected cone of event 𝑖. As

it is given in the eq. (2.8), the inner sum belongs to 𝑀𝑖 image voxels intersected

by each back-projected cone (i.e. the forward projection of an image estimate 𝐼

onto the detector) and definitely is different from one detected event to another

one. For each iteration, the outer sum is over the 𝑁𝑒𝑣𝑒𝑛𝑡𝑠 detected events. In other

words, in each iteration, the back-projection of data is weighted with the forward

projected data (the inner sum), leading consequently to an update correction for

the image estimate [43]. Therefore, the method provides us with a boosted image

estimate after 𝑛 iterations using the multiplicative correction image 𝐶𝑛
𝑗 as depicted

in Figure 2-7.

Initial guess New
Image estimate Calculated back-projection data

Update

Forward projection

Figure 2-7: Illustration of the LM-MLEM algorithm.
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2.6 Machine Learning

The concept of machine learning comes from this question: could a computer auto-

matically learn the rules on its own to carry out a specific task?

This question familiarizes us with a new programming paradigm. Unlike the

classical programming in which a programmer should define a set of rules over the

data to get the desired answers, the machine learning system can be trained by

giving it the data sample and the expected answers. The machine learning model

learns the rules needed without being explicitly programmed (see Figure 2-8). The

trained model can be applied to new data to reproduce original results [44, 45].

Figure 2-8: The difference between classical programming approach in which rules
be explicitly defined by a user (left), and a machine learning model which produces
the rules from a training data sample and the expected answers (right) [44].

Generally, for training a machine learning model on a specific task, five compo-

nents are required as follows [46].

1. Input data samples. These data samples can be in any form, like simple tabular

data for patients, or the kinematic information of all secondaries detected in

proton therapy.

2. Expected output. These output records are associated with each input data

sample. For example, the expected output for dose range monitoring in proton

therapy might be the event’s label like PG detected (signals) or other secondary

(background) information.

3. Loss function. It measures the model’s ability to predict the right output and

how good its performance is.

14



Chapter 2. Theoretical background 2.6. Machine Learning

4. Optimizer. The model will update itself based on the data it sees and its loss

function.

5. Metrics to monitor during training and testing. They display the models’

capabilities in a classification task especially when comparing different models’

performances.

The first three items are the main to train a model and the other two are optional to

tune and control the model. There are other types of machine learning models that

do not need the expected output for training called unsupervised learning. They

mainly find interesting transformations and important features of the input data for

data analysis and visualization. Dimensionality reduction and clustering are well-

known categories of unsupervised learning. More information could be found in [44].

In the following, the description of some different machine learning models which

were used in this project are listed.

2.6.1 Boosted Decision Tree

A decision tree is a binary tree structure which classifies the input data sample as

depicted in Figure 2-9. The main advantage for using a decision tree is that it is

easy to follow and interpret. The questions about the input data with responses of

(yes/no) are taken on one single variable (feature) repeatedly until a stop criterion

like: depth of tree to grow, number of features to build a given tree and etc. is

met [47]. In other words, a decision tree takes a set of input features and splits

the input data recursively based on those features that are eventually classified as

signal or background events, depending on the majority of training events that end

up in the final leaf node. The decision trees suffer from inconsistency in statistical

fluctuations when training input data sample. It causes the whole tree structure

to be changed below the node with that problem. In other words, if two or more

features exhibit similar separation power, a fluctuation in the training sample may

cause the tree to grow and split on one of features, while each of those features could

have been selected in case of no fluctuation. Therefore, the whole tree structure will

change below this node, resulting in a different classifier response.
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Figure 2-9: Schematic view of a decision tree. The starting point is the root node.
Then a binary structure sequence splits using the discriminating features 𝑥𝑖, 𝑥𝑗, 𝑥𝑘

applied to the input data. Each split uses the feature giving the best separation
between signal and background when the node is being cut on. The same feature
may be used several times, although others might not be used at all. The leaf nodes
at the bottom end of the tree are labeled "S" for signal and "B" for background
depending on the majority of events in the respective nodes [47].

To overcome such problem, a forest of decision trees can be constructed. All

trees in the forest are derived from the same training sample, and then boosting

i.e. a method which modifies the events’ weights in the sample is applied which is

recognized as the boosted decision tree (BDT) classifier. In such a way, for input

features 𝑋, each tree’s output 𝐻𝑡(𝑋) is given a weight 𝑤𝑡 relative to its accuracy.

The weighted sum output is:

𝑌 ′(𝑋) =
∑︁
𝑡

𝑤𝑡𝐻𝑡(𝑋). (2.9)
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where 𝑌 ′(𝑋) is the ensemble true output. Then, the boosting procedure is employed

to minimize the objective function 𝑂(𝑋):

𝑂(𝑋) =
∑︁
𝑖

𝐿(𝑌𝑖, 𝑌
′
𝑖 ) +

∑︁
𝑡

Ω(𝑤𝑡). (2.10)

where 𝐿(𝑌𝑖, 𝑌
′
𝑖 ) is the loss function which shows the deviation between the true

and the model prediction of the 𝑖th sample and Ω(𝑤𝑡) is the regularization function

that penalizes the complexity of the 𝑡th tree which can be defined as the number of

proportional tree leaves and guard against overtraining [48, 49]. The Ω(𝑤𝑡) function

is defined by the available hyperparameters depending on the type of BDT classifier.

2.6.2 Artificial Neural Networks

An Artificial Neural Network is a collection of interconnected neurons (perceptrons)

arranged in layers, with each neuron applying a linear data transformation to a given

set of input data via weighting it. Then, it applies a non-linear transformation using

activation function g to the linear transformation outcome eq. (2.11). During the

training phase, a set of values for the weights (𝑤) of all layers is found in the network.

Therefore, a map is drawn from a space of input features 𝑋 onto their associated

output 𝑌 ′.

𝑌 ′ = 𝑔(𝑤𝑋 + 𝑏). (2.11)

where 𝑏 is the bias term. The reason of applying the non-linear function to a neuron’s

output is to support the network in learning complex patterns. Otherwise, a neural

network is a stack of linear transformations which eventually can be combined to a

single linear transformation.

Neuron response function

The neuron response function 𝜌 consists of two functions including synapse function

𝜅 and neuron activation function 𝑔, so that 𝜌 = 𝜅 ∘ 𝑔. The synapse function has

the following forms: the sum, sum of square, and sum of absolute values of all avail-

able neurons in the network. The most frequently used neuron activation functions
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for a single neuron output are sigmoid and tanh given by eqs. (2.12) and (2.13)

respectively [50].

𝑔(𝑦) =
1

1 + 𝑒−𝑦
. (2.12)

𝑔(𝑦) =
𝑒𝑦 − 𝑒−𝑦

𝑒𝑦 + 𝑒−𝑦
. (2.13)

The modification of activation functions and their robustness and limitations are

still a hot research area in machine learning [51, 52].

Multilayer Perceptron

There are several popular architectures of artificial neural networks. The simplest

form is a Multilayer Perceptron (MLP). This architecture reduces the complexity

of the neural network by arranging the neurons in layers and only allowing direct

connections from a given layer to the following layer (see Figure 2-10). The first

layer of a MLP is the input layer, the last one is the output layer, and all others are

hidden layers.

Figure 2-10: Multilayer Perceptron (MLP) with two hidden layers and a single
neuron output layer.

For a classification problem with 𝑛𝑣𝑎𝑟 input variables, the input layer consists

of 𝑛𝑣𝑎𝑟 neurons that hold the input values, 𝑋1, ..., 𝑋𝑛𝑣𝑎𝑟 , and one neuron in the

output layer that holds the output variable 𝑌 ′. For training each event 𝑒, the neural

network output 𝑌 ′
𝑒 is computed and compared to the true output 𝑌𝑒 ∈ {1, 0} (in
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classification 1 for signal events and 0 for background events). The loss function is

applied to measure how far the predictions of the network are from what is expected

(true target), defined by

𝐿 =
𝑁∑︁
𝑒=1

𝐿𝑒 =
𝑁∑︁
𝑒=1

1

2
(𝑌 ′

𝑒 − 𝑌𝑒)
2. (2.14)

Eventually, this loss score, which shows how well the network has performed on

the data sample, is computed. Moreover, this score is used as a feedback indica-

tor for the optimizer to adjust the weights and make network outputs as close as

the true targets (see Figure 2-11). The most common algorithm for adjusting the

weights that optimize the neural network performance is the Back propagation al-

gorithm. In this sense, the neural network computes the gradient of the loss score

with respect to the network’s weights. Then the optimizer updates a random set of

weights w𝜌 in the opposite direction from the gradient. The weights are updated

by a certain positive factor called learning rate 𝜂 (see eq. (2.15)). It is one of the

available hyperparameters in the MLP model which should be tuned by users to

avoid overtraining.

w𝜌+1 = w𝜌 − 𝜂∇w𝐿. (2.15)

Figure 2-11: Illustration of an artificial neural network training phase, see text for
more details [44].
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2.6.3 k-Nearest Neighbour

The k-Nearest Neighbour (k-NN) algorithm does not need to build a predictive

model from a training data set. Indeed, there is no actual training phase to make

a prediction [53]. The k-NN algorithm captures the idea of similarity (sometimes

called distance, proximity, or closeness) [54]. The k-NN classifier searches for 𝑘

events from a training data set that are closest to an observed (test) event [47]. The

distance is thereby measured using a metric function called the Euclidean distance

given by

𝑅 =

(︃
𝑛𝑣𝑎𝑟∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖|2
)︃ 1

2

. (2.16)

where 𝑛𝑣𝑎𝑟 is the number of input features used for the classification, 𝑥𝑖 are the

coordinates (features) of an event from a data sample and 𝑦𝑖 are the variables of an

observed (test) event. Figure 2-12 shows a case study of event classification with

the k-NN algorithm.

Figure 2-12: The k-NN algorithm for a case study with three discriminating input
features. The three projections of the two-dimensional coordinate planes are drawn.
The blue (open) circles are the signal (background) events. The k-NN algorithm
searches for 20 nearest points in the nearest neighborhood (the bigger circle) of the
query event, shown as a star. The nearest neighborhood counts 13 signal and 7
background data points so that the query event may be classified as a signal [47].

The values of 𝑘 determines the behavior of the probability density function which

does not represent its local behavior for large values of 𝑘. However, small values of

𝑘 cause statistical fluctuations in the probability density estimate. Therefore, the
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optimal value of 𝑘 should be obtained by the trial and error method [47, 54, 55].

The relative probability that the test event is of signal type is given by

𝑃𝑆 =
𝑘𝑆

𝑘𝑆 + 𝑘𝐵
=

𝑘𝑆
𝑘
. (2.17)

where 𝑘𝑆(𝐵) is the number of signal (background) events in the training sample.

When the input features have different units, each feature can contribute to the

Euclidean metric depending on its distribution width. However, it can be compen-

sated by a scaling factor (1/𝑤𝑖) applied to input feature 𝑖. 𝑤𝑖 is the width of the 𝑥𝑖

distribution for the combined sample of signal and background events. Then, the

Euclidean distance is rescaled and given by

𝑅𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 =

(︃
𝑛𝑣𝑎𝑟∑︁
𝑖=1

1

𝑤2
𝑖

|𝑥𝑖 − 𝑦𝑖|2
)︃ 1

2

. (2.18)

Nevertheless, the k-NN’s main disadvantage refers to becoming significantly

slower as the number of input features increases.
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Chapter 3

Materials and Methods

A novel design for a Compton camera is proposed by our group. The SiFi-CC project

is a joint collaboration effort of two research groups from the Jagiellonian University

and the RWTH Aachen University [12].

This chapter first presents the design of SiFi-CC detection system, the process

of geometry optimization, and the simulation of the detector response. Finally, a

detailed explanation of the machine learning approach used for the Compton camera

imaging is presented.

3.1 SiFi-CC Detector Design

The SiFi-CC consists of two modules, the scatterer and the absorber. In the pro-

posed design, both the scatterer and the absorber consists of thin, long fibers made

of high-density inorganic scintillating material. The dimensions of each fiber are 1

mm×1 mm×100 mm. Each module has many layers of aligned fibers (see Figure 3-

1). For the readout, the silicon photo-multipliers (SiPM) are coupled to the both

ends of each fiber. Presently, the SiFi-CC prototype consisting of 4 layers, 16 fibers

per layer, is under investigation [12].

In order to achieve high gamma detection efficiency in a few MeV energy range,

a detection volume should be made of material characterized by high density and

large effective atomic number. The material also should show good timing proper-

ties (fast decay time), thereby decreasing background from random coincidences.
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Figure 3-1: The proposed Compton camera setup. Each module consists of stacked
fiber units arranged in layers [11].

Finally, the high granularity of the detector ensures a good gamma detection

position resolution in two directions and a large rate capability. Different heavy

inorganic scintillating materials like LYSO:Ce, LuAG:Ce, and recently developed

GAGG:Ce were investigated. LYSO:Ce was chosen because of its very good per-

formance in terms of light output, energy and time resolution, and also its widely

availability compared to other inorganic scintillators [56].

The SiFi-CC uses the Compton effect’s unique characteristics to determine the

Compton cone. In an ideal case, a photon interacts via a Compton effect with an

electron in the scatterer. Then the scattered photon traverses to the absorber and

interacts there via photoelectric effect (see Figure 2-4). The energy deposits and po-

sitions of both interactions are measured and with such information, the Compton

cone is determined. Finally, it is possible to find the origin of PG from the intersec-

tion of all the computed Compton cones (see section 2.2) [11, 56, 57]. However, such

clear situation occurs very rarely. Therefore, it is necessary to apply the advanced

methods of events classification described in section 4.2.

3.2 Optimization of SiFi-CC Geometry

The feasibility of using PGs for range verification of proton beams depends greatly

on the design of a highly efficient Compton camera [13]. Therefore, an optimization

of the proposed detector design by means of Monte Carlo simulations is required.
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3.2.1 A Simple Compton Camera

In the initial stage of the optimization, the response of the detection setup to a point

source in a realistic situation called the point spread function (PSF) [58] should be

studied. To achieve this aim, the influence of geometrical parameters of a simple

detection setup on the PSF was investigated by the simple simulation [59]. In this

study, the scatterer and the absorber were represented by two planes. This approach

neglected also the granularity of the detector and the properties of the scintillating

material. Simulations were performed for a point-like, isotropic and mono-energetic

4.44 MeV (i.e. the most prominent PG emission energy correlated to the absorbed

dose in proton therapy [24]) gamma source emitting photons into the half-space

toward the detection planes. Each gamma emitted into the acceptance of the re-

spective (scatterer) module was forced to undergo a single Compton scattering in

the scatterer followed by a photoelectric effect in the absorber (see Figure 3-2).

Figure 3-2: A simple detection setup used for geometry optimization. The crossing
points of the photon track with the given planes are calculated analytically. The
incident photon with energy of 𝐸0 = 4.44 MeV interacts with the scatterer plane
and the scattered photon with energy of 𝐸1 is absorbed in the absorber plane.

Positions of interactions were calculated analytically using the intersection points

of the respective detection planes and the track of the incident photon [59]. The
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polar scattering angle of the photon that undergoes a Compton effect in the scat-

terer was randomly selected with weights according to the Klein-Nishina formula

(see eq. (2.2)). Figure 3-3 shows the Klein-Nishina cross-section as a function of

the Compton scattering angle 𝜃 for different energies of incident photons. The az-

imuthal angles were also randomly selected with a homogeneous distribution from

the interval [0,2𝜋].

Figure 3-3: The plot of Klein-Nishina cross-section as a function of the scattering
angle 𝜃 for photons with 1, 4.44 and 10 MeV energies [59].

Then, the energy 𝐸1 of the scattered photon is calculated using eq. (2.1). As-

suming that 𝐸0 = 4.44 MeV, the energy depositions in the scatterer 𝐸scat and in the

absorber 𝐸abs can be calculated. Since the simulation only aims for the optimiza-

tion of the PSF, other types of interactions, including multiple Compton scattering,

were neglected. Therefore, the data obtained in this simulation provided an ide-

alistic situation neglecting detection efficiency, physical phenomena contributing to

the potential background, random coincidences, etc. However, it allowed for a pre-

liminary optimization of the geometry of the Compton camera and development of

image reconstruction algorithms.
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3.2.2 Image Reconstruction

For simplicity, 2D image reconstruction method was used. Provided that the image

plane is perpendicular to the 𝑧 axis and located at 𝑧 = 𝑧0, the intersection of the

cone and FOV is calculated by the following equation:

[𝑛𝑥(𝑥−𝑥𝑠)+𝑛𝑦(𝑦−𝑦𝑠)+𝑛𝑧(𝑧−𝑧𝑠)]
2 = cos2 𝜃[(𝑥−𝑥𝑠)

2 +(𝑦−𝑦𝑠)
2 +(𝑧−𝑧𝑠)

2]. (3.1)

where (𝑥,𝑦,𝑧) are the Cartesian coordinates of points on cone surface, (𝑛𝑥,𝑛𝑦,𝑛𝑧) is

a unit vector of the Compton cone axis, (𝑥𝑠,𝑦𝑠,𝑧𝑠) is the apex of the Compton cone

in the scatterer and 𝜃 is its half opening angle.

For each event, once the Compton cone parameters are determined (apex, axis

and aperture), the source position is reconstructed by intersecting the Compton

cone with the image plane which is located at 𝑧 = 0. In such a way, the eq. (3.1)

will convert to the ellipse equation:

[𝑛𝑥(𝑥− 𝑥𝑠) + 𝑛𝑦(𝑦 − 𝑦𝑠) − 𝑛𝑧(𝑧𝑠)]
2 = cos2 𝜃[(𝑥− 𝑥𝑠)

2 + (𝑦 − 𝑦𝑠)
2 + 𝑧2𝑠 ]. (3.2)

The first step in this method is to compute the intersections of the ellipses with

the the edges of the segmented image plane using the eq. (3.2) depending on whether

they are on a vertical border (𝑥 is known) or a horizontal one (𝑦 is known) as shown

in Figure 2-6. Knowing that all pixels of the image plane were numbered beforehand,

a bit value (here, 0.001 mm) is added to and subtracted from the intersection point

to find out which two pixel numbers the point of intersection belongs to. Then, the

pixels containing the intersection points with the same number are searched for and

the length of track in the pixel of interest is calculated. As the pixel’s size is small

(generally, 1 mm), the arc in each pixel is approximated by straight section. It is

repeated for all pixels intersected to make an estimate of the reconstructed conic

section (see Figure 2-6). This process continues for all detected events. In such a

way, the back-projections of all events are weighted by segment length in each inter-

sected pixel and consequently these weights are summed up for each pixel showing

the source position probability.

26



Chapter 3. Materials and Methods 3.2. Optimization of SiFi-CC Geometry

Subsequently, the LM-MLEM was implemented for the back-projected data us-

ing eq. (2.7). When applying back-projection, the system matrix of LM-MLEM

was being calculated and stored based on the same sample of events used for image

reconstruction at the same time. Each element of the system matrix represents a

transition probability as described in section 2.5.2. For image optimization, the sys-

tem matrix was read and used for the iterations of LM-MLEM. To reduce the cost

in CPU time and memory, the sensitivity map was assumed uniform in each pixel

for the results presented in this thesis.

In order to achieve a realistic detector response, energy and position smearing

were applied. The energy resolution as a function of deposited energy 𝐸 was deter-

mined based on the Geant4 simulation of a 1× 1× 100 mm3 LuAG:Ce fiber [56] and

parameterized with the following formula:

𝜎𝐸

𝐸
= 𝑃0 +

𝑃1

𝐸1/2
+

𝑃2

𝐸3/2
. (3.3)

The fitting results of the eq. (3.3) for the energy 𝐸 expressed in MeV is shown

in the Figure 3-4.

Figure 3-4: The energy resolution as a function of energy deposit for a 10 cm long
LuAG(Ce) fiber with a square cross-section (1 × 1 mm2).
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The following parameters of the equation were obtained: 𝑃0 = 0.0026(3), 𝑃1 =

0.0276(6) MeV1/2, and 𝑃2 = 0.0176(3) MeV3/2. The positions in the directions per-

pendicular to the fiber axis (here, 𝑥 and 𝑧 axes) were smeared with a uniform distri-

bution with the width of the fiber size (1 mm), and along the fiber with a Gaussian

distribution with 𝜎 = 4 mm. This value is almost the same as the expected average

value of 𝜎 along the fiber for 4.4 MeV gammas [56].

The geometrical parameters of the detector including, the inter-detector distance

(IDD), the source-scatterer distance (SSD), areas of the scatterer and the absorber

as well as the position of the source in the FOV were investigated. Simulations with

different values of those parameters were performed in order to find the optimal

geometrical detection setup. Subsequently, the reconstructed images were evaluated

and the resulting 𝜎 values of the PSF were compared. The results obtained in this

detector geometry study are the starting point for a more detailed simulation data

and allow for further optimization (see section 3.3).

3.3 Simulation Data

Based on the optimization of the detector surface areas and distances discussed in

previous section, the SiFi-CC detector response was simulated [11, 30] in Geant4

version 10.4.p02. Figure 3-1 shows the proposed, simulated detection setup. This

detector is composed of the scatterer and the absorber consisting of 1×1×100 mm3

fibers made of the LYSO scintillator. The stacked fibers are arranged into layers in

which every second layer is shifted by half a fiber. For the readout, the SiPMs are

coupled to the both ends of each fiber. The scatterer has 10 layers of fibers with

each layer consisting of 76 fibers. Its dimensions are 12.7 mm thickness (𝑧 direction),

100 mm height (𝑦 direction), and 98.8 mm width (𝑥 direction). The absorber has

30 layers of fibers. The dimensions of the absorber module are 38.7 mm thickness,

100 mm height, and 98.8 mm width. An extensive description of the fiber units and

their configuration can be found in [11, 56].

The module surfaces are parallel to the 𝑥𝑦-plane (see Figure 3-1) and are centered

on the expected position of the Bragg peak which is localized at space coordinates

28



Chapter 3. Materials and Methods 3.3. Simulation Data

(0, 0, 0). The SSD and IDD are set to the achieved optimum value of 200 mm

(see section 4.1).

The predefined physics list QGSP_BIC_HP_EMZ was used [60]. A single beam

spot was simulated with a count rate of 3×108 protons per beam spot and a delivery

time of 10 ms [11]. The PMMA target was chosen which is recommended by IAEA

[61] as a water substitute and is commonly used in radiation dosimetry. A 180 MeV

proton beam interacting with a PMMA target was a source of gamma particles

emitted in nuclear reactions. A Gaussian distribution with 𝜎𝐸 = 0.2 MeV was

considered for the beam energy. The energy spectrum of PG along the proton beam

axis is shown in Figure 3-5.

Figure 3-5: Energy spectrum of prompt gamma rays along the beam axis produced
during the irradiation of the PMMA phantom by a 180 MeV proton beam.

The beam spot size at the target entrance perpendicular to the beam axis (𝑦,

𝑧 directions) was selected 2.5 mm standard deviation, typical values for a clinical

beam [62]. More details about the SiFi-CC performance and event selection process

were described in [11].

The Geant4 simulation provides information on real gamma interaction positions

and energy deposits as well as the corresponding SiFi-CC response. All simulation

information was stored in a ROOT [63] file and contains the following information:
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• Emission position of the gamma photon and its energy and direction.

• Location of the Compton scattering and the energies of the recoil electron (RE)

in the first interaction and the scattered photon (SP) after the first interaction.

• All subsequent interactions for the RE and the SP after first Compton scat-

tering in terms of type and location.

• List of reconstructed clusters from the deposited energies within the SiFi-CC

modules. The reconstructed information of each cluster contains the number

of excited fibers (multiplicity), cluster’s location and deposited energy, and the

corresponding uncertainties. The explanation of how the uncertainties were

calculated can be found in [56].

The information of the RE and the SP after first Compton scattering is used as a

golden standard to preprocess the reconstructed clusters; identifying Compton event

(signal) from other gamma interactions (background) and preparing the input data

for the training phase. More detail can be found in the next section.

3.4 Machine Learning

The software framework used for classification of registered events originated by

various processes of PG interaction in the detector is based on the ROOT CERN [63]

toolkit for multivariate data analysis, TMVA version 4.3.0 [47]. It is not only a

collection of multivariate methods, but also it is a common interface to different

methods for classification and regression problems. All multivariate techniques in

TMVA belong to the family of supervised learning algorithms.

3.4.1 Training Data

A machine learning model is trained over a data set to make predictions about

those data that it has not seen before. Therefore, the training data set is needed

in the machine learning model to recognize certain types of patterns. In supervised

learning, we have two variable definitions including, features and targets in terms
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of the input data sample. The features are a set of discriminating variables (in our

case hits positions and deposited energies from detector response) which a machine

learning model use to make the predictions. The targets are the outputs predicted

from the model (such as Compton events known as positive targets or non-Compton

known as negative targets). Using these features and targets, a machine learning

model would map an input data to a desired output value (i.e. the positive targets).

The training data usually go through a preprocessing phase to make them suit-

able for training machine learning models. In the following, it is explained how the

data preprocessing is done and how the features and targets will be selected. The

source of data is the Geant4 simulation discussed in section 3.3, and the results after

preprocessing phase are training data that can be directly fed into different machine

learning models.

Data Preprocessing

Data preprocessing refers to the technique of cleaning and organizing the data for

training machine learning models. The first step is to build a learning dataset of the

simulated events filtered with interactions that yield at least 1 cluster hit in each

of the two modules of the SiFi-CC. The reason is that to reconstruct a Compton

event, a minimum of 2 cluster hits is required. One cluster would be for the RE

in the scatterer, which usually corresponds to the Compton event’s position, and

the second would be for the SP interacting in the absorber. In this study, different

event classes identified by the number of their cluster hits, exist. The events with at

least 2 cluster hits only in one of the modules are not suitable for a Compton cone

reconstruction but could be used in other event processing [64, 65] which is behind

this study.

The first half of all statistics simulated by Geant4 goes for signal/background

classification before passing to the training phase. The whole signal/background

classification procedure for Geant4 simulated data is shown in Figure 3-6. More-

over, the full description of the stages of this approach is listed as follows. The

stages were numbered with respect to the presented classification flowchart.
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electron in the
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(3)
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Figure 3-6: A flowchart of the signal/background classification of simulated data by
Geant4 before passing to the training phase.

1. It is checked if each primary photon interacts via Compton effect, in this way,

both the RE in the scatterer and the SP in the absorber should go through

at least one interaction after the Compton scattering. Otherwise, that event

belongs to background event and it deposits its energy via different types of

interactions (non-Compton events).

Note: To increase the background statistics, we introduce events called fake

events. In this way, for each detected non-Compton event which has at least
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1 cluster hit in each module, all possible cluster hit pairs are considered as

separate events. For example, a non-Compton event class with 4 cluster hits

whose 1 cluster is in the scatterer and 3 clusters are in the absorber, results in

three separate events. In fact, one of these events should exist and the other

two are the fake events. The only difference among these three separate events

is the final position in the absorber.

2. For each Compton event, it is checked if the RE is in the scatterer and the SP

is in the absorber. Otherwise, that event belongs to different possibilities of

interactions e.g. Compton back-scattering (background category).

Note: Here, we also included fake events as described above for each Compton

back-scattering event.

3. The event classes up to 5 cluster hits whose 1 cluster hit is in the scatterer

and others are in the absorber, are passed for further investigation.

Note: The main reason of this choice refers to low contribution of Compton

events with more than 1 cluster hit in the scatterer (only about 8 %, see Fig-

ure 3-7).

Figure 3-7: The Compton event classes for the first half of all statistics. Each
Compton event class consists of different number of cluster hit combinations. For
example, the label (scat 3 + abs 2) refers to the event whose 3 cluster hits are in
the scatterer and 2 cluster hits are in the absorber. As it is shown, the contribution
of the Compton events with more than 1 cluster in the scatterer is very less for all
event classes. Therefore, they are discarded from further investigation.
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4. It is checked if the absolute difference between the cluster’s position and the po-

sition of the RE in the scatterer is within the given uncertainties (2.6 mm along

𝑥 and 𝑧 axes and 10 mm along 𝑦 axis [11], for more detail see section 4.2.1).

Moreover, it is also checked for clusters’ and the SP’s in the absorber and at

least one of them should hold the position of the SP (the position uncertain-

ties are the same used for cluster’s position in the absorber). If one of the

mentioned conditions is not met, the event is called as bad Compton events

and belongs to the background category.

Note: Here, we also included fake events for each bad Compton event.

5. The absolute difference between the cluster’s deposited energy and the RE’s

energy in the scatterer should be within the given uncertainty (12% of the

RE’s energy [11], for more detail see section 4.2.1). It is also checked if the

absolute difference between the total deposited energies in the clusters and the

SP’s energy in the absorber is less than the 12% of the SP’s energy (see sec-

tion 4.2.1). Again, if one of the mentioned conditions is not met, the event is

called as bad Compton events and belongs to the background category.

Note: Here, the fake events were included for each bad Compton event.

6. Finally, the nearest cluster’s position to the position of the SP is selected as

the final position for the Compton event.

Note: In order to increase the statistics, we introduce events called duplicates

(opposite pairs), which are made of the cluster’s position in the scatterer and

those clusters’ positions farther away from the SP’s position in the absorber

compared to the one’s for the Compton event. Such an event is classified as a

background event.

Note: The total deposited energy in the absorber is the same for Compton

events and duplicates.

The records of all event types matching the above criteria are 258484 events which

form the basis for the training data. It should be also mentioned that those fake

events and duplicates will be removed at the end of analysis. Later, the removal

process is explained in more details (see section 4.3.4).
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Features

Although the simulated data contains much information (see section 3.3), the fea-

tures are the variables of the reconstructed clusters only. They are the inputs for

each machine learning model which are processed. Each recorded event gives us in-

formation about its cluster hit positions and the corresponding deposited energies.

Although it seems that using all reconstructed cluster information would be use-

ful as features in Compton event identification, finding suitable features is a real

challenge to achieve the best performance of a model in the training phase. Hence,

we introduced a new parameter called the cosine of internal scattering angle term

(shown in Figure 3-8) as another feature.

Figure 3-8: The internal scattering angles are shown for a reconstructed event with 3
cluster hits as a feature for training this event class. After first interaction of PG in
the scatterer (S1), the scattered photon interacts in two positions in the absorber at
points A1 and A2 for which the interaction sequence is unknown in the real situation.
The internal scattering angle would be useful in Compton event identification. See
text for more details.

We used Compton scattering properties defined by kinematics and Klein-Nishina

cross section (see section 2.2) for identification of the scattering sequence. As the

scattering angle is larger, the scattered photon has smaller energy and then the

Compton cross section for smaller energy becomes larger and vice versa (see Fig-

ure 3-3).

Figure 3-9 also shows the integral probability of Compton scattering as a func-

tion of scattering angle. It is illustrated that a photon whose energy is smaller has

higher Compton scattering probability in comparison with a higher energy photon.
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Figure 3-9: The illustration of the integral probability of Compton interaction for
three different photon’s energies of 1, 2 and 4 MeV as a function of scattering angle.

Therefore, this physical principle can also be very useful to discriminate Comp-

ton events from non-Compton events. This angular term combines all positions into

one parameter, makes the model less complex, and helps select Compton events in

case of more than 1 cluster hit in the absorber.

On the one hand, the more variables are used, more information about the event

can be obtained and the model should gain greater separating power theoretically,

but on the other hand, practically we want to reduce the number of variables used

to train the model while retaining its performance as much as possible.

The main reason refers to the fact that we use Monte Carlo simulated data to

train different classification models and Monte Carlo simulations are not always per-

fectly reliable for all variables. Moreover, the less variables are used, the less human

effort is needed for the variables’ validity checks. Finally, it leads to reduction in

systematic errors and training time.

Therefore, the correlation among these variables is firstly studied before they

are recognized as features in the training phase. The more knowledge about the

capabilities of variables in Compton event identification, the less complex model.
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Targets

The targets are Compton events that can be correctly reconstructed from the SiFi-

CC. As it was shown in Figure 3-6, if an event meets the conditions successfully,

it will be labeled as a Compton event (positive target). The rest of the events,

including the Compton events that do not match these criteria (bad Compton events)

and events coming from other interactions of PG with the detector (non-Compton

events) are marked as negative targets. The objective of each presented model is

to correctly identify the positive target events reflecting the ideal Compton events.

The target of a single event includes the RE and SP locations and energies, the

corresponding clusters’ positions and deposited energies, and the index of event

type whether signal or background events. All information is saved in two separate

categories of signal/background for each event class and prepared for the training

in TMVA.

Data Splitting and Overtraining

The training data is generally split into two subsequent data sets, namely, the train

and test data sets. The simple train/test split is a technique for evaluating and

monitoring the performance of a machine learning algorithm. During the training

phase, the data set is used to train the model and fit it to the available data with

known inputs and outputs. Then, the test data set is used to evaluate the model’s

performance on unseen data samples and how well the model will work in practice.

In this study, we split the data set into two halves for training and testing. This

choice is one of the common train/test split percentages [66, 67], especially when

having enough number of events. Therefore, the first half of all statistics simulated

by Geant4 was used as the training sample and the second half was considered as

the test data sample.

While training a model, the overtraining may occur in which the trained model

starts to show the statistical fluctuations in the data set leading to generality loss in

the model. To avoid overtraining, tuning of the hyper-parameters available in each

model was performed as one of the most effective solutions.
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In this study, a useful method called k-fold cross-validation [68] was used to

train the data set. It can help us monitor the model’s performance, especially

when having a high risk of overtraining. It generally results in a less biased or

less optimistic estimate of the model skill than other methods, such as a simple

train/test split [69]. In standard k-fold cross-validation, the data set is partitioned

into 𝑘 subsets, called folds. Then, the algorithm is trained on 𝑘 − 1 folds while the

remaining fold is used as the validation set. It is repeated until each fold is used

as the validation set exactly once. Using the validation set is important, especially

when trying to find the best hyper-parameter values for each model. More details

about the hyper-parameters tuning of each model and k-fold cross-validation can be

found in section 4.2.4.

3.4.2 Analysis Phase

After selecting the best classifier among all present classifiers based on the perfor-

mance evaluation, its weights containing the training results (i.e. classifier’s response

to signal/background events) are stored for each event class.

In the analysis phase, the weights are loaded along with the second half of the

data sample as an unknown input (test data set). The event loop is then run and

for each event, the classifier value is computed according to the weights from the

training phase.

Later, to separate Compton events from background events, one can either apply

cuts on the Receiver Operating Characteristic (ROC) curve for each event class or

apply fitting methods [47] to the classifier output, finding the best optimal cuts for

each event class. It is explained in more detail in section 4.3.2.
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Results

This chapter firstly focuses on optimization of the detector geometry for the proposed

setup presented on Figure 3-1. A detailed illustration of the hyper-parameters tuning

and training different machine learning models is presented. Then, the performance

of the best selected model in Compton event identification are evaluated. Finally,

the LM-MLEM reconstructed images of PG distal edge position distributions from

the selected model predictions are presented. The results presented in the fist part

have been published in [11]. Some part of the results was presented on IEEE Nuclear

Science Symposium and Medical Imaging Conference [70].

4.1 SiFi-CC Design Optimization

In this section, the results of the geometry study optimization of the simulated

simple detection setup (see Figure 3-2) is presented. This study allows for a prelim-

inary optimization of the proposed SiFi-CC detection setup. The PSF results were

obtained for 105 reconstructed events emitted from a 4.44 MeV point-like gamma

source. A more detailed description of the simple detection setup is presented in sec-

tion 3.2.1.

Then, the LM-MLEM image reconstruction was performed. All of the presented

results (standard deviation values of 𝜎𝑥) refers to the direction along the proton

beam. The LM-MLEM convergence criterion was the relative error of 𝜎𝑥 values for

each two successive iterations. The LM-MLEM iteration continued till this relative
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error was less than 1%. In most cases, the LM-MLEM was terminated after 20

iterations, since there was no significant improvement.

4.1.1 Influence of inter-detector distance and source-scatterer

distance on the detector response

The resulting 𝜎𝑥 values of the PSF as a function of the inter-detector distance (IDD)

and the source-scatterer distance (SSD) are presented in Figure 4-1. It can be seen

that 𝜎𝑥 value improves with increasing IDD and deteriorates when SSD increases.

Based on the presented results and taking into account the minimal possible distance

from the patient, the optimal value of the SSD was set to 200 mm. In case of the IDD,

there is no significant improvement in the spatial resolution and the image quality

after 200 mm. Moreover, it should be mentioned that the detection efficiency would

drop [13] and cause degradation of the image quality with larger values of SSD and

IDD in realistic conditions.

Figure 4-1: The 𝜎𝑥 values of the PSF along the proton beam axis for different IDD
and different SSD (figure from [11]).
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4.1.2 Influence of the scatterer and absorber size on the de-

tector response

Figure 4-2 shows the influence of the size of the scatterer and the absorber (as-

sumed both have a square shape) on 𝜎𝑥 values of the PSF for one of the simulated

configurations. It can be observed that while increasing the size of the respective

detector modules, the spatial resolution deteriorates. This dependency is, however,

much weaker than in the case of distance variations in the detection setup. This

is due to the fact that, for a larger size of the absorber, more low-energetic pho-

tons which scattered at large angles impinge on the detector edge. Such photons

introduce larger uncertainties in the image reconstruction process compared with

high-energetic photons scattered at smaller angles.

Figure 4-2: The 𝜎𝑥 of the PSF for different widths of scatterer and absorber. The
details of the simulated setup for the study of respective parameters are listed in
the figure. The optimal width values of the scatterer and the absorber are 100 mm
(figure from [11]).
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4.1.3 Influence of the lateral position of the source in the

FOV on the detector response

A series of simulations with the gamma source placed at different lateral positions

with respect to the detector axis allowed to determine its FOV. Figure 4-3 shows

that 𝜎𝑥 values gradually increases when the source is moved away from the centre of

the scatterer along the 𝑥 axis and it dramatically deteriorates for farther distances.

Figure 4-3: Influence of the lateral source position in the field of view of the camera
on 𝜎𝑥 of the PSF. The red line indicates the edge of the scatterer (figure from [11]).

Additionally, Figure 4-4 shows the fraction of events reconstructed for different

source positions. As it can be seen, the fraction of reconstructed events decreases

when the source is moved away from the centre of the detector. The image quality

degradation refers to the fact that only photons emitted at certain angles from a

non-central source are registered. The farther away from the detector centre, the

source is placed, the less fraction of photons are registered. This is due to the

smaller solid angle coverage of the detector with respect to the source, leading to
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missing some information about the source distribution. Moreover, the registration

of interactions in both detector modules requires scattering at large angles, which

has a lower probability.
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Figure 4-4: Two-dimensional profile of the fraction of events reconstructed for given
source positions in the geometrical simulations. One quarter of the field of view was
investigated because of symmetrical acceptance with respect to the detector center.
Red lines indicate boundaries of the scatterer. After 100 mm source displacement
from the detector center, the fraction decreases drastically (figure from [11]).

4.1.4 Design Guidelines

From the presented results, several design guidelines emerge for the proposed SiFi-

CC detector.

• First, it appears that SSD is a sensitive parameter. Its choice can have a

significant effect on the spatial resolution of the detector. It should be as

small as possible in order to maximise the detector efficiency and to minimise

its spatial resolution (for a source located at the centre of the detector FOV).
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The choice of SSD is also limited by the patient’s comfort and by the tumour

depth. Therefore, the optimal value of the SSD was determined to be 200 mm.

• Second, we know that the choice of IDD is a trade-off between a good spatial

resolution and a high efficiency. Therefore, the optimal value of the IDD

was determined to be 200 mm. This finding is also in agreement with other

research [71–73].

• Third, as it is found, 𝜎𝑥 values of the PSF behaviour as function of the scat-

terer and absorber widths is less significant compared to the IDD and SSD

influences on resolution of the detector. However, it is important that the

area of both modules should be large enough to detect a sufficient number of

the Compton events. Therefore, it was determined that the optimal width for

the scatterer and the absorber is 100 mm. As discussed further in section 4.1.3,

these detector dimensions would also provide a sufficient FOV.

• Finally, as expected, when the source is moved farther away from the detector

center, the spatial resolution of the detector would deteriorate. The fraction of

reconstructed events also decreases when the distance between the source and

center of the detector exceeds 100 mm. This is due to lower statistics resulting

from a smaller geometrical acceptance. It shows that the obtained FOV is

relatively large compared to the size of the proposed detector and certainly

sufficient for PG imaging applications.

The final setup of the proposed SiFi-CC in this study (see section 3.3) was chosen

not only following these guidelines, but also the technical aspects of the design, such

as its compactness, a reasonable distance between the detector and patient, and the

practicability of the LYSO fiber production.

4.2 SiFi-CC Machine Learning

One of the main goal of this thesis is to develop a machine learning framework taking

the event data registered in the SiFi-CC as an input, then identify the Compton

events. Three different models available in TMVA including BDT, MLP, and k-NN
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compete and their performances are compared using ROC curves. Later, the best

one will be selected for further investigation.

4.2.1 Target Variables

Identified Compton events used as targets in the training models should meet the

following criteria:

• The distances between the 𝑥 and 𝑧 positions of the recoil electron (RE) and the

scattered photon (SP) after first Compton scattering and their corresponding

reconstructed cluster hits in the scatterer and the absorber are less than the

uncertainty of 2.6 mm corresponding to the width of two fibers.

• The distance between the 𝑦 position of the RE and the SP after first Compton

scattering and their corresponding reconstructed cluster hits in the scatterer

and the absorber is less than the uncertainty of 10 mm corresponding to the

resolution achieved with the cluster position reconstruction [11].

• The difference between the RE’s and the SP’s energies after first Compton

scattering and the reconstructed clusters’ energies are less than 12% of the

RE’s and SP’s energies. It comes from the resolution achieved with the cluster

energy reconstruction [11].

Note that in case of more than one reconstructed cluster hit in the absorber, the

one matching the above position criteria and the nearest to the SP is selected as

deposition position in the absorber.

4.2.2 Variables Correlations

A model can be trained more precisely only if the suitable variables are chosen as

features. The cluster hit positions and deposited energies can potentially contribute

as features in the training phase. However, training with such variables does not

always yield a good performance [74]. Therefore, before going through the training

phase, the correlation among available variables should be understood. Linear corre-

lation coefficient is a simple measure of shared information content among variables.
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The TMVA framework readily provides a matrix of linear correlation coefficients

for the variables used for each event class. As discussed in section 3.4.1, each event

class whose exactly 1 cluster hit is in the scatterer and the other cluster hits are

in the absorber were studied in further analysis. The linear correlation coefficient

matrix among feature variables of such event classes is shown in Figure 4-5.

As can be seen, there is no strong relationship between the cluster hit positions

and deposited energies. Therefore, we added the derived variable based on physical

information (Compton effect), angular distribution term along with these 8 variables

in the training to obtain better performance, especially in case of event classes with

more than 2 cluster hits. We first perform the training on all available features and

compare the three machine learning models’ performances using ROC curves.

As discussed in section 3.4.1, we are also interested in using only those feature

variables which can be useful in the training rather than randomly distributed clus-

ter hit positions. Therefore, after selecting the best model, we train it with another

feature list including only the deposited energy of the selected cluster hit in the scat-

terer and the absorber, and the Compton effect angular distribution term for each

existing event. In such a way, we evaluate the trained model’s performance using

two different feature lists to select a better machine learning approach for further

analysis in the image reconstruction.

4.2.3 Machine Learning Models

Based on the properties of different machine learning models presented in [47], we

selected three models which fit more properly to our case of study. A coarse assess-

ment of each model’s capability is shown in Table 4.1. As can be seen, all these

models have good performance in dealing with problems which exhibits any type of

correlations among the input feature variables. Moreover, the models have slightly

better robustness in favor of avoidance of overtraining and their robustness can be

enhanced by adjusting the available hyperparameters (i.e., parameters whose values

are used to control the learning process [75, 76]) of each model.
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2 cluster hits (signal) 2 cluster hits (background)

3 cluster hits (signal) 3 cluster hits (background)

4 cluster hits (signal) 4 cluster hits (background)

5 cluster hits (signal) 5 cluster hits (background)

Figure 4-5: The correlation coefficient matrices of all available variables for each
event class, generated by TMVA framework. Different event classes are presented
in rows. The signal events are in the left column and the background events are in
the right column.
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Properties Criteria BDT MLP k-NN

Performance No or linear correlations
Non-linear correlations

++
++

++
++

+
++

Speed Training
Response

+
+

+
++

++
-

Robustness Overtraining
Weak variables

+
++

+
+

+
-

Transparency - - +

Table 4.1: Assessment of three models’ properties. The symbols stand for the
attributes "good" (++), "fair" (+) and "bad" (-). More details could be found
in [47].

4.2.4 Hyperparameters Tuning

Hyperparameters tuning is an integral part of the model training, especially for

avoiding overtraining. Usually, it is time consuming to reach the proper trained

model in classification problems. The recommendations available in TMVA tutorial

and other research works [47, 55, 77, 78] provided a starting point for us to tune the

hyperparameters of each model. The final tuned version of each model was obtained

after several trial and errors.

To efficiently take a measure against overtraining, a k-fold cross-validation was

applied to tune each model’s hyperparameters. There is no formal rule to choose

the k value. A poorly chosen value for k may result in a high variance changing a

lot based on the data used to fit the model, or a high bias leading to an overestimate

of the skill of the model. In this study, k was fixed to 10, based on the experimental

results of the model skill estimate showing low bias and modest variance [69, 79, 80].

Moreover, the total area under the ROC curve (AUROC) was used as a well-

known representation of the separating performance for different models trained on

a particular data set. Note that the validation data set is named as the test data

sample in TMVA.

BDT classifier

The most important hyperparameters for the BDT training in this study are pre-

sented in Table 4.2.
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Hyperparameter Value Explanation
NVariables 9 (8*) Number of variables used to train the BDT

NTrees 850 Number of decision trees in the forest

MinNodeSize 5% Minimum percentage (lower bound) of training
samples required in a leaf node

MaxDepth 3 (4+) The maximum depth which a single decision
tree can grow

BoostType AdaBoost Boosting type for assigning weights to each tree
in the forest

nCuts -1 Number of grid points across the variable range used
to find an optimal cut for a new node

Table 4.2: Hyperparameters of the BDT model. The (*) sign points out the 8 feature
variables used in case of 2 cluster hits event class. The (+) sign points out that only
in case of event class with 5 cluster hits, the MaxDepth is set to 4.

The first parameter investigated is NTrees. Increasing the number of trees is

expected to yield a stabilization of the BDT output distribution with respect to sta-

tistical fluctuations and make the distribution more smooth. However, higher values

of NTrees can not improve BDT performance unless lead to a time-consuming train-

ing. Table 4.3 shows the BDT performance saturation with higher number of trees

for different event classes. Therefore, a shallow BDT with 850 trees was chosen

because of its well enough AUROC value for each event class.

No. of Cluster hits
in Event Class Int ROC (300) Int ROC (850) Int ROC (2000)

2 0.880 0.885 0.886
3 0.839 0.843 0.841
4 0.842 0.845 0.842
5 0.831 0.832 0.832

Table 4.3: The ROC curve integral with different number of trees for all event classes.
The number of trees were indicated in the brackets. A performance saturation with
increase in trees’ number can be seen.

Among the hyperparameters, the main two model’s parameters in preventing a

single decision tree from overtraining are MaxDepth and MinNodeSize. The theo-

retical maximum depth which a decision tree can grow is one less than the number

of training samples, but it leads to overtraining. Therefore, the tree’s depth can be

adjusted by the MaxDepth hyperparameter. Moreover, the decision tree nodes can

be expanded until all leaves contain less than the minimum percentages of train-
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ing samples which is determined by MinNodeSize. These two hyperparameters are

strongly related to one another. When regularizing the BDT, it was found that larger

values of MinNodeSize and lower values of MaxDepth (simpler tree) can reduce the

overtraining possibility. As the MaxDepth is the coarsest parameter, followed by

MinNodeSize, such that one would start by finding a reasonable range for this value

first. For the given data set both the choices MaxDepth values of 3 and 4 greatly

reduce overtraining without compromising performance. The MinNodeSize value of

5% performs best in dealing with remaining overtraining. In the BDT training, the

node splitting criterion is always a cut on a single variable selected by the model

(see section 2.6.1). The nCuts optimizes the cut values by scanning over the selected

variable range. In this study, the nCuts was set to −1. Therefore, the model auto-

matically finds the best step size across the feature variable range to split a node

into two new nodes.

To check overtraining, the TMVA output provides a signal efficiency comparison

for different specific background efficiencies from the training and test data samples

(see Table 4.4). It turns out that there is a good agreement between the signal ef-

ficiency from the test and training samples. The maximum absolute difference was

obtained in the case of event class with 5 cluster hits at 1% background efficiency.

Also, it is observed that the more background rejection, the more compatible signal

efficiencies from training and test samples. Therefore, the overtraining was avoided

by tuning the hyperparameters.

Signal Efficiency: from test sample (from training sample)

No. of Clusters
in Event Class @B = 0.01 @B = 0.1 @B = 0.3

2 0.087 (0.086) 0.538 (0.543) 0.951 (0.952)
3 0.086 (0.093) 0.475 (0.482) 0.828 (0.836)
4 0.104 (0.107) 0.527 (0.538) 0.835 (0.838)
5 0.168 (0.180) 0.589 (0.600) 0.812 (0.817)

Table 4.4: The comparison of signal efficiency obtained from test sample and training
sample at different background efficiency @B.

Another useful test which clarifies how much training a model is far away from

overtraining is Kolmogorov-Smirnov test [81, 82]. In TMVA, the Kolmogorov-Smirnov
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test is applied between the training and the test output probability distribution for

signal and background separately. In case the two distributions are compatible com-

ing from the same parent distribution, a random value between 0 and 1 should be

obtained. Otherwise it might be an indication of overtraining. The values very close

to 0 and 1 are also not too good because they indicate that the statistical fluctua-

tion is too small and again the distributions are not similar. Figure 4-6 shows the

Kolmogorov-Smirnov test plots for the final configuration of BDT classifier for each

event class.

Event class with 2 cluster hits Event class with 3 cluster hits

Event class with 4 cluster hits Event class with 5 cluster hits

Figure 4-6: The overtraining check using the Kolmogorov-Smirnov test for BDT
model.

As it can be seen, the training and test data samples of all event classes are

similar. Therefore, the model with the current configuration for each event class is

kept safe from overtraining.

MLP classifier

A short description of some important hyperparameters for the MLP model is shown

in Table 4.5.
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Hyperparameters Description

NCycles Number of training cycles (epochs)
HiddenLayers Specification of hidden layers architecture
NeuronType Neuron activation function type

EstimatorType Loss function type
LearningRate Learning rate parameter

TestRate Test for overtraining performed
at each 𝑖𝑡ℎ epoch

ConvergenceTests Monitoring the number of steps
required for convergence

Table 4.5: Hyperparameters of the MLP model.

In the first step of the hyperparameter tuning, one should start with a guess

about the number of training epochs. Since it is not generally known beforehand,

how many epochs are necessary to achieve a sufficiently good MLP training. In

TMVA, it is possible to activate a convergence test by setting ConvergenceTests

parameter to a value above 0. This value denotes the number of subsequent conver-

gence tests which shows no improvement of the estimator (i.e. loss function) as an

indicator of the completed training. The convergence tests and overtraining tests are

performed simultaneously. The frequency of these tests can be set by the parameter

TestRate. Figure 4-7 represents the estimator (loss function) versus the number of

epochs for each event class on the final tuned hyperparameters. It is shown that

more than the required number of epochs will not improve the configured neural

network, leading to overtraining.

The choice of hidden layer architecture is one of the most important hyperpa-

rameters in the training. Although these layers do not directly interact with the

external environment, they influence significantly the final output. In this stage,

the number of layers and the number of neurons presented in each layer were de-

termined. Several shallow and deeper parallel layers implementations were done for

each event class. It was shown that a shallow neural network can be sufficient to

achieve a reasonable performance of MLP model. However, the choice of number

of neurons is more challenging. Too few neurons in the hidden layers will result in

undertraining, so the signals are not detected adequately in a complicated data set.
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Event class with 2 cluster hits Event class with 3 cluster hits

Event class with 4 cluster hits Event class with 5 cluster hits

Figure 4-7: The MLP convergence test for each event class.

On the other hand, too many neurons in the hidden layers will lead to over-

training along with an increase in training the network. As a starting point, dif-

ferent number of neurons in each hidden layer were tested based on a few rules of

thumb [47, 80]. First, the number of hidden neurons should be between the size

of the input layer and the size of the output layer. Second, the number of neurons

should be 2/3 the size of the input layer, plus the size of the output layer. Third,

the number of neurons should be less than twice the size of the input layer.

The final neural network architecture for each event class was selected based on

the quality of performance of each model after several trial and errors. Figure 4-8

shows the MLP architecture of the event class with 4 cluster hits. In this study,

within each neuron, after calculating the linear transformation of the input data

using the internal weights, a nonlinear activation function was applied to obtain the

neuron’s output. The NeuronType parameter was set to the desired activation func-

tion. Two activation functions including sigmoid and Tanh were used and tested in

the hidden fully connected layers for different configurations. However, they both

have achieved close performance to each other.
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Figure 4-8: The MLP architecture for the event class with 4 cluster hits. The first
layer is the input layer, the last one is the output layer, and the three middle layers
are hidden layers. In case of this event class, the input layer consists of neurons that
hold the number of features used in the training, the number of neurons in hidden
layers is also equal to the number of features, and one neuron in the output layer
that holds the estimator output variable, showing the signal or background.

Therefore, the sigmoid function was selected as an activation function of hid-

den layers for further study. Moreover, the activation function used for the output

neuron is linear (see Figure 4-8). Another crucial hyperparameter is the learning

rate for network training. It defines the step size used to update the weights of

the network neurons (see eq. (2.15)). A large learning rate increases the network

weights’ fluctuations and, consequently, increases the loss score. A small learning

rate makes very insignificant updates and prevents convergence. When training a

neural network, a compromise between the convergence and obtaining a loss score

as low as possible should be reached (see Table 4.6). The loss function of the event

type MLP classifier, determining if the event is Compton or not, is computed as

mean squared error (see eq. (2.14)). Moreover, the Bayesian extension of MLP can

be used to avoid overtraining. While it leads to an increase in computation time.

This extension is enabled with the parameter UseRegulator in TMVA. By adding a

new term, the network loss function 𝐿(w) will be:

𝐿′(w) = 𝐿(w) + 𝛼|w|2, (4.1)
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where the additional term is proportional to the squared norm of the weight ensem-

ble w of the network and the parameter 𝛼 controls the level of model complexity

and TMVA automatically selects the best value of 𝛼. This extension penalizes large

weights to mitigate overtraining. Therefore, during the training phase, the network

learns to identify the Compton events by optimizing the loss function. The final con-

figuration of the tuned hyperparameters for training the MLP model is illustrated

in Table 4.6.

No. of Cluster hits
in Event Class

Hyperparameters for each MLP model
No. of Epochs Hidden Layers Learning Rate Test Rate Convergence

2 155 N, N, N+1 0.003

10 13 155 N, N, N 0.003
4 115 N, N, N 0.005
5 85 N, N+1 0.02

Table 4.6: The final configuration of the MLP model. The number 𝑁 indacates
the number of input variables (features) as neurons in each hidden layers. Also, the
repetition of 𝑁 shows the number of hidden layers used for each event class.

The overtraining test also showed that the models were significantly kept away

from harmful overtraining effects (see Table 4.7).

Signal Efficiency: from test sample (from training sample)

No. of Clusters
in Event Class @B = 0.01 @B = 0.1 @B = 0.3

2 0.065 (0.066) 0.469 (0.475) 0.915 (0.913)
3 0.054 (0.051) 0.423 (0.426) 0.825 (0.831)
4 0.081 (0.083) 0.509 (0.495) 0.826 (0.824)
5 0.116 (0.111) 0.549 (0.563) 0.828 (0.833)

Table 4.7: The comparison of signal efficiency obtained from test sample and training
sample in training the MLP model.

As it can be seen, the maximum absolute difference between the signal efficiency

from test and training samples happens for event classes with 4 and 5 cluster hits at

90% background rejection. Moreover, Kolmogorov-Smirnov test plots are another

evidence of avoiding overtraining for the final MLP configuration. Figure 4-9 indi-

cates the similarity between training and test data samples for signal/background

events in the training phase.
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Event class with 2 cluster hits Event class with 3 cluster hits

Event class with 4 cluster hits Event class with 5 cluster hits

Figure 4-9: The overtraining check using the Kolmogorov-Smirnov test for the MLP
model.

k-NN classifier

The final configuration of the trained k-NN model for each event class is illustrated

in Table 4.8. The number of 𝑘-nearest neighbours around a query event plays the

most important role in training the k-NN model. As a general rule, the smaller

values of 𝑘 neighbors are used, the more the model is subject to undertraining,

leading to statistical fluctuations in the probability density function. Conversely, as

the value of 𝑘 increases, the predictions become more and more stable and precise

(up to a certain 𝑘 value). For large 𝑘 values, the model is unable to generalize well

on observations it has not yet seen. Based on the performance quality (AUROC)

of each model, nkNN parameter (i.e., the number of 𝑘-nearest neighbours) was set

after several trial and errors.

As discussed in section 2.6.3, since the input variables (features) have different

units, an inverse weight of each feature was applied on the Euclidean metric to ob-

tain rescaled Euclidean distance (see eq. (2.18)).
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No. of Clusters
in Event Class

Hyperparameters
nkNN ScaleFrac UseKernel

2 80 0.4

True3 100
0.64 70

5 60

Table 4.8: The final configuration of the k-NN model for each event class. See the
text for more details.

The term ScaleFrac indicates the fraction of events used to compute the fea-

ture distribution width. For each event class, different event fractions were tested.

The results show that higher values than the selected fraction for each event class

can not improve the model’s performance. Moreover, TMVA provides the UseKer-

nel term (a polynomial kernel) for training the k-NN model to mitigate statistical

fluctuations in the training data set. Adding this weight function (eq. (4.2)) can

reduce the high variance of the k-NN response.

𝑊 (𝑥) =

⎧⎪⎨⎪⎩(1 − |𝑥|3)3 if |𝑥| < 1,

0 otherwise,
(4.2)

Therefore, the weighted signal (background) events and then the weighted prob-

ability for the test event of signal (background) can be obtained through

𝑊𝑆(𝐵) =

𝑘𝑆(𝐵)∑︁
𝑖=1

𝑊

(︂
𝑅𝑖

𝑅𝑘

)︂
, (4.3)

𝑃𝑆(𝐵) =
𝑊𝑆(𝐵)

𝑊𝑆 + 𝑊𝐵

, (4.4)

where 𝑘𝑆(𝐵) is the number of signal (background) events in the neighbourhood. 𝑅𝑖 is

the distance between the test event and the 𝑖𝑡ℎ neighbour and 𝑅𝑘 is the rescaled Eu-

clidean distance obtained from eq. (2.18) for all 𝑘-nearest neighbours. The eq. (2.17)

will be then converted to eq. (4.4). To control model overtraining, we can check the

TMVA output in which the signal efficiency of the training and test data samples at

different background efficiencies are compared (see Table 4.9). It is shown that there

is a good agreement between the signal efficiency from the test and training samples.
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The maximum absolute difference of 0.009 was obtained in the case of event class

with 5 cluster hits at 1% background efficiency. Therefore, the overtraining effects

were greatly mitigated by tuning the hyperparameters.

Signal Efficiency: from test sample (from training sample)

No. of Clusters
in Event Class @B = 0.01 @B = 0.1 @B = 0.3

2 0.058 (0.060) 0.455 (0.454) 0.876 (0.875)
3 0.065 (0.069) 0.409 (0.416) 0.766 (0.773)
4 0.076 (0.071) 0.489 (0.481) 0.811 (0.811)
5 0.127 (0.118) 0.515 (0.521) 0.783 (0.785)

Table 4.9: The comparison of signal efficiency obtained from test sample and training
sample at different background efficiency @B.

Figure 4-10 shows Kolmogorov-Smirnov test plots indicating a good similar-

ity among signal (background) events from training and test samples for all event

classes, and demonstrating overtraining prevention.

(a) Event class with 2 cluster hits (b) Event class with 3 cluster hits

(c) Event class with 4 cluster hits (d) Event class with 5 cluster hits

Figure 4-10: The overtraining check using the Kolmogorov-Smirnov test for k-NN
model.
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4.2.5 Classifiers’ Performances Evaluation

As mentioned earlier in section 4.2.4, AUROC curve was used as each model’s per-

formance evaluation when comparing their separation power on the training data

sample. In fact, ROC curve shows how much background is rejected at each pos-

sible point of signal efficiency. Rather than making a single cut on each model’s

ROC curve, we used the full spectrum of the models’ output score in this study.

Therefore, the AUROC calculation provides a better representation of the separat-

ing performance of each trained model. This is the primary reason why we decided

to use AUROC as a useful benchmark for evaluating the models’ performance in

this investigation, but other performance benchmarks are also possible [83–85]. Fig-

ure 4-11 shows the ROC curves of the presented models for each event class.

Figure 4-11: The comparison of ROC curves among all trained models for each event
class. The higher (more convex) the curve, the better the model performs. Top row
indicates event class with 2 cluster hits (left) and event class with 3 cluster hits
(right). Bottom row represents event class with 4 cluster hits (left) and event class
with 5 cluster hits (right).

As shown in the plot, TMVA ranks the models in order of their performance.

In most cases, it seems that BDT model outperforms the other two, although both
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BDT and MLP models represent almost the same separation power of the training.

The AUROC values shown in Table 4.10 allows for the best model selection.

No. of Clusters
in Event Class

The ROC Curve Integral

BDT MLP k-NN

2 0.885 0.863 0.851
3 0.843 0.832 0.811
4 0.845 0.837 0.826
5 0.832 0.842 0.815

Table 4.10: The AUROC values for different trained classifiers.

As can be seen, the large values of AUROC confirm that the training was com-

pleted successfully with the chosen hyperparameters for each model during the train-

ing phase. However, the BDT model achieves slightly higher separating performance

on the data set except in the case of the event class with 5 cluster hits. Moreover,

in the case of the event class with 2 cluster hits in which we are not able to benefit

from the angular distribution term, the BDT classifier has shown stronger separat-

ing power (around 2% higher than MLP model). Therefore, it was selected as the

best candidate in the following study.

4.2.6 BDT Classifiers Training

The influence of features’ selection on the best classifier’s performance was studied.

We trained the model with only a few number of features mentioned in section 4.2.2,

then compared its performance with the model’s performance when trained with all

available features. The ROC curves of the trained BDT models with two different

number of feature variables (see section 3.4.1) on the first half of data sample are

shown in Figure 4-12.

Intuitively, it can be expected that using the complete number of features in BDT

training leads to higher separating power compared to when training the model with

only a few features. However, it is also shown that the difference between AUROC

values obtained from training BDT model with two different numbers of features

decreases for event classes with higher number of cluster hits.
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Figure 4-12: The comparison of ROC curves of the trained BDT models using
different numbers of features for each event class. Top row indicates event class
with 2 cluster hits (left) and event class with 3 cluster hits (right). Bottom row
represents event class with 4 cluster hits (left) and event class with 5 cluster hits
(right).

Table 4.11 provides a closer insight into the BDT models’ power in signal/back-

ground classification.

The ROC Curve Integral

No. of Clusters
in Event Class 9 (8+) Features 3 (2+) Features

2 0.885 0.797
3 0.843 0.790
4 0.845 0.800
5 0.832 0.803

Table 4.11: The AUROC values of the BDT models trained using two different
number of features. The (+) sign points out the number of features in the case of
event class with 2 cluster hits which are 8 and 2 respectively. 9 (8+) features are all
available variables. 3 (2+) features are the deposited energy of the selected cluster
hit in the scatterer and the absorber, and the angular distribution term only in the
case of the event classes with higher than 2 cluster hits.
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From Figure 4-12 and Table 4.11, it is deduced that BDT training with all fea-

tures would be potentially a merit to reject most background events, especially in

the case of the event classes with lower number of cluster hits. However, in the

analysis phase, the performances of both trained BDT models using two different

feature lists were assessed. As discussed in section 4.2.2, we want to know how well

this model trained with only a few number of features, can discriminate quantita-

tively the Compton events from background events in the analysis phase and how

it can affect the determination of the distal falloff of the Bragg peak in the image

reconstruction stage.

4.3 Analysis Phase and Evaluation

This section evaluates the performance of the trained BDT model with two lists

of features mentioned in Table 4.11 according to the evaluation metrics defined in

the next section. Finally, the LM-MLEM reconstructed images from the model’s

predictions are presented and compared.

As mentioned earlier in section 3.4.1, the first half of all statistics simulated by

Geant4 went into the training phase. So, the second half of statistics is used in

the analysis phase as the test data set in which the BDT classifier’s capability in

signal/background classification on unseen data set will be assessed. The records

available in the analysis phase contain 260663 events as the test data. The number

of Compton and background events in the test data set before event selection by

the trained BDT is 14297 and 246366, respectively. Moreover, the total number of

Compton events in the Geant4 simulated data is 91787.

The significant difference between the number Compton events in the test data

set and the simulated data refers to the fact that we identified Compton events up

to 5 cluster hits for the analysis phase however, the contribution of the Compton

events with higher number of cluster hits (up to 14 cluster hits) are available in the

simulated data [11].

Also when preprocessing the data for the analysis phase, most number of Comp-

ton events which did not meet the position and energy uncertainties (see sec-
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tion 3.4.1) went to the background category, however, they were recognized as the

Compton events in the simulated data.

4.3.1 Evaluation Metrics

The metrics used to evaluate the predictions for the SiFi-CC are the recall, efficiency,

and the purity. The analysis and improvements carried out throughout the course

of this thesis focused on improving these metrics. Before going through the metrics’

definitions, it should be mentioned that the Compton events predicted by the model

consist of correctly classified events (Compton events) and not correctly classified

events (background).

Recall

Recall measures the ratio between the number of correctly classified Compton events

and the number of Compton events in the analysis phase before event selection by

the model [67].

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑜. 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝐶𝑜𝑚𝑝𝑡𝑜𝑛 𝑒𝑣𝑒𝑛𝑡𝑠

𝑁𝑜. 𝐶𝑜𝑚𝑝𝑡𝑜𝑛 𝑒𝑣𝑒𝑛𝑡𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑒𝑣𝑒𝑛𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛
(4.5)

Efficiency

Efficiency measures the ratio of the number of correctly classified Compton events

to the total number of Compton events within the Geant4 simulated data.

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑁𝑜. 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝐶𝑜𝑚𝑝𝑡𝑜𝑛 𝑒𝑣𝑒𝑛𝑡𝑠

𝑁𝑜. 𝐶𝑜𝑚𝑝𝑡𝑜𝑛 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑑𝑎𝑡𝑎
(4.6)

Purity

Purity measures the ratio between the number of correctly classified Compton events

and the total number of predicted Compton events by the model.

𝑃𝑢𝑟𝑖𝑡𝑦 =
𝑁𝑜. 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝐶𝑜𝑚𝑝𝑡𝑜𝑛 𝑒𝑣𝑒𝑛𝑡𝑠

𝑁𝑜. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑜𝑚𝑝𝑡𝑜𝑛 𝑒𝑣𝑒𝑛𝑡𝑠 𝑏𝑦 𝑚𝑜𝑑𝑒𝑙
(4.7)
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4.3.2 Cut Optimization

To discriminate Compton events from background events, we preferred to implement

the Genetic Algorithm fitter [47] on the model output as the cut optimizer for this

aim rather than applying a cut on a certain point of the ROC curve obtained from

the training phase for each event class.

The reason refers to the preliminary results showing that it finds better optimal

cuts to achieve higher recall, efficiency and purity. In the sense of signal/background

discrimination, several configurations of this fitter were tested and the final param-

eters list is shown in Table 4.12.

Parameters Value Description

PopSize 100
The number of population

at each generation of
the Genetic Algorithm

Steps 30 The number of steps for
convergence

Cycles 3 Independent cycles
for evaluating the fitness

Table 4.12: The final configuration of the Genetic Algorithm.

4.3.3 Energy Regression

From the simulation, we know that the total deposited energy called energy sum in

the SiFi-CC detector does not represent the primary energy of incident PG in most

cases. This is due to the fact that photons might interact only a few times and leave

the SiFi-CC detector. The lack of information about the total deposited energy

may result in a worse reconstructed distal falloff position distribution. Therefore,

the energy sum correction is challenging especially when reconstructing PG distal

falloff positions more accurately.

Figure 4-13 shows this deficiency in case of one category of background events

(bad Compton events i.e. those events which do not meet either position or energy

uncertainties mentioned in section 4.2.1).
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Figure 4-13: The relationship between the primary energy of PG and energy sum
of background (bad Compton events) for each event class from the first half of data
sample. Top row indicates event class with 2 cluster hits (left) and event class with
3 cluster hits (right). Bottom row represents event class with 4 cluster hits (left)
and event class with 5 cluster hits (right).

As can be seen, the deposited energy of bad Compton events were not collected

properly because such events escape from the SiFi-CC detector after a few interac-

tions in most cases.

Although we can see that as the number of cluster hits increases, the total de-

posited energy has less deviation from the PG primary energy. Still, there is a broad

energy deviation even in event class with 5 cluster hits leading to a worse recon-

structed distal falloff position distribution at the end.

To solve this problem, we decided to perform an energy regression to recover the

total deposited energy called recovered energy sum instead of energy sum for each

event detected in SiFi-CC. In such a way, we introduced the appropriate weights for

each energy bin in order to correct energy sum of each event.

We know that the total deposited energy of Compton events can greatly reflect

the primary energy of PG. Figure 4-14 represents a linear relationship between the

deposited energy of Compton events and their primary energy of PG for each event
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class. Therefore, the primary energies of the Compton events were used as the target

variable in the energy regression to produce weights as more precisely as possible.

Figure 4-14: The relationship between the PG primary energy and energy sum of
Compton events for each event class from the first half of data sample. Top row
indicates event class with 2 cluster hits (left) and event class with 3 cluster hits
(right). Bottom row represents event class with 4 cluster hits (left) and event class
with 5 cluster hits (right).

We implemented a gradient boosted decision tree (BDTG) model only on the

Compton events for each event class from the first half of data sample. When

working with BDTG, it is also needed to tune some important parameters avoiding

overtraining. Given small values of MaxDepth (3-4), BDTG is much less prone to

overtraining compared to simple decision trees.

Moreover, its power can be increased by reducing the learning rate using the

Shrinkage parameter. It is recommended that a small shrinkage (0.1-0.3) can im-

prove the accuracy of the prediction but higher number of trees is required [47].

After several trial and errors, the final configuration of BDTG model is listed in

Table 4.13.
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No. of Clusters
in Event Class NTrees MinNode

Size (%) MaxDepth Shrinkage nCuts

2 8000 0.1

4 0.1 403 10000 0.2
4 8000 0.2
5 8000 0.1

Table 4.13: Final parameter configuration of the BDTG model.

Applying the produced weights from the Compton events to the energy sum

of bad Compton events, the linearity between the PG primary energy and recovered

energy sum is more visible as shown in Figure 4-15.

Figure 4-15: The relationship between the primary energy of PG and recovered
energy sum of background (bad Compton events) for each event class from the first
half of data sample. Top row indicates event class with 2 cluster hits (left) and event
class with 3 cluster hits (right). Bottom row represents event class with 4 cluster
hits (left) and event class with 5 cluster hits (right).

As can be seen, there is a linear relationship between the PG primary energy and

the recovered energy sum until the total deposited energy of 7.5 MeV (the worst in

the case of 2 cluster hits). As the higher number of cluster hits, the more accurate
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the recovered energy sum. Moreover, it is shown that the model greatly predicts

one of the most prominent energies (4.44 MeV) which is very useful in distal falloff

position reconstruction [24].

Therefore, we decided to benefit from the energy regression in the analysis phase.

In such a way, the energy sum of each Compton event predicted by the model were

corrected using the produced weights from the energy regression and used as the

recovered energy sum in the image reconstruction stage.

4.3.4 Fake Events and Duplicates Exclusion

As mentioned in section 3.4.1, all possible cluster hit pairs (containing also fake

events) in the case of non-Compton, Compton back-scattering events and bad Comp-

ton events and duplicates in the case of Compton events were included in both the

training and analysis phases. It was done to increase the statistics and assess the

ability of models in distinguishing between Compton events and background events

in more complicated situations. However, we know that only one of combination of

cluster hits in the case of background events such as non-Compton events is repre-

senting the real background event, but the others such as duplicates in the case of

Compton events are the fake events. Therefore, we should remove such events when

presenting the analysis results.

In this study, we dealt with only those event classes whose 1 cluster hit was in

the scatterer and others were in the absorber. After event selection by the model,

each background event which has the same cluster hit position in the scatterer as

the Compton event’s was recognized as duplicates and removed from the analysis

result. Moreover, as the BDT model provided the classification probability for each

event, after event selection by the model in the analysis phase, the probability of

background events with the same cluster hit position in the scatterer were com-

pared. Then, the cluster hit pair which has higher probability was chosen as the

real background event and others were recognized as fake events and removed from

the analysis result.
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4.3.5 Quantitative Results

The robustness of BDT models in signal/background separation on the unseen data

set with two different feature lists are shown in Figure 4-16.

Figure 4-16: The event topology comparison of the predicted Compton events by two
BDT models (the fake events were excluded). The red lines represent the number of
Compton events when using only a few features (3 variables). The green lines show
the number of Compton events in case of using all possible features (9 variables)
in the analysis. The letters (S) and (B) refer to the correctly classified Compton
events (signal) and the not correctly classified events (background) predicted by two
models, respectively.

As expected, the number of background events decreases when including all pos-

sible features (9 variables) in the analysis. The most significant decrease happens

in the case of event class with 2 cluster hits (by around 50%). In addition, it can

be seen that a slight decrease in the number of correctly classified Compton events

compared to the case when using only a few features (3 variables).

As the comparison between two BDT models’ performance, the Table 4.14 shows

the obtained recall, efficiency and purity along with the number of predicted Comp-

ton events after applying the optimal cuts in both study cases.
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Evaluation Terms 3 (2+) Features 9 (8+) Features

Total Number of
Predicted Compton Events 63827 40291

Number of correctly
classified Compton Events 11520 10448

Background Events 52307 29843
Recall 81% 73%

Efficiency 12.6% 11.4%
Purity 18.0% 25.9%

Table 4.14: Evaluation results of the two BDT models. The (+) sign refers to the
number of features in the case of event class with 2 cluster hits which are 2 and 8
respectively.

The higher the recall, efficiency and purity, the better the model performs in

signal/background separation. The excellent recall values of 81% and 73% were

obtained in both cases of the training model with 3 features and 9 features, respec-

tively.

In the case of using all possible features, the efficiency decreases by 1% while the

purity increases by around 8% which is a magnificent improvement in signal/back-

ground discrimination. This higher value of purity in the case of training with all

possible features indicates a relative increase of 44% in the ratio of correctly clas-

sified Compton events, which has an important effect in the reconstruction stage.

Therefore, training the model using all possible features can lead to a better perfor-

mance.

The difference between recovered energy sum of predicted Compton events by

using two different feature lists and the primary energy of PGs from Geant4 sim-

ulation is illustrated in Figure 4-17. It is found that the energy difference in each

model’s predictions is uniform and centered and the energy regression model worked

well even for background events such as non-Compton events. Therefore, the recov-

ered energy sum of predicted Compton events were recovered greatly; reflecting the

prominent PG energy peaks in both models’ predictions. In addition, the contribu-

tion of events whose the recovered energy sum were not predicted properly (after 7.5

MeV, see section 4.3.3) is low in image reconstruction stage.
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Figure 4-17: The energy difference between the recovered energy sum of predicted
Compton events by two BDT models and the PGs from Geant4 simulation (the fake
events were excluded). The green curve shows the energy difference between the
PGs and predicted Compton events in case of using all possible features (9 variables)
in the analysis. The red curve represents the energy difference between PGs and
predicted Compton events when training with only a few features (3 variables). In
both cases, the energy difference is greatly uniform, however in the case of training
with 9 features, there is less tail in the energy difference and it is more centered. This
refers to the fact that more number of background events were removed compared
to training with only 3 features.

4.3.6 Image Reconstruction Assessment

The distal falloff positions of the models’ predictions were reconstructed using the

LM-MLEM algorithm, and then refined with Gaussian smoothing filter [86]. The

image for the Compton events obtained from the Geant4 simulation were also re-

constructed for comparison.

A convergence criterion called pixel-wise was applied to LM-MLEM algorithm.

The pixel-wise was selected due to dealing with 2D profiles of the reconstructed

images in the course of this thesis. However, it is also applicable to LM-MLEM re-

construction for 3D profiles of PG deposited dose positions. The steps of pixel-wise

convergence criterion are as follows.
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Figure 4-18: The pixel-wise convergence rule for the LM-MLEM algorithm. Right:
2D profile of the reconstructed emission position of PGs after applying the pixel-wise
convergence rule. The white null circle displays the expected distal falloff location.
Left: The relative error of pixels content after 40 iterations of LM-MLEM. It is
assumed that the relative error is 100% for the first iteration.

• 20 pixels are chosen around the expected distal falloff location.

• Each pixel from iteration (n) is compared with the same pixel in iteration

(n+1).

• The maximum difference between 20 pixels content is found.

• The relative error of pixel content between iteration (n+1) and (n) is computed

as

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 =
|𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑖𝑥𝑒𝑙𝑠|

|𝑇ℎ𝑒 𝑝𝑖𝑥𝑒𝑙′𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑛 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝑛 + 1)|
. (4.8)

• The iteration stops when the relative error is less than 1%.

Figure 4-18 shows the 2D profiles (𝑥𝑦-plane) of the reconstructed emission po-

sition of PGs in the case of using a few features (3 variables) after applying the

pixel-wise convergence criterion. The LM-MLEM stopped after 40 iterations and

then the Gaussian smoothing filter with kernel of 3 mm was applied for further

study.

To see how successful applying the energy regression to the energy sum of the

predictions is, one would compare the 2D profiles of the predicted Compton events

reconstruction when using energy sum and recovered energy sum of each predicted

Compton event (see Figure 4-19).
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Figure 4-19: The comparison of predicted Compton events reconstruction profiles
using energy sum (left) and recovered energy sum (right) of the predictions. The
results of training the BDT model with a few features (3 variables) were used. The
2D profiles were obtained after sufficient iterations and then refined by the Gaussian
smoothing with kernel of 3 mm.

It is found that although the predicted Compton events image reconstruction

shows a clear peak at the Bragg peak position when using energy sum, there is

a quite broad activity distribution and even notable activity after the Bragg peak

position resulting in inconsistent falloff. Therefore, benefiting from recovered energy

sum, it is possible to significantly improve the PG reconstruction and greatly reduce

the false activity after the Bragg peak.

Nevertheless, the LM-MLEM reconstruction of the result obtained from training

BDT model with all possible features (9 variables) represents even more clear falloff

distribution with less false activity after the Bragg peak (see Figure 4-20).

Figure 4-20: The reconstructed position distribution of predicted Compton events
obtained from training the BDT using all possible features (9 variables) after 34
LM-MLEM iterations and applying the Gaussian smoothing with kernel of 3 mm.
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To see the distal falloff behaviors of the predicted Compton events, the 1D depth-

dose profiles of the reconstructed deposited dose for these two BDT models, correctly

classified Compton events from the trained BDT model with 9 features, and the

Compton events from Geant4 simulation are illustrated in Figure 4-21.

Figure 4-21: The depth-dose profile of predicted Compton reconstructed position
along the beam axis (𝑥-axis) for the models, the correctly classified Compton events,
and the Compton events from Geant4 simulation. The blue curve shows the recon-
structed image of 180000 Compton events from the simulation after 43 iterations.
The red curve displays the reconstructed image result from training BDT with a
few features (3 variables) after 40 iterations. The violet curve shows the results of
training BDT with all possible features after 34 iterations. The green curve shows
the reconstructed image of 10448 correctly classified Compton events obtained from
training with all feasible features after 38 iterations. All depth-dose profiles were
normalized by their maximum intensity value. The Gaussian smoothing with kernel
of 3 mm was applied to all reconstructed profiles.

When comparing the 1D depth profiles of the reconstructed predicted Comp-

ton events obtained from the BDT models with the Compton events from Geant4

simulation, it is found that there is a very good agreement in the reconstructed

falloff positions between them. Their profiles show a steep falloff at the end of the

Bragg peak but with a tail in the case of the trained models’ outputs. This lack

of accuracy is due to not properly predicted Compton events whose energy sum

were not precisely corrected. This tail is reduced in the high purity BDT model.

When reconstructing only the correctly classified Compton events from the BDT
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predictions, the produced image is more comparable to the image of the Compton

events from Geant4 simulation. They show a very similar falloff behavior, and there

is almost no activity after the Bragg peak position (see Figure 4-21). Therefore,

as the purity increases, the reconstructed image of the model is more similar to

the Compton events’ reconstructed profile from the simulation, resulting in a bet-

ter determination of the Bragg peak falloff position. Moreover, it can be seen that

the 1D depth profiles of models’ predictions are not overlapped with that of the

Compton events from the Geant4 simulation for negative 𝑥 values. This is due to

the detector acceptance which is smaller for PG emitted far away from the detector

centre (see section 4.1.3) in the case of the predicted Compton events however, the

simulated Compton events are direct information from Geant4 and not affected by

the detector response.

Distal Edge Determination Precision

For accurate determination of the PG distal edge, it is needed to obtain sufficient

number of reconstructed events which are real coincidence events for a single beam

spot in clinical uses. According to our recent article, 5000 events is the number of

real coincidence events within SiFi-CC detector including Compton events [11]. To

make an estimate of the statistical precision of the falloff position determination,

several random subsets from the BDT model output should be selected. The number

of events in the random subset is obtained from the multiplication of the ratio of the

total number of events after and before event selection in the analysis phase (e.g.,

40291/260663, in the case of training with all possible 9 features) and the number

of real coincidence events obtained for a single beam spot.

The BDT model with higher purity was used to determine the Bragg peak distal

edge. We selected 30 random subsets of the model output. The number of each

subset is 773 events based on the results mentioned above. The procedure of distal

edge determination for each random subset is as follows.

• The 1D depth profile of PG reconstructed position along the beam axis after

sufficient iterations of LM-MLEM (i.e. reaching the convergence criterion) and

applying Gaussian smoothing (kernel of 5 mm) was obtained.
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Note: there is no sophisticated study on which kernel is the best. Different

kernel values were tested and that one which visibly led to less fluctuation in

the depth profile was selected as the best.

• In the depth profile, the first bin with the maximum deposited dose (intensity)

value was found.

• Next, moving from that bin towards a larger depth, the bin was found where

the intensity becomes minimum for the first time after the threshold fraction

of half of the maximum intensity [87] (see Figure 4-22).

• A sigmoidal curve fitting method was applied to each PG reconstructed dis-

tribution [88].

𝐼 =
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

1 + exp (𝑋−𝑋0)
𝑑𝑋

+ 𝐼𝑚𝑖𝑛, (4.9)

where 𝑋0 is the position of the half value between the maximum and minimum, 𝑑𝑋

is the width between these data points, 𝐼𝑚𝑎𝑥 is the maximum intensity value and

𝐼𝑚𝑖𝑛 is the minimum intensity value.

Figure 4-22: 1D depth profile of PG falloff behavior filtered by Gaussian smoothing
with kernel of 5 mm and its sigmoidal curve fitting for a random subset of the data.
The fitting result for this random subset shows that mean value 𝑋0 and the outlier
𝑑𝑋 were obtained 2.6 mm and 2.1 mm, respectively.

76



Chapter 4. Results 4.3. Analysis Phase and Evaluation

Figure 4-22 shows the results of the sigmoidal curve fitting with the PG distribu-

tion for one random subset. It is expected that the location of the distal dose edge

can be determined by the position of the mean value 𝑋0. Moreover, 𝑑𝑋 shows the

interval of the possible distal edge position for each subset. Finally, a distribution of

the frequency of the mean values 𝑋0 obtained from the fitting curve to each subset,

was fitted by the Gaussian function (see Figure 4-23).

Figure 4-23: The distal dose edge position for a 180 MeV proton beam obtained
from 30 random subsets of the BDT model output. The fitting result shows a mean
value of 0.41 mm and a standard deviation value of 1.48 mm.

The result shows that PG distal edge position for a 180 MeV proton beam in a

PMMA phantom tends to positive values and is located near the normalized Bragg

peak position at (𝑥 = 0) with a good position resolution of 3.5 mm FWHM.

77





"If you optimize everything, you will

always be unhappy."

Donald Knuth

Chapter 5

Discussion and Conclusions

Ion radiation therapy is an attractive alternative for cancer tumor treatment [5]. It

employs the physical characteristics of the Bragg peak for better control over the

deposited dose location [4]. However, due to the uncertainty in Bragg peak po-

sition, some safety margins must be used during the hadron therapy, resulting in

some health risks [20]. Consequently, an online monitoring tool is needed to de-

termine the Bragg peak position precisely. The SiFi-CC is a novel design for an

online monitoring of dose distribution in proton therapy based on detection of PG

radiation emitted from a patient during irradiation. Emitted PGs interact with the

modules of the SiFi-CC, and the source position is then computed by reconstructing

the Compton events [11, 12].

The goal of my thesis was to perform an event pattern recognition and reconstruc-

tion methods in Compton camera imaging for proton therapy monitoring. For this

purpose, firstly, I developed a machine learning framework to identify the Compton

events among various processes caused by interactions of PGs with SiFi-CC modules.

The data set was simulated by Geant4 making it possible to study the response of a

SiFi-CC detector. Secondly, I developed an image reconstruction framework based

on LM-MLEM algorithm to reconstruct the source position of the predicted Comp-

ton events after event selection by the machine learning model, determining the

Bragg peak distal dose edge position distribution.

In the first part, the SiFi-CC machine learning classifier is expected to take as

input the event data that occurred in the detector, and outputs the event type (sig-
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nal/background) and their corresponding positions and energies of the interactions

inside the detector. The correlations between the positions and energies of recorded

events besides the angular distribution term as features were studied for each event

class. It turned out that including all possible features in the training may poten-

tially lead to a better signal/background separation especially in the case of the

event class with 2 cluster hits whose each cluster is in one of the detector modules.

The simple train/test split procedure is appropriate when there is a sufficiently

large data set. However, in our study, due to relatively low number of events, espe-

cially in the case of event classes with 4 and 5 cluster hits, we decided to implement

k-fold cross-validation method to make up this deficiency and control the overtrain-

ing avoidance as much as possible. The BDT, MLP and k-NN classifiers were trained

through k-fold cross-validation and then their performances were assessed using the

ROC curves for each event class. Among all classifiers, BDT was chosen for further

analysis because of its robustness in signal/background separation. Besides training

the BDT classifier with all possible features, the BDT classifier was also trained with

a few features (excluding all randomly distributed cluster hits’ positions) to make

the model less complex and reduce the systematic error. Finally, the performance

results of these two studies were compared.

In the second part, a preliminary study of geometric configuration of the SiFi-

CC was performed using the LM-MLEM algorithm before simulating the detector

response which is necessary for the machine learning stage as input. The next ap-

plication of LM-MLEM was done through the reconstruction of the deposited dose

of the BDT model’s predictions after applying the optimal cuts to locate the distal

dose edge. In this study, I used a pixel-wise convergence criterion to stop the LM-

MLEM iterations of the image reconstruction. However, other convergence rules

such as normalized root mean square deviation (NRMSD) and chi-square (𝜒2) could

be investigated and compared.

Moreover, the final reconstructed images were smeared by Gaussian smoothing

to reduce the statistical fluctuations especially around the falloff region; leading

to locating the distal edge more precisely. The kernel of Gaussian smoothing was

chosen visually by comparing the depth-dose profiles with its different values. A
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sophisticated study is needed to select the best value of Gaussian smoothing kernel

which is beyond this study.

A 10-fold cross-validation of BDT classifier with all possible features achieved

a recall of 73%, an efficiency of 11.4% and a purity of 26%. These results repre-

sent a notable improvement compared to the trained BDT model with a few fea-

tures; reaching a relative increase of 44% in the ratio of correctly classified Compton

events. A well enough agreement between the reconstructed deposited energy of the

predicted Compton events and the simulated events from Geant4 simulation was

obtained. However, in the case of models’ predictions, there is still activity tail after

the Bragg peak. This is due to less accuracy in total deposited dose prediction.

Finally, a distal dose edge determination study was performed. As a result, a

good position resolution of 3.5 mm FWHM was achieved. It is anticipated that

higher purity of the model’s predictions may lead to a more comparable PG recon-

structed position with that of the Compton events from the simulation, resulting in

a better position resolution in distal edge determination. Therefore, finding more

suitable features based on the physical basics for the model training and more so-

phisticated machine learning studies are needed to make this aim come true.

The results of this study showed that the SiFi-CC prototype is a promising ap-

proach to determine the distal edge position of the Bragg peak. Moreover, it could

help assess the performance and optimize the feasible geometric configuration of

SiFi-CC detector.
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