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Abstract 

 

The purpose of this thesis is to present results concerning higher lattice gauge theory and 
bosonization, and to summarize the context of this research. Hamiltonian lattice models 
generalizing both Wilson’s lattice gauge theory with finite gauge group and Yetter’s 
Topological Quantum Field Theory are introduced. They are gauge theories in which the gauge 
group is replaced by an algebraic structure called a crossed module of finite groups. 
Symmetries and integrable limits of these models are discussed, allowing to formulate 
general expectations about the dynamics. Much stronger results in this direction are obtained 
in Euclidean state sum models, both analytically and using Monte Carlo techniques. It is 
shown that certain factorization takes place, allowing to reduce computation of correlation 
functions of local observables to more conventional models. More complicated behavior of 
extended operators sensitive to topology is also studied.  

The part about bosonization develops a model which allows to replace any fermionic lattice 
Hamiltonian, regardless of the spatial dimension, with an equivalent generalized spin system. 
The latter is subject to constraints, whose understanding takes up a large part of the study. 
Connections to gauge theory and higher gauge theory are also described. 

The thesis consists of four publications, one unpublished manuscript and an introduction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Streszczenie 

 

Celem tej rozprawy jest prezentacja wyników dotyczących sieciowych wyższych teorii 
cechowania i bozonizacji, a także podsumowanie kontekstu tych badań. Wprowadzone 
zostają Hamiltonowskie układy sieciowe będące wspólnym uogólnieniem Wilsonowskich 
sieciowych teorii cechowania i Topologicznej Kwantowej Teorii Pola Yettera. Są to teorie 
cechowania w których grupa cechowania jest zastąpiona strukturą algebraiczną zwaną 
modułem skrzyżowanym grup skończonych. Symetrie i rozwiązywalne układy tych modeli są 
dyskutowane, co pozwala sformułować ogólne oczekiwania dotyczące dynamiki. Znacznie 
silniejsze wyniki w tym kierunku są uzyskane w sformułowaniu Euklidesowym, zarówno 
analitycznie jak i za pomocą metod Monte Carlo. Pokazane jest, że zachodzi pewnego rodzaju 
faktoryzacja, pozwalająca zredukować obliczanie funkcji korelacji lokalnych obserwabli do 
bardziej konwencjonalnych modeli. Zbadane jest też bardziej skomplikowane zachowanie 
rozciągłych operatorów czułych na topologię.  

W części dotyczącej bozonizacji rozwijany jest model pozwalający zastąpić dowolny sieciowy 
Hamiltonian fermionowy, niezależnie od wymiaru przestrzennego, równoważnym 
uogólnionym układem spinowym. Znaczna część rozważań poświęcona jest badaniu więzów 
w tych modelach. Zbadane zostały też związki z teoriami cechowania i wyższymi teoriami 
cechowania.  

Rozprawa składa się z czterech publikacji, jednego nieopublikowanego manuskryptu oraz 
dodatkowego wprowadzenia.  
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background material is included. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Justification of the form of the dissertation 

 

The main part of this thesis is a collection of publications. I would like to explain why 
this form was chosen. Firstly, my contribution to each of these publications was significant or 
even decisive, as indicated by the list below. Therefore the included material contains many 
results that are my own, even though each publication was written jointly with my 
collaborators. Nevertheless, it does not seem possible to extract only my own part without 
devoiding it of context. My personal touch to discussed topics may be seen in the way of 
presentation and the choice of aspects emphasised in the attached introduction. 

 

I. Most new results presented in Publication I were obtained by me. 

II. Publication II may be divided into two parts: analytic calculations and numerical 
studies. I am the principal author of the first part. Moreover, I proposed the general 
conceptual scheme for simulations, namely a Markov chain with constraint-preserving 
moves in the set of field configurations. Implementation of this idea and all numerical 
calculations were performed by another author, dr Piotr Korcyl. 

III. My colleague Arkadiusz Bochniak and I have contributed equally to Publication III. My 
main conceptual contributions include the idea for interpretation of constraint 
operators as holonomies, and a large portion of algebraic proofs and calculations. 

IV. Four authors of Publication IV have contributed equally. My main role in this work was 
in the algebraic derivation of regularities observed in numerical results, which was 
done based on the ideas from Publication III. 

V. Preprint V is about a generalization of the model studied in Publications III and IV. This 
idea was proposed by myself. Analytic study of the new bosonization method was 
carried out jointly with Arkadiusz Bochniak, to which we have contributed equally. The 
part of preprint V concerning Euclidean representations is due to the other co-author, 
prof. dr hab. Jacek Wosiek.  
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1 Outline

One of the most important questions about many body systems, e.g. lattice
models or field theories, is what are their symmetries. It allows to distinguish phases
of matter [1], derive conservation laws and constrain possible renormalization group
flows, to name a few. Recently it has been emphasized [2, 3] that in many models
further results of this nature may be obtained [4] by considering so called higher form
symmetries, which act non-trivially only on extended operators. Such symmetries
are present in many interesting field theories, e.g. gauge theories and sigma models.

In condensed matter physics, exact higher form symmetries exist only in certain
fine-tuned toy models [5, 6], typically Hamiltonian realizations of Topological
Quantum Field Theories (TQFTs) [7]. However, it has been argued [8, 9, 10] that
robust emergent higher form symmetries are among the hallmarks of topologically
ordered systems.

Systems with symmetry can be probed theoretically by including background
gauge fields. One can also obtain new interesting models by allowing gauge fields to
be dynamical, in a procedure often called gauging. In the case of higher symmetries
this leads to higher form fields. Interestingly, p-form gauge fields have appeared in
the literature much earlier [11] than global higher symmetries.

Ordinary gauge theories are centered around the concept of parallel transport.
Similarly, higher gauge fields allow to define “parallel transports” along manifolds
of higher dimension, e.g. surfaces. It has been argued [12, 13] that such transports
have to be valued in an abelian group. One intuitive way to understand this is that
there exists a natural notion of path ordering, but not surface ordering.

There exists a common generalization of 1-form and 2-form gauge theories based
on algebraic structures called crossed modules of groups [14] or 2-groups [15]. It
involves both 1-form and 2-form degrees of freedom, not independent in general.
Gauge fields valued in a crossed module appeared for the first time in Yetter’s TQFT
[16, 17]. In this construction crossed modules of finite groups are used. Yang-Mills-
like theories based on crossed modules of Lie groups were proposed in [18, 19], while
BF type actions were defined in [20, 21]. More recently, Hamiltonian formulation of
Yetter’s TQFT was developed in [22, 23, 24].

It has been proposed [25, 26] that topological 2-group gauge theories can be used
to describe certain gapped phases of gauge theories. Furthermore, they are supposed
to describe Symmetry Protected Topological (SPT) phases with higher symmetries
[27], much like the Dijkgraaf-Witten theory [28] is used in the classification of more
traditional SPTs [29].

Publication I of the thesis introduces dynamical Hamiltonian lattice models
based on crossed modules of finite groups. They generalize both the standard (not
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topological) 1-form and 2-form gauge theories with finite gauge group. Study of
their dynamics is initiated by discussing symmetries and finding four integrable
limits. By solving for the space of ground states it shown that they may be
described by certain TQFTs, either of Yetter’s or Dijkgraaf-Witten class. Besides
these results, Publication I contains an extensive introduction to mathematics
underlying lattice gauge theories based on crossed modules, including the required
algebraic topology and theory of classifying spaces of crossed modules.

Research of dynamics of lattice gauge theories based on crossed modules was
continued in Publication II, in which Euclidean state sum formulation was
considered. For the purpose of performing Monte Carlo simulations, attention was
restricted to four-dimensional periodic cubic lattices and a particular crossed
module. Apart from understanding the model at hand, authors wished to better
understand what does it mean for a higher form symmetry to be spontaneously
broken. Hence suitable order parameters were proposed and studied.

After formulating a constraint-preserving Monte Carlo simulation scheme,
numerical calculations were initiated. To the suprise of the authors, they yielded
estimates for thermodynamic quantities indicative of a lack of interaction between
1-form and 2-form components of the gauge field. More complicated behavior was
seen for order parameters supported on non-contractible lines and surfaces.

Given the clues from numerics, essential factorization into independent 1-form
and 2-form gauge models was proven analytically. This result does not depend on
the particular choice of crossed module adapted in Publication II. It shows that the
structure of a crossed module does not lead to inevitable interactions, in contrast
to a famous effect of non-commutativity of the gauge group in Yang-Mills theory.
Secondly, combined with generalized Kramers-Wannier dualities [30], it has allowed
to obtain a complete phase diagram.

Second part of the thesis (Publications III, IV and Preprint V) is concerned with
the subject of bosonization. Bosonization is a set of techniques allowing to replace
fermionic degrees of freedom with bosons (or a spin system). There are several
motivations to attempt that. Firstly, there exist models which can be solved exactly
using these techniques [31, 32]. Secondly, bosonic variables are sometimes easier
to implement in numerical investigations, e.g. due to the sign problem. They are
also better suited for semiclassical considerations and can lead to nonperturbative
insights into strongly coupled systems [33]. Recently bosonization has also been
applied in studies of topological phases of matter [34, 35].

The most classical bosonization mapping for lattice models is the
Jordan-Wigner transformation [36]. However, this method does not preserve
locality of the Hamiltonian in spatial dimensions greater than one.

An alternative was proposed in [37] for cubic lattices in dimension 2 and 3. The
idea was to realize commutation relations of fermionic bilinears in a model, here
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called Gamma model, whose on-site Hilbert spaces are representations of Gamma
matrices of sufficiently large dimension. Gamma matrices at distinct lattice sites
were assumed to commute. A concrete mapping taking bilinears to products of
Gamma matrices was proposed. In order for the considered operators to satisfy
certain (anti)commutation rules manifestly obeyed by fermion bilinears, it was
necessary to restrict the Hilbert space of the Gamma model by a set of constraints
corresponding to closed lattice paths.

In the later work [38] it was established for the first time that solutions of all
constraints exist and form a vector space isomorphic to “one half” of the fermionic
Fock space, corresponding to one of two possible values of the fermionic parity
operator (−1)F . It was remarked that the value of (−1)F depends on lattice
geometry, which was taken to be quite general: arbitrary graph such that every
vertex is connected to an even number of neighbors.

The line of research initiated in [37] was continued in Publication III, in which
nature of the correspondence between fermions and the Gamma model was
elucidated. It was shown that constraint operators may be interpreted as
holonomies of a Z2 gauge field for the fermionic parity symmetry (−1)F . Thus
violation of constraints is equivalent to coupling fermions to a background gauge
field. Hilbert space of the Gamma model is the direct sum of subspaces
corresponding to all possible background Z2 gauge fields. However, in each
subspace only one value of (−1)F is realized. An explicit relation between (−1)F

and certain function of the Z2 gauge field was derived.

Solutions of constraints in the Gamma model are highly entangled states,
in general difficult to write down in closed form. In the case of two-dimensional
toric geometry with 2N × 2M lattice sites, this was achieved in Publication III.
States constructed therein are directly related to ground states of Kitaev’s toric
code [5] and Wen’s plaquette model [39].

Another proposal for bosonization in arbitrary dimension was put forward in
[40, 41, 42], based on ideas from [34]. It realizes fermions as flux excitations in
a higher Z2 gauge theory with modified Gauss’ law. As shown in III, this approach
is related to the Gamma model by a simple duality transformation.

Further study of constraints in the Gamma model was undertaken in
Publication IV. Exact solutions were found for several small lattice sizes using
symbolic algebra software. Furthermore, some bosonized Hamiltonians were
diagonalized in the subspace defined by constraints, as well as the subspace
corresponding to a constant Z2 magnetic field.

Further generalization of the Gamma model was introduced in Preprint V.
It extends the original approach in three ways.

• Bosonization of Majorana modes is possible.
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• Models with multiple fermion flavours (e.g. spins or orbitals) per lattice site
are included.

• Lattice sites with odd number of neighbors are allowed.

However, there remains a restriction that the number of Majorana modes1 on a single
lattice site x has to be congruent modulo two to the number of neighbors of x.

First example of a model bosonized with this approach that could not be
treated previously is the Hubbard model on a cubic lattice. Curiously, the
proposed bosonization mapping treats two spin states in an asymmetric fashion.
Nevertheless, the SU(2) rotation symmetry is present on the Gamma model side
and acts on-site.

Secondly, one can bosonize Majorana models on lattices with odd coordination
number. The simplest example is the honeycomb lattice in two spatial dimensions.
It turns out that in this case the proposed approach reduces to the famous solution
of Kitaev’s honeycomb model [32].

Thirdly, in geometries with boundary there are typically lattice sites whose
coordination number is different than in the bulk. Then certain edge modes may
be present in the Gamma model. Using the new approach, they are identified and
dealt with without difficulties.

The final part of Preprint V is devoted to Monte Carlo study of the Gamma
model without constraints. This is motivated by hopes to find new algorithms for
simulation of fermions without sign problem.

Section 2 of this document contains a review of background material. Its goal is
twofold. Firstly, it explains selected mathematical tools used in the thesis, which
may be unfamiliar to many physicists. Secondly, it presents constructions of several
models in physics closely related to those studied in the thesis.

Subsection 2.1 deals with rudiments of the theory of principal bundles. The
emphasis is laid on global aspects, including the case of dicrete groups and the
relation to covering space theory. Afterwards, classifying spaces and characteristic
classes are introduced in Subsection 2.2. They are among the most important tools
in classifying principal bundles. Their relevance for this thesis stems mostly from
their role in Dijkgraaf-Witten and Yetter’s theories. The former is discussed in
Subsection 2.3. Treatment here is mostly in the spirit of the original article [28],
but the discussion of Hilbert spaces and gauge transformations is expanded. To the
knowledge of the author, it has not appeared in the literature in this form, although
it bears some resemblance to [43]. Afterwards, relations of the Dijkgraaf-Witten
theory to some other topics in physics are explained. The main motivation to devote
so much space to the Dijkgraaf-Witten theory is that it is largely analogous, but less

1Canonical creation-annihilation pair counts as a pair of Majoranas.
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technical than Yetter’s model. For the sake of clarity, a choice was made to discuss
the simpler case in more detail. Subsection 2.4 is devoted to higher symmetries,
with U(1) gauge theory serving as the main example. Then Wilson’s lattice gauge
theories are recalled in Subsection 2.5. This sets the stage to define abelian higher
lattice gauge theories and derive a form of Kramers-Wannier duality which was used
in Publication IV.

Section 3 is concerned with lattice gauge theories based on crossed modules.
First some basic facts about Yetter’s TQFT are stated in Subsection 3.1. Instead
of presenting a complete construction of the theory, the main new elements
(in comparison to the Dijkgraaf-Witten theory) are indicated. A summary of
results of Publications I and II is presented in Subsection 3.2. Section 4 is devoted
to bosonization. After reviewing the Jordan-Wigner transformation in Subsection
4.1, contents of Publications III, IV and Preprint V are outlined in Subsection 4.2.

2 Background material

2.1 Principal bundles

Let G be a Lie group, not necessarily connected, and M a connected smooth
manifold. G-valued gauge field on M is [44] a principal G-bundle π : P → M
equipped with a connection. Definitions and selected properties of these objects will
now be recalled. Further details can be found in [45, ch. 2].

A fiber bundle over M consists of a manifold E and a smooth map E π−→M such
that for some manifold F every x ∈ M admits a neighbourhood U and
a diffeomorphism U × F ϕ−→ π−1(U) satisfying

π ◦ ϕ(y, f) = y for y ∈ U, f ∈ F. (2.1)

Sets π−1(x) ⊂ E are submanifolds called fibers of E. Tangent spaces of fibers form
a subbundle V of TE, the tangent bundle of E. A connection on E is a subbundle
H of TE such that TE = H ⊕ V .

Principal G-bundle over M consists of a smooth manifold P , a smooth map
P

π−→ M and a smooth right action of G on P such that each x ∈ M admits
a neighbourhood U and a diffeomorphism U ×G ϕ−→ π−1(U) such that

π ◦ ϕ(y, g) = y, ϕ(y, gh) = ϕ(y, g) · h (2.2)

for y ∈ U , g, h ∈ G. It is convenient to refer to P itself as a (principal) G-bundle,
leaving rest of the structure implicit. Connections on principal bundles are required
to be G-invariant. An isomorphism of G-bundles P, P ′ is a G-equivariant map

6



P
ψ−→ P ′ such that P π−→M coincides with the composition P ψ−→ P ′

π′−→M . Definition
of an isomorphism of G-bundles with connection is self-evident.

In the important special case of discrete G, the above definition states that π is
a regular covering with group of deck transformations G [46, ch. 1.3]. In particular
universal covers M̃ → M are principal G-bundles with G ∼= π1M (fundamental
group of M). Another source of examples is provided by homogeneous spaces: if H
is a Lie group and G ⊂ H a closed subgroup, then H is a principal G-bundle over
the space H/G of left cosets of G in H.

If S is a manifold on which G acts smoothly from the left, one defines the
associated bundle SP to be the quotient of P × S by the relation

(p · g, s) ∼ (p, g · s) for each p ∈ P, g ∈ G, s ∈ S. (2.3)

If P is equipped with a connection, there is an induced connection on SP . If S
carries additional structure invariant under the G-action, so does SP . For example,

• SP is a vector bundle for a linear representation S,

• SP is a bundle of Lie groups if S is a Lie group on which G acts by
automorphisms,

• SP is a principal S-bundle if S is a Lie group on which G acts as g · s = φ(g)s
for some homomorphism φ : G → S. To distinguish this example from the
previous one, it will be denoted SLP .

A special role in the theory is played by the bundle of Lie groups GP and the
bundle of Lie algebras gP , where g is the Lie algebra of G. They are induced from
the adjoint action of G on G and g, respectively. Significant simplifications occur if
G is commutative, for then GP = M ×G and gP = M × g.

Automorphisms of P , sometimes called gauge transformations, may be identified
with sections of GP → M . Thus for G commutative they are the same as smooth
functions M → G.

Connections on P form an affine space over the space of gP -valued 1-forms. In
particular there is a unique connection if G is discrete. To every connection one
associates its curvature F , a gP -valued 2-form on M .

If γ : [0, 1] → M is a (piecewise continuously differentiable) path, connection
determines a G-equivariant map holγ : π−1(γ(0)) → π−1(γ(1)), called parallel
transport. Let pi ∈ π−1(γ(i)), i = 0, 1. A general element of π−1(γ(i)) is of the
form pi · g with a unique g ∈ G. Equivariance condition implies that

holγ(p0 · g) = p1 · hγg (2.4)
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for some hγ ∈ G depending on the choice of pi, but not on g. For a different choice
p′i = pi · ti one has

holγ(p
′
0 · g) = p′1 · h′γg with hγ = t−1

1 hγt0. (2.5)

Now fix x ∈ M and choose p ∈ π−1(x). Parallel transport construction assigns
a group element hγ for every loop γ based at x (set p0 = p1 = p in the above
discussion). Upon a change of p, hγ is changed only by an overall conjugation

hγ 7→ h′γ = ghγg
−1 (2.6)

with g ∈ G independent of γ. Class of the function γ 7→ hγ modulo relation
identifying hγ and h′γ determines the principal bundle with connection up to
isomorphism. See [47, 48] for “inverse” constructions.

The geometrical interpretation of curvature is that it controls variation of parallel
transports holγ upon variation of γ with fixed endpoints. The extreme case of
vanishing curvature is characterized by the property that holγ depends only on the
homotopy class of γ. Connections with this property are called flat.

For a flat connection, γ 7→ hγ defines a homomorphism π1M → G. Conversely,
every h ∈ Hom(π1M,G) is realized by a principal bundle with connection, say GL

M̃
.

Hence isomorphism classes of principal bundles with flat connection are in bijection
with Hom(π1M,G)/G. Such quotients are well studied spaces M(M,G), called
moduli spaces of flat connections. In the notable case of G commutative,

M(M,G) ∼= H1(M,G). (2.7)

If M is compact and G is finite (not necessarily abelian), thenM(M,G) is finite.

2.2 Classifying spaces

Consider the problem of classifying principal bundles with connection up to
continuous deformations. First note that two connections on a fixed principal
G-bundle can be connected by a smooth path.

Secondly, principal bundles are rigid: if π̂ : P̂ → [0, 1]×M is a principal G-bundle,
then its restrictions to M × {t} ∼= M , are isomorphic.

The problem is reduced to classifying principal G-bundles. One of the most
powerful tools for this task is the theory of classifying spaces, which will be sketched
below. For more details, consult [49, ch. 4] and [50, ch. 3].

It pays off to depart from the cozy realm of manifolds and smooth maps. Let G be
a topological group and M a topological space. Definition of a principal G-bundle
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P
π−→ M is as in Section 2.1, with smoothness conditions replaced by continuity

throughout. Concepts of isomorphisms and associated bundles are generalized in
a similar fashion.

One shows that smooth principal bundles which are continuously isomorphic are
also smoothly isomorphic. Moreover, if G and M are smooth, any continuous
principal G-bundle P → M is isomorphic to a smooth one. Thus differential
geometric classification of bundles reduces to (and is generalized by) the
topological classification.

Let P → M be a principal G-bundle and let f : M ′ → M be a continuous map.
The pullback of P is defined as

f ∗P = {(x′, p) ∈M ′ × P |f(x′) = π(p)}. (2.8)

It is a principal G-bundle. IfM ′ is paracompact, pullbacks through homotopic maps
are isomorphic. Thus one has a map [f ] 7→ [f ∗P ] from the set [M ′,M ] of homotopy
classes of maps M ′ → M to the set PrinG(M ′) of isomorphism classes of principal
G-bundles on M ′.

Principal G-bundle P → M is called universal if the corresponding map
[M ′,M ] → PrinG(M ′) is a bijection for every CW complex M ′ (thus in particular
for every smooth manifold). It is called n-universal if this condition is satisfied for
all CW complexes of dimension ≤ n.

For a universal principal G-bundle P →M it is standard to use notation P = EG,
M = BG. BG is called a classifying space of G.

Every topological group admits a universal bundle. Moreover, BG may be taken
to be a CW complex. Then BG is determined uniquely up to a homotopy
equivalence. Indeed, if EG → BG and E′G → B′G are two universal bundles with
BG and B′G CW complexes, there exist maps f : B′G → BG and g : BG → B′G
such that f ∗EG ∼= E′G and g∗E′G ∼= EG, so

(f ◦ g)∗EG ∼= EG ∼= id∗BGEG and (g ◦ f)∗E′G ∼= E′G ∼= id∗B′GE′G, (2.9)

which implies that f ◦ g and g ◦ f are both homotopic to identity.

A principal G-bundle P → M with M paracompact and πiP = 0 for all i (resp.
for i ≤ n) is universal (resp. n-universal). This practical criterion allows to construct
many explicit examples.

• Grassmannian of n-planes in C∞ is a BU(n), with EU(n) = space of n-planes
with an orthonormal basis. In particular the infinite dimensional complex
projective space CP∞ is a BU(1), with EU(1) = S∞.
Similarly, there is an m-universal principal U(n)-bundle over the
Grassmannian of n-planes in Cn+k for sufficiently large k depending on m.
There exist analogous constructions for other classical groups.
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• If G admits an embedding in some GL(n) (e.g. G is a compact Lie group),
bundles GL(n + k)/GL(k) → GL(n + k)/(G × GL(k)) are m-universal for
sufficiently large k. Taking a direct limit one may construct a universal bundle.

• Let G be discrete. Eilenberg-MacLane space K(G, 1) is defined to be
a connected CW complex with fundamental group G and trivial higher
homotopy groups. Then K(G, 1) is a BG, with its universal covering as EG.
Many such BG are explicitly known. There exists also a general construction
[46, Ch. 1.B] of EG and BG as a ∆-complexes. The d-simplices of EG are
indexed by d-tuples (g0, . . . , gd) ∈ Gd+1, and the i-th face of such simplex is
(g0, . . . , gi−1, gi+1, . . . , gd). Group G acts on EG by simplicial maps, with
g ∈ G taking (g0, . . . , gd) to (gg0, . . . , ggd). The quotient EG/G is a BG. Its
d-simplices are indexed by tuples (g0, . . . , gd) ∈ Gd+1 subject to the
equivalence relation (g0, . . . , gd) ∼ (gg0, . . . , ggd) for every g ∈ G.

Characteristic class is an assignment of a cohomology class α(P ) on a CW complex
M to every principal G-bundle P → M . It is required that α(P ) depends only on
the isomorphism class of P and is natural, in the sense that for a map f : M ′ →M
one has α(f ∗P ) = f ∗α(P ). Then

α(P ) = f ∗α(EG), (2.10)

where f : M → BG is a map corresponding to P . Thus characteristic classes
determine and are determined by the corresponding elements of cohomology of BG.

The most self-evident application of characteristic classes is to distinguish non-
isomorphic bundles: if α(P ) 6= α(P ′), then P, P ′ are not isomorphic. However, for
general G characteristic classes do not provide a complete set of invariants.

Cohomology of BG is understood for many groups which are frequently
encountered in practice, in particular classical Lie groups. Three sources of
characteristic classes deserve a special mention.

• For Lie groups G and smooth bundles, Chern-Weil theory [51, ch. XII]
constructs a characteristic class I(F ) ∈ H•dR(M) from every G-invariant
polynomial I on g. Approximating BG by smooth manifolds one gets classes
in H•(BG,R). For compact G this yields an isomorphism of H•(BG,R) and
the algebra of G-invariant polynomials on g. For example, H•(BU(n),R) is
a real polynomial ring in variables cR1 , . . . , cRn called real Chern classes.

• Classifying spaces of some groups can be given cell structure so simple that
cohomology can be calculated explicitly [52, ch. 6]. For example, CP∞ may
be assembled from one cell CPn \ CPn−1 ∼= Cn in every even dimension 2n.
From this one may deduce that H•(BU(1),Z) is an integral polynomial ring
in one variable c1 ∈ H2(BU(1),Z), called the Chern class.
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• Let G be discrete and let A be a G-module. Group cohomology [53]
H•grp(G,A) may be defined as the cohomology with local coefficients [54]
H•(BG, Ã), where Ã := AEG is the bundle2 over BG associated to A. In the
important special case of A being an abelian group with trivial G-action, it
reduces to the ordinary (say, singular) cohomology H•(BG,A). Alternatively,
group cohomology may be defined purely algebraically as Ext•ZG(Z, A). The
two definitions are equivalent, because the simplicial chain complex of EG is
a resolution of Z free over ZG. This allows to compute group cohomology as
the cohomology of an explicit cochain complex

· · · → Cp(G,A)
δ−→ Cp+1(G,A)→ . . . , (2.11)

where Cp(G,A) := HomZG(Csimp
p (EG,Z), A) (= Cp

simp(BG,A) if G acts
trivially on A) may be identified with the abelian group of functions
α : Gp+1 → A satisfying

α(gg0, . . . , ggp) = g · α(g0, . . . , gp). (2.12)

The coboundary operator is given by

δα(g0, . . . , gp+1) =

p+1∑
i=0

(−1)iα(g0, . . . , gi−1, gi+1, . . . , gp+1). (2.13)

2.3 Dijkgraaf-Witten theory

2.3.1 Construction

Dijkgraaf-Witten theory [28] is a TQFT whose dynamical field is a G-valued
gauge field for some finite group G, or equivalently a map f : M → BG. In the
latter picture homotopies play the role of gauge transformations. The action is given
by a characteristic class α ∈ HD(BG,R/2πZ), where D is the spacetime dimension:

S =

∫
M

f ∗α. (2.14)

Its sign depends on the orientation of M .

It is convenient to choose a base point in M and replace the data of gauge fields
by homomorphisms h ∈ Hom(π1M,G). The partition function on a closed manifold
M is defined to be

Z(M) =
1

|G|
∑

h∈Hom(π1M,G)

exp

(
i

∫
M

f ∗hα

)
, (2.15)

2Cohomology with local coefficients in Ã may be defined as the sheaf cohomology of the sheaf
of sections of Ã.
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where fh : M → BG is determined by h. This sum is finite.

The above definition does not describe phase factors eiS very explicitly if α 6= 0.
Moreover, it is not suitable to deal with amplitudes between states defined on the
boundary of M , as required by Atiyah’s axioms [7]. For this, it is useful to better
understand maps M → BG.

Pick a triangulation of M and consider the problem of defining a map M → BG
simplex by simplex, starting from the lowest dimension. Fix a base point ∗ ∈ BG
and identify π1(BG, ∗) with G.

• Since BG is connected, every map is homotopic to one taking the set M0 ⊂M
of vertices (0-simplices of the triangulation) to ∗. Indeed, the homotopy is
constructed first onM0 and then extended toM using the homotopy extension
property of M0 ⊂M .

• Each oriented edge (1-simplex) e is mapped to a loop in BG based at ∗, hence
represent an element ge ∈ G. One has ge = g−1

e , where bar denotes orientation
reversal. Such collection g = {ge} of elements of G indexed by edges will be
called a lattice gauge field.

• Consider a triangle (2-simplex) ∆ whose three subsequent sides are taken
to g1, g2, g3. The boundary of ∆ is topologically a circle mapped to a loop
of homotopy class g3g2g1, so the map can be extended to ∆ if and only if
g3g2g1 = 1. Lattice gauge field satisfying this condition for every ∆ is said to
be flat.

• Extensions through higher dimensional simplices exist automatically, since
higher homotopy groups of BG vanish.

Next, one has to understand homotopies. Let f, f ′ : M → BG be given. There is
no loss of generality in assuming that both send M0 to ∗.

• To construct a homotopy between f and f ′ is to extend to M × [0, 1] the map
M × {0, 1} → BG given by f and f ′ on M × {0} and M × {1}, respectively.

• For every x ∈M0 the line segment {x} × [0, 1] is sent to tx ∈ π1BG.

• If e is an edge of M with endpoints x, y, oriented from x to y, then extension
through e× [0, 1] exists if and only if

g′e = tyget
−1
x . (2.16)

Thus the collection t = {tx} of elements of G indexed by M0 is said to be
a gauge transformation from g to g′, written t · g = g′.

• Existence of the extension in subsequent steps is automatic.
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The discussion above may be summarized as follows. Every map M → BG
sending M0 to ∗ yields a flat lattice gauge field. Conversely, every flat lattice gauge
field admits a corresponding map. Two maps are homotopic if and only if the
corresponding gauge fields are related by a gauge transformation.

Let x ∈ M0. Given a gauge field g, the corresponding homomorphism
π1(M,x) → G is constructed as follows. Every loop in M based at x is homotopic
to the composition of edges en · · · e1. Define gγ = gen · · · ge1 . Flatness of g
guarantees that gγ depends only on the homotopy class of γ.

One may say more: action of gauge transformations on the set of flat lattice gauge
fields has the same orbits as the action of G on Hom(π1(M,x), G). Stabilizers of
this action also agree, because for every t ∈ G commuting will all gγ there exists
a unique gauge transformation t with tx = t such that t · g = g. It follows that
for every h ∈ Hom(π1(M,x), G) there are exactly |G||X0|−1 flat lattice gauge fields
g corresponding to it.

The question remains how to evaluate (2.14) for a map f : M → BG constructed
as above. It is convenient to first construct a canonical form for f . As M is built of
simplices, this can be achieved by gluing together a coherent family of maps to BG
defined on standard simplices

∆d =

{
(x0, . . . , xd) ∈ Rd+1

∣∣∣∣xi ≥ 0,
d∑
i=0

xi = 1

}
. (2.17)

Let g be a flat lattice gauge field on ∆d. Choose a map Fg : ∆d → BG which
induces g. Working inductively with respect to d, one may assure that the collection
of all Fg satisfies a compatibility condition described below.

Let ι : {0, . . . , k} → {0, . . . , d} be an order-preserving inclusion. Then ι̂ is defined
as the unique convex map ∆k →∆d taking j-th basis vector in Rk+1 to ι(j)-th basis
vector in Rd+1. The image of ι̂ is a face of ∆d, so every flat lattice gauge field g on
∆d restricts to a flat lattice gauge field ι∗g on ∆k. It is required that Fι∗g = Fg ◦ ι̂.

Now letM be a triangulated manifold with a flat lattice gauge field g. Choose an
ordering of vertices of M . Then for every D-simplex Ω of M there is a distinguished
order-preserving simplicial inclusion JΩ : ∆D → M whose image is Ω. It induces
a flat lattice gauge field J∗Ωg on ∆D (by restriction, if one identifies ∆D with its
image Ω ⊂M). A map fΩ : Ω→ BG is defined by the condition

fΩ ◦ JΩ = FJ∗Ωg. (2.18)

The compatibility condition satisfied by maps F guarantees that for two D-simplices
Ω,Ω′ ofM one has fΩ|Ω∩Ω′ = fΩ′|Ω∩Ω′ . Therefore there exists a unique f : M → BG
such that fΩ = f |Ω.
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For every Ω let ε(Ω) = 1 or −1, depending on whether orientations of Ω induced
by the ordering and orientation of M agree or disagree. Then the fundamental class
of M is represented by the chain

M =
∑

Ω

ε(Ω)(JΩ)∗∆
D, . (2.19)

Denoting3 α(g′) :=
∫

∆D(Fg′)
∗α for a flat lattice gauge field g′ on ∆D, the action

may be written in the form

S(g) =
∑

Ω

ε(Ω)α(J∗Ωg). (2.20)

Note that even though S depends only on the homotopy class of f and the
cohomology class α, the same is not true for the individual terms α(J∗Ωg) of the
sum (2.20). This is because ∆D is not closed. To make sense of (2.20), a particular
cocycle representing the class α has to be chosen. After fixing maps F on standard
simplices and the cocycle α, terms of (2.20) are well defined. Each term is a function
of the gauge field on a single D-simplex of M . Therefore the whole expression is
a manifestly local action, in contrast to the more abstract (2.14).

To finish evaluation of the action, it only remains to understand functions

α(g) :=

∫
∆D

(Fg)∗α (2.21)

for g defined on a standard simplex ∆D. If 0 ≤ j < i ≤ D, let eij be the line segment
connecting the j-th basis vector of RD+1 to the i-th basis vector. Then eij are the
edges of ∆D. Thus a lattice gauge field on ∆D is a collection g = {geij}0≤j<i≤D. If
g is flat, there exist h0, . . . , hD ∈ G such that geij = h−1

i hj. They are determined by
g uniquely up to hi 7→ hhi (with h independent of i). Hence g may be equivalently
described by a tuple (h0, . . . , hD) modulo equivalence relation

(h0, . . . , hD) ∼ (hh0, . . . , hhD) ∀h ∈ G. (2.22)

This means that α(·) may be understood as a function GD+1 → R/2πZ satisfying
the homogeneity conditon

α(hh0, . . . , hhD) = α(h0, . . . , hD). (2.23)

Hence α ∈ CD(G,R/2πZ), where G acts trivially on R/2πZ (recall the discussion
around equation (2.12)). By construction, δα = 0.

Having discussed the action, the partition function on any closed manifold M
may be written in the form

Z(M) =
1

|G||M0|

∑
g

∏
Ω

eiε(Ω)α(g), (2.24)

3By now α denotes three different, albeit related things: a cohomology class on BG, a cocycle
on BG and a function on the set of flat gauge fields on the standard simplex ∆D. Hopefully this
will not lead to confusion.
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where |M0| is the number of 0-simplices of M . The sum is over all flat lattice gauge
fields on M .

The action (2.20) is well defined even if M has a nonempty boundary. In general
it is not gauge invariant. However, using the cocycle condition obeyed by α one may
show that for every triangulated, oriented smooth (D− 1)-manifold X with ordered
vertices there exists a function IX such that

S(t · g) = S(g) +
∑
i

I∂Mi
(t|∂Mi

, g|∂Mi
), (2.25)

where ∂Mi are connected components of the boundary of M . In general IX(t,g)
depends on a gauge transformation t and a flat lattice gauge field g on X. It does
not depend on how X is embedded in the boundary of M .

One may explicitly describe IX in similar terms as for the action4, showing that
IX is local. This will not be needed in what follows. What is important is that for
a pair of gauge transformations t, t′ one may compute S(t′ · t · g) in two different
ways. Since the results have to coincide, one obtains

IX(t′t,g) = IX(t′, t · g) + IX(t,g). (2.26)

Here t′t is the self-evident composition of gauge transformations. Such equation is
sometimes called Wess-Zumino consistency condition, or simply a cocycle condition.

Gauge-variance of the action may seem disturbing, but since the variation term in
(2.25) is supported on the boundary, it may be absorbed by wavefunctions of ingoing
and outgoing states5. Here is a precise statement. If X is an oriented triangulated
(D−1)-manifold, let Hpre

X be the L2 space on flat lattice gauge fields on X. Modified
Gauss’ operators on Hpre

X are defined by

(GX(t)ψX)(g) = ψX(t−1 · g) exp
(
iI(t, t−1 · g)

)
. (2.27)

Clearly they are unitary. Wess-Zumino conditions imply that

GX(t′)GX(t) = GX(t′t). (2.28)

Let HX be the subspace of Hpre
X of elements invariant to all GX(t). This is the

physical Hilbert space of Dijkgraaf-Witten theory. It consists of functions satisfying

ψX(t · g) = ψX(g)eiI(t,g). (2.29)

The orthogonal projection PX onto HX is given by the averaging operation:

PX =
1

|G|X0

∑
t

GX(t). (2.30)

4The only new element is that one has to consider not only maps from standard simplices
∆d → BG, but also their homotopies ∆d ×∆1 → BG corresponding to gauge transformations.

5A separate discussion, not presented here, is required for spacetime boundaries which are not
time slices, e.g. spatial boundaries.
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If ψX ∈ HX , then ψX(g) and ψX(t · g) have the same absolute value. Moreover,
if they are nonzero, then the relative phase is uniquely determined by the Gauss’
law. It follows that the dimension of HX is bounded from above by the number of
elements of the moduli space of flat connectionsM(M,G). The inequality may be
strict for α 6= 0, for then it is possible that for some flat lattice gauge field g one
has IX(t,g) 6= 0 for some t such that t ·g = g. In this case the modified Gauss’ law
(2.29) enforces ψX(g) = 0.

Now let M have a boundary decomposed as ∂M = Y ∪X, bar denoting reversal
of the orientation and the ordering of vertices. An operator Opre(M) : Hpre

X → H
pre
Y

is defined by

〈ψY |Opre(M)φX〉 =
|G|

|Y0|+|X0|
2

|G||M0|

∑
g

∏
Ω

eiε(Ω)α(J∗Ωg)ψY (g|Y )φX(g|X). (2.31)

Here the normalization factor is chosen so that gluing spacetimes along common
boundary components corresponds to composition of operators. Furthermore,
Opre(M) is the operator adjoint of Opre(M).

Gauss’ operators have been engineered so that for every gauge transformations
tX , tY on X and Y one has

Opre(M) = GY (tY )Opre(M) = Opre(M)GX(tX). (2.32)

Summing these equalities over all tX and tY gives

Opre(M) = PYOpre(M) = Opre(M)PX . (2.33)

It follows that Opre(M) annihilates the orthogonal complement of HX in Hpre
X and

has image in HY . By restriction, one obtains an operator O(M) : HX → HY .

To complete the construction of the Dijkgraaf-Witten TQFT one has to explain
how the dependence on the choice of triangulations (including ordering of vertices)
can be lifted. This will be shown now.

From locality and independence of the action on the choice of triangulations in
the case of closedM it follows that Opre(M), and hence O(M), are unchanged upon
retriangulations of M which do not affect the boundary of M .

Next, for a (D − 1)-dimensional X let X ′ be a copy of X, but with a different
triangulation. There exists a triangulation of the cylinder X × [0, 1] with boundary
X ′ ∪X. Denote it by CylX′,X . By the preceding remarks, O(CylX′,X) : HX → HX′

depends only on X,X ′, not on the choice of triangulation of the cylinder. Moreover,

O(CylX′,X)∗O(CylX,X′) = O(CylX,X). (2.34)

A convenient CylX,X is obtained by subdivision of the product cell structure on
X × [0, 1]. With such triangulation and with the aid of (2.25) one checks that

Opre(CylX,X) =
1

|G||X0|

∑
t

GX(t) = PX , (2.35)
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so O(CylX,X) = 1. Hence by (2.34), the operator O(CylX,X′) is unitary. It can
be used to identify HX with HX′ for every X ′. With such identifications, HX

is defined for every oriented, smooth (D − 1)-dimensional manifold X, without
fixing a triangulation. Using the composition law for O operators one checks that
O(M) : HX → HY remains well-defined with the new meaning of symbols HX ,HY .
It does not depend on the choice of triangulation of M .

2.3.2 Relation to other models

Relation of the Dijkgraaf-Witten theory to several interesting models in physics
will now be discussed. The list is not exhaustive.

• Example of functional integration. Dijkgraaf-Witten theory is a simple
quantum field theory model defined by a rigorously constructed path integral.
This makes it interesting at least as a toy model. Topological invariance means
that the model is a renormalization group fixed point.

• SPT phases. Consider a gapped quantum model in spatial dimension D− 1
with a symmetry G. Even if the system does not exhibit topological order,
it might happen that it is not possible to continuously deform the ground
state to a product state without either closing the gap or breaking the
symmetry. Such phases are called Symmetry Protected Topological or
Symmetry Protected Trivial.

Suppose that G is not anomalous, i.e. it is possible to consistently couple the
system to background gauge fields. One is then interested in the response of
the system. A natural ansatz is that its long distance properties are described
by an effective action for gauge fields which is local and topological.

Perhaps the most famous example is D = 3 and G = U(1), for which
topological actions are Chern-Simons functionals parametrized by the level k.
Gauss’ law in this theory is modified and has a simple interpretation: to each
electric charge q there is an associated magnetic flux φ = 2π

k
q. Combining

this with the Aharonov-Bohm effect, one may expect excitations with
nontrivial exchange phases and spin. In particular transmutation of statistics
may take place [55]. Inspection of equations of motion in Chern-Simons
theory with external currents shows that k is also related to the Hall
conductivity: σH = k

2π
.

Dijkgraaf-Witten theory is an analog of Chern-Simons theory for finite
groups G. Its actions, parametrized by group cohomology classes, are related
to SPT phases with symmetry G. Another argument for such correspondence
has been given in [29]. In low dimensions it is now fully established by
rigorous index theorems [56]. In general this so-called cohomology
classification is expected to be superseded by a classification based on
cobordism theory [57].
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• Higher gauge fields. Dijkgraf-Witten theory is a topological sigma model
with target space K(G, 1). If G is abelian, there exist also higher
Eilenberg-MacLane spaces. These are connected CW complexes K(G, n)
with only one nonzero homotopy group, πnK(G, n) = G. They have the
property that for every CW complex X homotopy classes of maps
X → K(G, n) are in a natural bijection with the cohomology Hn(X,G).
Topological sigma models with target space K(G, n) are topological higher
(n-form) gauge theories. Such models were studied e.g. in [58].

• Toric code. Let X be a triangulated D − 1 manifold, G a finite group and
let H be the L2 space on the set of all (not necessarily flat) lattice gauge fields
on X. Note that H is the tensor product of local Hilbert spaces associated to
edges of X. Consider the following Hamiltonian on H:

H =
∑
x∈X0

(1− A(x)) +
∑

∆

(1−B(∆)). (2.36)

The first sum is over vertices of X. Operator A(x) is defined to be the
projection onto states invariant with respect to gauge transformations at x.
The second sum is over 2-simplices ∆ of X. B(∆) is defined to be the
projection onto gauge fields flat on ∆.
All terms of H commute with each other, so the space of ground states is
the joint eigenspace of all A(x) and B(∆) to eigenvalue 1. Thus it is readily
recognized to be the space of states on X of a Dijkgraaf-Witten theory with
trivial action α = 0. However, the Hilbert space H contains also excitations,
not described by a TQFT.
The name “toric code” derives from the special case of X being
a two-dimensional torus6. This model with G = Z2 was considered first in
the field of quantum information [5]. The idea was to use its ground states as
qubits. It is not conceivable that gauge invariance and flatness could be
imposed as exact constraints in any physical realization, which motivates
penalizing their violation energetically instead.
Many other TQFTs admit realizations similar to the toric code, e.g. via the
Levin-Wen construction [6]. Such models are very popular in the field of
topological phases.

2.4 Higher symmetries

Consider a Lagrangian field theory with a continuous symmetry G. Noether
theorem guarantees the existence of an associated conserved current J , here regarded
as a (D − 1) form. If Σ ⊂M is a hypersurface with no boundary, one defines

Q(Σ) =

∫
Σ

J. (2.37)

6Typically with a standard cubic lattice rather than triangulation, but that does not affect the
discussion much.
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Notice that Q(Σ) may depend on orientation of Σ, sign of the normal vector or both.

Current conservation dJ = 0 (up to contant terms) means that Q(Σ) is
unchanged as Σ is continuously deformed without crossing locations of other
operators. Therefore, in a popular jargon, Q(Σ) is called a topological operator.

Exponentiation yields operators Ug(Σ) labeled by elements g ∈ G. They have
the following properties.

• Ward’s identity: if SD−1 is a sphere around the location x of a local operator
Oa(x), separated from all other insertions, then

〈Ug(SD−1)Oa(x) · · · 〉 = ρ(g)a b〈Ob(x) · · · 〉, (2.38)

where 〈· · · 〉 denotes quantum averaging and ρ(g)a b are the matrix elements
of the representation in which G acts on local operators.

• Fusion rule: if Σ′ is a copy of Σ slightly shifted in the normal direction, then

Ug(Σ
′)Uh(Σ) = Ugh(Σ). (2.39)

• Neutral element: U1(Σ) = 1.

• Inversion: Ug−1(Σ) = Ug(Σ), where Σ is Σ with flipped orientations.

Operators Ug(Σ) as above can often be constructed also for discrete symmetries,
even though Noether theorem is not available in this case. In fact, existence of Ug(Σ)
is sometimes taken as the definition of a symmetry.

In [3] it was proposed that arbitrary topological operators should be regarded
as generalized symmetries. This includes non-invertible symmetries described by
structures other than groups, e.g. fusion categories [59]. In this work an important
role is played by higher (p-form) symmetries, corresponding to topological operators
associated to submanifolds of codimension p+ 1.

Submanifold of codimension greater than one can be separated arbitrarily far
from any given point, without collisions in the intermediate stages. In conjunction
with expected locality properties, this means that p-form symmetries with p > 0
act trivially on local operators. On the other hand, codimension p+ 1 submanifold
may surround an object of dimension p, for example two loops in R3 can wind
nontrivially around each other. Therefore objects charged under a p-form symmetry
are of dimension p. Similar considerations suggest that fusion of p-form symmetries
has to be commutative for p > 0.

An excellent example of higher symmetries is provided by the U(1) gauge theory
with the Maxwell action

S =

∫
M

1

2g2
F ∧ ∗F, (2.40)
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where F is the curvature form. Shifting the dynamical field by any flat connection
(which involves taking the tensor product of corresponding bundles) is a symmetry
of the action, called the electric 1-form U(1) symmetry. All local observables are
invariant, but holonomies along nontrivial loops in M are changed. It is easy to
obtain the conserved current 1

g2 ∗F .

If the theory is extended by including dynamical fields with electric charge n,
the U(1) symmetry is broken down to Zn. Electric symmetry exists also in non-
abelian gauge theories, in which the symmetry group is the center of the gauge
group. For this reason it is typically called the center symmetry [60] in this context.
Notably, dynamical consequences of center symmetry have been studied long before
the concept of higher symmetries was abstracted.

There exists also so-called magnetic U(1) symmetry, given by operators

Umag
eiα (Σ) = exp

(
iα

∫
Σ

1

2π
F

)
, (2.41)

where Σ is a 2-dimensional oriented surface. If H2(M,Z) has torsion, slightly more
general operators may be constructed: exp

(
i
∫

Σ
c1

)
, where c1 is the Chern class and

Σ is a 2-cycle with R/2πZ coefficients.

Magnetic symmetry is a (D − 3)-form symmetry. The main charged objects are
magnetic monopoles [61] (’t Hooft operators [62]). It has been emphasized [63] that
in presence of torsion in cohomology electric and magnetic symmetry operators are
not transparent to each other, essentially because there exist flat gauge fields whose
Chern class is nontrivial.

For a more general connected gauge group G, magnetic symmetry group is the
Pontryagin dual of π1G (which is the group of magnetic monopole charges [64]).
Indeed, in this case BG is simply-connected, so by the Hurewicz theorem

H2(BG,R/2πZ) ∼= Hom(π1G,R/2πZ). (2.42)

More generally, any characteristic class of degree p gives a (D−p−1)-form symmetry.

Electric Jel = 1
g2 ∗F and magnetic Jmag = 1

2π
F currents have quite different

roles in the theory. The former is conserved on the account of equations of motion,
while conservation of the latter is a purely kinematical statement (Bianchi
identity). However, these statements depend on the choice of a particular
Lagrangian description of the given field theory. In particular for D = 4 they are
exchanged by the electric-magnetic duality. Moreover, it is not clear if every field
theory can be described using a Lagrangian. This is one of motivations to treat all
topological operators in field theory on the same footing.

It should be emphasized that existence of the magnetic symmetry relies on
continuity properties of fields, which is generally believed to be violated by
quantum fields on short scales. In particular, conserved quantities based on
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topological invariants are often not well defined in discretized field theories.
Nevertheless, at least in some models “topological” symmetries are expected to
emerge in suitable scaling limits (see e.g. [65]). Remarkably, there exists a recently
proposed [66] discretization of the U(1) Maxwell theory that features all
symmetries exactly, for all field configurations and at a finite lattice spacing. It
was obtained by gauging a subgroup 2πZ ⊂ R of the electric 1-form symmetry in
R gauge theory, which is rather easy to discretize. In this approach, the Chern
class is the holonomy of the (flat) 2πZ-valued 2-form gauge field. Equally
satisfactory7 formulation of non-abelian lattice gauge theories is not yet available.

2.5 Lattice gauge theory

Lattice gauge theory has been introduced by Wilson [67] as a tool to understand
strongly interacting matter, and in that it has achieved tremendous success [68].
This construction will be recalled below.

One starts with a lattice discretizing a Euclidean spacetime M (not necessarily
a triangulation) and a compact Lie group G. One G-valued degree of freedom ge ∈ G
is associated to every oriented lattice edge e. If e is e with reversed orientation, then
ge is taken to be g−1

e .

Elements ge are subject to gauge transformations as in (2.16). For every lattice
face (also called plaquette or 2-cell) f one defines

g∂f =
∏
e∈∂f

ge, (2.43)

in which group elements are path-ordered and all edges e are given orientation
induced from ∂f . A typical action takes the form

S = −β
∑
f

Re trR(g∂f ), (2.44)

where β > 0 and R is some faithful representation of G. The action favors
configurations with g∂f close to 1.

Interesting lattice models are obtained even if G is taken to be finite [69, 70]. In
contrast to the Dijkgraaf-Witten theory, there is no constraint g∂f = 1. Hence such
models do not have an obvious interpretation in terms of continuous fields.

Now let G be commutative. Wilson’s construction can be generalized to p-form
fields as follows. A degree of freedom gσ ∈ G is associated to every oriented p-
dimensional lattice cell σ, with gσ = g−1

σ . A gauge transformation is a collection of
7This is a personal opinion of the author.
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tγ ∈ G assigned to oriented (p− 1)-cells. It acts according to the formula

g′σ = gσ ·
∏
γ∈∂σ

tγ, (2.45)

with γ oriented as induced from σ. Basic invariant observables take the form

g∂ω =
∏
σ∈∂ω

gσ, (2.46)

where ω is a (p+ 1)-cell.

General Kramers-Wannier duality [30] relates a p-form lattice gauge theory with
finite abelian gauge group G to (D − p − 2)-form gauge theory with gauge group8

G∨ = Hom(G,U(1)), defined on the dual lattice. This will be derived below.

Consider the partition function

Z =
∑
{gσ}

∏
ω

W (g∂ω), (2.47)

where W is the exponential of a single term in the action. The product is over all
(p+ 1)-cells ω. Fourier representation of W takes the form

W (h) =
∑
φ∈G∨

W∨(φ) · φ(h). (2.48)

Insterting this into the partition function gives

Z =
∑
{gσ}

∑
{φω}

∏
ω

W∨(φω) · φω(g∂ω). (2.49)

Summation over {gσ} may now be performed exactly. Up to an explicit constant
depending only on the geometry, it gives a Kronecker delta, which enforces the
constraint ∏

ω :σ∈∂ω

φω = 1 for each p-cell σ. (2.50)

This constraint admits trivial solutions of the form φ = ∂η, where

(∂η)ω =
∏

τ :ω∈∂τ

ητ . (2.51)

All solutions modulo trivial ones form the homology group Hp+1(M,G∨). If this
homology is trivial, one may replace the sum over φ by a sum over η, at the cost of
an overall constant:

Z ∝
∑
{ητ}

∏
ω

W∨((∂η)ω). (2.52)

8For a finite group G one has G ∼= G∨. However, there is no canonical isomorphism, so it is
better to distinguish G from G∨.
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Reinterpreting in terms of the dual lattice9, the right hand side is the partition
function of the dual gauge theory.

More generally, suppose that Hp+1(M,G∨) is nontrivial. For each homology class
h choose a representative {φωh}. One has

Z ∝
∑

h∈Hp+1(M,G∨)

∑
{ητ}

∏
ω

W∨(φωh(∂η)ω). (2.53)

From the dual model perspective, h is a flat background gauge field for the electric
(D−p−1)-form G∨ symmetry. Summation over background gauge fields in the dual
model is often ignored in the literature because it gives a subextensive contribution
to thermodynamic quantities.

3 Lattice models based on crossed modules

3.1 Yetter’s model

As reviewed in Subsection 2.3, Dijkgraaf-Witten theory may be described as
a sigma model with particularly simple target space BG, characterized by only
one nonzero homotopy group π1 = G, taken to be finite. Yetter’s model [16] is
a generalization in which the target space T has two nonzero homotopy groups, π1

and π2. It is assumed that both are finite. The simplest example of such spaces are
products of Eilenberg-MacLane spaces

T = K(π1, 1)×K(π2, 2), (3.1)

corresponding to decoupled 1-form and 2-form topological gauge theories with
gauge groups π1 and π2, respectively. However, more complicated possibilities exist
and have been described in [71]. Product structure (3.1) is replaced by a fibration
T → K(π1, 1) with fiber K(π2, 2). Such fibrations are classified by the π1-module
structure on π2 and the so called Postnikov class

β ∈ H3(K(π1, 1), π̃2). (3.2)

Up to a weak homotopy equivalence, T is classified by the data (π1, π2, β), where π1

is a group, π2 a π1-module and β is as above. Description of T in these terms was
used in the treatment of Yetter’s theory in [27].

To describe another perspective on spaces T described above, additional algebraic
notions will be needed. A crossed module of groups is a quadruple G = (E ,Φ,B,∆)
consisting of

9Strictly speaking, this is possible only if M is orientable or every g ∈ G satisfies g2 = 1.
Otherwise one has to resort to considering orientation-twisted gauge fields, not discussed here.
This does not change general conclusions of the analysis.

23



• groups E , Φ,

• action B of E on Φ by automorphisms,

• homomorphism ∆ : Φ→ E

satisfying Peiffer identities:

∆(εB ϕ) = ε∆ϕε−1, (3.3)
∆ϕB ϕ′ = ϕϕ′ϕ−1,

for ε ∈ E and ϕ, ϕ′ ∈ Φ. Important consequences of Peiffer identities include:

• ker(∆) is a central subgroup of Φ.

• im(∆) is a normal subgroup of E acting trivially on ker(∆). Thus the quotient
group coker(∆) = Φ/im(∆) acts on the abelian group ker(∆).

The notion of a homomorphism h : G → G′ = (E ′,Φ′,B′,∆′) is self-evident10.
Every such h induces group homomorphisms h1 : ker(∆) → ker(∆′) and
h2 : coker(∆) → coker(∆′). If h1 and h2 are isomorphisms, then h is called a weak
isomorphism. Weak isomorphisms are not necessarily invertible. Two crossed
modules G,G′ are called weakly equivalent if there exists a zig-zag of weak
isomorphisms of the form

G→ G1 ← · · · → Gn ← G′. (3.4)

For every crossed module there exists a corresponding classifying space BG (see
Appendix C of Publication I for a review of the definition and main properties).
Its only nontrivial homotopy groups are π1BG = coker(∆) and π2BG = ker(∆).
Every T is weakly homotopy equivalent to some BG. Moreover, (weak) homotopy
equivalence BG → BG′ exists if and only if the crossed modules G,G′ are weakly
equivalent. In particular the data (π1, π2, β) describe crossed modules modulo weak
equivalence.

As shown by Yetter [16], topological sigma model with target space11 BG may be
constructed as a topological gauge theory with fields valued inG, quite similarly as in
the Dijkgraaf-Witten theory. In Yetter’s work nontrivial actions in HD(BG,R/2πZ)
were not considered. This gap was filled by the later work [17].

10An important role in the theory of crossed modules is played by a much less obvious notion of
weak homomorphisms [72, 73], not used in this work.

11In fact Yetter used so called categorical groups rather than crossed modules. It is an easy fact
that categorical groups are equivalent to crossed modules, which are preferred here.
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3.2 Summary

This section is a brief overview of the first part of the thesis, which consists of two
publications about lattice gauge theories based on crossed modules of finite groups:

I A. Bochniak, L. Hadasz and B. Ruba, Dynamical generalization of Yetter’s
model based on a crossed module of discrete groups, Journ. High Energ. Phys.
2021 (2021) 282.

II A. Bochniak, L. Hadasz, P. Korcyl and B. Ruba, Dynamics of a lattice 2-group
gauge theory model, Journ. High Energ. Phys. 2021 (2021), 68.

In the interest of clarity, some technical details will be omitted in this short summary.

Publication I begins with a self-contained pedagogical introduction to algebraic
and topological concepts involved in the subject: groupoids, crossed modules of
groupoids and relative homotopy groupoids. Following [22, 24], lattice gauge fields
on a lattice X valued in a crossed module (E ,Φ,B,∆) are defined using this
language (Section 2.1 of Publication I). Such gauge field has degrees of freedom
εe ∈ E associated to 1-dimensional cells (edges) and ϕf ∈ Φ assigned to
2-dimensional cells (plaquettes). They are constrained by the so called fake
flatness condition ∏

e∈∂f

εe = ∆ϕf , (3.5)

hence only partially independent.

Wilson loops εγ ∈ E are constructed from edge degrees of freedom in the standard
way. It is a consequence of fake flatness that their reduction εγ modulo im(∆) is
trivial for contractible loops. Thus ε is a flat gauge field valued in coker(∆).

Slightly more involved construction of surfaces observables is explained in Section
2.2 of Publication I. It yields an element ϕσ ∈ ker(∆) for every spherical surface σ
in X. This element depends on degrees of freedom of both types.

In the construction of Yetter’s TQFT one considers only field configurations
satisfying the flatness constraint ϕσ = 1 for every contractible σ. Then ϕ gives
a homomorphism π2X → ker(∆). This flatness condition is not imposed in models
studied in Publications I and II.

Afterwards, gauge transformations are discussed. Firstly, there are standard
gauge transformations for the ε field, parametrized by elements of E assigned to
vertices of X. With respect to these transformations, ϕ behaves as a matter field.

Secondly, fields of the Yetter’s model are subject to transformations parametrized
by elements ψe ∈ Φ assigned to edges. Transformation rule for the ϕ field has
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been discusssed in Section 2.3 of Publication I. What will be mentioned here is the
transformation law for ε:

εe 7→ ∆ψe εe. (3.6)

This has the consequence that Wilson loops εγ are not gauge invariant (not even
up to conjugation). Their reductions εγ are invariant, but since they are flat they
give only topological observables. In particular standard lattice gauge theory with
discrete gauge group (see Section 2.5) can not be recovered from this formalism.
For this reason models studied in Publications I and II admit ψ transformations as
gauge redundancies only for ψe ∈ ker(∆).

Summarizing, dynamical models generalizing both standard lattice gauge theory
and 2-form lattice gauge theory (with finite gauge groups) are obtained from the
Yetter’s model by introducing two modifications:

• flatness condition on the ϕ field is lifted, so that nontrivial observables
associated to contractible surfaces exist,

• gauge freedom is partially broken, so that nontrivial observables associated to
contractible loops exist.

The latter modification has the consequence that models under consideration depend
on the whole struture of a crossed module, not only its weak equivalence class.

It is worth to pause for a while to explain the significance of the Postnikov class,
as discussed in Appendix C of Publication I. The reduced 1-form gauge field ε

determines up to homotopy a map X
f−→ K(coker(∆), 1). Let f ∗k̃er(∆) be the

pullback through f of the local system k̃er(∆) (see Appendix B of Publication I
for another formulation more in the spirit of lattice gauge theory). One may also
pull back β, yielding a class f ∗β ∈ H3(X, f ∗k̃er(∆)). Furthermore, it is possible to
define the curvature δ̂ϕ of ϕ, which is a 3-cocycle with f ∗k̃er(∆) coefficients. Then
δ̂ϕ represents the class f ∗β for any choice of ε and ϕ allowed by the fake flatness
constraint for the given ε. In particular flat ϕ exists if and only if f ∗β is trivial.

The main part of Publication I is devoted to the discussion of Hamiltonian
models. After specifying the Hilbert space and defining Gauss’ operators and
various observables, the Hamiltonian is written in the form

H = HA + HB + HV + HW , (3.7)

in which the first two terms may be regarded as magnetic terms for the 1-form
and 2-form, while the latter two are the corresponding elecric terms. This general
construction is illustrated by a more explicit discussion for a particular crossed
module and a cubic lattice. Afterwards, the symmetries of H are described.
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The main result of Publication I, presented in Section 3.6 therein, is a construction
of ground state spaces in four integrable limits described by Hamiltonians

HE = HV + HW , HAW = HA + HW , HM = HA + HB, HBV = HB + HV . (3.8)

It is shown that in each case the ground state space is the space of states of some
TQFT, either of Dijkgraaf-Witten or Yetter type. The effective gauge group
(or crossed module of groups) is different in each case. Rather explicit formulas for
ground state vectors are also provided.

The dynamics of the full Hamiltonian H interpolates between four (in general
distinct) topogical field theories. This picture allows to formulate first conjectures
about the phase diagram.

Publication II is concerned with a detailed study of dynamics in the Euclidean
state sum formulation. For the most part, periodic four-dimensional cubic lattices
and the following crossed module G are considered:

E = Φ = Z4, mB n = (−1)mn, ∆(n) = 2n. (3.9)

This crossed module has ker(∆) and coker(∆) both isomorphic to Z2. Its Postnikov
class is the unique nonzero element of H3(BZ2,Z2) ∼= Z2.

After reviewing observables and gauge transformations, an action is proposed. It
has two terms, favoring configurations with ε (resp. ϕ) flat, and two corresponding
coupling constants J1, J2. The action has several symmetries:

• Z2 topological charges associated to non-contractible loops,

• an electric 1-form Z2 symmetry,

• an electric 2-form Z2 symmetry.

Order parameters for spontaneuous breaking of electric symmetries are proposed.
For the 1-form symmetry this is a Z4-valued Polyakov loop (more precisely, the
modulus of its average over volume), while for the 2-form symmetry a Z2-valued
“Polyakov surface” observable is used. It is constructed in an ad hoc manner, the
discussion of observables associated to non-spherical surfaces being relegated to the
Appendix A of Publication II.

The most significant analytic result in Publication II is a factorization theorem,
showing that (perhaps up to small finite volume corrections) correlation functions
of local gauge-invariant observables may be factorized into correlations in a Z2

gauge theory with coupling constant J1 and a 2-form Z2 gauge theory with
coupling constant J2. The only observables not obeying such factorization are
nonlocal order parameters sensitive to topology. This statement is true for any
crossed module of finite groups: its proof was presented for the crossed module
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(3.9), but it goes through in general case with almost no modification. It shows
that the structure of a crossed module is not sufficient to enforce local interaction
between 1-form and 2-form fields.

Factorization theorem combined with duality methods allow to reduce description
of the phase diagram to understanding of well-studied models: Ising model and Ising
gauge theory. Hence the full phase diagram is predicted.

• There is a first order phase transition at Jcrit
1 = 1

2
arsinh(1) ≈ 0.441. In

the phase J1 < Jcrit
1 Wilson loops obey the area law and the electric 1-form

symmetry is unbroken, while for J1 > Jcrit
1 Wilson loops obey a perimeter law

and the electric 1-form symmetry is broken.

• There is a second order phase transition at

Jcrit
2 =

1

2
arsinh(2 sinh(Jcrit

Ising)) ≈ 0.95, (3.10)

where Jcrit
Ising ≈ 0.14 is the critical point of the four-dimensional Ising model.

Phases J2 < Jcrit
2 and J2 > Jcrit

2 are characterized by volume and area laws,
respectively, for surface observables. It has also been argued that the electric
2-form symmetry is unbroken for J2 < Jcrit

2 , but the situation is more
complicated for J2 > Jcrit

2 . One can argue that the symmetry is broken (as in
standard 2-form Z2 gauge theory) if J1 > Jcrit

1 and for any J1 upon
restricting to trivial topological charge sector. The argument does not apply
for small J1 and large J2 in nontrivial topological charge sectors.

In the second part of Publication II, a Monte Carlo scheme suitable for the study
of crossed module gauge theory is proposed and applied. This requires the use
of constraint-preserving moves in the space of field configurations constructed and
studied in Publication I. Besides that, a standard Metripolis algorithm with over-
relaxation steps is adapted.

Numerical evaluation of thermodynamic quantities and Polyakov loops gives
results in very good agreement with analytic predictions. The most interesting
numerical results concern the Polyakov surface, and hence breaking of the 2-form
electric symmetry.

• Symmetry is unbroken for J2 < Jcrit
2 and broken for J1 > Jcrit

1 , J2 > Jcrit
2 .

• In the phase J1 < Jcrit
1 , J2 > Jcrit

2 status of the symmetry depends on the
topological charge sector: the symmetry is broken in the trivial topological
charge sector, but it becomes restored if nontrivial topological charge is turned
on in one of the directions of the Polyakov surface.

It is notable that the most interesting phase J1 < Jcrit
1 , J2 > Jcrit

2 may be
interpreted as the basin of attraction of the renormalization group fixed point
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(J1, J2) = (0,∞), corresponding to the Yetter’s TQFT based on the crossed
module G. From this point of view, restoration of the electric symmetry in
nontrivial topological charge sectors may be understood by noting that under edge
transformations not constrained by the condition ψe ∈ ker(∆), the order parameter
is invariant only if topological charges are trivial.

4 Bosonization

4.1 Jordan-Wigner transformation

The subject of bosonization in lattice models goes back to the classic work [36]
of Jordan and Wigner. In order to put results of this thesis in context, it is useful
to review this construction.

Let us consider a periodic chain with L lattice sites. Each site hosts fermionic
operators φi, φ∗i (1 ≤ i ≤ L) satisfying canonical anticommutation relations

φiφ
∗
j + φ∗jφi = δij, (4.1)

with φφ and φ∗φ∗ anticommutators all zero. Boundary conditions are introduced by

φL+1 := (−1)δφ1, φ∗L+1 = (−1)δφ∗1 (4.2)

with δ = 0 or 1, corresponding to periodic or anti-periodic conditions. Every
reasonable Hamiltonian for φ fields commutes with the fermionic parity operator

(−1)F =
L∏
i=1

(−1)φ
∗
i φi . (4.3)

Indeed, there is no known process in nature in which the number of fermions changes
by an odd number. Thus (−1)F is an unbreakable Z2 symmetry.

Pauli operators are defined as

σxi =

[∏
j<i

(−1)φ
∗
jφj

]
(φi + φ∗i ),

σyi =

[∏
j<i

(−1)φ
∗
jφj

]
i(φi − φ∗i ), (4.4)

σzi = (−1)φ
∗
i φi .

It is easy to check that they indeed satisfy the algebraic relations of Pauli matrices,
with σai commuting with σbj if i 6= j. In this sense σai are bosonic12. It is easy to
invert (4.4), which allows to express any Hamiltonian for φ in terms of σ.

12On the other hand, irreducible representation of the Pauli algebra is finite dimensional. For
this reason systems described by Pauli matrices or their generalizations are sometimes called hard
core bosons.
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Spins σ are subject to the boundary condition

σzL+1 = σz1, σx,yL+1 = (−1)δ(−1)Fσx,y1 , (4.5)

which depends on (−1)F . This does not lead to significant difficulties, since one may
work in subspaces of fixed (−1)F .

Relation (4.4) (as well as its inverse) is nonlocal. However, this nonlocality cancels
upon inserting into any local fermionic Hamiltonian H. Indeed, since H is required
to commute with (−1)F , it can be expressed in terms of bilinears such as

φ∗iφi =
1

2
(1− σzi ),

φiφi+1 =
1

4
(σxi − iσyi )(σ

x
i+1 − iσyi+1),

φ∗iφ
∗
i+1 =

1

4
(σxi + iσyi )(σ

x
i+1 + iσyi+1), (4.6)

φiφ
∗
i+1 =

1

4
(σxi − iσyi )(σ

x
i+1 + iσyi+1),

φ∗iφi+1 = −1

4
(σxi + iσyi )(σ

x
i+1 − iσyi+1).

Jordan-Wigner transformation is not as useful for systems in spatial dimension
higher than 1. One may always enumerate fermionic modes φ1, . . . , φL, but not in
a way compatible with the underlying geometry. This has the effect that so called
Jordan-Wigner tails

∏
j<i

(−1)φ
∗
jφj do not cancel in local operators commuting with

(−1)F . Thus a different approach is needed.

4.2 Gamma model

Proposal of a locality-preserving bosonization has been put forward in [37]. It was
observed therein that the algebra of fermionic operators commuting with (−1)F can
be realized in a generalized spin system with constraints. Mathematical correctness
of this approach was later proved in [38]. The idea from [37] was further developed
in publications

III A. Bochniak and B. Ruba, Bosonization based on Clifford algebras and its gauge
theoretic interpretation, Journ. High Energ. Phys. 2020 (2020) 118,

IV A. Bochniak, B. Ruba, J. Wosiek and A. Wyrzykowski, Constraints of kinematic
bosonization in two and higher dimensions, Phys. Rev. D 102 (2020) 114502,

and the preprint
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V A. Bochniak, B. Ruba and J. Wosiek, Bosonization of Majorana modes and
edge states, arXiv:2107.06335,

which are included as a part of the thesis.

A short summary of constructions in Publication III will now be given. Let
G = (V,E) be a connected graph such that each vertex has an even number of
neighbors. Consider the algebra A of fermions associated to its vertices. It is
generated by pairs φ(v), φ∗(v), one for each v ∈ V , satisfying

{φ(v), φ(v′)} = {φ∗(v), φ∗(v′)} = 0, {φ(v), φ∗(v′)} = δv,v′ . (4.7)

Fermionic parity at v is defined by

γ(v) = 1− 2φ∗(v)φ(v), (4.8)

and the total fermionic parity is

(−1)F =
∏
v∈V

γ(v). (4.9)

Subalgebra A0 ⊂ A is defined as the commutant of (−1)F in A. It is generated by
elements γ(v) together with hopping operators

s(e) = (φ(v) + φ∗(v))(φ(v′) + φ∗(v′)), (4.10)

one for each edge e ∈ E oriented from v to v′. Relations among generators have
been discussed in Section 3 of Publication III. Here only one will be stated:

s(e1) · · · s(en) = 1 (4.11)

for edges e1, . . . , en forming a loop. It will play a special role soon.

Before proceeding further, consider the effect of coupling fermions (minimally) to
a background Z2 gauge field A. This amounts to replacing each occurence of s(e) in
the Hamiltonian by

sA(e) = (−1)A(e)s(e). (4.12)

These operators satisfy the same relations as s(e), except that (4.11) is replaced by

sA(e1) · · · sA(en) = (−1)A(e1)+···+A(en). (4.13)

The right hand side is a holonomy of the gauge field A, hence depends only on its
gauge orbit.

Representation of A0 in terms of generalized spins is constructed as follows.

• For each v ∈ V consider the Clifford algebra with generators Γ(v, e), one for
each edge e incident to v, and one additional generator Γ∗(v). By definition,
these generators anticommute with each other and square to 1.
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• For each v choose an irreducible representation of the corresponding Clifford
algebra. This amounts to choosing one of two possible values of Γ∗(v)

∏
e

Γ(v, e).

• Hilbert space H is defined as the tensor product of Clifford modules associated
to vertices. It carries a representation of all local Clifford algebras, with Γ
matrices at distinct lattice sites commuting with each other.

• For each edge e choose an orientation and let

S(e) = −iΓ(v, e)Γ(v′, e), (4.14)

where v, v′ ∈ V are the two endpoints of e.

• For each gauge orbit [A] of Z2 gauge fields A let H[A] ⊂ H be the space of
elements ψ satisfying

S(e1) · · ·S(en)ψ = (−1)A(e1)+···+A(en)ψ (4.15)

for every loop e1, . . . , en. Then one has decomposition

H =
⊕
[A]

H[A] (4.16)

and the assignment

γ(v) 7→ Γ∗(v)|H[A]
, sA(e) 7→ S(e)|H[A]

(4.17)

defines a representation of A0 on H[A].

It was proven in Publication III that H[A] is an irreducible representation of H[A],
thus isomorphic to a “half” of the Fock space defined by fixing the value of (−1)F .
Moreover, the value of (−1)F is related to A by

(−1)F = (−1)α ·
∏
e∈E

(−1)A(e), (4.18)

where α ∈ Z2 depends on geometry, but not on A. Upon a change of representation
of the Clifford algebra on one vertex v, α changes to α + 1. It is known how to
choose representations to obtain a desired value of α.

Decomposition (4.16) shows that the system with Hilbert space H describes
fermions with all possible background Z2 gauge fields, with the peculiar relation
(4.18) between the number of fermions modulo two and the gauge field. It was
shown in Sections 4.3 and 5 of Publication III that H may be interpreted as the
space of gauge invariant states of a Z2 gauge theory with fermionic matter and
a non-standard Gauss’ law. Then (4.18) is a consequence of the Gauss’ law. Basic
operators Γ(v, e) create a fermion at v and also certain Z2 magnetic fluxes in the
vicinity of v. Such lump can be a boson due to nontrivial braiding
(Aharonov-Bohm phase) of fermions with fluxes.
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Now consider the problem of constructing elements of H[0], corresponding to
background gauge field turned off. In fact it is sufficient to find one nonzero element;
then the whole space may be built up by acting with operators from A0. For the
geometry of a two-dimensional torus of even length in each direction this has been
achieved in Section 4.4 of Publication III by reducing to toric code [5] in two steps:

• fix the value of Γ∗(v) for each v to effectively reduce the operator algebra at
each lattice site to Pauli algebra,

• perform a unitary rotation whose form alternates from site to site (it is in this
step where lattice length being even matters).

Solutions of constraints (4.15) were further studied in Publication IV using symbolic
algebra software.

A more general bosonization method has been introduced in the Preprint V. In
this construction each vertex v is assumed to host Majorana modes

ψα(v), 0 ≤ α ≤ n(v) (4.19)

with some multiplicity n(v) + 1 > 0, which has to be congruent modulo 2 to the
number of neighbors of v. In this case, the algebra of even fermionic operators is
generated by bilinears of two types13:

s(e) = ψ0(v)ψ0(v′) for e from v to v′, (4.20)
tα(v) = ψ0(v)ψα(v) for 1 ≤ α ≤ n(v)

Operators sA(e) are obtained from s(e) as in (4.12).

The corresponding spin system is constructed in the following way.

• For each v ∈ V consider the Clifford algebra with generators Γ(v, e), one for
each edge e incident to v, and additional generators Γ′α(v) with 1 ≤ α ≤ n(v).

• Again, one has to choose an irreducible representation for each v. Hilbert
space H is their tensor product.

• Operators S(e) and subspaces H[A] are defined as earlier14. Representation of
A0 on H[A] is defined by

tα(v) 7→ i Γ′α(v)|H[A]
, sA(e) 7→ S(e)|H[A]

. (4.21)
13Unfortunately, there is a clash of notation between Publication III and Preprint V. In this

overview notation more similar to that from Publication III is used.
14A slightly different convention was adapted in Preprint V: S(e) was defined with opposite sign.
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Proofs of validity from Publication III generalize to this setting with no difficulties.

Using the method described above one may treat any fermionic system. Indeed,
if the condition that multiplicity of Majoranas matches the number of neighbors at
each site is not satisfied, it is possible to bosonize an auxillary system with some
spurious fermions. Then they can be removed on the bosonic side by imposing
additional constraints. This has been crucial for the treatment of systems with
a boundary in Section IV.A of Preprint V.

One interesting fermionic system whose bosonization was made possible by
development in Publication V is the Hubbard model. This example was used to
demonstrate an important general feature: symmetries acting locally on fermions
are still present and act locally after bosonization, despite the fact that Majorana
modes ψα with α = 0 and α 6= 0 are treated so differently.

Another interesting connection was found in the consideration of models with one
Majorana mode per site on tri-coordinated lattices. It turned out that in this case
the proposed bosonization is essentially identical to the one employed in the famous
solution of Kitaev’s honeycomb model [32].
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1 Introduction and summary

One of the most fruitful ideas in the study of phase transitions is Landau’s theory [1],
which classifies phases of matter according to their symmetries. Despite this success, it
is currently known [2] that there exist transitions not driven by spontaneous symmetry
breaking. In the case of gapped quantum systems, possibly with no symmetries, it has
been proposed [3] that phases may be distinguished by their topological orders, which were
later interpreted in more physical terms [4] as patterns of long range entanglement.

Topological aspects of many body quantum physics also turned out to play a role in
understanding the quantum Hall effect [5], topological insulators [6], superconductors [7]
and other quantum phases of matter [8, 9]. Several interesting applications arise in the
study of geometry of Fermi surfaces [10]. Topologically nontrivial observables are often
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robust against local perturbations, and hence have been suggested to possess potential to
be used in fault-tolerant quantum computation [11, 12].

A popular framework for description of topological order is that of Topological Quan-
tum Field Theories (TQFTs) [13, 14]. Many well-known TQFTs are gauge theories, for
example Chern-Simons [14], BF [15] or Dijkgraaf-Witten [16] theories. Several construc-
tions, such as the Turaev-Viro [17] or Crane-Yetter [18] models, are based on quantum
algebra, e.g. fusion categories. There is a closely related line of study in which gapped lat-
tice hamiltonian models are considered, such as in the Kitaev’s quantum double model [11],
Levin-Wen string nets [19] or Walker-Wang model [20]. One of advantages of this approach
is that it provides not only the space of ground states, but also the part of information
about its possible excitations which is universal for the given gapped infrared renormaliza-
tion group fixed point.

In this work we study a generalized lattice gauge theory, which may be seen as a non-
topological extension of the Yetter’s 2-type TQFT [21]. It is shown that various TQFTs,
as well as the lattice Yang-Mills theory with finite gauge group [22–24] and 2-form gauge
theory may be obtained as limits of our model. We emphasize that the Hamiltonian of
our model is not the sum of commuting local terms, so dynamics of its local excitations is
expected to be nontrivial and beyond the scope of description purely in terms of TQFT.

A crucial role in the analysis of physical systems is played by symmetries. It has been
suggested [25, 26] that so-called higher symmetries, which act on extended objects, also play
a significant role. An excellent example is provided by the center symmetry [27] in Yang-
Mills theory (possibly with adjoint matter), which acts trivially on all local operators, but
changes the value of Polyakov loops. Spontaneous breaking of this symmetry is responsible
for a phase transition, which, however, is absent in QCD due to explicit breaking of the
center symmetry.

Just as ordinary symmetries, higher symmetries may be used to derive selection rules
on correlation functions. Moreover, they may be anomalous [28], which can be used to
obtain theoretical constraints on the renormalization group flow. This is also related to
the proposal [29] of Symmetry Protected Topological (SPT) phases [30] involving higher
symmetries.

Higher symmetries may also be gauged, which leads to so-called higher gauge theories.
One of the first models of this type, involving parallel transports over surfaces, was proposed
in the context of string theory by Kalb and Ramond [31]. It has been argued [32] that
higher gauge theories are necessarily abelian, essentially because there is no meaningful
notion of time ordering on objects of dimension higher than one. To some extent this
conviction is defied by models inspired by higher category theory [33–35]. In this case
parallel transports are indeed valued in an abelian group, but they are defined in terms of
genuinely non-abelian degrees of freedom. Besides truly dynamical models, higher gauge
fields appear also in TQFTs such as the Yetter’s model [21], its generalizations [29, 36–39]
and hamiltonian formulations [40–42]. We refer to [40] for a comparison between these
models. Higher gauge theories have also been proposed [29, 43, 44] as effective descriptions
of Yang-Mills theory vacua.
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Conventional gauge theories depend on a choice of a gauge group. It has been pro-
posed [33] that generalization of this notion suitable for theories with transports over
surfaces [45–47] is a 2-group. There are several equivalent ways to define these objects [48].
Here we choose to work with the formulation through crossed modules, whose definition
will be recalled in the main text. We remark that these objects have also found applications
in the classification of defects [49], mathematically modeled as solitonic sectors of sigma
models.

Models discussed in this paper allow non-abelian degrees of freedom associated to edges
and faces of a spatial lattice. They are subject to a constraint called fake flatness. This
enables to consistently define parallel transports over spheres, besides the more standard
Wilson loops. As usually, there is a gauge freedom, which is however reduced with respect
to that present in Yetter’s model. This is necessary in order to preserve the dynamical
(rather than purely topological) nature of the 1-form gauge field, and hence to construct
models generalizing the Yang-Mills theory. We propose a suitable hamiltonian and discuss
its symmetries and various special cases, including Yetter’s theory. Ground states are de-
scribed in several integrable limits, which allows to formulate initial conjectures concerning
the phase diagram.

The organization of this paper is as follows. Section 2 sets the stage for subsequent
developments. Most of the contained material is not new and has been discussed for in-
stance in [42], but we do hope that our way of presenting it may be useful for some readers.
In subsection 2.1 we review basic geometric notions used in the text. This allows to state
precisely what is meant by field configurations valued in a crossed module. Interpretation
of these fields is discussed in subsection 2.2, where we define also the basic observables.
Subsection 2.3 is devoted to transformations of the configuration space, including a presen-
tation of our motivation to restrict the group of gauge transformations. To our knowledge,
plaquette transformations introduced there have not appeared in the literature. This sim-
ple definition is important in the construction of 2-form electric operators. Examples in
subsection 2.4 illustrate several aspects of the subtle interplay between spatial topology
and algebra of crossed modules, in which the fields are valued. In section 3 we complete
the construction of our model and present first results about its dynamics. Then in subsec-
tion 3.1 we specify the Hilbert space and define basic operators, including the hamiltonian.
In order to make this more concrete, in subsection 3.2 we carry out the construction ex-
plicitly in the case of a hypercubic lattice and a particular crossed module. Symmetries
of proposed hamiltonians are discussed in subsection 3.3. Afterwards, in subsection 3.4,
we describe ground states of four integrable limits of our model and in each case relate it
to some well-known TQFT. This is followed by subsection 3.5, in which it is shown that
in a certain region of the phase diagram, intermediate between TQFTs and the full model,
one finds Yang-Mills theory or 2-form gauge theory. Appendices A and B are devoted to a
review of certain technical, albeit standard mathematical tools used in the main text. The
more extensive appendix C is devoted to a discussion of classifying spaces of crossed mod-
ules. Relation of classifying spaces to gauge theories based on crossed modules is derived.
This offers an interesting perspective on several properties of higher gauge theories. These
results are known, but we are not aware of a similar exposition in the literature.
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A natural next step would be to analyze the dynamics of proposed models in more
detail, e.g. using perturbation theory. There exists a natural candidate for a state sum
formulation of the model presented here, which could be studied using strong coupling ex-
pansion or Monte Carlo methods. Similar questions may also be asked about corresponding
models with continuous spacetimes and crossed modules of Lie groups.

2 Basic notions

2.1 Geometric setup and field configurations

Homotopy classes of (parametrized) paths in a topological space form a structure very
similar to a group, since they can be composed in a way which is associative and admits
multiplicative inverses. There is only one complication: composition γ′γ exists only if
the “source” of γ′ coincides with the “target” of γ. This is abstracted by the notion of a
groupoid, whose definition we now recall. A groupoid consists of:

1. sets G and ObG, called the set of arrows and the set of objects, respectively,

2. functions s, t : G→ ObG, called the source and the target map,

3. an associative binary operation on G, denoted by juxtaposition, with γ′γ defined if
γ, γ′ ∈ G are such that s(γ′) = t(γ).

These data are subject to two axioms:

a) For every object x there exists an arrow idx, with source and target x, such that
γ idx = γ and idxγ = γ whenever these compositions are defined.

b) For every arrow γ there exists an arrow γ−1 with s(γ−1) = t(γ), t(γ−1) = s(γ),
γ−1γ = ids(γ) and γγ−1 = idt(γ).

In further discussion we will abuse the language by calling the set G itself a groupoid.1

We note that for any x ∈ ObG the set of all γ ∈ G with x = t(γ) = s(γ) is a group. In
particular, if ObG has exactly one element, then G itself is a group.

If B is a subspace of a topological space A, the fundamental groupoid π1(A;B) has
B as its set of objects and the set of homotopy classes of paths in A with (fixed) endpoints
in B as the set of arrows. Source and target maps are obvious. A composition γγ′ is defined
as γ′ followed by γ, which makes sense if s(γ) = t(γ′). We note that the fundamental group
π1(A; b) of A based at b ∈ B may be described as {γ ∈ π1(A;B) | t(γ) = s(γ) = b}.

1Identity arrows idx are often regarded as a part of the data defining a groupoid. However, since they
are necessarily unique, we prefer to include their existence among the axioms a), b) rather than among
groupoid’s data 1. – 3.
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Figure 1. Illustration of possible sets of generators of π1(X1;X0) for a certain space X. Edges are
depictured by continuous lines, with a maximal tree distinguished by the red color. Two independent
loops based at the point ∗ (the big dot) are indicated by dashed lines.

In our applications we shall consider connected spaces X equipped with a lattice de-
composition.2 In this situation we have a chain of inclusions

X0 ⊆ X1 ⊆ X2 ⊆ . . . ⊆ Xd = X, (2.1)

where d is the dimension of X. Here X0 is the set of vertices (also called lattice sites or
0-cells), X1 is constructed by gluing in edges (links or 1-cells) to X0, X2 by gluing in faces
(plaquettes or 2-cells) to X1 etc. 3-cells will be referred to as balls. We will make an exten-
sive use of the groupoid π1(X1;X0). Its set of arrows may be described as the free groupoid
generated by the edges of X. This means that any arrow is a product of some number of
edges (identity arrows being understood as empty products), and that the only relations
between two such products are those which follow from associativity of composition and
identification of an edge e with orientation reversed with the inverse of the edge e.

The above description of the fundamental groupoid is convenient for applications in
field theory, since it is given in terms of local data. In some arguments another set of
generators proves to be useful. Let us choose some ∗ ∈ X0. The fundamental group
π1(X1; ∗) is free [50, p. 83], i.e. there exists a set L of generators satisfying no non-trivial
relations, called a basis of loops. Secondly, we may choose a maximal tree T , i.e. a maximal
set of edges with the property that there exists no non-trivial loop composed entirely of
edges in T . Then π1(X1;X0) is freely generated by L ∪ T .

A simple example is in order. Consider the space illustrated on figure 1. It has seven
edges {ei}6i=0. A basis of loops based at ∗ may be taken as L = {l1, l2}, where l1 = e3e2e1
and l2 = e−1

0 e6e5e4e0. Set T = {e0, e1, e3, e4, e6} is a maximal tree. groupoid π1(X1;X0) is
generated by the loops l1, l2 and the edges in T . There are no non-trivial relations between
these generators.

Now let G,G′ be groupoids. Map F : G→ G′ is called a homomorphism if:

1. there exists a map F0 : ObG → ObG′ such that s ◦ F = F0 ◦ s and t ◦ F = F0 ◦ t,

2. F (γγ′) = F (γ)F (γ′) whenever s(γ) = t(γ′).
2For the most part it would be sufficient to consider smooth manifolds with a triangulation, though we

prefer to allow more general decompositions: CW-complexes with cellular attaching maps for 2-cells and
3-cells. Here we have in mind the standard CW-decompositions of S1 and S2 with exactly two cells. Many
results can be formulated in even larger generality, but this class of topological spaces is sufficient for our
purposes.
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We note that F0 is uniquely determined by F and that the first property guarantees that
the second one makes sense. The second property together with existence of inverse arrows
implies that F takes identity arrows to identity arrows. If G,G′ are groups, F is simply
a homomorphism of groups.

To give a concrete example: lattice gauge field on X valued in a group G may be
defined as a homomorphism π1(X1;X0)→ G. Since there are no relations between distinct
edges, regarded as arrows of π1(X1;X0), defining a lattice gauge field amounts to specifying
independently a group element ge ∈ G for every edge e. The element associated to a path
γ = en . . . e1 is gγ = gen . . . ge1 . Alternatively, a lattice gauge field may be specified by
giving a homomorphism π1(X1; ∗) → G for some ∗ ∈ X0 and the values of ge for edges
e from any maximal tree T . These data can be chosen independently because there are
no relations between generators of π1(X1; ∗) and elements of T . In order to capture two-
dimensional aspects of geometry needed to formulate models considered in this work, we
need to review another algebraic structure. A crossed module of groupoids is a quadruple
(G,H,B, ∂) consisting of:

1. groupoids G,H with ObH = ObG and s(h) = t(h) for any3 h ∈ H,

2. homomorphism ∂ : H → G with ∂0 : ObH → ObG the identity map,

3. action B of G on H: g B h ∈ H with t(g B h) = t(g) is defined for g ∈ G, h ∈ G
whenever s(g) = t(h).

These data are subject to the axioms:

1. idt(h) B h = h for any h ∈ H,

2. (gg′) B h = g B (g′ B h) whenever s(g) = t(g′) and s(g′) = t(h),

3. g B (hh′) = (g B h)(g B h′) whenever s(g) = t(h) = t(h′),

4. 1st Peiffer identity: ∂(g B h) = g∂(h)g−1 whenever s(g) = t(h),

5. 2nd Peiffer identity: (∂h) B h′ = hh′h−1 whenever t(h) = t(h′).

Properties 1–3 characterize the action B, while Peiffer identites 4 and 5 are compatibility
conditions between B and ∂. If G has exactly one object, (G,H, ∂,B) is called a crossed
module of groups. We proceed to motivate this lengthy definition by giving the example
most important for our models.

For a topological space A, its subspace B and an element b ∈ B, the second rel-
ative homotopy group π2(A,B; b) of A relative to B and base b is defined as the set
of homotopy classes of maps [0, 1]2 → A such that [0, 1] × {1} is mapped to B and
([0, 1]× {0}) ∪ ({0, 1} × [0, 1]) is mapped to b. See figure 2 for a pictorial representation of
these conditions.

Multiplication of elements of π2(A,B; b) is given by horizontal concatenation, see fig-
ure 3. One may also show [50, p. 343] that elements of π2(A,B; b) describe homotopy

3In other words, there are no arrows between different objects in H. A groupoid with this property is
sometimes called totally disconnected or totally intransitive.
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b b

B

b

Figure 2. Illustration of conditions satisfied by maps representing elements of the second relative
homotopy group π2(A,B; b).

σσ′ = b

b

BB

b

bσ σ′

Figure 3. Definition of the product in π2(A,B; b), which is given by horizontal concatenation.

c c

∂σ

c

σ

Figure 4. Definition of ∂: homotopy class of the map given by a square σ is mapped to the loop
given by its upper edge.

classes of maps of a disc to A which map the boundary to B and a single point of the
boundary to b. In the case B = {b} we abbreviate π2(A,B; b) = π2(A; b). Elements of this
group are homotopy classes of maps S2 → A, since a square with its boundary crushed to
a point is a two-sphere.

More generally, for a subspace C ⊆ B we let π2(A,B;C) be the groupoid with object
set C and the set of arrows from c to c′ given by π2(A,B; c) if c = c′ and empty otherwise.
Homomorphism ∂ : π2(A,B;C) → π1(B;C) is defined by mapping the homotopy class of
a map σ to the homotopy class of σ|[0,1]×{1}, see figure 4.

Last, but not least, an action of π1(B;C) on π2(A,B;C) is defined on figure 5.
Based upon the inspection of figures 3–5 one can show that

Π2(A,B;C) = (π1(B;C), π2(A,B;C), ∂,B) satisfies all axioms of a crossed module
of groupoids. For a detailed proof we refer to [60].

A homomorphism of crossed modules of groupoids (G,H, ∂,B) → (G′, H ′, ∂′,B′) is a
pair of homomorphisms of groupoids, E : G→ G′ and F : H → H ′, such that ∂′◦F = E◦∂
and F (g B h) = E(g) B′ F (h) whenever s(g) = t(h). Now let G = (E ,Φ,∆,B) be a fixed
crossed module of groups with finite E and Φ. A G-valued lattice gauge field is defined
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γ B σ = c c

γ ∂σ γ

c

γ γ

γ

σ

Figure 5. Definition of the action of π1(B;C) on π2(A,B;C). Here γ is a path from c′ to c and σ
belongs to π2(A,B; c′).

e4

e5

e1

e2

e3

b(f)
•

f

Figure 6. Pentagonal plaquette with a chosen orientation of edges and of the face. In this case
∂f = e5e

−1
4 e3e

−1
2 e1.

b(f) b(f)

∂f

b(f)

f

Figure 7. Schematic representation of a map representing the element in π2(X2, X1; b(f)) corre-
sponding to a plaquette f .

as a homomorphism Π2(X2, X1;X0) → G. In order to turn this concise definition into
an operational one, we need a description of the groupoid π2(X2, X1;X0) in terms of
explicit generators, preferably constructed in terms of local data. It is a nontrivial fact,
which follows from the results of Whitehead [51, 52], that this is indeed possible.4 This is
what we will review next.

For every face f we choose a basepoint b(f) and an orientation. The boundary of f
then forms a loop ∂f based at b(f). See figure 6 for an example.

There exists a corresponding element f ∈ π2(X2, X1; b(f)), given by the homotopy
class of any map of the schematic form depictured on figure 7.

4The version of this theorem for spaces with many base points (which is actually the one we consider
here) can be found in [60]. It can be easily deduced from the pointed version.
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∗•

∗•

ee f

Figure 8. The real projective plane is a disc with antipodal points of the bounding circle identified.
It can be constructed by attaching a plaquette to a circle along a map of winding number two.

By acting on faces with paths it is possible to obtain new elements, possibly based
at different points. It turns out that the set of all γ B f with s(γ) = b(f) generates the
groupoid π2(X2, X1; b(f)). The only non-trivial relations between these elements follow
from Peiffer identities and are of the form

(γ ∂f γ−1) B (γ′ B f ′) = (γ B f) (γ′ B f ′) (γ B f)−1 (2.2)

for every γ, γ′, f and f ′ such that t(γ′) = t(γ), s(γ′) = b(f ′) and s(γ) = b(f).
For the sake of example, we consider the real projective plane, X = RP2. It admits

a decomposition with exactly one cell in every dimension up to 2 — see figure 8. In this
case the groupoid π1(X1;X0) has one object ∗ and one generator e. There is one plaquette
f , with ∂f = e2. The relative homotopy group π2(X2, X1; ∗) is generated by elements
fn := en B f , n ∈ Z. The first Peiffer identity gives ∂fn = e2, so relations (2.2) reduce to

fm+2 = fnfmf
−1
n for all n,m ∈ Z. (2.3)

Evaluating this for m = n gives fn = fn+2. Thus all generators can be expressed in terms
of f0 and f1. Secondly, taking n = 0, m = 1 gives f0f1 = f1f0. There are no other
independent relations, so π2(X2, X1; ∗) ∼= Z2.

We are now ready to explain what are field configurations in the considered models.
In order to define a homomorphism Π2(X2, X1;X0) → G we have to assign an element
εe ∈ E to every edge e and ϕf ∈ Φ to every face f . Since this assignment is to define a
homomorphism π1(X1;X0) → E , we map a path γ = en . . . e1 to εγ = εen . . . εe1 . Element
γ B f ∈ π2(X2, X1; t(γ)) has to be sent to εγ B ϕf , by the definition of a homomorphism
of crossed modules. Since any arrow in π2(X2, X1;X0) is a product of arrows of this form,
the element ϕσ ∈ Φ assigned to any σ is determined. We still have to make sure that this
is consistent. Firstly, the definition of a homomorphism asserts that we should have

∆ϕf = ε∂f for any face f. (2.4)

This is a non-trivial constraint on the collections ε = {εe}, ϕ = {ϕf}, called fake flatness.
We claim that there are no other constraints, since compatibility with the relation (2.2) is
automatic. Indeed, equality

(εγ ∆ϕf ε−1
γ εγ′) B ϕf ′ = (εγ B ϕf ) (εγ′ B ϕf ′) (εγ B ϕf )−1 (2.5)

follows from the fake flatness condition and Peiffer identities in G.
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e e

•∗

•∗
′

f f ′

Figure 9. Illustration of the change of a base point. In this case f ′ = eB f .

To understand how field configurations look like in practice, consider the example of X
taken to be the pentagon presented on figure 6. A field configuration consists of elements
εe1 , . . . , εe5 ∈ E and ϕf ∈ Φ subject to the constraint

∆ϕf = εe5ε
−1
e4 εe3ε

−1
e2 εe1 . (2.6)

In the above discussion we have been forced to choose base points and orientations for
the elementary plaquettes. Distinct choices correspond to distinct choices of generators of
the same algebraic structure. We close this section with an explanation how generators are
transformed upon a change of these choices:

1. Change of orientation of a plaquette maps the element f to f−1.

2. Change of the base point from ∗ to ∗′ (with both elements belonging to the boundary
of f) changes f to γ B f , where γ is a path from ∗ to ∗′ along the boundary of f .
For an example see figure 9. If f is simply-connected, the element γ B f does not
depend on the choice of γ. Indeed, in this case any other allowed path takes the form
γ′ = γ (∂f)n for some n and ∂f B f = f , by the second Peiffer identity.

The above discussion is concerned with generators of an abstract group describing
the geometry. Corresponding transformation laws for field configurations are of the form
ϕf 7→ ϕ−1

f and ϕf 7→ εγ B ϕf for points 1. and 2., respectively. The fact that εγ B ϕf is
then independent of the choice of γ relies on the fake flatness constraint.

2.2 Degrees of freedom and holonomies

In models based on crossed modules there are, besides holonomies along loops (built out of
degrees of freedom located on edges), also holonomies along surfaces (built out of degrees
of freedom located on edges and faces). In order to explain their construction we first need
to discuss certain basic properties of crossed modules.

Let (G,H, ∂,B) be a crossed module of groups. We note two important consequences
of the first Peiffer identity:

1. The image im(∂) of ∂ is a normal subgroup of G. Thus there is a group structure on
the quotient space coker(∂) = G/im(∂).
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2. The action of G on H preserves ker(∂), the kernel of ∂:

h ∈ ker(∂) =⇒ ∀g ∈ G g B h ∈ ker(∂), (2.7)

and two conclusions from the second Peiffer identity:

1. ker(∂) is a central subgroup of H. In particular ker(∂) is abelian.

2. Elements of im(∂) act trivially on ker(∂), i.e. gBh = h for all g ∈ im(∂) and h ∈ ker ∂.
Thus there is an induced action of the group coker(∂) on ker(∂).

Furthermore, if (E,F ) : (G,H, ∂,B) → (G′, H ′, ∂′,B′) is a homomorphism of crossed
modules of groups, then:

1. E(im(∂)) ⊆ im(∂′), so there is an induced map E : coker(∂)→ coker(∂′).

2. F maps ker(∂) to ker(∂′). We denote the induced map ker(∂)→ ker(∂′) by F .

For future use we remark that if E and F are group isomorphisms, (E,F ) is said to be
a weak isomorphism. Existence of a weak isomorphism G → G′ does not imply5 that
there is a weak isomorphism G′ → G. Thus in order for this notion to yield an equivalence
relation, one declares two crossed modules G and G′ to be weakly equivalent if there
exist a family of crossed modules G1, . . . ,Gn and a zig-zag sequence of weak isomorphisms
of the form

G −−−→ G1 ←−−− G2 −−−→ . . .←−−− Gn −−−→ G′. (2.8)

In other words, weak equivalence is the coarsest equivalence relation such that weakly
isomorphic crossed modules are equivalent.

Let us now specialize to the crossed module Π2(X2, X1; ∗) for some ∗ ∈ X0. As re-
viewed in the appendix A, coker(∂) and ker(∂) are the fundamental group of X and the
second homotopy group of X2, respectively. Therefore any field configuration induces ho-
momorphisms π1(X; ∗) → coker(∆) and π2(X2; ∗) → ker(∆). We will now explain their
significance.

Consider a field configuration given by ε and ϕ. Element εγ ∈ E assigned to a path γ
has the interpretation of a parallel transport from s(γ) to t(γ) along γ. Parallel transports
along closed paths (s(γ) = t(γ)) will be called 1-holonomies, to distinguish them from
2-holonomies, to be considered soon.

We define εγ as the reduction of εγ modulo im(∆). Assignment γ 7→ εγ defines an or-
dinary coker(∆)-valued lattice gauge field ε. Its definition is motivated by inspecting the
fake flatness condition (2.4) reduced modulo im(∆):

ε∂f = 1 for any face f. (2.9)
5For the sake of example, consider the crossed module with H = Z2 and trivial G, ∂ and B. Secondly,

let us take H ′ = Z4, G′ = Z2, ∂′ given by reduction modulo two and trivial B′. Standard embedding
Z2 → Z4, together with the trivial homomorphism G→ G′, is a weak isomorphism. It is easy to check that
there exists no weak isomorphism in the opposite direction.
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This is the statement that ε = {εe} is a flat gauge field: the holonomy along any loop in
X which bounds a surface is trivial,6 so holonomies along homotopic loops are equal. In
other words, ε defines a homomorphism π1(X;X0)→ coker(∆).

To further understand the fake flatness condition, consider the problem of finding its
solutions ε, ϕ for a fixed flat ε. First, each εe is determined by εe up to multiplication by
∆ψe for some ψe ∈ Φ. Having chosen any particular ε, we are guaranteed by flatness of ε
that each ε∂f belongs to im(∆): there exists some ϕf ∈ Φ, unique up to multiplication by
any χf ∈ ker(∆), such that ∆ϕf = ε∂f .

The above discussion may be summarized as follows. Gauge field valued in a crossed
module may be though of as consisting of three components:

1. coker(∆)-valued field located on edges, constrained by (2.9) and hence defining a flat
gauge field ε,

2. im(∆)-valued degrees of freedom located on edges, responsible for the freedom in the
choice of ε for a given ε,

3. ker(∆)-valued degrees of freedom located on faces, responsible for the freedom in the
choice of ϕ for a given ε.

As in ordinary gauge theory, some degrees of freedom are eventually removed by introducing
a “gauge equivalence” relation on the set of field configurations. This will be discussed in
subsection 2.3.

Typical observables sensitive to degrees of freedom of the third type are (functions of)
2-holonomies, i.e. elements ϕσ ∈ Φ assigned to σ ∈ ker(∂). Notice that ϕσ are automatically
in ker(∆). Indeed, ∆ϕσ = ϕ∂σ = 1. This gives the promised homomorphism π2(X2; ∗) →
ker(∆). It may be interpreted as a two-dimensional analogue of parallel transport along
closed paths, with loops replaced by spheres embedded in X2.

To summarize the above discussion, ker(∆)-valued holonomy along any sphere in X2
is defined. We will now demonstrate how to compute it in some simple examples.

Consider the triangulation of a two-sphere presented on figure 10. We choose ∗ as the
base point of f1, f2, f3 and t(e1) as the base point of f4. Faces f1, . . . , f4 are oriented so that

∂f1 = e−1
2 e−1

4 e1, ∂f2 = e−1
3 e−1

5 e2, ∂f3 = e−1
1 e6e3, ∂f4 = e4e5e

−1
6 . (2.10)

It is well known that the second homotopy group of S2 is infinite cyclic. Choice of
one of two possible generators of this group is equivalent to a choice of orientation. One
may construct a generator by multiplying the four faces (all transported to a common
base point by acting with edges) in such a way that an element with trivial boundary is
obtained. There is more than one way to do this, as shown on figure 11. It is not difficult
to convince oneself that the two elements σ, σ′ presented on figure 11 represent the same

6This follows directly from the condition above only for surfaces in X2. Here we are also using the fact
that attaching 3-cells to a space does not change its fundamental group [50, Prop. 1.26(b)].
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•
e1

e6

e3

e2
e4

e5

∗

f1f2

f3

f4

Figure 10. Tetrahedron as an example of a triangulation of a 2-sphere. Chosen orientations of
edges are indicated by arrows.

σ =

e−1
1 e4e5e

−1
6 e1 e−1

1 e6e3 e−1
3 e−1

5 e2 e−1
2 e−1

4 e1

e−1
1 B f4 f3 f2 f1

σ′ =

e−1
2 e5e

−1
6 e4e2 e−1

2 e−1
4 e1 e−1

1 e6e3 e−1
3 e−1

5 e2

(e4e2)−1Bf4 f1 f3 f2

Figure 11. Graphical representation of two ways to construct a generator of π2(X2, X1; ∗) for the
tetrahedron from figure 10: σ = (e−1

1 B f4)f3f2f1 and σ′ = ((e4e2)−1 B f4)f1f3f2. In fact we have
σ = σ′.

orientation. Thus they must be equal. We will now check this by a direct computation:

σ′ =

(e4e2)−1e1︸ ︷︷ ︸
∂f1

e−1
1 B f4

 f1f3f2 = f1(e−1
1 B f4)f3f2 = f1σf

−1
1 = σ, (2.11)

where we applied the second Peiffer identity, inserted the definition of σ and used the fact
that σ is central in the second, third and fourth equalities, respectively.

Having constructed the element σ ∈ π2(X2, X1; ∗), we compute ϕσ simply by replacing
each edge e (resp. plaquette f) in the definition of σ by the corresponding εe (resp. ϕf ).
Thus (compare with figure 11):

ϕσ = (ε−1
e1 B ϕf4)ϕf3 ϕf2 ϕf1 . (2.12)

By construction, ϕσ may also be computed as ((εe4 εe2)−1 B ϕf4)ϕf1 ϕf3 ϕf2 .

– 13 –



J
H
E
P
0
3
(
2
0
2
1
)
2
8
2

e1 e2

e3e4

e5•∗ f1 f2

Figure 12. Triangulation of a disc. We take ∗ and s(e2) as the base points of f1 and f2, respectively.
Both faces are oriented counterclockwise.

More generally, element σ may always be constructed in an essentially unique way
for any decomposition of a two-sphere with a chosen base point and orientation (possibly
embedded in a larger space). The case particularly important for us is that of a sphere
bounding a ball q, oriented and based at a point b(q) ∈ X0. In this case we denote the
corresponding element σ ∈ π2(X2; b(q)) by ∂q.

We close this section with remarks about Π2(X2, X1;X0) in the case when X is (a de-
composition of) a disc. Then the first and the second (non-relative) homotopy groups are
trivial. Thus ∂ has trivial kernel and cokernel, i.e. it is an isomorphism. This means that a
polygon embedded in X bounded by a loop l corresponds to the uniquely determined ele-
ment ∂−1(l) ∈ π2(X2, X1; s(l)). There is more than one way to construct the element ∂−1(l)
out of elementary plaquettes, but they are all equal due to Peiffer identities. Of course there
is still some arbitrariness in the choice of the base point s(l), but groups π2(X2, X1;x) with
distinct x ∈ X0 are canonically isomorphic. Remarks of this paragraph are also applicable
to calculations performed in completely general geometries X, as long as only elements
constructed out of edges and plaquettes in a contractible subcomplex of X2 are involved.

As an example, let us consider the triangulation of a disc depictured on the figure 12.
With the chosen base points and orientations of faces we have

∂f1 = e4e5e1, ∂f2 = e−1
5 e3e2. (2.13)

We will construct the element corresponding to the whole disc out of elementary plaquettes
and edges. We choose the counterclockwise orientation and pick ∗ as the base point. Then
the bounding loop is l = e4e3e2e1. We observe that

l = e4e5e1︸ ︷︷ ︸
∂f1

e−1
1 e−1

5 e3e2︸ ︷︷ ︸
∂f2

e1 = ∂
(
f1 (e−1

1 B f2)
)
, (2.14)

so ∂−1(l) = f1 (e−1
1 B f2). On the other hand, we also have l = ∂ ((e4e5 B f2) f1). Thus

f1 (e−1
1 B f2) = (e4e5 B f2) f1. Indeed, this is easy to verify directly:

f1 (e−1
1 B f2) = f1 (e−1

1 B f2) f−1
1︸ ︷︷ ︸

Peiffer

f1 = ((∂f1e
−1
1 ) B f2) f1 = (e4e5 B f2) f1. (2.15)

2.3 Gauge and electric transformations

As in ordinary gauge theory, there exist two particularly important broad classes of trans-
formations of the set of field configurations. Firstly, we have gauge transformations. They
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(ε,ϕ)

(ε′,ϕ′) (ε′′,ϕ′′)

{ξv}
{ξ′v ξv}

{ξ′v}

Figure 13. Composition rule for vertex transformations: {ξv} followed by {ξ′v} coincides with
{ξ′v ξv}.

describe redundancies in the description of the system, since configurations related by gauge
transformations are regarded as physically indistinguishable. Secondly, there are transfor-
mations which are used to define higher analogues of the electric field operators in the quan-
tized theory. Here we will discuss both types at the same time, as they are closely related.7

Another distinction between various transformation arises from geometric considera-
tions: p-form transformations are parametrized by data associated to geometric objects
of dimension p. Here we will consider vertex (0-form) transformations, regarded as gauge
redundancies, analogous to those present in the ordinary gauge theory. Secondly, there will
be edge (1-form) transformations. Declaring them to be gauge transformations is necessary
to obtain the Yetter’s topological field theory and its twisted versions. We will discuss the
possibility to restrict the group of gauge transformations. This increases the number of
physical degrees of freedom and hence allows to construct models with richer dynamics.
Finally, we will introduce plaquette (2-form) transformations. They play the role of electric
transformations and are very analogous to corresponding transformations in abelian 2-form
gauge theory.

We begin with the discussion of vertex transformations. They are parametrized by
collections ξ = {ξv} of elements of E indexed by lattice sites. Their action on ε is as for
usual gauge fields, while ϕf transforms as a matter field placed on the lattice site b(f):

ε′e = ξt(e) εe ξ
−1
s(e), ϕ′f = ξb(f) B ϕf . (2.16)

We will call them vertex transformations. They preserve the fake flatness, since

∆ϕ′f = ∆
(
ξb(f) B ϕf

) Peiffer= ξb(f) ∆ϕf ξ−1
b(f)

f.f.= ξb(f) ε∂f ξ
−1
b(f) = ε′∂f . (2.17)

Thus they define a left action of the group E(0)
X of all collections ξ (with vertex-wise multi-

plication, see figure 13) on the set of field configurations. All transformations in this group
will be regarded as gauge redundancies.

Secondly, an edge transformation is parametrized by a collection ψ = {ψe} of
elements of Φ. It changes ε according to

ε′e = ∆ψe εe. (2.18)
7One example of this fact is that in conventional gauge theory quantized in temporal gauge, time-

independent gauge transformations are generated by the divergence of the electric field. Secondly, the
center 1-form symmetry operators are also of electric type: they shift the gauge field by a center-valued
cocycle. This operation reduces to a gauge transformation for cocycles of trivial cohomology class.
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Before we give the transformation law for ϕ, let us inspect how εγ changes for general γ.
We observe that ε′e = εe implies that ε′γ = εγ for any path γ. Thus

ε′γ = ∆ψ(ε)
γ εγ (2.19)

for some ψ(ε)
γ , which depends on ψ as well as on ε. This equation determines each ψ

(ε)
γ

up to multiplication by an element of ker(∆). As a step towards an unambiguous defini-
tion, we consider a composite path γγ′ and evaluate ε′γγ′ in two different ways. Firstly,
by equation (2.19), it is equal to ∆ψ(ε)

γγ′ εγγ′ . On the other hand we have ε′γγ′ = ε′γ ε
′
γ′ .

Applying (2.19) to the two terms separately we obtain

ε′γγ′ = ∆ψ(ε)
γ εγ ∆ψ(ε)

γ′ ε
−1
γ︸ ︷︷ ︸

Peiffer

εγ εγ′ = ∆
(
ψ(ε)
γ

(
εγ B ψ

(ε)
γ′

))
εγγ′ . (2.20)

Comparison of the two results yields

∆ψ(ε)
γγ′ εγγ′ = ∆

(
ψ(ε)
γ

(
εγ B ψ

(ε)
γ′

))
εγγ′ . (2.21)

This formula has the consequence that, perhaps up to multiplication of the right hand side
by an element of ker(∆),

ψ
(ε)
γγ′ = ψ(ε)

γ

(
εγ B ψ

(ε)
γ′

)
. (2.22)

It is convenient to define ψ(ε)
γ for general paths γ by demanding that this relation is satisfied

exactly (rather than merely up to elements from ker(∆)) and that ψ(ε)
e = ψe for any edge

e. Freeness of the groupoid π1(X1;X0) guarantees that this definition is well-posed. More
explicitly, for a path γ = enen−1 . . . e1 it gives

ψ(ε)
γ = ψen

(
εen B ψen−1

)
. . . (εen . . . εe2 B ψe1) . (2.23)

By induction on n, formulas (2.18) and (2.22) imply that with this definition of ψ(ε)
γ ,

transformation law (2.19) is indeed satisfied for any γ. We also note that the composition
rule (2.22) yields the inversion formula

ψ
(ε)
γ−1 =

(
ε−1
γ B ψ(ε)

γ

)−1
. (2.24)

Let us now return to the problem of defining an action of edge transformations on ϕ.
The guiding principle is the preservation of the fake flatness condition. Thus we must have

∆ϕ′f = ε′∂f = ∆ψ(ε)
∂f ε∂f = ∆

(
ψ

(ε)
∂f ϕf

)
. (2.25)

The simplest way to satisfy this condition is to declare

ϕ′f = ψ
(ε)
∂f ϕf . (2.26)

We illustrate the above definitions by considering a field configuration on the geometry
depictured on figure 12. Such configuration consists of five elements εei ∈ E and two
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ϕfi ∈ Φ. Vertex transformation given by the collection {ψei} maps εei to ∆ψei εei . Action
on ϕ variables is given by

ϕf1 7→ ψe4 (εe4 B ψe5) (εe4εe5 B ψe1) ϕf1 , (2.27a)

ϕf2 7→
(
ε−1
e5 B ψ−1

e5

)
︸ ︷︷ ︸

ψ
e−1

5

(
ε−1
e5 B ψe3

) (
ε−1
e5 εe3 B ψe2

)
ϕf2 . (2.27b)

Definition (2.26) implies the following transformation law for ϕσ for arbitrary σ:

ϕ′σ = ψ
(ε)
∂σ ϕσ. (2.28)

This can be proven as follows. First we note that, by definition, it holds for σ = f for any
face f . Secondly, if σ and σ′ share the base point and are such that (2.28) holds, then the
same is true for the product σσ′:

ϕσ ϕσ′ 7−−−→ψ
(ε)
∂σ ϕσ ψ

(ε)
∂σ′ ϕσ′ = ψ

(ε)
∂(σσ′)

(
ε∂σ B ψ

(ε)
∂σ′

)−1
ϕσ ψ

(ε)
∂σ′ ϕσ′

= ψ
(ε)
∂(σσ′)

(
ε∂σ B ψ

(ε)
∂σ′

)−1
ϕσ ψ

(ε)
∂σ′ ϕ

−1
σ ϕσσ′

= ψ
(ε)
∂(σσ′)

(
ε∂σ B ψ

(ε)
∂σ′

)−1 (
∆ϕσ B ψ

(ε)
∂σ′

)
ϕσσ′

f.f.= ψ
(ε)
∂(σσ′)

(
ε∂σ B ψ

(ε)
∂σ′

)−1 (
ε∂σ B ψ

(ε)
∂σ′

)
ϕσσ′ = ψ

(ε)
∂(σσ′) ϕσσ′ .

(2.29)

Next we show that if σ is such that (2.28) holds and b(σ) = s(γ), then (2.28) holds also
for γ B σ. Indeed, in this situation we have

ϕσ 7−−−→ ψ
(ε)
∂σ ϕσ, εγ 7−−−→ ∆ψ(ε)

γ εγ . (2.30)

Since ∂(γ B σ) = γ ∂σ γ−1, we have to check that

εγ B ϕσ 7−−−→ ψ
(ε)
γ ∂σ γ−1 (εγ B ϕσ) . (2.31)

This is indeed the case, since εγ B ϕσ transforms as:

εγ B ϕσ 7−−−→
(
∆ψ(ε)

γ εγ
)
B (ψ∂σ ϕσ) = ψ(ε)

γ

(
εγ B

(
ψ

(ε)
∂σ ϕσ

))
ψ(ε)
γ

−1

= ψ(ε)
γ

(
εγ B ψ

(ε)
∂σ

)
(εγ B ϕσ) ψ(ε)

γ

−1 (εγ B ϕσ)−1 (εγ B ϕσ)

= ψ
(ε)
γ ∂σ (εγ B ϕσ) ψ(ε)

γ

−1 (εγ B ϕσ)−1 (εγ B ϕσ)

= ψ
(ε)
γ ∂σ

(
∆ (εγ B ϕσ) B ψ(ε)

γ

−1) (εγ B ϕσ)

= ψ
(ε)
γ ∂σ

((
εγ ∆ϕσ ε−1

γ

)
B ψ(ε)

γ

−1) (εγ B ϕσ)

= ψ
(ε)
γ ∂σ

(
εγ ∂σ γ−1 B ψ(ε)

γ

−1) (εγ B ϕσ) = ψ
(ε)
γ ∂σ γ−1 (εγ B ϕσ) .

(2.32)

This concludes the proof, since any σ may be written as a product of some number of
elements of the form γ B f .

The following special case of the above result is worth to be mentioned separately: if σ
has trivial boundary (∂σ = 1), then ϕσ is invariant with respect to edge transformations.
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(ε,ϕ)

(ε′,ϕ′) (ε′′,ϕ′′)

{ψe}
{ψ′e ψe}

{ψ′e}

Figure 14. Edge transformation {ψe} followed by {ψ′e} coincides with {ψ′e ψe}.

(ε,ϕ) (ε′,ϕ′)

(ε′′,ϕ′′) (ε′′′,ϕ′′′)

{ψe}

{ξv}

{ξt(e)Bψe}

{ξv}

Figure 15. Illustration of the semi-direct product structure of the group E(0)
X n Φ(1)

X generated by
vertex and edge transformations.

Edge transformations form a group Φ(1)
X , with composition computed edge-wise (see fig-

ure 14): transformation {ψe} followed by {ψ′e} coincides with {ψ′′e}, where ψ′′e = ψ′e ψe.
Indeed, for configurations as on figure 14 we have

ε′′e = ∆ψ′e ε′e = ∆ψ′e ∆ψe εe = ∆ψ′′e εe, (2.33a)

ϕ′′f = ψ
′(ε′)
∂f ϕ′f = ψ

′(ε′)
∂f ψ

(ε)
∂f ϕf . (2.33b)

Thus in order to prove the claimed composition law it only remains to show that
ψ
′′(ε)
∂f = ψ

′(ε′)
∂f ψ

(ε)
∂f . In fact even more is true: for any path γ we have

ψ′′(ε)γ = ψ′(ε
′)

γ ψ(ε)
γ (2.34)

Indeed, by the induction principle, it is sufficient to demonstrate that the above equality
is satisfied for a composite path γγ′ provided that it holds for γ and γ′ separately. To this
end we use (2.22) and apply the inductive hypothesis:

ψ
′′(ε)
γγ′ = ψ′′(ε)γ

(
εγ B ψ

′′(ε)
γ′

)
= ψ′(ε

′)
γ ψ(ε)

γ

(
εγ B

(
ψ
′(ε′)
γ′ ψ

(ε)
γ′

))
= ψ′(ε

′)
γ ψ(ε)

γ

(
εγ B ψ

′(ε′)
γ′

)
ψ(ε)−1
γ︸ ︷︷ ︸

Peiffer

ψ(ε)
γ

(
εγ B ψ

(ε)
γ′

)
︸ ︷︷ ︸

ψ
(ε)
γγ′

(2.35)

= ψ′(ε
′)

γ

((
∆ψ(ε)

γ εγ
)
B ψ

′(ε′)
γ′

)
ψ

(ε)
γγ′ = ψ

′(ε′)
γγ′ ψ

(ε)
γγ′ .

We remark also that conjugation of an edge transformation with a vertex transforma-
tion gives another edge transformation, see figure 15. This means that vertex transforma-
tions together with edge transformations form a semi-direct product structure E(0)

X n Φ(1)
X .
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Next we define plaquette transformations. They are labeled by ker(∆)-valued
collections χ = {χf} indexed by faces. The action on fields is given by

ε′e = εe, ϕ′f = χf ϕf . (2.36)

It is clear that the fake flatness condition is preserved.
As announced at the beginning of this subsection, in topological field theories based

on crossed modules all edge transformations are regarded as gauge transformations. We
will now list some important consequences of this choice:

1. Up to a gauge transformation, ε is uniquely determined by ε. Thus the only gauge
invariant functions constructed entirely of ε are the (conjugacy classes of) holonomies
of ε, which are topological observables.

2. Apart from topological degrees of freedom present in ε, there remain ker(∆)-valued
degrees of freedom in ϕ. These can be made topological by introducing additional
flatness constraint: ϕ∂q = 1 for every ball q.

3. There exists a space BG, called the classifying space of G, with the property that
gauge equivalence classes of flat field configurations are in one-to-one correspondence
with homotopy classes of maps from X to BG. In particular the set of gauge orbits
of flat gauge fields is a homotopy invariant of X. We review this in appendix C.

4. Despite the fact that models under consideration are formulated in terms of the
crossed module G, they depend only on its weak equivalence class. We will obtain
this fact as a corollary from considerations in section 3.4. Furthermore, we give its
second, logically independent proof in appendix C.4.

Here we would like to focus on an alternative possibility and regard only edge trans-
formations with ψe ∈ ker(∆) for each edge e as gauge redundancies. With this definition
it is possible to formulate dynamical models with 1-form and 2-form gauge fields interact-
ing in an interesting way. Indeed, the conjugacy classes of holonomies of ε (rather than
merely their reductions modulo im(∆)) become gauge invariant. These holonomies are not
necessarily trivial for contractible loops, so some non-topological degrees of freedom may
be present in the field ε.

Topological quantum field theories briefly discussed above may still be recovered in a
certain limit, by enforcing invariance with respect to all edge transformations and flatness
of the ϕ field dynamically. Furthermore, two other well-known models may be obtained as
special cases:

• If E is taken to be trivial, Φ can still be any abelian group. In this case one recovers
2-form lattice gauge theory valued in Φ.

• Taking Φ = E , homomorphism ∆ to be the identity map and the action of E on Φ
given by conjugation we recover the standard lattice gauge theory.
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There are two other special cases which correspond to slight variations of the above:

• Given any E and an abelian group Φ on which E acts one can form a crossed module
by letting ∆ be the trivial homomorphism. Then fake flatness implies that ε is flat,
so it carries no local gauge-invariant degrees of freedom. The effect of nontrivial
holonomies of ε along non-contractible loops may be loosely described as imposing
twisted boundary conditions for the field ϕ. Models of this type may be obtained
from 2-form gauge theories by gauging a global symmetry of the form ϕf 7→ εB ϕf .

• Taking a crossed module with injective ∆ one obtains lattice gauge theory with gauge
group E in which the curvature is constrained to be valued in the normal subgroup
im(∆) ∼= Φ.

We have shown that proposed models unify and at the same time generalize several
interesting classes of gauge theories involving 1-form and 2-form gauge fields, which provides
compelling motivation to study them.

We close this subsection with a technical lemma, to be used later. Consider the effect
of a vertex transformation ξ valued in im(∆) on a configuration (ε,ϕ). For each vertex v
we write ξv = ∆(ρv) for some ρv ∈ Φ. Then we have

ε′e = ∆(ρt(e)) εe ∆(ρ−1
s(e)) = ∆(ρt(e))

Peiffer︷ ︸︸ ︷
εe ∆(ρ−1

s(e)) ε
−1
e εe

= ∆(ρt(e)) ∆
(
εe B ρ−1

s(e)
)
εe = ∆(ψe) εe, (2.37)

where ψe = ρt(e)
(
εe B ρ−1

s(e)

)
. We claim that one also has ϕ′f = ψ

(ε)
∂f
ϕf , so the pertinent

vertex transformation is equivalent to an edge transformation with some ψ depending on
ρ and ε. Indeed, first observe that we have

ϕ′f = ξb(f) B ϕf = ∆ρb(f) B ϕf
Peiffer= ρb(f)

Peiffer︷ ︸︸ ︷
ϕf ρ

−1
b(f) ϕ

−1
f ϕf

= ρb(f)
(
∆ϕf B ρ−1

b(f)

)
ϕf

f.f.= ρb(f)
(
ε∂f B ρ−1

b(f)

)
ϕf . (2.38)

It only remains to show that ψ(ε)
∂f = ρb(f)

(
ε∂f B ρ−1

b(f)

)
. In fact even more is true: ψ(ε)

γ =
ρt(γ)

(
εγ B ρ−1

s(γ)

)
for any path γ. This follows from (2.22) and the definition of ψ, by

induction on the number of edges in γ.

2.4 Interesting field configurations — examples

In this subsection we present examples of field configurations illustrating certain phenomena
that will play important roles in the further discussion.

Firstly, we would like to point out that flatness of ε does not guarantee that one can
find a corresponding flat ε. To illustrate this feature we consider the decomposition of a
2-torus depictured on figure 16.

We take E to be the dihedral group D4. It is generated by elements x, y, z, which are
subject to relations

x2 = y2 = z2 = 1, xz = zx, yz = zy, xy = zyx. (2.39)
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a

b

a−1

b−1

• •

••

∗ ∗

∗∗

f

Figure 16. A decomposition of the 2-torus. In this case we have ∂f = b−1a−1ba.

The group Φ is taken to be {1, z}, with ∆ the inclusion map. Action of E on Φ is trivial.
As a result, ker(∆) is trivial and coker(∆) = Z2 × Z2.

Now consider a configuration with εa = x and εb = y. Since ∂f = b−1a−1ba and
coker(∆) is abelian, we have ε∂f = 1. On the other hand we must have εa ∈ {x, zx}.
Similarly, εb ∈ {y, zy}. In each of the four possibilities we get ε∂f = z. Therefore ε cannot
be flat for the given ε.

Next we would like to show that there may exist field configurations which are not gauge
equivalent, even though all holonomies coincide.8 To this end we continue to consider the
2-torus, but we no longer restrict ourselves to the specific choice of the crossed module.

We choose εa = εb = 1. Notice that this condition is preserved by vertex and edge trans-
formations with arbitrary ξ∗ and ψa, ψb. Furthermore, ϕf may be any element from the
kernel of ∆. Under a gauge transformation, this element changes according to the formula

ϕf 7→ ξ∗ B (ψb−1a−1ba ϕf ) . (2.40)

Next, since ker(∆) is abelian,

ψb−1a−1ba
ε=1= ψb−1 ψa−1 ψb ψa

ε=1= ψ−1
b ψ−1

a ψb ψa = 1. (2.41)

Therefore the formula (2.40) simplifies to

ϕf 7→ ξ∗ B ϕf , (2.42)

which does not depend on the choice of ψa and ψb in ker(∆). This means that configura-
tions with ε = 1 and ϕf in different orbits of E are not related by a gauge transformation.
Thus there will be at least two such non-equivalent configurations if ker(∆) is nontrivial.
On the other hand, all these configurations have the same values of all holonomies.
Indeed, 1-holonomies are all equal 1 and there are no nontrivial 2-holonomies, since the
second homotopy group of a torus vanishes. This indicates existence of gauge invariant
observables associated to non-spherical surfaces. This is indeed true, but they are slightly
tricky to define. We will not consider this problem here. An interesting discussion in the
context of state sum formulation of topological higher gauge theories was given in [29].

8This is true regardless of the choice whether edge transformations not valued in ker(∆) are regarded
as gauge transformations.
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In the final example of this subsection we shall show that some 2-holonomies may be
determined already by ε. In particular, it may happen that for some ε it is not possible to
choose ε and ϕ so that ϕ∂q = 1 for every ball q.

Let us consider the decomposition of the projective plane presented on figure 8. We
take the crossed module with

E = Φ = Z4, ∆(n) = 2n, mB n = (−1)mn, (2.43)

where we use additive notation. In this case ker(∆) ∼= coker(∆) ∼= Z2.
In the present example, fake flatness does not impose any conditions on εe. Thus we

can set it to be the nonzero element of Z2. Then εe ∈ {1, 3}, so ε∂f = εe2 = 2. Then fake
flatness gives ∆(ϕf ) = 2, so ϕf ∈ {1, 3}.

Recall now that the second homotopy group of RP2 is generated by the element
σ = (eB f) f−1. Evaluation of the 2-holonomy along this generator gives

ϕσ = (εe B ϕf )− ϕf = 2ϕf = 2, (2.44)

regardless of which of the two possible values of εe and ϕf have been chosen. Similarly one
can show that if εe is trivial, then ϕσ = 0.

One can also embed RP2 in RP3 by attaching an additional 3-cell q along the generator
of π2(RP2). In other words, we may decompose RP3 into RP2 and an extra ball q with ∂q =
σ. Field configurations discussed above make sense also as configurations on RP3. Hence
we see that in this case if ε is nontrivial, then ϕ cannot be chosen to be flat. As reviewed
in the appendix C.3, this phenomenon is controlled by the so-called Postnikov class.

3 Hamiltonian models

3.1 Construction

In this section we present the proper construction of our models. We work in the hamilto-
nian formulation of quantum mechanics. As the first step we construct the Hilbert space H
and local operators resembling electric field operators from the usual gauge theory. Hamil-
tonian HE is defined in terms of these electric operators. It may be though of as a kinetic
term. The full hamiltonian H involves also a magnetic term HM. Each of HE and HM

is separately solvable (being a sum of commuting local terms), but its action exchanges
states which are stationary for the other. Thus the sum is expected to describe interesting
dynamics.

Let us consider the Hilbert space H0 with an orthonormal basis whose elements are
labeled by collections ε = {εe}, ϕ = {ϕf} of elements of E and Φ,

H0 ∼=
(⊗

e

L2(E)
)
⊗
(⊗

f

L2(Φ)
)
. (3.1)

The Hilbert space of the constructed model will be the subspace H ⊂ H0 spanned by those
|ε,ϕ〉 for which the fake flatness condition ∆(ϕf ) = ε∂f is satisfied. This Hilbert space is
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not the tensor product of local Hilbert spaces associated to edges and faces, but it does
admit a basis consisting of product states.

Several interesting classes of operators may be defined on H:

• For a collection ξ = {ξv} of elements of E we define G
(
ξ
)
by

G
(
ξ
)
|ε,ϕ〉 =

∣∣{ξt(e) εe ξ−1
s(e)}, {ξb(f) B ϕf}

〉
. (3.2)

• For a collection ψ = {ψe} of elements of Φ we let V
(
ψ
)
be

V
(
ψ
)
|ε,ϕ〉 =

∣∣∣{∆(ψe) εe}, {ψ(ε)
∂f ϕf}

〉
. (3.3)

• For a collection χ = {χf} of elements of ker(∆) we introduce W
(
χ
)
by putting

W
(
χ
)
|ε,ϕ〉 = |ε, {χf ϕf}〉 . (3.4)

Operators G
(
ξ
)
form a representation of the group of vertex transformations E(0)

X on
H. We will call them vertex Gauss’ operators. Only elements of H which satisfy the vertex
Gauss’ law, i.e. are invariant with respect to the action of all G

(
ξ
)
, will be regarded as

physical states.
Operators V

(
ψ
)
form a representation of the group Φ(1)

X of edge transformations. As
discussed in subsection 2.3, its subgroup ker(∆)(1)

X describes (a part of the) gauge redun-
dancy of the constructed model. Therefore we will call V

(
ψ
)
with ψe ∈ ker(∆) the edge

Gauss’ operators. The final requirement for an element of H to be regarded as a physical
state is that it should satisfy the edge Gauss’ law, i.e. be invariant with respect to the
action of all edge Gauss’ operators.

We will now construct electric operators associated to edges. These are required to be
gauge invariant, i.e. to commute with Gauss’ operators of both types. Let us denote by
Ve(ψ) the operator V

(
{ψe′}

)
with ψe′ = ψ for e′ = e and ψe′ = 1 otherwise. Recall that

ker(∆) is a central subgroup of Φ, so operators Ve(ψ) do commute with all edge Gauss’
operators. However, they are not invariant with respect to vertex gauge transformations.
Instead we have

G
(
ξ
)
Ve(ψ)G

(
ξ
)−1 = Ve(ξt(e) B ψ). (3.5)

This means that to obtain a gauge invariant operator it is sufficient to sum Ve(ψ) over ψ
with any E-invariant weight µ : Φ→ C. Explicitly, we define

Ve,µ =
∑
ψ∈Φ

µ(ψ)Ve(ψ). (3.6)

This operator commutes with G
(
ξ
)
provided that µ(ξ B ψ) = µ(ψ) for all ξ ∈ E .

If µ and µ′ are two E-invariant functions, operators Ve,µ and Ve′,µ′ commute. This is
obvious for e′ 6= e, while:

Ve,µVe,µ′ =
∑

ψ,ψ′∈Φ
µ(ψ)µ′(ψ′)Ve(ψψ′) =

∑
ψ,ψ′∈Φ

µ(ψ)µ′(ψ′)Ve(ψψ′ψ−1︸ ︷︷ ︸
ψ′′

)Ve(ψ)

=
∑

ψ,ψ′′∈Φ
µ(ψ)µ′

(
ψ−1ψ′′ψ

)
Ve(ψ′′)Ve(ψ) = Ve,µ′Ve,µ.

(3.7)
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Operators W
(
χ
)
form a representation of the abelian group ker(∆)(2)

X and, in particular,
commute with each other. Moreover, they commute with all V

(
ψ
)
. We will use them to

construct electric operators associated to faces.
Let us denote by Wf (χ) the operator W

(
{χ′f}

)
with χ′f = χ for f ′ = f and χ′f = 1 for

f ′ 6= f . For a function ν : ker(∆)→ C we put

Wf,ν =
∑

χ∈ker(∆)
ν(χ)Wf (χ). (3.8)

The gauge transformation law for Wf (χ) operators takes the form

G
(
ξ
)
Wf (χ)G

(
ξ
)−1 = Wf (ξb(f) B χ), (3.9)

hence Wf,ν commutes with G
(
ξ
)
if and only if ν(ξ B χ) = ν(χ) for all ξ ∈ E .

As our candidate for the electric hamiltonian we take

HE = HV + HW , where HV =
∑
e

Ve,µe , HW =
∑
f

Wf,νf (3.10)

with a priori different functions µe and νf for different edges e and faces f , since the spatial
lattice is not necessarily assumed to admit any symmetries. By construction, HE commutes
with all Gauss’ operators and thus is a well-defined operator on the physical subspace of H.
In order for HE to be self-adjoint we have to take functions µ, ν to satisfy µ(ψ−1) = µ(ψ)
and ν(χ−1) = ν(χ). Furthermore, we would like HE to admit either a unique ground state,
or at most a finite number of ground states, dependent only on the topology. This can be
achieved by assuming that all functions µe and νf are such that their Fourier transforms
vanish at the trivial representation and are positive otherwise,9 as will be demonstrated in
subsection 3.4.

Following a common terminology we shall call operators, which are diagonal in the
adapted basis of H, “magnetic”. The first important class of operators of this type are
those constructed out of 1-holonomies. Consider a function η : E → C and a path γ. We
define an operator Aγ,η by

Aγ,η
∣∣ε,ϕ〉 = η(εγ)

∣∣ε,ϕ〉. (3.11)

This operator is gauge invariant if and only if the endpoints of γ coincide and η is a class
function, i.e. η(ξ ε ξ−1) = η(ε) for any ξ, ε ∈ E . Our magnetic hamiltonian will involve only
terms A∂f,η for faces f , as in standard lattice gauge theory. In this case the function η

needs to be defined only on the subgroup im(∆) ⊆ E , since ε∂f ∈ im(∆) by fake flatness.
Analogously, let θ be a complex function on Φ and let σ ∈ π2(X2, X1;x) for some base

point x ∈ X0. We define an operator Bσ,θ by

Bσ,θ
∣∣ε,ϕ〉 = θ(ϕσ)

∣∣ε,ϕ〉. (3.12)

Recall that for σ with trivial boundary the 2-holonomy along σ is invariant with respect
to edge gauge transformations. Thus Bσ,θ commutes with each V(ψ).

9It can be shown that functions satisfying this condition as well as the required invariance properties
always exist.
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We note also that if ∂σ = 1, function θ needs to be defined only on ker(∆), since then
∆(ϕσ) = 1 by fake flatness.

Recall that 2-holonomies transform nontrivially under vertex transformation. This has
the consequence that Bσ,η commutes with all G

(
ξ
)
(and thus defines an operator on the

physical subspace of H) provided that η satisfies

η(ξ B ϕ) = η(ϕ) for all ϕ ∈ ker(∆), ξ ∈ E . (3.13)

We are ready to propose our candidate for the magnetic hamiltonian:

HM = HA + HB, where HA =
∑
f

A∂f,ηf , HB =
∑
q

B∂q,θq (3.14)

with a priori different functions ηf and θq for different faces f and balls q. We shall
assume that functions ηf and θq are non-negative, with value zero attained only for the
neutral element. Thus the magnetic hamiltonian penalizes configurations with nontrivial
holonomies along contractible loops and surfaces.

We close this subsection with a brief discussion on how the above construction needs to
be modified if all edge transformations (i.e. with ψe not necessarily in ker(∆)) are regarded
as gauge transformations. In this case the term in HM involving A operators has to be
dropped, as it is no longer gauge invariant. Furthermore, all V operators in HE may be
dropped, since they act trivially on the space of physical states. Thus the hamiltonian
reduces to HB + HW .

3.2 An explicit example

In order to illustrate general features discussed so far, we consider here an example con-
structed on a cubic lattice with a particular crossed module chosen. We shall parametrize
the set of vertices by ordered triples of integers [j1, j2, j3], edges by ordered triples consist-
ing of two integers and one half-integer, while for faces we use ordered triples consisting of
an integer and two half-integers - see figure 17.

Due to the translational symmetry we can restrict attention to one elementary cell.
We will introduce the necessary notation and conventions based upon this cell, in order to
avoid tedious expressions.

The orientation of edges is chosen as follows:

s
(
e[ 1

2 ,0,0]
)

= v[0,0,0], t
(
e[ 1

2 ,0,0]
)

= v[1,0,0], (3.15)

and similarly for other edges, while faces are oriented so that:

∂f[ 1
2 ,

1
2 ,0] = e−1

[0, 1
2 ,0] e

−1
[ 1

2 ,1,0] e[1, 1
2 ,0] e[ 1

2 ,0,0], (3.16)

and analogously for other faces. We illustrate this on the figure 17. The basepoints are
chosen so that b

(
f[ 1

2 ,
1
2 ,0]
)

= b
(
f[ 1

2 ,0, 1
2 ]
)

= b
(
f[0, 1

2 ,
1
2 ]
)

= v[0,0,0], and so on.
Finally, each 3-cell q will be parameterized by an ordered triple of half-integers and

oriented so that the orientation of ∂q[ 1
2 ,

1
2 ,

1
2 ] agrees with the orientations of f[1, 1

2 ,
1
2 ], f[ 1

2 ,1, 1
2 ]

and f[ 1
2 ,

1
2 ,1] and disagrees with f[0, 1

2 ,
1
2 ], f[ 1

2 ,0, 1
2 ] and f[ 1

2 ,
1
2 ,0].
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e[0,1, 1
2 ]

y

z

x

•
v[0,0,0]

•
v[0,1,0]

•v[0,1,1]

f[ 1
2 ,

1
2 ,1]

Figure 17. The cubic lattice with chosen orientations.

Let us now consider the crossed module G44 =(Φ, E ,∆,B) with Φ∼=E ∼=Z4, ∆(n)=2n
for n∈Φ and mBn=(−1)m n for n∈Φ and m∈E . This is an example of a crossed module
with nontrivial10 ker(∆) and coker(∆). Furthermore, E acts non-trivially on Φ. However,
it is still relatively simple, since coker(∆) is abelian and acts trivially on ker(∆).

Our present goal is to write down an explicit formula for the proposed Hamiltonian
for the above system. We shall denote basis states in the Hilbert space H as |m,n〉, where
m = {me} and n = {nf} are collections of integers modulo four. An operator which for a
fixed edge e shifts me → me + 1 will be denoted by Te. The definition of Tf is analogous.
Furthermore, we let:

Ue |m,n〉 = e
iπme

2 |m,n〉 , Uf |m,n〉 = e
iπnf

2 |m,n〉 . (3.17)

More generally, we define Uγ and Uσ in the self-evident way.
Fake flatness constraint takes the form∑

e∈∂f
me = 2nf , (3.18)

where summation is taken over all edges contained in the boundary of the face f , regardless
of orientations. In other words, we restrict attention to states invariant under operators
U2
f

∏
e∈∂f

Ue. Secondly, there is the constraint of invariance with respect to vertex Gauss’

operators, which can be written in the form

Gv =

 ∏
e: v=t(e)

Te

 ∏
e: v=s(e)

T3
e

 ∏
f : v=b(f)

(
T2
f

1− U2
f

2 +
1 + U2

f

2

)
. (3.19)

Finally, there are edge Gauss’ operators, which take the form ∏
f : e∈∂f

T2
f .

10In this case ker(∆) ∼= coker(∆) ∼= Z2. Moreover, the Postnikov class, whose definition is given in the
appendix C.3, is the nonzero element of H3(BZ2,Z2) ∼= Z2.
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It can be shown that operators Wf,νf satisfying all conditions given in subsection 3.1
are essentially uniquely determined to be of the form

Wf,νf = νf,0
(
1− T2

f

)
, with some νf,0 > 0. (3.20)

On the other hand, the operators Ve,µe are given by

Ve,µe = µe,1

2− T2
e

∏
f : e∈∂f

(
Tf + T3

f

) , with some µe,1 > 0. (3.21)

Imposing further translational invariance of the system we are forced to put all pa-
rameters νf,0 and µe,1 to be constant, i.e. independent of f and e, respectively. Therefore
we have

HW = ν
∑
f

(
1− T2

f

)
, HV = µ

∑
e

2− T2
e

∏
f : e∈∂f

(
Tf + T3

f

) (3.22)

with some µ, ν > 0.
There is some freedom in the definition of HA. One good choice is given by

HA = η
∑
f

(
2− U∂f − U3

∂f

)
, with η > 0. (3.23)

Next we consider a ball q and denote by f1, f2 and f3 faces with b(fi) = b(q) (they are
necessarily contained in ∂q). The three remaining faces of q will be denoted by fj , with
j = 4, 5, 6. For each of these three faces we take ej be the edge such that s(ej) = b(q) and
t(ej) = b(fj). With this notation we have:

U∂q =
6∏
j=4

Ue−1
j Bfj

3∏
i=1

U†fi , (3.24)

where Ue−1
j Bfj

can be expressed in terms of elementary Ue and Uf operators as

Ue−1
j Bfj

= Uf
1 + U2

e

2 + U3
f

1− U2
e

2 . (3.25)

Hamiltonian HB is essentially uniquely determined to be

HB = θ
∑
q

(1− U∂q) , with θ > 0. (3.26)

3.3 Symmetries

We will now describe symmetries of our model. Firstly, any field configuration determines a
flat gauge field ε valued in coker(∆). Such field is described up to gauge transformations by
an element [ε] ∈ Hom(π1(X; ∗), coker(∆))//coker(∆), with double slash denoting the quo-
tient with respect to a group action (in this case given by conjugation), and ∗ being an arbi-
trarily chosen base point in X0. One may regard [ε] as an essentially classical quantity, be-
cause it is unchanged by the action of all operators introduced in our model thus far. In par-
ticular, the subspace of H spanned by all |ε,ϕ〉 corresponding to a single [ε] is H-invariant.
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Secondly, there exist so-called electric symmetries. In order to introduce them, we need
to define the following two groups: E0 is the subgroup of E consisting of all elements which
commute with the whole E and act trivially on Φ, while Φ0 is the subgroup of ker(∆) of
all elements invariant under the action of whole E .

Now let ζ = {ζe} be a collection of elements of E0 such that11 ζ∂f = 1 for each f . We
define an operator L1(ζ) by the formula

L1(ζ)|ε,ϕ〉 = |{ζe εe},ϕ〉. (3.27)

It is straightforward to check that this preserves fake flatness and that L1(ζ) commutes with
H. Now suppose that ζ is of the special form ζe = λt(e)λ

−1
s(e) for some collection λ = {λv}

valued in E0. In this case we have L1(ζ) = G(λ), which acts trivially on physical states.
We conclude from the preceding discussion that operators L1 define a representation of

the cohomology group H1(X, E0) on the space of physical states. This is a 1-form symmetry
with symmetry group E0.

Secondly, let κ = {κf} be a collection of elements of Φ0 such that12 κ∂q = 1 for every
ball q. Then we can introduce

L2(κ)|ε,ϕ〉 = |ε, {κf ϕf}〉. (3.28)

Again, this operation preserves fake flatness and commutes with H. For a collection κ
of the form κf = ω∂f for some ω = {ωe} valued in Φ0 we have L2(κ) = V(ω). Hence
on the space of physical states a representation of H2(X,Φ0) is defined. This is a 2-form
symmetry with symmetry group Φ0.

The last type of symmetries we discuss here is related with automorphisms of crossed
modules. An automorphism of G is a homomorphism (E,F ) : G→ G such that E and F
are group automorphisms. An automorphism of G is said to be inner if it is of the form
E(ε) = ξ ε ξ−1, F (ϕ) = ξ B ϕ for some ξ in E .

Automorphisms of G form a group Aut(G), with inner automorphisms being its normal
subgroup. The quotient group is called the group of outer automorphisms and denoted by
Out(G). We remark that the name is potentially misleading, because elements of Out(G)
are merely equivalence classes of automorphisms (typically there exists no embedding of
Out(G) as a subgroup of Aut(G)).

Now let (E,F ) be an automorphism of G. We define an operator K(E,F ) by

K(E,F )|ε,ϕ〉 = |{E(εe)}, {F (ϕf )}〉. (3.29)

Clearly this defines a representation of Aut(G) on H. Now let us observe that for an inner
automorphism given by an element ξ ∈ E we have

K(E,F )|ε,ϕ〉 = |{ξ εe ξ−1}, {ξ B ϕ}〉 = G({ξv})|ε,ϕ〉 (3.30)
11ζγ is defined for arbitrary path γ by demanding that ζγγ′ = ζγζγ′ whenever s(γ) = t(γ′).
12Element κ∂q is defined in terms of the κf in the same way as ϕ∂q is defined in terms of ϕf . It does not

depend on ε because elements κf are E-invariant. Similar notations will be used in the remaining part of
this subsection without further explanations.
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with the constant collection ξv = ξ for every v. As this is a gauge transformation, K(E,F )
acts trivially on physical states in this case. Hence on the space of physical states a
representation of the group Out(G) is defined. Hamiltonian H may or may not be invariant
under the action of these transformations, depending on the choice of “coupling constant”
functions {µe}, {νf}, {ηf} and {θq} in its definition. It is always possible to choose these
functions so that whole Out(G) is realized as a global symmetry group.

3.4 Vacuum states

One of the most interesting goals in the study of models described by hamiltonians
H = HM + HE would be to describe their possible phases. We will now make a small step
in this direction by describing the space of ground states of H in various limits in which
diagonalization can be performed exactly. In each case we have found that the lowest
energy subspace:

• is the space of states of a certain topological field theory,

• admits a basis whose elements are in one-to-one correspondence with homotopy
classes of maps from X to some other space.

These results are summarized in the table 1. All proofs are given in the remainder of this
section. For each hamiltonian we provide a more explicit description of the basis ground
states, not involving classifying spaces.

We speculate that some features found in the discussed limits may be generic for certain
regions in the phase diagram of our model:

• Ground states of HE are characterized by strong fluctuations of holonomies. Similar
behaviour is expected to be exhibited also by ground states of the full hamiltonian in
the regime in which HE dominates over HM. Such phase, if it indeed exists, would likely
be characterized by an area law for 1-holonomies and a volume law for 2-holonomies.

• The putative phase approximately described by ground states of HAW would be
characterized by a perimeter law for 1-holonomies and a volume law for 2-holonomies.

• For ground states of HM slightly perturbed by the electric hamiltonian HE, we expect
a perimer law for 1-holonomies and an area law for 2-holonomies.

• In a phase continuously connected to dynamics of HBV we expect an area law for
1-holonomies as well as for 2-holonomies.

This will be further corroborated by the discussion in subsection 3.5, where we consider
certain still simple, but already not purely topological limits of our model. They are shown
to reduce to more standard purely 1-form or 2-form gauge theories, which are believed to
exhibit behaviour consistent with the description above.

Let us start by considering the ground states of HE. We will minimize every term
in (3.10) at the same time, which clearly minimizes the whole HE. First let us observe that
for every face f we have a representation of the group ker(∆) by operators Wf (χ). It is
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Hamiltonian of the model Basis of ground states

HE = HV + HW [X,Bcoker(∆)]

HAW = HA + HW [X,BE ]

HM = HA + HB [X,BG′]

HBV = HB + HV [X,BG]

Table 1. The ground states for four models described by integrable hamiltonians containing two
out of four terms of H. Here [X,Y ] is the set of homotopy classes of maps X → Y . For the
first two entries, the relevant spaces Y are classifying spaces of groups. In the last two entries
classifying spaces of crossed modules are meant. G′ is the crossed module consisting of the trivial
homomorphism ker(∆)→ E and action of E on ker(∆) inherited from the crossed module G.

possible to diagonalize all of them at the same time. Eigenvectors are labeled by element χ̂
of the Pontryagin dual of ker(∆), i.e. the group k̂er(∆) of homomorphisms ker(∆)→ U(1).
Such eigenvector, here labeled by |χ̂〉, satisfies

Wf (χ)|χ̂〉 = χ̂(χ)|χ̂〉 for every χ ∈ ker(∆). (3.31)

It then follows that we have

Wf,ν |χ̂〉 =
(∑

χ

ν(χ)χ̂(χ)
)
|χ̂〉. (3.32)

The quantity in the parenthesis is, by definition, ν̂(χ̂) - the Fourier transform of ν evalu-
ated at χ̂. We have assumed that functions νf defining terms Wf,νf in HE are such that
ν̂f (χ̂) ≥ 0, with the equality if and only if χ̂ = 1. Then zero is the smallest eigenvalue of
Wf,νf and one has Wf,νf |χ̂〉 = 0 only for χ̂ = 1. This means that vectors minimizing HE are
invariant with respect to all W(χ). An analogous analysis, involving Fourier analysis for
the non-abelian group (see e.g. [53, Part II]) Φ instead of Pontryagin duality, shows that
they have to be invariant also with respect to all V(ψ). Finally, we require also invariance
with respect to Gauss’ operators G(ξ). States satisfying all these requirements may be
obtained by summing |ε,ϕ〉 over an orbit of the group generated by all vertex, edge and
plaquette transformations, say ∑

ξ,ψ,χ

G(ξ)V(ψ)W(χ)|ε,ϕ〉 (3.33)

for some reference (ε,ϕ). The next step is to understand the space of orbits.
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It is clear that two configurations with the same ε are related by a plaquette trans-
formation. Furthermore, for two configurations with the same ε one can perform an edge
transformation to make ε equal. Collection ε itself is not changed by edge and plaquette
transformations, but it transforms with respect to vertex transformations in the way usual
for a gauge field.

We conclude that there is a basis of ground states of HE indexed by elements of
Hom(π1(X; ∗), coker(∆))//coker(∆). Distinct ground states may be distinguished by val-
ues of 1-holonomies along nontrivial loops in X. In other words, we have found the space
of states of a topological gauge theory with gauge group coker(∆).

Secondly, we discuss the space of ground states of HAW . It admits a basis consisting
of vectors of the form ∑

ξ,ϕ

G(ξ)|ε,ϕ〉, (3.34)

where ε is any collection with ε∂f = 1 for each f . The sum over ϕ runs over collections
with ϕf in ker(∆), by fake flatness. Distinct vectors of the form (3.34) are labeled by
elements of Hom(π1(X; ∗), E)//E determined by ε. Hence we find the space of states of a
topological gauge theory with gauge group E .

Next we consider the ground states of HM. This is facilitated by the fact that holonomy
operators act diagonally. To minimize all terms in (3.14) at the same time we have to
restrict attention to configurations (ε,ϕ) satisfying flatness conditions

ε∂f = 1 for every face f, (3.35a)
ϕ∂q = 1 for every ball q. (3.35b)

The first condition implies that each ϕf is in ker(∆), by fake flatness. Besides these
constraints, only gauge invariant states are allowed. Such state may be constructed by
summing over the gauge orbit of some configuration (ε,ϕ) satisfying (3.35):

|[ε,ϕ]〉 =
∑

(ε′,ϕ′)∼(ε,ϕ)
|ε′,ϕ′〉, (3.36)

where we write (ε′,ϕ′) ∼ (ε,ϕ) if (ε′,ϕ′) and (ε,ϕ) are related by a gauge transformation.
Thus there is a basis of the space of ground states whose elements are in one-to-one corre-
spondence with gauge orbits of configurations (ε,ϕ) subject to conditions (3.35). We will
now describe this space of orbits.

An admissible collection ε defines a flat gauge field on X valued in E . For every
conjugacy class of homomorphisms π1(X; ∗)→ E we focus on one representative ε. Having
fixed ε, we consider the allowed ϕ. They have to satisfy (3.35b). Furthermore, we have to
identify collections related by

ϕ′f = ψ
(ε)
∂f ϕf (3.37)

for any collection ψ of elements of ker(∆). We note the fact that elements ψ(ε)
∂f actually

depend on ε only through ε, since the image of ∆ acts trivially on ker(∆).
The space of equivalence classes of admissible collections ϕ is the twisted cohomology

groupH2(X, ker(∆), ε), as recalled in the apppendix B. It is not true in general that distinct
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cohomology classes correspond to different gauge orbits. This is because there might exist
vertex transformations ξ which preserve ε:

ξt(e) εe ξ
−1
s(e) = εe for each edge e. (3.38)

This formula implies that ξ∗ commutes with εγ for every loop based at ∗. Secondly, given
such ξ∗ it is possible to uniquely determine ξv for every vertex v from the above relation.
In summary, the group StabV (ε) of vertex transformations preserving ε is isomorphic to
the group of elements of E whose adjoint action preserves the homomorphism π1(X, ∗)→ E
determined by ε. It acts on H2(X, ker(∆), ε) by (abelian) group homomorphisms, so the
quotient space is also a group.

We conclude that the set of gauge orbits of flat configurations is a disjoint union
of groups H2(X, ker(∆), ε)//StabV (ε), with ε running through a set of representatives of
elements of Hom(π1(X; ∗), E)//E . We remark that this is also the space of states of a
topological gauge theory based on the crossed module G′ which consists of the trivial
homomorphism ker(∆)→ E and action of E on ker(∆) inherited from G. Indeed, condition
ε∂f = 1 for each f is precisely the fake flatness constraint for G′. Moreover groups, in
which fields ε,ϕ as well as gauge transformations are valued, coincide.

Vacuum states corresponding to non-equivalent ε may always be distinguished by val-
ues of 1-holonomy operators along nontrivial loops. It is not always true that states with
the same ε but non-equivalent ϕ can be discriminated by evaluating 2-holonomies, as
illustrated by one of examples in subsection 2.4.

Last, but not least, we consider the problem of minimization of HBV . There exists
a basis of ground states indexed by homotopy classes of maps X → BG. This implies that
ground states of this hamiltonian form the space of states of the Yetter’s model. This
fact was discussed also in [40, 42]. For the sake of completeness we include a proof here.
Furthermore, we give another description of the space of ground states.

In order to minimize operators B∂q,θq we have to restrict attention to configurations
obeying ϕ∂q = 1 for every ball q. Given any such configuration (ε,ϕ) we obtain a ground
state by forming the superposition ∑

ξ,ψ

G(ξ)V(ψ)|ε,ϕ〉. (3.39)

A basis of the space of ground states is formed by vectors of this form, one for each orbit
of the group of vertex and edge transformations in the set of admissible configurations.
The fact that these orbits are in one-to-one correspondence with homotopy classes of maps
X → BG has been reviewed in the appendix C.2. We proceed to give an alternative
description of the set of orbits.

Since in the present analysis configurations related by edge transformations with arbi-
trary ψ are identified, the only invariant datum specified by ε is the corresponding element
of Hom(π1(X; ∗), coker(∆))//coker(∆). For every element of this set we choose one repre-
sentative ε and lift it to some ε. It is not always possible to choose ε which is itself flat, as
shown in examples in subsection 2.4.
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Next we consider the set of allowed ϕ for the given ε. As illustrated in subsection 2.4,
for ε having nontrivial holonomies it may happen that no ϕ satisfying the flatness condition
ϕ∂q = 1 exists. Let us consider the case in which some flat ϕ does exist. Then any other
flat ϕ′ is of the form

ϕ′f = χf ϕf (3.40)

for some twisted cocycle χ (see apppendix B). The more stringent condition that χ is
a twisted coboundary holds if and only if configurations (ε,ϕ) and (ε,ϕ′) are related by
an edge transformation with ψe in ker(∆) for each e. Therefore the set F(ε) of equivalence
classes of flat ϕ (with the given ε) modulo ker(∆)-valued edge transformations is an affine
space over H2(X, ker(∆), ε). That is not the end of the story, because the group StabV,E(ε)
of combined vertex and edge transformations preserving ε acts on F(ε). We will now show
that this action factors through the smaller group StabV (ε) of coker(∆)-valued vertex
transformations, i.e. collections ξ = {ξv} of elements of coker(∆) such that

εγ = ξt(γ) εγ ξ
−1
s(γ) for every path γ. (3.41)

Transformations in StabV,E(ε) are represented by operators of the form G(ξ)V(ψ),
where the pair (ξ,ψ) is such that

εγ = ξt(γ) ∆
(
ψ(ε)
γ

)
εγ ξ
−1
s(γ) for any path γ. (3.42)

Let us first consider a pair (ξ,ψ) such that in addition ξv = ∆ρv for each v. The discussion
around equation (2.37) gives

G(ξ)V(ψ)|ε,ϕ〉 = V(ψ̃)V(ψ)|ε,ϕ〉 = V(ψ̃ψ)|ε,ϕ〉 (3.43)

for some Φ-valued collection ψ̃. By the definition of StabV,E(ε), we must have
ψ̃eψe ∈ ker(∆) for each e. Thus the action of (ξ,ψ) on the set of allowed ϕ for the given ε
reduces to a ker(∆)-valued edge transformation. Hence (ξ,ψ) acts trivially on the set F(ε).

Next let us observe that the map StabV,E(ε) 3 (ξ,ψ) 7→ ξ ∈ StabV (ε) is a homomor-
phism. Preceding discussion shows that its kernel acts trivially on F(ε), so to complete
the proof it is sufficient to show that this homomorphism is surjective. Thus we choose
some ε obeying (3.41) and lift it to an E-valued collection ε arbitrarily. By construction,
we have that for each path γ the element

µγ = ξ−1
t(γ) εγ ξs(γ) ε

−1
γ (3.44)

belongs to im(∆). Directly from the definition of µγ we have that

µγ′γ = µγ′ εγ′ µγ ε
−1
γ′ (3.45)

is satisfied for any composite path γ′γ. Now for every edge e we choose some ψe such that
µe = ∆ψe. Then µγ coincides with ∆ψ(ε)

γ whenever γ is a single edge, and furthermore these
two collections satisfy the same composition rule for concatenated paths. Thus µγ = ∆ψ(ε)

γ

for every γ. Plugging this into (3.44) we obtain

ξt(γ) ∆ψ(ε)
γ εγ ξ

−1
s(γ) = εγ , (3.46)

and hence the claim is proven.

– 33 –



J
H
E
P
0
3
(
2
0
2
1
)
2
8
2

In summary, vectors of the form (3.39) form a basis of ground states of HBV . They can
be labeled by elements of the disjoint union of sets F(ε)//StabV (ε) with ε running through
representatives of elements of Hom(π1(X; ∗), coker(∆))//coker(∆).

We are now ready to deduce that the space of ground states of HBV , as well as the space
of states invariant under all vertex and edge transformations, but not necessarily with flat
ϕ, depends on G only through its weak equivalence class. Clearly it is sufficient to consider
a weak isomorphism (E,F ) : G→ G′ = (E ′,Φ′,∆′,B′). We let T be the map which sends a
G-valued configuration (ε,ϕ) to (E(ε), F (ϕ)), where E(ε) = {E(εe)} and F (ϕ) = {F (ϕf )}.
This intertwines between G and G′-valued vertex and edge transformations, so there is an
induced mapping on the space of orbits. The latter is in both cases a disjoint union of
subsets labeled by

Hom(π1(X; ∗), coker(∆))//coker(∆) ∼= Hom(π1(X; ∗), coker(∆′))//coker(∆′),

where we used the fact that E : coker(∆)→ coker(∆′) is an isomorphism. Mapping T pre-
serves this decomposition. Thus it is sufficient to consider configurations of the form (ε,ϕ)
and (E(ε),ϕ′) for one ε, for now with no constraint on ϕ. Let C(ε) and C′(E(ε)) be the sets
of all allowed ϕ and ϕ′ modulo ker(∆)- (resp. ker(∆′)-)valued edge transformations. They
are affine over H2(X2, ker(∆), ε) ∼= H2(X2, ker(∆′), E(ε)), because a flat configuration on
X2 is the same as an arbitrary configuration on X (constraint ϕ∂q = 1 for every ball q
being vacuous if balls are absent). The map T intertwines between the affine structures,
so we have C(ε) ∼= C′(E(ε)). Furthermore, we clearly have StabV (ε) ∼= StabV (E(ε)), and
again T preserves actions of these groups. Thus

C(ε)//StabV (ε) ∼= C′(E(ε))//StabV (E(ε)),

which proves that T is a bijection. Finally, let us observe that F (ϕ)∂q = F (ϕ∂q), since
ϕ∂q ∈ ker(∆). Since F is an isomorphism, this implies that flatness of F (ϕ) is equivalent
to flatness of ϕ. Hence T is bijective also after restricting to flat configurations.

Another interesting point to be raised here is that there is an explicit topological cri-
terion to determine when the set F(ε) is nonempty. Here we give a short summary, with a
more detailed description postponed to the appendix C.3. Field ε determines (up to homo-
topy) a map hε from X to Bcoker(∆), the classifying space of the group coker(∆). There is
a distiniguished twisted cohomology class β on Bcoker(∆), called the Postnikov class. The
set F(ε) is nonempty if and only if the pullback h∗ε β is the trivial cohomology class on X.

We close this section with the remark that it has been shown in [29] that the topological
field theory describing ground states of HV B may be formulated using fields valued in groups
ker(∆) and coker(∆) only. In this approach crossed modules do not have to be invoked
explicitly. One has to merely specify the action of coker(∆) on ker(∆) and the Postnikov
class β. These are precisely the data that determine the crossed module up to weak isomor-
phisms [54], in accord with the fact that the model possesses weak isomorphism invariance.

3.5 A peek at dynamics

In this subsection we discuss models described by hamiltonians in which three out of four
terms of H are present. See figure 18 for an illustration of the four possibilities. In each
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HV + HB HA + HB

HV + HW HA + HW

HABV

HAVW

HBVW HABW

Yang-Mills

Yang-Mills

2-
fo
rm

ga
ug

e
th
eo
ry

2-form
gauge

theory

Figure 18. A diagram representing four possible models with hamiltonians consisting of three out
of four terms.

case dynamics reduces to that of some simpler theory. Therefore we can understand the
dynamics generated by H along the boundary of its phase diagram.

Several topological aspects of our models have been discussed in subsection 3.4. In this
step we would like to focus instead on local dynamics. Therefore we assume now a topolog-
ically trivial situation, i.e. that the first two homotopy groups of X vanish. In this case we
can always fix gauge εe = 1. In other words, the ε field can be regarded as valued in im(∆).
True physical states may be obtained in the end by summing over vertex transformations.
Thus in the further analysis it is necessary to explicitly take into account only those vertex
transformations ξ which preserve the gauge condition εe = 1, i.e. those with constant ξ.

Let us begin with the case HABW = HA + HB + HW . Term HA commutes with the
other two, so it may be minimized exactly.13 Therefore we may restrict attention to field
configurations with ε∂f = 1 for each f . Each gauge equivalence class of fields with this
property admits a representative with εe = 1 for each edge e. For these representatives the
fake flatness constraint implies that ϕf ∈ ker(∆). As a result, the only physical degree of
freedom is a ker(∆)-valued 2-form field. Residual gauge freedom consists of transformations
of two types: edge transformations valued in ker(∆), which play the role of standard gauge
transformations for the 2-form field, and vertex transformations with constant ξ. Explicitly,
the latter acts according to the formula ϕσ 7−→ ξBϕσ for every σ. From the point of view
of the 2-form theory this is a global symmetry. Summarizing, the ground states of HABW

coincide with ground states of a 2-form gauge theory valued in ker(∆), restricted to the
singlet sector of a certain global symmetry.

For the hamiltonian HAVW , the analysis is analogous. Field ϕ is effectively removed
by exactly minimizing HW , which enforces that for any ε all configurations (ε,ϕ) allowed
by fake flatness enter with an equal amplitude. The final conclusion is that ground states

13Strictly speaking, it could happen that an eigenvector of HB + HW to a much lower eigenvalue could
be found in excited subspaces of HA. Thus presented analysis is valid exactly only under the additional
assumption that HA dominates over the other two terms.
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are the same as in a Yang-Mills theory with gauge group im(∆), restricted to the singlet
sector of a global symmetry.

Next, consider the model with hamiltonian HABV . In this case we impose the constraint
ϕ∂q = 1 for each q. There exists a unique such ϕ, up to edge transformations valued in
ker(∆), for every ε. Therefore the field ϕ is effectively removed from the theory. In the
end we obtain the singlet sector of lattice Yang-Mills theory with gauge group im(∆), as
in the case of HAVW .

It remains to analyze the theory with HBVW as a hamiltonian. In this case we minimize
exactly the HV term. Therefore ground states may be written as superpositions of states
of the form ∑

ψ

V(ψ)|1,ϕ〉 =
∑
ψ

|{∆ψe}, {ψ∂f ϕf}〉, (3.47)

which are labeled by collections ϕ valued in ker(∆), modulo 2-form gauge transformations
ϕf 7→ ψ∂f ϕf with ker(∆)-valued ψ. Thus we obtain the space of states of a 2-form gauge
theory. Vertex gauge transformations with ξ valued in im(∆) act trivially, because they
reduce to edge transformations, which were already taken care of. There remains only the
condition of invariance with respect to vertex transformations with constant ξ, which again
can be interpreted as a global symmetry.

Finally, we would like to emphasize that, in spite of the preceding discussion, models
found on opposite edges of the diagram on figure 18 are not identical. They differ in their
global properties once we start considering spaces X with nontrivial homotopy groups.
Firstly, let us compare hamiltonians HABV and HAVW . In the first case low-lying states
have flat ϕ, but can be distinguished by 2-holonomies along non-contractible spheres in X.
There is a possibility of ground state degeneracy due to existence of several non-equivalent
flat ϕ for a given ε. Thus the 2-form electric symmetry may be broken. On the other
hand for the hamiltonian HAVW field ϕ is effectively absent. Since ground states are
invariant under all W operators, the 2-form symmetry is unbroken. Comparison of HABW

and HBVW is similar. In the former case fields ε are flat, but they may still have nontrivial
1-holonomies. Thus the 1-form electric symmetry may be broken. On the other hand for
ground states of HBVW holonomies of ε are undefined, since they are not invariant with
respect to edge transformations (which are symmetries of the states).
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A Kernel and cokernel of ∂

Given a topological space A, subspace B and a base point ∗ ∈ B, one has an exact sequence
of groups [50, Thm. 4.3]

π1(A; ∗)←−−− π1(B; ∗) ∂←−−− π2(A,B; ∗)←−−− π2(A; ∗)←−−− π2(B; ∗). (A.1)

It follows that ker(∂) may be identified with the quotient of π2(A; ∗) by the image of the
homomorphism π2(B; ∗)→ π2(A; ∗).

Furthermore, notice that if the map π1(B; ∗) −→ π1(A; ∗) is surjective, the coker-
nel of ∂ is isomorphic to π1(A; ∗). This is true in particular for A = X, B = X1, by
the cellular approximation theorem [50, Thm. 4.8]. Secondly, the universal cover a one-
dimensional CW-complex is contractible. Thus π2(X1; ∗) is trivial, so we have an identifi-
cation ker(∂) ∼= π2(X; ∗).

B Twisted cohomology

In this appendix we give a definition of twisted cohomology as it arises directly in calcu-
lations done in this paper. We refer to [55, p. 255–290] for a more complete treatment.
We shall use relative homotopy groups πn(A,B; ∗) with any n ≥ 2, as well as the action
of π1(B; ∗) on these groups. Their definition is entirely analogous to the case n = 2 and
can be found e.g. in [50, p. 343]. They are abelian for n ≥ 3. As for n = 2, there is a
homomorphism ∂ : πn(A,B; ∗) ∂−→ πn−1(B; ∗), whose kernel coincides with the image of
the self-evident map πn(A; ∗) → πn(A,B; ∗). Furthermore, a map A → A′ which takes B
to B′ ⊆ A′ induces a homomorphism πn(A,B; ∗) → πn(A′, B′; ∗), which is unchanged by
homotopic deformations preserving the condition that B is mapped to B′ at all interme-
diate stages. All that generalizes to a groupoid version πn(A,B;C), for which a whole set
C ⊆ B of base points is allowed, in a way analogous to the case n = 2.

In our applications we need the above structure with A = Xn, B = Xn−1 and C = X0.
Thus π1(B;C) = π1(X1;X0) if n = 2 and π1(B;C) = π1(X;X0) for n ≥ 3. Since the latter
group is a quotient of π1(X1;X0), we have an action of π1(X1;X0) on πn(Xn, Xn−1;X0) in
each case. Groups πn(Xn, Xn−1;x) with x ∈ X0 and n ≥ 3 may be handled in practice using
the fact [55, p. 212] that they are free π1(X;x)-modules, with bases labeled by n-cells of X.

Now let us fix a group G, an abelian group K on which G acts by automorphisms and
a homomorphism α : π1(X;X0) → G. Thus for every path γ there is an endomorphism
k 7→ αγBk ofK, trivial if γ is contractible inX. It obeys the composition law αγ′γ = αγ′ αγ .
In our applications we will mostly consider the case G = coker(∆) andK = ker(∆) for some
crossed module G, with α = ε. This is not relevant for the discussion in this appendix.

By an α-twisted p-cochain on X valued in K we shall mean:

• p = 0: collection of elements ρv ∈ K labeled by vertices v,

• p = 1: assignment of ψγ ∈ K to every path γ, subject to the composition law
ψγ′γ = ψγ′ (αγ′ B ψγ) whenever s(γ′) = t(γ),
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πp+1(Xp+1, Xp;X0)

πp+1(Xp+1;X0) πp(Xp;X0)

πp+2(Xp+2, Xp+1;X0) πp(Xp, Xp−1;X0)

∂

∂

∂

∂

Figure 19. The two colored maps factors through the dashed ones marked by the same colors.
The composition depictured by the dashed black arrow is the trivial map.

• p ≥ 2: homomorphism χ : πp(Xp, Xp−1;X0) → K satisfying the equivariance condi-
tion χγBτ = αγ B χτ .

The set of all p-cochains is a group, which we denote by Cp(X,K,α). Next we define a
differential δ : Cp(X,K,α)→ Cp+1(X,K,α) in the following way:

• p = 0: (δρ)γ = ρt(γ)
(
αγ B ρ−1

s(γ)

)
,

• p = 1: (δψ)σ = ψ∂σ, where ∂ : π2(X2, X1;X0) → π1(X1;X0) is as defined in sec-
tion 2.1,

• p ≥ 2: (δχ)τ = χ∂τ , where ∂ : πp+1(Xp+1, Xp;X0) → πp(Xp, Xp−1;X0) is the com-
position of homomorphisms ∂ : πp+1(Xp+1, Xp;X0)→ πp(Xp;X0) and πp(Xp;X0)→
πp(Xp, Xp−1;X0).

With this differential, C•(X,K,α) is a cochain complex, whose cohomology we denote
by H•(X,K,α) and call the twisted cohomology. Another popular name is cohomology
with local coefficients. To see that δ is nilpotent, first note that for a 0-cochain ρ we have
(δ2ρ)σ = (δρ)∂σ = ρb(σ)

(
α∂σ B ρ−1

b(σ)

)
= 1, as α∂σ = 1. For a p-cochain χ with p ≥ 2

we have (δ2χ)τ = χ
∂

2
τ
. Homomorphism ∂

2 fits in the commutative diagram shown on
figure 19, so it factors through the (trivial) composition of two subsequent homomorphisms
in the long exact sequence of relative homotopy groups [50, Thm. 4.3] of the pair (Xp+1, Xp).
For p = 1 one needs triviality of ∂∂, for which an analogous reasoning applies.

Now let us assume that l : Y → X is a cellular map of CW-complexes. Given
α ∈ Hom(π1(X,X0), G), its pullback l∗α ∈ Hom(π1(Y, Y0), G) is defined as the compo-
sition of α with the pushforward map π1(Y, Y0) → π1(X,X0) induced by l. Furthermore,
the pullback l∗ : C•(X,K,α) → C•(Y,K, l∗α) may be defined in an analogous way. It
intertwines between the differentials, so there is an induced pullback map of cohomology
l∗ : H•(X,K,α)→ H•(Y,K, l∗α).

We close this appendix with a remark that twisted cohomology may be defined also
without reference to a cell structure on X. They depend only on the topology of X
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and another datum called a local system of abelian groups on X. The latter may be (non-
canonically) encoded by a single abelian groupK and a homomorphism π1(X; ∗)→ Aut(K)
for some base point ∗.

C Classifying spaces

Due to the length of this appendix, we divided it into several parts. In C.1 we recall the basic
properties of classifying spaces of groups. Appendix C.2 is devoted to the definition and the
proof of the fundamental property of classifying spaces of crossed modules, which relates
field configurations on a space X valued in a crossed module G with maps X → BG. In C.3
we explain the relation of the so-called Postnikov class with the problem of constructing
field configurations (or equivalently, maps to BG). In C.4 we construct maps between
classifying spaces corresponding to homomorphisms of crossed modules and obtain the
corollary that weakly equivalent crossed modules have homotopy equivalent classifying
spaces. A simple proof of existence of classifying spaces is given in C.5.

C.1 Classifying spaces of groups

We begin with a short review of the classifying space BG of a group G. One way to define
it14 is as a connected CW-complex with fundamental group G and trivial higher homotopy
groups. It is well known [55, Thm. 7.1] that such space exists and is determined uniquely
up to a homotopy equivalence. One may also assume that BG has exactly one 0-cell ∗,
which we take as its base point.

We claim that gauge orbits of G-valued lattice gauge fields on X are in one-to-one
correspondence with homotopy classes of maps X1 → BG. Flatness of a gauge field is
equivalent to existence of an extension of the corresponding map to X2. If this condition is
satisfied, extending to the whole X is automatic, and furthermore this extension is unique
up to homotopy. There is also a correspondence between flat gauge fields (rather than gauge
equivalence classes) on X and homotopy classes of maps of pairs15 (X,X0) → (BG, ∗).
Again, flatness condition may be lifted by considering maps (X1, X0)→ (BG, ∗).

To prove the above claims, let us first note that any mapping X → BG is homotopic
to one which sends the whole X0 to ∗, by the homotopy extension property [50, p. 15] of
the pair (X,X0). Such map sends every edge of X to a loop in BG based at the base
point ∗. As a result it determines a homomorphism π1(X1, X0) → π1(BG, ∗) ∼= G, i.e. a
lattice gauge field on X. Two maps hα, hα′ are homotopic if and only if they determine
gauge-equivalent fields α and α′. Indeed, constructing a homotopy between them amounts
to constructing an extension to16 I×X of the map {0, 1}×X → BG given by hα and hα′ ,
respectively, on {0} ×X and {1} ×X. This can be done iteratively, cell-by-cell.

14There is a more general notion of a classifying space of a topological group [56], for which this definition
is not suitable. Here only discrete groups are considered.

15Map of pairs (X,Y ) → (X ′, Y ′) with Y ⊆ X and Y ′ ⊆ X ′ is a map X → X ′ which takes Y into Y ′.
Definition of homotopy classes of maps of pairs allows only homotopies for which Y is mapped to Y ′ at all
times. Maps of triples and their homotopy classes are defined analogously.

16Here I is the unit interval.
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•

α−1
e

ξs(e)

α′e

ξ−1
t(e)

Figure 20. Extension problem encountered in the construction of a homotopy between two maps
X → BG cell by cell. The bold dot is the chosen base point of the square.

First we consider 1-cells, which are of the form I×{v} with v - vertices of X. These can
be mapped to any loops in BG, which determine elements ξv ∈ π1(BG, ∗). Next we extend
through 2-cells, which are products of I and edges of X. Considering an edge e, we arrive
at the problem of extending to the whole square the map on the boundary depictured
on figure 20. This is possible if and only if the boundary map is null-homotopic, i.e. if
α′e ξs(e) α

−1
e ξ−1

t(e) = 1 in G. In other words, if α′ and α are gauge equivalent, we have to
choose ξ in the previous step which is a gauge transformation from α to α′. Afterwards one
has to extend through higher cells. This is always possible since higher homotopy groups
of BG vanish. Thus hα and hα′ are homotopic. If α and α′ are not gauge equivalent, it
is impossible to extend the map through 2-cells regardless of the choice of an extension
through 1-cells. Hence hα and hα′ are not homotopic.

We still have to determine which gauge fields can be realized by some map to BG. On
the 1-skeleton of X we can realize any gauge field, simply by constructing the corresponding
map cell-by-cell. An obstruction arises if one attempts to extend the map from X1 to X2.
Concretely, extension over a face f is possible if and only if the bounding loop is sent to a
trivial loop in BG, i.e. if α∂f = 1. Thus a map h : X1 → BG extends to X2 if and only
if the corresponding gauge field is flat. Further extension from X2 to X is unobstructed,
again because higher homotopy groups of BG are trivial.

The only part that remains to be proven is the one concerning homotopy classes of pairs
(X,X0) → (BG, ∗). Such homotopy class determines a homomorphism π1(X1, X0) → G.
We already know that every homomorphism is realized by some homotopy class. Fur-
thermore, in the construction of a homotopy between two maps determined by the same
homomorphism we may take ξv = 1 for every v, and hence the homotopy may be taken to
be stationary on I ×X0.

Being done with the proof, notice that there exists a distingushed G-valued gauge field
ι on BG, corresponding to the tautological (identity) homomorphism π1(BG, ∗)→ G. It is
universal in the sense that one has h∗α ι = α for a map hα : X → BG corresponding to a
gauge field α on X. Furthermore the twisted cohomology groups H•(BG,K, ι) are defined
for any G-module K. They are also called the cohomology groups of the group G and can
be constructed in a purely algebraic manner, see [57]. The universal character of the field
ι implies that pullback through hα maps H•(BG,K, ι) to H•(X,K,α).
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C.2 Classifying spaces of crossed modules

Here we will describe classifying spaces of crossed modules. For our purposes, the following
definition is suitable: BG is a connected CW-complex which contains BE , the classifying
space of the group E , as a subcomplex and has homotopy groups

πn(BG; ∗) =


coker(∆) for n = 1,
ker(∆) for n = 2,
0 for n ≥ 3.

(C.1)

Furthermore, it is required that Π2(BG, BE ; ∗) ∼= G. Again, we may assume that BG has
exactly one 0-cell ∗, which we choose as the base point.

It is known that such space BG exists and is determined uniquely up to a homotopy
equivalence by the above properties [54, 58–60]. The latter fact is also obtained as a
simple corollary from the discussion in the appendix C.4, while the former is proven in the
appendix C.5.

The property of BG most important for us is that field configurations (ε,ϕ) on X

with flat ϕ, modulo vertex and edge transformations, are in one-to-one correspondence
with homotopy classes of maps X → BG. Clearly the flatness constraint may be lifted by
considering maps X2 → BG instead. We remark also that homotopy classes of maps of
triples (X,X1, X0) → (BG, BE , ∗) correspond to field configurations with flat ϕ. Again,
the flatness condition may be removed by replacing X with X2. Finally, it will be clear
from the proof that a map (X,X1, X0)→ (BG, BE , ∗) is homotopic as a map of triples to
one with image in BE if and only if the corresponding configuration (ε,ϕ) has trivial ϕ,
i.e. ϕf = 1 for every face f .

For the purpose of the proof, we may again asssume that all maps X → BG take
X0 to a base point ∗. Let us consider first homotopy classes of maps of X1 into BG and
BE . Proceeding as in the above exposition of classifying spaces of groups one may show
that they are in one-to-one correspondence with gauge equivalence classes of π1(BG, ∗) ∼=
coker(∆) and π1(BE , ∗) ∼= E-valued gauge fields on X1, respectively. Furthermore, the
map [X1, BE ]→ [X1, BG] induced by the inclusion of BE in BG corresponds to reduction
modulo im(∆), so in particular it is surjective. Using the homotopy extension property of
the pair (X,X1) we conclude that any map X → BG is homotopic to one which maps X1
to BE and X0 to ∗. Such map sends every edge e of X to a loop in BE based at ∗, and
hence determines an element εe ∈ π1(BE , ∗) ∼= E .

Now consider the problem of extending a map hε : X1 → BG which determines an
E-valued gauge field ε to X2. For every face f we have to extend the map on the bound-
ary whose homotopy class is given by the element ε∂f ∈ π1(BG, ∗). An extension exists
if and only if ε∂f = 1, i.e. if ε∂f belongs to im(∆). Homotopy class of this extension,
regarded as a map of triples (I2, ∂I, ∗) → (BG, BE , ∗), determines and is determined by
an element ϕf ∈ π2(BG, BE , ∗) such that ∆ϕf = ε∂f . Summarizing, every homomor-
phism Π2(X2, X1;X0)→ G is realized by some map of triples (X2, X1, X0)→ (BG, BE , ∗).
Conversely, any homotopy class of maps of triples is determined by the corresponding ho-
momorphism. Thus a bijection [(X2, X1, X0), (BG, BE , ∗)] ∼= Hom(Π2(X2, X1;X0),G) is
established.
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• ϕ′f

ε′∂f

• ϕf

ε∂f

ξb(f)

(1, b(f))

(0, b(f))

ψ
(ε′′)
∂f

Figure 21. The cylinder is given a cellular structure with two 0-cells, indicated by bold dots.
Three edges, indicated by solid lines, are mapped according to elements ε∂f , ε′∂f , ξb(f) ∈ E . Two
faces are given by bases of the cylinder and are mapped according to elements ϕf , ϕ′f ∈ Φ. The
last face, based at (1, b(f)), forms the lateral surface. It is mapped according to the element ψ(ε′′)

∂f .

Next, let us take two maps hε,ϕ, hε′,ϕ′ : (X2, X1, X0) → (BG, BE , ∗), labeled by the
corresponding field configurations, and consider the problem of deciding if they are ho-
motopic as maps X2 → BG. Thus we ask if the map {0, 1} × X2 → BG given by hε′,ϕ′
and hε,ϕ on {1} × X2 and {0} × X2 extends to I × X2. By using the homotopy exten-
sion property of the pair

(
I ×X2, ({0, 1} ×X2) ∪ (I ×X0)

)
we conclude that every such

extension is homotopic to one which sends I × X0 to BE . Then cells I × {v} are sent
to loops in BE described by elements ξv ∈ π1(BE , ∗), which can be chosen at will. Next
we extend through 2-cells. We encounter a problem analogous to the one illustrated on
figure 20. An extension exists if ε′e

(
ξt(e) εe ξ

−1
s(e)

)−1
∈ E represents a trivial element of

π1(BG, ∗) = coker(∆). Assuming this is true, homotopy classes of extensions are described
by elements ψe ∈ π2(BG, BE , ∗) = Φ such that

ε′e = ∆ψe ξt(e) εe ξ−1
s(e). (C.2)

From now we focus on one extension and proceed to extending through 3-cells.
These are products of I and faces of X2. A calculation shows that for every face f

one encounters the problem of extending a map from the boundary of a cylinder, il-
lustrated on figure 21, to its interior. This is possible if and only if the corresponding
element ϕ′−1

f

(
ψ

(ε′′)
∂f (ξb(f) B ϕf )

)
∈ π2(BG, ∗) = ker(∆) is trivial. Here ε′′ is given by

ε′′e = ξt(e) εe ξ
−1
s(e).

Summarizing, a homotopy between hε,ϕ and hε′,ϕ′ exists if and only if there exist
collections ξ ∈ E (0)

X and ψ ∈ Φ(1)
X fitting in a diagram of the form presented on the figure 22.

In other words, configurations (ε,ϕ) and (ε′,ϕ′) have to be related by the action of vertex
and edge transformations.
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(ε,ϕ) (ε′,ϕ′)

(ε′′,ϕ′′)

ξ ψ

Figure 22. Field configuration (ε′,ϕ′) is obtained from (ε,ϕ) by a vertex transformation ξ followed
by an edge transformation ψ.

We have completed the classification of homotopy classes of maps X2 → BG. Now let
us observe that restriction from X to X2 defines maps

[X,BG]→ [X2, BG], [(X,X1, X0), (BG, BE , ∗)]→ [(X2, X1, X0), (BG, BE , ∗)].

We claim that they are injective. Indeed, suppose that l, l′ : X → BG are such that their
restrictions to X2 are homotopic. Every map ({0, 1} × X) ∪ (I × X2) → BG extends to
I×X, since πn(BG; ∗) is trivial for n ≥ 3. If the initial homotopy was a homotopy of maps
of triples, then so is the extension. This completes the proof of the claim.

Next we ask when does a map h : X2 → BG extend to X. Firstly, the answer
depends only on the homotopy class of h, by the homotopy extension property of (X,X2).
Thus we may assume that h is a map of triples (X2, X1, X0) → (BG, BE , ∗) and write
h = hε,ϕ. Secondly, if an extension to X3 exists, then there exists also an extension to X,
by triviality of higher homotopy groups of BG. It remains to decide when it is possible
to extend through 3-cells. We consider a ball q. Its boundary is mapped to BG with
homotopy class ϕ∂q ∈ π2(BG; ∗) = ker(∆). Thus an extension to whole X3 exists if and
only if ϕ is flat. Hence the proof that homotopy classes of maps X → BG are in one-to-one
correspondence with configurations with flat ϕ modulo vertex and edge transformations,
as well as of the corresponding statement for the maps of triples, is completed.

C.3 Postnikov class

In this appendix we consider the following question: for which ε there exists a flat ϕ?
First let us observe that the answer depends only on ε modulo gauge transformations since
flatness of ϕ is invariant under vertex and edge transformations. Now let us choose one
representative ε, its lift to ε and any ϕ satisfying the fake flatness condition. Next we
define δ̂ϕ : π3(X3, X2;X0) → ker(∆) by the formula (δ̂ϕ)ω = ϕ∂ω. Let us observe that it
has the following properties:

• π1(X;X0)-equivariance, i.e. (δ̂ϕ)γBω = εγ B (δ̂ϕ)ω for a path γ starting at the base
point of ω. Thus δ̂ϕ is a twisted 3-cochain, see appendix B.

• δ̂ϕ is a twisted cocycle. The proof of this is analogous to the proof of the fact that
δ2 is trivial. Nevertheless, it is not necessarily true that δ̂ϕ is in the image of δ: ϕ,
being valued in the non-abelian group Φ, is not a 2-cochain.

• The cohomology class of δ̂ϕ does not depend on the choice of a lift of ε to ε nor the
choice of ϕ. Indeed, edge transformations do not change δ̂ϕ at all, while plaquette
transformation χ merely shifts it by δχ.
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(X2, X1, X0) (BG, BE , ∗)

(Y2, Y2, Y0)

hε,ϕ

l
hl∗ε,l∗ϕ

Figure 23. Pullback of field configurations may be defined in terms of the associated maps to the
classifying space: (l∗ε, l∗ϕ) corresponds to the map l ◦ hε,ϕ.

X2 X

BG Bcoker(∆)

hε,ϕ hε

Υ

Figure 24. Given a map hε,ϕ : X2 → BG we may compose it with Υ and then extend to a map
X → Bcoker(∆), uniquely up to a homotopy. This extension corresponds to the gauge field ε.

• δ̂ϕ is trivial (i.e. ϕ∂ω = 1 for every ω) if and only if ϕ is flat. Here we are using the
fact that balls q generate π3(X3, X2;x) as a π1(X1;x)-module for any x ∈ X0.

It is clear from the above properties that the cohomology class [δ̂ϕ] ∈ H3(X, ker(∆), ε) is
trivial if and only if ε is such that there exists a compatible configuration (ε,ϕ) with flat ϕ.

Cocyle δ̂ϕ satisfies an important naturality property. Namely, let us consider a map of
triples l : (Y2, Y1, Y0)→ (X2, X1, X0) for some CW-complex Y . Then it makes sense to pull
back a field configuration (ε,ϕ) on X to a configuration l∗(ε,ϕ) = (l∗ε, l∗ϕ) on Y . One
possible description of this pullback operation is through the diagram 23. Equivalently,
(l∗ε, l∗ϕ) is given by the composition

Π2(Y2, Y1;Y0) l∗−→ Π2(X2, X1;X0) (ε,ϕ)−−−→ G.

Clearly we have l∗[δ̂ϕ] = [δ̂l∗ϕ] ∈ H3(Y, ker(∆), l∗ε). This innocuous-looking statement
allows to relate [δ̂ϕ] to a universal example.

The identity homomorphism π1(BG, ∗) → coker(∆) determines, up to a homotopy, a
map of pairs Υ : (BG, ∗)→ (Bcoker(∆), ∗). Therefore for a configuration (ε,ϕ) on X (not
necessarily with flat ϕ) we have a commutative diagram of continuous maps presented
on the figure 24. Suppose that there existed a map Ξ : Bcoker(∆) → BG such that
Υ ◦ Ξ was homotopy equivalent to the self-identity map on Bcoker(∆). Then the map
h = Ξ ◦ hε : X → BG would be such that Υ ◦ h is homotopic to hε, yielding a conclusion
that some configuration (ε′,ϕ′) with ε′ = ε and flat ϕ′ exists. This is not always true, so
the desired Ξ does not always exist. On the other hand one could attempt to construct it
cell-by-cell. The obstruction to do this is a universal example for the cohomology classes
[δ̂ϕ], as we will now demonstrate.

Let ι be the tautological coker(∆)-valued gauge field on Bcoker(∆). We may construct
its lift to a G-valued field configuration (ι,o) on BG, which determines a mapping hι,o :
(Bcoker(∆)2, Bcoker(∆)1, ∗) → (BG, BE , ∗). Thus we may form the cocycle δ̂o, which is
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a representative of the so-called Postnikov class

β = [δ̂o] ∈ H3(Bcoker(∆), ker(∆), ι). (C.3)

We reiterate the fact that β does not depend on the choice of ι and o, although the
representative cocycle δ̂o certainly does. The map hι,o induces the identity homomorphism
between fundamental groups, and conversely, any map with this property is homotopic to
one of the form hι,o for some (ι,o). Thus if β is nontrivial, a right homotopy inverse
Ξ of Υ does not exist. Conversely, if β is trivial, then some hι,o extends to the whole
Bcoker(∆). Denoting the extension by Ξ, we have that Υ ◦ Ξ induces the identity map on
π1(Bcoker(∆), ∗) and hence is homotopic to the identity map, by the classification of maps
valued in classifying spaces of groups.

We claim that for any field configuration (ε,ϕ) on X one has the relation

[δ̂ϕ] = h∗ε β. (C.4)

Indeed, consider the field configuration (ε′,ϕ′) = (h∗ε ι, h∗ε o). Then ε′ = ε, which implies
that δ̂ϕ′ = h∗ε δ̂o and δ̂ϕ are cohomologous. In particular, a configuration (ε′′,ϕ′′) with
flat ϕ′′ and ε′′ = ε exists if and only if the pullback h∗ε β of the Postnikov class is trivial.

C.4 Homomorphisms and weak equivalences

In this appendix we will assume that the 1-skeleton of BG is contained in BE . This
is possible, because the inclusion of BE in BG induces an epimorphism of fundamental
groups, see [55, p. 219]. With this condition the identity map on BG may be regarded
as a map of triples (BG, BG1, ∗) → (BG, BE , ∗). Thus it determines a G-valued field
configuration (κ,η) on BG, called the tautological configuration. This configuration has
flat η. The corresponding map takes BE to BE , so η restricted to BE is trivial: ηf = 1 for
every face f in BE (but not necessarily for faces in BG).

Configuration (κ,η) is universal: if hε,ϕ is a cellular map (X2, X1, X0)→ (BG, BE , ∗)
corresponding to a configuration (ε,ϕ), then h∗ε,ϕ (κ,η) = (ε,ϕ). This is because in this
case the map l on the figure 23 is simply the inclusion of (BG2,G1, ∗) in (BG, BE , ∗), so
hl∗ε,l∗ϕ = hε,ϕ.

Now let G′ be another crossed module and let (E,F ) : G → G′ be a homomor-
phism. Then (E(κ), F (η)) is a G′-valued configuration on BG, so it determines a map
(BG2, BG1, ∗) → (BG′, BE ′, ∗), unique up to a homotopy of maps of triples. Since η was
flat, so is F (η). Thus the corresponding map extends to whole BG, uniquely up to a
homotopy of maps of triples (BG, BG1, ∗) → (BG′, BE ′, ∗). We denote the extension by
B(E,F ). Furthermore, F (η) is trivial on BG, so (perhaps after a homotopy of maps of
triples) B(E,F ) takes BE to BE ′. Then B(E,F ) induces a homomorphism

(B(E,F ))∗ : G = Π2(BG, BE ; ∗)→ Π2(BG′, BE ′; ∗) = G′.

We claim that (B(E,F ))∗ = (E,F ). Indeed, let i : (BG2, BG1, ∗) → (BG, BE , ∗) be the
inclusion. Since B(E,F ) corresponds to the configuration (E(κ), F (η)), we have that the
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G

Π2(BG2, BG1; ∗) G′

G

(E,F )

(E(κ),F (η))

(κ,η)

i∗

(B(E,F ))∗

Figure 25. The upper triangle commutes by definition of the configuration (E(κ), F (η)), while
the lower triangle commutes by construction of the map B(E,F ).

0 π1(BG2; ∗) π1(BG1; ∗) π2(BG2, BG1; ∗) π2(BG2; ∗) 0

0 π1(BG; ∗) π1(BE ; ∗) π2(BG, BE ; ∗) π2(BG; ∗) 0

∼= ∼=

Figure 26. The upper row and the lower row are pieces of long exact sequences of homotopy
groups for pointed pairs (BG2, BG1) and (BG, BE), respectively. Downwards arrows are induced
by the inclusion map.

diagram of homomorphisms of crossed modules on figure 25 is commutative. On the other
hand we have i∗ = (κ,η), by construction of (κ,η). Therefore

(B(E,F ))∗ ◦ i∗ = (E,F ) ◦ i∗. (C.5)

Maps π1(BG1; ∗) → π1(BG; ∗) and π2(BG2, BG1; ∗) → π2(BG, BE ; ∗) are epimor-
phisms, so (C.5) implies the validity of the claim. Indeed, surjectivity of the first homomor-
phism is clear. Secondly, we know that the inclusion BG2 → BG induces an epimorphism of
second homotopy groups and that the second homotopy groups of BG1 and BE are trivial.
Hence by naturality of the long exact sequence of relative homotopy groups, the diagram
on figure 26 is commutative with exact rows. The proof is completed by the four lemma.

We have proven that (B(E,F ))∗ = (E,F ), so in particular the maps of first and second
homotopy groups induced by B(E,F ) are E and F , respectively. Thus if (E,F ) is a weak
isomorphism, then B(E,F ) is a homotopy equivalence, byWhitehead’s theorem [50, p. 346].
Thus it induces a bijection [X,BG] ∼= [X,BG′] for every space X, so topological gauge
theories based on G and G′ are equivalent. More explicitly, this equivalence is given by
mapping a G-valued configuration (ε,ϕ) on X to a G′-valued configuration (E(ε), F (ϕ)).

We remark that the above result implies that BG is determined uniquely up to a homo-
topy equivalence, a fact which we have never used. Indeed, if B̃G is another construction of
the classifying space of G, the above construction gives a homotopy equivalence BG→ B̃G
induced by the identity homomorphism G→ G.
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0 π1(BG2 1
2
; ∗) π1(BE3; ∗) π2(BG2 1

2
, BE3; ∗) π2(BG2 1

2
; ∗) π2(BE3; ∗)

coker(∆) E Φ ker(∆) 0

p

∂

p

∆

Figure 27. Commutative diagram whose upper row is a portion of the long exact sequence of
homotopy groups of the pair (BG2 1

2
, BE3).

C.5 Construction of classifying spaces

In this appendix we fix a crossed module G and construct a classifying space BG together
with its subcomplex BE by gluing cells. In the process we will repeatedly use standard
results [55, p. 215] concerning the effect of attaching cells on homotopy groups, in particular
the fact that the n-th homotopy group is not changed by attaching cells of dimension greater
than n+ 1 (say, by the cellular approximation theorem). The latter is true also for relative
homotopy groups.

Firstly, for the 0-skeleton we take a single point ∗. To proceed further, we choose a
presentation of E , i.e. a set {εi}i∈I and relations {ρj}j∈J . For each i ∈ I we attach to ∗ a
single edge, so that BG1 = BE1 is

∨
i∈I S

1, a bouquet of circles. Now the fundamental group
of BE1 is free with generators indexed by the set I. We denote the generator corresponding
to i ∈ I by εi. Each relation ρj is a word in the alphabet {εi}i∈I , so it defines an element of
the fundamental group of BE1. Space BE2 is formed by attaching to BE1 a 2-cell for each
j ∈ J , with an attaching map of homotopy class ρj ∈ π1(BE1; ∗). Then π1(BE2; ∗) = E .

Next we choose a set {ϕk}k∈K ⊆ Φ such that the elements ε B ϕk with any ε ∈ E
generate the group Φ. Space BG2 is formed from BE2 by attaching a 2-cell for each k ∈ K,
with attaching maps of homotopy classes ∆ϕk ∈ E = π1(BE2; ∗). Then the fundamental
group of BG2 is coker(∆).

Space BE3 is formed by attaching 3-cells to BE2 in such a way that π2(BE3; ∗) becomes
trivial, e.g. one 3-cell for each element of a set of generators of π2(BE3; ∗). Then an auxillary
space BG2 1

2
is formed by attaching to BG2 the 3-cells of BE , or equivalently [55, p. 49] by

gluing to BE3 those 2-cells of BG which are not in BE .
To proceed further, we need to understand the group Φ̃ := π2(BG2 1

2
, BE3; ∗). Since

BG2 1
2

is obtained from BE3 by attaching faces, Whitehead’s theorem applies and we
have that Φ̃ is generated by elements ε B φk (with φk - the generator correspond-
ing to the k-th face), subject only to relations following from Peiffer identities in the
crossed module G̃ := Π2(BG2 1

2
, BE3; ∗). Furthermore, the boundary homomorphism

π2(BG2 1
2
, BE3; ∗)→ π1(BE3; ∗) = E is given by

∂ (εB φk) 7→ ε∆ϕk ε−1. (C.6)

The assignment p(εB φk) = εB ϕk defines a group epimorphism p : Φ̃→ Φ. Furthermore,
(id, p) is a homomorphism of crossed modules G̃ → G. All that is summarized by the
commutative diagram with exact rows presented on figure 27. We let {λl}l∈L be a set of
generators of ker(p). Then for each l we have that ∂λl = ∆(p(λl)) is trivial. On the other
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hand the kernel of ∂ may be identified with π2(BG2 1
2
; ∗), since π2(BE3; ∗) is trivial. Thus

we may regard λl as elements of π2(BG2 1
2
; ∗). They generate the kernel of p. The space

BG3 is formed from BG2 1
2
by attaching 3-cells with attaching maps of homotopy classes

λl. Then we have Π2(BG3, BE3; ∗) = G.
At this point all homotopy groups up to degree 2 are as desired. The procedure may

be continued inductively: for every k ≥ 4 space BEk is obtained from BEk−1 by attaching
k-cells in such a way that πk−1(BEk; ∗) becomes trivial. Then BGk is formed from BGk−1
by attaching all k-cells of BE and possible some additional cells needed to assure that
πk−1(BGk; ∗) becomes trivial. Finally, we let BG (resp. BE) be the union of all BGk

(resp. BEk), endowed with the weak topology.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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1 Introduction

Higher gauge theories are physical models which generalize conventional gauge theory by
associating degrees of freedom to geometric objects of dimension higher than one. Perhaps
the best known example is the p-form electrodynamics [1], whose discretized version can
be naturally formulated in terms of degrees of freedom associated to p-cells, e.g. plaquettes
for p = 2. These degrees of freedom are subject to redundancy described by group valued
functions on the set of (p− 1)-cells. In the case of p = 1 this reduces to degrees of freedom
on links with gauge transformations given by arbitrary functions defined on lattice sites.

Already in [1] it was argued that gauge theories with p ≥ 2 are necessarily abelian,
essentially because there exist no well-behaved orderings on surfaces. There is a way to
bypass this argument, inspired by higher category theory [2–4]. For p not exceeding 2, it is
typically formulated in terms of 2-groups [5] or, equivalently, crossed modules [6]. Surface
observables in 2-group gauge theories are still valued in an abelian group, but in general
they are computed in terms of genuinely non-abelian local degrees of freedom associated
to links and plaquettes.

There exists also a concept of (global) higher form symmetries [7], whose relation with
higher gauge theories is similar to the relation between ordinary symmetries and gauge the-
ories. Examples of models admitting higher symmetries have been known for a long time,
and among gauge theories they are in fact the rule rather than an exception. Nevertheless,
systematic study of higher symmetries seems to have begun relatively recently.

– 1 –
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Higher gauge theories have been proposed [8, 9] as effective field theories describing
vacua of conventional gauge theories. They also provide interesting examples [10–15] of
Topological Quantum Field Theories (TQFTs) [16, 17], and hence are expected to describe
certain gapped topological phases of many body quantum systems. In [10] the existence
of Symmetry Protected Topological (SPT) phases protected by higher symmetries was
proposed. Another motivation to study higher gauge theories is provided by its relation
with bosonization in arbitrary dimension [18–20]. Furthermore, certain models in string
theory may be described as higher gauge theories [21].

Yetter’s model [11] is a TQFT based on a crossed module of finite groups. Its hamil-
tonian realizations resembling the Kitaev’s toric code were constructed in [22–24]. In [25]
a common generalization of the Yetter’s model, 2-form Zn electrodynamics and lattice
Yang-Mills theory has been proposed. It is a genuinely dynamical model, formulated in
the hamiltonian formalism, which reduces to a TQFT only in certain limits. In this work
we consider an analogous model formulated in terms of state sums (discrete functional
integrals). We focus on one relatively simple crossed module, but some of our results are
true in general. In order to make the paper more accessible, we have decided to define
everything explicitly using notations standard in lattice gauge theory. We refer to [25] for
an exposition of the slightly more involved formalism of crossed modules and proofs of
various algebraic facts used in the present text.

Full definition of the model under consideration is given in subsection 2.1. Its extended
observables are discussed in subsection 2.2. We identify topological charges and higher
symmetries: 1-form symmetry Z(1)

2 and 2-form symmetry Z(2)
2 . We discuss the theoretical

possibility of symmetry breaking and provide suitable order parameters. In subsection 2.3
we show that computation of a large class of observables, including all local observables,
may be reduced to calculation of averages in simpler models: 1-form Z2 gauge theory and 2-
form Z2 gauge theory. This includes the statement that plaquette observables (constructed
from link degrees of freedom in the usual way) are uncorrelated with cube observables
(constructed from plaquette degrees of freedom), which is not obvious from the form of
the action. This factorization theorem is not valid for the surface observable which is the
order parameter of the Z(2)

2 symmetry. In subsection 2.4 we use the factorization theorem
and Kramers-Wannier type dualities to formulate a proposal for the phase diagram. We
describe critical points, symmetry breaking patterns and renormalization group fixed points
governing the infrared physics.

Section 3 is devoted to Monte Carlo study of the proposed model in dimension D = 4.
Simulation algorithm is described in subsection 3.1. Since the general method is fairly
standard, we discuss in detail only those aspects that are specific to the case at hand.
In subsection 3.2 we present numerical results for expectation values of local observables.
These results confirm the phase structure obtained from duality arguments. The most
interesting, in our view, results of simulations are presented in subsection 3.3. They concern
behaviour of order parameters for higher symmetries Z(1)

2 and Z(2)
2 . It is found that order

parameters for the latter not only exhibit sharp dependence on both coupling constants,
but are also sensitive to the topological charge.

– 2 –
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mµ(x)

nµν(x)

•

• •

•
x x+ µ̂

x+ µ̂+ ν̂x+ ν̂

Figure 1. Independent degrees of freedom are associated to links mµ(x) and faces nµν(x). The
latter should not be confused with plaquette observables fµν(x) constructed from links.

The paper contains two appendices. In the appendix A, we discuss the construc-
tion of non-spherical surface observables using the general language of crossed modules.
Appendix B contains a brief discussion of models with continuous gauge fields similar to
the one studied here. It is argued that there are two terms in the action that have to be
included in order to obtain a natural generalization of Yang-Mills theory. Analogy with
these two terms is among our main motivations to focus on the particular form of the
action chosen in this paper. Such lattice action can be constructed for any crossed module
of finite groups. We emphasize that our main analytic result, the factorization theorem, is
valid for every crossed module with such choice of an action. Nevertheless, for a different
form of the action its conclusion may not hold.

2 Description of the model

2.1 Degrees of freedom, action and gauge freedom

Coordinates of a lattice site form a tuple x = (x1, . . . , xD) with integer xµ. Unit vector in
the direction µ ∈ {1, . . . , D} will be denoted by µ̂. We choose periodic boundary conditions,
i.e. xµ is identified with xµ+Lµ, where Lµ is the extent of the system in the µ-th direction.

Addition and multiplication in Z4 = {0, 1, 2, 3} is always performed modulo four. We
consider a model with degrees of freedom of two types, both valued in Z4 (see figure 1):

• mµ(x), associated with the link between x and x+ µ̂,

• nµν(x), associated with the square with corners x, x+ µ̂, x+ µ̂+ ν̂, x+ ν̂ (called face).

They are subject to a constraint (for every x and µ < ν) called fake flatness:

2nµν(x) = mµ(x) +mν(x+ µ̂)−mµ(x+ ν̂)−mν(x). (2.1)

The right hand side is a plaquette built ofm variables as in the ordinary lattice gauge theory.
It is convenient to denote it by fµν(x). We note that nµν(x) is determined by the link
variables only modulo two and that fµν(x) has to be even (but mµ(x) not necessarily so).

– 3 –
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Out of elementary degrees of freedom one may construct observables associated to
cubes:

gµνρ(x) = −nµν(x) + nµρ(x)− nνρ(x) (2.2)
+ (−1)mρ(x)nµν(x+ ρ̂)− (−1)mν(x)nµρ(x+ ν̂) + (−1)mµ(x)nνρ(x+ µ̂).

The six terms in this formula correspond to six faces of a cube. It can be shown that fake
flatness enforces all gµνρ(x) to be even.

Observable fµν(x) is the Wilson line along the boundary of an elementary rectangle.
In the present model it is possible to construct also higher dimensional analogues of Wilson
lines, which could be called Wilson surfaces. Observable gµνρ(x) is the Wilson surface along
an elementary cube.

We choose the following action:

S = −J1
∑
x

∑
µ<ν

(−1)
fµν (x)

2 − J2
∑
x

∑
µ<ν<ρ

(−1)
gµνρ(x)

2 = J1S1(m) + J2S2(m,n), (2.3)

with J1, J2 ≥ 0. The first term is the Wilson action for m variables. It is minimized if all
plaquettes fµν(x) are equal to zero. Every plaquette equal to 2 costs 2J1 units of action.
The second term is a higher dimensional analogue of the Wilson term for the n variables.
Again, it is minimized if all cubes gµνρ(x) are equal to zero. Every excited cube costs 2J2
units of action.

Degrees of freedom superficially seem to interact with each other, since they are related
by the fake flatness condition and since gµνρ(x) (which enters the action directly) depends
on both degrees of freedom. However, as it will be demonstrated later, this interaction
does not affect local dynamics, i.e. plaquettes are uncorrelated with cubes and furthermore
correlation functions of plaquettes and cubes depend only on J1 and only on J2, respectively.
On the other hand, the impact of the interaction can be seen in averages of nonlocal order
parameters. Numerical evidence supporting this statement is presented in section 3.

The fake flatness constraint (2.1) and the action (2.3) are invariant under gauge trans-
formations of two types. Gauge transformations associated to sites are parametrized by
elements ξ(x) ∈ Z4. They act according to the formulas:

mµ(x) 7→ mµ(x) + ξ(x+ µ̂)− ξ(x), (2.4a)
nµν(x) 7→ (−1)ξ(x)nµν(x). (2.4b)

Gauge transformations associated to links are parametrized by ψµ(x) ∈ {0, 2} ( Z4 and
act as

mµ(x) 7→ mµ(x), (2.5a)
nµν(x) 7→ nµν(x) + ψµ(x) + ψν(x+ µ̂)− ψµ(x+ ν̂)− ψν(x). (2.5b)

Only gauge invariant quantities will be regarded as observables. In this work we consider
fµν(x), gµνρ(x) and order parameters described in subsection 2.2.

– 4 –
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2.2 Nonlocal order parameters and symmetries

Polyakov loop, a particular Wilson line winding around one of the directions of the lattice,
is defined by the formula

pµ(x) = exp

 iπ
2

Lµ−1∑
j=0

mµ(x+ jµ̂)

 . (2.6)

Its possible values are ±1 and ±i, in contrast to plaquette observables which take only two
possible values. For configurations with fµν(x) = 0 for all x, value of pµ(x) is independent
of x. This is not true for general configurations. On the other hand, quantity Qµ defined by

Qµ = pµ(x)2 (2.7)

is independent of x, which follows from the fact that all fµν(x) are even. We will call it
the topological charge. Each Qµ may take two possible values, 1 or −1, so the whole set
of field configurations decomposes into 2D disjoint sectors. We note that local constraint-
preserving transformations in the set of all field configurations cannot change the topolog-
ical charge, since that requires changing pµ(x) for all x.

For every µ there exists a symmetry of the action which leaves all plaquettes, cubes and
{pν(x)}ν 6=µ unchanged, but flips the sign of pµ(x) (and hence preserves Qµ). It is given by

mν(x) 7→ mν(x) + 2δµ,νδxµ,0, (2.8a)
nνρ(x) 7→ nνρ(x). (2.8b)

We will call it the electric 1-form symmetry. As a consequence of this symmetry the
expectation value of pµ(x) vanishes.

We are unaware of a symmetry which changes pµ(x) by a factor of i (and hence flips
the sign of Qµ). Nevertheless, it will turn out to be useful to consider the Qµ-reversing
transformation

mν(x) 7→ mν(x) + δµ,νδxµ,0, (2.9a)
nνρ(x) 7→ nνρ(x). (2.9b)

It preserves fake flatness and all fµν(x), so it is a symmetry of S1. However, it changes
values of cube observables, so it is not a symmetry of the full action.

We would like to address the question whether the symmetry (2.8) can be sponta-
neously broken. We insist on gauge invariance and locality of the action, so it is not
possible to include a symmetry breaking term in the action. On the other hand, in a pu-
tative phase with unbroken symmetry the infinite volume limit of the volume average of
pµ(x) in a fixed typical field configuration is expected to vanish. This happens for small J1,
because then plaquette observables fluctuate strongly, so the signs of pµ(x) and pµ(y) are
essentially independent if the transverse distance |x−y|⊥ =

√∑
ν 6=µ

(xν − yν)2 is large. More

precisely, pµ(x)pµ(y)−1 may be understood as a Wilson loop bounding area Lµ|x− y|⊥, so
its expectation value is expected to decay exponentially with |x− y|⊥.

– 5 –
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To quantify the above discussion, we consider

Pµ =
∣∣∣∣∣V −1
⊥
∑
x

pµ(x)
∣∣∣∣∣ , (2.10)

with the sum taken over x in a plane transverse to the µ-th direction. Here V⊥ = ∏
ν 6=µ

Lν

is the transverse volume. Squaring this definition we find

P 2
µ = V −2

⊥
∑
x,y

pµ(x)pµ(y)−1. (2.11)

There are V 2
⊥ terms in this sum, each of which has modulus one. After taking expecta-

tion value, only O(V⊥) terms, with |x− y|⊥ comparable to the correlation length survive.
Therefore the average of P 2

µ decreases as V −1
⊥ , so Pµ decreases as V −

1
2

⊥ :

Pµ ∼ V
− 1

2
⊥ , Lµ fixed, V⊥ →∞. (2.12)

By spontaneous breaking of the symmetry (2.8) we shall understand violation of this scaling
law, so that Pµ remains nonzero in the limit of infinite transverse volume:

Pµ ∼ const 6= 0, Lµ fixed, V⊥ →∞. (2.13)

Note that it may still be true that Pµ → 0 as Lµ →∞.
There exists a surface observable analogous to the Polyakov loop. It may be thought of

as a Wilson surface winding around two lattice directions. Its construction is slightly more
involved. We choose a plane through a fixed site x parallel to directions µ < ν. Morally
speaking, we would like to add nµν(y) with y running through all sites in the chosen plane.
However, this does not give a gauge invariant quantity. To fix this, we have to choose for
every y a path from y to x (which we take to be entirely contained in the chosen plane)
and weigh nµν(y) by a parallel transport factor ∏(−1)mρ(z), where the product is taken
over all links forming the chosen path. Then the sum, denoted Σµν(x), is gauge-invariant
and even. This is discussed in the broader context of crossed modules in the appendix A.
We define

pµν(x) = exp
( iπ

2 Σµν(x)
)
, (2.14)

which will be called the Polyakov plane.
We remark that our notation is fully justified only if either Qµ = Qν = 1 or all fµν(x)

vanish, because otherwise pµν(x) depends on the choice of paths needed to construct it.
This hints at the possibility that expectation values of pµν(x) may depend both on the two
coupling constants and on the topological charge. This will be corroborated by results in
section 3.

There exists a symmetry which flips the sign of pµν(x):

mρ(x) 7→ mρ(x), (2.15a)
nρσ(x) 7→ nρσ(x) + 2δµ,ρδν,σδxµ,0δxν ,0, ρ < σ. (2.15b)
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We will call it electric 2-form symmetry. It implies that the expectation value of pµν(x)
vanishes.

By analogy with the Polyakov loop, we consider the quantity

Pµν =
∣∣∣∣∣V −1
⊥
∑
x

pµν(x)
∣∣∣∣∣ , (2.16)

where V⊥ = ∏
ρ 6=µ,ν

Lρ and the sum is taken over a plane transverse to µ̂ and ν̂. We will say

that the symmetry (2.15) is broken if Pµν has nonzero limit as V⊥ →∞.

2.3 Reduction of dynamics to simpler models

In this subsection we will show how to express certain averages with respect to the ac-
tion (2.3) in terms of averages in simpler models. We will make use of constraint-preserving
moves in the space of field configurations. Firstly, the link moves:

mµ(x) 7→ mµ(x) + 2ψµ(x), (2.17a)

nµν(x) 7→ nµν(x) + (−1)mµ(x)ψµ(x) + (−1)mµ(x+ν̂)+mν(x)ψν(x+ µ̂) (2.17b)

− (−1)mµ(x+ν̂)+mν(x)ψµ(x+ ν̂)− (−1)mν(x)ψν(x),

with arbitrary ψµ(x) ∈ Z4. They reduce to gauge transformations (2.5) if ψµ(x) is even.
In general they change the value of plaquette observables fµν(x), but not of the cube
observables gµνρ(x). Secondly, the face moves:

mµ(x) 7→ mµ(x), (2.18a)
nµν(x) 7→ nµν(x) + χµν(x), (2.18b)

with χµν(x) ∈ {0, 2} ( Z4. They preserve fµν(x), but change values of gµνρ(x).
Moves described above generate a group. Every move may be represented as a sequence

of local moves with only one nonzero ψµ(x) or χµν(x). Since mµ(x) are always either
unchanged or shifted by an even amount, topological charges Qµ are invariant.

We claim that any two configurations with equal topological charges can be related
by a sequence of local moves and a gauge transformation. Indeed, first consider two con-
figurations with equal mµ(x). Then, by fake flatness, all nµν(x) differ by even numbers,
so the two configurations are related by a face transformation. This reduces the proof of
the claim to showing that mµ(x) can be made equal by a sequence of link moves and a
gauge transformation. The only gauge invariant functions of mµ(x) are Wilson lines, which
can be taken along contractible loops or non-contractible loops. The former are expressible
in terms of fµν(x) and have to be even. The latter are also even on the account of the
assumption about topological charges, since every loop can be built of contractible loops
and Polyakov loops. This proves that up to pure gauge terms, the difference of mµ(x) is
even. Thus they are related by a transformation of the form (2.17a).

The average of an observable O is 〈O〉 = ZO(J1,J2)
Z(J1,J2) , where Z(J1, J2) = Z1(J1, J2) and

ZO(J1, J2) =
∑
m,n

f(Q)e−J1S1(m)−J2S2(m,n)O(m,n), (2.19)
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in which the sum over m,n is restricted by the constraint. Function f(Q) is a weight given
to the sector with topological charge Q. The simplest choice is f(Q) = 1, while restriction
to Q = Q′ with fixed Q′ corresponds to f(Q) = δQ,Q′ . We consider an observable of the
form O = O1O2 such that:

• O1 can by expressed solely in terms of plaquette observables fµν(x) (thus it can be Pµ),

• O2 is invariant with respect to gauge transformations and link moves, e.g. it is an
arbitrary function of cube observables gµνρ(x).

We define the quantity

WO2(J2;m) =
∑
n

e−J2S2(m,n)O2(m,n). (2.20)

It is invariant with respect to gauge transformations and link moves of m variables, so it
depends on m only through Qµ. Therefore we write WO2(J2;m) = WO2,Q(J2), which gives

ZO1O2(J1, J2) =
∑
m

f(Q)e−J1S1(m)O1(m)WO2,Q(J2). (2.21)

We divide the summation over m into topological sectors. The sum over m with fixed Q
will be denoted by index m|Q:

ZO1O2(J1, J2) =
∑
Q

f(Q)WO2,Q(J2)
∑
m|Q

e−J1S1(m)O1(m). (2.22)

Sum ∑
m|Q

e−J1S1(m)O1(m) does not depend on Q by symmetry (2.9) of S1. Finally:

ZO1O2(J1, J2) =

∑
m|1

e−J1S1(m)O1(m)

∑
Q

f(Q)WO2,Q(J2)

 . (2.23)

In the remaining sum over m we have configurations of m variables such that every Wilson
loops is even. Such configuration is gauge equivalent to one with all mµ(x) even. Further-
more, every gauge orbit has 4N1−1 representatives (in which N1 is the number of links),
out of which 2N1−1 is such that all mµ(x) are even. Therefore we may restrict the sum over
m to configurations with even mµ(x) at the small cost of including a factor 2N1−1. Then
the sum over m gives the Wegner model [26], so

ZO1O2(J1, J2) = 2N1−1ZWegner
O1

(J1)
∑
Q

f(Q)WO2,Q(J2). (2.24)

This gives

〈O1O2〉 = ZO1O2(J1, J2)
Z(J1, J2) =

ZWegner
O1

(J1)
ZWegner(J1) ·

∑
Q
f(Q)WO2,Q(J2)∑

Q
f(Q)W1,Q(J2) , (2.25)
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from which we can draw the following conclusions:

• factorization 〈O1O2〉 = 〈O1〉〈O2〉,

• 〈O1〉 does not depend on J2 and weights f , and is equal to the average in Wegner’s
model,

• 〈O2〉 does not depend on J1.

This factorization theorem is the main result of this section. We would like to remark
that its derivation remains valid also for models based on general crossed modules of finite
groups, as long as the action is a sum of a term depending only on plaquette observables
and a term depending only on cube observables. This observation follows from the fact
that the presented proof relies only on general properties of gauge transformations and
constraint-preserving moves. These were discussed in detail in [25].

Next we turn to the question on how 〈O2〉 depends on the topological charge sector.
We will argue that for thermodynamic quantities dependence becomes negligible in the
infinite volume limit. This will be confirmed already for quite small lattices by results of
simulations presented in section 3.

Consider, for concreteness, the case Q1 = −1, Qµ = 1 for µ 6= 1. Such choice of
topological charge may be realized by the gauge field

mµ(x) = δµ,1δxµ,0. (2.26)

It is supported on a plane, so switching it on (without modifying nµν(x) variables) may
change the value of at most

(D−1
2
) ∏
µ 6=1

Lµ cubes. Hence we have

|S2(m,n)− S2(0, n)| ≤ 2
(
D − 1

2

) ∏
µ 6=1

Lµ. (2.27)

It follows that W1,Q(J2)
W1,trivial(J2) =

∑
n

e−J2S2(0,n)e−J2(S2(m,n)−S2(0,n))∑
n

e−J2S2(0,n) obeys an estimate

e
−4J2(D−1

2 )∏µ6=1 Lµ ≤ W1,Q(J2)
W1,trivial(J2) ≤ e

4J2(D−1
2 )∏µ6=1 Lµ . (2.28)

Taking logarithms gives an estimate on the difference of free energies per unit volume:
∣∣∣∣ 1
J2

log(W1,Q(J2))− 1
J2

log(W1,trivial(J2))
∣∣∣∣ ≤ 4

(
D − 1

2

) ∏
µ 6=1

Lµ. (2.29)

We recall that the free energy is an extensive quantity. On the other hand, the right hand
side divided by the volume decays as L−1

1 as L1 → ∞. We conclude that in the infinite
volume limit, the free energies per unit volume become equal in all topological sectors.
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2.4 Phase diagram proposal for D = 4

In this subsection we restrict attention to dimension D = 4, although some parts of the
discussion are valid also for other dimensions.

In the case D = 4, Wegner’s model has a single phase transition [26], which is of first
order. Its exact position

Jcrit
1 = 1

2arsinh(1) ≈ 0.441 (2.30)

may be calculated using Kramers-Wannier type self-duality1 [27]. There exist two renor-
malization group fixed points at J1 = 0 and J1 = ∞. Two phases may be interpreted as
their basins of attraction.

At the point J1 = 0, degrees of freedom become completely random and hence the
theory is trivial. Effect of a small, but nonzero J1 may be calculated using the strong
coupling expansion [28]. One finds that Wilson loops obey the area law, and hence the
electric 1-form symmetry is unbroken.

At J1 = ∞ the system is constrained to configurations which minimize the action.
Thus all plaquette observables vanish and Polyakov loops become independent of position.
Up to gauge transformations, minima of the action are labeled by values of Polyakov loops.
In Wegner’s model each Pµ takes 2 possible values, so there exist 16 minima. They all have
the same value of the action, because they are connected by the electric 1-form symmetry.
However, in order for the system to get from one minimum to another using local moves
only, it has to overcome an infinite action barrier. Even for finite J1 (but large, so that a
typical configuration is close to a minimum) the height of the barrier is of order J1V⊥, so
one may expect the electric 1-form symmetry to be broken.

The link variable sector of our model is slightly different in that the Polyakov loop
takes four, rather than two possible values. However, it becomes essentially equivalent to
the Wegner’s model after restricting to a single topological charge sector.

Next we turn to the local dynamics of plaquette degrees of freedom. There exists a
Kramers-Wannier duality between W1,trivial(J2) and the Ising model partition function2

with
sinh(2J2) sinh(2JIsing) = 1. (2.31)

In the Ising model one expects a single continuous phase transition3 whose position reported
in [30] is Jcrit

Ising = 0.149647(5). This corresponds to a continuous phase transition in our
model at

Jcrit
2 = 0.953294(1). (2.32)

The critical point of the Ising model is expected to be described by a massless scalar field
theory. It admits one relevant perturbation, given by the mass term. Therefore the fixed

1Strictly speaking, the duality relates the partition function of the Wegner’s model to the partition func-
tion summed over flat background 2-form Z2 gauge fields. However, these gauge fields have negligible effect
on thermodynamic quantities, which can be shown analogously as in the last paragraph of subsection 2.3.

2Again, this is exact only if the Ising model partition function is summed over background Z2 gauge fields.
3We remark that in [29] a weakly first order phase transition was suggested.

– 10 –



J
H
E
P
0
9
(
2
0
2
1
)
0
6
8

point at J2 = Jcrit
2 is repulsive. The only other fixed points at J2 = 0 and J2 =∞ describe

physics in phases J2 < Jcrit
2 and J2 > Jcrit

2 , respectively.
Quite analogously to the Wegner’s model, the electric 2-form symmetry is unbroken

in the small J2 phase. The situation is much more interesting for large J2. To gain
some orientation about this case, we consider the limit J2 = ∞, in which configurations
are constrained to minimize S2. As shown in the appendix A, Polyakov surfaces pµν(x)
become independent of x if in addition either J1 = ∞ (i.e. for configurations minimizing
also S1) or if topological charges are trivial. Therefore we expect that the 2-form symmetry
is broken if J2 > Jcrit

2 and J1 > Jcrit
1 . In the phase J2 > Jcrit

2 , J1 < Jcrit
1 we can make this

conclusion only for the sector with trivial topological charge. On the other hand, numerical
results in section 3 show that in the sector with Qµ = −1 the symmetry is restored. We
find this result quite striking.

The following picture emerges. Our model has four phases, each corresponding to one
attractive renormalization group fixed point. In each of the fixed points local dynamics
becomes trivial, but some nonlocal observables remain important:

• (J1, J2) = (0, 0): Z2 topological charges Qµ,

• (J1, J2) = (∞, 0): Z4 Polyakov loops Pµ,

• (J1, J2) = (∞,∞): Z4 Polyakov loops Pµ and Z2 Polyakov surfaces Pµν , completely
independent of each other,

• (J1, J2) = (0,∞): Z4 Polyakov loops Pµ and Z2 Polyakov surfaces Pµν , with an
interplay between topological charges and Polyakov surfaces.

We remark that the four renormalization group fixed points described here may be identified
with four integrable hamiltonians described in [25].

3 Monte Carlo study

3.1 Simulation method

In the numerical setup, we keep the extent of three directions equal L0 = L1 = L2 = L,
whereas L3 will be varied separately. We denote the entire volume by V = L3 × L3. We
will also use the notation

(x0, x1, x2, x3) = (x, y, z, t). (3.1)

For any observable we define its statistical expectation value, denoted by 〈·〉, as the
arithmetic mean over samples from a single Markov chain, and in some cases a weighted
average of expectation values from multiple Markov chains. In most cases we perform
a single simulation where we gather around 105 measurements, from which we estimate
the average and its standard deviation, taking into account autocorrelations. We do the
latter by explicitly calculating the autocorrelation function and integrating it up to the first
non-positive element to quantify the autocorrelation time τint. In the following figures, all
data points are shown together with their statistical uncertanties, which however may be
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smaller than the symbol size and hence invisible. In some cases we have performed up to
four parallel simulations in order to increase the statistics and to check for ergodicity.

All simulations are performed using an intertwined application of Metropolis [31–33]
and over-relaxation steps [34–38]. These are two independent update steps coming in pairs:
one for updating the link variables and another to update face variables. We now describe
both in more details.

Metropolis steps are based on local changes separately for both kind of degrees of
freedom. We use (2.17a) to update the link variables and (2.18a) for the face variables.
We remind that by construction such moves preserve the fake-flatness constraint. As a
consequence, the move (2.17a) changes both link and face variables. If the constraint was
satisfied by the initial configuration, it will be satisfied during the successive application
of any of the above changes. Any two configurations can be linked by a finite-length
chain of such local movements, which ensures that the simulations are ergodic. Each new
configuration ν is obtained from a previous configuration µ by a local change of a randomly
chosen degree of freedom and is subject to an accept/reject step with a probability given by

pA(µ→ ν) = min
{
1, eS(µ)−S(ν)}. (3.2)

Over-relaxation steps are made of non-local moves (2.8) and (2.15), which flip the signs
of Polyakov lines Pµ and Polyakov planes Pµν , respectively. Since such transformations do
not change the value of the action of a given configuration, they would be always accepted.
Hence they are not subject to the accept/reject step. It is known that the incorporation of
such moves between Metropolis moves reduces autocorrelation times significantly [34–38].

The local moves (2.17a) and (2.18a) cannot change the value of the topological charge.
Hence, the simulation is limited to the topological sector given by the value of the topolog-
ical charge of the initial configuration. In the following we discuss two independent chains
of simulations, one performed in the trivial topological sector (Qµ = 1 for all µ) and the
second performed in the sector with Q0 = −1, see (2.7). We construct the latter by starting
from an initial configuration where all the link and face variables are set to 0. Subsequently
we set m0(0, y, z, t) = 1 for all y, z, t, thus enforcing P0 = i and hence Q0 = −1.

The above algorithm with the accept/reject as in (3.2) satisfies the detailed balance
condition, which together with the ergodicity of the local moves, guarantees the correctness
of the entire algorithm in a given topological sector.

In order to identify the thermalization region of the Markov chain we usually perform
an additional simulation with the same parameters, which we start from a so-called hot
initial configuration. The latter is constructed by randomizing as much as possible all
the degrees of freedom. To be more precise, we set mµ(x, y, z, t) to 0 or 2 with equal
probabilities, and subsequently adjust nµν(x, y, z, t) variables to satisfy the fake-flatness
constraint. We do this by evaluating all plaquette variables fµν(x, y, z, t) and then setting
nµν = 1

2fµν(x, y, z, t) + q, where q is a random variable taking values 0 and 2 with equal
probability. In both simulations, started from a cold and hot configuration, we monitor
two local variables (3.3) and (3.4). Recording of relevant observables is started only when
the two monitored quantities attain compatible values.
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3.2 Numerical results for local observables

In this section we discuss two local observables: plaquettes and cubes

F =
∣∣∣ 1
6V

∑
x,y,z,t

∑
µ<ν

fµν(x, y, z, t)
∣∣∣, (3.3)

G =
∣∣∣ 1
4V

∑
x,y,z,t

∑
µ<ν<ρ

gµνρ(x, y, z, t)
∣∣∣. (3.4)

According to the factorization theorem (2.25), we expect that 〈F 〉 does not depend on J2
and 〈G〉 does not depend on J1. Our first numerical results confirm these conclusions. In
figure 2 we show the average values 〈F 〉 and 〈G〉 as functions of J1 and J2 separately. Plots
of data obtained in different topological sectors are also indistinguishable, up to statistical
uncertainties.

In figure 2 we demonstrate the dependence of 〈F 〉 and 〈G〉 on J1 (two panels in the
upper row) and J2 (two panels in the lower row) coupling constants. Motivated by our
expectations regarding the phase diagram of the system, i.e. existence of four distinct
phases, as described in section 2.4, linked to the corners of the phase space given by
(J1, J2) = (0, 0), (0,∞), (∞, 0) and (∞,∞), we select values of J1 and J2 representing
each phase:

J1 = 0.43 or 0.46, (3.5)
J2 = 0.10 or 1.10. (3.6)

When varying one of the coupling constants we keep the other in one of the two values.
We clearly see in figure 2 that 〈G〉 does not depend on J1, i.e. the values are constant

and compatible within their statistical uncertainties for the entire range of J1 values in-
vestigated. Similarly, 〈F 〉 does not depend on J2. Near the location of the expected first
order phase transition in J1, value of 〈F 〉 drops significantly. We demonstrate the nature
of this phase transition in the left panel of figure 3. The panel reproduces the results
from [39], where the hysteresis in the average plaquette action in the four-dimensional
Wegner model [26] was interpreted as a clear sign of a first order phase transition.

As far as 〈G〉 is concerned, the lower right panel shows a rather smooth dependence.
The part of the action proportional to J2 is a function of 〈G〉, hence we conclude that
also the action itself has a continuous dependence on J2. This is in agreement with the
expected nature of the phase transition in J2 being second order. We corroborate this with
the results shown in the right panel of figure 3, where fluctuations of 〈G〉 are shown to
exhibit a drastic change around Jcrit

2 . To be precise, we plot
√
〈(G− 〈G〉)2〉V −1. Again,

all results for 〈G〉 show no dependence on the change in the J1 coupling constant.
The results shown in figure 2 provide an illustration of the factorization theorem.

Moreover, they support the expected existence of four phases at the four corners of the
phase diagram. The more detailed results shown in figure 3 suggest that the location
of the critical couplings where the phase transitions occur, agree within the accuracy of
our simulations with the predictions (2.30) and (2.32). Hence, already the simple, local
observables such as F and G provide valuable information about the system. We now turn
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Figure 2. Dependence of the plaquette and cube observables on J1 (upper row) and J2 (lower
row) coupling constants. As predicted by the factorization theorem, 〈G〉 does not depend on J1
(upper right panel), whereas 〈F 〉 does not depend on J2 (lower left panel). 〈F 〉 show a significant
jump around the expected first order phase transition marked by the solid vertical black line on the
upper, right panel. As far as 〈G〉 is concerned, lower right panel shows a rather smooth dependence
and no significant signs of the expected second order phase transition marked again by the solid
vertical line. Figure 3 demonstrates that indeed a second order phase transition happens around
the expected Jcrit

2 . In all the cases, results from both topological sectors are shown: Q0 = 1 and
Q0 = −1, with Qµ = 1 for µ 6= 0. The data points for the latter are shifted by 0.0025 along the
x-axis in order to increase the plot readability.

our attention to non-local observables: Polyakov line and Polyakov planes. The latter, as
opposed to the former, are not subject to the factorization theorem and hence are expected
to have a non-trivial dependence on both J1 and J2.

3.3 Numerical results for non-local observables

In this section we discuss results for extended observables. We study in details two such
observables: the (volume averaged) Polyakov line, P0, winding around the x-direction (2.10)
and the Polyakov plane P01, winding around the x and y directions (2.16).

Our expectations for these observables in the four possible phases are based on consid-
erations of the system of infinite size in directions perpendicular to the winding directions.
We mimic that limit by taking L3 → ∞, which is the direction perpendicular to both P0
and P01. We discuss our numerical findings below.

– 14 –



J
H
E
P
0
9
(
2
0
2
1
)
0
6
8

-3

-2.5

-2

-1.5

-1

 0.4  0.45  0.5  0.55

<
 S

1
 >

 /
 V

J1

L = 9, hot start
L = 9, cold start
L = 7, hot start

L = 7, cold start
L = 5, hot start

L = 5, cold start

 0

 0.05

 0.1

 0.15

 0.2

 0.85  0.9  0.95  1  1.05

fl
u
c
tu

a
ti
o
n
s
 o

f 
c
u
b
e
s

J2

L=4

L=6

L=8

Figure 3. Left: results for the action around J1 phase transition. There is a region of J1 couplings
where the simulations starting from different initial configurations: cold or hot converge to different
local, meta-stable states. Outside of that region, the action has only one minimum and both
simulations give the same average value of the plaquette action. Right: evidence for a second
order phase transition in the J2 coupling. Figure shows the fluctuations of the G observable for
simulations at different linear size extends ranging from L = 4 up to L = 8. Data points shown are
averages of independent simulations conducted in the Q0 = 1 and Q0 = −1 topological sectors. The
maximum in the fluctuations approaches the theoretical, infinite limit value shown as the vertical
line at Jcrit

2 as discussed around (2.31).

 0.8

 0.9

 1

 1.1

 0  10  20  30  40  50  60  70  80
 0

 0.1

 0.2

 0.3

<
 P

0
 >

L3

J1 = 0.46, Q0 = 1
J1 = 0.46, Q0 = -1
J1 = 0.43, Q0 = 1

J1 = 0.43, Q0 = -1

 0.8

 0.9

 1

 1.1

 0  10  20  30  40  50  60  70  80
 0

 0.1

 0.2

 0.3

<
 P

0
 >

L3

J1 = 0.46, Q0 = 1
J1 = 0.46, Q0 = -1
J1 = 0.43, Q0 = 1

J1 = 0.43, Q0 = -1

Figure 4. Demonstration of the dependence of the 〈P0〉 line on the transverse direction T for small
J2 = 0.10 and different J1 = 0.43 and J1 = 0.46 for both topological charges. Demonstration of
the dependence of the 〈P0〉 line on the transverse direction L3 for large J2 = 1.10 and different
J1 = 0.43 and J1 = 0.46 for both topological charges. The left axis shows the values of the data
which has a constant nature, whereas the data sets falling towards zero have their values shown on
the right axis.

We show the numerical results for 〈P0〉 and 〈P01〉 in figures 4 and 5 at four pairs of
coupling constants as a function of the extent of the lattice in the L3 direction. In the
left panels we gather results obtained at J1 = 0.43 and J1 = 0.46 at small J2 = 0.10,
whereas in the right panels we keep the same two values of J1 but we change J2 to a large
value, J2 = 1.10. As opposed to the previous section, where 〈F 〉 and 〈G〉 were discussed as
functions of J1 and J2 varying around their critical values, here we study the dependence
on the L3 extent at the four values of coupling constants selected in (3.5) and (3.6).
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Figure 5. Demonstration of the L− 1
2

3 dependence of the 〈P01〉 plane on the length L3 of one
transverse direction for small J2 = 0.10 and different J1 = 0.43 and J1 = 0.46 for both topological
charges. Demonstration of the dependence of the 〈P01〉 plane on the transverse direction L3 for
large J2 = 1.10 and different J1 = 0.43 and J1 = 0.46 for both values of the topological charge. The
left axis shows the values of the data which has a constant nature, whereas the data sets falling
towards zero have their values shown on the right axis.

We start with the discussion of Polyakov lines. The observable 〈P0〉 is expected to
satisfy the factorization theorem. Indeed, we find that its average value does not depend
on the value of the J2 coupling constant. As a consequence, the left and right panels of
figure 4, showing the results for J2 = 0.10 and J2 = 1.10 respectively, look very similar.
Two scenarios can be realized as the volume of the lattice grows: either the value of 〈P0〉
decreases and ultimately vanishes in the infinite volume limit, or it becomes approximately
constant for large volumes. Both scenarios are shown in figure 4: for J1 < Jcrit

1 〈P0〉
decreases as L−

1
2

3 in the trivial and non-trivial topological sectors. On the contrary, for
J1 > Jcrit

1 we observe that 〈P0〉 stays constant. Data points at very small volumes, L3 = 2
and L3 = 3, exhibit finite volume corrections which vanish rapidly with increasing volume.
For L3 > 4 a constant fit to the data with J1 > Jcrit

1 and a fit with an Ansatz of the
form b + cL

− 1
2

3 with b,c being fit parameters to the data with J1 < Jcrit
1 , describe the

data very well within their statistical uncertainties. This allows us to conclude that indeed
the Polyakov line is a good order parameters for the phase transition in J1 as it behaves
differently on the different sides of Jcrit

1 ,

〈P0〉 = 0 for J1 < Jcrit
1 , any J2, any Q0, L3 →∞, (3.7)

〈P0〉 > 0 for J1 > Jcrit
1 , any J2, any Q0, L3 →∞. (3.8)

The situation with the Polyakov plane P01 is more complicated, as it depends non-
trivially on both J1 and J2. Moreover this dependence is different in different topological
sectors. We show the data in figure 5. Again, the left panel contains results for J2 < Jcrit

2
while the right panel for J2 > Jcrit

2 . As opposed to the situation with Polyakov lines, now
the plots are no longer similar and there is a nontrivial dependence on J2. On the left
panel, i.e. for small J2, all data sets show a L−

1
2

3 dependence signaling that 〈P01〉 vanishes
in this region of phase space in the infinite volume limit. This happens no matter what
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J1 J2 Q0 〈P01〉
0.43 0.1 1 0.0631(2)
0.43 0.1 -1 0.0631(2)
0.46 0.1 1 0.0630(1)
0.46 0.1 -1 0.0630(1)
0.43 1.1 1 0.9815(3)
0.43 1.1 -1 0.0720(2)
0.46 1.1 1 0.9838(2)
0.46 1.1 -1 0.9238(1)

Table 1. Assembled average values of 〈P01〉 in the four regions of phase diagram estimated on a
lattice with L = 4 and L3 = 40.

value of J1 we chose and in both, trivial and non-trivial topological sectors. The right
panel contains data for J2 > Jcrit

2 . Only a single data set, the blue one corresponding to
J1 < Jcrit

1 in the topologically charged sector Q0 = −1, vanishes. In all remaining cases the
data show a rather constant value as L3 is increased, suggesting a non-zero value in the
infinite volume limit. Looking from another perspective, in the trivial topological sector
Q0 = 1, 〈P01〉 depends only on J2, it vanishes for J2 < Jcrit

2 and is nonzero for J2 > Jcrit
2 ,

irrespective of J1. In the non-trivial topological sector, 〈P01〉 vanishes in three corners of
the phase space, except of the region where both J1 and J2 are large, i.e. J1 > Jcrit

1 and
J2 > Jcrit

2 . Hence, 〈P01〉 at Q0 = −1 is sensitive to both J1 and J2 and provides an order
parameter for both phase transitions.

Summarizing, for 〈P01〉 we have in the limit L3 →∞:

〈P01〉 = 0 for any J1, J2 < Jcrit
2 , any Q0, (3.9)

〈P01〉 = 0 for J1 < Jcrit
1 , J2 > Jcrit

2 , Q0 = −1, (3.10)
〈P01〉 > 0 for J1 < Jcrit

1 , J2 > Jcrit
2 , Q0 = 1, (3.11)

〈P01〉 > 0 for J1 > Jcrit
1 , J2 > Jcrit

2 , any Q0. (3.12)

Distinction between phases is seen also by comparing values of 〈P01〉 for different
coupling constants at one finite value of L3, see table 1.

4 Summary and conclusions

We have presented an explicit construction of a dynamical lattice model with a local sym-
metry based on a 2-group. It depends on two coupling constants J1, J2. We have analyzed
the parameter space, first by using dualities to known simpler models, second by simu-
lating the model numerically through Monte Carlo method. Theoretical discussion allows
to designate four possible phases in the four corners of the coupling constant plane. In
order to study the phase diagram quantitatively, we proposed several candidates for order
parameters. Two proposals based on local observables, the average plaquette F and the av-
erage cube G, are sensitive to the phase transition only in one of the coupling constants. It
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follows from the factorization theorem, which we formulate and prove, that F constructed
from link variables shows the phase transition in J1, whereas G built out of faces shows
the phase transition in J2. The other two candidates for order parameters are non-local
observables. Polyakov lines, which are products of link variables, again, feel only the phase
transition in the J1 coupling constant. Finally, the Polyakov plane exhibits a non-trivial
dependence on both J1 and J2 and hence can be used as an order parameter for both phase
transitions. Furthermore, its expectation value depends on the topological charge sector.

We would like to close this work by mentioning three problems for future study. Firstly,
different techniques are required to perform averaging with respect to topological charge
sectors. This is because Monte Carlo simulations performed in a fixed topological charge
sector do not provide values of weights (partition functions) of distinct sectors. This dif-
ficulty is relevant only for those observables for which the average obtained in different
topological charge sectors do not agree. The only observable with this property studied in
this work is the Polyakov plane. Secondly, it would be interesting to obtain some results
about extended surface observables on lattices of topology different than torus, perhaps
also for more general crossed modules. Another intriguing question is whether there ex-
ists some natural construction of a dynamical higher gauge theory in which factorization
theorem does not hold.
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A Non-spherical Wilson surfaces

In this appendix we use terminology and notations from [25]. Thus in contrast to the
remainder of the paper, this part is not fully self-contained.

We consider field configurations on a connected CW-complex X valued in a crossed
module G = (E ,Φ,∆,B). They are described by homomorphisms Π2(X2, X1;X0) → G,
resp. Π2(X,X1;X0)→ G under the flatness constraint which is the minimization condition
for the action S2 from this paper. Replacing X2 by X in the former case and choosing a
base point ∗ ∈ X0, we are led to considering homomorphisms Π2(X,X1; ∗) → G. Given
such a homomorphism, we obtain a commutative diagram of group homomorphisms

Φ π2(X,X1, ∗) H2(X,X1)

E π1(X1, ∗) H1(X1)

∆

h2ϕ

∂ ∂

h1ε

in which hi are the Hurewicz homomorphisms. Hurewicz theorem and its relative version
imply that hi are surjective with ker(h1) and ker(h2) generated by expression of the form
{γ1γ2γ

−1
1 γ−1

2 }γ1,γ2∈π1(X1,∗) and {(γ B σ)σ−1} γ∈π1(X1,∗)
σ∈π2(X,X1,∗)

, respectively.
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Now let σ ∈ π2(X,X1, ∗) be an element such that ∂(h2(σ)) = 0, i.e. such that the
relative chain associated to σ is a cycle. Since ∂ ◦h2 = h1 ◦∂, we then have that ∂σ belongs
to ker(h1). It follows that ϕσ belongs to the intersection of im(∆) and the commutant
[E , E ] of E . If this intersection is trivial (e.g. if E is abelian, which is satisfied by the crossed
module featuring in the model considered in this paper), then ε∂σ = 1, so ϕσ ∈ ker(∆).
Under a gauge transformation

ϕσ 7→ ξb(σ) B
(
ψ

(ε)
∂σ ϕσ

)
. (A.1)

If E acts trivially on ker(∆), factor ξb(σ) may be omitted. We claim that furthermore
ψ

(ε)
∂σ = 1. Indeed, since all ψe are in ker(∆) and E acts trivially on ker(∆), all epsilons

present in the definition of ψ(ε)
∂σ may be omitted. On the other hand, since ∂σ is a product

of commutators, also ψ(1)
∂σ is a product of commutators of elements in ker(∆), hence trivial

(ker(∆) being abelian). Therefore under the running assumptions ϕσ is gauge-invariant,
so it may be used as an observable.

It is interesting to ask whether ϕσ depends on the choice of σ representing the cycle
h2(σ). If σ′ is another representative of the same cycle, then σ′ = σσ0 for some σ0 ∈
ker(h2). Thus ϕσ′ = ϕσϕσ0 . We have to describe ϕσ0 . By the characterization of ker(h2)
given earlier we have that σ0 is the product

n∏
i=1

(γi B τi)τ−1
i for some γi ∈ π1(X1, ∗) and

τi ∈ π2(X,X1, ∗). Thus

ϕσ0 =
n∏
i=1

(εγi B ϕτi)ϕ−1
τi . (A.2)

This element is trivial if either of the following two conditions is satisfied:
• ϕτi are in ker(∆), i.e. ε∂τi are trivial,

• εγi are elements of E which act trivially on Φ; if im(∆) acts trivially (which is satisfied
in the model discussed in this paper), this is automatically satisfied if ε is trivial.

In the language used in the main text, these two conditions correspond to J1 = ∞ and
trivial topological charge, respectively. Assuming that one of these conditions holds, we
find that ϕσ depends on σ only through the corresponding homology class in H2(X) (re-
spectively H2(X2) if we do not assume flatness of ϕ).

B Comparison with continuous theories

We will now compare the model investigated in this paper with its counterparts in contin-
uous field theory. These analogies, Wilson’s construction of lattice gauge theories and
simplicity are among our main motivations to focus on the action functional that we
have chosen.

Let us start with algebraic preliminaries. A crossed module of Lie groups is a crossed
module of groups G = (E ,Φ,∆,B) such that E and Φ are Lie groups and ∆,B are smooth
maps. By differentiation it gives rise to a crossed module of Lie algebras, which consists of

• Lie algebras e and f (Lie algebras of E and Φ),

• a Lie algebra homomorphism ∆ : f→ e,
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• an action B of e on f by derivations, i.e. a bilinear map e× f→ f satisfying

[e1, e2]B f1 = e1 B (e2 B f1)− e2 B (e1 B f1), e1 B [f1, f2] = [e1 B f1, f2] + [f1, e1 B f2]
(B.1)

for e1, e2 ∈ e and f1, f2 ∈ f,

subject to two Peiffer’s identities:

• ∆(eB f) = [e,∆f ] for e ∈ e and f ∈ f,

• (∆f1) B f2 = [f1, f2] for f1, f2 ∈ f.

We will also need the version of B differentiated in the second argument only. It is an
action of the group E on the Lie algebra f by homomorphisms, i.e.

(ε1ε2) B f = ε1 B (ε2 B f), ε1 B [f1, f2] = [ε1 B f1, ε1 B f2] (B.2)

for ε1, ε2 ∈ E and f1, f2 ∈ f. It satisfies its own version of one of Peiffer’s identites:

∆(εB f) = ε(∆f)ε−1, (B.3)

in which the conjugation by ε should be read as the adjoint action of E on its Lie algebra.
For simplicity of presentation we restrict attention to gauge fields given by globally

defined differential forms. This is sufficient in flat space, but on general manifolds one
should consider fields defined on local coordinate patches, related by gauge transformations
on the overlaps.

A crossed module-valued gauge field consists of a e-valued one-form field A = Aµdxµ
and a f-valued two-form field B = 1

2Bµνdxµdxν , subject to the fake flatness constraint:

∆B = dA+ 1
2[A,A]. (B.4)

The right hand side of this equation is the standard field strength tensor (or curvature
2-form) F built from the A field. It satisfies the Bianchi identity:

dAF = 0, (B.5)

where dA = d+A is the (exterior) covariant derivative. We will consider the 3-form field

G := dAB = dB +ABB, (B.6)

also referred to as (higher) field strength tensor. As a consequence of fake flatness and
Peiffer’s identities, it satisfies

dAG = F BB = ∆B BB = [B,B] = 0. (B.7)

Gauge fields are subject to two types of gauge transformations, both preserving the
fake flatness constraint. Firstly, for a function ξ valued in the group E we have the trans-
formation

A 7→ ξAξ−1 + ξdξ−1, (B.8a)
B 7→ ξ BB. (B.8b)
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Under these transformations we have

F 7→ ξFξ−1, (B.9a)
G 7→ ξ BG. (B.9b)

Second type of transformations is parametrized by 1-forms ψ valued in f. It is given by

A 7→ A+ ∆ψ, (B.10a)

B 7→ B + dAψ + 1
2[ψ,ψ]. (B.10b)

Transformation laws for fields strength tensors take the form

F 7→ F + ∆
(

dAψ + 1
2[ψ,ψ]

)
, (B.11a)

G 7→ G. (B.11b)

Equation (B.11a) means that for general ψ the field F changes in a complicated (non-
linear) way. However, it is invariant if ψ is assumed to be valued in the (normal) Lie
subalgebra ker(∆) ⊂ f. Therefore we choose to regard only those ψ transformations as
gauge redundancies. That is, fields related by transformations (B.10) with ∆ not in ker(∆)
are deemed physically inequivalent. Then one may obtain a generalization of Yang-Mills
theory, with two standard local observables: F and G.

The self-evident generalization of the (Euclidean) Yang-Mills Lagrangian depends on
two coupling constants g, g′ and takes the form

L = 1
4g2 〈Fµν , F

µν〉e + 1
12g′2 〈Gαβγ , G

αβγ〉f. (B.12)

Here 〈·, ·〉e and 〈·, ·〉f are bilinear forms on e and f invariant under the action of E , as
required by the demand of gauge invariance. If unrestricted gauge transformations (B.10)
were admitted, the first term would have to be skipped, corresponding to the limit g →∞
(J1 → 0 in the notation of the main part of the text).

Two terms of the action (2.3) are the most natural analogues of the two terms of (B.12)
in the setting of lattice spacetime and the particular crossed module of discrete groups,
much the same way as the standard lattice Z2 gauge theory action may be seen as an
analogue of the Yang-Mills action.

Besides the two terms of (B.12), one could contemplate including other:

• Contraction of F and G tensors is impossible because the number of indices does not
match. There might exist terms involving more than two field strength tensors, such
as 〈Fµν , Fµν〉e〈Gαβγ , Gαβγ〉f. Such term is of high (naive) dimension and involves
four derivatives, making it rather suspect from field theoretic point of view.

• There could exist interesting θ or Chern-Simons type terms, which are beyond the
scope of this work.

– 21 –



J
H
E
P
0
9
(
2
0
2
1
)
0
6
8

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] M. Henneaux and C. Teitelboim, p-Form electrodynamics, Found. Phys. 16 (1986) 593
[INSPIRE].

[2] J.C. Baez, Higher Yang-Mills theory, hep-th/0206130 [INSPIRE].
[3] H. Pfeiffer, Higher gauge theory and a non-Abelian generalization of 2-form electrodynamics,

Annals Phys. 308 (2003) 447 [hep-th/0304074] [INSPIRE].
[4] J.C. Baez and J. Huerta, An invitation to higher gauge theory, Gen. Rel. Grav. 43 (2011)

2335 [arXiv:1003.4485] [INSPIRE].
[5] J.C. Baez and A.D. Lauda, Higher dimensional algebra. V:2-groups, Theor. Appl. Categ. 12

(2004) 423 [math/0307200].
[6] R. Brown, P.J. Higgins and R. Sivera, Nonabelian Algebraic Topology. Filtered Spaces,

Crossed Complexes, Cubical Homotopy Groupoids, with contributions by Ch. D. Wensley and
S.V. Soloviev, volume 15, Zürich, European Mathematical Society (EMS) (2011).

[7] D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP
02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

[8] S. Gukov and A. Kapustin, Topological Quantum Field Theory, Nonlocal Operators, and
Gapped Phases of Gauge Theories, arXiv:1307.4793 [INSPIRE].

[9] A. Kapustin and R. Thorngren, Topological field theory on a lattice, discrete theta-angles and
confinement, Adv. Theor. Math. Phys. 18 (2014) 1233 [arXiv:1308.2926] [INSPIRE].

[10] A. Kapustin and R. Thorngren, Higher Symmetry and Gapped Phases of Gauge Theories,
Prog. Math. 324 (2017) 177.

[11] D.N. Yetter, TQFT’s from homotopy 2-types, J. Knot Theor. Ramif. 02 (1993) 113.
[12] T. Porter, Topological Quantum Field Theories from Homotopy n-Types, J. Lond. Math. Soc.

58 (1998) 723.
[13] J.F. Martins and T. Porter, On Yetter’s Invariant and an Extension of the Dijkgraaf-Witten

Invariant to Categorical Groups, Theor. Appl. Categ. 18 (2007) 118 [math/0608484].
[14] F. Girelli, H. Pfeiffer and E.M. Popescu, Topological higher gauge theory: From BF to BFCG

theory, J. Math. Phys. 49 (2008) 032503 [arXiv:0708.3051] [INSPIRE].
[15] D.J. Williamson and Z. Wang, Hamiltonian models for topological phases of matter in three

spatial dimensions, Annals Phys. 377 (2017) 311 [arXiv:1606.07144] [INSPIRE].
[16] M. Atiyah, Topological quantum field theories, Inst. Hautes Etudes Sci. Publ. Math. 68

(1989) 175 [INSPIRE].
[17] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121

(1989) 351 [INSPIRE].
[18] Y.-A. Chen and A. Kapustin, Bosonization in three spatial dimensions and a 2-form gauge

theory, Phys. Rev. B 100 (2019) 245127 [arXiv:1807.07081] [INSPIRE].
[19] Y.-A. Chen, Exact bosonization in arbitrary dimensions, Phys. Rev. Res. 2 (2020) 033527.

– 22 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/BF01889624
https://inspirehep.net/search?p=find+J%20%22Found.Phys.%2C16%2C593%22
https://arxiv.org/abs/hep-th/0206130
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0206130
https://doi.org/10.1016/S0003-4916(03)00147-7
https://arxiv.org/abs/hep-th/0304074
https://inspirehep.net/search?p=find+J%20%22Annals%20Phys.%2C308%2C447%22
https://doi.org/10.1007/s10714-010-1070-9
https://doi.org/10.1007/s10714-010-1070-9
https://arxiv.org/abs/1003.4485
https://inspirehep.net/search?p=find+J%20%22Gen.Rel.Grav.%2C43%2C2335%22
https://arxiv.org/abs/math/0307200
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://arxiv.org/abs/1412.5148
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1502%2C172%22%20and%20year%3D2015
https://arxiv.org/abs/1307.4793
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.4793
https://doi.org/10.4310/ATMP.2014.v18.n5.a4
https://arxiv.org/abs/1308.2926
https://inspirehep.net/search?p=find+J%20%22Adv.Theor.Math.Phys.%2C18%2C1233%22
https://doi.org/10.1007/978-3-319-59939-7_5
https://doi.org/10.1142/s0218216593000076
https://doi.org/10.1112/s0024610798006838
https://doi.org/10.1112/s0024610798006838
https://arxiv.org/abs/math/0608484
https://doi.org/10.1063/1.2888764
https://arxiv.org/abs/0708.3051
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C49%2C032503%22
https://doi.org/10.1016/j.aop.2016.12.018
https://arxiv.org/abs/1606.07144
https://inspirehep.net/search?p=find+J%20%22Annals%20Phys.%2C377%2C311%22
https://doi.org/10.1007/BF02698547
https://doi.org/10.1007/BF02698547
https://inspirehep.net/search?p=find+J%20%22Sci.Publ.Math.%2C68%2C175%22
https://doi.org/10.1007/BF01217730
https://doi.org/10.1007/BF01217730
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C121%2C351%22
https://doi.org/10.1103/PhysRevB.100.245127
https://arxiv.org/abs/1807.07081
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CB100%2C245127%22
https://doi.org/10.1103/physrevresearch.2.033527


J
H
E
P
0
9
(
2
0
2
1
)
0
6
8

[20] A. Bochniak and B. Ruba, Bosonization based on Clifford algebras and its gauge theoretic
interpretation, JHEP 12 (2020) 118 [arXiv:2003.06905] [INSPIRE].

[21] S. Palmer and C. Sämann, The ABJM model is a higher gauge theory, Int. J. Geom. Meth.
Mod. Phys. 11 (2014) 1450075.

[22] A. Bullivant, M. Calçada, Z. Kádár, P. Martin and J.F. Martins, Topological phases from
higher gauge symmetry in 3 + 1 dimensions, Phys. Rev. B 95 (2017) 155118
[arXiv:1606.06639] [INSPIRE].

[23] C. Delcamp and A. Tiwari, From gauge to higher gauge models of topological phases, JHEP
10 (2018) 049 [arXiv:1802.10104] [INSPIRE].

[24] A. Bullivant, M. Calçada, Z. Kádár, J.F. Martins and P. Martin, Higher lattices, discrete
two-dimensional holonomy and topological phases in (3 + 1)D with higher gauge symmetry,
Rev. Math. Phys. 32 (2020) 2050011.

[25] A. Bochniak, L. Hadasz and B. Ruba, Dynamical generalization of Yetter’s model based on a
crossed module of discrete groups, JHEP 03 (2021) 282 [arXiv:2010.00888] [INSPIRE].

[26] F.J. Wegner, Duality in Generalized Ising Models and Phase Transitions Without Local
Order Parameters, J. Math. Phys. 12 (1971) 2259 [INSPIRE].

[27] H.A. Kramers and G.H. Wannier, Statistics of the Two-Dimensional Ferromagnet. Part I,
Phys. Rev. 60 (1941) 252 [INSPIRE].

[28] F.J. Wegner, Flow-equations for Hamiltonians, Annalen Phys. 3 (1994) 77.
[29] S. Akiyama, Y. Kuramashi, T. Yamashita and Y. Yoshimura, Phase transition of

four-dimensional Ising model with higher-order tensor renormalization group, Phys. Rev. D
100 (2019) 054510 [arXiv:1906.06060] [INSPIRE].

[30] P.H. Lundow and K. Markström, Critical behavior of the Ising model on the
four-dimensional cubic lattice, Phys. Rev. E 80 (2009) 031104.

[31] N. Metropolis and S. Ulam, The Monte Carlo Method, J. Am. Statist. Assoc. 44 (1949) 335.
[32] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, Equation of

State Calculations by Fast Computing Machines, J. Chem. Phys. 21 (1953) 1087 [INSPIRE].
[33] W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications,

Biometrika 57 (1970) 97.
[34] M. Creutz, Monte Carlo study of quantized SU(2) gauge theory, Phys. Rev. D 21 (1980) 2308

[INSPIRE].
[35] S.L. Adler, Over-relaxation method for the Monte Carlo evaluation of the partition function

for multiquadratic actions, Phys. Rev. D 23 (1981) 2901 [INSPIRE].
[36] C. Whitmer, Over-relaxation methods for Monte Carlo simulations of quadratic and

multiquadratic actions, Phys. Rev. D 29 (1984) 306 [INSPIRE].
[37] F.R. Brown and T.J. Woch, Overrelaxed heat-bath and Metropolis algorithms for accelerating

pure gauge Monte Carlo calculations, Phys. Rev. Lett. 58 (1987) 2394 [INSPIRE].
[38] S.L. Adler, Overrelaxation algorithms for lattice field theories, Phys. Rev. D 37 (1988) 458

[INSPIRE].
[39] M. Creutz, L. Jacobs and C. Rebbi, Experiments with a Gauge-Invariant Ising System, Phys.

Rev. Lett. 42 (1979) 1390 [INSPIRE].

– 23 –

https://doi.org/10.1007/JHEP12(2020)118
https://arxiv.org/abs/2003.06905
https://inspirehep.net/search?p=find+J%20%22JHEP%2C2012%2C118%22%20and%20year%3D2020
https://doi.org/10.1142/s0219887814500753
https://doi.org/10.1142/s0219887814500753
https://doi.org/10.1103/PhysRevB.95.155118
https://arxiv.org/abs/1606.06639
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CB95%2C155118%22
https://doi.org/10.1007/JHEP10(2018)049
https://doi.org/10.1007/JHEP10(2018)049
https://arxiv.org/abs/1802.10104
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1810%2C049%22%20and%20year%3D2018
https://doi.org/10.1142/s0129055x20500117
https://doi.org/10.1007/JHEP03(2021)282
https://arxiv.org/abs/2010.00888
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.00888
https://doi.org/10.1063/1.1665530
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C12%2C2259%22
https://doi.org/10.1103/PhysRev.60.252
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C60%2C252%22
https://doi.org/10.1103/PhysRevD.100.054510
https://doi.org/10.1103/PhysRevD.100.054510
https://arxiv.org/abs/1906.06060
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD100%2C054510%22
https://doi.org/10.1103/physreve.80.031104
https://doi.org/10.1080/01621459.1949.10483310
https://doi.org/10.1063/1.1699114
https://inspirehep.net/search?p=find+J%20%22J.Chem.Phys.%2C21%2C1087%22
https://doi.org/10.2307/2334940
https://doi.org/10.1103/PhysRevD.21.2308
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD21%2C2308%22
https://doi.org/10.1103/PhysRevD.23.2901
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD23%2C2901%22
https://doi.org/10.1103/PhysRevD.29.306
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD29%2C306%22
https://doi.org/10.1103/PhysRevLett.58.2394
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C58%2C2394%22
https://doi.org/10.1103/PhysRevD.37.458
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD37%2C458%22
https://doi.org/10.1103/PhysRevLett.42.1390
https://doi.org/10.1103/PhysRevLett.42.1390
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C42%2C1390%22


J
H
E
P
1
2
(
2
0
2
0
)
1
1
8

Published for SISSA by Springer

Received: April 13, 2020
Revised: November 3, 2020

Accepted: November 6, 2020
Published: December 18, 2020

Bosonization based on Clifford algebras and its gauge
theoretic interpretation

A. Bochniak and B. Ruba
Institute of Theoretical Physics, Jagiellonian University in Kraków,
prof. Łojasiewicza 11, 30-348 Kraków, Poland
E-mail: arkadiusz.bochniak@doctoral.uj.edu.pl,
blazej.ruba@doctoral.uj.edu.pl

Abstract: We study the properties of a bosonization procedure based on Clifford algebra
valued degrees of freedom, valid for spaces of any dimension. We present its interpretation
in terms of fermions in presence of Z2 gauge fields satisfying a modified Gauss’ law, resem-
bling Chern-Simons-like theories. Our bosonization prescription involves constraints, which
are interpreted as a flatness condition for the gauge field. Solution of the constraints is
presented for toroidal geometries of dimension two. Duality between our model and (d−1)-
form Z2 gauge theory is derived, which elucidates the relation between the approach taken
here with another bosonization map proposed recently.

Keywords: Gauge Symmetry, Lattice Quantum Field Theory, Topological States of
Matter, Chern-Simons Theories

ArXiv ePrint: 2003.06905

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP12(2020)118

mailto:arkadiusz.bochniak@doctoral.uj.edu.pl
mailto:blazej.ruba@doctoral.uj.edu.pl
https://arxiv.org/abs/2003.06905
https://doi.org/10.1007/JHEP12(2020)118


J
H
E
P
1
2
(
2
0
2
0
)
1
1
8

Contents

1 Introduction 1

2 Geometric setup 4

3 Fermions — generators and relations 5

4 Γ model 8
4.1 Definition of the model 8
4.2 Choice of a representation 10
4.3 Modified constraints and Z2 gauge fields 11
4.4 Example: toroidal geometries 15
4.5 Example: quadratic fermionic hamiltonians 19

5 Deformed Z2 gauge theories 20
5.1 Gauge invariant operators 20
5.2 Classification of Gauss’ operators 22
5.3 Local formulations 24

6 Duality with higher gauge theory 25

7 Summary and outlook 28

A Canonical transformations for Ising degrees of freedom 29

B Graphs with vertices of odd degree 31

1 Introduction

Many fermionic systems admit bosonizations, i.e. alternative descriptions formulated using
bosonic operators. Such correspondences are especially abundant for theories formulated
in spacetime dimension two [1–3]. Their importance stems from the fact that they allow
to construct analytic solutions of certain models [4, 5], to gain nonperturbative insights
into dynamics of strongly coupled systems [6] and, more recently, to understand certain
phases of topologically nontrivial fermionic matter [7]. Furthermore, there exist systems for
which dualities help to overcome problems in numerical studies, such as the sign problem
in Monte Carlo simulations [8–10] or difficulties in implementation of operators acting on
Hilbert spaces which do not factorize into tensor products of on-site Hilbert spaces. This
last problem may also have some significance for the field of quantum information [11, 12].

– 1 –
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The most well-known bosonization methods apply only to 1 + 1-dimensional systems.
Some proposals valid in higher dimensions have been put forward [7, 13–23]. See also
reviews in [24–27]. Each of these constructions involves some difficulties not present for
two-dimensional systems, such as non-locality or presence of complicated constraints, of-
ten interpreted as the Gauss’ law of some gauge theory. One could argue that this is
an inherent feature of models involving fermionic degrees of freedom. Further study of
these phenomena might help to eventually construct bosonization maps more suitable for
practical calculations, which is the main motivation of this work.

The main part of this paper is concerned with the study of the bosonization method
proposed in [15]. In this approach fermion fields are replaced by on-site Euclidean Γ ma-
trices. For this reason we call it the Γ model. This model is bosonic in the sense that
the Γ matrices, which serve as its elementary fields, commute when placed on distinct
lattice sites. Moreover its Hilbert space is the tensor product of Hilbert spaces associated
to individual lattice sites. The price to pay for this convenience is the necessity to intro-
duce certain constraints on physical states. Correspondence between the Γ model with
constraints and fermions, at least for the free fermion hamiltonian, has been conjectured
based on a comparison between relations satisfied by operators present in hamiltonians
of these two models. Precise statement of this correspondence has been formulated and
proven for the first time in [28]. It turned out that the proposed bosonization map is valid
for any hamiltonian, hence purely kinematical. Here we extend it by considering more
general geometries. We provide a new proof of validity of this construction, inspired by
techniques from [13]. Furthermore, we provide a new interpretation of constraints present
in the Γ model as the pure gauge condition for a certain Z2 gauge field. We show that
fermions coupled to general Z2 gauge fields can be modeled by modifying the form of con-
straints, without altering the form of the bosonized hamiltonian. The full Hilbert space
of the Γ model decomposes into a direct sum of subspaces corresponding to all possible
gauge fields. This decomposition has the interesting property that only states with specific
fermionic parity, depending on the gauge field, are present. We illustrate the main features
of our model by presenting examples in the cases of a specific geometry (two-dimensional
tori, for which we also solve the constraints) and for a simple class of solvable fermionic
hamiltonians. This work parallels [29], which motivated our studies, allowed to formulate
initial hypotheses and test them using symbolic algebra software.

It is natural to ask whether it is possible to make the gauge field present in the Γ
model dynamical. In other words, does the Γ model with no constraints imposed provide
a bosonization of a some theory of fermions coupled to a Z2 gauge field? We show that
such mapping does indeed exist. It is local for even fermionic operators and for gauge field
operators of magnetic type,1 but operators involving the electric field are represented in
a complicated way, which depends on a choice of a loop wrapping around the whole lattice.
Similarly, the elementary field of the Γ model is non-local on the gauge theory side.

Gauge theory corresponding to the unconstrained Γ model involves a mechanism
present in the Dijkgraaf-Witten theory [30–32] and more general gauge theories with Chern-

1We call an operator magnetic if it is a function of the gauge field on a single time slice and electric if
it acts by flipping the gauge field. General observables in gauge theory involve operators of both types.
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Simons-like topological terms: Hilbert space representation of time-independent gauge
transformations, here written for simplicity in the U(1) continuum theory language,2

|Ai〉 7→ |Ai + ∂iθ〉 (1.1)

are modified by introducing gauge field dependent phase factors:

|Ai〉 7→ eiI(θ,A)|Ai + ∂iθ〉. (1.2)

This has the consequence that the Gauss’ law is altered, which leads to a deformation of
the algebra of gauge-invariant operators. In particular, the constraint on the total charge,
obtained by integrating the Gauss’ law over the whole space, is modified. This is the
celebrated flux attachment mechanism [33]: electric excitations in models of this type are
decorated by magnetic fields. Braiding of two such excitations involves Aharonov-Bohm
phases, leading to a transmutation of statistics. In our case, the total number of fermions
modulo two becomes related to the value of a certain magnetic observable. An unpleasant
feature of the gauge theory corresponding to the Γ model is that the functional I(θ,A)
in (1.2) depends non-locally on the gauge field A. We demonstrate that under certain
assumptions about the lattice this non-locality may be removed by a canonical transforma-
tion which preserves the form of all fermionic and magnetic observables (so bosonization
is still local for those operators for which it initially was).

There exists a duality mapping which relates the Γ model to higher gauge theories
proposed in the context of bosonization in [13, 14, 34]. In some aspects it resembles the
classical Kramers-Wannier duality [35]. It is clear that this correspondence has to involve
a transition to the dual spatial lattice. Indeed, in our model local degrees of freedom
act on Hilbert spaces associated to lattice sites, just as in the initial fermionic theory,
while constraint operators are located on plaquettes. In the latter case, for spacetimes of
dimension d + 1, degrees of freedom associated to (d − 1)-cells have been proposed, with
fermionic operators placed on d-simplices and constraints on (d− 2)-simplices. This setup
has the advantage that it is naturally interpreted in terms of (d − 1)-form gauge theory
(involving the flux attachment mechanism). On the other hand, our formulation is more
uniform, in the sense that it applies in unchanged form in any dimension. The amount of
redundancy in the two approaches (defined as the ratio of the dimension of the full Hilbert
space and the subspace defined by constraints) is the same order (and rather large) in both
cases. Secondly, in our construction it is crucial that each lattice vertex is incident to an
even number of edges. We remark here that it is possible to define the Γ model even if
this condition is not satisfied, but in this case it is found to contain additional degrees of
freedom, resembling Majorana fermions. This feature is discussed in the appendix B.

The organization of this paper is as follows. In section 2 we recall basic geometric
concepts used in the main text. Reader not at all familiar with this language may want
to consult introductory books in algebraic topology (see e.g. [36]) first. Section 3 is con-
cerned mainly with the review of a known description of the algebra of even fermionic
operators in terms of a convenient set of generators and relations. The main part of the

2Precise formulation suitable for our lattice models is given in the main text.
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text starts in section 4. In subsections 4.1, 4.2 we define the Γ model and establish its
correspondence with fermions. Then we derive the gauge-theoretic interpretation of this
model in subsection 4.3. Presented constructions are illustrated by the example of toroidal
geometry, discussed in the subsection 4.4 and the discussion of quadratic hamiltonians
in 4.5. In the special case of dimension 2 + 1 we solve the constraints relevant for our
bosonization procedure and relate them to ground states of the Kitaev’s toric code [11].
Section 5 is devoted to the study of modified gauge theories. Proof of the equivalence
between the gauge theory proposed in the subsection 4.3 and the Γ model is presented in
the subsection 5.1. Afterwards a generalization of this gauge model, involving modified
Gauss’ operators, is introduced in the subsection 5.2. We classify these theories up to
equivalence given by (in general non-local) canonical transformations. This allows to find
a local formulation of the gauge theory corresponding to the Γ model in the subsection 5.3.
Afterwards, in section 6, we present the duality between the Γ model and higher gauge
theory. This includes a brief discussion of the role of spin structures. We summarize in
section 7. The paper is closed with two appendices. Appendix A is concerned with Heisen-
berg groups and their automorphisms for Z2-valued degrees of freedom, while appendix B
discusses the extension of the Γ model to the case in which some vertices are incident to
an odd number of edges.

2 Geometric setup

For any finite set S we let |S| be the number of elements of S.
All physical systems will be considered on a connected graph G = (V,E), which may

(but does not have to) be the set of vertices and edges of a triangulation or more general
cell decomposition of some manifold. We will assume that the graph G is such that every
edge connects two distinct vertices. Multiple edges which connect the same vertices are
allowed. We let Eor be the set of oriented edges. Thus every edge e ∈ E corresponds to
two distinct elements of Eor. We have functions s, t : Eor → V , called source and target
maps, which assign to e ∈ Eor its initial and final vertex, respectively. Furthermore, for
every e ∈ Eor we let e be the same edge with its orientation reversed, so that s(e) = t(e)
and t(e) = s(e). If v = s(e) or v = t(e), we say that e contains v and write v ∈ e. The
star St(v) of a vertex v ∈ V is defined as the set of all e ∈ E which contain v. Number
deg(v) := |St(v)| is called the degree of v.

In order to keep track of various signs we shall use the language of chains, which are
formal sums of geometric objects with coefficients in the field Z2 (integers modulo 2). More
precisely, C0 and C1 are defined as the Z2-vector spaces with bases V and E, respectively.
Linear map ∂ : C1 → C0, called the boundary operator, is defined first on basis elements by
∂e =

∑
v∈e

v. Its kernel (called the set of cycles) and image (called the set of boundaries) are
denoted by Z1 and B0, respectively. There are perfect bilinear pairings Cp×Cp → Z2, given
by (v, v′) = δv,v′ and (e, e′) = δe,e′ . This allows to identify chain groups Cp with cochain
groups Cp := Hom(Cp,Z2). Coboundary operator C0 → C1 is defined as the adjoint of
∂, i.e. by (δε, τ) = (ε, ∂τ) for ε ∈ C0 and τ ∈ C1. Equivalently, δv =

∑
v∈e

e. Kernel
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and image of δ are denoted by Z0 and B1 and called the set of cocycles and the set of
coboundaries, respectively. By construction, cocycles are orthogonal to boundaries, while
coboundaries are orthogonal to cycles. In particular, there is an induced non-degenerate
pairing Z∗1 ×Z1 → Z2, where Z∗1 := C1/B1. Thus Z∗1 may be identified with the dual space
of Z1. The image in Z∗1 of an element of A ∈ C1 will be denoted by [A].

For future reference we calculate the dimension of Z1 (and hence also of Z∗1 ) over Z2.
In general the dimension of the domain of a linear operator is the sum of dimensions of
the kernel and the range. Applying this to ∂ we obtain dim(Z1) = dim(C1) − dim(B0).
Connectedness of G means that dim(B0) = dim(C0)− 1. Therefore

dim(Z1) = dim(C1)− dim(C0) + 1 = |E| − |V |+ 1. (2.1)

This means that each of sets Z1 and Z∗1 has 2|E|−|V |+1 elements.
Tuple of oriented edges ` = (e1, . . . , en) will be called a path if t(ei) = s(ei+1) for i < n.

We will say that ` is a circuit if t(en) = s(e1). For every path ` we let [`] =
n∑
i=1

ei ∈ C1,

where we forget the orientations of ei. Chain [`] is a cycle if and only if ` is a circuit.
Circuit ` is said to be Eulerian if every edge e ∈ E occurs exactly once among e1, . . . , en.
For every such circuit we have [`] =

∑
e∈E

e. It is a classical result [37, section 4.2.1] in graph

theory that Eulerian circuit exists if and only if every vertex has even degree. Clearly, the
latter condition is equivalent to closedness of the chain ζ :=

∑
e∈E

e ∈ C1, i.e. to ∂ζ = 0.

In some parts of this work (not essential for the main construction) we will have to
assume that besides vertices and edges, the considered lattice is also equipped with a set
of faces F , which are polygons whose sides are identified with edges. This allows to define
the space of 2-chains C2 with an obvious boundary map ∂ : C2 → C1. Its kernel and image
are denoted by Z2 and B2, respectively. Homology group H1 is defined as the quotient
Z1/B1. There is also a scalar product C2 × C2 → Z2 given by (f, f ′) = δf,f ′ for f, f ′ ∈ F .
Dualizing, there is also a coboundary map δ : C1 → C2 with kernel and image Z1, B2.
Cohomology group H1 = Z1/B1 is the dual space of H1.

3 Fermions — generators and relations

Here we consider a specific class of fermionic models, defined below. We emphasize those
properties that are used to prove validity of our bosonization prescription. In particular,
we describe the algebra of even fermionic operators in terms of generators and relations.
This result is similar to one in [13], with the statement and the proof adjusted to the fact
that we work with finite, not necessarily simply-connected lattices. Our considerations are
independent of dynamics, so we do not focus on any particular hamiltonian. In most of
this section we repeat well-known facts, to some extent to fix notation.

First, let us denote by A the complex ∗-algebra generated by elements φ∗(v) and φ(v)
(called creation and annihilation operators located at the vertex v) with v ∈ V , subject to
the canonical anticommutation relations

{φ(v), φ(v′)} = {φ∗(v), φ∗(v′)} = 0, {φ(v), φ∗(v′)} = δv,v′ . (3.1)

– 5 –
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By construction, every element of A may be written down as a linear combination of
products of creation and annihilation operators. It is often useful to use a different set of
generators of A, e.g. the so-called Majorana operators:

X(v) = φ(v) + φ∗(v), Y (v) = i(φ(v)− φ∗(v)). (3.2)

Defining relations (3.1) are equivalent to

{X(v), Y (v′)} = 0, {X(v), X(v′)} = {Y (v), Y (v′)} = 2δv,v′ . (3.3)

This shows that A is a Clifford algebra on 2|V | generators, and hence it is isomorphic
to End(F), the algebra of linear operators on the unique (up to isomorphism) irreducible
representation F of A. Dimension of F is equal to 2|V |. Every finite-dimensional represen-
tation of A is a direct sum of finitely many copies of the irreducible representation.

Representation F is, of course, the Fock space. It is a Hilbert space with a distinguished
element |0〉 (called the vacuum state), determined uniquely up to phase by the conditions
φ(v)|0〉 = 0 and 〈0|0〉 = 1. Other states, labeled by Z2-valued 0-chains ε, are defined by
acting with creation operators on the vacuum:

|ε〉 =
∏
v∈V

φ∗(v)(ε,v)|0〉. (3.4)

This element depends on the ordering of vertices in the product, but different orderings
give rise to states differing only by a factor ±1. To well-define vectors |ε〉, fix any total
order on V once and for all. The set of all vectors |ε〉 is an orthonormal basis of F .

Let us define the grading element of A:

γ =
∏
v∈V

(1− 2φ∗(v)φ(v)). (3.5)

It satisfies γ = γ∗ = γ−1. For each α ∈ Z2 we define

Fα = {ψ ∈ F| γψ = (−1)αψ}, (3.6a)
Aα = {T ∈ A| γT = (−1)αTγ}. (3.6b)

A0 is a subalgebra of A. Its action on F has two nontrivial invariant subspaces: F0 and
F1, which are both of dimension 2|V |−1. It follows from the Artin-Weddeburn theory [38]
that the algebra A0 is semisimple, with two simple factors Aαα = EndC(Fα), α ∈ Z2. This
means that every finite-dimensional representation V of A0 is isomorphic to

⊕
α∈Z2

F⊕[V :Fα]
α ,

where multiplicity [V : Fα] is given by the formula

[V : Fα] = 1
dimC(Fα)trV

(1 + (−1)αγ
2

)
. (3.7)

The even subalgebra A0 is of our main interest here. It is easy to see that it is generated
by elements {γ(v)}v∈V and {s(e)}e∈Eor , defined by

γ(v) = 1− 2φ∗(v)φ(v), s(e) = X(s(e))X(t(e)). (3.8)

– 6 –
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We refer to γ(v) and s(e) as fermionic parity and kinetic operators, respectively. We will
now give a complete set of relations satisfied by our chosen generators.3 Firstly,

γ(v) = γ(v)∗ = γ(v)−1, γ(v)γ(v′) = γ(v′)γ(v), (3.9a)

−s(e) = s(e) = s(e)∗ = s(e)−1, s(e)s(e′) = (−1)(∂e,∂e′)s(e′)s(e), (3.9b)

γ(v)s(e) = (−1)(∂e,v)s(e)γ(v). (3.9c)

The final relation in A0 may be formulated as follows: if ` = (e1, . . . , en) is a circuit, then

s(e1) · . . . · s(en) = 1. (3.10)

Not all of these relations are independent. Indeed, suppose that some algebra B contains
elements γ(v) and s(e) satisfying (3.9) and such that (3.10) holds for some circuits {`i}si=1
such that [`i] generate Z1. Then for any circuit `= (e1, . . . ,en) there exist coefficients ci such
that [`] =

s∑
i=1

ci[`i]. Using relations (3.9) and (3.10) for `i we obtain s(e1)·. . .·s(en) =±1.
The same calculation can be repeated in A0, so the sign on right hand side has to be
+1, because (3.10) holds for all circuits in this case. Hence (3.10) is satisfied in B for
all circuits `.

In the rest of this section we will show that there are no other relations, i.e. that (3.9)
and (3.10) generate all relations in A0. It will be convenient to consider operators

γ(ε) =
∏
v∈V

γ(v)(ε,v), for ε ∈ C0, (3.11a)

s(τ) =
∏
e∈E

s(e)(e,τ), for τ ∈ C1. (3.11b)

The sign of s(τ) depends on a choice of orientation for each e ∈ E and an ordering of E,
which we fix for the purpose of the proof. These operators satisfy γ(ε)|ε′〉 = (−1)(ε,ε′)|ε′〉
and s(τ)|ε〉 = (−1)χ(τ,ε)|ε+ ∂τ〉 for some function χ : C1×C0 → Z2, which depends on the
arbitrary choices made.

Using relations (3.9) only, any monomial in the generators s(e) and γ(v) may be
rewritten (perhaps up to a sign) as a product γ(ε)s(τ) for some ε ∈ C0 and τ ∈ C1.

Now let r be a section of ∂ : C1 → B0, i.e. a linear map B0 → C1 such that ∂r = 1B0 .
Notice that such r is guaranteed to exist, because ∂ is a linear map between vector spaces
with image B0. However, it is by no means unique.

For any τ ∈ C1 let z(τ) = τ − r∂τ ∈ C1. Then we have τ = r∂τ + z(τ) and ∂z(τ) = 0,
so s(τ) coincides with s(r∂τ), possibly up to a sign. This means that, up to a sign,
monomial γ(ε)s(τ) depends on τ only through ∂τ .

Using relations described so far, any relation in A0 may be reduced to∑
ε∈C0

∑
ε′∈B0

cε,ε′γ(ε)s(rε′) = 0, (3.12)

where cε,ε′ are complex coefficients.
3More precisely, A0 is isomorphic to a quotient of the free algebra on letters γ(v), s(e) by some two-sided

ideal I. We will describe a set of generators of I.
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Acting with the operator on the left hand side on the vector |ε′′〉 we obtain∑
ε∈C0

∑
ε′∈B0

cε,ε′(−1)(ε,ε′+ε′′)(−1)χ(rε′,ε′′)|ε′′ + ε′〉 = 0. (3.13)

Since the set {|ε′′+ ε′〉}ε′∈B0 is linearly independent in F , each term of the summation
over ε′ vanishes separately. Therefore we have∑

ε∈C0

cε,ε′(−1)(ε,ε′+ε′′) = 0. (3.14)

Now let ε1 = ε′ + ε′′, take any ε2 ∈ C0 and multiply this equation by (−1)(ε1,ε2).
Summing over all ε1 and using the identity

∑
ε1∈C0

(−1)(ε1,ε+ε2) = 2|V |δε,ε2 we get

cε2,ε′ = 0. (3.15)

Since ε2 and ε′ were arbitrary, all coefficients c vanish. We have shown that any relation
in A0 follows already from (3.9) and (3.10), which completes the proof.

4 Γ model

We will now construct a bosonic model equivalent to the fermionic one discussed in the
previous section. Relations (3.9) will be satisfied as operator equations, but (3.10) will
be imposed as a constraint on physical states. Due to the presence of Γ matrices in its
formulation, we will refer to it as the Γ model [15]. Generators of the algebra A0 will be
constructed as simple, local expressions in fields of the Γ model. Afterwards, we propose
a correspondence between the Γ model and a certain Z2 gauge theory. The section is closed
with a discussion of the Γ model and its constraints in case of toroidal geometries.

4.1 Definition of the model

In this section we will assume that the graph G is such that every vertex has even degree.
To a vertex v we associate the Clifford algebra with generators {Γ∗(v)} ∪ {Γ(v, e)}e∈St(v).
Each generator squares to identity and anticommutes with every other generator located on
the same vertex, but generators on different vertices commute. Clifford algebras associated
to distinct vertices may be non-isomorphic, because we do not assume that all v ∈ V

have the same degree. Secondly, we construct an irreducible representation of the algebra
associated to each vertex. There is some arbitrariness here, because there exist two non-
isomorphic simple modules, corresponding to two possible values of Γ∗(v)

∏
e∈St(v)

Γ(v, e). For

now we make some choice for every vertex. We will discuss its significance in subsection 4.2.
Hilbert space H of the Γ model is defined as the tensor product of Hilbert spaces associated
to individual vertices. Thus operators on distinct vertices commute. In this sense Γ model
is bosonic.

Kinetic operators of the Γ model are defined in the following way. For every edge e we
choose an orientation and put

S(e) = −iΓ(s(e), e)Γ(t(e), e). (4.1)

For the opposite orientation we define S(e) := −S(e).
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A simple calculation shows that the map

γ(v) 7→ Γ∗(v), s(e) 7→ S(e) (4.2)

is compatible with (3.9). However (3.10) does not hold as an operator relation. Nevertheless,
if ` = (e1, . . . , en) is a circuit, then S(`) := S(e1) · . . . · S(en) is unitary, squares to identity
and commutes with all Γ∗(v) and S(e). Therefore the subspace H0 ⊆ H of all vectors ψ
satisfying the constraint

S(`)ψ = ψ for every circuit ` (4.3)

is a representation of the algebra A0.
We claim that H0 is isomorphic (as a representation of A0) to a half of the Fock space,

i.e. H0 ∼= Fα for some α. Remainder of this subsection is devoted to the proof of this fact.
Let ` =

(
e1, . . . , e|E|

)
be an Eulerian circuit. Then S(`) = (−1)α

∏
v∈V

Γ∗(v) for some

α. Therefore acting with S(`) on ψ0 ∈ H0 we obtain

(∏
v∈V

Γ∗(v)
)
ψ0 = (−1)αψ0. (4.4)

This means that H0 is a direct sum of some number of copies of Fα. To show that the
multiplicity is equal to one it is sufficient to demonstrate that dim(H0) = 2|V |−1. For this
purpose let us first note that

dim(H) =
∏
v∈V

2
deg(v)

2 = 2|E|. (4.5)

Secondly, for every [A] ∈ Z∗1 let H[A] be the set of vectors ψ such that

S(`)ψ = (−1)([A],[`])ψ for every circuit `. (4.6)

We have a decomposition H =
⊕

[A]∈Z∗1
H[A]. By the formula (2.1) there are 2|E|−|V |+1

summands, so the problem is reduced to checking that each H[A] has the same dimension.
This is achieved by considering the unitary operators

O(τ) =
∏
e∈E

Γ(s(e), e)(τ,e) for τ ∈ C1, (4.7)

in which we choose orientation of each e ∈ E. Simple calculation shows that they satisfy

O(τ)S(`) = (−1)([τ ],[`])S(`)O(τ) if ` is a circuit. (4.8)

This implies that O(τ)H[A] ⊆ H[A+τ ], from which the result follows.
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4.2 Choice of a representation

Recall that in the construction of our model it was necessary to choose a representation of
the Clifford algebra at every vertex v. This is equivalent to specifying a relation between the
action of Γ∗(v) and

∏
e∈St(v)

Γ(v, e). The two operators are proportional in every irreducible

representation, but there are two possible values of the proportionality factor. One can
resolve the ambiguity as follows. Let us choose some ordering of the set St(v). Then we
may denote its elements as e1, . . . , e2n with n = deg(v)

2 . Having done that we put

Γ∗(v) := inΓ(v, e1) · . . . · Γ(v, e2n). (4.9)

This is a consistent definition — element Γ∗(v) anticommutes with all Γ(v, e) and squares
to 1. It is invariant with respect to even permutations of the indexing set {1, . . . , n}, but
it changes sign under any odd permutation.

We see that our model is completely specified once we choose an ordering (modulo
even permutations) of the set St(v) for each vertex v. We are not aware of a natural way to
make this choice, save for the case of some very symmetric geometries. Thus it is crucial to
understand its consequences. Any other construction of Γ∗ is related to the chosen one by

Γ′∗(v) = (−1)(η,v)Γ∗(v) (4.10)

with some η ∈ C0. Thus the space of distinct choices is affine over C0. It does not seem
to have a distinguished origin.

Now let us consider the unitary operators

T (θ) =
[∏
v∈V

Γ∗(v)(∂θ,v)
]
·
[∏
e∈E

S(e)(θ,e)
]

for θ ∈ C1, (4.11)

whose signs depend on a choice of orientations of edges and an ordering of E. They
commute with all S(e) and satisfy

T (θ)Γ∗(v)T (θ)−1 = (−1)(∂θ,v)Γ∗(v). (4.12)

This establishes that constructions of our model related by (4.10) are unitarily equivalent
if η = ∂θ. Thus they describe the same physics for any choice of hamiltonian built of
fermionic parity and kinetic operators. Identifying equivalent models we see that the set
of distinct versions of the Γ model is affine over the homology group C0/B0 ∼= Z2, or in
simpler words — it has two elements. They correspond to two possible values of α in (4.4).
Indeed, redefinition (4.10) with η representing a nonzero homology class (i.e. a sum of an
odd number of vertices) changes the sign of the operator

∏
v∈V

Γ∗(v) while keeping the form

of constraints (4.3) invariant.
The discussion above may be phrased in the language of higher symmetries [39] as

follows: construction of our model has a sort of gauge freedom, with gauge transformations
parametrized by 1-chains. If the graph G is the one-skeleton of a closed d-dimensional
manifold4 X, there is a Poincaré-duality between 1-chains and (d − 1)-cochains. In this

4X does not have to be orientable, because we need only Poincaré duality over Z2.
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sense Γ model has a (d − 1)-form Z2 gauge invariance. We may identify
∏
v∈V

Γ∗(v) as the

unique nontrivial gauge-invariant d-holonomy operator. Choice of a particular representa-
tion involves fixing the gauge as well as the value of this operator.

We will now describe how to construct data needed to completely determine the Γ
model corresponding to a prescribed value of α. It suffices to do this for α = 1, the other
case being obtained by a transformation (4.10) with any η 6∈ B0. Let ` =

(
e1, . . . , e|E|

)
be

an Eulerian circuit. For every v ∈ V there are exactly n := deg(v)
2 indices 1 ≤ j1 < j2 <

. . . < jn ≤ |E| such that s(eji) = v. We define an ordering on St(v) by

ej1−1 < ej1 < ej2−1 < ej2 < . . . < ejn−1 < ejn , (4.13)

where e0 := e|E|. It is easy to check that then S(`) = −Γ∗(v), so α = 1. In particular,
distinct choices of the Eulerian circuit ` give rise to orderings which are equivalent in the
sense described in the previous paragraph.

4.3 Modified constraints and Z2 gauge fields

Consider coupling fermions to an external lattice Z2 gauge field. The gauge field is a cochain
A ∈ C1 subject to gauge transformations A 7→ A + δθ with θ ∈ C0. Thus gauge orbits
are parametrized by equivalence classes [A] ∈ C1/B1 = Z∗1 . The minimal coupling rule
asserts that each occurence of s(e) in the fermionic hamiltonian should be replaced by
sA(e) := s(e) · (−1)(A,e). These operators satisfy the same relations as the original s(e)
except of (3.10), which is replaced by

sA(e1) · . . . · sA(en) = (−1)([A],[`]) for every circuit ` = (e1, . . . , en). (4.14)

Now consider the bosonization map

γ(v) 7→ Γ∗(v), sA(e) 7→ S(e). (4.15)

In order for this prescription to be compatible with the relation (4.14) it is necessary to
restrict attention to the subspace H[A] ⊆ H of vectors ψ satisfying the constraint (4.6).
Notice that the form of this condition is gauge-independent, because (A, [`]) depends only
on the gauge orbit [A] of A for every circuit `. On the other hand, the form of the
bosonization map (4.15) does depend on the choice of gauge.

We conclude that in order to couple fermions to a Z2 gauge field it is sufficient to
change the form of constraint to (4.6), without changing the form of hamiltonian expressed
in terms of γ(v) and S(e) operators. It remains to describe the structure of the A0-module
H[A]. We pick an Eulerian circuit ` and an element ψ ∈ H[A]. Then

(−1)α
(∏
v∈V

Γ∗(v)
)
ψ = S(`)ψ = (−1)([A],ζ)ψ, (4.16)

where we used the fact that [`] = ζ for any Eulerian circuit `.
We conclude that H[A] is isomorphic to a direct sum of some number of copies of

Fα+([A],ζ). Since dim(H[A]) = dim(H0), the multiplicity is equal to one.
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We have shown that the full Hilbert space of the Γ model decomposes as a direct sum of
subspaces describing fermions coupled to all possible external Z2 gauge fields. Interestingly,
the allowed value of fermionic parity depends on the “magnetic” observable ([A], ζ).

One could ask whether it is possible to promote the gauge field to a dynamical degree
of freedom. In order to write down a kinetic term for the A field it would be necessary to
invoke “electric” operators which connect subspaces corresponding to different values of the
gauge field. Before answering to what extent such operators exist in our model, we briefly
review the construction of the conventional Z2 gauge theory [40, 41] coupled to fermions.

The Hilbert space is defined initially as the tensor product of the fermionic Hilbert
space and the Hilbert space for gauge fields. The latter has an orthonormal basis {|A〉}
with A running over all elements of C1. Magnetic operators U(τ) are parametrized by
chains τ ∈ C1. They act on basis states according to the formula U(τ)|A〉 = (−1)(A,τ)|A〉.
Electric operators W (ω) are parametrized by ω ∈ C1 and defined by W (ω)|A〉 = |A+ ω〉.
Thus one has braiding relations U(τ)W (ω) = (−1)(ω,τ)W (ω)U(τ).

In the next step one introduces Gauss’ operators G(θ) = γ(θ)W (δθ) for θ ∈ C0.
They implement Z2 gauge transformations. Only gauge-invariant states (G(θ)ψ = ψ) are
regarded as physical. This defines the true Hilbert space of the theory. Taking θ =

∑
v∈V

v

one finds that all physical states are eigenvectors of γ to eigenvalue one, so there are no
states with odd number of fermions.

The algebra of gauge-invariant operators (G(θ)OG(θ)−1 = O) is generated by dressed
kinetic operators sg(e) = s(e) · U(e) and electric operators W (e). There are magnetic
observables U(τ) for ∂τ = 0, but these may be expressed in terms of kinetic operators.
Indeed, for ` being a circuit

U([`]) = sg(`). (4.17)

Similarly the charge operators may be expressed5 in terms of electric operators:

γ(v) = W (δv). (4.18)

The only independent relations between our chosen generators are (3.9b) with s re-
placed by sg, the following properties of W :

W (ω) = W (ω)∗ = W (ω)−1, W (ω1 + ω2) = W (ω1)W (ω2), (4.19)

and braiding relations between kinetic and electric operators

sg(e)W (ω) = (−1)(ω,e)W (ω)sg(e). (4.20)

Now we return to the Γ model considered without any constraints on physical states.
We ask if the algebra of gauge-invariant operators of Z2 gauge theory may be represented
on its Hilbert space. We would like to map sg(e) to S(e) and γ(v) to Γ∗(v). This is
consistent with local relations in gauge theory, but it is inconsistent with the global relation∏
v∈V

γ(v) = 1, since we have instead
∏
v∈V

Γ∗(v) = (−1)αS(`) for an Eulerian circuit `.

5We regard gauge-invariant operators as acting on the physical Hilbert space only, so identities which
follow from the Gauss’ law are written as operator relations.
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On the gauge theory side the problematic relation is a consequence of the Gauss’ law, so
we would like to interpret the Γ model as a gauge theory with deformed Gauss’ law. Such
deformation has the consequence that it is not possible to represent operators W (e) in
a way compatible with W (e)W (e′) = W (e′)W (e) and braiding relations (4.20), because
these operators would have to anticommute with the c-number Γ∗(v)S(`) = (−1)α, which
is absurd.6 This argument does not concern operators W (ω) with ω orthogonal to ζ, i.e.
those ω which are sums of even numbers of edges. To construct a convenient basis of
Ceven

1 , the orthogonal complement of ζ, let ` = (e1, . . . , e|E|) be an Eulerian circuit. Put
εi = ei−1 + ei ∈ C1 for 2 ≤ i ≤ |E|. Then εi form a basis of Ceven

1 and have the convenient
property that each εi is a sum of two edges which meet at the vertex vi := s(ei). Since
each edge e ∈ E is equal to ei for exactly one i, this construction defines a partition of each
set St(v) into a disjoint union of deg(v)

2 pairs of the form ei−1, ei (where e0 := e|E|) with
1 ≤ i ≤ |E| such that v = vi. Now define

W(εi) = (−1)κi · iΓ(vi, ei−1)Γ(vi, ei) for 2 ≤ i ≤ |E|, (4.21)

where κi ∈ Z2 is not yet specified. Operators W(εi) are our candidates for representatives
of W (εi). We have W(εi)W(εj) = W(εj)W(εi) and W(εi)2 = 1, so we may well-define
W(ω) for any ω ∈ Ceven

1 by demanding that W(ω1 + ω2) =W(ω1)W(ω2). For example

W(e1 + en) =
|E|∏
i=2
W(εi), (4.22)

since e1 + en =
|E|∑
i=2

εi. With this definition relations (4.19) and (4.20) are satisfied. Fur-

thermore, we can choose κi in such a way that W(δv) = Γ∗(v) is satisfied for every vertex
other than v1 := s(e1) = t(en). For example if elements Γ∗(v) are constructed as in the
discussion surrounding equation (4.13), one may take all κi = 0. In any case we have

W(δv1) =W

∑
v 6=v1

δv

 =
∏
v 6=v1

Γ∗(v) = (−1)αS(`) · Γ∗(v1). (4.23)

This means that for the single vertex v1 the Gauss’ law is modified by the factor (−1)αS(`).
We are now ready to define the gauge theory corresponding to the Γ model with no

constraints imposed. Elementary fermionic operators as well as U and W operators are
constructed as in the conventional gauge theory. The only modification is in the definition
of the Gauss’ operators, which are taken to be

G(v) =

γ(v)W (δv) for v 6= v1,

(−1)αγ(v)U(ζ)W (δv) for v = v1.
(4.24)

6One way to avoid this conclusion is to consider the direct sum of Hilbert spaces of two versions of the
Γ model corresponding to two values of α. Then (−1)α is promoted to an operator with eigenvalues ±1, so
it is possible to introduce operators which anticommute with it. Such construction was considered in [28],
but this is not what we would like to do here.
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This has the consequence that also the algebra of gauge invariant operators is modified.
We study properties of this gauge theory and its generalizations in section 5. Here we
summarize those results obtained there which are directly relevant for the correspondence
with the Γ model:

• An isomorphism between the algebra of gauge-invariant operators in gauge theory
and End(H) is constructed. Operators constructed of even numbers of fermions and
Wilson lines are mapped to local operators in the Γ model, but electric operators are
represented in a way which is non-local and depends on the choice of an Eulerian
circuit. Similarly, there exist non-local operators in gauge theory corresponding to
Γ(v, e) from the Γ model.

• The definition of Gauss’ operators suggests that there is an inherent non-locality and
lack of symmetry between distinct vertices in the proposed gauge theory. We demon-
strate that under certain assumptions about the underlying geometry these patholo-
gies can be healed by a canonical transformation.

• The Gauss’ law, which is imposed as a constraint in the gauge theory picture, holds
identically in the Γ model. Therefore all states and all operators in the Γ model are
gauge invariant.

• Relation between the total number of fermions mod 2 and the value of [A] satisfied
in the Γ model is a consequence of the Gauss’ law on the gauge theory side.

It is interesting to interpret the algebra of {Γ(v, e)}, the elementary fields of the Γ
model, in terms of quantum numbers defined in gauge-theoretical language. To this end
we inspect the braiding relations

Γ∗(v′)Γ(v, e) = (−1)(v,v′)Γ(v, e)Γ∗(v′), (4.25a)

S(`)Γ(v, e) = (−1)([`],e)Γ(v, e)S(`) if ` is a circuit. (4.25b)

The first relation asserts that Γ(v, e) flips the value of fermionic parity at the vertex v, i.e.
it creates or annihilates a fermion. The second one means that action of Γ(v, e) changes
the value of the holonomy along any loop which contains the edge e. There is no operator
that creates or annihilates a single fermion without disturbing the values of holonomies or
a one that acts as an electric field operator on a single edge without creating any fermions,
because that would contradict the relation

Total number of fermions (mod 2) = α+ ([A], ζ). (4.26)

The preceding discussion justifies thinking of Γ(v, e) as a composite of a fermion and a
lump of electromagnetic field, as in the so-called flux attachment mechanism.

According to the presented picture, the role of constraints (4.3) present in our bosoniza-
tion map is to get rid of the electromagnetic degrees of freedom present in the Γ model.
We close this discussion with the remark that constraints can be divided into two classes:
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1. Constraints which correspond to homologically trivial loops, i.e. circuits ` such that
the cycle [`] belongs to B1. It is sufficient to impose one such constraint for every
face of the lattice. Constraints of this type are local, and hence can be implemented
by introducing in the hamiltonian local terms which penalize their violation. They
reduce the Hilbert space from H to the direct sum of subspaces corresponding to
gauge orbits of flat gauge fields, i.e. to

⊕
[A]∈H1

H[A].

2. Constraints which correspond to loops of nonzero homology class. Once constraints of
the first type are imposed, operators corresponding to distinct representatives of the
same homology class become equivalent. It is sufficient to impose one such constraint
for every element of some basis of H1. This chooses from the set of all flat gauge
fields the trivial gauge field A = 0.

4.4 Example: toroidal geometries

In this subsection we construct the Γ model on a torus with L1× . . .×Ld lattice sites, with
each Li ≥ 3. In the case of d = 2 and even Li we present a full solution of constraints (4.3).

Lattice vertices are labeled by d-tuples of integers, with two d-tuples identified if they
differ by a tuple whose i-th entry is a multiple of Li for each i. Sets of edges and faces are
the obvious ones. Clearly every vertex has even degree.

Operator Γ(v, e) with edge e in positive or negative i-th direction is denoted by Γ±i(v).
Furthermore, we introduce

Γ∗(v) = (−1)(η,v) · id
d∏
i=1

Γi(v)Γ−i(v) (4.27)

where η is a 0-chain. With this convention

α =
∑
v∈V

(η, v) +
d∑
i=1

∏
j 6=i

Lj , (4.28)

as can be easily evaluated by computing the product
∏̀
S(`) with ` running through the

set of all straight lines winding once around the torus.
Let f be a face lying in the plane spanned by directions 1 ≤ i < j ≤ d, with vertices

A,B,C,D ordered counterclockwise, starting from the south-west corner (see figure 1).
The constraint (4.3) for the circuit around the boundary of f is of the form

P(f)|phys〉 = |phys〉, (4.29a)
P(f) = −Γi,j(A)Γj,−i(B)Γ−i,−j(C)Γ−j,i(D), (4.29b)

where Γk,l(v) := Γk(v)Γl(v). We note the mnemonic rule that in the above, indices ±i,±j
labeling gamma matrices are arranged in a cycle.
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Figure 1. Labels of vertices for a face f lying in the plane spanned by directions i, j.

Figure 2. Two loops wrapping the 2-dimensional torus.

The only other constraints correspond to d independent loops wrapping around the
whole torus (see figure 2). They take the form

Lj(v)|phys〉 = |phys〉, j = 1, . . . , d, (4.30a)

Lj(v) := −iLj
Lj−1∏
k=0

Γj,−j(tkj · v), (4.30b)

where v ∈ V is a reference vertex and ti is the transformation of V defined by

ti · (v1, . . . , vd) = (v1, . . . , vi + 1, . . . , vd). (4.31)

We note that Li are unitary, hermitian and commute with each other.
We now confine ourselves to the case of d = 2 and all Li even. Consider the operators

Ξ1(v) =
L2−1∏
k=0

Γ1,(−1)k2(tk2 · v), (4.32a)

Ξ2(v) =
L1−1∏
k=0

Γ(−1)k1,2(tk1 · v). (4.32b)

They are unitary, hermitian and commute with all P(f), Γ∗(v) and with each other. More-
over, they flip the values of corresponding Lj :

Ξi(v)Lj(v) = (−1)δi,jLj(v)Ξi(v). (4.33)

This means that pairs {L1(v),Ξ1(v)} and {L2(v),Ξ2(v)} generate two independent copies
of the Pauli algebra. Thus solutions of plaquette constraints are organized in quadruplets,
each of which contains precisely one solution of the loop constraint (4.30a). Given any
state in such a quadruplet, the desired state satisfying (4.30a) may be easily obtained by
acting with an appropriate element of the algebra generated by Li and Ξi.
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We remark that similar trick can be applied for other geometries, including higher
dimensions, provided that the cycle ζ is a boundary. The role of Ξi is played by electric
operators W(τ) with δτ = 0. These exist because (τ, ζ) = 0 for τ ∈ Z1, ζ ∈ B1.

Having dealt with the loop constraints, we proceed to the analysis of plaquettes. It will
be convenient to divide the lattice into two complementary alternating sublattices, called
even and odd. For example we may declare vertex v = (v1, v2) to be even if v1 + v2 = 0
(mod 2). Parity of a face f is defined as the parity of its south-west corner.

We will construct solutions of constraints which are simultaneous eigenvectors of Γ∗(v)
to eigenvalues (−1)(η,v). Solutions with other eigenvalues may then be obtained by acting
with kinetic operators, which commute with all constraints. After this restriction, we have
the relation Γ1,−1(v)Γ2,−2(v) = −1 for every vertex v. This can be used to simplify the
plaquette constraints to the form

P(f) = Γ1,2(A)Γ1,2(C)Γ1,−2(B)Γ1,−2(D). (4.34)

Now we introduce new local operators by the formulas

σ3(v) =

iΓ1,2(v) for v even,
iΓ1,−2(v) for v odd,

σ1(v) =

−iΓ1,−2(v) for v even,
iΓ1,2(v) for v odd.

(4.35)

Then with the definition σ2(v) = −iσ3(v)σ1(v) we have

σ2(v) = iΓ1,−1(v) for every v ∈ V. (4.36)

One can check that for each v operators {σi(v)}3i=1 satisfy the standard relations obeyed
by Pauli matrices, which justifies the chosen notation.

In terms of the new variables, plaquette operators take the form

P(f) =


∏

v∈{A,B,C,D}
σ3(v) for f even,∏

v∈{A,B,C,D}
σ1(v) for f odd.

(4.37)

In this form plaquette constraints are readily recognized as equations defining ground states
of the famous Kitaev’s toric code [11]. It is well-known that there exist four solutions,
corresponding to two values of L1 and L2. This is also in accord with our general finding
about the Γ model. For completeness we provide a prescription to construct these states
in the next paragraph.

We work in the standard eigenbasis of σ3(v) operators, so our basis states are labeled
by elements ω ∈ C0 and satisfy

σ3(v)|ω〉 = (−1)(ω,v)|ω〉, (4.38a)
σ1(v)|ω〉 = |ω + v〉. (4.38b)

In order to have P(f)|ω〉 = |ω〉 for even faces f , we need to have

(ω,A+B + C +D) = 0, (4.39)
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Figure 3. Lattice whose vertices are the centres of even (shaded) faces of the original lattice.
Its edges and faces correspond to vertices and odd (white) faces of the original lattice, respectively.

where A,B,C,D are the four vertices of any even face. Every such chain ω will be called
admissible. Geometrically this condition means that ω may be identified with a 1-cocycle
on the lattice whose vertices are the even faces of the orignal lattice (see figure 3).

Calculation analogous to the proof of (2.1) shows that there exist L1L2
2 + 1 admissible

chains. Now consider the state

|ref〉 = 2−
L1L2+2

4
∑

ω admissible
|ω〉. (4.40)

Clearly we have P(f)|ref〉 = |ref〉 for every face f and 〈ref|ref〉 = 1.
State |ref〉 satisfies all plaquette constraints, but does not satisfy the loop constraints.

In this paragraph we solve this difficulty. As a fist step towards this goal, we express L and
Ξ operators in terms of Pauli matrices. We take the reference vertex v to be even. Then

L1(v) = −
L1−1∏
k=0

σ2(tk1 · v), Ξ1(v) = (−1)
L2
2

L2−1∏
k=0

σ3(tk2 · v), (4.41a)

L2(v) = −
L2−1∏
k=0

σ2(tk2 · v), Ξ2(v) = (−1)
L1
2

L1−1∏
k=0

σ3(tk1 · v). (4.41b)

Using the above and the definition of |ref〉 we obtain eigenvalue equations

L1(v)Ξ2(v)|ref〉 = L2(v)Ξ1(v)|ref〉 = −|ref〉. (4.42)

This eigensystem combined with the relations obeyed by L and Ξ operators implies that
projection of |ref〉 onto the joint eigenspace of L1 and L2 to eigenvalue 1 has norm 1

2 .
To obtain a properly normalized state, we multiply this projection by 2:

|0〉 = 2 · 1 + L1(v)
2

1 + L2(v)
2 |ref〉. (4.43)

We close this section with a remark that the presented method of solving constraints
can be generalized to all geometries such that there exists a partition of the set of faces
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Figure 4. Octahedron.

(say, into “white” and “shaded” faces) such that no two faces of the same colour share an
edge. Then one can construct a basis of solutions of “shaded” constraints consisting of
products states, which are permuted by the action of “white” constraints. Thus the sum
of all elements of this basis satisfies constraints of both types. One particularly simple
decomposition of the two-sphere for which this can be carried out is the octahedron, see
figure 4. Unfortunately, the relevant condition is never satisfied in the case of geometries of
dimension higher than two. One can always obtain a solution of all constraints by acting
with the projection operator

∏
f

1+P(f)
2 on some reference state, but this does not lead to

a description as explicit as in (4.40) and (4.43).

4.5 Example: quadratic fermionic hamiltonians

Here we illustrate the bosonization procedure by applying it to hamiltonians of the form

H =
∑
e∈Eor

he φ(s(e))φ(t(e))∗ +
∑
v∈V

νv φ(v)∗φ(v), (4.44)

where he = he, while νv are real. This hamiltonian may be rewritten as

H =
∑
e∈Eor

he
1 + γ(s(e))

2 s(e)1 + γ(t(e))
2 +

∑
v∈V

νv
1− γ(v)

2 , (4.45)

from which we read off the bosonized form:

HΓ =
∑
e∈Eor

he
1 + Γ∗(s(e))

2 S(e)1 + Γ∗(t(e))
2 +

∑
v∈V

νv
1− Γ∗(v)

2 . (4.46)

This hamiltonian commutes with S(`) for every circuit `. Thus it has a local symmetry
generated by operators P(f), which are defined as S(`) with [`] = ∂f , and further operators
labeled by loops whose classes generate the homology group H1.

We will now describe the spectrum of HΓ. First, consider the one-particle subspace
of the fermionic system. It is governed by the |V | × |V | matrix {〈v′|H|v〉}v,v′∈V . Denote
its eigenvalues by λi[h, ν], i = 1, . . . , |V |. The eigenvalues of H are λI [h, ν] =

∑
i∈I

λi[h, ν],
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indexed by subsets I of {1, . . . , |V |}. Eigenvalues of HΓ restricted to the subspace H0 are
exactly λI [h, ν], with a restriction |I| = α (mod 2). To understand the spectrum of HΓ
acting on H[A] with [A] 6= 0 notice that minimal coupling to a Z2 gauge field amounts to
replacing he by hAe = he · (−1)(A,e). Therefore the eigenvalues of HΓ in H[A] are λI [hA, ν]
with |I| = α+ ([A], ζ) (mod 2).

To enforce the plaquette constraints dynamically, consider adding to HΓ the local term

Hc = J
∑
f

1− P(f)
2 . (4.47)

This leaves unchanged the eigenvalues λI [hA, ν] for flat gauge fields A and increases every
other eigenvalue by at least J . Thus for J large enough all low energy eigenstates correspond
to flat gauge fields.

5 Deformed Z2 gauge theories

In this section we demonstrate that the gauge theory proposed in subsection 4.3 is in-
deed equivalent to the Γ model, even though the correspondence is local only for some
operators. The proof relies on technical facts presented in the appendix A. Afterwards we
present a certain generalization of this model, in which Gauss’ operators of conventional
Z2 gauge theory are modified by including phases depending on values of the holonomies.
Similar mechanism is present in the Dijkgraaf-Witten theory and has been applied in the
bosonization map introduced in [13, 14, 34]. In contrast to Dijkgraaf-Witten models, here
we are not restricting attention to topological gauge theories.7 Modified Gauss’ operators
are classified up to (in general non-local) canonical transformations. We use this result to
show how the gauge theory corresponding to the Γ model can be formulated in a local way.

5.1 Gauge invariant operators

We will now describe the algebra of gauge invariant operators for Gauss’ operators of the
form (4.24) and explain how it is represented on the Γ model Hilbert space.

Operator built of {X(v), Y (v)}v∈V will be said to be of charge q ∈ C0 and denoted by
the generic symbol Υ(q) if it satisfies the braiding relation

γ(v)Υ(q) = (−1)(q,v)Υ(q)γ(v). (5.1)

Every operator may be written down as a linear combination of operators of the form
O = U(τ)W (σ)Υ(q). All such operators are eigenvectors of the group of gauge transfor-
mations, so the most general gauge-invariant operator is a linear combination of operators
of the form O with each term separately gauge invariant. We proceed to find conditions
for gauge invariance of O 6= 0. Its braiding with Gauss’ operators is given by

G(v)OG(v)−1 = (−1)(∂τ,v)+(v1,v)(ζ,σ)+(q,v)O, (5.2)
7In other words, we are working with principal bundles over 1-skeleta which do not necessarily extend

to the 2-skeleton of the underlying space. Secondly, considered models depend on a choice of an arbitrary
1-cycle. We would expect only 1-cycles dual to characteristic classes to appear in topological field theories.
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so gauge invariance of O is equivalent to the equation

∂τ = q + (ζ, σ)v1. (5.3)

Contracting this relation with
∑
v∈V

v we infer
∑
v∈V

(q, v) = (ζ, σ). Thus there are two possi-

bilities: q is a sum of an even or odd number of vertices.
In the former case (ζ, σ) = 0 (so σ is a sum of an even number of edges) and ∂τ = q.

Operator O of this type is a product of

(a) Wilson lines, which are allowed to terminate at charges in the usual way,

(b) W (σ) with (ζ, σ) = 0.

These two factors of O are separately gauge invariant.
In the case that q contains an odd number of vertices, we need (ζ, σ) = 1 and hence

∂τ = q + v1. Thus O is a product of an operator of the former type and X(v0)W (e) with
some edge e.

In order to construct a set of generators convenient for comparisons with the Γ model,
choose an Eulerian circuit ` = (e1, . . . , e|E|). We put vi = s(ei) (1 ≤ i ≤ |E|), εi = ei−1 + ei
(2 ≤ i ≤ |E|) and e0 = e|E|. The algebra under consideration is generated by the set
{sg(ei)}|E|i=1 ∪ {W (εi)}|E|i=2 ∪ {K}, where K = X(v1)W (e0). Operators U(τ) for τ ∈ Z1 can
be expressed in terms of {sg(ei)}, while γ(v) is, perhaps up to a sign or a factor U(ζ), the
product of some number of W (εi). The following relations are satisfied:

−sg(ei) = sg(ei)∗ = sg(ei)−1, sg(ei)sg(ej) = (−1)(∂ei,∂ej)sg(ej)sg(ei), (5.4a)
W (εi) = W (εi)∗ = W (εi)−1, W (εi)W (εj) = W (εj)W (εi), (5.4b)

sg(ei)W (εj) = (−1)(ei,εj)W (εj)sg(ei), (5.4c)
K = K∗ = K−1, (5.4d)

Ksg(ei) = (−1)(ei,e0+δv1)sg(ei)K, KW (εi) = W (εi)K. (5.4e)

We have already verified that the map

sg(ei) 7→ S(ei), W (εi) 7→ W(ei), (5.5)

defined in subsection 4.3, preserves all relations above not involving K. Thus it remains
only to propose a representative of K in the Γ model. One can choose simply

K 7→ Γ(v1, e0), (5.6)

which is consistent with relations (5.4).
We claim that the proposed map well-defines an isomorphism between the algebra

of gauge-invariant operators discussed here and the full operator algebra of the Γ model.
We now proceed to the proof of this fact.8 First, let us observe that relations (5.4) are
exactly as in the definition of the Heisenberg group HQ associated to a certain vector space

8Consult appendix A at this point.
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M of dimension 2n, equipped with a quadratic form Q. Images of K and {sg(ei)}|E|i=2
in M span an isotropic subspace of dimension |E|, so Arf(Q) = 0. Element z ∈ HQ

acts as multiplication by −1, so HQ is represented faithfully. Hence all relations satisfied
in the algebra of gauge-invariant operators follow already from (5.4). This means that
equations (5.5), (5.6) well-define an injective homomorphism of algebras. Dimensional
considerations show that this homomorphism is also surjective and that H is isomorphic
to a single copy of the standard representation of HQ.

Since the algebra of gauge invariant operators is isomorphic to End(H), it is possible
to construct an operator corresponding to Γ(v, e) for any vertex v and any e ∈ St(v). It is
the product of K and some number of W (εi) and sg(ei), which is typically highly nonlocal.

5.2 Classification of Gauss’ operators

In the subsection 5.1 we have considered a specific form of Gauss’ operators motivated by
our study of the Γ model. In this subsection we define and classify a larger class of gauge
theories. This puts previous findings in a broader context and can be applied to discuss
issues with locality of our models. We are interested in gauge theories with fermionic
degrees of freedom on vertices and Ising degrees of freedom U(e), W (e) on edges. The
full Hilbert space is assumed to be endowed with a unitary representation of the group
of gauge transformations, i.e. for every vertex v there is given a unitary operator G(v)
such that G(v)2 = 1 and G(v)G(v′) = G(v′)G(v). Furthermore, we would like fermionic
operators and U(e) to transform under gauge transformations in the same way as in the
conventional Z2 gauge theory, so that Wilson lines which are either closed or terminate at
charges are gauge-invariant operators. This condition implies that G(v) has to be of the
form γ(v)R(v)W (δv), where R(v) is a function of operators U(e) only. For simplicity we
shall assume that G(v) are of particularly simple form

G(v) = (−1)(µ,v)γ(v)U(T v)W (δv), (5.7)

with some µ ∈ C0 and T ∈ Hom(C0, C1). Condition G(v)2 = 1 implies that T has to
satisfy (∂T v, v) = 0. Equation G(v)G(v′) = G(v′)G(v) (for v, v′ ∈ V ) is equivalent to
(v, ∂T v′) = (v′, ∂T v). Thus ∂T is alternating, i.e. (θ, ∂T θ) = 0 for every θ ∈ C0.

Theories with Gauss’ operators related by a canonical transformation of the Heisenberg
group generated by {U(e),W (e)}e∈E will be regarded as equivalent. This is a weak form
of equivalence, since the allowed canonical transformations may be strongly non-local.
Nevertheless it is true that equivalent theories have isomorphic algebras of gauge-invariant
operators, since canonical transformations are implementable on representations of the
Heisenberg group.

We wish to preserve the form of holonomy operators (U(τ) for ∂τ = 0), so we consider
canonical transformations of the form

U(e) 7→ U(e), W (e) 7→ (−1)(θ,e)U(Se)W (e), (5.8)

for θ ∈ C0 and S ∈ Hom(C1, C1). In order for this to define a canonical transformation,
S must be alternating. Under a transformation of this form, T changes according to

T 7→ T ′ = T + Sδ, (5.9)
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while µ changes to some µ′, which we ignore for now. It is easy to check that ∂Sδ is indeed
automatically alternating if S is. Therefore the space of equivalence classes of allowed T
is the quotient Z/B, where

Z = {T : C0 → C1| ∂T is alternating}, (5.10a)
B = {T : C0 → C1| exists S : C1 → C1 alternating and such that T = Sδ}. (5.10b)

Now consider the class of Gauss’ operators with a fixed T . They are parameterized by
chains µ ∈ C0. However there is a residual freedom of canonical transformations with
S = 0 and arbitrary θ. Under such transformations µ changes to µ′ = µ + ∂θ. Therefore
there are two non-equivalent choices of µ, corresponding to two elements of C0/B0 ∼= Z2.

We claim that the dimension of Z/B is equal to dim(Z1). For clarity we postpone
the proof of this until the next paragraph. We will now establish a concrete one-to-one
correspondence between pairs (τ, α) ∈ Z1×Z2 and equivalence classes of Gauss’ operators.
For a given (τ, α) we choose a vertex v1 ∈ V and define:

G(v) =

γ(v)W (δv) for v 6= v1,

(−1)αγ(v)U(τ)W (δv) for v = v1.
(5.11)

With this definition one has ∏
v∈V

G(v) = (−1)αγ · U(τ). (5.12)

These elements are invariant with respect to canonical transformations of the form (5.8),
which demonstrates that distinct pairs (τ, α) give Gauss’ operators in different equivalence
classes. Since the number of elements of Z1 × Z2 is equal to the number of equivalence
classes, the one-to-one correspondence is established. There are two conclusions from this
result that we would like to emphasize. Firstly, every equivalence class can be represented
by T such that ∂T is not only alternating, but actually vanishes. Secondly, each equiv-
alence class is uniquely characterized by the corresponding value of the “global” gauge
transformation operator

∏
v∈V

G(v), and thus by τ =
∑
v∈V
T v and α. If ∂T = 0, one has

α =
∑
v∈V

(µ, v).

In the remainder of this subsection we calculate the dimension of Z/B. First notice
that B may be identified with the quotient of the space of alternating S : C1 → C1 by the
subspace of those S for which Sδ = 0. The former space has dimension |E|(|E|−1)

2 . As for
the latter, any of its elements satisfies also ∂S = 0. Therefore it may be regarded as an
alternating map C1/B1 → Z1. Since C1/B1 ∼= Z∗1 , the pertinent dimension is equal to
dim(Z1)(dim(Z1)−1)

2 . Hence

dim(B) = |E|(|E| − 1)
2 − dim(Z1)(dim(Z1)− 1)

2 . (5.13)

It remains to find the dimension of Z. We consider the linear map

L∂ : Hom(C0, C1) 3 T 7−→ ∂T ∈ Hom(C0, B0). (5.14)

Clearly L∂ is surjective. Secondly, ker(L∂) = Hom(C0, Z1), so dim ker(L∂) = dim(Z1) · |V |.
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Next consider the space R = {R ∈ Hom(C0, B0)| R is alternating}. Choosing V as
a basis of C0, elements of R are represented as symmetric |V | × |V | matrices with zeros on
the diagonal and such that sum of entries in every column is 0 (mod 2). Simple counting9

shows that dim(R) = 1
2(|V | − 1)(|V | − 2). Since Z = L−1

∂ R, we get

dimZ = dim(kerL∂) + dim(R) = |V | dim(Z1) + 1
2(|V | − 1)(|V | − 2). (5.15)

Finally we use the fact that dim(Z1) = |E| − |V |+ 1 to simplify

dim(Z/B) = dim(Z)− dim(B) = dim(Z1). (5.16)

5.3 Local formulations

Gauge theories defined by Gauss’ operators of the form (5.11) are unsatisfactory for two
reasons: firstly, one of the vertices is clearly distinguished in their formulation. Secondly,
Gauss’ operators are typically horribly non-local. Nevertheless, in many cases it is possible
to remove this problem by a canonical transformation. We will now discuss how to do this
in general and then specialize to the case τ = ζ.

Now suppose that τ is the boundary of a 2-chain ξ. Let Fξ be the set of those f ∈ F
such that (ξ, f) = 1. For every f ∈ Fξ choose one vertex vf ∈ V incident to f . Define

T v =
∑
f∈Fξ

δv,vf · ∂f. (5.17)

Then one has ∂T = 0 and
∑
v∈V
T v = τ . Furthermore, T v is at most the sum of some

number of faces incident to the vertex v. Thus Gauss’ operators are local and belong to
the equivalence class specified by the cycle τ .

The above discussion raises the question whether the outlined construction can be
carried out for τ = ζ, leading to a local Z2 gauge theory equivalent to the Γ model.
Clearly this is always true for lattices representing simply-connected spaces, and more
generally spaces X such that the homology group H1(X,Z2) is trivial. Otherwise one has
to ask whether ζ represents a nontrivial homology class. Interestingly, it is known [42]
that for a triangulation of a d-dimensional manifold X which is obtained by barycentric
subdivision of another triangulation, simplicial cycle ζ is Poincaré dual to the (d − 1)-
st Stiefel-Whitney class of X. However, the restriction to a very specific class of cell
decompositions is important here. In general it is not possible to determine the homology
class of ζ in terms of the topology of X alone — it depends on the choice of decomposition.
We will demonstrate this using the example of d-dimensional tori with arbitrary d. In this
case all Stiefel-Whitney classes are trivial (since tori are parallelizable), but there exist
decompositions for which ζ represents a nontrivial class, as well as such that ζ can be
very explicitly trivialized. Indeed, for decompositions considered in subsection 4.4, cycle
ζ is a boundary if and only if at least two Li are even. If this condition is met, it is

9The number of free parameters in the first column is equal to |V | − 2, since the first entry vanishes
and the second one is determined in terms of the other by the requirement that the sum is even. In every
subsequent column the number of free parameters decreases by one because the matrix is symmetric.
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Figure 5. Trivialization of ζ for a two-dimensional torus: ζ is the boundary of the sum of shaded
faces, which are arranged in a pattern resembling a chessboard. Up to switching the roles of white
and grey squares this is the only possibility in the two-dimensional case.

+ +

Figure 6. Particular trivialization of ζ for a three-dimensional torus: ζ is the boundary of the sum
of all colored faces. Taking all faces of one color only obtains the sum of all edges in one direction.

possible to construct trivializations of ζ invariant with respect to all translations by an
even number of lattice sites. This is illustrated in figures 5 and 6 for dimensions two and
three, respectively. Analogous construction works in any dimension. Using the notation of
subsection 4.4, Gauss’ operators in the two-dimensional take the form

G(v) = (−1)(η,v)γ(v) ·

U(NE(v))W (δv) for v even,
W (δv) for v odd,

(5.18)

where η is any 0-chain with
∑
v

(η, v) = α and NE(v) is the plaquette to the north-east of
v, i.e. the plaquette which has v as its south-west corner.

6 Duality with higher gauge theory

In this section we show how the Γ model may be dualized to a (d−1)-form Z2 gauge theory,
again with a modified Gauss’ law. More precisely, we will dualize only operators Γ∗(v)
and S(e), which generate the commutant of constraint operators arising in bosonization.
Composition of this map with the correspondence between the Γ model and fermions yields
bosonization introduced in [13, 14, 34].

Hilbert space for the model we need is the tensor product of two-dimensional spaces
associated to edges of the lattice. For each edge we introduce Pauli matrices {σi(e)}3i=1.
We will think of σ3(e) as a higher dimensional parallel transport over a (d− 1)-cell of the
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dual lattice.10 As in ordinary gauge theory, parallel transports over individual cells will
turn out not to be gauge-invariant. To construct an observable one has to take the product
over all (d− 1)-cells of some (d− 1)-cycle. The simplest choice is the boundary of a d-cell,
which corresponds to a vertex v of the original lattice. This gives the operator

h(v) =
∏

e : v∈e
σ3(e). (6.1)

Following [13, 14, 34], we would like to map operators Γ∗(v) of the Γ model to h(v). This
is possible only upon restricting to the subspace defined by the condition

∏
v∈V

Γ∗(v) = 1,

because the product of all h(v) is equal to 1 identically. In order to accommodate for
existence of other states, we modify the mapping slightly by putting

Γ∗(v) 7→ (−1)(ε,v)h(v) (6.2)

for some 0-chain ε. We will think of ε as a d-cochain on the dual lattice, or an external
d-form field. What truly matters here is the quantity β =

∑
v∈V

(ε, v), which characterizes

the cohomology class of ε. Choices of ε with the same β give operator mapping related by
conjugation with the product of some number of σ1(e) operators.

Next we construct an operator corresponding to S(e). We consider the Ansatz

S(e) 7→ e(e) = σ1(e) ·
∏
e′

σ3(e′)ν(e,e′) (6.3)

for some function ν : E × E → Z2. Since S(e)2 = −1, we need to have e(e)2 = −1. This
yields the condition ν(e, e) = 1, which will be assumed from now on.

With the above definitions, braiding relations between h(v) and e(e) operators are
correct, but we still need to impose braiding relations between distinct e(e). The sought-
after condition is e(e)e(e′) = (−1)(∂e,∂e′)e(e′)e(e), which translates to

ν(e, e′) + ν(e′, e) = (∂e, ∂e′). (6.4)

If edges e, e′ do not share a common vertex, the above relation asserts that ν(e, e′) = ν(e′, e).
It seems to be most natural to put

ν(e, e′) = ν(e′, e) = 0 if (∂e, ∂e′) = 0, e 6= e′. (6.5)

With this requirement, operators e(e) consist only of Pauli matrices on edges e′ in the
nearest vicinity of e, assuring that the mapping is local. On the other hand, if e and e′

share one common vertex, values of ν(e, e′) and ν(e′, e) have to be opposite. In other words,
we have to choose either ν(e, e′) = 1 and ν(e′, e) = 0, or vice versa.

In the above we have argued that functions ν satisfying (6.4) exist and may be subjected
to the additional locality condition (6.5). Next, we will demonstrate that it is essentially

10Strictly speaking it is not necessary to invoke the dual lattice to formulate this model. Indeed, all for-
mulas that follow will be written in terms of cells of the original lattice. However, their gauge theoretic
interpretation is most directly seen on the dual lattice.
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unique, in the sense that distinct choices yield operator maps related by a local unitary
rotation. Indeed, given two such functions ν1, ν2 we put ω(e, e′) = ν1(e, e′)+ν2(e, e′). Then
ω(e, e) = 0 and ω(e, e′) = ω(e′, e). Transformation

σ1(e) 7→ σ1(e) ·
∏
e′

σ3(e′)ω(e,e′), σ3(e) 7→ σ3(e) (6.6)

defines an algebra automorphism, see appendix A. It is local if both ν1 and ν2 satisfy (6.5).
By construction, it is such that

h(v) 7→ h(v), σ1(e) ·
∏
e′

σ3(e′)ν1(e,e′) 7→ σ1(e) ·
∏
e′

σ3(e′)ν2(e,e′). (6.7)

In a similar way, any signs that could be included in the definition of e(e) could also be
reabsorbed by a unitary transformation, so we do not consider including them. Besides the
braiding relations, there exist certain global constraints that have to be taken into account.
We have already mentioned that the operator Γ∗ =

∏
v∈V

Γ∗(v) is sent to the c-number (−1)β ,

so this mapping may be valid only upon restricting to the corresponding subspace of the
Γ model. On the other hand, by (4.26), we have that on this subspace S(`) = (−1)α+β for
an Eulerian circuit ` = (e1, . . . , en). This gives a constraint

e(e1) . . . e(en) = (−1)α+β , (6.8)

which is a nontrivial restriction, since the left hand side is not a c-number. It is not difficult
to check that this equation is satisfied on a subspace of dimension 2|E|−1, which is also equal
to the dimension of the Hilbert space of the Γ model with fixed value of Γ∗.

Using methods and results of previous sections, it is easy to check that there are
no further independent relations satisfied by operators Γ∗(v) and S(e). Therefore, the
proposed map well-defines a homomorphism of operator algebras.

Construction of the duality is now essentially completed. We will now give the corre-
spondence between various notions formulated in the two pictures of the model.

Firstly, for every circuit ` = (e1, . . . , en) the operator S(`) is mapped to a certain
operator e(`). Its explicit form is easy to evaluate:

e(`) = (−1)

∑
i<j

ν(ei,ej)
·
n∏
i=1

σ1(ei) ·
∏
e′

σ3(e′)

n∑
i=1

ν(ei,e′)
. (6.9)

This operator commutes with all h(v) and e(e) and satisfies e(`)2 = 1. In the case that `
is the loop around the boundary of a face f , we interpret e(`) as a Gauss’ operator of the
gauge theory and denote it by g(f). Indeed, it satisfies the expected relation

g(f)σ3(e) = (−1)(∂f,e)σ3(e)g(f). (6.10)

States violating the constraint S(`) = 1 were interpreted earlier in terms of fermions prop-
agating in an external Z2 gauge field A. On the higher gauge theory side this background
field is thought of as a (d − 2)-form electric charge distribution, localized on the cycle
Poincaré dual to δA. Indeed, for these states we have g(f) = (−1)(δA,f).
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Operators e(`) with ` non-contractible furnish a (d−1)-form Z2 symmetry of the higher
gauge theory. They act trivially on all h(v), but not so on holonomies along homologically
nontrivial (d − 1)-cycles of the dual lattice. Flat background gauge fields for fermions
correspond to eigenspaces of this symmetry. The symmetry is subject to a ’t Hooft anomaly,
whose form was identified in [43]. One may understand the presence of the anomaly in an
intuitive way as follows. We see from (6.9) that the symmetry is not on-site (the correct
notion of a site being an edge, i.e. a dual (d− 1)-cell). Thus there is no canonical gauging
procedure, but one can attempt to take a different route. Symmetry operators e(`) furnish
a representation of the group of 1-cycles (dual (d− 1)-cocycles). We would like to extend
it to an action of the group all 1-chains (dual (d− 1)-cochains). The simplest choice would
be to take the operator corresponding to the transformation at the edge e to be e(e), but
this does not work, since e(e) placed at different edges commute only up to signs. It is
expected that there is no way around this difficulty.

We remark that in [13, 14, 34] a more specific construction of duality between fermions
and higher gauge theory, essentially corresponding to a particular choice of the function ν,
was presented. It is formulated in terms of higher cup products [44] and depends on a choice
of a branching structure11 on the dual lattice, assumed to be a triangulation. An interesting
feature of this approach is that certain sign factors appearing in constraint operators may
be expressed in terms of a cocycle w2 representing the second Stiefel-Whitney class. Given
a spin structure, understood as a cochain E such that12 δE = w2, one may absorb these
signs by redefining fermionic kinetic operators. The fact that signs may be shuffled between
the definition of the bosonization map and the form of Gauss’ operator may be traced to
the duality between background gauge fields and background electric charge distributions.
We remark that the role of spin structures in bosonization has been discussed also in [45].

Despite the elegance of the construction outlined above, we would like to emphasize
that existence of a spin structure is not necessary to construct bosonization maps. In fact
all models considered in this paper make sense on a large class of graphs, which are not
necessarily discretizations of manifolds and hence do not have well-defined Stiefel-Whitney
classes or spin structures. Of course, it may very well be true that spin structures do play
an indispensable role if one imposes some naturality or functoriality conditions on duality
maps, but it is not completely clear to us what would be the correct formulation of this. On
the other hand, spin structures clearly become important in concrete dynamical models.
For example, continuum limits of many lattice models with fermions should depend on
a spin structure. Another interesting example of this is the discussion of the Gu-Wen
model [46] in [43].

7 Summary and outlook

We generalized the bosonization prescription based on the Γ model, presented a new proof
of its correctness and reinterpreted it in terms of lattice Z2 gauge theory. We found that

11Branching structure is a choice of orientations of edges such that there is no loop in any triangle.
12In the notation of papers we are refering to, this equation takes the form δE = w2, but in the two

perspectives the roles of the lattice and its dual are reversed, so operators δ and ∂ are exchanged.
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its alternative gauge-theoretic description involves modified Gauss’ operators, much as in
Chern-Simons-like theories. Furthermore, we discussed the duality with higher gauge theo-
ries recently proposed in the context of bosonization. These results are valid independently
of the spatial dimension.

In order to actually perform bosonization (rather than to couple fermions to gauge
fields) it is necessary to introduce constraints in the Γ model. They can be interpreted as
a flatness condition for the gauge field. We have presented a solution of these constraints
in the case of two-dimensional tori. Unfortunately, our method does not seem to generalize
to higher dimensions in a straightforward way. Thus dealing with constraints in an efficient
way for general geometries remains a challenge for future research.

Another interesting problem not solved for now is to obtain a useful state-sum formu-
lation of the Γ model. Furthermore, it remains to be seen whether it is possible to apply
constructions of this type to shed new light on some problems in lattice gauge theory, such
as those related to fermion doubling or anomalous symmetries.

A Canonical transformations for Ising degrees of freedom

In this appendix we summarize properties of the Heisenberg groups for Z2-valued degrees of
freedom and their automorphisms, called canonical transformations. There are essentially
no new results here, but we do not know a reference in which the whole material presented
here is discussed concisely. We refer to [47] and [48] for further discussion.

Let M be a finite-dimensional Z2-vector space. A bilinear form Ω : M ×M → Z2 is
said to be alternating if Ω(x, x) = 0 for every x ∈M . Every alternating form is symmetric,
but the converse is not true.13 Alternating form which is non-degenerate, i.e. such that for
every x ∈M there exists y ∈M such that Ω(x, y) = 1, is called a symplectic form. If Ω is
a symplectic form, there exists a basis {ei, fi}ni=1 in which Ω takes the canonical form

Ω(ei, ej) = Ω(fi, fj) = 0, Ω(ei, fj) = δi,j . (A.1)

In particular, the dimension of M is necessarily even. It is the only invariant of (M,Ω).
Function Q : M → Z2 is called a quadratic form if the map Ω : M ×M → Z2 given

by Ω(x, y) = Q(x+ y)−Q(x)−Q(y) is a bilinear form. Bilinear forms Ω arising this way
are automatically alternating. If Ω is also non-degenerate, we say that Q is non-singular.
We assume this condition from now on. Thus dim(M) = 2n. Subspace N ⊆ M is said to
be isotropic if Q(x) = 0 for every x ∈ N . One can show that maximal isotropic subspaces
of M are of dimension n or n − 1. These two possibilities correspond to values 0 and 1,
respectively, of the so called Arf invariant Arf(Q) of Q [49]. Dimension of M and the Arf
invariant are the only invariants of (M,Q). In the case Arf(Q) = 0 it is possible to choose
a basis in which Ω takes the canonical form (A.1) and additionally Q(ei) = Q(fi) = 0.

13It is true over any field that alternating forms are skew-symmetric, but in the case of fields of character-
istic two skew-symmetry and symmetry is the same. Furthermore, it is true in general that skew-symmetry
of a form Ω implies that 2Ω(x, x) = 0 for every x ∈M . This implies that Ω is alternating if 2 is invertible,
but it is a vacuous statement in the case of characteristic two.
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Let (M,Q) be as in the previous paragraph and let B = {xi}2ni=1 be a basis of M .
The Heisenberg group HQ,B is the group with generators {z}∪{Ti}2ni=1, subject to relations

z2 = 1, T 2
i = zQ(xi), zTi = Tiz, TiTj = zΩ(xi,xj)TjTi. (A.2)

Its center Z(HQ,B) is generated by the element z. Quotient HQ,B/Z(HQ,B) is a Z2-
vector space. It may be identified with M , with the coset of Ti corresponding to the
element xi. We let π be the canonical projection HQ,B → M . It is easy to check that
gg′ = zΩ(π(g),π(g′))g′g and g2 = zQ(π(g)) for every g, g′ ∈ Hq,B.

Suppose M ′ is another Z2-vector space and let ϕ : (M,Q)→ (M ′, Q′) be an isometry,
i.e. a linear map such that Q′(ϕ(x)) = Q(x) for every x ∈M . Choose a basis B′ of M ′ and
consider the group HQ′,B′ . For each xi we can find a (non-unique) T ′i ∈ HQ′,B′ such that
π(T ′i ) = ϕ(x′i). Elements T ′i satisfy all relations obeyed by Ti, so there is a unique group
homomorphism Φ : HQ,B → HQ′,B′ such that

Φ(z) = z, Φ(Ti) = T ′i . (A.3)

Clearly Φ is a lift of ϕ, in the sense that π ◦ Φ = ϕ ◦ π. We emphasize that homomor-
phisms Φ lifting ϕ are not unique, because in the above constructions we have to choose
elements T ′i , with distinct choices corresponding to distinct lifts. This means that Heisen-
berg groups corresponding to (M,Q) constructed using different bases ofM are isomorphic,
but not canonically isomorphic.14 Having said that, we will abuse the notation slightly by
abbreviating HQ,B to HQ.

In this paper we will use only quadratic forms Q with Arf(Q) = 0. In this case we can
choose a basis of M in which Q takes the canonical form. We let Ui,Wi ∈ HQ be some
lifts of ei and fi, respectively.

Automorphisms of HQ will be called canonical transformations. Every canonical trans-
formation Φ acts trivially on Z(HQ), hence induces an isometry ϕ of (M,Q). The map
π̃ : Φ 7→ ϕ is a homomorphism from Aut(HQ) to O(M,Q), the orthogonal group of Q.
It is clear from the preceding discussion that π̃ is surjective. Next, let Φ be in the kernel
of π̃. Then we have π ◦ Φ(Ui) = ei and π ◦ Φ(Wi) = fi, so

Φ(Ui) = (−1)aiUi, Φ(Wi) = (−1)biWi (A.4)

for some ai, bi ∈ Z2. Conversely, for every collection {ai, bi}ni=1 the above formula defines
a canonical transformation Φ ∈ ker(π̃). Automorphisms of this form are precisely the
inner automorphisms: Φ(g′) = gg′g−1 with g =

n∏
i=1

Uaii W
bi
i ∈ Hq. Therefore ker(π̃) may

be identified with M , since Z(HQ) is precisely the group of those elements of HQ which
act trivially on HQ. We have shown that Aut(HQ) is an extension of O(M,Q) by M .
Interestingly, it is known that this extension is non-split for n ≥ 3 [50]. This is in contrast
with the more standard situation for Heisenberg groups in characteristic different than two.

The last issue we need to touch upon is representation theory. First we define the
standard representation ρ of HQ on

(
C2)⊗n by

ρ(z) = −1, ρ(Ui) = 1⊗(i−1)
C2 ⊗ σ3 ⊗ 1⊗(n−i)

C2 , ρ(Wi) = 1⊗(i−1)
C2 ⊗ σ1 ⊗ 1⊗(n−i)

C2 , (A.5)
14There is a canonically defined class of isomorphisms modulo compositions with inner automorphisms.

– 30 –



J
H
E
P
1
2
(
2
0
2
0
)
1
1
8

where {σi}3i=1 are the Pauli matrices. It is easy to see that this representation is irreducible.
We claim that up to isomorphism this is the only irreducible representation of HQ on which
Z(HQ) acts nontrivially. Indeed, representations on which Z(HQ) acts trivially are in one-
to-one correspondence with representations of M . Now recall [51] that the number of
non-isomorphic irreducible representations of a finite group is equal to the number of its
conjugacy classes. It is easy to check that the number of conjugacy classes in HQ exceeds the
number of conjugacy classes in M by one, which completes the argument. The statement
just proven is an analogue of the Stone-von Neumann theorem for Ising degrees of freedom.
It has an additional corollary that every non-trivial normal subgroup of HQ contains z.

Now let Φ be a canonical transformation. Then ρ ◦ Φ is also an irreducible rep-
resentation on which the center acts nontrivially, so by the above theorem there exists
a unitary endomorphism p(Φ) of the standard module, unique up to phase, such that
ρ(Φ(g)) = p(Φ)ρ(g)p(Φ)−1 for every g ∈ HQ. Assignment Φ 7→ p(Φ) is a projective repre-
sentation of the group of canonical transformations. Even its restriction to M ⊆ Aut(HQ)
is not equivalent to a linear representation. It can be lifted to a genuine representation of
a certain finite central extension of Aut(HQ). The structure of this extension is not known
to us, but fortunately it will not be needed. The important point is the existence of p.

B Graphs with vertices of odd degree

In this appendix we shall briefly describe a generalization of the Γ model to the case in
which some vertices have odd degree. It will be shown that this has the effect of introducing
additional degrees of freedom on each vertex of odd degree. We construct operators which
create and annihilate these excitations.

We decompose the set of vertices V into two disjoint sets Vα of vertices of degree α
(mod 2). Hilbert spaces associated to vertices of even degree are constructed as earlier.
For vertices v of odd degree the Clifford algebra generated by {Γ∗(v)} ∪ {Γ(v, e)}e∈St(v)
has one (rather than two) non-isomorphic irreducible representation. We take this repre-
sentation as the Hilbert space associated to v. In contrast to the even case, Γ∗(v) cannot
be expressed in terms of other generators. With this definition, the dimension of the full
Hilbert space H is

dim(H) =
∏
v∈V0

2
deg(v)

2
∏
v∈V1

2
deg(v)+1

2 = 2|E|+
1
2 |V1|. (B.1)

Since this is an integer, it follows that |V1| is even. This can also be seen by reducing the
equation

∑
v∈V

deg(v) = 2|E| modulo two.

As in the case of graphs with even vertices only, we can decompose H =
⊕

[A]∈Z∗1
H[A].

Calculation analogous to the one in equation (4.7) shows that each H[A] has the same
dimension. Since the number of distinct [A] is 2|E|−|V |+1, one has

dim(H[A]) = 2|E|+
1
2 |V1|

2|E|−|V |+1 = 2|V |−1 · 2
1
2 |V1|. (B.2)
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Thus H[A] is as large as 2
1
2 |V1| “halves” of the Fock space. To account for this multiplicity

we introduce new operators. Let ` = (e1, . . . , en) be a path with initial point v = s(e1) and
final point v′ = t(en) of odd degrees. We define

Ψ(`) = i
deg(v)+deg(v′)

2 +1

Γ∗(v) ·
∏

e∈St(v)
Γ(v, e)

S(`)

Γ∗(v′) ·
∏

e∈St(v′)
Γ(v′, e)

 , (B.3)

where we choose some orderings of St(v) and St(v′), modulo even permutations.
We list in points the main properties of Ψ(`):

• Ψ(`) commutes with S(`′) and Γ∗(v′′) for any path `′ and any vertex v′′.

• If `′ is a path with initial vertex v′ and final vertex v′′, then

Ψ(`)Ψ(`′) =

Ψ(``′) if v 6= v′′,

S(``′) if v = v′′,
(B.4)

where ``′ is the concatenation of ` and `′.

• We have braiding relations

Ψ(`)Ψ(`′) = (−1)(∂[`],∂[`′])Ψ(`′)Ψ(`). (B.5)

• Ψ(`)2 = −1.

One can further decompose each H[A] into subspaces corresponding to even and odd num-
bers of fermions, H[A],0 and H[A],1. One can show that each H[A],α is an irreducible rep-
resentation (of dimension 2|V |+

1
2 |V1|−2) of the algebra A0 ⊗C CG, where CG is the group

algebra of the group G generated by all Ψ operators.
There are some similarities between the presented structure and the so-called delo-

calized fermions [11, 52], considered e.g. in the field of topological quantum computation.
These excitations consist of multiple fermionic degrees of freedom, located at different
lattice sites and connected by strings.
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Despite being less known, local bosonizations of fermionic systems exist in spatial dimensions higher
than 1. Interestingly, the dual bosonic systems are subject to local constraints, as in theories with gauge
freedom. These constraints effectively implement long distance exchange interactions. In this work, we
study in detail one such system, proposed a long time ago. Properties of the constraints are elaborated for
two-dimensional, rectangular lattices of arbitrary sizes. For several small systems, the constraints are solved
analytically. It is checked that spectra of reduced spin Hamiltonians agree with the original fermionic ones.
The equivalence is extended to fermions in the presence of background Wegner Z2 fields coupling to
fermionic parity. This is illustrated by an explicit calculation for a particular configuration of Wegner’s
variables. Finally, a possible connection with the recently proposed web of dualities is discussed.
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I. INTRODUCTION

Relation between fermionic and spin degrees of freedom
is an old subject [1,2], but it still attracts a fair amount of
interest. There is a variety of motivations for such studies.
The presence of Grassmann variables in fermionic field
theories leads to practical difficulties in their study, hence
the desire to eliminate them [3,4]. Second, equivalences
between apparently different physical systems often offer
new insights into their dynamics. There has been a lot of
progress in these directions recently. For instance, it has
been shown [5,6] that fermions in space dimension d can be
exactly mapped to a local generalized gauge theory on the
dual lattice, with Z2 gauge variables associated to (d − 1)-
dimensional objects (hence an Ising model for d ¼ 1,
standard gauge theory with modified Gauss’ law for
d ¼ 2 and the so-called higher gauge theories for
d ≥ 3). This idea has been motivated by studies of fermions
in topological quantum field theories [7]. There exists also
a variety of known dualities in the continuum, especially
in low dimensions [8–10]. Many of them have been
discovered in string theoretic considerations. Some of
them connect bosons to fermions, which provides another
point of view on bosonizaton. Finally, intensive studies of
quantum computers and “quantum algorithms” stimulate

some progress in the Hamiltonian formulation; see in
particular [11–14].
Spin-fermion maps are particularly well understood

and exploited in systems of spatial dimension one. Their
extensions to higher dimensions typically lead to compli-
cated nonlocal interactions or constraints and seems to be
not practical.
In this paper, we revisit an old proposal [4,15] in which

spins interact locally and satisfy local constraints. These
constraints effectively take care of the nonlocality of
fermions in arbitrary space dimensions.
Let us begin with a simple fermionic Hamiltonian on a

one-dimensional lattice

Hf ¼ i
X
n

ðϕðnÞ†ϕðnþ 1Þ − ϕðnþ 1Þ†ϕðnÞÞ; ð1Þ

with fϕðmÞ†;ϕðnÞg ¼ δmn. Its equivalent in terms of spin
variables reads

Hs ¼
1

2

X
n

ðσ1ðnÞσ2ðnþ 1Þ − σ2ðnÞσ1ðnþ 1ÞÞ; ð2Þ

where Pauli matrices σkðnÞ commute between different
sites labeled by n. Boundary conditions for σ1 and σ2 are
taken to be opposite to (resp. the same as) boundary
conditions for fermions if the number of fermionsP

n ϕðnÞ†ϕðnÞ is even (resp. odd). The standard way to
derive this equivalence is via the Jordan-Wigner trans-
formation [1]. Direct generalization of this method to
higher dimensions leads to nonlocal spin-spin interactions.
Therefore, we adopt another route, which applies also to
multidimensional systems.
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To this end, we introduce the following Clifford varia-
bles (also called Majorana fermions):

XðnÞ ¼ ϕðnÞ† þ ϕðnÞ; YðnÞ ¼ iðϕðnÞ† − ϕðnÞÞ; ð3Þ

and rewrite the fermionic Hamiltonian from Eq. (1) in terms
of link (or hopping) operators,

Hs ¼
1

2

X
n

ðSðnÞ þ S̃ðnÞÞ;

SðnÞ ¼ iXðnÞXðnþ 1Þ; S̃ðnÞ ¼ iYðnÞYðnþ 1Þ: ð4Þ

Link operators obey the following relations:

SðnÞ2 ¼ 1;

½SðmÞ; SðnÞ� ¼ 0; m ≠ n − 1; nþ 1;

fSðmÞ; SðnÞg ¼ 0; m ¼ n − 1; nþ 1: ð5Þ

In words, they square to one, anticommute if they share
one common vertex and commute otherwise. Analogous
relations hold also with S replaced by S̃ in the above.
Furthermore, S and S̃ commute with each other,

½SðmÞ; S̃ðnÞ� ¼ 0: ð6Þ

It can be shown that all relations in the algebra generated
by S and S̃ operators follow from these already listed.
Furthermore, this algebra has only two irreducible repre-
sentations, corresponding to two possible values of fer-
mionic parity. Therefore, in order to perform bosonization,
it is sufficient to construct operators obeying relations in
Eqs. (5) and (6) in terms of spin operators. One such
representation reads

SðnÞ ¼ σ1ðnÞσ2ðnþ 1Þ; S̃ðnÞ ¼ −σ2ðnÞσ1ðnþ 1Þ:
ð7Þ

Replacing operators SðnÞ in the spin Hamiltonian by their
spin representatives gives Eq. (2).
In this way, we have changed fermionic and spin

variables without invoking the Jordan-Wigner transforma-
tion. This lends itself an interesting possibility that similar
construction exists in higher dimensions.
Before concluding this section, we note that at the heart

of the equivalence claim is the metaprinciple that systems
described by the same algebras of operators are equivalent.
One concrete substantiation of this, relevant for represen-
tations of Heisenberg groups, is given by the celebrated
Stone–von Neumann theorem [16]. See [5,15,17] for
discussion of this for algebras of fermionic bilinears, which
are directly relevant for the present work.
All systems discussed in this work are defined on finite

lattices. This leads to an interesting interplay between

boundary conditions, conserved charges, and constraints.
Explanation of these issues is one of the goals of the
present paper.
In the next section, we review the spin-fermion corre-

spondence in spatial dimension two, including the defi-
nition of constraints present in this model. In Sec. III, we
explain the interplay between boundary conditions and
fermionic parity. Furthermore, we solve the constraints for
few small systems and check explicitly that the spectra of
fermionic and spin Hamiltonians do coincide. In Sec. IV,
we show that constraints can be interpreted as the condition
that certain Z2 gauge field hidden in the bosonic theory is
trivial. Modifying the form of constraints is equivalent to
coupling fermions to an external gauge field. This is
illustrated by a concrete calculation, in which fermions
in a constant magnetic field are considered. We conclude in
Sec. V and discuss a very attractive potential relation with
the rapidly developing family of dualities in (2þ 1)
dimensions.

II. THE EQUIVALENT SPIN MODEL
IN TWO DIMENSIONS

Generalization of the above idea to two and higher space
dimensions is known for a long time [4]. In two dimen-
sions, the fermionic Hamiltonian

Hf ¼ i
X
n⃗;e⃗

ðϕðn⃗Þ†ϕðn⃗þ e⃗Þ − ϕðn⃗þ e⃗Þ†ϕðn⃗ÞÞ

¼ 1

2

X
l

ðSðlÞ þ S̃ðlÞÞ; l ¼ ðn⃗; e⃗Þ ð8Þ

can be again rewritten in terms of two types of hopping
operators labeled by links of a two-dimensional lattice.
They obey relations which are a straightforward generali-
zation of these from the one-dimensional case. In short, the
hopping operators of the same type commute unless
corresponding links have one common site. The difference
is that now four, instead of two anticommuting link
operators, are attached to each lattice site. Consequently,
one needs bigger matrices to satisfy the corresponding
algebra in higher dimensions.
In two dimensions, we choose Euclidean Dirac matrices

and set (cf. Fig. 1)

Sðn⃗; x̂Þ ¼ Γ1ðn⃗ÞΓ3ðn⃗þ x̂Þ; Sðn⃗; ŷÞ ¼ Γ2ðn⃗ÞΓ4ðn⃗þ ŷÞ;
S̃ðn⃗; x̂Þ ¼ Γ̃1ðn⃗ÞΓ̃3ðn⃗þ x̂Þ; S̃ðn⃗; ŷÞ ¼ Γ̃2ðn⃗ÞΓ̃4ðn⃗þ ŷÞ;

Γ̃k ¼ i
Y
j≠k

Γj: ð9Þ

It is a straightforward exercise to show that the
two-dimensional analogue of relations in Eq. (5)
remains satisfied. Our Hamiltonian in the spin repre-
sentation reads
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Hs ¼
1

2

X
l

ðSðlÞ þ S̃ðlÞÞ: ð10Þ

Generalization to higher dimensions is simple. One
needs representations of higher Clifford algebras, i.e., by
larger Dirac matrices. In d dimensions, we use 2d anti-
commuting ones which corresponds to the 2d links meeting
at one lattice site. Consequently, we have a viable candidate
for a local bosonic system equivalent to free fermions in
arbitrary dimensions.
The story is not over, however, since representation in

Eq. (9) is redundant with respect to the fermionic one. In
fact, in two space dimensions, it doubles the number of
degrees of freedom per lattice site compared to the original
fermionic system. Evidently, one needs additional con-
straints for above spins to render the exact correspondence.
This can be traced to the fact that original fermionic
operators S and S̃ obey additional relations, not present
in spatial dimension one. These will have to be imposed as
constraints on physical states in the spin system.
Necessary constraints are provided by the plaquette

operators Pn [from now on n is a two-dimensional index
n ¼ ðnx; nyÞ]. If we denote by Cn an elementary plaquette
labeled by its lower-left corner, say, then

Pn ¼
Y
l∈Cn

SðlÞ: ð11Þ

These operators are identically 1 in the fermionic repre-
sentations, while in the spin representation they merely
satisfy P2

n ¼ 1. Hence, imposing constraints

Pn ¼ 1 ð12Þ

is necessary for the validity of the fermion-spin equiv-
alence. It was shown already in [4] that Eq. (12) indeed
correctly reduces the number of degrees of freedom per
lattice site.

Details of how the claimed reduction works depend on
the lattice size, boundary conditions, and other specifica-
tions. Detailed answer to this and related questions is the
aim of the present work, as continued in the next sections.
General explanations are given, with checks on small
lattices performed analytically using symbolic algebra
software [18].

III. THE CONSTRAINTS

The precise form of constraints that have to be imposed
in order to make the above fermion-spin equivalence valid
depends on the geometry of the lattice. To illustrate this
feature, we consider two-dimensional Lx × Ly rectangular
lattices [19]. Periodic or antiperiodic boundary conditions
are used. Different periodicity conditions for fermions and
spins are allowed,

ϕðnþ Lxx̂Þ ¼ ϵxϕðnÞ; Γkðnþ Lxx̂Þ ¼ ϵ0xΓkðnÞ;
ϵx; ϵ0x ¼ �1; ð13Þ

and similarly for the other direction.
We seek to impose N ¼ LxLy constraints from Eq. (12)

to eliminate abundant degrees of freedom. However, not all
of them are independent. For example, in the spin repre-
sentation plaquette operators satisfy the identityY

n

Pn ¼ 1; ð14Þ

which leaves at most N − 1 independent constraints.
In addition, on finite periodic lattices, one can also

construct “Polyakov line” operators

LxðnyÞ ¼
YLx

nx¼1

Sðnx; ny; x̂Þ;

LyðnxÞ ¼
YLy

ny¼1

Sðnx; ny; ŷÞ: ð15Þ

In fermionic representation, they are just pure numbers
sensitive to the boundary conditions, while in spin repre-
sentation their squares are unity, similarly to the plaquette
operators. Hence, again they provide additional projectors.
In principle, there are Lx þ Ly line operators, but in fact
they can be shifted perpendicularly by multiplying them
with appropriate rows or columns of plaquette operators
[20]. Therefore, altogether there are only two more can-
didates for independent projectors.
It has been shown in [15] that there are no further

constraints that have to be imposed besides those defined
by plaquette and line operators. This has also been revisited
and generalized in the work [17], which was done in
parallel to this paper.

FIG. 1. Assignment of the Dirac matrices to lattice vertices—
see Eq. (9).
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It turns out that even this set ofN − 1 plaquettes and two
line projectors is overcomplete. The additional structure is
revealed once we consider the operator of fermion number
at each site (i.e., the fermion density),

NðnÞ ¼ ϕ†ðnÞϕðnÞ: ð16Þ

Since Hamiltonian in Eq. (8) is moving fermions between
neighboring sites only, the total number of fermions,
N ¼ P

n NðnÞ, is conserved, but obviously their density
NðnÞ is not.
In the spin representation, the number operator is related

to the Γ5 matrix

Γ5ðnÞ ¼ ηð−1ÞNðnÞ ¼ ηð1 − 2NðnÞÞ; ð17Þ

where η ¼ �1 represents the freedom of defining a
fermion-empty and a fermion-occupied state in the spin
representation. In particular, the total fermionic parity
ð−1ÞN is given by the product of Γ5ðnÞ over all lattice
sites. As in the fermionic representation, N is conserved,
while the number densitiesNðnÞ are not. On the other hand,
the plaquette and line operators do commute with the local
densities. This will be exploited below when we diago-
nalize constraints.
Calculating directly from the definition of L and ð−1ÞN

operators in the spin representation, one obtains the
following identity:

Π≡ YLy

ny¼1

LxðnyÞ
YLx

nx¼1

LyðnxÞ

¼ ð−ϵ0xÞLyð−ϵ0yÞLxð−ηÞLxLyð−1ÞN; ð18Þ

which [for fixed ð−1ÞN)] implies a relation between two
Polyakov line projectors if at least one of Lx, Ly is odd. On
the other hand, if both Lx and Ly are even, the left-hand side
is insensitive to the choice of one of two values of Polyakov
lines. Indeed, on the subspace defined by plaquette con-
straints, one has Π ¼ LxðnyÞLyLyðnxÞLx , which is a c-
number if Lx and Ly are even.
Another crucial ingredient in understanding the structure

of constraints is derived by evaluating the value of Π in
fermionic representation. Comparing with the result,
Eq. (18), one obtains the identity

ð−1ÞN ¼ ηLxLy

�
−
ϵ0x
ϵx

�
Ly
�
−
ϵ0y
ϵy

�
Lx

: ð19Þ

This means that for given value of η, and boundary
conditions for fermions and spins, only one of the two
possible values of ð−1ÞN is realized. This means that for the
other there do not exist any solutions of constraints. We
remark that a formula analogous to Eq. (19) (though in

general not as transparent) exists also for more general
lattice geometries.
Recall that in the ordinary fermionic Fock space the

dimension of the space of states for a given value of ð−1ÞN
is 2N−1. On the other hand, in our generalized system
without constraints imposed, this dimension is equal to
4N−1, so it is too large by a factor 2N . Thus, it is natural to
anticipate that there should be N − 1 independent con-
straints, each of which reduces the Hilbert space dimension
by a factor of 2.
We have already shown that at mostN − 1 plaquettes are

independent and that if at least one of Lx and Ly is odd, then
one Polyakov line can be eliminated in favor of the other
constraints. Thus, in this case, one has exactly N − 1
independent plaquettes and one independent Polyakov
loop. On the other hand, if Lx and Ly are even, it is not
possible to eliminate one of the line operators. Hence, it
must be that onlyN − 2 plaquettes are independent. This is
indeed the case, as will be explained in the subsection III A.
It is now known [15,17] that it is always possible in

principle to find 2N−1 linearly independent solutions of
constraints, corresponding to 2N−1 basis vectors in one half
of the Fock space. Besides the restriction to a fixed value
ð−1ÞN , the two systems are indeed equivalent: there exists
a unitary operator between their Hilbert spaces which
carries even [i.e., commuting with ð−1ÞN] operators to
spin operators according to the presented prescription. In
particular, any fermionic Hamiltonian, which is always
even, has the same spectrum in the fermionic representation
and in the spin representation.
On the other hand, explicit solutions of constraints are

known only in certain special cases. In the forthcoming
discussion, we will discuss how constraints can be solved,
at least for small lattice sizes. Results of all these calcu-
lations, carried out using symbolic algebra software, are in
accord with theoretical predictions outlined above, provid-
ing a solid check of correctness. Needless to say, develop-
ment of practical ways to deal with constraints is crucial for
potential applications.

A. Some explicit examples

The complete Hilbert space of our system of spins on
Lx × Ly lattice has 4N dimensions, N ¼ LxLy. States are
represented by configurations

fi1; i2;…; iN g ð20Þ

of N Dirac indices, in ¼ 1;…; 4 with n ¼ 1;…;N label-
ing sites of the lattice. All operators are constructed from
tensor products of N -fold four-dimensional gamma matri-
ces and the unity. We use the specific representation of Γk

(cf. Table I), any other equivalent choice is possible. In
principle, they require ð4N Þ2 units of computer storage;
however, in general, they are sparse matrices and take only
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Oð4N Þ memory size. Still, the memory requirement is the
main limitation for this approach and restricts available
sizes to ca. N ∼ 16.
To reduce further the memory demand, we split the

whole Hilbert space intoN þ 1 sectors of the fixed fermion
multiplicity (eigenvalue of N) p ¼ 0; 1;…;N . In the
fermionic representation, the total number of fermions is
obviously conserved. The same is true in our spin repre-
sentation. Namely, the corresponding number operator

N ¼
X
n

1

2
ð1 − ηΓ5ðnÞÞ ð21Þ

commutes with the Hamiltonian in Eq. (10). Moreover, it
also commutes with all plaquette and line operators. This
allows to carry out the analysis of constraints in the sectors
of fixed p independently. Choosing the sector of fixed
multiplicity amounts to restricting the full basis to states in
Eq. (20) with N − p indices i in the “vacuum class,” i.e.,
i ¼ 2 or 3; then remaining p indices i0 are in the “excitation
class,” i0 ¼ 1 or 4.
In practical terms, we will now be dealing with the

N þ 1 fixed multiplicity sectors of the full Hilbert space
separately, the size of each sector being

2N
�
N

p

�
→

�
N

p

�
ð22Þ

before and after imposing constraints on spins.
Moreover, constraint operators commute not only with

the number operator N but also with each of the individual
densities NðnÞ. This allows to further split the problem by
performing the reduction of Hilbert space in each sub-
sector of fixed p and fixed positions of p spin excitations
r1; r2;…; rp (or equivalently, fermionic coordinates) in the
configuration space. Now, the reduction of dimension takes
the form

2N → 1: ð23Þ

Restriction to subspaces with fixed eigenvalues of NðnÞ
allows to save computer memory. Furthermore, solutions of
constraints obtained this way have clear physical interpre-
tation, as they are parametrized by space coordinates of p
fermions. This is valid for all lattice sizes. It should be
noted, however, that reduction in Eq. (23) is possible only

for the purpose of studying the constraints. The reduced
spin Hamiltonian has to be calculated in the bigger sub-
space of fixed p. The basis of this subspace, consisting of
ðNp Þ vectors, is obtained by performing the reduction in

Eq. (23) separately for each of ðNp Þ possible density
configurations. This provides an appropriate basis of
constraint-satisfying spin excitations in the larger sector
of fixed fermionic multiplicity p.
To proceed further, we define the projection operators

associated with all plaquettes and two Polyakov lines,

Σn ¼
1

2
ð1þ PnÞ; ΣZ ¼ 1

2
ð1þ LZÞ; Z ¼ x; y;

ð24Þ
and calculate their matrix representations, at fixed total
multiplicity p. For illustration, we explicitly display below
traces of successive products of all relevant projectors on
3 × 3 and 4 × 4 lattices.
For the 3 × 3 lattice (Table II), the reduction was

performed in sectors of fixed fermion multiplicity p and
proceeds according to the scheme from Eq. (22). Indeed,
including successive projectors reduces dimensions by half,
as expected. The last (here Σ33) plaquette projector does not
further reduce the dimension, in agreement with the earlier
discussion. Moreover, the final result is nonzero only for
multiplicities which satisfy Eq. (19). Finally, the second
Polyakov line is dependent on other projectors, as is Σ33,
for allowed multiplicities, while it is incompatible with the
rest for forbidden values of p. The final dimensionalities of
the fully reduced spin Hilbert spaces agree with the sizes of
the corresponding sectors with p indistinguishable fer-
mions [see Eq. (22)], as it should be.
In the 4 × 4 case, the reduction was done in subsectors of

fixed p fermionic coordinates [scheme in Eq. (23)]. Each of
these has the same dimension 2N , independently of p. As
in the previous case, adding subsequent plaquette projec-
tors reduces the size by half until one reaches the last two
plaquettes. Interestingly, neither of these further reduces the
remaining Hilbert space. This means that for 4 × 4 lattices
(and more generally for ðevenÞ × ðevenÞ ones) two pla-
quettes are dependent. This is easy to explain: for even-by-
even lattices, one can split all plaquettes into two classes,
according to the value of ð−1Þnxþny , where n ¼ ðnx; nyÞ is
the coordinate of the lower-left corner of the plaquette.

TABLE I. Explicit representation of Euclidean Dirac matrices used in this section.

Γ1 Γ2 Γ3 Γ4 Γ50
BB@

0 0 −1 0

0 0 0 1

−1 0 0 0

0 1 0 0

1
CCA

0
BB@

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1
CCA

0
BB@

0 −i 0 0

i 0 0 0

0 0 0 −i
0 0 i 0

1
CCA

0
BB@

0 0 −i 0

0 0 0 1

i 0 0 0

0 −i 0 0

1
CCA

0
BB@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

1
CCA
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Then, for each of the two groups independently, one has the
relationY

n

Pn ¼ ð−1ÞN; nx þ ny even or odd: ð25Þ

Consequently, on ðevenÞ × ðevenÞ lattices, two plaquette
projectors can be expressed in terms of the other. This
explains the content of Table III.
On the other hand, both Polyakov line projectors are now

independent. This has been explained in the discussion
below Eq. (18). Regardless of parities of Lx and Ly, the
number of independent projectors is N , although they are
distributed in a different way between plaquette and line
operators.

The whole discussion can be repeated for other situations
as well. The results are summarized in Table IV for all
four cases.
The final consistency check is to calculate the spectrum

of the spin Hamiltonian in the subspace defined by the
constraints. Using methods outlined above, we construct
for each p a basis of states satisfying all constraints. For
small lattices considered in this example (see also the next
section), all eigenvectors of combined projectors are
analytically generated by Mathematica [18]. Having done
that, matrix elements of the reduced spin Hamiltonian in the
relevant subspace can be calculated. This exercise has been
repeated for several multiplicity sectors on above lattices.
In each of the considered cases, the complete spectrum of

TABLE III. Reduction of the spin Hilbert space for subsectors 0 ≤ p ≤ 16, and fixed coordinates, on a 4 × 4
lattice. Sites of the lattice are ordered lexicographically, thus, e.g., sites from #1 to #5 means sites (1,1), (2,1), (3,1),
(4,1), and (1,2).

Sector (p) Even, 0 ≤ p ≤ 16 Odd, 0 < p < 16

Occupied sites From # 1 to # p

Hilbert space reduction Tr Σ11 32768
Tr Σ11Σ21 16384

Tr Σ11…Σ31 8192
Tr Σ11…Σ41 4096
Tr Σ11…Σ12 2048
Tr Σ11…Σ22 1024
Tr Σ11…Σ32 512
Tr Σ11…Σ42 256
Tr Σ11…Σ13 128
Tr Σ11…Σ23 64
Tr Σ11…Σ33 32
Tr Σ11…Σ43 16
Tr Σ11…Σ14 8
Tr Σ11…Σ24 4
Tr Σ11…Σx 2
Tr Σ11…Σy 1
Tr Σ11…Σ34 1 0
Tr Σ11…Σ44 1 0

TABLE II. Reduction of the spin Hilbert space for 3 × 3 lattice in p-particle sectors. Periodic boundary conditions
are assumed.

p ¼ 0 1 2 3 4 5 6 7 8 9

Tr Σ11 256 2304 9216 21504 32256 32256 21504 9216 2304 256
Tr Σ11Σ12 128 1152 4608 10752 16128 16128 10752 4608 1152 128
Tr Σ11Σ12Σ13 64 576 2304 5376 8064 8064 5376 2304 576 64
Tr Σ11Σ12…Σ21 32 288 1152 2688 4032 4032 2688 1152 288 32
Tr Σ11Σ12…Σ22 16 144 576 1344 2016 2016 1344 576 144 16
Tr Σ11Σ12…Σ23 8 72 288 672 1008 1008 672 288 72 8
Tr Σ11Σ12…Σ31 4 36 144 336 504 504 336 144 36 4
Tr Σ11Σ12…Σ32 2 18 72 168 252 252 168 72 18 2
Tr Σ11Σ12…Σ33 2 18 72 168 252 252 168 72 18 2
Tr Σ11Σ12…Σx 1 9 36 84 126 126 84 36 9 1
Tr Σ11Σ12…Σy 0 9 0 84 0 126 0 36 0 1
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known eigenenergies of p free fermions was analytically
reproduced.

IV. MODIFIED CONSTRAINTS AND
BACKGROUND FIELDS

Above discussion addressed solely the case where all
plaquette operators were constrained to unity. In principle,
however, one could consider the whole family of 2N

modified constraints

Pn ¼ �1; 1 ⩽ n ⩽ N : ð26Þ

Such sectors exist in the unconstrained spin system, which
raises the question of their interpretation. The answer is
simple and instructive, as will be discussed now.
Consider the following modification of the original

fermionic Hamiltonian in Eq. (1):

Hf ¼ i
X
n⃗;e⃗

ðUðn⃗; n⃗þ e⃗Þϕðn⃗Þ†ϕðn⃗þ e⃗Þ

−Uðn⃗; n⃗þ e⃗Þϕðn⃗þ e⃗Þ†ϕðn⃗ÞÞ

¼ 1

2

X
l

ðUðlÞSðlÞ þUðlÞS̃ðlÞÞ; ð27Þ

where UðlÞ is an additional Z2 field assigned to links l.
Then in the spin representation

Hs ¼
1

2

X
l

ðUðlÞSðlÞ þ UðlÞS̃ðlÞÞ; ð28Þ

with the same variables UðlÞ, and SðlÞ given by Eq. (9).
Clearly, these Hamiltonians describe fermions and/or
corresponding spins in a background Z2 gauge field. As
for the free Hamiltonian (and more generally any
Hamiltonian), systems described by Hf and Hs are equiv-
alent, as long as we restrict the spin Hilbert space in a way
discussed in the previous section. We note in passing that
this provides an extension of the fermion-spin equivalence
to the case of external fields as well.
Interestingly, it is also possible to introduce the back-

ground gauge field in a way that it is not explicitly visible in
the spin Hamiltonian [21]. Indeed, one can absorb the UðlÞ
factors into new hopping operators [22] and define

S0ðlÞ ¼ UðlÞSðlÞ; S̃0ðlÞ ¼ UðlÞS̃ðlÞ: ð29Þ

This does not change the commutation rules obeyed by
these operators. Now, the spin Hamiltonian does not
explicitly depend on the external field,

H0
s ¼

1

2

X
l

ðS0ðlÞ þ S̃0ðlÞÞ; ð30Þ

but the constraints on the new spin variables do. They
readily follow from Eq. (11),

P0
n ¼

Y
l∈Cn

UðlÞ: ð31Þ

That is, the system of new spins is not free, but remembers
the interactions via constraints in Eq. (31) only. In other
words, there are two ways of introducing minimal inter-
action with the external field which are as follows:
(1) By introducing link variables explicitly into the

Hamiltonian and imposing the “free” form of the
constraint in Eq. (12).

(2) By using the free spin Hamiltonian from Eq. (10)
with “interacting” constraint in Eq. (31).

We emphasize that the first method is viable for any
interactions, because the equivalence between fermions
and spins is valid for any Hamiltonian. The second method
is possible due to the specific structure of the minimal
coupling, which amounts to introducing parallel transports
in any term in the Hamiltonian which involves products of
on distinct lattice sites charged under the gauged symmetry.
It provides an interesting interpretation of the whole spin
Hilbert space.
On the fermionic side, the Hamiltonian in Eq. (27) is that

of two-dimensional fermions in the fixed, external gauge
field of the Wegner type [23]. The gauge field is not
dynamical. On the other hand, our spin system is also
coupled to the same gauge field: various boundary con-
ditions are probing different gauge invariant classes of the
Z2 variables [24].
The phenomenon discussed above will be illustrated by

working out a simple example in subsection IVA.
One particularly interesting feature of the presented

construction is that the allowed value of ð−1ÞN becomes
dependent on the background field. More precisely, let
ð−1ÞN0 be the right-hand side of Eq. (19). In the presence of
the field UðlÞ, relation Eq. (19) is modified to

ð−1ÞN ¼ ð−1ÞN0 ·
Y
l

UðlÞ; ð32Þ

where the product is taken over all links of the lattice.
Derivation of this formula is analogous to the case of
vanishing background field. An interesting gauge-theoretic
interpretation of this relation has been proposed in [17] and
is briefly reviewed in Sec. V.

TABLE IV. Number of independent projectors and consistent
multiplicities for periodic boundary conditions in both represen-
tations, ϵ ¼ ϵ0 ¼ 1.

Lx Ly Plaquettes Lines Multiplicity

Odd Odd N − 1 Lx or Ly Odd
Odd Even N − 1 Lx Odd
Even Odd N − 1 Ly Odd
Even Even N − 2 Lx and Ly Even
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A. A soluble example

Consider the configuration of Wegner variables given by

Uxðx; yÞ ¼ ð−1Þy; Uyðx; yÞ ¼ 1; ð33Þ
where we assume that Ly is even. In this case, the fermionic
Hamiltonian in Eq. (27) can be diagonalized analytically
[25]. The one-particle spectrum reads

Eð1Þ
magðkx; kyÞ ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2

�
2πkx
Lx

�
þ sin2

�
2πky
Ly

�s
; ð34Þ

with 1 ⩽ kx ⩽ Lx and 1 ⩽ ky ⩽
Ly

2
, while in the free case

one has

Eð1Þ
freeðkx; kyÞ ¼ 2 sin

�
2πkx
Lx

�
þ 2 sin

�
2πky
Ly

�
; ð35Þ

with 1 ⩽ kz ⩽ Lz and z ¼ x, y.
Configuration given by Eq. (33) leads to a Wegner’s

version of a constant magnetic field,

Pn ¼ −1; 1 ⩽ n ⩽ N : ð36Þ
We have repeated the procedure outlined in Sec. III A for

the 3 × 4 lattice in order to reproduce this result. Table V
shows, familiar by now, pattern of reduction of Hilbert
spaces. All proceeds as before, the new element being the
distinguished role of the line projector associated with Lx,
as presented in Table IV.
Table V displays results for three different orderings (A,

B, C) of applying projectors. Although the final effect is the
same [26], results in the intermediate stages are different, as
will be explained now. Orderings A and B differ only by the
order of the two line projectors which are added at the end of
the process. Before that, we employ all N ¼ 12 plaquette
projectors. As discussed before, the last one is dependent on

the rest. Then, among the two line projectors, Σy is
ineffective, i.e., dependent on other projectors, while Σx
is independent and reduces the remaining space, regardless
of the ordering A or B of imposing the constraints.
The situation is different in the scheme C, in which line

projectors are imposed before the last three plaquettes. In
this case, Σy acts as an independent projector. This does not
contradict the discussion below Eq. (18), because operators
LyðnxÞ are independent for different nx if not all plaquette
constraints are imposed (indeed, their ratio is precisely the
product of some number of plaquette operators). The total
number of independent constraints is equal to N , so two
among the last three plaquette constraints in the ordering C
have to be ineffective. This is indeed seen in Table V.
Furthermore, the final size of the one-particle sector is the
correct one.
Matrix elements of the spin Hamiltonian in the one-

particle sector were calculated with two choices of con-
straints and boundary conditions which are as follows:
(1) Free [Eq. (12)] together with Lxð1Þ ¼ 1, Lyð1Þ ¼ 1.
(2) Magnetic [Eq. (36)] and Lxð1Þ ¼ −1, Lyð1Þ ¼ 1.
In both cases, the correct fermionic spectrum was

reproduced from the reduced spin Hamiltonian.

V. SUMMARY AND OUTLINE

Anoldproposal for local bosonizationof fermionic degrees
of freedom in general dimensions was revisited. Resulting
spin systems are indeed local. They are subject to additional
constraints which, even though local themselves, introduce
effectively long range interactions. In particular, they are
sensitive to the lattice geometry and fermionic multiplicities.
In this paper, we have studied and classified this

dependence in detail. The necessary reduction of spin
Hilbert space was demonstrated analytically for several
small lattices. A number of regularities have been found.
We have provided explanations which are valid for larger
systems as well. Most importantly, for a given lattice size
and boundary conditions, the fermion-spin equivalence
holds only in the subspace defined by one of the two
possible values of the fermionic parity. In this sector,
imposing all constraints resulted in reduction of the spin
Hilbert space to dimension appropriate for fermions.
For the above small lattices, all relevant constraints were

solved with the aid of Mathematica. Consequently, com-
plete eigenbases of spin states fulfilling the constraints are
known analytically. Their structure is tantalizingly simple.
Explicit generalization to arbitrary lattice sizes still remains
a challenge.
The second step was to calculate the spectra of proposed

spin Hamiltonians, reduced to the subspace defined by
constraints. In all considered cases, the well-known fer-
mionic eigenenergies have been readily reproduced.
Afterwards, the equivalence was generalized to fermions

coupled minimally to a background Z2 gauge field. Apart
from being interesting by itself, this provided a simple and

TABLE V. Reduction of the spin Hilbert space for the 3 × 4
lattice in the one excitation sector, with orderings (A, B, C) of
applying projectors. Periodic boundary conditions are used.

p 1

Tr 1 49152
TrΣ11 24576
TrΣ11Σ21 12288
Tr…Σ31 6144
Tr…Σ12 3072
Tr…Σ22 1536
Tr…Σ32 768
Tr…Σ13 348
Tr…Σ23 192
Tr…Σ33 96
Tr…Σ14 48 Tr…Σ14 48 Tr…Σx 48
Tr…Σ24 24 Tr…Σ24 24 Tr…Σy 24
Tr…Σ34 24 Tr…Σ34 24 Tr…Σ14 12
Tr…Σx 12 Tr…Σy 24 Tr…Σ24 12
Tr…Σy 12 Tr…Σx 12 Tr…Σ34 12

A B C
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intuitive interpretation of the constraints: changing the
value of constraint operators is equivalent to coupling
fermions to the background field. This can be achieved
without introducing the background field explicitly in the
spin Hamiltonian. All constraints, conceivable for this
system, split into gauge invariant classes which, are in
one to one correspondence with all possible gauge orbits of
the external Z2 field. A simple proof of this fact was given.
In addition, the consistency of the whole scheme was
directly checked for a particular configuration of Z2

variables—the Wegner’s analog of a constant magnetic
field. Indeed, the analytically obtained spectrum of the spin
Hamiltonian, reduced to the constraint-fulfilling sector,
reproduced the fermionic eigenenergies in this field.
Summarizing, the exact equivalence between lattice

fermions and constrained Ising-like spins was checked for
a range of small lattices in (2þ 1) dimensions. The interplay
between the constraints, lattice geometry, and boundary
conditions is now fully understood and classified for all
fermion multiplicities and all lattice volumes. Moreover, for
above small systems, the constraints were explicitly solved
leading to the direct construction of the reduced spin Hilbert
spaces. From a practitioner’s standpoint, this provides
convincing evidence for the validity of the fermion-spin
equivalence by itself, since one would generally not expect
an exact duality to hold by accident and only for small lattice
sizes [27]. Proofs of validity for quite general lattice
geometries and arbitrary volumes are now available in the
literature, but until now almost no practical implementations
have been presented. This gap is now filled.
For simplicity, most of the discussion and our calcu-

lations concentrated on the two-dimensional case.
Nevertheless, extension to higher space dimensions does
not present any conceptual difficulties and in fact does not
bring any qualitatively new theoretical features.
Numerous dualities between various (2þ 1)-dimensional

theories have been recently discovered (for reviews and
references, see, e.g., [8,9]). Building on the seminal papers
of Peskin, Polyakov, and others [28–30], there was a steady
growth of understanding of various phenomena [31–34].
This culminated in a dramatic increase of interest in the
subject in the last few years [10,35–38]. Many new
structures have been found even behind the simplest and
classic by now, Kramers-Wannier duality in (1þ 1) dimen-
sions [9,39]. To our knowledge, however, none of the
available up-to-date dualities accounts exactly for the boso-
nization studied in this paper. On the other hand, there are
several structural similarities, which we point out below.
Since gamma matrices employed here can be represented

as tensor products of two Pauli matrices, our bosonization
connects free fermions to a system roughly viewed as pairs
of Ising spins living at lattice sites. Upon imposing
constraints, such a model becomes exactly equivalent to
above fermions from Eq. (8). A nontrivial relation emerges
between the value of conserved Z2 charge ð−1ÞN on one
side of the duality and boundary conditions on the other.
Such phenomena occur already for dualities as those of

Jordan and Wigner or Kramers and Wannier, as can be seen
upon carefully keeping track of various signs and global
constraints; see [40] for a detailed review.
Alternatively, the unconstrained pairs of spins with local

Ising-like interactions should describe fermions interacting
with a dynamical Z2 field. An attempt to construct such a
theory was recently reported in [17].
Most of dualities mentioned above involve some dynami-

cal gauge fieldA. It is often the case that this gauge field obeys
a modified form of the Gauss’ law [41], which involves field-
dependent phase factors. This is related to the fact that the
gauge field action is not exactly gauge invariant, but its gauge
variation depends only on its value on the spacetime
boundary, and hence can be absorbed into a redefinition of
the initial and final statewave functions. Suchmechanism is at
work in particular in Chern-Simons theories and their version
suitable for finite groups, introduced byDijkgraaf andWitten
[42].Modification of theGauss’ law has the consequence that
magnetic flux excitations become paired with electric
charges. This mechanism, known as flux attachment, may
lead to a transmutation of statistics, due to the presence of
Aharonov-Bohm phases [10,31]. Interestingly, the Z2 gauge
field introduced in Sec. IV does also have these proper-
ties [17,43].
Mapping presented here is an exact relation between

microscopic degrees of freedom for fermions and spins, as
in the Jordan-Wigner duality [9]. This is different than
some of the recently proposed dualities, which connect
effective theories in vicinities of RG fixed points. These are
typically very difficult to establish rigorously. However,
one can still make arguments based on universality,
matching of symmetries and anomalies, etc.
It is an attractive possibility that results established in

this paper provide a microscopic realization of one of the
“web of dualities” discussed, e.g., in [8,10]. One possible
candidate would be the duality between a scalar field and a
fermi-gauge system described in [8]. We look forward to
study some of these questions in detail.
Finally, we remark that bosonization discussed in this

work can be extended to higher dimensions simply by
using higher dimensional Clifford algebras. In d space
dimensions, this would lead to a d-plet of Ising spins living
at each lattice site and interacting with nearest-neighbor
couplings. It would then be interesting to see if such a
mapping has its counterpart among the recently proposed
webs of dualities.
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Bosonization of Majorana modes and edge states

Arkadiusz Bochniak,∗ B lażej Ruba,† and Jacek Wosiek‡

Institute of Theoretical Physics, Jagiellonian University, Poland.
(Dated: November 23, 2021)

We present a bosonization procedure which replaces fermions with generalized spin variables
subject to local constraints. It requires that the number of Majorana modes per lattice site matches
the coordination number modulo two. If this condition is not obeyed, then bosonization introduces
additional fermionic excitations not present in the original model. In the case of one Majorana mode
per site on a honeycomb lattice, we recover a sector of Kitaev’s model. We discuss also decagonal
and rectangular geometries and present bosonization of the Hubbard model. For geometries with a
boundary we find that certain fermionic edge modes naturally emerge. They are of different nature
than edge modes encountered in topological phases of matter. Euclidean representation for the
unconstrained version of a spin system of the type arising in our construction is derived and briefly
studied by computing some exact averages for small volumes.

I. INTRODUCTION

Bosonization is an old subject, which is of interests
both in condensed matter and high energy physics. The
Jordan-Wigner transformation [1] is one of the most fa-
mous methods. It provides an effective bosonization pro-
cedure in (1 + 1)-dimensions. Its non-local character in
higher dimensions leads to the search of alternative meth-
ods. There exists a zoo of proposals [2–15], including ap-
proaches motivated by the Tomonaga-Luttinger model
[16], generalizations or modifications of Witten’s non-
abelian bosonization [17], as well as purely algebraic ap-
proaches [18]. Bosonization is also closely related to the
subject of dualities, such as the Kramers-Wannier duality
[19, 20] or the more recent web of dualities [11, 21–23].

Besides classical applications such as solving certain
many body quantum models exactly [24] or overcoming
sign problems in Monte Carlo studies [25, 26], bosoniza-
tion has been invoked in the study of problems in quan-
tum computation [27, 28] and topological phases of mat-
ter [29–33]. In [34] a two-dimensional quantum spin
liquid model integrable using bosonization methods has
been proposed. More recently, certain bosonization tech-
niques were used to study inhomogeneous Luttinger liq-
uids [35], quantum phase diagram in one-dimensional su-
perconductors [36] and also the fractional quantum Hall
fluids [37].

In [4] a bosonization technique, here referred to as the
Γ model, was proposed. It transforms in a local way
a fermionic model into a generalized spin system subject
to constraints. This correspondence was then made more
precise in [38]. Generalization and new proofs were given
in [5, 39]. Constraints present in the Γ model were inter-
preted as the pure gauge condition for a certain Z2 gauge
field. Modification of these constraints turned out to be
equivalent to coupling fermions to an external gauge field.

∗ arkadiusz.bochniak@doctoral.uj.edu.pl
† blazej.ruba@doctoral.uj.edu.pl
‡ jacek.wosiek@uj.edu.pl

The most general version of the Γ model developed so
far is subject to several important limitations. First, it
corresponds to a system with one fermion (hence two
states) per lattice site. In this work we lift this re-
striction and bosonize systems with arbitrary, not nec-
essarily even, number of Majorana modes (which are in
a certain sense halves of an ordinary fermion) per lat-
tice site. Second, in the formulations considered before
the present work it was crucial that all lattice sites have
an even number of neighbours. This covers many in-
teresting examples, inlcuding the toroidal geometries fre-
quently used in lattice simulations. Nevertheless, already
for finite square lattices (say, with open boundary condi-
tions) there exists an issue related to the existence of the
boundaries. As remarked in [5, Appendix B], coordina-
tion number changes for vertices on the boundary, which
may call for an adjustment of the bosonization proce-
dure. It was argued that some Majorana modes may be
present on the boundary. In this paper we come back to
this issue and discuss it in detail.

We emphasize that the notion of a Majorana fermion
used here has almost nothing to do with the one from
high energy physics [40], which refers to a spinor field in-
variant under charge conjugation transformation. In par-
ticular Lorentz symmetry (or lack thereof) plays no role.
Here Majorana fermions are self-adjoint operators obey-
ing canonical anticommutation relations. Every standard
fermion may be decomposed into a pair of Majoranas
(real and imaginary part) in a canonical way; on the
other hand pairing of Majoranas into usual fermions de-
pends on a choice of additional structure in the space of
Majorana modes [41].

One source of interest in Majorana modes in physics
comes from the theory of superconductivity [42, 43]. In
the presence of Abrikosov vortices [44] there may exist a
finite number of Majorana zero modes per vortex, which
resemble properties of Majorana particles [45]. Such phe-
nomenon exists for eample for chiral two-dimensional
p-wave superconductors [46]. Analogous vortex-related
modes can be also found in superfluid 3He [47]. Ma-
jorana zero modes are expected to appear also in the
Moore–Read quantum Hall state [48] with filling fraction
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ν = 5
2 (the so-called Pfaffian state). Quite generally, free

fermion systems characterized by nonzero Z2 topological
invariant, such as the Kitaev’s quantum wires [49], are
expected to host Majorana zero modes on the bound-
ary. Another exciting features of Majorana modes is their
potential in topological quantum computation [27, 50],
related to the possibility to realize non-abelian anyons.
Feasibility of such topological quantum computation is
still being investigated [51].

The main idea underlying the Γ model is to construct
a representation of the even subalgebra of fermionic op-
erators (i.e. the subalgebra generated by all bilinears) in
terms of “spins” of sufficiently high dimension, or more
precisely in terms of Euclidean Γ matrices (satisfying an-
ticommutations relations on-site, but otherwise commut-
ing). As observed in [4], hopping operators for fermions
may be constructed given one Γ(x, e) matrix per lattice
site x for every edge e incident to the given site. In ad-
dition, one has to impose a certain constraints on states
on the spin side. To represent the standard algebra of
fermions one has to specify, besides hopping operators,
also the fermionic parity operator on each site x. This op-
erator has to square to 1 and anticommute with hopping
operators along all edges incident to x. In other words,
one needs an additional Γ matrix. If x has an even num-
ber of neighbours, this additional Γ matrix may be ob-
tained (up to a trivial phase factor) simply by taking the
product of all Γ(x, e) with fixed x. We emphasize that
this construction does not work if x has an odd number
of neighbours, since then the product of all Γ(x, e) com-
mutes, rather than anticommutes with individual Γ(x, e).
On the other hand introducing the additional Γ matrix
as an independent object would lead to spurious degrees
of freedom. Hence in this version one restricts to even
coordination numbers.

Generalization presented in this paper is based on a
few simple observations. First, in a system featuring an
odd number of Majorana modes per lattice site the on-
site parity operators do not exist. Therefore the Γ model
on a lattice with sites of odd degree should feature un-
paired Majorana modes. Second, in presence of multi-
ple fermionic modes per site (say, due to spin or orbital
degeneracy) there exist additional independent bilinear
operators which can still be bosonized if one further in-
creases the number of Γ matrices per lattice site. In
this way one obtains a mapping between fermions and
spins with only one requirement: the number of Majo-
rana modes per site x should be congruent modulo two to
the number of neighbours of x. Even this condition can
be eventually lifted. Indeed, if it is not satisfied, one can
identify operators corresponding to spurious degrees of
freedom and choose for them trivial dynamics decoupled
from the rest of the system.

It turns out that the Γ model, in particular its ver-
sion for arbitrary lattices proposed in this paper, shares
some features with models considered in [52, 53] and [54],
despite the fact that its origin and motivation were dif-
ferent. We will now present a short comparison between

these models. In [52] the vector exchange model defined
in terms of bond algebra was proposed. Similarly like
in our case and the models discussed by Kapustin et
al. [2, 3], the main idea was to say that two models
(i.e. the fermionic and bosonic ones) are equivalent if
and only if their operator algebras are isomorphic. That
is, the statement was purely kinematic and Hamiltonian-
independent. The idea of using higher dimensional repre-
sentations of Clifford algebras instead of the Pauli matri-
ces was introduced in [52] in order to define higher spin
(e.g. 3

2 , 7
2 etc.) analogues of the Kitaev’s model. To

proceed with such fermionization procedure the need for
lattices of coordination number different than 3 emerged.
The interplay between the dimension of the representa-
tion and the valency of lattice vertices is also discussed
therein. Relation between constraints and the choice of
a Z2 gauge field is also discussed and the counting of de-
grees of freedom is performed. In contrast, we start with
the fermionic theory and perform the bosonization proce-
dure based on the modification of the original Γ model.
The (sector of) higher spin Kitaev’s model is a result
of this procedure. We also allow for multiple Majorana
modes on different sites and this number may in princi-
ple vary from site to site. As a consequence of the gen-
eral bosonization procedure, the relation of “unpaired”
Majorana modes and generators of the Clifford algebra
associated to vertices is established. The fermionization
method analogous to the one in [52] was also proposed,
at the same time, in [53] and [54]. In the former case the
periodic boundary conditions were assumed, so that the
role of the analogues of Polyakov lines discussed also in
details in [39] began to be important. The role of con-
straints was discussed, together with the flux-attachment
mechanism [55] and the interpretation of modifying the
constraints as a coupling to some external Z2 fields. We
also remark that it was argued in [53] that models with
a Z2 gauge field chosen as in [5, Appendix B] may play
a role for p-wave superconductors. The discussion at the
beginning of [54] is in the same spirit as in [53]. In [54]
the bulk-boundary correspondence is discussed in more
detail for such models. As pointed out in [52–54], these
so-called Γ-matrix models may have applications for spin
liquids, (3+1)-dimensional topological insulators and the
B-phase of 3He.

The organization of the paper is as follows. Details of
our construction are presented in Section II. Then in Sec-
tion III we present examples: relation to Kitaev’s model
on hexagonal lattice, bosonization on a decagonal lattice
and bosonization of the Hubbard model on a rectangular
lattice. Afterward, in Section IV, we discuss boundary
effects in the Γ model. We describe the example of square
lattice with open boundary conditions and compare edge
modes identified there with those arising on the boundary
of some topological phases of matter.

In Section V an Euclidean representation of the sim-
plest, unconstrained Γ model on a regular honeycomb
lattice is proposed and briefly studied. The time evolu-
tion generated by spin Hamiltonians considered here is
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more complicated than in the standard Ising-like cases.
Accordingly, Euclidean three-dimensional spin systems
emerging in this Section are unknown and interesting by
themselves. The feasibility of the standard, intermediate-
volume, Monte Carlo studies is crudely assessed on the
basis of the exact small-volume calculations.

II. THE BOSONIZATION METHOD

We consider a lattice system with fermionic degrees of
freedom, whose number may vary from site to site. Real
(Majorana) fermionic operators on the lattice site x will
be denoted by ψα(x), with the index α (labeling Majo-
rana modes) running from 0 to n(x) with n(x) ≥ 0. They
are hermitian and satisfy anticommutation relations

ψα(x)ψβ(y) + ψβ(y)ψα(x) = 2δx,yδα,β . (1)

The total number of independent Majorana operators

n =
∑
x

(n(x) + 1) (2)

is assumed to be even, which guarantees that

(−1)F = i
n
2

∏
x

n(x)∏
α=0

ψα(x) (3)

anticommutes with every fermion. We assume that
(−1)F is an exactly conserved quantity. Otherwise the
Hamiltonian may be arbitrary.

We will be interested in the algebra of even operators
(i.e. operators commuting with (−1)F ). Any even opera-
tor may be expressed as a linear combination of products
of bilinears of the following two types:

S(e) = ψ0(x)ψ0(y) for an edge e from x to y, (4a)

Tα(x) = ψ0(x)ψα(x) for α 6= 0. (4b)

All S and T operators are skew-hermitian and square to
−1. Furthermore we have that

• S(e)S(e′) = ±S(e′)S(e), with the minus sign only
if e shares exactly one endpoint with e′,

• S(e)Tα(x) = ±Tα(x)S(e), with the minus sign only
if x is incident to e,

• Tα(x)Tβ(y) = ±Tβ(y)Tα(x), with the minus sign
only if x = y and α 6= β.

It can be shown [5] that all relations in the algebra of even
operators are generated by those given above and what
will be called loop relations: if edges e1, . . . , em form a
loop (i.e. ei terminates at the initial point of ei+1, with
the convention that em+1 = e1), then

S(e1) . . . S(em) = 1. (5)

To bosonize the system, we generalize the approach
proposed in [5]. For each lattice site x we construct a Clif-
ford algebra with generators Γ(x, e), one for each edge e
incident to x, and Γ′α(x) with 0 < α ≤ n(x). They are
hermitian matrices satisfying

Γ(x, e)Γ(x, e′) + Γ(x, e′)Γ(x, e) = 2δe,e′ , (6a)

Γ′α(x)Γ′β(x) + Γ′β(x)Γ′α(x) = 2δα,β , (6b)

Γ(x, e)Γ′α(x) + Γ′α(x)Γ(x, e) = 0. (6c)

Gamma matrices located on distinct lattice sites are
taken to commute, and the full Hilbert space is the ten-
sor product of on-site Hilbert spaces. In this sense the
new system is bosonic. Fermionic bilinears are mapped
to bosonic operators according to the local prescription

Ŝ(e) = iΓ(x, e)Γ(y, e) for an edge e from x to y, (7a)

T̂α(x) = iΓ′α(x) for α 6= 0, (7b)

where the hat serves as an indicator that we are refer-
ring to the bosonized operators, rather than those in the
original fermionic system. It is straightforward to check

that Ŝ and T̂ operators satisfy all relations obeyed by S
and T , except for the loop relations. Instead, for a loop
` formed by edges e1, . . . , em one has that the operator

W (`) = Ŝ(e1) . . . Ŝ(em) (8)

squares to 1 and commutes with all Ŝ and T̂ . We are
forced to impose the constraint

W (`)|phys〉 = |phys〉 for every loop `. (9)

We remark that modifying the constraint to the form

W (`)|phys〉 = ω(`)|phys〉 (10)

with prescribed ω(`) = ±1 is equivalent [5] to coupling
fermions to a background Z2 gauge field for the (−1)F

symmetry, such that ω(`) is the holonomy along `.
Now let deg(x) be the number of neighbors of a site x

and put N(x) = deg(x)+n(x). We consider the operator

γ(x) = i
N(x)(N(x)−1)

2

∏
e

Γ(x, e)
∏
α6=0

Γ′α(x). (11)

Its phase is chosen so that γ(x)2 = 1. If N(x) is odd,
γ(x) commutes with all gamma matrices, so one may im-
pose a relation γ(x) = 1 or γ(x) = −1. This amounts
to choosing one of two irreducible representation of the
Clifford algebra on x. If N(x) is even, γ(x) anticom-
mutes with all gamma matrices, so it defines an addi-
tional gamma matrix: γ(x) = Γ′n(x)+1(x). In this case

Eqs. (7) provide a bosonization of a system featuring one
more Majorana fermion on the site x than we have had
originally. Therefore formally we bosonize only systems
with all N(x) odd, but the case in which this condition is
not satisfied may be handled by choosing for the spurious
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fermions a trivially gapped Hamiltonian, not interacting
with the original fermions.

Bosonic system with constraints imposed is equivalent
to the sector of the fermionic system (possibly including
the spurious fermions) characterized by one of the two
possible values of (−1)F , defined including the spurious
fermions. Which possibility is realized depends on the
lattice geometry and the choice of values of γ operators.
In the remainder of this section we sketch the proof of
this fact, while details have been given in [5] in a slightly
less general context.

First, on the space of solutions of the constraints all
relations satisfied by S and T operators are obeyed by

Ŝ and T̂ . Therefore this space is a representation of
the algebra of even operators. Every representation of
this algebra is a direct sum of irreducible representations,
which are the two halves of the Fock space described by
two values of (−1)F . We will argue that only one of
the two irreducible representations actually occurs in the
decomposition and that the multiplicity is equal to one.

For the first part of the claim, it is sufficient to observe
that the product of all S and T operators is proportional
to the fermionic parity operator, while the product of all

Ŝ and T̂ is proportional to the product of all gamma ma-
trices. The latter is proportional to 1, because for every
lattice site we have γ(x) = 1 or γ(x) = −1. Combining
these two results we conclude that (−1)F is represented
by a scalar operator in the bosonic model. It is possible
to determine whether it is equal to +1 or −1 by tracking
phases carefully in the above argument. Details depend
on the lattice geometry.

For the second part of the claim it suffices to calculate
the dimension of the space of solutions of constraints.
This is facilitated by considering also modified forms of
constraints. Those are in one-to-one correspondence with
gauge orbits of background Z2 gauge fields. Thus there
are 2N1−N0+1 of them, where N0 is the number of lattice
sites and N1 is the number of edges. One can show that
spaces of solutions of modified constraints all have the
same dimension by explicitly constructing unitary opera-
tors which map between them. Therefore the dimension
of the space of solutions of constraints (9) is equal to
the dimension of the whole Hilbert space in the bosonic
model divided by 2N1−N0+1. Using the well-known values
of dimensions of irreducible representations of Clifford al-
gebras we find that there are 2

n
2−1 linearly independent

solutions of constraints. This number is equal to the di-
mension of one half of the Fock space.

III. EXAMPLES

We will now show how the general construction pre-
sented in the previous section works in specific examples.
We begin with a model defined on the honeycomb lat-
tice and discuss its relation with the Kitaev’s model [34].
Then we discuss its three-dimensional deformation, the
decagonal lattice. Discussion of boundary effects is post-

poned to Section IV.
We stress that this choice of lattices has been made

mostly in order to simplify the presentation. Bosoniza-
tion prescription from Sec. II is valid also on lattices of
more complicated geometry: coordination numbers may
vary from site to site and the translation symmetry is not
necessary. We remark that our bosonization reduces in
(1+1)-dimensions to the standard Jordan-Wigner trans-
formation and as such can be thought of as its higher
dimensional generalization.

A. Honeycomb lattice and Kitaev’s model

In this subsection we present an example involving a
honeycomb lattice. It is arguably the simplest two di-
mensional lattice with vertices of odd degree. Since our
construction is sensitive only to the topology rather than
geometry of the lattice, honeycomb lattice is equivalent
to the brick wall lattice, see Fig. 1.
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FIG. 1: (a) Honeycomb and (b) brick wall lattices are
geometrically different, but topologically equivalent.

We will bosonize a system featuring one Majorana
fermion ψ per lattice site. This requires three gamma
matrices. They can be represented by Pauli matrices
σX , σY , σZ , which are assigned to edges of the lattice as
illustrated in Fig. 2. Thus for a lattice site x and an edge
e labeled by I ∈ {X,Y, Z} we have Γ(x, e) = σI(x).

Z Z

Z Z

Z Z

Z ZZ Z

Z Z

Z Z

Y

YY

Y

Y

Y

Y

Y

Y

YY

YY

Y

X

XX

X

X

X

X

X

X

X X

XX

X

FIG. 2: The assignment of Pauli matrices.

For a plaquette P depicted in Fig. 3, the corresponding
constraint takes the form WP |phys〉 = −|phys〉, where

WP = σX(x1)σY (x2)σZ(x3)σX(x4)σY (x5)σZ(x6). (12)

Those are the Kitaev’s plaquette operators [34].



5

Z Z

Y

Y

X

X

•

•

•

•

•

•
x2

x1

x6

x5

x4

x3

P

FIG. 3: A plaquette P of the honeycomb lattice.

As a specific example, let us consider the Hamiltonian

H = i
∑

I∈{X,Y,Z}

∑
type I
edges

JI ψ(x)ψ(y), (13)

where x, y are the endpoints of the given edge, and
JX , JY and JZ are parameters of the model. Accord-
ing to the prescription given in Eq. (7), it corresponds
to the spin Hamiltonian

Ĥ = −
∑

I∈{X,Y,Z}

∑
type I
edges

JI σI(x)σI(y), (14)

subject to the constraint WP = −1 for every plaquette
P . This Hamiltonian has been proposed in [34], where
its study was reduced to diagonalization of quadratic
fermionic Hamiltonians. Our approach provides an al-
ternative derivation of this result. Subspaces defined by
different values of WP correspond to the Hamiltonian H
modified by including a background Z2 gauge field.

B. Decagonal lattice

An example of a three-dimensional trivalent lattice is
provided by the decagonal geometry. A convenient repre-
sentation is shown in Fig. 4, where one layer of such lat-
tice is presented, together with edges connecting it with
the adjacent layers. It can be thought of as a deforma-
tion of the brick wall lattice. In the brick wall geometry,
each red site was connected with a green one to its north,
while in the decagonal geometry it is instead connected
with a green site lying in the layer underneath.

FIG. 4: One layer of the decagonal lattice.

By the similarity with the brick wall geometry, one can
easily generalize the results from Section III A. Using the

identification of edges between honeycomb and brick wall
lattices we attach Pauli matrices to pairs (x, e) of the
decagonal lattice, see Fig. 5.

σA
σB

σC
σD

• • • • •

• • • • •

(a)

σA

σB

σC

σD
• • • • •

• • • • •

(b)

FIG. 5: The assignment of Pauli matrices for (a) the
brick wall lattice and (b) the decagonal lattice.

As an example, constraint associated to the plaquette
from Fig. 6 takes the form WP |phys〉 = −|phys〉, where

WP =σX(x1)σY (x2)σZ(x3)σZ(x4)σZ(x5)

×σX(x6)σY (x7)σZ(x8)σZ(x9)σZ(x10). (15)

There exist also plaquettes not contained within one
layer, but for the sake of brevity we will not write down
the explicit formulas.

Y X Y X

X Y X Y

Z Z

• • • • •

• • • • •

x1

x2 x3 x4
x5

x6

x7

x8
x9

x10

FIG. 6: Plaquette P within a single layer of the
decagonal lattice.

As in the honeycomb lattice case, every edge is labeled
by I ∈ {X,Y, Z} and there is a correspondence between
the Hamiltonians in Eqs. (13) and (14).

C. Hubbard model

In the preceding examples only one kind of fermionic
variables was involved. Here we discuss the simplest
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model with an additional quantum number involved -
the Hubbard model [56] on the square lattice.

The Hamiltonian of the Hubbard model consists of two
terms, H = H0 + V , where

H0 = −t
∑
〈xy〉

∑
σ=↑,↓

(
c†σ(x)cσ(y) + c†σ(y)cσ(x)

)
, (16a)

V = U
∑
x

n↑(x)n↓(x), (16b)

where the edge connecting sites x and y is denoted by
〈xy〉. Here c†σ(x) creates a fermion with spin σ at position
x, nσ(x) = c†σ(x)cσ(x), and t, U ∈ R. These fermionic

operators may be decomposed into Majoranas as

c↑(x) = 2−1(ψ0(x) + iψ1(x)), (17a)

c†↑(x) = 2−1(ψ0(x)− iψ1(x)), (17b)

c↓(x) = 2−1(ψ2(x) + iψ3(x)), (17c)

c†↓(x) = 2−1(ψ2(x)− iψ3(x)). (17d)

This choice is by no means unique and we are free to
(consistently) use any other relabelling of indices. Af-
ter modifying accordingly the bosonization prescription,
different choices will lead to equivalent bosonic models.

To perform bosonization we need seven Γ matrices per
site, six of which are independent: the seventh may be
taken to be the product of the first six and the imaginary
unit. The bosonized Hamiltonian takes the form:

Ĥ0 = − it
2

∑
e=〈xy〉

Γ(x, e)Γ(y, e) (Γ′1(x)− Γ′1(y)− iΓ′2(x)Γ′3(y) + iΓ′3(x)Γ′2(y)) , (18a)

V̂ =
U

4

∑
x

(1− Γ′1(x)) (1 + iΓ′2(x)Γ′3(x)) . (18b)

•
Γ1(x)

Γ2(x)

Γ−1(x)

Γ−2(x)

x

FIG. 7: The assignment of gamma matrices.

• •

• •x4

x1 x2

x3

P

FIG. 8: A plaquette p of the rectangular lattice.

To write down the constraints, it is covenient to denote
Γ(x, e) as Γi(x) for edge i pointing from x in the i-th
direction, i ∈ {±1,±2} (see Figure 7). Now consider
a plaquette P as in Fig. 8. The corresponding constraint
takes the form WP |phys〉 = −|phys〉, where

WP = Γ1,2(x1)Γ2,−1(x2)Γ−1,−2(x3)Γ−2,1(x4). (19)

Here we abbreviated Γi,j(x) := Γi(x)Γj(x). We note that

this constraint does not at all involve primed gamma ma-
trices, which we had to introduce in order to implement
multiple fermions per site. It is characteristic for the
square lattice geometry.

One annoying feature of the presented construction is
that spin up and spin down states are not treated com-
pletely symmetrically. Nevertheless, symmetries of the
Hubbard model are implemented also in the bosonized
model. First, we have conservation of the total parti-
cle number. Particle number on a single lattice site x is
bosonized in the following way:

∑
σ

c†σcσ ←→ 1− 1

2
Γ′1 +

i

2
Γ′2Γ′3. (20)

For spin (SU(2) generators) operators we have:

c†↑c↑ − c
†
↓c↓ ←→ −

1

2
Γ′1 −

i

2
Γ′2Γ′3, (21a)

c†↑c↓ ←→
i

4
(1− Γ′1)(Γ′2 + iΓ′3), (21b)

c†↓c↑ ←→ −
i

4
(1 + Γ′1)(Γ′2 − iΓ′3). (21c)

It noteworthy that all on-site symmetries of the original
fermionic model are also on-site after bosonization. Fur-
thermore, the corresponding charges are expressed en-
tirely in terms of primed gamma matrices. This is a gen-
eral property of our construction.
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IV. BOUNDARY EFFECTS

A. Rectangular lattice with a boundary

We will now discuss bosonization of a system on an
Lx×Ly rectangular lattice, with two Majorana fermions
ψ0, ψ1 per lattice site. Every site x in the bulk has four
neighbors, corresponding to four gamma matrices Γ±i(x),
i = 1, 2, as in our discussion of the Hubbard model. Ac-
cording to the prescription given in Sec. II, we need also
an additional gamma matrix Γ′1(x). It can be eliminated
by imposing relations discussed below equation (11). We
choose the convention Γ′1(x) = Γ−1(x)Γ1(x)Γ−2(x)Γ2(x).
Therefore in the end we need only unprimed gamma ma-
trices. Constraints are identical as in the discussion of
the Hubbard model.

More explicitly, our bosonization prescription reads

• iΓ1(x)Γ−1(y) ←→ ψ0(x)ψ0(y) if y is the eastern
neighbor of x,

• iΓ2(x)Γ−2(y) ←→ ψ0(x)ψ0(y) if y is the northern
neighbor of x,

• iΓ−1(x)Γ1(x)Γ−2(x)Γ2(x)←→ ψ0(x)ψ1(x).

Now, we look closely at the situation on the boundary.
First, sites on the southern edge (see Fig. 9) have no
neighbors in the direction −2. We may reinterpret the
Γ−2 matrix as an additional Γ′, corresponding to a spuri-
ous Majorana fermion on the boundary. More precisely,
for every site xi on the southern edge we introduce an
additional Majorana operator χS(xi). Bosonization pre-
scription for χS fermions takes the form

iΓ−2(xi)←→ ψ0(xi)χS(xi). (22)

Similarly for the northern, eastern and western edges we
introduce Majorana fermions χN, χE and χW.

• • • •
x1 x2 x3 x4

FIG. 9: The southern boundary of the rectangular
lattice.

At each of the four corners (which are geometrically of
codimension two) there are two χ fermions. For example
the south-east corner xSE hosts four Majorana operators
ψ0(xSE), ψ1(xSE), χS(xSE) and χE(xSE).

We now determine the identity resulting from existence
of the boundary. First, notice that for every lattice site
x = (a, b) ∈ {1, . . . , Lx} × {1, . . . , Ly} we have

Lx−1∏
a=1

ψ0(a, b)ψ0(a+ 1, b) = ψ0(a, b)ψ0(Lx, b). (23)

Consequently, our bosonization prescription yields

ψ0(1, b)ψ0(Lx, b)

←→ iLx−1Γ−1(1, b)

(
Lx∏
a=1

Γ−1,1(a, b)

)
Γ1(Lx, b)

(24)

and

ψ0(a, 1)ψ0(a, Ly)

←→ iLy−1Γ−2(a, 1)

 Ly∏
b=1

Γ−2,2(a, b)

Γ1(a, Ly),
(25)

for every 1 ≤ b ≤ Ly and 1 ≤ a ≤ Lx, respectively.
By a straightforward computation one can check that it
results in the following correspondence

i(Lx−Ly)
2+2(Lx+Ly)

∏
a,b

Γ−2,2,−1,1(a, b)

←→ χ∂Sχ∂Nχ∂Wχ∂E ,

(26)

where we have introduced the abbreviated notation

χ∂S =
Lx∏
a=1

χS(a, 1), and so on. Since Γ−2,2,−1,1(x) cor-

responds to −iψ0(x)ψ1(x), which is the parity operator
(−1)Fψ(x) for ψ fermions at site x, we end up with the
following constraint

(−1)Fψ = κχ∂Sχ∂Nχ∂Wχ∂E , (27)

where κ = i−(Lx−Ly)
2+2(Lx+Ly) is a geometrical phase

factor. In particular, for lattices with Lx ≡ Ly (mod 2)
we have κ = 1.

Summarizing, we started from the system of ψ
fermions, but our bosonization gave us a bosonic system
equivalent to ψ fermions together with χ fermions on the
boundary. Since operators corresponding on the spin side
to spurious χ modes have been identified, this is not a
problem. Indeed, bosonizing suitable Hamiltonian for χ
fermions using formula (22) and its analogues for other
components of the boundary we may make χ arbitrar-
ily heavy, e.g. dimerized with large dissociation energy.
This provides a physical interpretation for additional con-
straints on the boundary introduced in [5, Appendix B].
After imposing them, one obtains a spin system corre-
sponding to ψ fermions on a lattice with boundary.

B. Comment about topological phases

One of the remarkable features of many topologically
nontrivial phases of matter is their interesting (robust)
behaviour on the boundaries, which are of dimension
d− 1. This is the case in particular for free fermion sys-
tems, for which one has a well-established bulk-boundary
correspondence: topological invariants in the bulk signal
existence of modes localized near the boundary, respon-
sible for closing the gap in finite volume.
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Robustness of the boundary modes in often interpreted
as manifestation of an anomaly of the boundary theory.
Presence of the anomaly implies existence of some de-
grees of freedom “saturating” the anomaly. On the other
hand, it is also expected that the anomalous (d − 1)-
dimensional system is inconsistent on its own: it may
be realized only on the boundary of a d-dimensional sys-
tem. As an example, chiral fermions cannot be realized
on the lattice (this is the Nielsen-Ninomiya theorem, see
[57, 58]), but they may exist on the boundary or domain
wall (more generally, a defect) in a higher dimensional
system. This is at the heart of the bulk boundary corre-
spondence.

On the other hand, boundary modes found in our
bosonization prescription correspond to a standalone
(hence “non-anomalous”) system on the boundary. Now
suppose that we bosonize a free fermion system with a
nonzero topological invariant, say on a half-space. Then
on the boundary we will have boundary modes predicted
by the bulk-boundary correspondence and χ fermions de-
scribed in the previous subsection. We can gap out the
latter fermions by including in the Hamiltonian a suit-
able term localized in the boundary. This is believed not
to be true for the former. In the case of invariants which
remain robust in presence of interactions [59] it is natural
to expect that even after including a coupling between χ
fermions and ψ fermionis, boundary modes originating
from a topological invariant will persist.

Of course the full picture of topological invariants and
boundary modes has to involve the choice of a Hamil-
tonian, or at least some class of Hamiltonians. On the
other hand, the discussion presented here is mostly con-
cerned with properties of algebras of observables. It
would be interesting to understand better the relation be-
tween bosonization and bulk-boundary correspondence.
Such questions are relevant, for example, for the problem
of discretization of chiral fermions.

V. EUCLIDEAN REPRESENTATION OF
UNCONSTRAINED “MAJORANA SPINS”

The next goal is to construct an Euclidean Ising-like
action, with two different couplings, βt and βs, which in
the continuous time limit

βt →∞, ε = e−βt → 0, βs = ελ→ 0 (28)

is described by the Hamiltonian (14) with parameters
JX = JY = 1, JZ = λ (we will not impose constraints at
this point). Following [60, 61], this is done by demanding
that the transfer matrix elements defined by the Boltz-
mann weight

〈s′|T |s〉 = e−L(s
′,s) (29)

coincide with these of the Euclidean evolution operator

〈s′|T |s〉 = 〈s′|e−εH |s〉 = 〈s′|1− εH|s〉 (30)

up to terms of order ε. Here ε is the elementary time step
and s and s′ denote configurations of spins at subsequent
time instants.

The time evolution generated by (14) consists of ele-
mentary double-spin flips, in contrast to the Ising sys-
tem in which the dynamics is driven by single spin flips.
In order to gain some orientation in this problem, we
start by deriving an Euclidean action for a simpler, one-
dimensional quantum Hamiltonian

H1d =−
∑
k

σX(xk)σX(xk+1)

− λ
∑
k

σZ(xk)σZ(xk+1).
(31)

A. Basic idea and the (1 + 1)-dimensional example

In the Ising model, the basic trick relating Hamiltonian
and functional formulations is to classify all variations of
a multiple-spin state into classes with fixed number of
single spin flips.

On the Euclidean side, the number of single flips be-
tween two time slices is counted by the two-row action

L1(s′, s) =
1

2

∑
k

(1− sks′k). (32)

It corresponds to the Hamiltonian

−
∑
k

σX(xk). (33)

In the present case (31), we are seeking to single out
the double spin flips out of all possible changes of a row of
spins. Therefore we begin with the Euclidean eight-spin
action which counts isolated double flips

L
(8)
2 =

1

24

∑
k

(1 + sk−1s
′
k−1)(1− sks′k)

× (1− sk+1s
′
k+1)(1 + sk+2s

′
k+2),

(34)

Simpler functions can be also used, hence we shall omit
the “(8)” superscript if not necessary.

We need to arrange the final, Euclidean action such
that in the continuous time limit it gives weight ε to
double flips while all other, single and multiple, flips are
of higher order in ε = e−βt . This is achieved by the
combination

Lkin(s′, s) = βt (p(L1 − 2L2) + L2) , (35)

where p ≥ 2 is a free parameter.

It is easy to check that L
(8)
2 may also be replaced in

(35) by the simpler function

L
(6)
2 =

1

8

∑
k

(1+sk−1s
′
k−1)(1−sks′k)(1−sk+1s

′
k+1). (36)
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This definition prescribes different weights to non-leading
transitions, but results in the same double flip kinetic
part of (31). This is an illustration of the well known fact
that many different Euclidean discretizations have the
same continuous time limit, hence also the same Hamil-
tonian.

Action for a single transition has to be supplemented
by a potential term:

L(s′, s) = Lkin(s′, s) + Lpot(s
′, s), (37a)

Lpot(s
′, s) = −βs

2

∑
k

(
sksk+1 + s′ks

′
k+1

)
. (37b)

Complete Euclidean action for the Lx×Lt spins is ob-
tained by composing elementary transfer matrices, which
amounts to adding the corresponding actions:

S(s(Lt), . . . , s(1)) =

Lt∑
t=1

L(s(t+ 1), s(t)). (38)

This concludes our construction of the two-
dimensional, Euclidean system which in the continuum
time limit is described by the Hamiltonian (31).

1. σY σY terms - the phases.

The second example deals with the phase generating
kinetic terms

Hph
1d =−

∑
k even

σX(xk)σX(xk+1)−
∑
k odd

σY (xk)σY (xk+1)

− λ
∑
k

σZ(xk)σZ(xk+1) (39)

still in one space dimension.
Begin with an evolution of a two spin system:

s = {s1, s2} → s′ = {s′1, s′2}. (40)

As far as the change of spin states is considered, the
action of σY σY is the same as that of σXσX . The only
difference is a phase factor:

σY (x1)σY (x2)|s1, s2〉

= exp

(
iπ

2
(s1 + s2)

)
σX(x1)σX(x2)|s1, s2〉.

(41)

Generalization to a whole row of L spins is straightfor-
ward. The kinetic term of the Hamiltonian (39) will be
reproduced by the action (35) supplemented by a phase
(41) for each odd edge. This gives for the new action of
the two complete rows (and with the unchanged diagonal
potential term)

Lph(s′, s) = βt (2(S1 − 2S2) + S2) + βsS
pot

+
iπ

2

1

23

∑
x−odd

(sx + sx+1)(1 + sx−1s
′
x−1)(1− sxs′x)(1− sx+1s

′
x+1).

(42)

B. (2 + 1)-dimensional system

As a (2 + 1)-dimensional example we consider here
the honeycomb lattice discussed in III A. As remarked
therein, it is convenient to represent it in a brick wall
form, cf. Fig. 1.

Our Hamiltionian is of the form (14) with parameters
JX = JY = 1 and JZ = λ, and can be written as a sum
of two terms

H = Hkin + λHpot, (43)

where the kinetic term contains sums over all edges of
type X and Y , while the potential one is a sum over
edges of type Z. The labelling of the edges of the brick
wall lattice is shown explicitly in Fig. 10 and is consistent
with the one in Fig. 2.

Derivation of an Euclidean action of a three-
dimensional (x, y, t), periodic in all directions, system is
very similar to the previous (1+1)-dimensional example.

Y X Y X

X Y X Y

Z ZZ

• • • • •

• • • • •

FIG. 10: The brick wall lattice with the assignment of
Pauli matrices.

The two kinetic (i.e. σXσX and σY σY ) terms in (43)
are represented by the same six- or eight-spin couplings
between the adjacent time slices plus the appropriate
phase, which naturally generalizes the (1+1)-dimensional
phase in the last term of (42) to three Euclidean dimen-
sions.
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On the other hand diagonal, in the Hamiltonian form,
potential terms are represented by the standard Ising-
like, ferromagnetic couplings along the y-direction. They
are located on the shorter edges of bricks at each time
slice. Hence, they are staggered in accord with the (t-
independent) x− y parity, ζxy = (−1)x+y, of a site orig-
inating given Z-edge in the potential term. The final

action reads

S3D = βt
∑
x,y,t

O
(6)
x,y,t + βs

∑
x,y,t,
ζxy=1

O
(2)
x,y,t

+
iπ

2

∑
x,y,t,
ζxy=−1

O
(7)
x,y,t,

(44)

with the phase operator O
(7)
x,y,t being the direct general-

ization of above O
(7)
x,t to three dimensions and similarly

for other couplings:

O
(7)
x,y,t =

1

23
(sx,y,t + sx+1,y,t)(1 + sx−1,y,tsx−1,y,t+1)(1− sx,y,tsx,y,t+1)(1− sx+1,y,tsx+1,y,t+1), (45a)

O
(6)
x,y,t =

1− 2p

8
(1 + sx−1,y,tsx−1,y,t+1)(1− sx,y,tsx,y,t+1)(1− sx+1,y,tsx+1,y,t+1) +

p

2
(1− sx,y,tsx,y,t+1), (45b)

O
(2)
x,y,t = −sx,y,tsx,y+1,t. (45c)

The action (44) describes then a three-dimensional
Ising-like system. Together with the corresponding con-
straints (still to be implemented) it would provide an
equivalent, Euclidean representation of a single, quan-
tum Majorana spin on a two-dimensional spatial lattice.

Even without the constraints the system is still inter-
esting per se. Its thermodynamics, the phase diagram,
order parameters are unknown at the moment and could
be studied with standard methods of statistical physics.
Such studies would also provide, among other things,
some information about the constraints themselves.

The Boltzmann factor associated with (44) is not posi-
tive. However the origin of its phases is now conceptually
simple. Below we look how severe is the sign problem in
these unconstrained Euclidean models.

C. The sign problem

The standard (and practically only) method to deal
with non-positive weights is the reweighting [62, 63].
Instead of potentially negative Boltzmann factor ρ =
exp (−S), one uses as a Monte Carlo (MC) weight its
absolute value ρA = |ρ|, correcting at the same time all
observables for this bias.

Whether such an approach is practical can be read-
ily judged from the average value of a sign of the exact
Boltzmann factor

〈sign〉 ≡
〈
ρ

ρA

〉
A

=
Z
ZA

(46)

averaged over the modulus ρA. If this average is close
to 0, the method fails. If the contrary is true, say for

some intermediate volumes, one may expect to obtain
meaningful estimates.

We have calculated analytically above average for both
(1+1)- and (2+1)-dimensional models by employing the
transfer matrix technique for a range of small volumes.
It is seen below that the sign problem is not very severe
in this case. Consequently, MC studies remain a viable
approach to explore these systems in detail.

1. (1 + 1)-dimensions

Partition functions Z and ZA were calculated ex-
actly by summing Boltzmann factors exp (−S2D) and
| exp (−S2D)|, as defined in Eqns (42). In Fig.11 the av-
erage sign is shown for a range of two dimensional vol-
umes and various couplings βt and βs. The results are
displayed as a function of a time step, ε = exp (−βt),
and parameterized by different couplings λ = βs

ε in the
Hamiltonian (39). Second column displays analogous re-
sults for larger penalty parameter p.

The sign problem seems manageable for a sizeable part
of the parameter space. It vanishes entirely for ε→ 0.

Increasing the penalty parameter p also helps, since
then some undesired transitions vanish faster with ε.

Both of these features show up also in our three-
dimensional system. They can be readily understood and
used for our advantage, as discussed below.

2. (2 + 1)-dimensions

For the three-dimensional Euclidean system (44) of
volume V = LxLyLt a brute-force summation of all 2V
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FIG. 11: Exact results for the average sign 〈sign〉 for a range of two dimensional volumes V and for the penalty
parameter p = 2 (left column) or p = 8 (right column). Plots are presented for λ values (from bottom to top) 0.1,

0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75 and 2.

terms becomes already a challenge. Still it was possible
to obtain the value of 〈sign〉 for V = 4× 4× 3, as shown
in Fig. 12. It was done by constructing two subsequent
transfer matrices in the y direction.

Again, as in the (1+1)-dimensions, the phase is harm-
less for small ε. This feature improves dramatically with
increasing the penalty parameter.

In addition, for Lt = 2 no phase was observed in all
cases. That is 〈sign〉 = 1 for all values of parameters and
for all studied dimensions.

3. The sign problem - summary

All the regularities observed above can be readily un-
derstood and generalized for arbitrary sizes of lattices,
providing at the same time some guidelines for other,
similar systems.

Consider first the case Lt = 2. The partition function

Z(2) =
∑
s,s′

e−L(s,s
′)e−L(s

′,s) (47)
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FIG. 12: Average sign as a function of the ε parameter
in the three-dimensional case with volume V = 4× 4× 3
for the penalty parameter (a) p = 2 and (b) p = 8. The
range of λ parameter is explicitly given for both cases.

is the sum over two-composite states of spins at the two
time slices. The non-zero phase can occur only if s and
s′ differ by a double flip. However in this case the phases
of e−L(s,s

′) and e−L(s
′,s) cancel and the result is positive

for each pair of configurations, as found above.
On the other hand, already for Lt = 3 there are three

states in the game

Z(3) =
∑
s,s′,s′′

e−L(s,s
′′)−L(s′′,s′)−L(s′,s). (48)

Hence a single double-flip, e.g. in s→ s′, can be balanced
by two subsequent single-flips in s′ → s′′ and s′′ → s
transitions. Since a phase may occur only in the double
flip transition s → s′, this particular contribution may
be negative and would give 〈sign〉 < 1.

Consequently, the single flip transitions provide an un-
desired background which indirectly causes negative signs
of Boltzmann factors, hence the sign problem.

However such transitions vanish for ε → 0 having a
weight of the higher order in ε by construction. This is
clearly confirmed by our calculations, cf. Figs 11 and
12, and explains why sign problem vanishes at small ε.
These figures were obtained by using Mathematica [64].

Moreover, by increasing the penalty parameter p we
can force the “bad transitions” to vanish faster. Indeed
this is also confirmed by our results for p = 8 in both
dimensions. This suggests that the sign problem could
be significantly reduced by setting p =∞, which amounts
to introducing a constraint in the Euclidean system [65].

We remark that even under this constraint there exist
“Euclidean histories” with negative sign. As they involve
a number of spin flips growing with the system size, one
may hope that they do not lead to significant difficulties.

Obviously all these scenarios should be further studied
quantitatively.

VI. CONCLUSIONS AND OUTLOOK

We have presented a bosonization method generalizing
the idea from [4], valid for lattices of arbitrary coordi-
nation number and with arbitrary number of Majorana
modes per lattice site. In the previous works only systems
with even coordination numbers and one pair of fermionic
creation/annihilation operators per lattice site were con-
sidered. The new approach extends the construction in
several ways. First, for lattices with vertices of even de-
gree we may include multiple fermionic states per site.
We illustrate this by bosonizing the Hubbard model. Sec-
ond, we allow for lattices with odd coordination numbers.
Then there is an odd number of Majorana fermions per
site. We stress that the Majorana variables we are talk-
ing about here are not necessary resulting from any rep-
resentation of complex (Dirac) fermions, but they are the
elementary objects per se. In particular systems with one
Majorana per site may be bosonized. Since the presented
bosonization procedure is clearly invertible (as it is based
on an algebraic isomorphism), this leads to an intriguing
possibility of analyzing other spin liquids by applying the
inverse of it. We have illustrated this general phenomena
on the simplest example, the Kitaev’s honeycomb lattice,
but one can apply this procedure to other models of this
type. Similar constructions based on Clifford algebras
formalism have been previously, as discussed in Sec.I,
considered in [52–54] in order to fermionize higher spin
models. More recently the gamma-matrix versions of Ki-
taev’s models were used to study spin- 32 Kitaev Shastry-
Sutherland model [66] as well as to describe spin-orbital
models and they relations to Kugel-Khomskii-type mod-
els and compass interactions [67]. In the latter case the
authors constructed models, on either rectangular or hon-
eycomb lattices, realizing the Kitaev’s sixteenfold way of
anyons [34]. Our bosonization method provides a rigor-
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ous mathematical technique that, in principle, could be
use to generalize such construction in other geometries.
Three-dimensional Kitaev’s spin liquids were also stud-
ied recently in [68]. Several examples of possible use of
Γ-Kitaev models to study higher spin models as well as
spin-orbital models were also reported in [69], and used
in [54, 70] to demonstrate the existence of emergent topo-
logical insulators on a three-dimensional diamond lattice.
Since our bosonization provides tools for a rigorous con-
struction (out of almost arbitrary fermionic theories) of
bosonic (higher spin) models in terms of gamma matrices,
it can be also used to generate new examples of (higher)
spin models. We postpone this intriguing possibility for
a future research.

It is possible to treat also systems for which the co-
ordination number is not congruent modulo two to the
number of Majoranas per site. Strictly speaking in this
case we do not bosonize the original fermionic system but
rather one augumented by some spurious fermionic de-
grees of freedom. Nevertheless, operators corresponding
on the bosonic side to these modes may be clearly iden-
tified and decoupled. Even in the case of very regular
lattices such trick is needed in presence of a boundary.
We emphasize that this is a feature of our bosonization
method, not of fermionic systems per se.

If these two numbers are not congruent modulo two, it
involves spurious fermionic states, which nevertheless can
be identified and eliminated. Another potential source
of interest in this construction is that it provides new
analytically tractable examples of spin systems featuring
edge modes.

One question which remains unanswered is whether
our construction may be dualized to some higher gauge
theory. For systems with one fermion (and hence two
Majoranas) per lattice site such picture of bosonization

has been obtained in [2, 3].

Concerning the Euclidean formulation, our main con-
clusion is that in spite of somewhat unusual time evolu-
tion, generated by simultaneous double-flips, a local Eu-
clidean action for an unconstrained system was derived.
It contains at least six-spin interactions and is highly
asymmetric between space and time, in contrast to the
standard Ising model. To our knowledge, this system has
not been studied. Now, it can be readily explored with
standard statistical methods.

Our generic action is complex. It was found that the
resulting sign problem is manageable on small lattices
where our fully analytical approach is available.

The next logical step now is to study the problem for
larger, although intermediate, sizes and see whether the
popular reweighting methods allow meaningful measure-
ments of observables, extrapolation to larger volumes and
extraction of scaling limits. Moreover, it is conceivable
that introduced here methods could be extended to im-
plement the spin constraints avoiding the standard non-
positive Legendre transformation. We intend to further
study some of these questions with the aid of quantitative
Monte Carlo approach.
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