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Streszczenie

Nieliniowe równania Schrödingera od strony matematycznej zwykle badane
są za pomocą metod wariacyjnych, które zdają się zawodzić w wyższych wymi-
arach. Niniejsza rozprawa próbuje obejść ten problem poprzez skupienie się
na rozwiązaniach sferycznie symetrycznych, co pozwala na zastosowanie klasy-
cznych metod teorii równań różniczkowych zwyczajnych i układów dynam-
icznych. Zaprezentowane wyniki dotyczą między innymi istnienia i jednoz-
naczności stanów stacjonarnych, ich częstotliwości oraz stabilności. Opisana
jest także dynamika w przybliżeniu układu rezonansowego. Główny nacisk
został położony na równanie Schrödingera-Newtona-Hooke’a, które przedstaw-
ione jest jako nierelatywistyczna granica niewielkich zaburzeń czasoprzestrzeni
anty-de Sittera.

Abstract

From the mathematical side, nonlinear Schrödinger equations are usually in-
vestigated via variational methods, that cease to work in higher dimensions.
This thesis tries to overcome this problem by focusing on spherically symmetric
solutions. Then, one can use classical methods coming from the fields of ordi-
nary differential equations and dynamical systems. The results presented here
include existence and uniqueness of the stationary solutions, their frequency,
and stability. The dynamical properties of the resonant approximation are also
explored. The main focus is given to the Schrödinger-Newton-Hooke equations
that is shown to be a nonrelativistic limit of perturbations of the anti-de Sitter
spacetime.
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Chapter 1

Introduction

The main scope of this dissertation is the equation

i∂tψ = −∆ψ + |x|2ψ −
(∫

Rd

|ψ(t, y)|2

|x− y|d−2
dy

)
ψ. (1.1)

It belongs to the wide class of nonlinear Schrödinger equations (in short NLS)
and its main features are nonlocality of the nonlinearity (due to the integral, the
value of the last term depends not only on the value of ψ in the given point, but
also on its values in other points) and the presence of the trapping potential,
specifically harmonic potential. Equations with such nonlinearity can be found
in the literature under different names, such as Schrödinger-Newton [6, 29, 59,
60, 88], Schrödinger-Poisson [66, 80, 94], Hartree [22, 23, 25, 42, 50, 65, 119],
or Choquard [28, 89, 116]. These names are usually used regardless of the
fact whether the external potential term is present or not. In the following,
I will call Eq. (1.1) the Schrödinger-Newton-Hooke equation (or SNH), where
"Hooke" emphasizes the presence of the harmonic term (a similar joke name
can be already found in the literature, e.g. [56]). The same name will also refer
to the time-independent version of this equation (mostly in Chapter 4), but
I will do my best to keep it clear from the context. On the rare occasions of
using the term Schrödinger-Newton (SN), I will mean the equation

i∂tψ = −∆ψ −
(∫

Rd

|ψ(t, y)|2

|x− y|d−2
dy

)
ψ (1.2)

or its time-independent version.

Even though the main focus of this thesis is SNH equation, on many
occasions I would like to show how the reasonings presented here may be
applied to other NLS equations (justifying the rather general title of the
thesis). In such cases I will usually be considering the Gross-Pitaevskii
equation with harmonic trapping (which will be denoted by GP from
now on):

i∂tψ = −∆ψ + |x|2ψ − |ψ|2ψ. (1.3)

11



12 CHAPTER 1. INTRODUCTION

Even though at first sight this system looks simpler than SNH equation
(it is local, for starters), interestingly enough some of the presented
results are actually harder to obtain in the case of GP equation.

Some minor focus will be also given to other NLS equations so it is
convenient to introduce them in general as

i∂tψ = −∆ψ + V (|x|)ψ − F (ψ). (1.4)

Here V denotes the external potential, while F is the nonlinearity. I
will consider almost exclusively cases where V is a trapping potential
(i.e. lim|x|→∞ V (x) = ∞) and F is either the nonlinearity characteristic
of Schrödinger-Newton systems or is given by F (ψ) = |ψ|p−1ψ for some
p > 1 (GP equation is an example of such). To differentiate between
parts of the thesis regarding SNH and other systems, for the latter I
decided to use such narrower paragraphs as this one.

The Schrödinger-Newton equations in general describe bosonic systems
with the attractive interaction between the constituting particles, usually of
an electric or gravitational nature. As such, they represent various quantum
mechanical systems, but also appear at the interface of quantum theory and
gravity. Probably the earliest occurrence of such systems can be dated to the
year 1937 and the works of Fröhlich on the interplay between deformations in a
crystal structure caused by a movement of a charged particle and the behaviour
of this particle [48, 49]. This idea and the connected notion of a polaron were
later developed by many other researchers, c.f. [74] (especially pages 1–32). The
Schrödinger-Newton equations also have found use in the description of such
systems as one-component plasma [77] or light beams propagating in nonlinear
media [1, 5, 94].

Systems modeled by the Schrödinger-Newton equations, but with the non-
linear term coming from the gravitational interaction seem to have appeared
slightly later. In 1969 Ruffini and Bonazzola were studying a system of self-
gravitating scalar bosons arriving at SN equation [102]. Such configuration,
now called a boson star, was later investigated by many others (see [68] for
an overview), also recently, in connection with such questions as Dark Matter
[21, 38] and the nature of super-massive objects in galactic nuclei [112]. In this
context it is worth to mention a recent rise of interest in ultralight axion mod-
els described by SN with an additional nonlinear term [94, 84, 103]. Finally,
Schrödinger-Newton equations naturally emerge in many attempts to build a
theory of quantum gravity. Either in studies of the quantum collapse nature
[97, 88], as a semi-classical limit of full quantum gravity [58, 6], or in other
contexts [36, 69].

All these different applications share one common feature: as they come
out from the quantum-mechanical models, they limit the considerations to at
most three-dimensional cases. However, in this work the main focus is on SNH
system in higher dimensions (in the majority of this thesis I assume the spatial
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dimension d to be greater than six, but in Section 5.2.1 I also tackle the d = 4
case). From the physical point of view, such considerations may be motivated
by their connection with some open questions such as the soliton resolution
problem and the stability of the anti-de Sitter spacetime. The discussion of
this connection constitutes the content of Chapter 2.

The additional, personally maybe the most important motivation
staying behind this thesis comes from the fact that there are almost
no results regarding any NLS with trapping potentials in supercritical
dimensions (more precisely, energy-supercritical dimensions, the proper
definitions are introduced in Section 3.1). The only work in this field
that I am aware of is the series of papers by Selem and his coauthors [104,
105, 106] where they consider Eq. (1.3), for which four is the energy-
critical dimension. I believe that this situation comes from both the
lack of an apparent physical motivation to deal with NLS in dimensions
higher than three and the breakdown of typically used mathematical
tools in supercritical dimensions. The latter is discussed in greater detail
in Section 3.2.

When working on this thesis, I had to make some decisions regarding the
presentation of the topic, some of them were not easy. First of all, I decided it
to be a standalone work rather then a compilation of publications. Thanks to
this, I was able to give more elaborate reasonings than in the articles (including
some more technical parts covered by appendices). It also let me incorporate
some additional materials including results that were not yet published. Ini-
tially, I wanted this thesis to cover as wide range of NLS equations as possible.
However, keeping a high level of generality without losing clarity due to the
additional technical assumptions needed in such an approach proved to be dif-
ficult. This is why I eventually decided to focus on SNH equation and discuss
other NLS equations on the side. Finally, even though this work is rather
mathematical, this is still a PhD thesis in theoretical physics. Hence, the pre-
sented reasonings are not always backed by strict proofs, but sometimes they
rely on heuristic or numerical arguments.

Including this short introduction, this work consists of six chapters. As
already mentioned, Chapter 2 aims at giving some physical motivation to con-
sider SNH in higher dimensions. The main result presented there is a deriva-
tion of Eq. (1.1) as a nonrelativistic limit of perturbations of the anti-de Sitter
spacetime coming from [F1]. Chapter 3 introduces some preliminary concepts
(including the notion of criticality) used in the following parts and gives a short
overview of the existing results. In Chapter 4 I focus on stationary solutions of
NLS in critical and supercritical dimensions. The attention is turned mainly
to their existence, uniqueness, and frequencies. This chapter is based on [F2]
and [F3] but in spirit is much closer to the latter. Stability of these stationary
states is investigated in Chapter 5. It also follows the second part of [F1] and
describes the resonant approximation of SNH showing its interesting properties
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in four dimensions. The thesis concludes in Chapter 6 where I sum up the most
important points and try to outline some future prospects.

Before I finish this chapter and move on to using the first-person plural, I
would like to directly acknowledge some of the people who supported me during
my work on this thesis. Primarily, I am thankful to my supervisor, Piotr Bizoń,
who introduced me to this subject. Most of the problems I encountered in my
work were completely new to me, giving me an opportunity to familiarize my-
self with many interesting topics. He was aiding me during this adventure with
both physical insights and mathematical tools. Secondly, I would like to thank
Konrad Szymański for his constant support, on both scientific and personal lev-
els. I’m also grateful to Oleg Evnin, Dmitry Pelinovsky, and Szymon Sobieszek
with whom I had the joy to collaborate. I greatly appreciate all hints and help I
got from Patryk Mach in all these years. In times when I got temporarily stuck,
I could always redirect some of the productivity to other projects done with
the Budker Group at Johannes Gutenberg-Universität Mainz, I am thankful
in particular to Pavel Fadeev and Dmitry Budker for this opportunity. In the
end, I wanted to thank people who were guiding me onto the academic path
from my very childhood – my parents Sławomir and Agnieszka, my grandfather
Kazimierz, and my aunt Jadwiga.

This work was funded by the Polish National Science Centre within Grants
No. 2020/36/T /ST2/00323 and No. 2017/26/A/ST2/00530. I also acknowl-
edge the financial support coming from the project Kartezjusz. Finally, I am
very grateful for the hospitality and support shown by the Mittag-Leffler In-
stitute within the General Relativity, Geometry and Analysis: beyond the first
100 years after Einstein program.



Chapter 2

Motivation

In the previous section we touched upon some of the problems motivating
studies of SN and SNH systems from the physical viewpoint. However, as
already mentioned, they focus almost exclusively on three-dimensional cases,
while in this thesis we are interested in higher dimensions. Here we would like to
provide some physical motivation to tackle such topic. We begin with a soliton
resolution conjecture. Its short description, together with a connected issue
of a weak turbulence, can be found in Section 2.1. These topics are currently
of considerable interest and SNH system is only a very small part of a whole
panorama of dispersive equations that can be studied in this context. To fix
our attention on SNH system, in Section 2.2 we briefly discuss the problem of
stability of the anti-de Sitter (AdS) spacetime and connect it with Eq. (1.1)
by the virtue of the nonrelativistic limit of AdS spacetime perturbations. The
derivation described there comes from [F1].

2.1 Soliton resolution problem and weak turbulence

One of the most remarkable features of nonlinear dispersive models is the pres-
ence of solitons – the nonlinear bound states (i.e. spatially localized stable
solutions). They emerge as an interplay between the dispersive nature of the
equation and the focusing behaviour of the nonlinearity. Analysis of equations
exhibiting soliton solutions is currently a very broad field laying mostly within
the theory of partial differential equations but using tools from many other dis-
ciplines such as dynamical systems and algebraic geometry. Despite the rapid
development since the 80s, there are still many open problems [85], some of
them of the fundamental nature. Among them, there is a question of long time
behaviour of solutions. One can, for example, ask whether the solitons are
asymptotically stable, i.e. that small perturbations of their profile get radiated
to infinity restoring the initial shape of the soliton.

A more complicated question is the soliton resolution conjecture. It states

15



16 CHAPTER 2. MOTIVATION

that for generic initial data, after a sufficiently long time the solution separates
into a collection of decoupled solitons and radiation escaping to infinity. It
suggests a dichotomy: in general, the only possible behaviours of the system
are wave packets or radiation. An interesting interpretation of this effect,
alluding to the common interplay between structured and random components
(here played by the bound states and radiative solutions, respectively), can be
found in the Simons Lecture given by Terrence Tao in 2007 [111]. In the case
of linear Schrödinger equation a similar result is known as the RAGE theorem
[3, 40, 101], but for nonlinear dispersive equations there is no general theory.
The existing proofs mostly apply to completely integrable models such as one-
dimensional Nonlinear Schrödinger or Korteweg-de Vries equations, where one
can use methods like inverse scattering [72].

The key role in the just described phenomena is played by the fact that
radiation can escape to infinity. Hence, it is clear that the long time behaviour
of solutions may drastically differ for systems bounded in some way that does
not allow for this getaway. Such confinement may be achieved by the com-
pactness of the domain, existence of the reflecting boundary, or presence of the
trapping potential. Then, the excess energy that would normally escape from
the soliton, can interact with it through the nonlinear term almost indefinitely.
This process can be observed in the momentum space where it is realised as
mode mixing: the energy initially focused in the lower modes is gradually
moving to the higher ones. Such energy cascade is something characteristic
for a weak turbulence [39, 70, 99] – the transfer of energy into increasingly
lower spatial scales. For systems with two conserved quantities such as mass
and energy (we define and discuss these notions in Section 3.1) one can then
observe that the transfer of energy to higher modes is accompanied by the
concentration of mass in lower modes. As a result, we observe the resolution
once again, this time in the momentum space, where the energy migrates to
higher and higher frequencies instead of spatial infinity. The full comprehen-
sion of these processes is still out of grasp (these mechanisms are probably
best understood in the case of 2-dimensional Euler equations [120]). One of
the effects still waiting for a satisfying explanation is the problem of energy
returns (apparent return of the energy to the initial state, concentrated in
the lower modes, instead of the expected thermalisation), connected with the
seventy-year-old Fermi–Pasta–Ulam–Tsingou problem [43]. The Schrödinger-
Newton-Hooke model may serve as another model that can be investigated in
this context, possibly giving some insight to this phenomena.

2.2 Non-relativistic limit of AdS perturbations

An important open problem in mathematical general relativity is the question
of stability of the Anti-de Sitter spacetime (AdS). Its significance has at least
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two sources. First, it is a rather natural question within the classical theory of
gravity. The AdS spacetime is a maximally symmetric solution of the vacuum
Einstein equations with a negative cosmological constant. The other maxi-
mally symmetric vacuum solutions are Minkowski (no cosmological constant)
and de Sitter (positive cosmological constant) spacetimes. However, while the
latter two have been known to be stable under small perturbations for over
three decades [30, 47], a comparable result is still unavailable for the former.
The second, probably more popular motivation came to life in 1998 with the in-
fluential article by Maldacena [83]. The AdS/CFT correspondence conjectured
there, postulating an equivalence between string theory on an asymptotically
AdS spacetime and conformal field theory on its boundary, became one of the
most popular topics in modern physics with countless publications and many
uses in nuclear physics and condensed matter physics. The better understand-
ing of the dynamics at the gravity side of this duality may have profound
consequences for the future applications of this correspondence.

Having these in mind, it is rather baffling that the problem of AdS sta-
bility came under more thorough investigations relatively late. One of the
foundational works in this direction was an article published by Bizoń and
Rostworowski in 2011 [15], where the authors conjured the instability of AdS
spacetime in d ≥ 3 spatial dimensions based on the numerical results. The
instability manifested in the energy cascade pumping energy to increasingly
lower scales, as described in the previous section, and supposedly resulting
in the formation of a black hole. This result inspired some new research in
this area in the following years, including many papers on the weak turbu-
lence and collapse in asymptotically AdS spacetimes and other related models
[10, 13, 14, 46, 67, 79]. However, regarding the question of stability, for a long
time all investigations were based on either numerical work or heuristic rea-
sonings. The first rigorous proof of AdS instability was given by Moschidis in
2018 [90] and it dealt with a special case of a spherically symmetric Einstein–
massless Vlasov system with an additional presence of an inner mirror near the
origin. Even though the assumption of the inner mirror was dropped in the
following work [91], these results still regard a very specific case in which the
considered matter is a massless dust satisfying the Vlasov equation.

As the described problem seems to be very difficult and it is unclear whether
the existent tools are sufficient to tackle it in full generality, it may be con-
structive to try to understand its simplified versions. One of such would be
a nonrelativistic limit of weak field perturbations of AdS. Here we would like
to show that the equation describing such model takes the form of SNH sys-
tem. This derivation, coming from [F1], is similar in spirit to the one presented
in [58]. However, they slightly differ by the facts that we do not assume the
spherical symmetry and we take into account a negative cosmological constant.

Let us consider a scalar field ϕ on some background d+1–dimensional space-
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time with metric gµν . Then, our system is described by two sets of equations,
the first one being the Einstein field equations

Gµν + Λgµν =
8πG

c4
Tµν , (2.1)

where Gµν and Tµν are Einstein and energy-momentum tensors, respectively, Λ
is a negative cosmological constant, while G is the gravitational constant and c
is the speed of light. We use here the spacelike convention, i.e. our metric tensor
has a signature (−,+, ...,+). The Greek indices in tensors stand for general
coordinates, while t will denote time and the spatial cartesian coordinates will
be denoted by Latin indices. The second equation is the Klein-Gordon equation

gµν∇µ∇νϕ− m2c2

ℏ2
ϕ = 0, (2.2)

where m is the mass associated with the scalar field ϕ, ∇µ is a covariant
derivative, and ℏ denotes the reduced Planck constant. The typical modus
operandi in theoretical physics would now consist of assuming some natural
system of units and getting rid of the physical constants (e.g. Planck units,
where c = ℏ = G = 1). However, ultimately we will be interested in taking the
nonrelativistic limit, i.e. c → ∞, so it is more convenient to keep all physical
constants up to that point. Equations (2.1) and (2.2) are coupled to each other
through the presence of the energy-momentum tensor in the case of Eq. (2.1)
and the metric tensor together with covariant derivatives in Eq. (2.2). As the
only matter present in the spacetime is the scalar field described by Eq. (2.2),
the energy-momentum tensor takes the form

Tµν =
ℏ2

2m

[
∂µϕ∂ν ϕ̄+ ∂µϕ̄ ∂νϕ− gµν

(
∂ρϕ∂

ρϕ̄+
m2c2

ℏ2
|ϕ|2

)]
.

Let us now assume that the scalar field ϕ is small, so we can approximate
the metric by the first post-Newtonian corrections which are isotropic at this
order [87]:

ds2 = −c2
(
1 +

2A(t, x)

c2

)
dt2 +

(
1 +

2B(t, x)

c2

) d∑
j=1

(dxj)2. (2.3)

The functions A and B are unknown variables that we are solving for. We also
introduce a new function ψ defined by

ϕ(t, x) = e−imc2

ℏ tψ(t, x). (2.4)

These simple ansatze are sufficient for our purpose, as when performing the
limit c→ ∞ we will be interested only in the lowest order in c−1 (higher orders
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would require expanding the functions ψ, A, and B in series with respect to
c−1).

Next, we insert the ansatze (2.3) and (2.4) into Eqs. (2.1) and (2.2) and
expand the results into the series with respect to c−1. In the following we will
be writing down explicitly only the lowest nontrivial orders of such expansions.
We use the big-O notation, where O(ck) means terms of the order higher than
or equal to ck in c−1. The Klein-Gordon equation (2.2) gives

2i
m

ℏ
∂tψ +∆ψ − 2

m2

ℏ2
Aψ +O(c−2) = 0, (2.5)

where the laplacian ∆ is just
∑d

j=1 ∂
2
j , since we are working in cartesian coor-

dinates. Here the mass term in Eq. (2.2) of order c2, cancels out with a term
coming from the double differentiation of the exponent in our ansatz for ϕ. As
a result, we arrive at Eq. (2.5), in which one can recognize the Schrödinger
equation with external potential mA.

Similar analysis can be done for the Einstein equations, although keep in
mind that they are in fact a system of (d+1)(d+2)/2 equations. As our ansatze
have only three unknown functions, taking all these equations is superfluous.
Indeed, as we will see, it is enough to take just the diagonal components: tt-
and jj- (for j going through each spatial dimension). Then the tt-components
of the tensors present in Eq. (2.1) are

Gtt = −(d− 1)∆B +O(c−2),

gtt = −c2 +O(1),

Ttt = m|ψ|2c4 +O(c2).

Keeping in mind that the energy-momentum tensor Tµν in Eq. (2.1) is divided
by c4, we see that the right hand side of this equation is of order c0. At the same
time, it seems that the left hand side is dominated by Λgµν having the order
c2. This problematic situation can be resolved by a more careful treatment of
Λ in the nonrelativistic limit. It turns out that as c → ∞, Λ should rather
behave like c−2 instead of being constant, as it is a necessary condition for the
preservation of the boost symmetries in this limit [56]. Hence, we assume

lim
c→∞

Λc2 = −d(d− 1)

2
Ω2,

where Ω is some nonzero constant. The minus sign comes from the fact that
we are interested in a negative cosmological constant, while the additional
coefficient is for the sake of simplicity in further calculations. Let us also point
out that any other type of behaviour of Λ as c→ ∞ would lead to either blow
up or vanishing of the cosmological constant term in the lowest order of Eq.
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(2.1). Now we can safely go to the limit c→ ∞ in tt−component of Eq. (2.1)
getting

−(d− 1)∆B +
d(d− 1)

2
Ω2 = 8πGm|ψ|2. (2.6)

The third equation will be obtained from the jj−components of Eq. (2.1).
One can show that as c→ ∞, it holds

Gjj =
[
∆A− ∂2jA+ (d− 2)(∆B − ∂2jB)

]
c−2 +O(c−4),

gjj = 1 +O(c−2),

Tjj =
ℏ2

m
|∂jψ|2 + i

ℏ
2m

(
ψ̄∂tψ − ψ∂tψ̄

)
−

d∑
k=1

|∂kψ|2 +O(c−2).

Now taking into account the behaviour of Λ in this limit, it turns out that the
left hand side of Eq. (2.1) is of order c−2, while the right hand side of c−4. We
can multiply both sides by c2 obtaining the orders of c0 and c−2, respectively.
It means that in the lowest order the matter term becomes irrelevant and in
the limit we obtain

∆A− ∂2jA+ (d− 2)(∆B − ∂2jB)− d(d− 1)

2
Ω2 = 0.

This way we got d equations, one for each choice of j, but all of them include
derivatives with respect to the particular coordinates: ∂2jA and ∂2jB. We can
change these terms into laplacians by summing these equations over all spatial
coordinates j. Such procedure yields

∆A+ (d− 2)∆B − d2

2
Ω2 = 0. (2.7)

This equation, together with Eqs. (2.5) and (2.6) constitute the full system of
equations for ψ, A, and B. Let us now point out that when writing Eq. (2.2)
we silently assumed the minimal coupling, while probably the most reasonable
choice would be the conformal one [118]. We did it deliberately, as it turns
out that the additional term present in the Klein-Gordon equation with the
conformal coupling is of lower order in c−1 then the remaining terms. Hence,
it gives no contribution to our equations.

Moving on with this system, right away we can get rid of B, present only
as ∆B in Eqs. (2.6) and (2.7), and arrive at a system consisting of Eq. (2.5)
and

∆A =
8πGm(d− 2)

d− 1
|ψ|2 + dΩ2.

This relation can be partially integrated by introducing a new function v =
A − 1

2Ω
2|x|2. Replacing A with v removes the second term on the right hand
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side, but introduces to Eq. (2.5) a new expression. After some cleaning up, we
finally get 

iℏ∂tψ = − ℏ2

2m
∆ψ +

1

2
mΩ2|x|2ψ +mvψ,

∆v =
8πGm(d− 2)

d− 1
|ψ|2.

This system is a Schrödinger equation with a harmonic potential and an addi-
tional term that can be interpreted as the gravitational potential coming from
the Newtonian self-gravitation of the field ψ. At this point, there is no need to
keep the physical constants present, so we remove them by appropriate rescal-
ings. As a result, we can write this system in a simple form that will be used
in the rest of this thesis {

i∂tψ = −∆ψ + |x|2ψ + vψ,

∆v = |ψ|2.
(2.9a)

(2.9b)

The last thing to do is to show that in fact this system is equivalent to Eq.
(1.1). We do it using the Green function of the laplacian (we assume d ≥ 3):

G(x, y) = − Γ(d/2)

2πd/2(d− 2)

1

|x− y|d−2
. (2.10)

The numerical constant present in this expression, equal to the inverse of the
product of (d − 2) and the area of the (d − 1)-dimensional unit sphere Sd−1,
will be denoted by Ad:

Ad =
1

(d− 2)Sd−1
=

Γ(d/2)

2πd/2(d− 2)
.

Now we may solve for v in Eq. (2.9b), as it is equal to the integral of |ψ|2 with
G playing the role of the kernel. Plugging it into Eq. (2.9a) finally gives

i∂tψ = −∆ψ + |x|2ψ −Ad

(∫
Rd

|ψ(t, y)|2

|x− y|d−2
dy

)
ψ. (2.11)

This formula differs from Eq. (1.1) by the presence of the coefficient Ad in the
nonlinear term. This difference can be easily removed with a proper rescaling of
ψ, however, we would like to retain the complete equality between the solutions
of Eqs. (2.11) and Eq. (2.9), so we shall keep Ad. We end up this section with
the observation that the nonlinear term in Eq. (2.11) is just a convolution, so
it is sometimes more convenient to write it as Ad (|ψ|2 ∗ |x|−(d−2))ψ.
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Chapter 3

Background

Before we proceed to the main content of this thesis, we want to establish some
preliminary results, mainly regarding the notions of subcritical, critical, and
supercritical dimensions. We do this in Section 3.1. In the following chapters
we focus almost exclusively on NLS equations in supercritical dimensions, so
as a reference we present some results concerning subcritical dimensions in
Section 3.2.

3.1 Symmetries and conserved quantities

When encountering a new problem, it is usually a good idea to identify its
symmetries. The most basic symmetry of our problem, present also in other
NLS equations, is the global phase freedom: if ψ is a solution to Eq. (2.11),
then for any α ∈ R also eiαψ is the solution. By Noether’s theorem this
symmetry gives us the conservation of mass (sometimes also known as a number
of particles or charge)

M(ψ) =

∫
Rd

|ψ|2 dx. (3.1)

Another conserved quantity is energy

E(ψ) = 1

2

∫
Rd

|∇ψ|2 dx+
1

2

∫
Rd

|x|2|ψ|2 dx− Ad

4

∫
Rd

(
|ψ|2 ∗ |x|−(d−2)

)
|ψ|2 dx.

(3.2)

It comes from the time translation symmetry: if ψ(t, x) is a solution, then
so is ψ(t − t0, x). Equation (3.2) can be also regarded as a functional of two
independent functions ψ and ψ̄. Then it plays the role of the hamiltonian of
SNH system, since the equation of motion (2.11) can be obtained with the
functional derivative as i∂tψ = δE [ψ, ψ̄]/δψ̄. However, we will not be using
this approach. Other symmetries typical for NLS equations, such as space

23



24 CHAPTER 3. BACKGROUND

translation or Galilean invariance are absent in our system because of the
presence of the potential term.

Of course, for mass M and energy E to be constant during the evolution,
firstly they need to exist. Let ψ be the solution to Eq. (2.11) with initial
condition ψ(0, x) = ψ0(x). Then the aforementioned conserved quantities are
well defined when ψ0 belongs to appropriate function spaces. Since the mass
is just the L2(Rd) norm, it suffices to assume ψ0 ∈ L2(Rd) to have it defined.
In the case of energy this problem is a little bit more complicated. Due to the
presence of a derivative term, one needs to ensure that ∇ψ exists (at least in a
weak sense) and is square-integrable. For the second term in E to converge, we
need |x|ψ0 ∈ L2(Rd). Of course the last term seems to be the most problematic,
as it contains a convolution under the integral. We may deal with it by using
the Hardy-Littlewood-Sobolev inequality [78], then the convergence of the last
term follows if, for example, ψ0 ∈ Lp where p = 4d/(d − 2). The suitable
choice of a functional space is crucial when applying the functional-analytic
methods, as mentioned in the next section. However, in this thesis we employ
another approach and consider only classical solutions (smooth enough that all
appropriate derivatives exist) going to zero as |x| → ∞. Then the harmonic
term ensures the decay to be fast enough that all integrals in Eqs. (3.1) and
(3.2) are convergent.

The GP equation and other NLS systems also enjoy conservation
of mass and energy. The mass is given by Eq. (3.1), while the specific
form of the energy depends on the choice of the potential and nonlin-
earity. For example, if the evolution is driven by Eq. (1.4) with a power
nonlinearity given by F = |ψ|p−1ψ, then the energy is given by

E(ψ) = 1

2

∫
Rd

|∇ψ|2 dx+
1

2

∫
Rd

V (|x|)|ψ|2 dx− 2

p+ 1

∫
Rd

|ψ|p+1 dx.

The term coming from the nonlinearity in the energy expression is here
negative. Such systems (including also SNH system) are called focusing.
Taking F = −|ψ|p−1ψ gives the opposite sign in this term. In such case
the nonlinearity is defocusing. Focusing and defocusing systems differ
in many ways, for instance, the former can have soliton solutions even
without the trapping potential [44], while for the latter it is impossible.

Now we would like to consider a symmetry of a slightly different kind. Let
ψ be a solution of SN equation defined for some time interval I including zero.
Let us also impose some initial conditions at t = 0, so in conclusion we have a
function ψ : I × Rd → C satisfying Eq. (1.2) and ψ(0, x) = ψ0(x). Having ψ,
we define a new function Łψ : tan−1(I)× Rd → C given by

Łψ(t, x) :=
1

cosd/2 t
ψ
(
tan t,

x

cos t

)
e−

i
4
|x|2 tan t.

We shall call Ł the lens transform [24, 44, 108, 110]. An important feature of
this transformation is that tan−1(I) ⊂ (−π

2 ,
π
2 ), regardless of the initial choice
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of I. Hence, for I = R or I = [0,∞) it compactifies the domain. Due to this
property, the lens transform is sometimes compared to the pseudoconformal
transform or even the Penrose compactification known from general relativity
[110].

By a simple but rather tedious calculation one can show that if ψ is a
solution to SN equation (1.2), then Łψ is a solution to

i∂tŁψ = −∆Łψ − cosd−4 t

(∫
Rd

|Łψ(t, y)|2

|x− y|d−2
dy

)
Łψ +

1

4
|x|2Łψ

with the same initial condition as Łψ(0, x) = ψ(0, x). This is the NLS equation
with a harmonic potential and a nonlinearity of the Schrödinger-Newton type,
but multiplied by cosd−4 t. It is especially interesting when d = 4, then the lens
transform sends a solution of SN system into a solution of SNH system (the
fact that the harmonic term differs by the factor 1/4 from what we considered
earlier is irrelevant). Let us point out that the reverse procedure is also possible
by the means of the inverse lens transform

Ł−1ψ(t, x) :=
1

(1 + t2)d/4
ψ

(
tan−1 t,

x√
1 + t2

)
e
i

|x|2t
4(1+t2) .

This gives a bijection between solutions of two different systems defined on
appropriate time domains. Note however, that while ψ can be in principle a
global-in-time solution, Łψ is defined only for |t| < π/2 and its behaviour after
this time is a delicate matter.

The lens transform also lets to switch between solutions to GP with
and without the harmonic term, and then study a more complicated
problem by the means of the simpler one with no potential, although
in this case d = 2 is the dimension where this procedure is possible
[24, 110]. The key feature of this transform, even in the slightly more
general form [44], is that it lets to switch on and off the presence of the
harmonic trapping.

We mentioned the lens transform mainly to illustrate the connections be-
tween a nonlinear problem with and without the harmonic potential and the
special role of four dimensions for SNH equation. We will not use this further
in this thesis.

The last symmetry we want to discuss is the scaling symmetry present in
the SN system. Let ψ be a solution of SN equation (1.2), then for any λ > 0

ψλ(t, x) = λ−2 ψ

(
t

λ2
,
x

λ

)
is also a solution to SN. The mass and energy of ψλ can be then expressed
using the mass and energy of the original solution ψ:

M(ψλ) = λd−4M(ψ), E(ψλ) = λd−6 E(ψ).
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For d = 4 the mass is invariant with respect to this scaling, hence d = 4 is
called the mass-critical dimension. Analogously, d = 6 is the energy-critical
dimension. We also define subcritical and supercritical dimensions as dimen-
sions lower or higher than the critical ones, respectively. Introduction of the
potential term in SNH equation (1.1) breaks the scaling symmetry, however,
the notion of subcritical/critical/supercritical dimensions is still useful, as we
will see in the following.

The mass-invariance of SN is, next to the lens symmetry, another property
characteristic to d = 4. We study this case further in Section 5.2.1. Apart
from that section, we will be considering almost exclusively SNH equation in
dimensions d ≥ 6 (the reasons for this will be presented in the next section).
Hence, from now on when writing about the critical/subcritical/supercritical
dimensions, we mean the notion of the energy-criticality.

The same calculations can be repeated for GP and other NLS equa-
tions with power nonlinearities. Then it turns out that in the absence
of the potential term for any solution ψ we can obtain a new solution
by the rescaling ψλ(t, x) = λ−2/(p−1)ψ(t/λ2, x/λ). This also leads to
the analogous notion of mass-critical and energy-critical dimensions, in
this case equal to 4/(p − 1) and 2(p + 1)/(p − 1), respectively (notice
that the difference between the energy- and mass-critical dimensions is
always equal to two). As we will see, there are lots of qualitative similar-
ities between the behaviour of various NLS equations in their respective
subcritical, critical and supercritical dimensions. In particular, as our
main scope are supercritical dimensions, we will observe many parallels
between SNH system in d ≥ 6 and GP equation in d ≥ 4. We end this
section with the observation that the critical dimensions agree for SN
equation and NLS equation with F = |ψ|ψ. Interestingly enough, in the
following we will encounter more similarities between these cases, but
also some similarities between SNH and GP equations.

3.2 Subcritical dimensions

In this section we briefly present some known results regarding SNH in subcrit-
ical dimensions (the comprehensive review of SNH, SN, and similar nonlocal
NLS equations can be found in [89]). But first we want to try to explain an
almost complete lack of results regarding critical and supercritical NLS equa-
tions.

The most popular approach that can be encountered in practically every
mathematical investigation of SNH system, is based on the calculus of varia-
tions. Instead of looking for solutions "explicitly", one constructs an appropri-
ate functional (on a carefully chosen function space) and proves that it possesses
an extremum and that this extremum is a solution of the initial problem. This
strategy, seemingly simple at first sight, has some crucial points limiting its
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applicability. We will discuss them using SNH equation as an example.
For NLS equations with harmonic potential the natural choice for the space

to work in is
Σ :=

{
u ∈ H1(Rd)

∣∣∣∣ ∫
Rd

|x|2|u|2 dx <∞
}
,

where H1(Rd) is a Sobolev space. Now, the construction of the appropriate
functional Σ → R depends on the particular result one wants to get. For
example, the existence of stationary solutions with frequency ω (more details
on these notions are given in Chapter 4), provided that ω is in a right range,
can be obtained by minimizing the functional (see [23] for details)

S(u) := E(u)− ω

2
N (u),

under the condition I[u] = 0, where (∥ · ∥2 denotes here L2(Rd) norm)

I(u) := ∥∇u∥22 + ∥xu∥22 − ω∥u∥22 −Ad

∫
Rd

(
|u|2 ∗ |x|−(d−2)

)
|u|2 dx.

It is rather simple to show that such minimum would be a desired stationary
state, the only problem is to prove its existence. It is usually done by con-
structing a minimizing sequence and proving its convergence. Such approach
needs some tools from functional analysis. In particular, one has to assure
some notion of compactness. Here it can be provided by the fact that the em-
bedding Σ ↪→ Lq(Rd) is compact when 2 ≤ q ≤ 2d/(d− 2) for d ≥ 3 [100, 121].
One also must have a way to appropriately estimate the nonlinear term, it can
be done with Hardy-Littlewood-Sobolev and Gagliardo–Nirenberg inequalities.
All these auxiliary results have some technical assumptions. In the case of SNH
it turns out that they are applicable only for d ≤ 5, which coincides with the
subcritical dimensions. In the end we get the following result for subcriti-
cal dimensions: for every ω < d there exists a positive, radially-symmetric,
monotonically decreasing stationary state with frequency ω [23, 50, 116].

These methods can be also used to give other existence results, such as the
existence of positive stationary states with any prescribed mass M > 0 if d = 3
[23, 81]. Similar tools from functional analysis give also results regarding the
stability of the stationary solutions. Then it turns out that they are stable if
d = 3 or d = 4, but for d = 5 there exists a boundary frequency ω0 dividing
stable and unstable positive stationary states [23, 42, 65]. Going beyond the
stationary solutions, in d ≤ 5 any function from Σ poses good initial data to
the Cauchy problem for SNH equation [26, 119]. However, the existence of such
solutions is assured only locally, in fact for some choices of the initial data the
solution blows up in finite time [42, 65, 81, 119]. Let us also just mention that
another possible approach that has also been used to investigate SNH system
is the semiclassical approximation [22, 25], however, this method lays outside
of the scope of this thesis.
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The literature describing other NLS systems is very vast, so let
us focus here just on GP equation (for more general results and treat-
ment of other systems we refer to monographs such as [26, 44, 95, 109]).
Then d = 4 is a critical dimension and for d < 4 one observes similar be-
haviour as for the subcritical dimensions of SNH system. In particular,
then there exist positive stationary solutions with any frequency ω < d
[51, 63]. One can even show their uniqueness, in the sense that such so-
lutions are uniquely determined by their frequency [63, 64]. The results
regarding the stability of these stationary solutions are also analogous
to the ones seen for SNH system: in d = 3, i.e. a dimension one less
than the critical dimension, they are stable only at some range (ω0, d),
while for smaller dimensions (d = 1 and d = 2) there is no instabil-
ity [51, 52, 53]. Finally, information about local and global existence of
time-dependent solutions to GP equation can be found in [24, 26, 51, 93].

The references provided here represent just a tip of the iceberg of
results, not only for general NLS equations, but also for SNH and GP
systems in subcritical dimensions. However, we wanted to focus here just
on the results most relevant to the content of this thesis, so we can later
compare behaviour of the discussed systems in subcritical and supercrit-
ical dimensions. For more information on other aspects of the mentioned
systems we refer to the cited monographs and references therein.

.



Chapter 4

Stationary solutions

Now we proceed to the study of stationary solutions to SNH equation (1.1),
that is solutions of the form

ψ(t, x) = e−iωtu(x),

where ω is a real number called the frequency. This ansatz plugged into Eq.
(2.9) changes it into an elliptic equation with the nonlocal nonlinearity:

−∆u+ |x|2u−Ad

(∫
Rd

u(y)2

|x− y|d−2
dy

)
u = ω u. (4.1)

We are interested in bound states which are solutions to this equation that
decay to zero lim|x|→∞ u(x) = 0. Among them, the most important are positive
solutions (satisfying u > 0) that will be called the ground states, in opposition
to the remaining solutions called the excited states. Good understanding of
the stationary states is not only a feat in itself, but is also the first step in
the study of the dynamics of the system. Stationary states not only are the
simplest solutions to the dynamical equation, but also are possible attractors
in the evolution of the system.

The same stationarity ansatz gives the respective nonlinear ellip-
tic equations for the stationary solutions of other NLS equations. For
example, in the case of GP equation (1.3) we obtain

−∆u+ |x|2u− |u|2u = ω u. (4.2)

In this chapter, this equation will be covered in greater detail, along the
main discussion regarding SNH. In some places we also consider bound
states of other NLS equations, in general having the form coming from
Eq. (1.4)

−∆u+ V u− F (u) = ω u. (4.3)

29
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As we have seen in Section 3.2, the variational methods are not applicable
in energy-supercritical dimensions so we need to use other tools. To this end,
we consider only spherically symmetric solutions. In the case of ground states
there is no loss of generality here, as the ground states must be spherically
symmetric. We discuss this property, together with some connected secondary
results, in Section 4.1. When studying stationary solutions, assuming spherical
symmetry reduces the relevant partial differential equations to the ordinary
ones. This will allow us to use the theory of ODEs and dynamical systems
to get results such as existence and uniqueness, as we show in Sections 4.2
and 4.3. The main result presented there is that for any fixed central value
u(0) > 0 there exists a unique ground state u of Eq. (4.1), characterised by a
unique frequency ω. In Section 4.4 we investigate the possible values of this
frequency and its dependence on u(0) in various dimensions, both analytically
and numerically.

4.1 Spherical symmetry

As we have just mentioned, the assumption of spherical symmetry may be
partially excused by the fact that the most important solutions, the ground
states, are bound to be spherically symmetric. Results of this type may be
proved using many different approaches, such as the ones based on rearrange-
ments and polarizations [17, 78, 89]. Here, we choose to employ the moving
planes method, as it seems to be working perfectly well also in supercritical
dimensions.

The moving planes method originated from the works of Alexandroff and
Serrin [107] (we refer to [9, 16, 45] for more information on its history and
various applications) and was used by Gidas, Ni, and Nirenberg [57] to show
that for a wide class of nonlinear elliptic equations with Dirichlet boundary
conditions in a ball, positive solutions must be spherically symmetric. Since
then, many similar results concerning both bounded and unbounded domains
were obtained. These proofs use a simple geometric fact that a function is
spherically symmetric around zero if and only if it has a reflection symmetry
with respect to every hyperplane crossing the zero.

To sketch the reasoning behind this method, let us choose any unit vector
n ∈ Rd and construct a family of hyperplanes Ts = {x ∈ Rd |n · x = s}
and half-spaces Hs = {x ∈ Rd |n · x ≥ s}. Let now u be the ground state
solution of some nonlinear elliptic equation ∆u+f(|x|, u) = 0, with f satisfying
appropriate technical conditions. For any s > 0 one may define in Hs the
function ws(x) = u(x)−u(rs(x)), where rs(x) = x−2(n ·x−s)n is a reflection
of x through Ts (if the domain of u is bounded, this step needs some additional
attention). Now, depending on the specific case, one uses boundary conditions,
asymptotic behaviour, or some technical assumptions on f to show that for
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sufficiently large s it holds ws < 0 in Hs. The maximum principle lets us to
extend this result to some smaller values of s. With bootstrapping, we may
repeat this procedure down to s = 0, where by continuity it gives w0 ≤ 0 in
H0. Exactly the same line of action applied to −n gives the opposite inequality,
hence w0 = 0 and u is symmetric with respect to a hyperplane crossing the
zero and orthogonal to n. Repeating this for every unit n ∈ Rd gives the
spherical symmetry. For a more detailed description of this method we refer,
for instance, to the book by Fraenkel [45]. Let us just point out that in its
simplest version the moving plane method is purely classical – it uses only the
maximum principle and needs no functional-analytic tools.

Before we discuss the application of the moving plane method to
the more complicated case of SNH equation, we would like to explore
GP equation and other systems with local nonlinearities. Many of them
can be covered by the rather general result obtained by Li and Ni in
1993 [76]. In the slightly simplified version it considers the equation
∆u+ f(|x|, u) = 0 on Rd, with f continuous, non-increasing in |x|, and
locally Lipschitz in u. If there exists M > 0 such that ∂uf(|x|, u) ≤ 0
for |x| > M and u < 1/M , then the positive decaying solutions must be
spherically symmetric about some point, and monotonically decreasing
with respect to it. One can easily check that for Eq. (4.2) there is
f(|x|, u) = ωu − |x|2u + u3 and ∂uf = ω − |x|2 + 3u2. Hence, for any
fixed ω the assumptions of the cited theorem are satisfied and for the
ground states there is no loss of generality in introducing r = |x| and
reducing Eq. (4.2) to

−u′′ − d− 1

r
u′ + r2u− u3 = ω u. (4.4)

This theorem applies to a much wider class of nonlinear Schrödinger
equations with different radial potentials and different nonlinearities.

In case of SNH equation it may seem like one needs to use some special
argumentation allowing for the presence of the integral in the nonlinearity.
Indeed, there exist such proofs [27, 89, 82], but to deal with this integral they
use tools like Hardy-Littlewood-Sobolev inequality, hence they require some
additional assumptions on the dimension d. In particular, for Eq. (4.1) this
approach works only in dimensions d < 6. Because of this, we take a different
approach and use the local form we already encountered in Chapter 2. Let us
recall that Eq. (2.11) is equivalent to Eqs. (2.9). Hence{

−∆u+ |x|2u+ vu,= ω u

∆v = u2.

(4.5a)

(4.5b)

Again, v plays here the role of the potential and we are interested in solutions
where both u and v tend to zero in infinity. Such systems of nonlinear elliptic
equations has been thoroughly investigated (we refer to Chapter 7 of [35] for
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a nice summary). Here we will focus on the result by Busca and Sirakov [20],
as it leads to the spherical symmetry of the ground states of Eqs. (4.5).

In [20] the authors consider systems of arbitrarily many equations, however,
for the sake of simplicity, we focus here on the systems of two nonlinear elliptic
equations: ∆ui + fi(r, u1, u2) = 0 with i = 1, 2. Before stating the main result
and applying it to SNH, let us introduce some definitions. We will say that
our system is cooperative when ∂f1/∂u2 ≥ 0 and ∂f2/∂u1 ≥ 0. One can in
some sense strengthen this condition and assume that there exists R > 0 such
that for |x| > R and |ui| < 1/R these two inequalities are strict. Such system
is called strongly-coupled and cannot be reduced to two separated systems.
Finally, we may imagine that also for |x| > R and |ui| < 1/R the matrix
∂fi/∂uj has no positive principal minors (i.e., ∂f1/∂u1 ≤ 0, ∂f2/∂u2 ≤ 0,
and (∂f1/∂u1)(∂f2/∂u2)− (∂f1/∂u2)(∂f2/∂u1) ≤ 0). This condition in a way
generalises the assumption ∂uf(|x|, u) ≤ 0 present in the theorem by Li and Ni
[76]. Now, Theorem 1 of [20] says that if the system of two nonlinear elliptic
equations satisfies this condition, is cooperative, and strongly-coupled, then its
positive decaying solutions u1 and u2 are spherically symmetric with respect
to some point. If f depends on r = |x|, then this point is x = 0.

In order to apply this result, we need to make a small tweak in Eqs. (4.5). As
the function v present there plays the role of a gravitational potential vanishing
in infinity, one can expect it to be negative. However, the theorem covers
positive solutions. Hence, for a brief moment let us introduce u2 := −v and
also use u1 instead of u. Then the functions fi have the form f1 = −|x|2u1 +
ωu1 + u1u2 and f2 = u22. It is straightforward to check that they satisfy the
assumptions of the theorem by Busca and Sirakov, hence positive decaying
solutions u1 and u2 must be spherically symmetric. Going back to the original
variables, it means that every positive solution u with the respective negative
potential v satisfying Eqs. (4.5) are bound to be spherically symmetric. Hence,
when studying the ground states it is enough to introduce r = |x| and consider

−u′′ − d− 1

r
u′ + r2u+ vu = ωu,

v′′ +
d− 1

r
v′ = u2.

(4.6a)

(4.6b)

For the solutions of this system to be smooth near zero, we impose the condition
u′(0) = v′(0) = 0.

Reducing the problem to the system of ODEs greatly simplifies the situation
and lets us use rather elementary tools. For instance, in the next section we
will prove the existence of stationary solutions using the shooting method.
This technique relies on two classical results: the local existence of solutions to
the ordinary differential equations and their continuous dependence on initial
conditions and parameters. Their full statements and proofs can be found in
any textbook on ordinary differential equations (e.g. [31, 61]). However, in the



4.2. EXISTENCE 33

following we will be interested in posing the initial conditions at r = 0, where
Eq. (4.6) is singular. Such case is not covered by these standard results and
needs a separate treatment. For the convenience of the reader, we present the
relevant theorems with proofs in Appendix A.

We finish this chapter with a useful formula simplifying the integral nonlin-
earity in SNH equation (4.1) under spherical symmetry. It will prove especially
useful when considering the properties of small solutions and the dynamics of
SNH system. It is sometimes called the Newton formula and it states that for
a radial function f decaying sufficiently fast, it holds for d ≥ 3:∫

Rd

f(|y|)
|x− y|d−2

dy = Sd−1

∫ ∞

0

f(s)sd−1

max{rd−2, sd−2}
ds. (4.7)

This equality can be shown using the fact that in d dimensions the Green
function of the laplacian is given by Eq. (2.10). Let us denote the left hand
side of Eq. (4.7) by I, so it holds ∆I = −(d − 2)Sd−1f . Hence, in spherical
symmetry

1

rd−1

d

dr

(
rd−1dI

dr

)
= −(d− 2)Sd−1f(r)

The function I can be extracted from this expression by two integrations:

I(r) =(d− 2)Sd−1

∫ ∞

r

1

ρd−1

(∫ ρ

0
f(s) sd−1 ds

)
dρ

=(d− 2)Sd−1

∫ r

0

(∫ ∞

r

f(s) sd−1

ρd−1
dρ

)
ds

+ (d− 2)Sd−1

∫ ∞

r

(∫ ∞

s

f(s) sd−1

ρd−1
dρ

)
ds

=Sd−1

∫ r

0

f(s) sd−1

rd−2
ds+ Sd−1

∫ ∞

r

f(s) sd−1

sd−2
ds

=Sd−1

∫ ∞

0

f(s) sd−1

max{r, s}d−2
ds.

The second equality comes from the rearrangement of the order of integration,
as shown in the Fig. 4.1. This formula lets us to rewrite Eq. (4.1) under the
spherical symmetry as

−u′′ − d− 1

r
u′ + r2u− 1

d− 2

(∫ ∞

0

u(s)2 sd−1

max{rd−2, sd−2}
ds

)
u = ωu. (4.8)

4.2 Existence

We are now ready to tackle one of the main results of this thesis: the existence
of spherically-symmetric stationary states of SNH system. In particular, we
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Figure 4.1: Visualisation of the rearrangement of the order of integration in
the derivation of the Newton formula.

prove that for every central value u(0) = b > 0 there exists a bound state
with an arbitrary number of zeroes. We also extend these results to singular
solutions, where u(0) = ∞. Our approach is based on the shooting method
(similar techniques were used in the case of ground states of SN equation in
[29]).

4.2.1 Preliminaries

By the shooting method we understand the following idea: instead of viewing
Eq. (4.8) as a boundary problem satisfying u(0) = b and limr→∞ u(r) = 0, we
want to treat it as an initial value problem with initial conditions u(0) = b,
u′(0) = 0. Then we look for the value of ω giving us a desired solution decaying
to zero in infinity. This approach is not well suited to the equation (4.8), as
it is in fact an integro-differential equation. Hence, we focus on solutions of
the equivalent system (4.6) with the potential v decaying to zero in infinity.
Unfortunately, now we encounter another problem when posing initial values
at r = 0: we do not know a priori a value of v(0). As a result, we have
two unknown parameters, ω and v(0), that need to be chosen in such a way
that both u and v tend to zero in infinity. This complicates the situation,
since two-dimensional shooting needs more sophisticated topological tools (see
[4, 62]). However, one can get rid of ω by formally replacing the function v
with h = ω−v (for the future convenience, we have also flipped the sign of the
potential function). This way we get a new system:

u′′ +
d− 1

r
u′ − r2u+ hu = 0,

h′′ +
d− 1

r
h′ + u2 = 0.

(4.9a)

(4.9b)
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Figure 4.2: Plots of u(r)/u(1)as (r) (the solid line) and u′(r)/u(1) ′as (r) (the dotted
line) for d = 7, b = 1, and ω = 6.982625.

with initial conditions

u(0) = b, h(0) = c, u′(0) = h′(0) = 0. (4.10)

Thus, we have obtained a new initial value problem with a single unknown
parameter (for given b) denoted by c, that we will now investigate.

The possibility of returning from solutions of Eqs. (4.9) to solutions of Eqs.
(4.6) depends on the existence of limr→∞ h(r), as it is equal to the frequency ω
in system (4.6). A quick look at Eq. (4.9b) suggests that when u is vanishing,
for sufficiently large r it holds |h(r)| < Ar2 with A being some constant, so for
large r the harmonic term dominates in Eq. (4.9a) and the nonlinear term can
be neglected. It means that u decays exponentially and limr→∞ h(r) is finite,
as can be seen by integrating Eq. (4.9b) twice. It also lets us to approximate
Eq. (4.6a) for large r simply by the linear part (being just the quantum linear
oscillator). Hence, there the solution shall behave like

u(C)
as (r) = C e−r2/2 U

(
d− ω

4
,
d

2
, r2
)
, (4.11)

where U denotes the confluent hypergeometric function of the second kind and
C is some constant. This observation can be used to expand the numerically
obtained solution u into the whole half-line by gluing it with u(C)

as with appro-
priate C. To find the point of gluing and the value of C we plot the functions
u(r)/u

(1)
as (r) and u′(r)/u

(1) ′
as (r), as seen in Fig. 4.2. If our numerical solution

is a sufficiently good approximation to the bound state, there exists an inter-
val of intermediate values of r where both functions are more or less constant
and equal to each other (for smaller values of r functions u(C)

as are not a good
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Figure 4.3: Solutions u to system (4.9) with initial conditions (4.10) for d = 7,
b = 1 and various values of c. The left plot shows presents solutions for c = 7
and c = 8, while the right one shows also solutions for the values of c given by
Table 4.1.

approximation of the solution, while for larger r the plots departure from zero
due to inaccuracies in the shooting parameter value). Taking some point R
from this region to be the gluing point and the value of u(R)/u(1)as (R) to be C
gives us the approximation of u on the whole half-line.

The same asymptotic behaviour can be observed also for GP, as
stated and proved in Lemma 3.3 of [F2]. This result regards both the
solution and its derivative, meaning that here also u ∼ u

(C)
a s and u′ ∼

u
(C) ′
as with the same constant C. The rigorous proof of this fact is based

on the appropriate redefinition of dependent and independent variables
and a careful analysis of the resulting dynamical system using the fixed-
point arguments.

Now, having established all the necessary details let us perform some nu-
merical experiments. In Fig. 4.3a we present the sample plots obtained for a
SNH system in d = 7 for b = 1 and with c = 7 and c = 8. We can see that
both solutions lean towards the horizontal axis, but then one of them departs
staying positive all the time, while the other one crosses zero and falls down.
The continuous dependence of the solutions on the value of c then suggests
that between c = 7 and c = 8 there exist values of c for which the solutions
approach zero in larger intervals, i.e. are better approximations of the ground
state. We may try to find them with the bisection method. The results of the
successive steps are presented in Table 4.1 and Fig. 4.3b. They let us expect
that in case of d = 7 and b = 1 there exists a ground state for c ≈ 7.0817.
We can observe this convergence also in Fig. (4.4). It shows that the closer we
are to the ground state, the longer is the interval on which the solution v is
almost constant. By performing even more iterations in the bisection method
we see that the proper candidate for limr→∞ h(r) lays near 6.9826, giving us
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Figure 4.4: Solutions h to system (4.9) with initial conditions (4.10) for d = 7,
b = 1 and various values of c given in Table 4.1.

the frequency of the ground state ω ≈ 6.9826.

c1 7.5000 c2 7.2500 c3 7.1250 c4 7.0625 c5 7.0938
c6 7.0781 c7 7.0859 c8 7.0820 c9 7.0801 c10 7.0811
c11 7.0818 c12 7.0817 c13 7.0817 c14 7.0818 c15 7.0817
c16 7.0817 c17 7.0817 c18 7.0817 c19 7.0817 c20 7.0817

Table 4.1: Values of the parameter c (up to five significant digits) obtained in
the succeeding steps of the bisection method.

It is impossible to find numerically the precise value of c giving the ground
state. The solution u always eventually departs from zero and rapidly goes
down or up. Moreover, the numerical solver reveals problems with integration
at some r∗, caused by the blow-up of the solutions. We can study the nature
of this singularity by assuming that near this r∗ the solutions behave like
u(r) = A(r∗ − r)α and h(r) = B(r∗ − r)β , where A, B, α, and β are some
numerical coefficients to be found. Plugging this ansatz into system (4.9)
yields

Aα(α− 1)(r∗ − r)α−2 −Aα
d− 1

r
(r∗ − r)α−1 −Ar2(r∗ − r)α

+AB(r∗ − r)α+β = 0,

B β(β − 1)(r∗ − r)β−2 −B β
d− 1

r
(r∗ − r)β−1 +A2(r∗ − r)2α = 0.

Near r = r∗ the main role will be played by the terms of the lowest order in
(r∗ − r), hence we may assume that the first and last term in both equations
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shall balance. This can happen when α− 2 = α+ β and β − 2 = 2α giving us
α = β = −2. Then, by comparing the coefficients of these terms we get B = 6
and A = ±6 (the sign of A depends on the infinity to which u diverges). One
can check numerically (Fig. 4.5) that indeed near r∗ the solutions behave like
u ∼ ±6 (r∗−r)−2, h ∼ −6 (r∗−r)−2. This blow-up behaviour is not important
from the point of view of the shooting method, but may pose problems for the
dynamical systems approach.

u(r )(r*-r )
2

h(r )(r*-r )
2

5.0 5.5 6.0 6.5
r

-5

5

10

15

Figure 4.5: Behaviour of the solutions to system (4.9) for d = 7, b = 1, c = 7
near the point of the blow-up r∗ ≈ 6.5259.

In case of systems with local nonlinearities, such as GP, the situ-
ation is usually simpler as we start from the level of a single ordinary
equation with a single unknown parameter – the frequency ω. Then
we can just pose initial conditions u(0) = b and u′(0) = 0 and search
for the values of ω giving the best approximations of the ground state.
Sample plots for GP equation in d = 5 with b = 1 are presented in Fig.
4.6. In this case the bisection method eventually gives us ω ≈ 4.8397 as
a candidate for the frequency of the ground state.

Interestingly, for this system there is no blow-up and all solutions
exist globally. It can be shown by rewriting Eq. (4.4) in new variables
t = r2/2 and w(t) = u(r)/r. The idea behind these combinations comes
from the fact that after departing from zero the plot of u seems to
oscillate around the linear function u = r (see Fig. 4.6). We also point
out that these variables are ill-defined in r = 0, however we want to
discuss here the behaviour of the system for large r, so it does not pose
any problems. The GP system is then governed by the equation

ẅ +
d+ 2

2t
ẇ + w(w2 − 1) +

d− 1

4t2
w +

ω

2t
w = 0, (4.13)

with dots denoting derivatives in t. Now we may define an energy func-
tional

E =
1

2
ẇ2 +

1

4
w4 − 1

2
w2 +

d− 1

8t2
w2 +

ω

4t
w2. (4.14)
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Figure 4.6: Solutions u to Eq. (4.4) for d = 5, b = 1 in cases of ω = 6
and ω = 7.

It is bounded from below by −1/4 and its differentiation over t gives

Ė = −d+ 2

2t
ẇ2 − d− 1

4t3
w2 − ω

4t2
w2,

so it decreases with t. As a result, w is bounded, hence it exists for all
t > 0. Coming back to u, it gives us the global existence of solutions of
Eq. (4.4).

4.2.2 Ground states

Having seen how the search for the frequency of the ground state looks numer-
ically, we are now ready to cast this procedure into the proof of existence. For
this purpose, we again use the formulation (4.9) including just one unknown
c, that from now on will be called the shooting parameter (even though there
exist versions of the shooting method dealing with many parameters [4, 62], it
is easier to handle a single shooting parameter). In the following we fix some
b > 0 and study how the solutions change as we alter the value of c. As the
numerical experiments show, when starting with c such that the solution u
is positive and eventually blows up, by gradually increasing the value of c at
some point we get a solution crossing zero. The idea will be to show that on
the border of these two worlds there exists a value of c such that the solution
u stays positive and goes to zero instead of blowing up (u is the ground state).

In the first step we would like to show that there indeed exist different
values of c > 0, such that for one of them the solution u is positive and for the
other the solution u crosses zero (as we have seen in numerical results). The
former of these results can be achieved for c = 0 by the method similar to the
derivation of the Pohozaev identities (more on them in Section 4.4). Let us
assume that when c = 0 there exists some point r = R such that u = 0 for the
first time there. Then we may multiply Eq. (4.9a) by u rd−1 and integrate it
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over [0, R] getting

−
∫ R

0
u′2rd−1dr −

∫ R

0
r2u2rd−1dr +

∫ R

0
u2hrd−1dr = 0. (4.15a)

When we repeat this procedure, but this time multiplying by u′rd instead, we
get

u′(R)2Rd + (d− 2)

∫ R

0
u′2rd−1dr −

∫ R

0
u2h′rddr

+(d+ 2)

∫ R

0
r2u2rd−1dr − d

∫ R

0
u2hrd−1dr = 0. (4.15b)

Analogous strategy can be executed for Eq. (4.9b), but this time we multiply
either by hrd−1 or h′rd. It yields

h′(R)h(R)Rd−1 −
∫ R

0
h′2rd−1dr +

∫ R

0
u2hrd−1dr = 0,

h′(R)2Rd + (d− 2)

∫ R

0
h′2rd−1dr + 2

∫ R

0
u2h′rddr = 0.

(4.15c)

(4.15d)

As a result, we got a system of four identities consisting of eight different terms.
We can get rid of three of them by taking the combination (d + 2) × (4.15a)
+ 2 × (4.15b) + (d− 2) × (4.15c) + (4.15d), obtaining the final identity

(d− 6)

∫ R

0
u′2rd−1dr + (d+ 2)

∫ R

0
r2u2rd−1dr + 2u′(R)2Rd

+h′(R)2Rd + (d− 2)h(R)h′(R)Rd−1 = 0.

All terms, except the last one, are obviously positive. However, one can observe
that since Eq. (4.9b) can be written as

h′(r) = − 1

rd−1

∫ r

0
u(s)2 sd−1 ds,

h is decreasing in r. Since h(0) = 0, both h′(R) and h(R) are negative, which
means that the last term of the identity is also positive. Hence, we end up
with a contradiction meaning that for c = 0 the solution u cannot cross zero so
it stays positive. Let us point out that in this argumentation the fact that we
are in supercritical (or at least critical) dimensions is essential, as without the
assumption d ≥ 6 the left-hand side of the obtained identity is not necessarily
positive and there is no clear contradiction.

In order to show that there exists such c that the solution u crosses zero,
instead of choosing some specific value of c, it is easier to see what happens as
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c → ∞. For this purpose, it is handy to rescale the coordinate r to r̃ =
√
cr

and the function h to h̃(r̃) = h(r)/c. Then Eqs. (4.9) take the form of
ũ′′ +

d− 1

r̃
ũ′ − r̃2

c2
ũ+ h̃ũ = 0,

h̃′′ +
d− 1

r̃
h̃′ +

1

c2
ũ2 = 0,

(4.16a)

(4.16b)

where ũ(r̃) = u(r) and all derivatives are with respect to r̃. The initial condi-
tions now are ũ(0) = b, h̃(0) = 1, ũ′(0) = h̃′(0) = 0. In the limit c → ∞ Eq.
(4.16b) becomes just (h̃′ rd−1)′ = 0 and has a unique solution h̃∞ ≡ 1. As a
result, in this limit Eq. (4.16a) is equal to

ũ′′ +
d− 1

r̃
ũ′ + ũ = 0. (4.17)

Its solution can be written explicitly in terms of the Bessel function Jα:

ũ∞(r̃) = bΓ

(
d

2

)
2

d
2
−1

r̃
d
2
−1

J d
2
−1(r̃). (4.18)

Since ũ∞ is the limiting solution for c → ∞, on every compact interval [0, R]
the solution ũ tends to ũ∞ in the supremum norm as c goes to infinity (as we
are considering the second-order ODEs, also the first derivative ũ′ converges
to ũ′∞ in this limit). The function ũ∞ oscillates around zero with a decreasing
amplitude (see Fig. 4.7), so a similar behaviour shall be expected from the
solutions ũ of system (4.16) for sufficiently large c. The return to the original
variables just unfolds the function u along the horizontal axis, not changing its
overall shape. Hence, we see that not only there exists c such that solution u of
system (4.9) crosses zero, but the number of these crossings can be arbitrarily
large, provided that c is large enough.

The next step will consist of proving the following trichotomy: if u is a so-
lution of Eq. (4.9), it either diverges to one of the infinities (we do not specify
here whether it happens in finite time through a blow-up or the solution exists
globally) or converges to zero at infinity. To show it, and also for further con-
venience, we need to make some simple observations regarding the behaviour
of solutions to system (4.9). Let us start by pointing out that since h is a
decreasing function, on the whole domain of existence of the solution it holds
h(r) ≤ c. Now assume that the solutions u and h exist globally (otherwise
they clearly diverge to one of the infinities). Then Eq. (4.9a) implies that for
r >

√
c the solution u cannot have a positive maximum nor a negative mini-

mum, because in such cases all terms on the left hand side of Eq. (4.9a) would
need to have the same sign at the location of such extremum. As a result, for
sufficiently large values of r the solution u is monotone (by similar means one
can show that among the stationary points there are also no positive decreasing
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Figure 4.7: Plot of the function ũ∞(r̃) given by Eq. (4.18) for d = 7 and b = 1.

nor negative increasing inflection points). As such, u either diverges to one of
the infinities or converges to some finite value limr→∞ u(r). In the latter case,
let us write Eq. (4.9a) as

u′(r) =
1

rd−1

∫ r

0

[
s2 − h(s)

]
u(s) sd−1 ds.

If the limit limr→∞ u(r) is nonzero, the integral on the right hand side diverges.
Then we may use the l’Hôpital’s rule to show that |u′(r)| → ∞. It contradicts
the convergence of u, hence the only possible finite limit point is zero and we
obtain the desired trichotomy.

The last observation is that if the solution u of Eq. (4.9) satisfies u(r) =
u′(r) = 0 at some r > 0, then it is just a zero function u ≡ 0 (from the
uniqueness of the solutions to the Cauchy problem). This trait, known as
the non-tangency property, forbids the solution u from acquiring new zeroes
at finite values of r as c changes. If under the variations of c new zero of u
appears, it must come from infinity.

Now we are ready for the final step, where we employ a version of the
shooting method. However, before we proceed it is vital to familiarise our-
selves with the ways the shape of u can change when c varies. The main tool
here is the already mentioned continuous dependence of the solutions on the
parameters and initial conditions. As we are dealing with the second-order
ODEs, this result applies to both solutions and their derivatives. More pre-
cisely, it means that on every compact region of existence of solutions u and
h, they together with their derivatives change continuously in the supremum
norm as one alters c. We would like to understand how new zeroes and ex-
trema of u may be created and destroyed in the process of changing c. We
have already established that new zeroes can emerge only at infinity. We also
know that for r >

√
c there cannot be a positive maximum nor a negative
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Figure 4.8: "Phase diagram" of solutions u to Eqs. (4.9) for d = 7 and b = 1.
The white region denotes the domain of existence of solutions, while the grey
region shows the values of r following the blow up. Solid lines denote values
of c and r such that u(r) = 0 and for the dashed lines u′(r) = 0. The crosses
indicate places where u′(r) = u′′(r) = 0.

minimum, hence there is a limitation on what kinds of stationary point may
come from the infinity. On the other hand, there is no restriction on existence
of r such that u′(r) = u′′(r) = 0, so in case of u′ new zeroes may also pop
up spontaneously. In such instances, we have an inflection point resolving into
two extrema. However, the possible types of inflection points restrict this pro-
cess: when u is positive, a pair maximum – minimum can appear (in the order
of increasing r), for negative u this order is reversed. These observations are
presented in Fig. 4.8 showing the locations of zeroes of u and u′ for 0 ≤ c ≤ 14
in d = 7.

Let us now define the following subset of R:

I0 = {c ≥ 0 | ∃ r0 > 0 : u(r0) = 0 while u(r) > 0 and u′(r) < 0 for r ∈ (0, r0)},

where u are the solutions of Eqs. (4.9) for the given initial value c. The shape
of a solution u for c ∈ I0 can be seen in Fig. 4.9a. We already know that
I0 ̸= ∅ (because solutions with large enough c are in this set), hence c0 = inf I0
is finite. We will now show that taking c = c0 gives us the solution u0 that is
precisely the ground state. The general idea is to prove that u0 cannot diverge
to either infinity, hence by the trichotomy u0 must converge to zero (some
additional results obtained along the way show that the result is not just any
bound state but the ground state).

A brief look into the initial conditions tells us that for the fixed b > 0,
for sufficiently small r the solution u is separated from zero, but the same
cannot be said about its derivative as u′(0) = 0. Hence, it is a good idea
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Figure 4.9: Shapes of the solution u (solid line) and its derivative (dashed line)
for the values of c belonging to I0 (left) and I1 (right).

to study the shape of u near zero. From l’Hôpital’s rule and Eq. (4.9a) it
follows limr→∞ u′(r)/r = −bc/d, leading to u′′(0) = −bc/d. One can also go
further and perform some rather lengthy calculations, including differentiating
Eq. (4.9a) twice and using l’Hôpital’s rule several times, to find out that (we
include here the previous result):

u′′(0) = −b c
d
, u′′′(0) = 0, u′′′′(0) =

3b
(
b2 + c2 + 2d

)
d(d+ 2)

.

Alternatively, one can get these formulas just by expanding u and h into power
series in r near zero and choosing the coefficients in the way giving cancellations
up to the highest possible order. As a result, we see that even though for c = 0
the solution is initially increasing, when c becomes positive the second-order
term starts to dominate and the solution becomes initially decreasing. This
domination prevails as c increases, hence no more zeroes of u′ can emerge
from r = 0 (see Fig. 4.8). Additionally, we see here that c0 ̸= 0, because for
sufficiently small positive values of c we have solutions u initially decreasing and
then bending up without crossing zero, hence not belonging to I0. Together
with 0 ̸∈ I0 it means that c = 0 cannot be the infimum of I0.

All that is left is to establish the profile of u0. Let us assume that u0
crosses zero at r0 > 0 for the first time. Then, the continuous dependence
tells us that under small variations of c the zero in r0 can change a bit its
position, but does not vanish (due to the non-tangency property). Depending
on whether u0 is decreasing in (0, r0), c0 belongs to I0 or not. However, the
same is true for some small neighborhood of c0, because in the appropriate
region no stationary points may vanish nor emerge under the small changes
of c (the potentially problematic case of the inflection point is ruled out by
the lack of such stationary points for positive, decreasing solutions u). Hence,
c0 cannot be the infimum of I0 and we get a contradiction. It turns out that
u0 keeps positive, therefore u cannot diverge to −∞, as u(0) = b > 0. Also
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divergence to +∞ is impossible as it would require from u0 to have a positive
minimum. However, for close values of c such minimum may again at most
change its position and c0 together with some neighborhood is outside of I0
giving the contradiction. We showed here not only that u0 cannot go to any
of the infinities, meaning that it converges to zero and is a bound state, but
also that it cannot cross zero, nor have a minimum. Hence, u0 is a positive
decreasing solution – the ground state of Eq. (4.9). As discussed earlier, we
may now retrieve the value of ω and get the solution to the original problems
(4.6) and (4.8).

One can try to summarize the procedure we just described in a more general
setting. Let us assume that we are investigating NLS equation with a free
parameter c and want to show that there exists such a value of c that the
solution u (with u(0) = b fixed) is the ground state. To follow the lines of the
proof for SNH equation, the considered system needs to satisfy the following
points.

• For some value of the parameter c the solution u is positive.

• For some value of the parameter c the solution u monotonically decreases
to zero and crosses it transversally.

• There is a trichotomy: the solutions either diverge to one of the infinities
(possibly for a finite r) or converge to zero.

• A non-tangency property: if solution u satisfies u(r0) = u′(r0) = 0 for
some r0 then u ≡ 0.

• There is a sufficient control over the creation of new stationary points of u
as c changes (for example, some mechanism excludes positive decreasing
inflection points).

If these conditions are satisfied, one may define a nonempty I0 as before and
easily show that for c0 = inf I0 the solution does not diverge to any of the
infinities, is positive and decreases, hence it is a ground state. Let us point out
that even though this procedure does not depend on the dimension of the space,
some additional assumptions regarding d may be needed for the conditions
above to apply. For example, in case of SNH system we had to assume d ≥ 6
to show that for c = 0 the solution u is positive. However, a quick numerical
check shows that it should be true also for subcritical dimensions. Hence, the
described ground state does exist also in subcritical dimensions.

Existence of the ground states of Eq. (4.4) for any u(0) = b > 0
has been rigorously proven in [F2] using the shooting method combined
with techniques of functional analysis and dynamical systems. Here, we
would like to show a more heuristic reasoning relaying on some physical
intuitions and based on the same approach that we used for SNH system.
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Since in Eq. (4.4) the parameter ω is the only unknown, no reformulation
is needed and we can just use frequency as a shooting parameter.

The first two steps are analogous to SNH system. It turns out
that here also taking ω = 0 implies that the solution u is positive. To
prove this we again assume for contradiction that u(R) = 0 for some
R > 0. Then multiplying Eq. (4.4) by u rd−1 and u′ rd, respectively,
and integrating over the interval [0, R] gives

−
∫ R

0

u′2rd−1dr −
∫ R

0

r2u2rd−1dr +

∫ R

0

u4rd−1dr = 0,

u′(R)2Rd + (d− 2)

∫ R

0

u′2rd−1dr − d

2

∫ R

0

u4rd−1dr

+(d+ 2)

∫ R

0

r2u2rd−1dr = 0.

This time we obtained two formulae consisting of four terms, so we can
get rid of one of them and get the identity

2u′(R)2Rd + (d− 4)

∫ R

0

u′2rd−1dr + (d+ 4)

∫ R

0

r2u2rd−1dr = 0.

As all terms on its left hand side are positive, it gives a clear contradic-
tion. Once again, this argument works only in critical and supercritical
cases (d ≥ 4), we will return to this observation in Section 4.4, when
discussing the Pohozaev identities. Regarding the limit of large values
of ω, this time we introduce r̃ =

√
ωr and ũ(r̃) = u(r). Then Eq. (4.4)

becomes

ũ′′ +
d− 1

r̃
ũ′ − ω−2r̃2ũ+ ω−1ũ3 + ũ = 0.

Taking the limit ω → ∞ we arrive precisely at Eq. (4.17) and the anal-
ysis performed for SNH applies. Also the non-tangency of the solutions
is trivial in this case. The only result that requires more work is the
trichotomy.

In the proof of the trichotomy for SNH the key observation was
that h is a decreasing function of r, as it greatly restricted the possible
behaviour of the solution u. In particular, as an intermediate step we
showed that if the solution of SNH exists for sufficiently large r, it is
monotonic. For GP equation such result is unavailable, as one can see in
Fig. 4.6 the solution u for larger r is oscillating rather than monotone.
Hence, we need to use another approach. When showing the global
existence of the solutions, we were considering GP equation in variables
t = r2/2 and w(t) = u(r)/r, so the system was described by Eq. (4.13).
We will now take a moment to study this equation.

Equation (4.13) can be interpreted as an equation describing the
motion of a unit mass particle in a time-dependent potential given by

U =
1

4
w4 − 1

2
w2 +

d− 1

8t2
w2 +

ω

4t
w2,
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Figure 4.10: Shapes of the potential U as time t increases. The sec-
ond plot demonstrates the situation at the critical time t = (ω +√
ω2 + 4(d− 1))/4, while the fourth one shows the limit as t→ ∞.

where w is the position of the particle and t plays the role of time, in
the presence of some specific friction. Then the energy of such particle
is given by E = ẇ2/2 + U , i.e. Eq. (4.14). Hence, the investigations of
this system may be reduced to the problem from classical mechanics.
For small values of t the potential in which the particle is moving has
a single minimum at w = 0, but as time goes on, the neighborhood
of this point gets flatter and at t = (ω +

√
ω2 + 4(d− 1))/4 we have

a transition of this w = 0 to a maximum. At the same time two new
minima emerge at w = ±

√
4t2 − 2ωt− (d− 1)/2t and the potential U

becomes W-shaped (Fig. 4.10). As t → ∞, the potential tends to the
limit of w4/4 − w2/2 with minima at w = ±1 (and the whole system
reduces to ẅ + w(w2 − 1) = 0). As a result, the physical intuition
tells us that w = ±1 and w = 0 are the only viable limiting points of
w as t → ∞. If the solution w is converging to 0, it happens at the
exponential rate, so in the original variables we also have u(r) → 0.
Otherwise, we have w(t) → ±1 which translates to u(r) → ±∞. Hence,
we get the trichotomy.

Finally, the observations regarding the possibilities of creation of
new stationary points also hold in the case of GP (a sample phase dia-
gram for this case can be seen in Fig. 4.11). This time we have

u′′(0) = −
b
(
b2 + ω

)
d

, u′′′(0) = 0, u′′′′(0) =
3b
(
3b4 + 4b2ω + ω2 + 2d

)
d(d+ 2)

.

Therefore, we see that for ω > 0 (in Section 4.4.1 we show that this
condition holds for stationary states of GP equation in critical and su-
percritical dimensions) no new stationary point can emerge from r = 0.
Let us now assume that there exists a positive, decreasing inflection
point at R. Then it holds [R2−ω−u(R)2]u(R) = 0. Since u is decreas-
ing, for a slightly larger value of r the left hand side of this expression
becomes positive. However, then u′′ and u′ are negative and Eq. (4.4)
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Figure 4.11: "Phase diagram" of solutions u to Eqs. (4.4) for d = 5
and b = 1. Solid lines denote values of ω and r such that u(r) = 0
and for the dashed lines u′(r) = 0. The crosses indicate places where
u′(r) = u′′(r) = 0.

cannot be satisfied. Hence, we obtained the last needed ingredient and
we can conclude that for every b > 0 there exists a frequency ω such
that the solution u of Eq. (4.4) is a ground state.

Similar analysis as for SNH and GP systems can be also done for
other nonlinear Schrödinger equations. The details regarding some of
the assumptions needed for the procedure to work may differ signifi-
cantly, in some cases requiring much more work.

4.2.3 Excited states

The method we have used to construct the ground state can be easily extended
to give us also the excited states. We want to show now that for every b > 0
and n ∈ N+ there exists a bound state of Eq. (4.9) for which u crosses zero
exactly n times. The main role here will be played by two facts: 1) in the limit
c → ∞ the solution oscillates around zero indefinitely (as seen in Fig. 4.7),
2) the solution is absolutely monotone from some point. Then, 1) lets us find
for any n a sufficiently large c, such that the solution u crosses zero at least n
times, while 2) ensures that as c increases and new zeroes of u appear, they do
so separately. We will see the details while proving the existence of the first
excited state.

Let us define the following set:

I1 = {c ≥ 0 | ∃ 0 < r0 < ρ1 < r1 : u(r0) = u(r1) = 0 and u′(ρ1) = 0 while,
u(r) > 0, u′(r) < 0 for r ∈ (0, r0), u(r) < 0, u′(r) < 0 for r ∈ (r0, ρ1),

and u(r) < 0, u′(r) > 0 for r ∈ (ρ1, r1)}.

Even though its definition may look rather complicated, the idea behind it is
to simply mimic the shape of the plot of ũ∞ from r̃ = 0 up to the second zero
(as shown in Fig. 4.9b). Then, as for large c the shape of u resembles ũ∞ (on
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Figure 4.12: Potentially possible shape of the solution u1. Zeroes are here
denoted by A and D, a local minimum by C, and an inflection point by B.

some initial interval), we know that I1 ̸= ∅ and we can define c1 = inf I1. Once
again we claim that for c1 the solution u, let us call it u1, is the solution we are
looking for: the first excited state. To prove it, we need to study the inflection
points of solutions to Eq. (4.9a) in a slightly larger detail.

We already know that there are no positive decreasing nor negative increas-
ing inflection points, but what about the other possibilities? Let us consider a
situation as shown in Fig. 4.12, i.e. a solution u having a decreasing negative
inflection point. Then Eq. (4.9a) tells us that at point B it must hold h(r) = r2.
As h is a decreasing function, in the minimum C we have (h− r2)u > 0. But
there u′ = 0 and u′′ > 0 giving us a contradiction. Hence, after a negative de-
creasing inflection point (and analogously for a positive increasing one) there
can be no extremum (and in general no stationary point). This result shows
us that u1 cannot have any inflection point, because c1 = inf I1.

Now we claim that u1 cannot have two zeroes as then, similarly to the
case of the ground state, small changes of c would keep the solution u in I1
contradicting c1 being the infimum. It cannot have no zeroes either, as c1 =
inf I1 so some arbitrarily small increase in c would result in the simultaneous
creation of two zeroes. However, new zeroes can emerge only from infinity and
for r >

√
c there can be no positive maximum, nor negative minimum. As

a result only one zero can appear at a time, giving a contradiction. Hence,
u1 must cross the horizontal axis exactly once. It is then obvious that u1
cannot diverge to +∞. Now we assume that it goes to −∞. If this happens
monotonically, then small changes of c cannot produce a minimum (there can
be no negative minimum of u for r >

√
c) contradicting c1 = inf I1. If there

are some stationary points along the way, small changes of c will not remove
them, so there exists a neighborhood of c1 separated from I1 – contradiction.
Hence, by the trichotomy we have u1 → 0 crossing zero exactly once – the first
excited state. As before, we may now calculate the frequency ω = limr→∞ h(r)
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Figure 4.13: Potential number of zeroes of solution u for different values of c.

and get the first excited state of Eq. (4.6).
This procedure can be repeated for any n ∈ N+ implying the existence of

the n−th excited state. In such case, the subset of R giving the proper value
of c as an infimum can be defined generally as:

In = {c ≥ 0 | ∃ 0 = ρ0 < r0 < ρ1 < r1 < ... < ρn < rn :

u(r0) = u(r1) = ... = u(rn) = 0

and u′(ρ1) = ... = u′(ρn) = 0 while between them it holds
u(r) > 0 and u′(r) < 0 for r ∈ (ρ2k, r2k),

u(r) < 0 and u′(r) < 0 for r ∈ (r2k, ρ2k+1),

u(r) < 0 and u′(r) > 0 for r ∈ (ρ2k+1, r2k+1),

u(r) > 0 and u′(r) > 0 for r ∈ (r2k+1, ρ2k+2)}.

Once again, this rather complicated definition just describes the initial shape
of ũ∞, this time up to (n + 1)-th zero. Hence, we are able to define the
whole ladder of excited states given by cn = inf In, and then a whole ladder
of solutions to Eqs. (4.6), being excited states with frequencies ωn. Let us
point out here that even though the method we presented is constructive, we
do not know at this point whether we have found all spherically symmetric
bound states. In principle, it is possible that there exists a whole interval of c
giving some bound state, or there may be numerous separated values c giving
bound states with the same number of zeroes (such situation might happen if
the number of zeroes of u changes with c as shown in Fig. 4.13). We discuss
this matter further in Section 4.3.

As in the case of the ground state, the features needed to perform the
reasoning above can be easily summarized. Let us have a NLS equation with
some free parameter c and satisfying:

• For some value of the parameter c the solution u is positive.

• There exists a (possibly limiting) solution that oscillates indefinitely.

• There is a trichotomy: solutions of the equation either diverge to one of
the infinities (possibly in a finite time) or converge to zero.

• The equation has a non-tangency property, i.e. if a solution u satisfies
u(r0) = u′(r0) = 0 for some r0 then u ≡ 0.
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• There is some mechanism letting us to control the creation of new sta-
tionary points as c changes.

• As c changes, new zeroes of u come from infinity separately.

Then one can repeat the presented logic and show the existence of spherically
symmetric bound states with any prescribed number of zeroes. When compar-
ing these conditions with the ones sufficient for the ground state, we see that
here we need a stronger control on the creation of new stationary states, ad-
ditional control on the emergence of new zeroes and a way to obtain solutions
with arbitrarily many oscillations.

Just as in the case of the ground state, the mechanisms behind
these assumptions may vary. For GP one can reason heuristically and
try to use the point mass in the potential well picture. Then the n-th
excited state translates to the solution where the point mass settles to
zero after making n oscillations. In this picture it is rather intuitive that
the additional conditions needed to show the existence of excited states
hold. In principle, it should be possible to give a strict proof of this fact
using just simple ODE methods, in a manner similar to [32].

4.2.4 Singular solutions

So far we have been studying solutions with a fixed finite b > 0. One may
wonder what happens if the value of b gets larger and larger. The limiting
case of such procedure would be a singular solution – solution to Eqs. (4.6)
satisfying limr→0 u(r) = ∞. We would like to end this section with a short
discussion of the existence of ground and excited singular states.

As before, we will be using the formulation given by Eq. (4.9). The first
step is to factor out the singular behaviour of the solution near zero. To this
end, let us introduce the rescaled variables for some finite b > 0:

ρ =
√
b r, U(ρ) =

u(r)

b
, H(ρ) =

h(r)

b
.

Then Eqs. (4.9) can be rewritten as
U ′′ +

d− 1

ρ
U ′ − b−2ρ2U + UH = 0,

H ′′ +
d− 1

ρ
H ′ + U2 = 0.

(4.19a)

(4.19b)

In the limit b → ∞ this system can be reduced to a single equation if we
assume H = U (such solution is called synchronised):

U ′′ +
d− 1

ρ
U ′ + U2 = 0. (4.20)
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This is a d-dimensional Lane-Emden equation with quadratic nonlinearity. It
has a singular solution U(ρ) = 2(d− 4)/ρ2. Hence, we would like to factor out
such behaviour by defining new functions ũ and h̃ such that:

u(r) =
2(d− 4)

r2
ũ(r), h(r) =

2(d− 4)

r2
h̃(r).

Then Eqs. (4.9) become
ũ′′ +

d− 5

r
ũ′ +

2(d− 4)

r2
(ũh̃− ũ)− r2ũ = 0,

h̃′′ +
d− 5

r
h̃′ +

2(d− 4)

r2
(ũ2 − h̃) = 0.

(4.21a)

(4.21b)

For small values of r the harmonic term in Eq. (4.19a) may be neglected
and the solutions u and h are expected to behave like 2(d− 4)/r2. It suggests
that the proper initial conditions for the solutions are ũ(0) = h̃(0) = 1. At
first sight it is not evident how to use the shooting method, because there is no
apparent shooting parameter here. However, due to the presence of singular
coefficients in Eqs. (4.21), ũ(r) = h̃(r) = 1 and ũ′(r) = h̃′(r) = 0 are not
sufficient as initial conditions. One can show that in supercritical dimensions
(d > 6), for every c ∈ R local solutions to system (4.21) behave as follows:

ũ(r) = 1− c rλ +O(r4), h̃(r) = 1 + 2c rλ +O(r4) (4.22)

where

λ =
−d+ 6 +

√
d2 + 4d− 28

2

(for the future reference let us point out that in supercritical dimensions 3 ≤
λ < 4). A rather technical derivation of this fact, based on the analysis of the
unstable manifold of an appropriate dynamical system and a series of estimates,
can be found in Appendix B (it is a slightly extended version of the proof
published in [F3]). Parameter c describing the asymptotic behaviour near
r = 0 is our desired shooting parameter. Now we will briefly argue that in
supercritical dimensions system (4.21) together with initial conditions given
by Eqs. (4.22) satisfies all the assumptions needed to show that the whole
ladder of excited states exists, similarly to the regular case.

One may easily show that for c < 0 the solution ũ is positive. To see it,
let us observe that then there exists a neighborhood of zero where ũ > 1 is
larger than 1 and h̃ < 1. If we assume that ũ has at some point maximum,
Eq. (4.21a) tells us that then h̃ > 1. However, from Eq. (4.21b) we know that
h̃ cannot have a minimum for ũ < 1, so we have a contradiction, hence ũ is a
positive, increasing function. From the continuous dependence on the initial
conditions we conclude the same for c = 0.
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To study the limit of large values of c it is convenient to introduce a new
variable: s = ln c1/λr (unfolding the radial variable into the whole line). Taking
c→ ∞ then changes system (4.21) into

¨̃u+ (d− 6) ˙̃u+ 2(d− 4)
(
ũh̃− ũ

)
= 0,

¨̃
h+ (d− 6)

˙̃
h+ 2(d− 4)

(
ũ2 − h̃

)
= 0,

(4.23a)

(4.23b)

where dots denote derivative with respect to s. The asymptotic behaviour
(4.22) translates to

ũ(s) = 1− eλs +O(e4s), h̃(s) = 1 + 2eλs −O(e4s)

as s→ −∞. Let us define a functional E:

E = ˙̃u
2
+

1

2
˙̃
h
2

− 2(d− 4)ũ2 − (d− 4)h̃2 + 2(d− 4)h̃ũ2.

Then it holds Ė = −2(d− 6) ˙̃u
2− (d− 6)

˙̃
h
2

< 0 and lims→−∞E(s) = −(d− 4).
Hence, for any s we have

−(d− 4) = lim
s→−∞

E(s) > E > (d− 4)(−2ũ2 − h̃2 + 2h̃ũ2)

giving (h̃ − 1)(h̃ + 1 − 2ũ2) > 0. The asymptotic behaviour of ũ and h̃ near
−∞ tells us that there exists s0 such that h̃+ 1 > 2ũ2 holds for s < s0. Then
we have ũ2 − h̃ < 1

2(1 − h̃) and the last term in the left hand side of Eq.
(4.23b) is negative for s < s0. It means that h̃ cannot have a maximum in
this interval and hence it is increasing. Then, also in (−∞, s0), Eq. (4.23a) is
a damped harmonic oscillator with increasing frequency. It means that we can
indefinitely extend the interval on which h̃+1 > 2ũ2 holds. As a result, ũ is an
oscillating function with decreasing amplitude over the whole half-line [0,∞).

The other property shared by regular and singular solutions to SNH equa-
tion are constraints on stationary points. To show them, it is convenient to
consider the function h instead of h̃. From Eq. (4.22) we know that near r = 0
its derivative behaves like

h′(r) = −4(d− 4)

r3
− 4c (d− 4)(λ− 2)rλ−3 +O(r). (4.24)

Hence, the limit of h′rd−1 as r → 0 exists and is equal to zero. We then have

h′(r) = − 1

rd−1

∫ r

0
u2(s) sd−1 ds, (4.25)

so h is a decreasing function of r also in the singular case. It means that
h̃/r2 = h/2(d− 4) is bounded from above in every interval (r,∞) with r > 0.
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As a result, Eq. (4.21a) can be analysed as the regular case: it turns out
ũ cannot have positive maxima, nor negative minima for sufficiently large r.
Also there can be no stationary points after a negative decreasing (or positive
increasing) inflection point. Some other key conclusions coming from these
results are the monotonicity of ũ from some point on and the fact that new
zeroes of ũ appear separately as c changes. We also point out that Eq. (4.22)
tells us that no new stationary points of ũ can emerge from zero.

The remaining assumptions are easy to check. As there are no singularities
for r > 0 in Eqs. (4.21), the non-tangency property is obvious. Also the
trichotomy property is simple as the solution ũ eventually becomes monotone.
Then it either diverges to one of the infinities or converges to a finite value.
Regarding the second case, if we rewrite Eq. (4.21b) in the form

ũ′(r) =
1

rd−5

∫ r

0

[
s2 +

2(d− 4)

s2
− 2(d− 4)

s2
h̃(s)

]
ũ(s)sd−5 ds

and use l’Hôpital’s rule it becomes apparent that limr→∞ ũ(r) = 0 as otherwise
we get a contradiction, just as in the regular case.

Having all these results, the same argument as in the regular case gives
the singular solutions: the ground state together with the whole ladder of the
excited states. Even though such solutions are usually deemed unphysical [7],
they will prove useful in Section 4.4 as limits of regular solutions when b →
∞. Let us point out that here we were assuming the supercritical dimensions
d ≥ 7. This is caused by the fact that in lower dimensions the character of the
eigenvalues of a linear system appearing in the proof of asymptotic behaviour
(4.22) changes and the proof is no longer valid (see Appendix B for the details).
In fact, in the critical dimension as b → ∞, the mass of the solution goes to
zero.

For other NLS equations the analysis of the singular solutions may
differ in a significant way from what we presented here. For example,
in case of GP equation (4.4), after we factor out the singular part by
introducing ũ such that u =

√
d− 3ũ/r, the study of the behaviour

near zero shows that there is no unstable manifold. This is a significant
difference when compared to SNH system, however it poses no problem
as ω may still play the role of the shooting parameter for singular GP
equation. For detailed proofs of the existence of singular solutions of
GP equation in supercritical dimensions (although considering only the
ground states) we refer to [F2] and [106] (see also [86]).

4.3 Uniqueness

Usually, the next natural question that one poses after showing the existence
of some solutions is the matter of their uniqueness. We would like to know
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whether the values of the shooting parameter c (and consequently frequencies
ω) giving n-th stationary state are uniquely defined.

We start by considering the regular ground states of SNH. Then the unique-
ness can be easily proved by the same method as presented in [29]. For two
positive solutions u1 and u2 one can define a Wrońskian W and then with some
minor changes it is possible to repeat the proof of Lemma 3.1 in [29] resulting
in the monotonicity of rd−1W (r). Since this combination is equal to zero at
r = 0 and the fast decay of the solution ensures that it also vanishes in infinity,
it must be zero indefinitely, giving us the uniqueness.

However, we would like to present here in a greater detail another proof.
This one is inspired by Proposition 1.1 in [54] and can be found in [F3]).
We prove by contradiction and assume that for some b > 0 there exist two
different initial values, c1 and c2, giving the solutions u1, h1 and u2, h2 that
are the ground states. Without loss of generality one may assume that c1 > c2.
Since we are considering the ground states, u1 and u2 are positive and the
function ρ(r) := u1(r)/u2(r) is well-defined. Of course, it satisfies ρ(0) = 1
and ρ′(0) = 0. To analyze the monotonicity of this function, it is convenient
to introduce δ(r) := h2(r) − h1(r) and µ(r) := rd−1 u2(r)

2 ρ′(r). They satisfy
µ(0) = µ′(0) = 0, δ(0) < 0, δ′(0) = 0, and are solutions to equations

µ′(r) = rd−1u2(r)
2 ρ(r) δ(r) (4.26)

and (
rd−1δ′(r)

)′
= −rd−1u2(r)

2
[
1− ρ(r)2

]
. (4.27)

In some neighborhood of r = 0 it holds µ < 0 implying that also ρ′ < 0 there.
It means that initially ρ is decreasing. This fact together with Eq. (4.27) leads
to the conclusion that δ is initially decreasing and stays so as long as ρ < 1.

Now we show that ρ′ < 0 indefinitely. Assume otherwise and let r0 be
the lowest argument for which ρ′ = 0. Then, in (0, r0) we have 0 < ρ < 1,
δ < 0, and µ′ < 0. But µ(r0) = 0 giving us a contradiction. As a result
ρ′ < 0 and µ is a decreasing function. The latter lets us to write for r > 1:
rd−1u2(r)

2ρ′(r) < u2(1)
2ρ′(1) < 0 giving

ρ′(r) <
u2(1)

2ρ′(1)

rd−1u2(r)2
< 0.

Using 0 < ρ < 1 once again we can integrate this inequality getting

−1 < lim
r→∞

ρ(r)− ρ(1) =

∫ ∞

1
ρ′(r) dr < u2(1)

2ρ′(1)

∫ ∞

1

dr

rd−1u2(r)2
< 0

As a result, the integral on the right-hand side is convergent. Now we can
use the fact that u2 decays exponentially and the Cauchy-Schwarz inequality
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yields the following contradiction:

∞ =

∫ ∞

1
dr =

∫ ∞

1
rd−1u2(r)

2 1

rd−1u2(r)2
dr

≤
(
rd−1u2(r)

2
)1/2( 1

rd−1u2(r)2

)1/2

<∞.

The uniqueness of c for the ground state of Eqs. (4.9) for a fixed b translates
to the uniqueness of ω for the ground state of Eqs. (4.6). Hence, in a fixed
dimension one can define a function ω(b) being the frequency of a ground state
for any b > 0. In the next section we investigate this function using both
analytical and numerical methods. In particular, we study how its qualitative
behaviour changes with the dimension.

Unfortunately, the presented approach employs some specific fea-
tures of SNH, such as the possibility of getting rid of ω, and in principle
may be impossible to repeat in case of other nonlinear Schrödinger equa-
tions. Even for a relatively simple GP, this line of reasoning seems to
fail. To see it, let us say that for Eq. (4.4) we want to show the unique-
ness of the frequency ω giving the ground state for some fixed b > 0. In
this case the analogue of Eq. (4.26) takes the form of

µ′ = rd−1u22 ρ
(
ω2u2 + u32 − ω1u1 − u31

)
. (4.28)

The more complicated form of the right-hand side of this formula ob-
structs the further analysis in the presented spirit. In particular, let us
assume that ω1 > ω2. Then near zero it holds u1 < u2, because

u′′(0) = −b
3 + ωb

d
.

If we assume ω1 < ω2, we get u1 > u2. As a result, the initial sign of
the expression on the right hand side of Eq. (4.28) cannot be established
as seen for SNH. The same obstacle emerges when trying to adapt the
uniqueness proof from [29] to GP equation.

The reasoning giving the uniqueness of regular ground states of SNH can
be applied, with only minor changes, to show that the singular ground state is
also unique. This time we also assume that there exist two different positive
solutions ũ1, ũ2 to Eqs. (4.21). They behave near zero like Eq. (4.22) with
different parameters c1 and c2, respectively. Without loss of generality we
assume c1 > c2. We can again define ρ as the ratio ũ1/ũ2 and δ as the difference
h̃2 − h̃1. Then the asymptotic behaviours tell us that near zero ρ < 1, while
the equation satisfied by δ(

rd−5δ′(r)
)′

= 2(d− 4)rd−7
[
ũ2(r)

2
(
ρ(r)2 − 1

)
+ δ(r)

]
,
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gives us δ < 0 there. Defining µ = rd−5ũ22ρ
′ yields

µ′(r) = 2(d− 4)rd−7ũ2(r)
2δ(r).

Now, one may use these auxiliary functions in exactly the same way as in the
regular case to get a contradiction (the only non-obvious point is the observa-
tion that ũ2 ∈ L(Rd), but it is analogous to the regular case). Let us also point
out that, similarly to the proof of the existence of singular solutions, here we
also assume d ≥ 7. As a result, we get a unique singular ground state for every
such dimension. Its frequency will be denoted by ω∞ in the following.

So far, this section was concentrated only on the ground states. The reason
for it is simple: the uniqueness of excited states of nonlinear elliptic equations
is a very challenging and in most cases open problem [62]. The existing results
are extremely scarce and apply to rather specific cases, assuming a specific
form of the nonlinearity [113] or imposing very strong growth conditions [33].
Even with these restrictions, they focus only on the first excited (the authors
[113] claim that extension of their method to higher states should be possible,
although technically challenging). Recently, a new approach emerged [32]: to
give a computer-assisted proof using the methods of validated numerics [114].
With this method, the authors of the cited paper were able to show that the
equation −∆u + u − u3 = 0 has a unique set of initial conditions u(0) = b,
u′(0) = 0 giving a spherically-symmetric bound state with exactly n zeroes,
as long as n ≤ 20. Unfortunately, also this technique does not seem to be
applicable in our case – the use of validated numerics restricts us to single
values of b, we are not able to prove the uniqueness for all b at one time, as
we did for the ground states. In principle, it should be possible to use the
continuous dependence of solutions on b to extend this result to some finite
range of b, but all b > 0 seem to be out of reach. However, the numerical
observations suggest that the excited states (at least the lower ones) are also
unique, in the same sense as the ground states. It also means that the situation
presented in Fig. 4.13 does not take place.

4.4 Behaviour of ω(b)

Observations regarding uniqueness (based either on rigorous arguments or nu-
merical results) let us define a function ωn(b) being the unique frequency of
the n-th state for some central value b > 0. In this section we study its proper-
ties in various dimensions. We focus especially on its behaviour for small and
large values of b. We also present numerical results for SNH and other relevant
systems.
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4.4.1 Preliminaries

First, we would like to introduce the notation that will be used in this section
and Chapter 5. In the following it will be handy to work with a scalar product
given by

⟨f, g⟩ =
∫ ∞

0
f̄(r)g(r) rd−1 dr.

The norm associated with this scalar product will be denoted simply by ∥ · ∥.
Let us also point out that even though the presence of the complex conjugation
is meaningless here, as we consider only real solutions, it will become relevant
in the next chapter where the stability is discussed. The other useful notion
regards solutions of the linearized Eq. (4.1). By en we will denote n-th radially
symmetric eigenfunction (enumerated by the number of nodes, so e0 is a ground
state) of −∆+ r2. The eigenvalue to the function en will be denoted by Ωn, so
one has −∆en + r2en = Ωnen. We additionally impose the normalization with
respect to ∥ · ∥ on en, so explicitly it holds

en(r) =

√
2n!

Γ
(
n+ d

2

)L( d
2
−1)

n (r2)e−
r2

2 , Ωn = d+ 4n, (4.29)

with L
(α)
n being the generalised Laguerre polynomials. Even though we focus

here on SNH equation, in this section and the next chapter it will be sometimes
handy to use en and Ωn instead of the explicit expressions. Then, the obtained
formulas can be easily adapted to describe other NLS equations. In the same
spirit it will be often beneficial to use Eq. (4.3) instead of Eq. (4.1), namely,
hide the exact forms of potential and nonlinearity behind V and F .

Since Eq. (4.2) has the same linear part as Eq. (4.1), GP has exactly
the same eigenfunctions en and eigenvalues Ωn as SNH. In the case of
general Eq. (4.3), these quantities need to be replaced by the eigenfunc-
tions and eigenvalues of −∆+ V (i.e. satisfying −∆en + V en = Ωnen).

For a moment, let us focus on the ground states and let u be a positive
solution of Eq. (4.1) with some frequency ω0. As mentioned, we may write
it as Eq. (4.3) with V = |x|2 and F = Ad(|u|2 ∗ |x|−(d−2))u. Then ω0u =
−∆u+ V u− F and

0 = ⟨e0,−∆u+ V u− F − ω0u⟩ = ⟨e0, (−∆+ V )u⟩ − ⟨e0, F ⟩ − ω0⟨e0, u⟩
= ⟨(−∆+ V )e0, u⟩ − ⟨e0, F ⟩ − ω0⟨e0, u⟩ = Ω0⟨e0, u⟩ − ⟨e0, F ⟩ − ω0⟨e0, u⟩
= (Ω0 − ω0)⟨e0, u⟩ − ⟨e0, F ⟩ .

In the third equality we used the self-adjointness of −∆+V with respect to our
scalar product. Since both u and e0 are positive, it follows that ⟨e0, u⟩ > 0.
Also F is positive, so for ω0 > Ω0 one gets a contradiction. It means that
ω0 ≤ Ω0 = d, giving us the upper bound for the ground state frequency of
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SNH. Of course, this line of argumentation ceases to work for the excited
states, as u is no longer a positive function.

Clearly this reasoning is very general and works for any NLS with
focusing nonlinearity, i.e. such equations that F is positive. Hence, also
for GP it holds ω0 ≤ Ω0 = d. Of course, for other trapping potentials,
the value of Ω0 changes accordingly.

The lower bounds for ωn are given by the so-called Pohozaev identities [98].
We may obtain them in a similar way as we showed that for c = 0 the solution
u to Eqs. (4.9) is positive, but this time we use Eqs. (4.6). Let us assume that u
and v describe a bound state of this system (it may be either the ground state
or any excited state). Then Eq. (4.6a) can be multiplied either by u rd−1 or
u′ rd and integrated over (0,∞) in each of these cases. An analogous operation
can be done for Eq. (4.6b), but with v rd−1 or v′ rd. Since the solutions decay
sufficiently fast in infinity, some terms may be integrated by parts with the
boundary terms discarded. As a result, we get the following four identities:

−
∥∥u′∥∥2 − ∥ru∥2 + ω ∥u∥2 −

∫ ∞

0
u2v rd−1 dr = 0,

(d− 2)
∥∥u′∥∥2 + (d+ 2) ∥ru∥2 − ωd ∥u∥2 +

∫ ∞

0
u2v′ rd−1 dr

+d

∫ ∞

0
u2v rd−1 dr = 0,∥∥v′∥∥2 + ∫ ∞

0
u2v rd−1 dr = 0,

(d− 2)
∥∥v′∥∥2 − 2

∫ ∞

0
u2v′ rd−1 dr = 0.

(4.30a)

(4.30b)

(4.30c)

(4.30d)

Once again, they can be combined in such a way that some of the terms
disappear giving us, for example,

(d− 6)
∥∥u′∥∥2 + (d+ 2) ∥ru∥2 = ω(d− 2) ∥u∥2 .

For d ≥ 6, i.e. for critical and supercritical dimensions, both terms on the
left-hand side are positive, hence, we must have ω ≥ 0. Let us recall that we
did not assume anything about the nature of the bounds state, hence for every
n we have ωn ≥ 0. Even though during these calculations we were utilizing
the spherical symmetry of our solutions, they can be repeated in full generality
without this assumption (see [117]).

Interestingly, if we restrict ourselves to the supercritical dimensions (d > 6),
this bound may be improved. Combining Eqs. (4.30) in a slightly different
manner it is possible to obtain

8 ∥ru∥2 − (d− 6)

∫ ∞

0
u2v rd−1 dr = 4ω ∥u∥2 . (4.31)
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Now we recall that d is the smallest eigenvalue of the linear operator −∆ +
r2. As en constitute the Schauder basis of L2(0,∞), any solution u can be
represented in this basis. Then, it is obvious that ∥u′∥2 + ∥ru∥2 ≥ d∥u∥2.
Using this inequality together with Eqs. (4.30a) and (4.31), we get

d∥u∥2 ≤ ∥u′∥2 + ∥ru∥2 = ω ∥u∥2 −
∫ ∞

0
u2v rd−1 dr

= ω ∥u∥2 + 4ω

d− 6
∥u∥2 − 8

d− 6
∥ru∥2,

which for d > 6 gives the improved lower bound

ω ≥ d− 4

d− 2
+

8

d− 2

∥ru∥2

∥u∥2
≥ d− 4

d− 2
=
d− 6

d− 2
d.

Analogous calculations for GP lead to the Pohozaev identity

(d− 4) ∥u′∥2 + (d+ 4) ∥ru∥2 = ωd ∥u∥2 .

Here also the criticality of the dimension is crucial, as only for d ≥ 4 we
get the constraint ωn ≥ 0. In fact, this observation can be made also for
other nonlinearities: the Pohozaev identities forbid our systems to have
solutions with negative frequency in critical and higher dimensions. As
an example, let us take Eq. (4.3) with V = |x|n and F = up, then one
gets (

d+
p+ 1

p− 1
n

)
∥rn/2u∥2 +

(
d− 2

p+ 1

p− 1

)
∥u′∥2 = ωd∥u∥2.

In such case for this argumentation to work (of course, assuming that all
present integrals are convergent), one needs to assume d ≥ 2(p+1)/(p−
1) being precisely the condition for critical and supercritical dimensions.

If the considered system is in a supercritical dimension, also the
improved bound can be obtained. Calculations analogous to the SNH
case give then

ω ≥ Ω0 −
2(p+ 1)

(p− 1)d
+

(p+ 1)(n+ 2)

(p− 1)d

∥rn/2u∥2

∥u∥2
≥ Ω0 −

2(p+ 1)

(p− 1)d

For GP it means that ω ≥ d− 4/d.

4.4.2 Small and large values of b

The precise shape of ωn(b) for any n cannot be obtained analytically and can
be studied only numerically, as we do in the next subsection. However, for very
small and very large values of b it is possible to get some approximate results,
as we proceed to show here.



4.4. BEHAVIOUR OF ω(B) 61

Solutions of SNH with very small b can be investigated with the aid of the
bifurcation theory. For brevity, let us use again Eq. (4.3) with V and F given
by (4.1). Then we may rewrite it as A(ω, u) = 0, where A is a functional on
R× Σ (Σ is a function space defined in Section 3.2) given by

A(ω, u) = −∆u+ V u− F (u)− ωu. (4.32)

Since A(ω, 0) ≡ 0 we can see that zero solutions satisfy our equation for every
ω giving us a line in R × Σ. We would like to find the values of ω for which
new solutions bifurcate from this line. The implicit function theorem tells us
that it is possible only when the linear operator

Au(ω, 0)[w] = −∆w + V w − ωw (4.33)

is not invertible. It means that ω is the eigenvalue, hence it is equal to one
of Ωn. Then the standard local bifurcation theory [2] says that from the line
u ≡ 0 in Ωn there emerges a pair of solutions given by

u = ±
√

(Ωn − ω)anen +O(|Ωn − ω|), (4.34a)

where

an = 6
⟨en,Aω,u(Ωn, 0)[en]⟩

⟨en,Au,u,u(Ωn, 0)[en]3⟩
(4.34b)

Obviously Aω,u(Ωn, 0)[en] = −en, so the numerator is equal to −1 (because
our functions en are normalized). However, to calculate the denominator we
need to bring back the explicit formula for F . Then the calculation gives

Au,u,u(Ωn, 0)[en]
3 = −6Ad

(∫
Rd

|en(y)|2

|x− y|d−2
dy

)
en.

This expression can be simplified with the use of the Newton formula (4.7),
giving

⟨en,Au,u,u(Ωn, 0)[en]
3⟩ = − 6

d− 2

∫ ∞

0

∫ ∞

0

en(r)
2en(s)

2 rd−1sd−1

max{r, s}d−2
dr ds.

The double integral on the right-hand side does not have an explicit form that
is valid for any d and n, so for now we will denote it as Snnnn. Then an =
(d− 2)/Snnnn and we get an expression for small solutions u with frequencies
close to Ωn = d+ 4n:

un =

√
d− 2

Snnnn
(d+ 4n− ω)1/2en +O(|d+ 4n− ω|).
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We have restricted ourselves here only to the positive branch. Remembering
that u(0) = b, the approximate formula for ω(b) follows:

ωn(b) = d+ 4n− Snnnn
(d− 2)en(0)

b2 +O(b3).

For the ground state S0000 = 21−
d
2 /Γ(d/2) and e0(0) =

√
2/Γ(d/2), hence

u0 =

√
2

d
2
−1(d− 2)Γ (d/2)(d− ω)1/2e0 +O(|d− ω|),

ω0(b) = d− b2

2d/2(d− 2)
+O(b3).

(4.35a)

(4.35b)

The expressions (4.34) can be applied to other NLS equations with
cubic nonlinearities. For GP the coefficient a0 takes the form

an =

(∫ ∞

0

en(r)
4rd−1 dr

)−1

.

Once again, there is no compact expression for an, but for the ground
states it can be simplified to a0 = 2

d
2−1Γ(d/2). Then

u0 =

√
2

d
2−1Γ (d/2)(d− ω)1/2e0 +O(|d− ω|),

ω0(b) = d− b2

2d/2
+O(b3).

If the nonlinearity in Eq. (4.3) is of higher order than cubic, the
formulae above do not work anymore and a separate treatment is needed.
As an example, for V = |x|2 and F = |u|4u the bifurcation analysis
shows that the small ground states are given by

u0 = 3d/8(d− ω)1/4e0 +O(|Ωn − ω|1/2),

ω0(b) = d− b4

3d/2
+O(b5).

Let us point out that the behaviour of ω(b) for small b is determined
by both the potential V and nonlinearity F . The latter determines the
bifurcation scheme and so impacts the shape of the branch. However, the
former not only establishes locations of the bifurcation points (via linear
part eigenvalues) but also influences the shape of the branch through
the eigenfunctions present in the relevant expressions.

Having established the behaviour of ω(b) for small central values b, we
now move to the opposite case and investigate the behaviour for large b. This
time, instead of the bifurcation theory, we will use some simple tools from the
field of dynamical systems. Let us recall that we have already encountered a
similar problem when studying the singular solution. We return to Eq. (4.20)
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obtained as a synchronised solution in the limit b → ∞. Its analysis can be
simplified with the help of the Emden-Fowler transformation, reducing it to
an autonomous equation. Hence, let us introduce s = ln ρ and w(s) = ρ2U(ρ)
getting

w′′ + (d− 6)w′ − 2(d− 4)w + w2 = 0.

This system has fixed points at w = 0 and w = 2(d−4). We are interested in the
nontrivial one, since it corresponds to the singular solution U = 2(d − 4)/ρ2.
As we want to understand the behaviour of the system near this point, we
perform a linearization there. To do so, we introduce such function ν that
w(s) = 2(d− 4) + ν(s) and then drop all terms of orders higher than linear in
ν. This gives

ν ′′ + (d− 6)ν ′ + 2(d− 4)ν = 0.

The same equation was already encountered in the study of the singular prob-
lem in Appendix B as Eq. (B.3a). The nature of its eigenvalues depends on
the dimension d. If we introduce β = −d

2 + 3 and α1 =
√
|d2 − 20d+ 68|, we

may write them for 7 ≤ d ≤ 15 as β ± iα1, while for d ≥ 16 as β ± α1. The
change of their character takes place at d = 10 + 4

√
2 ≈ 15.66. The solutions

of this linear system are

ν(s) =

{
Aeβs sin(α1s+ δ) for 7 ≤ d ≤ 15,
Ae(β−α1)s +Be(β+α1)s for d ≥ 16,

where A, B, and δ are some real constants (we do not need their exact values,
so we use them here as some dummy variables – they may differ between
the following equations). Since this system is hyperbolic, one can use these
formulas to approximate solutions w:

w(s) ≈

{
2(d− 4)

[
1 +Aeβs sin(α1s+ δ)

]
for 7 ≤ d ≤ 15,

2(d− 4)
[
1 +Ae(β−α1)s +Be(β+α1)s

]
for d ≥ 16.

Finally, returning to the original variables, i.e. u(r) = b U(
√
br), yields

u(r) ≈


2(d−4)

r2

[
1 +A(

√
br)β sin(α1 ln

√
br + δ)

]
for 7 ≤ d ≤ 15,

2(d−4)
r2

[
1 +A(

√
br)β−α1 +B(

√
br)β+α1

]
for d ≥ 16.

(4.36)

We may expect this to be a good approximation of the solution in the interme-
diate range 1/b≪ r ≪ b. For smaller values of r it obviously cannot be right,
since it is a singular approximation of a regular solution. For larger values of
r the harmonic term we have omitted in the derivation of Eq. (4.20) starts to
dominate and the solution behaves like Eq. (4.11). This observation can be
used to get a formula for the behaviour of ω(b) for large b. Let us assume that
at some r0 both Eq. (4.36) and (4.11) give good enough approximations to the
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actual solution u. Both of these expressions depend on b, however the former
does it explicitly, while the latter through ω. Hence, for this fixed r0 we can
make an expansion u(r0) ≈ C0 +C1(ω − ω∞), where ω∞ was the frequency of
the singular solution. Now, we compare this formula with Eq. (4.36) keeping
only terms non-constant in b. As a result, we get

ω(b) ≈

{
Abβ/2 sin(α1

2 ln b+ δ) for 7 ≤ d ≤ 15,
bβ/2

(
Abα1/2 +B b−α1/2

)
for d ≥ 16.

(4.37)

Thus, in dimensions 7 ≤ d ≤ 15 the function ω(b) oscillates, while for d ≥ 16 it
is monotonic. This fact has many interesting implications, for instance, when
7 ≤ d ≤ 15 there exist an infinite number of ground states with frequency ω∞.
The situation changes drastically for d ≥ 16, where we get uniqueness in the
sense that for each ω there exists at most one ground state with this frequency.
Since our considerations were not assuming the positivity of the solution at
any place, the same shall hold for the excited states. This change of behaviour
also leads to some interesting observations regarding the stability of the ground
states, as we discuss in the next chapter.

The same considerations can be repeated for GP resulting in almost
the same outcome with one major difference: in this case the change of
behaviour happens between d = 12 and d = 13. This fact has been
noticed numerically in [104]. A rigorous proof of this result can be
found in [F2]. Similar effect has also been observed earlier in nonlinear
systems with compact domain, such as a ball [18, 19, 37, 71].

In the end of this analysis we want to point out an interesting feature char-
acteristic for SNH system. For small values of b it behaves like NLS equation
with a cubic nonlinearity (as can be seen during the bifurcation analysis in the
beginning of this subsection), while for large values of b it is well described by
NLS equation with quadratic nonlinearity (as shown in Section 4.2.4 and then
used in the present subsection). Such property is present also for other nonlo-
cal NLS equations, for example, when considering the more general version of
the Choquard equation [89] (SNH system is recovered by taking p = 2):

−∆u+ V u =

(∫
Rd

|u(y)|p

|x− y|d−2
dy

)
|u|p−2u,

similar analysis shows that for small b the system behaves as it had nonlinearity
of the form u2p−1, while for large b it is rather up.

4.4.3 Numerical results

Finally, we would like to verify numerically the results we got in this section.
We obtain plots of functions ω(b) by the means described in Section 4.2.1. The
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Figure 4.14: Plots of functions h(r) (dashed) and h(r) + r h′(r)/(d− 2) (solid)
for the ground state of SNH in d = 3 with b = 1.

only additional improvement is the way we extract the values of ω. As they
are equal to limr→∞ h(r), one needs to evaluate such limits. The convergence
of h(r) to ω is slow (see Fig. 4.14), especially in lower dimensions, therefore to
calculate this limit we proceed as follows. We integrate Eq. (4.9b) to

h′(r) rd−1 = −
∫ r

0
f(s)2sd−1 ds.

For large values of r the right hand is almost constant and equals the mass of
the solution (divided by the area of a (d−1)-sphere), let us call it M . Then for
large r it holds h′(r) ≈ −M/rd−1. By integrating this expression once more,
this time over the interval (r,∞), we get

ω ≈ h(r)− M

(d− 2)rd−2
≈ h(r) +

rh′(r)

d− 2

for large r. This expression converges much faster then h, see Fig. 4.14, and
we use it to find the value of ω.

The plots of functions ω(b) for the ground states in various dimensions
are presented in Fig. 4.15. We start with the subcritical case d = 3 (we do
not include the lower dimensions, since there the gravitational interpretation
of SNH system ceases to work). As pointed out in Section 3.2, in subcritical
dimensions the curve ω(b) bifurcates from d and then decreases indefinitely.
Indeed, such behaviour agrees with the plots for d = 3, 4, and 5. The situation
becomes more interesting in the critical dimension d = 6. As we showed
in Section 4.4.1, our function then must be contained in the interval [0, 6].
Numerical evidence shows us that it is indeed the case and that ω(b) saturates
these bounds (it is also consistent with the fact that the improved bounds
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Figure 4.15: Plots of function ω(b) for the ground states of SNH in various
dimensions. Horizontal dashed lines correspond to the position of the limiting
frequency ω∞.
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Figure 4.16: The close-up of the plot for d = 15 from Fig. 4.15 showing the
beginning of the oscillations.

d 6 7 8 9 10 11 12 13
ω∞ 0.000 5.504 6.885 8.161 9.363 10.515 11.623 12.717
d 14 15 16 17 18 19 20 21
ω∞ 13.783 14.834 15.873 16.903 17.926 18.944 19.958 20.968

Table 4.2: Limiting frequencies as b → ∞ in various dimensions d for the
ground states of SNH.

we described can be obtained only for the supercritical dimension). We also
point out that in this case the function ω(b) is monotonically decreasing. This
behaviour changes in the supercritical dimensions, as for d = 7 we can see
clear oscillations around ω∞. The amplitude of these oscillations decreases
as the dimension increases, and at some point they become invisible in these
plots. We zoom the relevant fragment of ω(b) plot for d = 15 in Fig. (4.16).
In dimension d = 16 this structure completely vanishes. Even though the lack
of oscillations is impossible to show in Fig. 4.15, in the next chapter we give
some other numerical evidence supporting this result. This situation remains
in higher dimensions, as we get plots of ω(b) that are monotonically decreasing
down to ω∞.

Another interesting observation coming from these plots are the values of
ω∞ in different dimensions. They are presented in Table 4.2. These results
show that as d increases, the value of ω∞ approaches d (implying that the
range of possible frequencies shrinks). Additionally, as Fig. 4.17 shows, this
dependence seems to be exponential. Its approximate form is d − ω∞(d) =
Ae−γd, where A ≈ 9.85 and γ ≈ 2.29.

We also can verify the behaviours of ω(b) for small and large values of b de-
rived in Section 4.4.2. However, while Eq. (4.35b) gives the approximate shape
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Figure 4.17: Dependence of d− ω∞ on the dimension d.
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Figure 4.18: Function ω(b) for a ground state in d = 6 (solid gray line) together
with approximations given by Eqs. (4.35b) and (4.37) (dashed black lines).

of ω(b) for b close to zero explicitly, Eq. (4.37) describing it for large b contains
some unknown constants and their values need to be fitted numerically. We
present both of these approximations for SNH in d = 7 in Fig. 4.18.

All the numerical results discussed so far regarded the ground state. Of
course, one may produce the analogous plots the for excited states. In Fig.
4.19 we show functions ω(b) for the ground state and the two lowest excited
states in the most interesting cases of d = 6 and d = 7. We can see that they
are qualitatively identical. This observation propagates to higher dimensions,
where the oscillations for the excited states also weaken as d increases and
finally vanish completely for d ≥ 16.

We present the plots of ω(b) for the ground state of GP in chosen
dimensions in Fig. 4.20. Comparing them with Fig. 4.15 shows almost
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Figure 4.19: Plots of functions ω(b) for the ground state and two lowest excited
states of SNH in critical and first supercritical dimension. The horizontal
dashed lines denote the positions of the limiting frequencies ω∞.

perfect qualitative similarity. The only major difference between these
results are the dimensions in which certain behaviours can be observed.
The oscillations appear above the critical dimension, which this time is
d = 4, and vanish between d = 12 and d = 13, as dictated by the analysis
of the eigenvalues of the appropriate dynamical system. A rigorous proof
of this result can be found in [F2]. The plots also agree with the bounds
on possible frequencies we obtained in the previous subsection.

One can investigate in a similar way other systems, for example, Eq.
(4.3) with harmonic potential and quintic nonlinearity F = u5. Then
the critical dimension is d = 3 and the plots of ω(b) for the ground states
in the corresponding dimensions look very similar to GP and SNH, as
can be seen in Fig. 4.21. There is, however, one interesting difference:
while SNH and GP in their critical dimensions saturate the bounds on
possible frequencies ω enforced by the Pohozaev identity, this is not the
case here, as ω ∈ [1, 3] instead of [0, 3]. One may want to investigate
this matter further by analysing other simple models with nonlinearities
F = up for some p in their critical dimensions. However, the only cases
that seem to be physically relevant are the ones where both p and d
are natural numbers (one usually also wants p to be odd), hence we
are left with p = 2 (in many ways similar to SNH), p = 3 (GP), and
p = 5 (qunitinc NLS) as the only possibilities. On the other hand,
one can increase the number of available options by making two simple
observations. First, changing the nonlinearity to F = |u|p−1u deals with
potential problems caused by taking the roots of negative numbers and
lets us use p that are not necessarily integer. Let us also point out that
since we are studying spherically symmetric solutions, the dimension d
just plays the role of a parameter in our equation. Hence, any value can
be imposed on it and we can easily consider also fractional dimensions.
Then, for each p > 1 we look at the ground states of Eq. (4.3) with
harmonic potential and F = |u|p−1u. In particular, it can be done in
critical "dimensions" d = 2(p + 1)/(p − 1) obtaining plots ω(b) of the
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Figure 4.20: Plots of function ω(b) for the ground states of GP in var-
ious dimensions. In relevant cases, the horizontal dashed lines denote
the position of the limiting frequency ω∞.
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Figure 4.21: Plots of function ω(b) for the ground states of NLS
with quintic nonlinearity in critical and supercritical dimensions.
The horizontal dashed lines correspond to the limiting frequencies
ω∞.
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Figure 4.22: Image of the function ω(b) for ground states of Eq. (4.3)
with harmonic potential and F = |u|p−1u in (not necessarily integer)
critical dimensions d. The relation between p and d here is given by
p = (d+ 2)/(d− 2).

same shape as before, but with various ranges of ω. These ranges are
marked in Fig. (4.22). The case of GP seems to be the border case,
as for the systems with higher critical dimensions we get the saturated
range ω ∈ [0, d], while for 2 < d ≤ 4 it holds ω ∈ [0, 4− d].

In most of our reasonings the explicit form of the potential did not
play any role – we just were using the facts that it is trapping and en-
sures fast enough decay of the solutions at infinity. To check this claim,
in Fig. 4.23 we show the plots of function ω(b) for the ground state of
Eq. (4.3) with F = u3 and various trapping potentials V that are in-
creasing faster (quartic potential V = r4) and slower (linear potential
V = r) than the harmonic one. We present plots for the most interesting
cases of the critical and the lowest supercritical dimensions in Fig. 4.23.
From the qualitative point of view, the results are the same as before.
The situation is more interesting for the Coulomb potential V = −1/r.
As this time the potential is negative, one cannot repeat the reasoning
giving us the lower bound from the Pohozaev identity. It is consistent
with the observation that now the bound states of the linear part have
negative frequencies. In particular, in the critical dimension the branch
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Figure 4.23: Plots of function ω(b) for the ground states of GP with
various potentials in critical and lowest supercritical dimensions.

ω(b) bifurcating from such negative frequency decreases indefinitely, as
seen in Fig. 4.23. In supercritical dimension the situation seems to be
similar to the previous cases. In the end, we study a system with poten-
tial V = (r2 − 1)2 which is trapping, but not monotonic. Interestingly,
for such choice the function ω(b) in the critical dimension is no longer
decreasing. In all these cases, for d = 5 we eventually get similar oscil-
lating plots. It is probably caused by the fact that the large b behaviour
is mainly controlled by the nonlinear term, while the potential term is
dominating for small values of b.
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Chapter 5

Dynamics

Now we return to Eq. (2.11) to briefly discuss the dynamical properties of
SNH system. We begin by investigating the stability of the stationary states
obtained in the previous chapter. This topic is covered in Section 5.1. It turns
out that some observations made earlier, such as the change of behaviour of
ω(b) between d = 15 and d = 16, have important implications also here.

The next natural step would be the study of a full evolution of Eq. (2.11).
However, potentially interesting phenomena are expected to occur for very large
times. Performing numerical simulations with adequate precision for such long
times seems to be rather challenging and is a topic that needs further work,
as we hint in Section 5.2. In return, in Section 5.2.1 we focus on the simpler
version of the problem given by the resonant approximation. This approach not
only simplifies the numerical calculations, but also lets us get some interesting
analytical results.

Most of the results presented in this chapter (except for the part regarding
the resonant system) are in some sense preliminary. Further work is needed to
achieve a better understanding of the dynamical behaviour of SNH equation
and similar NLS systems in supercritical dimensions.

5.1 Stability

To study the linear stability of the stationary states we need to introduce an
appropriate framework. Similarly to Section 4.4.2, it is more convenient to
work here with general Eq. (1.4), instead of a specific realisation such as SNH
equation. By u we will denote here the stationary state, i.e. the solution to
Eq. (4.3) that the stability we are investigating, while ω is its frequency. Small
perturbations of this solution can be described with the help of the following
ansatz

ψ(t, x) = e−iωt (u(x) + f(t, x) + ig(t, x)) . (5.1)

75
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Functions f and g are assumed here to be small (in comparison with |u|) and
real. It is also convenient to assume that the nonlinearity F can be factored
out to F (ψ) = G(ψ)ψ, where G(ψ) = G(|ψ|) (for SNH system G = Ad |ψ|2 ∗
|x|−(d−2)). Then, by inserting this ansatz into the nonlinear term we get

F (ψ) = G(ψ) · ψ = e−iωt (G(u+ f + ig) · (u+ f + ig))

≈ e−iωt (uG(u) + (f + ig)G(u) + uGu(u)[f ]) ,

where we have restricted ourselves to terms at most linear in f and g. Now we
may plug ansatz (5.1), together with this expansion of F (ψ), to the dynamical
equation (1.4). Using the fact that u, f , and g are real, we split the resulting
equation into real and imaginary parts:

∂tf =−∆g + V g − ωg −G(u) g,

∂tg =∆f − V f + ωf +G(u) f + uGu(u)[f ].

These equations can be written conveniently in a matrix form

∂t

(
f
g

)
=

(
0 L−

−L+ 0

)(
f
g

)
, (5.2)

where the linear operators in the antidiagonal are given by

L− := −∆+ V − ω −G(u),

L+ := −∆+ V − ω −G(u)− uGu(u).

(5.3a)
(5.3b)

The full linear operator present in Eq. (5.2) will be denoted by L.
Now let us assume that the vector (f, g) can be written as (α, β) eλt, where

α and β do not depend on time. Such ansatz transforms Eq. (5.2) to an eigen-
problem. Hence, the nature of the eigenvalues of L determines the stability
of our stationary states: if any of the eigenvalues has a positive real part, the
solution is linearly unstable. We can begin the study of this matter with the
following simple observations. Even though the operators L± are obviously
self-adjoint with respect to the scalar product introduced in Section 4.4.1, the
operator L is clearly not. However, it has another interesting property. Let α
and β be functions such that for some λ ∈ C

L
(
α
β

)
=

(
L−β

−L+α

)
= λ

(
α
β

)
, (5.4)

i.e. λ is an eigenvalue. Then one easily checks that

L
(
ᾱ
β̄

)
= L

(
α
β

)
= λ

(
α
β

)
= λ̄

(
ᾱ
β̄

)
,

L
(

α
−β

)
=

(
−L−β
−L+α

)
=

(
−λα
λβ

)
= −λ

(
α
−β

)
,

L
(

ᾱ
−β̄

)
= L

(
α
−β

)
= −λ

(
α
−β

)
= −λ̄

(
ᾱ
−β̄

)
.
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Hence, λ̄, −λ, and −λ̄ are also the eigenvalues of L. In a more geometric
picture, if some point in the complex plane represents an eigenvalue of L, then
so do its reflections with regard to the real and imaginary axes. It also means
that our system is unstable if Reλ ̸= 0.

5.1.1 Ground states

Since operator L is not self-adjoint, investigating its eigenvalues may in general
be difficult (as we will see in the next subsection). However, for the ground
states the situation simplifies greatly as one can decide the stability by using
the Vakhitov-Kolokolov criterion [115, 95]. To formulate it, let us go back to
the whole branch of ground states discussed in 4.4. In Fig. 4.15 we presented
the ground states in plots (b, ω). However, one can draw this branch in coordi-
nates (ω,M), where M is the mass of the solution (as before, for convenience
we divide it by the area of a d−1-sphere). Such plots, being just curves param-
eterized by b, for the ground states in various dimensions are presented in Fig.
5.1 (it can be seen that only in d = 3 there exist ground states with arbitrarily
large mass M, which agrees with the results mentioned in Section 3.2). Let us
point out that in general M(ω) is not a function, since for 7 ≤ d ≤ 15 there are
values of ω characterising multiple ground states. Nevertheless, in almost all
points the function M(ω) can be introduced locally, telling us how the mass
changes with ω as we move along the curve. Then, the Vakhitov-Kolokolov
criterion tells us that the ground state u is stable if M′(ω) < 0, L+ has exactly
one negative eigenvalue and L− is a non-negative operator.

One can immediately observe that for the positive solution u it holds L−u =
0. Hence, u is an eigenfunction to zero eigenvalue meaning L− is non-negative
and one of the conditions is satisfied. For L+ such a simple analysis will not
work, however, one can differentiate Eq. (4.3) over parameter b to show that
L+ ∂bu = ω′(b)u. This means that the extrema of ω(b) correspond to L+

having an eigenvalue equal to zero. This is just a sufficient condition, but it
lets us expect that the stability properties of the system change together with
the change of the behaviour of ω(b). However, in general one still needs to
check numerically whether the conditions on L+ and M′(ω) < 0 hold. The
explicit calculations are possible only in special cases, such as when b is small
so one can use the results of the bifurcation theory, as we now show.

We impose an additional restriction on the nonlinearity F (ψ): let it be
cubic in ψ (this holds for SNH and GP systems). Then the calculations made
in Section 4.4.2 apply and also for every µ > 0 it is G(µu) = µ2G(u). Equations
(4.35) together with the condition u(0) = b give us general expressions for u0
and ω0 for small b:

u0(r) = b
e0(r)

e0(0)
+O(b2), ω0(b) = Ω0 −

b2

a0e0(0)2
+O(b3). (5.5)
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Figure 5.1: Plots of M(ω) for the ground states of SNH in various dimensions.
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Thanks to them, we may write operators L± as

L− = −∆+ V − Ω0 +
b2

e0(0)2

(
1

a0
−G(e0)

)
+O(b3),

L+ = −∆+ V − Ω0 +
b2

e0(0)2

(
1

a0
−G(e0)− e0Gu(e0)

)
+O(b3).

These operators can be decomposed into L± = H+b2U±/e0(0)
2+O(b3), where

H = −∆+ V − Ω0, U− =
1

a0
−G(e0), U+ =

1

a0
−G(e0)− e0Gu(e0).

Hence, for small b we can treat L± as perturbations of the operator H and
study the eigenvalues of these operators using the perturbation theory. For
potentials V such as the trapping potential there is no degeneracy and these
eigenvalues are simply given by

λk,± = (Ωk − Ω0) +
b2

e0(0)2
⟨ek, U±ek⟩+O(b3).

Regarding the function M(ω), obviously M(ω(b)) = b2/e0(0)
2 +O(b3). Then

Eq. (5.5) leads to

M′(ω) =
dM(b)

db

(
dω(b)

db

)−1

= −a0 +O(b).

The definition of a0 suggests that in the focusing case it is positive, hence
M′(ω) is negative for small b.

Now we can use these formulas to investigate the stability of small ground
states of SNH system (2.11). Then en and Ωn are given by Eq. (4.29). We also
introduce

Sklmn =

∫ ∞

0

∫ ∞

0

ek(r)el(r)em(s)en(s)

max{r, s}d−2
rd−1sd−1 dr ds, (5.6)

agreeing with the previously defined Snnnn, so the terms coming from the
nonlinearity can be written as

⟨ek, G(e0) ek⟩ =
1

d− 2
Skk00, ⟨ek, Gu(e0) ek⟩ =

2

d− 2
Sk0k0.

All of these lead to

λk,− = 4k +
b2

2(d− 2)
Γ

(
d

2

)
(S0000 − Skk00) +O(b3)

λk,+ = 4k +
b2

2(d− 2)
Γ

(
d

2

)
(S0000 − Skk00 − 2Sk0k0) +O(b3).
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In principle, one could try to simplify these expressions using the fact that

Sk0k0 =
Γ
(
d
2 + 2k − 1

)
(d− 2)k! 2

d
2
+2kΓ

(
d
2

)
Γ
(
d
2 + k

) ,
however we believe there is no similar closed formula for Skk00, so we leave
Sklmn coefficients implicitly. Recall that S0000 = 21−d/2/Γ(d/2), so

λ0,− = O(b3) λ0,+ = − b2

2d/2−1(d− 2)
+O(b3).

The fact that λ0,− is zero up to the examined order is in agreement with
previous considerations regarding the positivity of L−. On the other hand,
for small values of b we have λ0,+ < 0, while λ1,+ > 0 (as it bifurcates from
Ω1 − Ω0 = 4), so L+ has a single negative eigenvalue. In the end, we check
that indeed

M′(ω) = −2d/2(d− 2) Γ

(
d

2

)
+O(b) < 0

for small values of b. In conclusion, thanks to the Vakhitov-Kolokolov criterion,
there exists such interval (0, b0) that for central field values b ∈ (0, b0), the
corresponding unique ground state is spectrally stable.

For larger values of b we calculate λ± and M numerically. Probably the
simplest way of doing it is by discretization with the use of the hat functions.
Since the stationary solutions we found converge to zero with r → ∞ rather
quickly, let us truncate their domain to some interval [0, R]. Now we can
divide it into N smaller intervals of length ∆ = R/N . Then we define the
family of N + 1 hat functions χn such that χn is a triangular function with a
support [(n − 1)∆, (n + 1)∆] and a maximum at n∆ (see Fig. 5.2). Finally,
for any stationary state u one can calculate the matrix elements ⟨χnL±χm⟩.
The matrices obtained this way can be then diagonalised with respect to the
matrix ⟨χn, χm⟩, giving us the approximate eigenvalues of L± operators. Let
us point out, that the biggest numerical cost in this procedure is introduced
by the term uGu(u) in L+ since all other terms give tri-diagonal matrices in
the hat function basis.

We present eigenvalues obtained with this method in Fig. 5.3. Together
with the results shown in Fig. 5.1 they let us conclude that in 7 ≤ d ≤ 15,
where ω(b) is an oscillating function, the stability is lost at the first maximum
of M(ω). Even though eventually M′(ω) < 0 again, in the mean time an
additional eigenvalue of L+ irreversibly loses its positivity (see Fig. 5.4) so the
solution remains unstable. In d ≥ 16 there is no such effect and the ground
states are stable indefinitely.

For GP system one can apply the same framework, although this
time the coefficient 1/(d−2) is absent, so one gets ⟨ek, G(e0) ek⟩ = Skk00
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Figure 5.2: Three first hat functions: χ0 (dotted), χ1 (dashed), and χ2 (solid).
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Figure 5.3: Eigenvalues of the operators L− and L+ for ground states of SNH
in d = 7 (top row) d = 15 (medium row) and d = 16 (bottom row).
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Figure 5.4: Eigenvalues of the operator L+ together with the plot of ω(b) (solid
and dashed lines, respectively, in left figure) and plot of M(ω) (right figure)
for ground states of SNH in d = 7. By A we mark the loss of stability of the
ground state, while B and C denotes places where the next eigenvalue of L+

becomes negative.

and ⟨ek, G(e0) ek⟩ = Sk0k0 where

Sklmn =

∫ ∞

0

ek(r)el(r)em(r)en(r) r
d−1 dr. (5.8)

This expression is much simpler than in the case of SNH system, as
it is completely symmetric in its indices and in some cases it can be
evaluated explicitly, for example

Snn00 =
Γ
(
d
2 + 2n

)
n! 2

d
2+2n−1Γ

(
d
2

)
Γ
(
d
2 + n

) .
Hence, one obtains

λk,− = 4k +
b2

2
d
2

(
1−

Γ
(
d
2 + 2k

)
4k k! Γ

(
d
2 + k

))+O(b3)

λk,+ = 4k +
b2

2
d
2

(
1−

3Γ
(
d
2 + 2k

)
4k k! Γ

(
d
2 + k

))+O(b3).

Also
M′(ω) = −2d/2Γ

(
d

2

)
+O(b),

so the ground states are spectrally stable for small values of b. Numerical
tests for larger values of b give a similar conclusion as for SNH system:
the ground states are stable for small b, but in dimensions where ω(b)
is oscillating (5 ≤ d ≤ 12) at some point they lose stability, while in
d ≥ 13 they stay stable indefinitely (this case was recently investigated
in a more rigorous way in [96]).

For SNH and GP systems the interesting effects, such as the change
of the profile of ω(b) and the difference in the stability for large b, happen
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in higher dimensions. Hence, one could ask whether there exists a similar
system for which such changes take place between dimensions 2 and 3
and can be observed experimentally. Unfortunately, it seems that such
an effect is impossible there (at least based on the same mechanism), as
we will try to argue now.

We began our analysis of the large b behaviour with the investigation
of the Lane-Emden equation

U ′′ +
d− 1

r
U ′ + Up = 0.

This equation with p = 2 was an approximation for the behaviour of
SNH equation with large b (and p = 3 would give such approximation
for GP equation). Similarly, by introducing ρ = bar and U(ρ) = u(r)/b
with some appropriate a one should be able to take the limit b→ ∞ and
obtain the same equation with some exponent p > 1 for other NLS equa-
tions of the form Eq. (4.3). Then performing the Emden-Fowler trans-
formation yields an autonomous system that can be linearized around
its nontrivial fixed point, giving an equation

ν̈ +

(
d− 2− 4

p− 1

)
ν̇ + 2

(
d− 2− 2

p− 1

)
ν = 0. (5.10)

We are interested in the situation in which the eigenvalues of this equa-
tion change from real to complex and vice versa, hence we examine the
discriminant of its characteristic equation being(

d− 4

p− 1
− 2

)2

− 8

(
d− 2

p− 1
− 2

)
= d2 −

(
12 +

8

p− 1

)
d+ 4

5p2 − 2p+ 1

(p− 1)2
.

This expression is zero if d and p satisfy one of these two conditions
(plotted in Fig. 5.5)

d = 2

(
3 +

2

p− 1
± 2

√
p

p− 1

)
.

Larger of these numbers corresponds to the gain of stability observed
in SNH and GP systems. In the limit p → ∞ it converges to d = 10,
hence these effects cannot be observed in lower dimensions. For d ≥ 11
the corresponding value of p is called the Joseph-Lundgren exponent
[71, 37, 41].

5.1.2 Excited states

For excited states there is no tool similar to Vakhitov-Kolokolov criterion, so
one has to investigate the stability by studying the spectral properties of L.
In general, it can be done numerically, but for small values of b one can again
perform an analysis based on the bifurcation results from Section 4.4.2.
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Figure 5.5: Dimensions d in which discriminant of the characteristic
equation for Eq. (5.10) is zero. The horizontal dashed lines indicate
the limits as p→ ∞.

Let us focus on the n-th excited state (with n = 0 being the ground state).
Then we may introduce operators analogous to the ones defined for the ground
state:

H = −∆+ V − Ωn, U− =
1

an
−G(en), U+ =

1

an
−G(en)− enGu(en).

They can be used to decompose the operator L. By discarding all terms of
higher order in b than quadratic we get:

L =

(
0 L−

−L+ 0

)
≈
(

0 H
−H 0

)
+

b2

en(0)2

(
0 U−

−U+ 0

)
=: H+ b2U .

We want to treat this problem using the perturbation method, with U being the
perturbation of H. However, H and U are not self-adjoint operators, hence we
must be careful during the implementation. Since it holds Hek = (Ωk−Ωn)ek,
the eigenvectors of H are given by

|ε(0)k,±⟩ =
1√
2

(
ek

±iek

)
,

and they satisfy H|ε(0)k,±⟩ = ±i(Ωk − Ωn)|ε(0)k,±⟩. Thus, the eigenvalues of L at

b = 0 are λ(0)k,± = ±i(Ωk − Ωn). Our goal is to get corrections of the order b2

to these values. We consider an eigenproblem L|εk,±⟩ = λ|εk,±⟩ and expand
the objects present there in formal series in the perturbation parameter b2:
λk,± = λ

(0)
k,± + b2λ

(1)
k,± + ... and |εk,±⟩ = |ε(0)k,±⟩ + b2|ε(1)k,±⟩ + ... with the zeroth

orders already known. Then at the first order in b2 our eigenproblem is

H|ε(1)k,±⟩+ U|ε(0)k,±⟩ = λ
(0)
k,±|ε

(1)
k,±⟩+ λ

(1)
k,±|ε

(0)
k,±⟩.
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This equation can be contracted from the left side with ⟨ε(0)k,±| giving

⟨ε(0)k,±|H|ε(1)k,±⟩+ ⟨ε(0)k,±|U|ε
(0)
k,±⟩ = λ

(0)
k,±⟨ε

(0)
k,±|ε

(1)
k,±⟩+ λ

(1)
k,±. (5.11)

If H was self-adjoint, the first terms on both sides of this equality would
be the same and we would get a simple expression for λ(1)k,±, as in the stan-
dard perturbation theory. Performing an explicit calculation shows us, how-
ever, that even though H is not self-adjoint, its special structure also leads to
⟨ε(0)k,±|H|ε(1)k,±⟩ = λ

(0)
k,±⟨ε

(0)
k,±|ε

(1)
k,±⟩. To see that, let us write |ε(1)k,±⟩ as

(
α
β

)
for a

moment. Then

⟨ε(0)k,±|H|ε(1)k,±⟩ =
∫

1√
2

(
ek

±iek

)†(
0 H

−H 0

)(
α
β

)
=

∫
1√
2
(ekHβ ± iekHα) =

∫
1√
2
(βHek ± iαHek)

= (Ωk − Ωn)

∫
1√
2
(βek ± iαek)

= ±i(Ωk − Ωn)

∫
1√
2
(ekα∓ iekβ)

= ±i(Ωk − Ωn)

∫
1√
2

(
ek

±iek

)†(
α
β

)
= λ

(0)
k,±⟨ε

(0)
k,±|ε

(1)
k,±⟩

For brevity, we have slightly simplified the notation in this derivation: all
integrations should be understood as

∫
f =

∫∞
0 f(r)rd−1 dr. As a result, Eq.

(5.11) can be reduced to

λ
(1)
k,± = ⟨ε(0)k,±|U|ε

(0)
k,±⟩

=

∫
1

2en(0)2

(
ek

±iek

)†(
0 U−

−U+ 0

)(
ek

±iek

)
= ± i

2en(0)2
(⟨ek, U−ek⟩+ ⟨ek, U+ek⟩) . (5.12)

The presented derivation applies only to the nondegenerate cases, when
all eigenvalues of H are simple. Even though it is true for the considered
operators H, it is possible for H to have eigenvalues of higher multiplicity, as
it may happen that there exist k ̸= l such that (Ωk − Ωn) = −(Ωl − Ωn).
Whether it is the case or not depends on the potential V . Since the following
calculations depend heavily on the choice of V , we fix it here to be the harmonic
potential V = r2. Then Ωk = d+ 4k and λ(0)k,± = ±4i(k − n). In such case, for

a ground state both vectors |ε(0)0,+⟩ and |ε(0)0,−⟩ are eigenvectors of H to zero. For

n = 1, |ε(0)1,+⟩ and |ε(0)1,−⟩ are both eigenvectors to zero, but additionally |ε(0)2,+⟩
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and |ε(0)0,−⟩ are eigenvectors to 4i (and their complex conjugates are eigenvectors
to −4i). Going further, we see that as n increases, the operator H has more
and more double eigenvalues. For a more general description of this problem,
let us assume that λ(0) is a double eigenvalue of H with |ϵ(0)k,+⟩ and |ϵ(0)l,−⟩ as
eigenvectors. As in standard degenerate perturbation theory, we are looking
for a combination of these two vectors adjusted to our perturbation U :

|ψ(0)⟩ = c+|ϵ(0)k,+⟩+ c−|ϵ(0)l,−⟩.

This leads to the system of equations for c+ and c− [75]:

λ(1)c+ = c+⟨ϵ(0)k,+|U|ϵ
(0)
k,+⟩+ c−⟨ϵ(0)k,+|U|ϵ

(0)
l,−⟩

λ(1)c− = c+⟨ϵ(0)l,−|U|ϵ
(0)
k,+⟩+ c−⟨ϵ(0)l,−|U|ϵ

(0)
l,−⟩.

This linear system has nontrivial solutions only if

λ
(1)
± =

1

2

[
⟨ϵ(0)k,+|U|ϵ

(0)
k,+⟩+ ⟨ϵ(0)l,−|U|ϵ

(0)
l,−⟩

±
√(

⟨ϵ(0)k,+|U|ϵ
(0)
k,+⟩ − ⟨ϵ(0)l,−|U|ϵ

(0)
l,−⟩
)2

+ 4⟨ϵ(0)l,−|U|ϵ
(0)
k,+⟩⟨ϵ

(0)
k,+|U|ϵ

(0)
l,−⟩

]
. (5.13)

Hence, we obtained the formulas for λ(1)± . Expressions for the symmetric matrix
elements ⟨ε(0)k,±|U|ε

(0)
k,±⟩ are given in Eq. (5.12), while for the mixed elements the

analogous calculations lead to

⟨ε(0)k,+|U|ε
(0)
l,−⟩ =

i

2en(0)2
(−⟨ek, U−el⟩+ ⟨ek, U+el⟩) . (5.14)

To calculate ⟨ε(0)l,−|U|ε
(0)
k,+⟩ it is sufficient to take a complex conjugation of the

expression from Eq. (5.14).
These results may be used to give eigenvalues of L for n-th excited state of

SNH system with small value of b. For this system it holds

⟨ek, U−el⟩ =
1

d− 2
(Snnnn δkl − Sklnn) ,

⟨ek, U+el⟩ =
1

d− 2
(Snnnn δkl − Sklnn − 2Sknln) ,

with δkl denoting the Kronecker delta. As the framework we developed works
only for small values of b, where nothing interesting happens when going from
d = 15 to d = 16, we focus here only on the case d = 7. Then, let us check the
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first excited state (n = 1). For b = 0 it has double eigenvalues in 0 and 4i, as
we already mentioned. The lowest eigenvalues of L are then equal to

λ0 = O(b3),

λ1,+ = 4i+

(√
45145 + 811

602112
√
2

i

)
b2 +O(b3) ≈ 4i+ 0.001202i b2 +O(b3),

λ1,− = 4i+

(√
45145− 811

602112
√
2

i

)
b2 +O(b3) ≈ 4i− 0.000703i b2 +O(b3),

λ2 = 8i−
(

43105

8830976
√
2
i

)
b2 +O(b3) ≈ 8i− 0.003451i b2 +O(b3),

λ3 = 12i−
(

13590411

3673686016
√
2
i

)
b2 +O(b3) ≈ 12i− 0.002616i b2 +O(b3).

For brevity, we did not write eigenvalues that can be obtained as conjugates
or negatives of the listed ones. As one can see, all corrections of order b2 are
imaginary. In case of the branches starting in simple eigenvalues of H it is
obvious, as they are driven by Eq. (5.12). However, for double eigenvalues of
H the first-order corrections are given by Eq. (5.13). The presence of a square
root in this expression allows both real and imaginary results. It turns out
that here these corrections remain purely imaginary for the first excited state
of SNH in d = 7. Of course, it does not mean the stability of such states
with small b, as in principle it is possible that somewhere at higher orders of
the bifurcation theory there appear corrections with non-zero real part. Even
though, it would mean that for small b the real parts of the eigenvalues are
very small, hence the initial evolution of the slightly perturbed state shall look
stable and instabilities can be seen only after a sufficiently long time.

Similarly, we perform calculations for the second excited state (n = 2).
There we know that 0, 4i, and 8i are double eigenvalues for b = 0: the first of
them has eigenvectors |ε(0)2,+⟩ and |ε(0)2,−⟩, the second one |ε(0)3,+⟩ and |ε(0)1,−⟩, while

the last one |ε(0)4,+⟩ and |ε(0)0,−⟩. Now using the derived formulas we get

λ0 = O(b3),

λ1,± = 4i+

(√
180684295679± 933785i

1907490816
√
2

)
b2 +O(b3)

≈ 4i+ (0.000158± 0.000346i) b2 +O(b3),

λ2,± = 8i+

(√
121105311620579831± 1025827843i

793516179456
√
2

)
b2 +O(b3)

≈ 8i+ (0.00031± 0.000914i) b2 +O(b3),

λ3 = 12i+

(
888172171

352673857536
√
2
i

)
b2 +O(b3) ≈ 12i+ 0.001781i b2 +O(b3).
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In contrary to the first excited state, here two branches of eigenvalues admit
real corrections at the order b2. It means that such solutions are unstable for
small values of b.

This analysis gives us hints about the stability of excited states for small
values of b, but for larger values it is necessary to resort to numerical methods.
One can do it similarly as when looking for the spectrum of L±, by discretizing
L with the use of hat functions. However, for this operator the precision we
were able to achieve with this approach within the reasonable range of param-
eters was not satisfactory. Hence, we restrict the discussion of the stability of
excited states of SNH to the bifurcation analysis above, leaving the numerical
studies for the future publication.

The same bifurcation analysis can be repeated for other NLS equa-
tions. In case of GP system it is especially easy, as it also has a harmonic
potential and cubic nonlinearity. Then, the obtained formulas are very
similar with the only differences laying in the interaction coefficients,
now given by Eq. (5.8), and the matrix elements, this time lacking the
factor 1/(d− 2):

⟨ek, U−el⟩ = Snnnn δkl − Sklnn,

⟨ek, U+el⟩ = Snnnn δkl − Sklnn − 2Sknln.

Then for small b the first excited state in d = 5 yields L with the
eigenvalues given by

λ0 = O(b3),

λ1,± = 4i+

(
±
√
388239− 1449i

51200
√
2

)
b2 +O(b3)

≈ 4i+ (±0.008605− 0.020012i) b2 +O(b3),

λ2 = 8i−
(

21217

204800
√
2
i

)
b2 +O(b3) ≈ 8i− 0.073255i b2 +O(b3),

λ3 = 12i−
(

599081

6553600
√
2
i

)
b2 +O(b3) ≈ 12i− 0.064638i b2 +O(b3),

As before, further eigenvalues can be obtained by taking negative values
and complex conjugations of these expressions. In contrary to SNH
system in d = 7 we can see that for the first excited state the terms of
order b2 in the eigenvalues have nonzero real part, meaning that for small
values of b the first excited state of GP equation in d = 5 is unstable.
Interestingly, for this system Eq. (5.13) can be evaluated to a explicit
formula for λ(1)1,± containing only d (however, it is rather complicated,
so we do not present it here). A quick analysis of this expression leads
to the conclusion that for any natural dimension other than 5, λ(1)1,± is
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Figure 5.6: Plots of real and imaginary parts of eigenvalues of L
for the first excited state of GP system in d = 5 (upper plots) and
d = 6 (lower plots).

purely imaginary. For example, in d = 6, the first excited state gives

λ0 = O(b3),

λ1,± = 4i−
(

1

576

(
15±

√
3
)
i

)
b2 +O(b3)

≈ 4i− (0.026042± 0.003007)i b2 +O(b3),

λ2 = 8i−
(

7

96
i

)
b2 +O(b3) ≈ 8i− 0.072917i b2 +O(b3),

λ3 = 12i−
(

107

1536
i

)
b2 +O(b3) ≈ 12i− 0.069662i b2 +O(b3).

The observation of a special character of d = 5 can be pushed even
further with the numerical results. In case of GP system, due to the
lack of a nonlocal term in the nonlinearity, we were able to investigate
the eigenvalues of L with the use of the discretization described in the
discussion of SNH system. The plots are presented in Fig. 5.6. The
first interesting observation is the fact that there is an agreement with
the bifurcation analysis of the first order: for small b the first excited
states of GP system are stable in d = 6 but unstable in d = 5. The
other peculiar finding is the window of stability present for d = 5: even
though for small b the bound state is unstable, there exists a range of b
in which it becomes stable.

As before, we repeat some calculations for the second excited states.
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Figure 5.7: Plots of real and imaginary parts of eigenvalues of L in
d = 5 for the second excited state of GP system.

In d = 5 the bifurcation analysis gives

λ0 = O(b3),

λ1,± = 4i+

(
±
√
1315188538188839− 84322459i

2569011200
√
2

)
b2 +O(b3)

≈ 4i+ (±0.009982− 0.023209i) b2 +O(b3),

λ2,± = 8i+

(
±
√
355202931527− 1009411i

80281600
√
2

)
b2 +O(b3)

≈ 8i+ (±0.005249− 0.008891i) b2 +O(b3),

λ3 = 12i−
(

734233553

10276044800
√
2
i

)
b2 +O(b3) ≈ 12i− 0.050524i b2 +O(b3).

This time two branches of eigenvalues have nonzero real parts at the
level of b2. Similar phenomenon can be observed for d = 6, while for
d = 4 only one of these branches has this feature. Hence, for d =
4, 5, 6 one can deduce that the second excited states with sufficiently
small b are unstable. In other dimensions the respective results are
purely imaginary giving us no resolution. In Fig. 5.7 we present the
numerical values of the eigenvalues of L for the second excited state in
five-dimensional GP system. Once again we can see the presence of the
window of stability.

5.2 Evolution

After the study of the stationary solutions of SNH system and their stability,
the next natural step is to investigate the dynamics of this system. As before,
we restrict ourselves to spherically symmetric solutions. Then Eq. (1.1) can be
written as (we also rescale ψ, so there is no factor (d−2)−1 in the nonlinearity)

i ∂tψ = −∂2rψ − d− 1

r
∂rψ + r2ψ −

(∫ ∞

0

|ψ(t, s)|2 sd−1

max{rd−2, sd−2}
ds

)
ψ. (5.15)
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There are many possible ways to solve this equation numerically. Probably the
most obvious one is to cut some large enough compact subset of the spatial
domain [0, R], and evolve this equation inside it with some iterative scheme such
as the classical Runge–Kutta method. The main obstacle in such approach is
the nonlocality of the nonlinear term. It can be handled directly by using
the explicit numerical scheme and calculating the value of the nonlinearity at
each node point, or in some other way by substituting the integral with the
potential v and solving at each step an auxiliary equation ∆v = |ψ|2 with a
suitable method. Either way, the nature of this nonlinear term greatly increases
the resources needed to solve SNH equation numerically, in comparison with
local nonlinearities.

Even for the local NLS equations, such as GP equation, the de-
scribed approach does not seem to be feasible. One can expect that if
the investigated system shares some of the interesting behaviours de-
scribed in Section 2.1, they occur at large time scales. The techniques
we evoked are not very well suited for performing such long-time sim-
ulations, due to the effects present at the boundary of the considered
domain.

An alternative idea may be to use the spectral methods. Let us expand
solution ψ into the series

ψ(t, r) =
∞∑
k=0

αk(t) e
−iΩktek(r). (5.16)

Then the linear parts of Eq. (5.15) can be written as

i ∂tψ =
∞∑
k=0

(i α̇k +Ωk αk) e
−iΩktek, (−∆+ V )ψ =

∞∑
k=0

Ωk αke
−iΩktek,

while the nonlinear term changes into the threefold sum(∫ ∞

0

|ψ(t, s)|2 sd−1

max{rd−2, sd−2}
ds

)
ψ

=

∞∑
j=0

∞∑
k=0

∞∑
l=0

ᾱjαkαle
i(Ωj−Ωk−Ωl)t

(∫
Rd

ej(s) ek(s) s
d−1

max{rd−2, sd−2}
ds

)
el(r).

We can combine these expressions and contract them with en to get the
equation for the evolution of a single mode (using the orthogonality relation
⟨en, ek⟩ = δnk). We have already introduced the interaction coefficients Sklmn.
However, in this part we want to keep the compatibility with the notation from
[F1]. Hence, let us define (the only difference is the order of the indices)

Snjkl =

∫ ∞

0

∫ ∞

0

en(r)ej(s)ek(s)el(r)

max{r, s}d−2
rd−1sd−1 dr ds. (5.17)
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Figure 5.8: Decomposition of the ground state of SNH in d = 7 with b = 1
(crosses), b = 10 (squares), and b = 100 (circles) into the modes en.

In the end, we get an infinite system of ordinary differential equations equiva-
lent to Eq. (5.15) that can be written as:

i ∂tαn =

∞∑
j=0

∞∑
k=0

∞∑
l=0

Snjklᾱjαkαle
i(Ωn+Ωj−Ωk−Ωl)t. (5.18)

This result gives us another approach to the numerical evolution of SNH sys-
tem, we can decompose the initial data into the modes en as in Eq. (5.16), trun-
cate this sum at some suitable N , and then evolve the coefficients α0, ..., αN

using the truncated Eq. (5.18). This method seems to be better suited to our
problem, provided that the coefficients αn decay with n sufficiently fast to jus-
tify truncation at some reasonable N . This is important, since as N grows,
the amount of calculations needed to perform at each step of the numerical
scheme (regardless of its specific choice) grows as N4 (there is a threefold sum
for each αn). Unfortunately, it is not necessarily the case. As can be seen in
Fig. 5.8, for the ground states the distributions of |αn| have relatively heavy
tails. Additionally, the situation quickly worsens with the increase of the value
of b (one could predict, based on the bifurcation analysis, that for small b a
single mode dominates). This means, for instance, that the loss of stability of
the ground state in d = 7, that is expected to happen for b ≈ 100, cannot be
reasonably investigated with this method.

The analogous derivation can be repeated also for some other NLS
equations. In case of GP system it also gives Eq. (5.18) with interaction
coefficients defined by Eq. (5.8). For other cubic systems their evolution
is given by the same equation with yet another interaction coefficients
Snjkl. If the NLS equation contains nonlinearity of other order than
cubic, then Eq. (5.18) also changes its form. For example, if F (ψ) =
|ψ|4ψ, it includes a fivefold sum instead.
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We may conclude that simple numerical methods tend to fail when ap-
plied to SNH equation, so one shall rather resort to other approaches, possibly
modifying some of the methods used for SN system [8, 59, 60, 80, 94]. How-
ever, this matter still needs some further work. Instead, we consider here an
approximation to Eq. (5.15), called the resonant approximation, that lets us
to drop one sum in Eq. (5.8). This not only allows us to perform numerical
experiments with reasonable accuracy, but also unveils additional interesting
features of SNH system present in d = 4.

5.2.1 Resonant approximation

Let us assume that our solution ψ has an amplitude of order ε, so it can be
expanded into

ψ(t, r) = ε
∞∑
k=0

αk(t) e
−iΩktek(r).

Performing calculations as before we again arrive at the infinite system of ODEs

i ∂tαn = ε2
∞∑
j=0

∞∑
k=0

∞∑
l=0

Snjklᾱjαkαle
i(Ωn+Ωj−Ωk−Ωl)t.

One can now rescale time by ε2, then the overall factor ε2 vanishes, but the
exponent under the sum becomes −i(Ωn + Ωj − Ωk − Ωl)t/ε

2. The resonant
terms in the sum, i.e. elements where Ωn + Ωj − Ωk − Ωl = 0, see no change.
However, the remaining terms start to oscillate very rapidly as we go with ε to
zero. One can assume that for sufficiently small ε these oscillations get much
smaller than the timescale of αn, hence these terms can be averaged out to
zero. By discarding these terms we get an approximate equation that shall
model the long time behaviour of our system [92, 73, 55, 12]. For equations
with harmonic potential the resonance condition corresponds to n+ j = k+ l,
so the resonant system is given by

i α̇n =

∞∑
j=0

n+j∑
k=0

Snjk,n+j−kᾱjαkαl,

where dots denote derivative over the rescaled time (which will also be called
t). We also redefine the interaction coefficients

Cnjkl =
1

2
(Snjkl + Snjlk) .

One can easily check that this way we get an equivalent equation

i α̇n =

∞∑
j=0

n+j∑
k=0

Cnjk,n+j−kᾱjαkαl, (5.19)
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while the interaction coefficients satisfy Cnjkl = Cnjlk = Cjnkl = Cklnj . This
infinite system of autonomous ODEs will be called the resonant system.

Similar resonant systems can be derived also from some other NLS
equations such as GP. There, one also obtains Eq. (5.19) but with co-
efficients given by Eq. (5.8) (they are already fully symmetric, so one
has Cnjkl = Snjkl). The fact that SNH and GP resonant systems differ
only by the interaction coefficients comes from both having cubic non-
linearities and both sharing the harmonic potential. The latter means
that they have the same Ωn and in effect the same resonance condition.
For NLS equations with other potentials V the resonance condition may
differ.

The resonant system has a conserved energy given by

H =
1

2

∞∑
n=0

∞∑
j=0

n+j∑
k=0

Cnjk,n+j−kᾱnᾱjαkαn+k−l. (5.20)

It also takes a role of the hamiltonian of this system, since i∂tαn = ∂H/∂ᾱn.
The other two conserved quantities come from the global (αn → eiϕαn) and
local (αn → einϕαn) phase symmetries, we call them mass and linear energy,
respectively

N =
∞∑
n=0

|αn|2, J =
∞∑
n=0

n |αn|2.

Let us point out that while N and H are conserved also in the full system
(5.18), J is an integral of motion only for the resonant system. When d = 4,
the new conserved quantity appears, given by

Z =

∞∑
n=0

√
(n+ 1)(n+ 2)ᾱn+1αn.

It can either be shown explicitly, or be deduced using the framework introduced
in [12]. Let us also point out that in contrary to the other mentioned integrals
of motion, Z must not have a real value.

Proposition 3.2 in [12] gives us a set of conditions for a cubic resonant
system, i.e. system described by Eq. (5.19), sufficient for Z to be conserved.
One needs to assume that the interaction coefficients Cnjkl are symmetric under
some permutations of indices: Cnjkl = Cnjlk = Cjnkl = Cklnj , and additionally
when n + j = k + l + 1 the specific expression Dnjkl is equal to zero. This
expression is given by

Dnjkl = (n+ 1)C̃n−1,jkl + (j + 1)C̃n,j−1,kl − (k + 1)C̃nj,k+1,l − (l + 1)C̃njk,l+1,

(5.21)
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where C̃njkl =
√

(n+ 1)(j + 1)(k + 1)(l + 1)Cnjkl. As rather lengthy calcu-
lations presented in Appendix C show, in case of resonant SNH system these
conditions hold if d = 4. Then, we not only get the conservation of Z, but also
another interesting result formulated in [12] as Proposition 3.1.: the existence
of the finite-dimensional invariant manifold. By this we mean that there exists
a finite-dimensional (in this case three-) manifold embedded in the infinite-
dimensional space of αn, such that if the initial conditions are posed on this
manifold, the whole evolution is confined within it. It is given explicitly by

αn(t) =
√
n+ 1

(
b(t) +

a(t)

p(t)
n

)
p(t)n, (5.22)

where a, b, and p are some complex-valued functions. The further calculations
presented in [12] and [F1] let us also extract explicit differential equations
describing the evolution of these functions:

iṗ =
1

16
(1 + y)2(2|a|2p(1 + y) + ab̄),

iȧ =
1

16
a(1 + y)3

(
10|a|2(1 + 3y) + 20ℜ(ab̄p̄) + 4ābp

)
+

7

16
a(1 + y)2|b|2,

iḃ =
3

8
ap̄(1 + y)4

(
2(1 + 2y)|a|2 + ab̄p̄

)
+ b(1 + y)2

(
(1 + y)(1 + 3y)|a|2 + 1

2
|b|2 + 2(1 + y)ℜ(ābp)

)
,

(5.23a)

(5.23b)

(5.23c)

where y = |p|2/(1− |p|2). The conserved quantities can also be written explic-
itly using a, b, and p. Then the mass, linear energy, and the complex integral
of motion are given by

N =(1 + y)2
(
2(1 + y)(1 + 3y)|a|2 + |b|2 + 4(1 + y)ℜ(ābp)

)
,

J =(1 + y)2
(
2(1 + y)(1 + 9y + 12y2)|a|2 + 2y|b|2 + 4(1 + y)(1 + 3y)ℜ(ābp)

)
,

Z =2(1 + y)3
(
6(1 + y)(1 + 2y)|a|2 + |b|2 + 6(1 + y)ℜ(ābp)

)
p̄+ 2(1 + y)3āb.

Regarding energy H, it is more convenient to instead introduce S such that
H = N2 − 6S2. Then S = |a|2(1 + y)4/2. One can partially invert these
expressions and get

|a|2 = 2S

(1 + y)4
,

|b|2 =(1 + 3y)N + 12yS − J

(1 + y)3
,

ℜ(ābp) =− 2yN + 4(1 + 6y)S − J

4(1 + y)4
.

(5.24a)

(5.24b)

(5.24c)
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It leads to
Z = (2N + J + 12S)p̄+ 2(1 + y)3 āb

and together with Eq. (5.24a) lets us get rid of all functions independent of p
in Eq. (5.23a):

iṗ =
1

32(1 + y)

(
Z̄ − (2N + J + 4S)p

)
.

Then one can combine the expressions above to get the following line of equal-
ities

ẏ2 =
(ṗp̄+ p ˙̄p)

2

(1− |p|2)4
= −(1 + y)2

1024

(
Zp− Z̄p̄

)2
=− (1 + y)8

256

(
ābp− ab̄p̄

)2
=

(1 + y)8

64

[
|a|2|b|2|p|2 − (ℜ(ābp))2

]2
=− 1

256

[(
N2 + 48S2

)
y2 −

(
NJ + 4JS + 4NS − 48S2

)
y +

1

4
(4S − J)2

]
=− N2 + 48S2

256

[
y +

1

2

(
1− (N + J)(N + 4S)

N2 + 48S2

)]2
+
S(4S −N)

(
48S2 − 2NJ − J2

)
128 (N2 + 48S2)

.

Hence, the function y satisfies equation of the form ẏ2 + ω2(y − y0)
2 = ω2A2,

with the frequency

ω =

√
N2 + 48S2

16
,

amplitude

A =

√
2S(4S −N) (48S2 − 2NJ − J2)

N2 + 48S2
,

and the center of motion

y0 = −1

2

(
1− (N + J)(N + 4S)

N2 + 48S2

)
.

As a result, the evolution of y is described by the motion of a harmonic oscillator
and has a solution of the form y(t) = A cos(ωt+ϕ)+ y0. This means that |p|2
is also periodic in time. Moreover, from Eqs. (5.24) one deduces periodicity of
|a|2, |b|2, and ℜ(ābp). Finally, it can be easily checked that this result then
also applies to |αn|2. Hence, we expect that for initial conditions satisfying
the ansatz (5.22), we observe an evolution where energy periodically returns
to the distribution given by the initial condition. In particular, any two-mode
initial data with αn(0) = 0 for n ≥ 2 belongs to this class (with p(0) = 0), so
we expect that in such case the energy initially disperses to higher modes, but
eventually again concentrates in the two lowest modes.
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Interestingly, GP system also acknowledges a similar symmetry en-
hancement, but in this case it takes place in d = 2. Then the additional
conserved quantity is

Z =

∞∑
n=0

(n+ 1)ᾱn+1αn,

while the ansatz giving the three-dimensional invariant manifold takes
form of

αn(t) =

(
b(t) +

a(t)

p(t)
n

)
p(t)n.

Solutions laying on this manifold also are periodic. This system belongs
to the larger family of resonant systems that can be obtained from the
Gross-Pitaevskii equation, as described in [11].

Analogous results hold for many other systems, see [12] for more
examples such as lowest Landau level or maximally rotating scalar fields
in (d+ 1)-dimensional Anti-de Sitter spacetime.

Now we want to perform some numerical calculations letting us verify the
claims above. To do so, we truncate the first sum in Eq. (5.19) at some N and
simulate the evolution of the obtained system of N + 1 equations using some
suitable iterative method. However, to do so the exact values of the interaction
coefficients Sklmn are needed. They are given by a rather complicated integral
expression (5.17) and even though it is possible to evaluate them analytically
using a computer algebra system (CAS), the calculation gets progressively more
involved as the indices k, l, m, and l increase. The possible remedy is to refor-
mulate the integrals as sums of expressions including hypergeometric functions,
as shown in Appendix A of [F1]. This allows for further simplification since
in even dimensions the relevant hypergeometric functions can be represented
by sums of simple coefficients. Using this approach, CAS are usually able to
evaluate individual interaction coefficients faster, however, it turns out that if
we are interested in the whole table of Sklmn with k, l,m, n < N it is better to
use the suitable recursive scheme. As its derivation and description is rather
technical, we present it in Appendix D.

In Fig. (5.9) we show the plots of |αn(t)| for the lowest modes in d = 3 and
d = 4. The initial data for these evolutions are α0(0) = 1 and α1(0) = 1, so
in case of d = 4 they lay on the invariant manifold. As one can see, then the
evolution is indeed periodic, while for d = 3 it seems chaotic.

Yet another indication of the special character of d = 4 for SNH system
can be seen by investigating the quantization of this resonant system. One can
consider hamiltonian (5.20) with αn and ᾱn replaced by the annihilation and
creation operators, α̂n and α̂†

n, respectively, satisfying the standard commu-
tation relation [α̂n, α̂

†
m] = δnm. Then it turns out that the spacings between

neighbouring eigenvalues of such hamiltonian are well described by the Poisson
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Figure 5.9: Plots of |α0| (dotted line), |α1| (dashed line), and |α2| (solid line)
for resonant SNH system in d = 3 (left plot) and d = 4 (right plot). The initial
data is concentrated in two lowest modes with α0(0) = α1(0) = 1.

distribution in d = 4, while for other dimensions they rather follow the Wigner
surmise. For the discussion of this result and its implications we refer to [F1].
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Chapter 6

Conclusion

We conclude with the summary of the most important results presented here
and an outline of the possible directions for further research.

We began this thesis by giving some motivation for studying NLS equations
in higher dimensions. This included the derivation of the equations describ-
ing the nonrelativistic limit of weak scalar perturbations of the anti-de Sitter
spacetime, that turned out to be SNH equations. This derivation was partially
based on the work by Giulini and Grossardt [58], however we did not need to
assume the spherical symmetry of the solutions. There are still many things
not fully understood regarding this limit, for example, how the critical dimen-
sion of the equations changes under it, from d = 3 for Einstein equations to
d = 6 for SNH system. It would be also interesting to investigate this limit
with more strict mathematical tools to see how the solutions behave under it.
One can also try to get similar nonrelativistic limits for other fields, such as
the ones describing vector or spinor particles.

The main content of this thesis was covered in Chapter 4 and it concerned
stationary solutions of SNH system and other NLS equations. The most im-
portant three results we presented there were the existence and uniqueness of
the ground states, the existence of the whole ladder of the excited states, and
explanation of the behaviour of frequency function ω(b) including the change of
its monotonicity in higher dimensions. This topic can be further investigated
in many interesting directions, probably the most obvious one including the
search of other NLS systems that can be, similarly to SNH and GP equations,
treated with these methods. After we impose the spherical symmetry on our
system, the dimension d can be treated as a parameter interpreted as a friction
in a second-order ODE. The continuous change of d alters the global structure
of solutions, what can be seen, for example, in changes of the shapes of plots of
ω(b) and M(ω). It is compelling to look for more simple systems having this
behaviour and try to better understand the role played there by the damping
term. Finally, in the presented context one can be interested in pursuing the
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matter of uniqueness of the excited states, a classical open problem [62].
In chapter 5 we just started the analysis of the dynamics of SNH equation,

focusing on the stability of the stationary solutions and then moving to the
resonant approximation. It leaves us with lots of potential future work to do.
Most importantly, we would like to be able to perform numerical simulations
of this system for large times. This should give us some insight into long-time
behaviour of the system, along the lines of motivation described in Section
2.1. The other direction worth focusing on is the better understanding of
the stability of excited states, i.e. the presence of windows of stability and
their dependence on the dimensions d. We hope to explore it in the future
publication including and expanding results presented in Section 5.1. Chapter
5 focused mostly on SNH system with a few mentions of GP system, however,
it might be interesting to study the higher-dimensional dynamics (including
stability of stationary solutions) of various NLS equations in a more systematic
way, similarly as we did for stationary solutions.



Appendix A

Solutions to singular ODEs

In the main text we often consider equations of the form

u′′ +
d− 1

r
u′ + f(r, u) = 0 (A.1)

with initial conditions posed at r = 0. By u we understand here either a single
real function of r defined on [0,∞) or a vector consisting of n such functions.
In the second case f is understood also as a vector, since each component of u
may be a solution to a different elliptic equation. Either way, f are C1 functions
of independent variable r ∈ [0,∞) and functions u.

To properly apply the shooting method in Section 4 we need to know that
the solutions to such singular equations exist locally near zero, are unique, and
depend continuously on initial values and parameters. In this Appendix we
show the relevant results. We begin with the proof of existence and uniqueness.

Theorem A.1. Let u be a solution to the Cauchy problem

(rd−1u′)′ + rd−1 f(r, u) = 0,

u(0) = u0, u′(0) = 0,

where d ≥ 2. Let f be continuous in r and continuously differentiable in u for
r and u such that 0 ≤ r < r0 and |u−u0| < b, where r0 and b are some positive
numbers. Then there exists r1 > 0 such that in the interval [0, r1) this problem
has a unique solution of a class C2.

For brevity, we present the proof in the case of u being a single function
satisfying equation. If instead u is a vector of functions, the reasoning is
analogous.

Proof. We employ the classical successive approximation scheme. To do so, let
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us begin with an introduction of integral equations

u(r) = u0 +

∫ r

0
v(ρ)dρ,

v(r) = − 1

rd−1

∫ r

0
f(ρ, u(ρ))ρd−1 dρ.

It is clear that if u and v satisfy these equations, they are continuous for
r > 0. At zero, we get v(0) = 0 with the L’Hospital’s rule, while u(0) = u0.
Calculation of the second derivatives yield u′(r) = v(r), and as a result we
have

u′′(r) =v′(r) = −f(r, u(r)) + d− 1

rd

∫ r

0
f(ρ, u(ρ))ρd−1 dρ

=− f(r, u(r))− d− 1

r
v(r) = −d− 1

r
u′(r)− f(r, u(r)).

Hence, function u satisfying the integral equations is a solution of our problem,
that is also twice differentiable for r > 0.

We define the n-th successive approximations as

vn+1(r) = − 1

rd−1

∫ r

0
f(ρ, un(ρ))ρ

d−1 dρ,

un+1(r) = u0 +

∫ r

0
vn+1(ρ)dρ,

(A.2a)

(A.2b)

with u0(r) ≡ u0 and v0(r) ≡ 0. Let us emphasize the appearance of vn+1

instead of vn in the definition of un+1. Such choice, even though not mandatory,
lets us to avoid the redundancy of u1 ≡ u0.

Since f is continuous in {(r, u) : 0 ≤ r < r0 and |u− u0| < b}, there exists
suchM > 0 that |f(r, u)| < M in this set. As it is also C1, it is locally Lipschitz,
so additionally there existsK > 0 such that |f(r, u1)−f(r, u2)| < K|u1−u2| for
r, u1 and u2 in this set. Let us define r1 := min{r0,

√
bd/M,

√
d/2K}. Then

one may show inductively that for all approximations of u it holds |un(r)−u0| <
b for r ∈ [0, r1). It is obvious for n = 0, then assuming that this inequality
holds for some n ∈ N, we indeed have

|vn+1(r)| ≤
1

rd−1

∫ r

0
|f(ρ, un(ρ))|ρd−1 dρ <

M

rd−1

∫ r

0
ρd−1 dρ =

Mr

d
<
Mr1
d

,

and

|un+1(r)− u0| ≤
∫ r

0
|vn+1(ρ)|dρ <

∫ r

0

Mr1
d

dρ =
Mr1r

d
<
Mr21
d

< b.
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Thanks to f being locally Lipschitz, for any n ∈ N+ and r ∈ [0, r1) it also
holds

|vn+1(r)− vn(r)| ≤
1

rd−1

∫ r

0
|f(ρ, un(ρ))− f(ρ, un−1(ρ))|ρd−1 dρ

≤ K

rd−1

∫ r

0
|un(ρ)− un−1(ρ)|ρd−1 dρ

≤ K

rd−1
max

ρ∈[0,r1)
{|un(ρ)− un−1(ρ)|}

∫ r

0
ρd−1 dρ

≤ Kr1
d

max
ρ∈[0,r1)

{|un(ρ)− un−1(ρ)|}.

It implies

|un+1(r)− un(r)| ≤
∫ r

0
|vn+1(ρ)− vn(ρ)| dρ

≤ Kr21
d

max
ρ∈[0,r1)

{|un(ρ)− un−1(ρ)|}.

Our choice of r1 gives us Kr21/d ≤ 1/2, hence we have obtained

|un+1(r)− un(r)| ≤
1

2
max

ρ∈[0,r1)
{|un(ρ)− un−1(ρ)|}

≤ 1

2n
max

ρ∈[0,r1)
{|u1(ρ)− u0|} <

b

2n
. (A.3)

For any n ∈ N+, function un can be represented as

un(r) = u0(r) +
n−1∑
k=0

[uk+1(r)− uk(r)].

Then Eq. (A.3) gives the uniform convergence of un on [0, r1). Analogous result
can be also obtained for v. Hence, we can define u and v as the limits of un
and vn, respectively, as n goes to infinity. The continuity of f lets us perform
the limit in Eqs. (A.2) showing that u and v are indeed desired solutions.

The only thing left is the uniqueness of the constructed solutions. Let us
assume that there exist some other solutions µ and ν (respectively, to u and
v). Then there also must hold |µ(r)− u0| < b for r ∈ [0, r1). To show it, let us
assume that inside [0, r1) there is some r at which |µ(r)− u0| = b for the first
time, then we have

b = |µ(r)− u0| ≤
∫ r

0
|ν(ρ)|dρ ≤

∫ r

0

1

ρd−1

∫ ρ

0
σd−1|f(σ, µ(σ))|dσ dρ

≤M

∫ r

0

1

ρd−1

∫ ρ

0
σd−1dσ dρ =

Mr2

2d
< b
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giving us a contradiction. As a result, for any r ∈ [0, r1) it holds:

|v(r)− ν(r)| ≤ 1

rd−1

∫ r

0
|f(ρ, u(ρ))− f(ρ, µ(ρ))|ρd−1 dρ

≤ K

rd−1

∫ r

0
|u(ρ)− µ(ρ)|ρd−1 dρ

≤ K

rd−1
max

ρ∈[0,r1)
{|u(ρ)− µ(ρ)|}

∫ r

0
ρd−1 dρ

≤ Kr1
d

max
ρ∈[0,r1)

{|u(ρ)− µ(ρ)|}.

This result gives the following bound

|u(r)− µ(r)| ≤
∫ r

0
|v(ρ)− ν(ρ)| dρ ≤ Kr21

d
max

ρ∈[0,r1)
{|u(ρ)− µ(ρ)|}

≤ 1

2
max

ρ∈[0,r1)
{|u(ρ)− µ(ρ)|}.

Hence there must be u(r) = µ(r) for every r ∈ [0, r1) giving us uniqueness.

Thus, we have shown a local existence and uniqueness of the solution near
zero. As there is no other singular point, for the remaining part of the half-line
one can use the standard results including also the extension of a solution to
its maximal domain [31, 61].

In the main text we also heavily use the continuous dependence of the so-
lutions on initial conditions and parameters. Let us assume that the function
f additionally depends continuously on some parameter α for each r and u.
Then, as we have already established the existence and uniqueness of solu-
tions near zero, such dependence is a natural consequence of the Arzelà–Ascoli
theorem (c.f. Lemma 3.2 of [61]). Hence, we have the following result

Theorem A.2. Let uα,β be a solution to the Cauchy problem

(rd−1u′)′ + rd−1 f(r, u, α) = 0,

u(0) = β, u′(0) = 0,

where d ≥ 2. Let f satisfy the same conditions as in Theorem A.1 and also be
continuous in α. If the solution exists on some interval [0, r0] for each value of
(α, β) from some open set Ω ⊂ R2, then uα,β is uniformly continuous on [0, r0]
in (α, β) from Ω.



Appendix B

Asymptotic behaviour of
singular SNH near zero

The goal of this appendix is to prove the following key result that was used in
the shooting method in Section 4.2.4.

Lemma B.1. Let ũ and h̃ be the solutions of the system
ũ′′ +

d− 5

r
ũ′ +

2(d− 4)

r2
(ũh̃− ũ)− r2ũ = 0,

h̃′′ +
d− 5

r
h̃′ +

2(d− 4)

r2
(ũ2 − h̃) = 0.

(B.1a)

(B.1b)

in a supercritical dimension (d > 6). If these solutions satisfy limr→0 ũ(r) =
limr→0 h̃(r) = 1, then near zero they have an asymptotic behaviour given by

ũ(r) = 1− c rλ +O(r4), h̃(r) = 1 + 2c rλ +O(r4), (B.2)

where c is some real constant shared by both solutions and

λ =
−d+ 6 +

√
d2 + 4d− 28

2
.

Of course, in this formulation Eqs. (B.1) and (B.2) are just Eqs. (4.21) and
(4.22) from the main text. The proof we present here was published in [F3]
and is based on the proof of Lemma 3.1. in [86].

Proof. In the beginning, it is convenient to slightly reformulate the problem
by appropriate changes of variables. Using functions η = ũ− 1 and ξ = h̃− 1
simplifies the analysis near zero, as these functions are small in its neighborhood
(they converge to zero there). We also introduce t = ln r as an independent
variable. This choice removes 1/r from the first-derivative terms at the cost of
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unfolding the domain into the whole line and moving the focus to the behaviour
of the solutions as t→ −∞. In these variables Eqs. (B.1) become{

η̈ + (d− 6)η̇ + 2(d− 4)ξ = e4t(1 + η)− 2(d− 4)ηξ,

ξ̈ + (d− 6)ξ̇ + 2(d− 4)(2η − ξ) = −2(d− 4)η2,

(B.3a)

(B.3b)

where dots denote derivatives over t.
The left hand-side of Eqs. (B.3) constitutes the system of linear equations

with four eigenvalues equal to

1

2
(−d+ 6±

√
d2 − 20d+ 68),

1

2
(−d+ 6±

√
d2 + 4d− 28).

The first pair in supercritical dimensions has a negative real part. Its imaginary
part becomes zero for d ≥ 2(5+2

√
2) ≈ 15.66. This change of character of these

eigenvalues when coming from d = 15 to d = 16 has interesting consequences
discussed in Section 4.4. Regarding the second pair, in supercritical dimensions
it is real and is composed of a negative and positive eigenvalue. The latter was
dubbed by us as λ in the formulation of this lemma. Clearly, for d ≥ 7 it holds
3 ≤ λ < 4. Hence, the linear part of the considered system is hyperbolic and
possesses a one-dimensional unstable subspace.

Now we use this analysis of the linear part of Eqs. (B.3) to construct the
solutions of their homogenous parts. Three eigenvalues of this system have
negative real parts so the solutions connected to them are unbounded as t →
−∞. As we are interested in solutions that decay in −∞, the general solution
of the left hand side of Eqs. (B.3) is η0(t) = −ceλt, ξ0(t) = 2ceλt, where c is
some constant. This partial solution can be used to construct the full solution,
although in the implicit form, with the method of variation of parameters. Let
us introduce functions representing right hand sides of this system:

x(t) = e4t (1 + η(t))− 2(d− 4)η(t)ξ(t), y(t) = −2(d− 4)η(t)2.

It is also convenient to define α1 = 1
2

√
d2 − 20d+ 68, α2 = 1

2

√
d2 + 4d− 28,

and β = −d
2 + 3. In this notation, we have λ = β + α2. Then the method of

variation of parameters yields

η(t) =− ceλt +
1

3α1

∫ t

−∞
eβ(t−s) sinhα1(t− s) · [2x(s) + y(s)]ds

+
1

3α2

∫ t

−∞
eβ(t−s) sinhα2(t− s) · [x(s)− y(s)]ds,

ξ(t) =2ceλt +
1

3α1

∫ t

−∞
eβ(t−s) sinhα1(t− s) · [2x(s) + y(s)]ds

− 2

3α2

∫ t

−∞
eβ(t−s) sinhα2(t− s) · [x(s)− y(s)]ds.

(B.4a)

(B.4b)
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Since both η and ξ go to zero as t → −∞, for every ε > 0 one may find such
T that for all t < T the following bounds are satisfied:

|2x(t) + y(t)| =
∣∣2e4t(1 + η(t))− 2(d− 4)η(t)[η(t) + 2ξ(t)]

∣∣
≤4e4t + ε|η(t)|,

|x(t)− y(t)| =
∣∣e4t(1 + η(t)) + 2(d− 4)η(t)[η(t)− ξ(t)]

∣∣
≤2e4t + ε|η(t)|.

(B.5a)

(B.5b)

These limits let us to produce constraints on |η(t)| by plugging them into Eq.
(B.4). However, we need to consider separately the cases when 7 ≤ d ≤ 15 and
d ≥ 16.

For d ≥ 16 we have α1 > 0 so for s ≤ t it holds 0 ≤ 2 sinhα1(t−s) ≤ eα1(t−s)

(the analogous inequality works also for α2). Then we also use the facts that
β + α1 < 0 (so

∫ t
−∞ e−(β+α1)s|η(s)| ds is convergent) and e(β+α1)(t−s) ≤ eλ(t−s)

to obtain

|η(t)| ≤ |c|eλt +A1e
4t + εA2e

λt

∫ t

−∞
e−λs|η(s)|ds.

Now we may divide both sides of this equation by eλt and use the integral
Grönwall’s inequality to the function e−λt|η(t)| getting for every sufficiently
small t:

|η(t)| ≤ |c|eλt +B1e
4t, (B.6)

with B1 denoting some positive constant. To get a similar bound on |ξ(t)| we
go back to Eqs. (B.5). Then |η(t)| = O(eλt) gives us constraints

|2x(t) + y(t)| ≤ 4e4t + ε|ξ(t)|, |x(t)− y(t)| ≤ 2e4t + ε|ξ(t)|.

Inserting it into Eqs. (B.4) and following calculations done for |η| we get

|ξ(t)| ≤ |2c|eλt +B2e
4t, (B.7)

where B2 is some positive constant.
Exactly the same bounds on |η| and |ξ| can be obtained also for 7 ≤ d ≤ 15.

In this case one can write sinhα1(t − s) in Eqs. (B.4) as sin |α1|(t − s). This
function is bounded, so one can once again carefully evaluate and estimate all
the needed integrals similarly to the previous case. In the end one gets exactly
the same inequalities (B.6) and (B.7).

These inequalities give estimates on x(t) and y(t) for sufficiently small t:

x(t) =e4t + η(t)
[
e4t − 2(d− 4)ξ(t)

]
= e4t +O(e2λt),

y(t) =− 2(d− 4)η(t)2 = O(e2λt). (B.8)
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The leading term is e4t, as for d ≥ 7 it holds λ < 4 < 2λ. Inserting these
bounds into Eqs. (B.4) and performing the integrals give

η(t) = −ceλt +O(e4t), ξ(t) = 2ceλt +O(e4t).

Going back to the original variables we get

ũ(r) = 1− c rλ +O(r4), h̃(r) = 1 + 2c rλ +O(r4).



Appendix C

Relation satisfied by interaction
coefficients of SNH in d = 4

In this Appendix we prove that in d = 4 the resonant approximation of SNH
system (5.19) satisfies requirements of the framework introduced in [12]. Ob-
viously it is a cubic resonant system and the desired symmetries in interaction
coefficients indices hold by definition, hence the only non-trivial thing to check
is whether Dnjkl defined in Eq. (5.21) is equal to zero if n+ j = k + l + 1.

Instead of proving this identity for coefficients C̃njkl we will do it for their
components. Let S̃njkl =

√
(n+ 1)(j + 1)(k + 1)(l + 1)Snjkl, then C̃njkl =

(S̃njkl + S̃njlk)/2. We will show the identity in question for

D′
njkl = (n+ 1)S̃n−1,jkl + (j + 1)S̃n,j−1,kl − (k + 1)S̃nj,k+1,l − (l + 1)S̃njk,l+1,

(C.1)
so the fact that it follows also for the remaining part of Dnjkl is straightforward
from the index symmetries.

In four dimensions we have

en(r) =

√
2

n+ 1
L(1)
n

(
r2
)
e−r2/2,

so the interaction coefficients defined by Eq. (5.6) can be written as

S̃njkl = 4

∫ ∞

0

∫ ∞

0

L
(1)
n

(
r2
)
L
(1)
j

(
s2
)
L
(1)
k

(
s2
)
L
(1)
l

(
r2
)

max{r, s}2
e−r2e−s2 r3 s3 dr ds.

This expression can be simplified using r3s3/max{r, s}2 = rs min{r, s}2 and
introducing new variables ρ = r2, σ = s2. Then

S̃njkl = 4

∫ ∞

0

∫ ∞

0
L(1)
n (ρ)L

(1)
j (σ)L

(1)
k (σ)L

(1)
l (ρ) min{ρ, σ} e−ρ−σ dρ dσ.
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Now we can plug it into D′
njkl obtaining

D′
njkl =4

∫ ∞

0

∫ ∞

0
min{ρ, σ} e−ρ−σ

[
(n+ 1)L

(1)
n−1(ρ)L

(1)
j (σ)L

(1)
k (σ)L

(1)
l (ρ)

+ (j + 1)L(1)
n (ρ)L

(1)
j−1(σ)L

(1)
k (σ)L

(1)
l (ρ)

− (k + 1)L(1)
n (ρ)L

(1)
j (σ)L

(1)
k+1(σ)L

(1)
l (ρ)

−(l + 1)L(1)
n (ρ)L

(1)
j (σ)L

(1)
k (σ)L

(1)
l+1(ρ)

]
dρ dσ.

Now we use the identity (n+1)L
(1)
n−1(ρ) = nL

(1)
n (ρ)+ρL

(2)
n−1(ρ) to get rid of L(1)

n−1

and L(1)
j−1. It can be also written as (k+1)L

(1)
k+1(ρ) = (k+2)L

(1)
k (ρ)−ρL(2)

k (ρ),

this version can be used to substitute for L(1)
k+1 and L(1)

l+1. As a result, we get

D′
njkl =4

∫ ∞

0

∫ ∞

0
min{ρ, σ} e−ρ−σ

×
[
(n+ j − k − l − 4)L(1)

n (ρ)L
(1)
j (σ)L

(1)
k (σ)L

(1)
l (ρ)

+ρL
(1)
j (σ)L

(1)
k (σ)

(
L
(2)
n−1(ρ)L

(1)
l (ρ) + L(1)

n (ρ)L
(2)
l (ρ)

)
+σ L(1)

n (ρ)L
(1)
l (ρ)

(
L
(2)
j−1(σ)L

(1)
k (σ) + L

(1)
j (σ)L

(2)
k (σ)

)]
dρ dσ.

In the next step, we remove L(2)
l and L

(2)
k with L

(2)
l (ρ) = L

(1)
l (ρ) + L

(2)
l−1(ρ).

Then all the terms such as L(2)
n−1 can be transformed into a derivative since

L
(2)
n−1(ρ) = −∂ρL(1)

n (ρ). It yields

D′
njkl =4

∫ ∞

0

∫ ∞

0
min{ρ, σ} e−ρ−σ

×
[
(n+ j − k − l − 4 + T )L(1)

n (ρ)L
(1)
j (σ)L

(1)
k (σ)L

(1)
l (ρ)

]
dρ dσ,

where T denotes the linear operator equal to ρ + σ − ρ∂ρ − σ∂σ The further
simplification of this expression can be achieved with the assumption n+ j =
k + l + 1, then the expression inside the parentheses becomes (−3 + T ). Now
we split the obtained formula into two by unwrapping min{ρ, σ}:

D′
njkl =4

∫ ∞

0

∫ ρ

0
σ e−ρ−σ

[
(−3 + T )L(1)

n (ρ)L
(1)
j (σ)L

(1)
k (σ)L

(1)
l (ρ)

]
dρ dσ

+ 4

∫ ∞

0

∫ ∞

ρ
ρ e−ρ−σ

[
(−3 + T )L(1)

n (ρ)L
(1)
j (σ)L

(1)
k (σ)L

(1)
l (ρ)

]
dρ dσ.
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Then one can fold these expressions under the derivatives getting:

D′
njkl =− 4

∫ ∞

0
∂ρ

(
ρ e−ρL(1)

n (ρ)L
(1)
l (ρ)

) (∫ ρ

0
σ e−σL

(1)
j (σ)L

(1)
k (σ) dσ

)
dρ

− 4

∫ ∞

0
e−ρL(1)

n (ρ)L
(1)
l (ρ)

(∫ ρ

0
∂σ

(
σ2 e−σL

(1)
j (σ)L

(1)
k (σ)

)
dσ

)
dρ

− 4

∫ ∞

0
∂ρ

(
ρ2 e−ρL(1)

n (ρ)L
(1)
l (ρ)

) (∫ ∞

ρ
e−σL

(1)
j (σ)L

(1)
k (σ) dσ

)
dρ

− 4

∫ ∞

0
ρ e−ρL(1)

n (ρ)L
(1)
l (ρ)

(∫ ρ

0
∂σ

(
σ e−σL

(1)
j (σ)L

(1)
k (σ)

)
dσ

)
dρ.

The first and third terms can be simplified with integration by parts giving∫ ∞

0
∂ρ

(
ρ e−ρL(1)

n (ρ)L
(1)
l (ρ)

) (∫ ρ

0
σ e−σL

(1)
j (σ)L

(1)
k (σ) dσ

)
dρ

= −
∫ ∞

0
ρ2 e−2ρL(1)

n (ρ)L
(1)
j (ρ)L

(1)
k (ρ)L

(1)
l (ρ) dρ.

The second and fourth terms can be simply evaluated as∫ ∞

0
e−ρL(1)

n (ρ)L
(1)
l (ρ)

(∫ ρ

0
∂σ

(
σ2 e−σL

(1)
j (σ)L

(1)
k (σ)

)
dσ

)
dρ

=

∫ ∞

0
ρ2 e−2ρL(1)

n (ρ)L
(1)
j (ρ)L

(1)
k (ρ)L

(1)
l (ρ) dρ.

Hence, the first and second terms cancel each other, similarly as the third and
fourth. As a result, we get D′

njkl = 0 when n+j = k+l+1, as desired. It means
that also Dnjkl = 0 and SNH resonant system in four dimensions satisfies all
the necessary conditions needed for the framework from [12] to work.
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Appendix D

Recursive scheme for calculation
of interaction coefficients

Here we describe a recursive scheme that can be used for efficient calculating
large tables of interaction coefficients for resonant SNH system in any dimen-
sion d. The method we use is similar to the one presented in Ref. [34]. We
begin with a definition of two functions

µ(r) = rd−1, ν(r) =
1

rd−2
.

Then coefficients Sijkl defined in Eq. (5.17) may be rewritten to

Sijkl =

∫ ∞

0

[
ei(r)el(r)µ(r)ν(r)

∫ r

0
ej(s)ek(s)µ(s)ds

+ ei(r)el(r)µ(r)

∫ ∞

r
ej(s)ek(s)µ(s)ν(s)ds

]
dr. (D.1)

The functions ei(r) satisfy here L̂en = Enen, where

L̂f(r) = −1

2

1

µ(r)

(
µ(r)f ′(r)

)′
+

1

2
r2f(r), En = 2n+

d

2

are the linear part of SNH equation and its eigenvalue. The second part of Eq.
(D.1) can be reformulated to∫ ∞

0
ei(r)el(r)µ(r)

∫ ∞

r
ej(s)ek(s)µ(s)ν(s)dsdr

=

∫ ∞

0
ej(s)ek(s)µ(s)ν(s)

∫ s

0
ei(r)el(r)µ(r)drds.

If we introduce

Uijkl =

∫ ∞

0
ei(r)el(r)µ(r)ν(r)

∫ r

0
ej(s)ek(s)µ(s)dsdr,
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then
Sijkl = Uijkl + Ujilk. (D.2)

The remaining part of this appendix introduces a recursive scheme for calcu-
lation of these coefficients. We heavily use the relations

en+1(r) =
2n+ d

2 − r2√
(n+ d

2)(n+ 1)
en(r)−

√
n(n+ d

2 − 1)

(n+ d
2)(n+ 1)

en−1(r),

e′n(r) =− r2en(r) +
2

r

√
n

n+ d
2 − 1

[
(n− 1− r2)en−1(r)

−
√

n− 1

(n+ d
2 − 2)

(
n− 2 +

d

2

)
en−2(r)

]
,

that come from the recurrence relation and derivative formula for generalized
Laguerre polynomials. It is very handy to write

cn =

√
n

(
n+

d

2
− 1

)
.

Then the above relations for en+1 and e′n can be rewritten with the use of
functions µ and ν as

µ2ν2en =− cn+1 en+1 +

(
2n+

d

2

)
en − cn en−1,

µνe′n =cn+1 en+1 −
d

2
en − cn en−1.

(D.3a)

(D.3b)

Let us define

χijkl =

∫ ∞

0
ei(r)ej(r)ek(r)el(r)µ(r)dr,

and
Xijkl =

∫ ∞

0
e′i(r)ej(r)ek(r)el(r)µ

2(r)ν(r)dr.

For a coefficient χijkl we introduce L = i+j+k+ l as a level of this coefficient.
Our goal is to find a formula for a coefficient at the level L + 1 utilising the
coefficients at levels L and lower. One can use Eq. (D.3b) to expand e′iµν and
obtain

Xijkl = ci+1 χi+1,jkl −
d

2
χijkl − ci χi−1,jkl, (D.4)

so the knowledge of χijkl values automatically gives us also values of Xijkl. To
calculate χijkl we consider an integral∫ ∞

0
ei(r)ej(r)ek(r)el(r)µ

2(r)ν ′(r)dr.
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Integration over parts, together with the relations

µ′(r)ν(r) = (d− 1), µ(r)ν ′(r) = −(d− 2),

yields
dχijkl = −Xijkl −Xjkli −Xklij −Xlijk. (D.5)

Every X in this equation can be represented by a sum of χ coefficients with
appropriate indices by Eq. (D.4). Then we have a relation between coefficients
χijkl at levels L + 1, L, and L − 1. Now we need to find a way to express a
coefficient such as χi,j+1,kl with only χi+1,jkl and coefficients at levels L and
lower. We can consider µ2ν2eiej and expand it with Eq. (D.3a) applied to
either µ2ν2ei or µ2ν2ej . The result is

ωi ei ej − ci+1 ei+1 ej − ci ei−1 ej = ωj ei ej − cj+1 ei ej+1 − cj ei ej−1.

After multiplying both sides by µekel, integrating them from zero to infinity,
and some algebraic operations, we obtain

χi,j+1,kl =
1

cj+1
[(Ej − Ei)χijkl + ci+1 χi+1,jkl + ci χi−1,jkl − cj χi,j−1,kl] .

We can use this relation with Eqs. (D.4) and (D.5) to obtain a recurrence
formula for χi+1,jkl:

χi+1,jkl =
1

2ci+1
[− 2ci χi−1,jkl + 2cj χi,j−1,kl + 2ck χij,k−1,l

+ 2cl χijk,l−1 + (d+ 6i− 2(j + k + l))χijkl]. (D.6)

One can also easily calculate that

χ0000 =
1

2
d
2
−1Γ

(
d
2

) .
This value together with Eq. (D.6) and the total symmetry in indices of χijkl

gives us a recursive scheme for calculations of these coefficients. Moreover, Eq.
(D.4) lets us now to easily compute Xijkl coefficients.

One can notice that coefficients χijkl introduced as an intermediate
step in the calculations of interaction coefficients SNH, are in fact the
interaction coefficients for GP equation. It means that Eq. (D.6) gives
us a feasible recursive scheme for calculation in that case.

We focus now on Uijkl coefficients. Equation L̂ej = Ejej and integration
by parts lead us to

EjUijkl = −1

2
Xjikl

+
1

2

∫ ∞

0
ei(r)el(r)µ(r)ν(r)

∫ r

0
(e′j(s)e

′
k(s) + ej(s)ek(s)µ

2(s)ν2(s))µ(s)dsdr,
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so
(Ej − Ek)Uijkl =

1

2
(Xkijl −Xjikl). (D.7)

This formula gives us explicitly values of Uijkl coefficients in terms of χijkl,
that can be calculated recursively, as long as j ̸= k. In case j = k we need to
perform some additional computations. Let us consider an integral∫ ∞

0
ei(r)el(r)µ(r)ν(r)

∫ r

0
ej(s)ek(s)µ

3(s)ν2(s)dsdr.

Using Eq. (D.3a) to expand µ2ν2ej or µ2ν2ek and putting k = j+1 one obtains

EjUij,j+1,l − cj+1 Ui,j+1,j+1,l − cj Ui,j−1,j+1,l

=Ej+1Uij,j+1,l − cj+2 Uij,j+2,l − cj+1 Ui,j−1,j,l.

In this formula, all coefficients U , except for Uijjl and Ui,j+1,j+1,l, have different
second and third indices, so we can substitute them with coefficients X. It
results in a recurrence relation for Ui,j+1,j+1,l:

Ui,j+1,j+1,l = Uijjl +
1

2cj+1
·

[
Xj+1,jil −Xj,j+1,il

+
1

4
cj (Xj+1,j−1,il −Xj−1,j+1,il)

+
1

4
cj+2 (Xj,j+2,il −Xj+2,jil)

]
, (D.8)

so once we know Ui00l we can use it to calculate coefficients of the form Uijjl

for any j. The value of Ui00l can be computed with an integral∫ ∞

0
ei(r)el(r)µ

2(r)ν(r)ν ′(r)

∫ r

0
ej(s)ek(s)µ(s)dsdr.

One can either use µ(r)ν ′(r) = −(d − 2) or perform the integration by parts
and use µ′(r)ν(r) to rewrite this integral. Comparing the effects of these two
procedures and using the recurrence relations (D.3a) and (D.3b) yields

2Uijkl =− ci+1 i+1,jkl + dUijkl + ci Ui−1,jkl − cl+1 Uijk,l+1 + cl Uijk,l−1

− Eiχijkl + ci+1 χi+1,jkl + ci χi−1,jkl. (D.9)

To get rid of Uijk,l+1 one may consider∫ ∞

0
ei(r)el(r)µ

3(r)ν3(r)

∫ r

0
ej(s)ek(s)µ(s)dsdr.

Use of Eq. (D.3a) to expend µ2ν2ei and µ2ν2el gives

EiUijkl − ci+1 Ui+1,jkl − ci Ui−1,jkl = ElUijkl − cl+1 Uijk,l+1 − cl Uijk,l−1.
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This equation, together with Eq. (D.9) finally yields, after the substitution
j = k = 0, the formula that lets us calculate recursively

Ui+1,00l =
1

2ci+1
[(d− 2 + Ei − El)Ui00l + 2cl Ui00,l−1

−Eiχi00l + ci+1 χi+1,00l + ci χi−1,00l] . (D.10)

Together with the initial condition that can be calculated explicitly,

U0000 =
1

2
d
2Γ
(
d
2

) ,
and the recursive scheme for χijkl calculations, it poses the full system of
equations needed to calculate Ui00l for any i and j.

The final algorithm for computing Sijkl for any value of i, j, k, and l begins
with a decomposition into coefficients U , as in Eq. (D.2). Then the calculations
of their values depend on whether the second and third indices are different.
If so, one uses Eq. (D.7), where X are calculated with the use of Eq. (D.4)
with χ that can be quickly calculated with the recurrsive formula (D.2). If the
indices j and k in Uijkl match, one has to calculate Ui00l using the recurrence
Eq. (D.10) first, and then raise it to Uijjl with Eq. (D.8).
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