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Abstrakt

Metoda określenia wartości elektrycznego momentu dipolwego (EDM) cząstek 
naładowanych przy wykorzystaniu synchrotronu polega na pomiarze wer­
tykalnej składowej polaryzacji dla początkowo horyzontalnie spolaryzowanej 
wiązki. Kolaboracja JEDI (Jülich Electric Dipole Moment Investigation) 
prowadzi badania zmierzające do pomiaru EDM protonu i deuteronu przy 
wykorzystaniu synchrotronu COSY. Te pilotażowe badania powinny poz­
wolić na wyznaczenie dolnej granicy wartości EDM 10-19 e^cm dla tych 
cząstek. Pomiary prowadzone są na synchrotronie COSY w Forschungszen­
trum, Jülich. Kolejnym krokiem będzie budowa nowego synchrotronu w 
FZ Jülich pozwalającego na dokładniejszy pomiar. W dalszej perspekty­
wie planowana jest budowa docelowego synchrotronu w CERN w ramach 
kolaboracji cpEDM. Docelowo powinno to pozwolić na pomiar EDM pro­
tonu i deuteronu z dokładnością 10-29 e-cm. Taka dokładność ze względu 
na statystykę pomiaru jest możliwa do osiągnięcia, natomiast konieczne jest 
określenie wielkości niepewności systematycznych.

Celem tej rozprawy doktorskiej jest opacowanie metod pozwalających na 
dokładne określenie niepewności systematycznych w planowanych pomiarach 
EDM dla protonu i deuteronu. W rozprawie zaproponowano dwie metody 
pozwalające na określenie tych niepweności. Pierwsza metoda wykorzys­
tuje oddziaływanie elektrycznego momentu kwadrupolowego (EQM) z gra­
dientami pól elektromagnetycznych i ma zastosowanie tylko w pomiarze z 
deuteronem. Oddziaływanie to daje taki sam efekt jakiego oczekuje się w 
pomiarze EDM, jakkolwiek wymagana jest zmiana ustawień pól magnesów 
synchrotronu. Wartość EQM deuteronu jest dobrze określona, więc jej odt­
worzenie w pomiarze powinno udowodnić dobrą kontrolę nad niepewnościami 
systematycznymi. W pracy pokazano zastosowanie tej metody dla jednej z 
propozycj i pomiaru EDM deuteronu. Druga zaproponowana metoda pozwala 
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na określenie niepweności systematycznych powodowanych niewspółosiowosią 
magnesów synchrotronu. Nawet niewielkie odchylenia ustawień magnesów 
powodują powstanie takiego samego efektu jak indukowany przez EDM. 
Wielkość tego fałszywego efektu może być istotnie większa od sygnału oczeki­
wanego od EDM. Przedstawiona metoda polega na analizie Fouriera cza­
sowego przebiegu wertykalnej składowej polaryzacji wiązki w synchrotronie. 
Zastosowanie tej metody wymaga próbkowanie tej polaryzacji w dwóch odd­
alonych od siebie miejscach, czyli konieczna jest instalacja dwóch polarymetrów. 
W pracy przedstawiono zastosowanie tej metody dla pomiaru EDM na syn- 
chrotronie COSY. Pokazano iż dla obecnej precyzji ustawienia magnesów 
COSY możliwe jest wyznaczenie wartości EDM deuteronu z dokładnością 
10-19 e-cm. Przedstawiona metoda może być zastosowana do dowolnych po­
miarów EDM, które wymagają użycia pierścienia akumulacyjnego.
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Abstract

The method of determining the value of the electric dipole moment (EDM) 
of charged particles using a synchrotron consists of measuring the vertical 
component of polarisation for an initially horizontally polarised beam. The 
JEDI (Jülich Electric Dipole Moment Investigation) collaboration conducts 
research aimed at measuring the EDM of the proton and deuteron using 
the COSY synchrotron. These pilot studies should allow to obtain an EDM 
lower limit of 10-19 e-cm for these particles. Measurements are ongoing at 
the COSY synchrotron at Forschungszentrum, Jülich. The next step will 
be the construction of a new synchrotron at FZ Jülich, allowing for more 
accurate measurements. In the longer term, it is planned to build a target 
synchrotron at CERN as part of the cpEDM collaboration. Ultimately, this 
should allow the EDM of the proton and deuteron to be measured with an 
accuracy of 10-29 e-cm. Due to the measurement statistics, such accuracy 
is possible to achieve, but it is necessary to determine the magnitude of the 
systematic uncertainty.

The aim of this doctoral dissertation is to develop methods to accurately de­
termine systematic uncertainties in planned EDM measurements for proton 
and deuteron. In the dissertation, two methods were proposed for the de­
termination of these uncertainties. The first method uses the interaction of 
electric quadrupole moment (EQM) with electromagnetic field gradients and 
is only applicable to the measurement with deuteron. This interaction has the 
same effect as expected in an EDM measurement, although a change in the 
settings of the synchrotron magnet fields is required. The deuteron EQM 
value is well known, so its reproduction in the measurement should prove 
good control over systematic uncertainties. The thesis shows the application 
of this method for one of the proposed deuteron EDM measurements. The 
second proposed method allows for the determination of systematic uncer­
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tainties caused by the misalignment of the synchrotron magnets. Even slight 
variations in the settings of the magnets produce the same effect as induced 
by EDM. The magnitude of this false effect may be significantly greater than 
the signal expected from the EDM. The presented method is based on the 
Fourier analysis of the time dependence of the vertical component of the beam 
polarisation in the synchrotron. The use of this method requires sampling 
of this polarisation at two distant places, i.e., it is necessary to install two 
polarimeters. The thesis presents the application of this method for EDM 
measurement on the COSY synchrotron. It has been shown that for the 
current precision of COSY magnets positioning, it is possible to determine 
the EDM value of a deuteron with an accuracy of 10-19 e-cm. The presented 
method can be applied to any EDM measurements that require the use of a 
storage ring.
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Chapter 1

Introduction

One of the intriguing problems in particle physics is the asymmetry of matter 
and antimatter in the universe. The asymmetry of matter and antimatter 
can exist only if a number of conditions are fulfilled, known as the Sakharov 
conditions [1]. One of the important Sakharov conditions is C P symmetry 
violation. Many sources have been known so far for C P symmetry violations 
and can be introduced into the Standard Model. However, these sources are 
inadequate to explain the observed asymmetry of baryons. This leads to the 
search for more C P symmetry violation sources.

A fundamental particle or an atom's permanent electric dipole moment (EDM) 
violates time-reversal symmetry and hence violates C P symmetry according 
to CP T theorem. To explain the additional causes of CP violation, some new 
physics beyond the Standard Model would be necessary and lead us closer to 
a solution to the baryon asymmetry. The study of the search for the EDM 
of many elementary particles is in process. However, the particle's EDM up­
per limits are only known. The Jülich Electric Dipole Moment Investigation 
(JEDI) collaboration [2] is working on one of these measurements, which 
aims to determine the EDM limit of protons and deuterons at the Cooler 
Synchrotron (COSY) storage ring at Forschungszentrum, Jülich. The collab­
oration is also involved in designing and proposing methods to perform this 
investigation. The physics scenario, precursor experiment, and future plans 
are discussed in further detail in [3] and a precursor experiment has already 
been set up.
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The concept behind this measurement is to observe the vertical polarisation 
component induced by an EDM for an initially horizontally polarised beam. 
However, systematic uncertainties are undeniable and will eventually lead to 
fake EDM signals. For such high precision experiments, it is necessary to 
find methods to control systematics. The aim of this thesis is to develop 
methods to control systematic uncertainties. In this study, two methods for 
controlling systematic uncertainties have been proposed. The first method 
is based on the measurement of electric quadrupole moment (EQM) interac­
tion with field gradients, which has the same effect as electric dipole moment 
(EDM). Using a different setup of Wien filter fields allows us to separate the 
EQM contribution from the true EDM effect. Because the EQM value is 
known with high accuracy, reproducing it using the same method as in the 
EDM search will demonstrate that systematic uncertainties can be controlled 
to the required level. The second method discussed is to evaluate the sys­
tematic uncertainties due to magnet misalignment in the storage ring. This 
is a very important source of systematic uncertainties that can mimic the 
EDM effect. Even with very small magnet misalignments, this false signal 
might be much larger than the expected EDM signal. A Fourier analysis of 
the time-dependent vertical polarisation is used to evaluate the magnitude 
of this effect. This might be accomplished by sampling the vertical polari­
sation at a frequency greater than the beam revolution frequency, resulting 
in polarisation measurements in at least two positions in the storage ring. 
This method can be applied to any case for EDM measurements utilising a 
storage ring.

This thesis is divided into six chapters.

• Chapter 2 discusses in detail baryon-antibaryon asymmetry, discrete 
symmetries in physics, CP symmetry violation, how EDM leads to 
CP violation and a summary of previous EDM experiments and their 
results.

• Chapter 3 discusses in detail beam and spin dynamics in the storage 
ring. Also, the equations of motion that describe particle trajectories 
and the time-dependent evolution of spin in electromagnetic fields. The 
methods proposed for EDM measurement in the storage ring are also 
discussed.
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• Chapter 4 discusses the first method to control systematic uncertainty 
using the interaction of electric quadrupole moment (EQM) and mag­
netic dipole moment (MDM) with electromagnetic field gradients. Also, 
it discusses particle and spin tracking simulations by introducing real­
istic fields and defining their gradients, as well as extending the TBMT 
equation to evaluate the true effect of MDM and EQM interaction with 
field gradients using BMAD software for Quasi Frozen Spin lattice (QFS 
lattice).

• Chapter 5 focuses on systematic uncertainties due to magnet misalign­
ment in the storage ring. In order to estimate the systematic uncertain­
ties due to magnet misalignment, simulations using BMAD software for 
the Cooler Synchrotron (COSY) storage ring were performed. A sim­
ple analytical model is also discussed that allows to directly determine 
the effect of magnet misalignment on the vertical spin component. A 
Fourier analysis of the time-dependent vertical polarisation is used to 
estimate the effect of the magnet's misalignments on the expected EDM 
signal.

• Chapter 6 concludes with a summary of the thesis.
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Chapter 2

Theory and Motivation

The dissertation was completed as part of the JEDI collaboration [2]. The 
collaboration's main ob jective is to study feasible experiments for measuring 
charged particles' EDM in storage rings. This chapter discusses why EDMs 
are of particular interest in particle physics, what leads to baryon-antibaryon 
asymmetry, and a discussion regarding discrete symmetries in physics and a 
summary of previously conducted EDM experiments and their outcomes.

2.1 Baryons-Antibaryons Asymmetry

Our universe is matter-dominated, with more matter than antimatter. This 
disparity between matter and antimatter is frequently referred to as the 
baryon asymmetry problem. The matter and antimatter asymmetry is de­
scribed using a parameter n known as the baryon asymmetry parameter:

n =
Nb - Nb 

Ny
(2.1)

where NB denotes the number of baryons, Nb denotes the number of anti­
baryons, and Ny denotes number of photons. After the Big Bang, the uni­
verse's temperature reached a point where pair formation and annihilation 
occurred in thermal equilibrium. After the temperature went below the 
threshold for pair production, matter and anti-matter annihilated and pho­
tons were created, resulting in 2NY « NB + NB. The number for n is esti­
mated to be around (6.047 ± 0.074)•IO-10 according to the Cosmic Microwave 
Background (CMB) spectrum, although the current model of particle physics 
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and cosmology allows for only a value of 1 • 10-18. This mismatch indicates 
that there must be some information not yet known. To explain this cosmic 
enigma, Andrei Sakharov [1] proposed three conditions for baryogenesis to 
occur:

1. Baryon number violation: At the beginning of the Big Bang, the 
universe was symmetric, which means baryon number B = 0 (B = 
NB — NB). Therefore, in order to do transition from a symmetric to an 
asymmetric universe, baryon number must be violated, which means 
that the system must evolve from baryon number B = 0 to baryon 
number B = 0.

2. C and CP symmetries violation: Only a violation of the baryon 
number is insufficient to account for matter-antimatter asymmetry. If 
C and CP symmetries are not violated, baryons are formed at the same 
rate as anti-baryons, and hence no baryon asymmetry develops.

3. Interaction outside of thermal equilibrium: In order to transit 
from B = 0 to B = 0 state, the system must be brought out of thermal 
equilibrium, since an equilibrium state attempts to maintain an equal 
quantity of baryons and anti-baryons, making transit from one state to 
another difficult. As a result, baryogenesis should occur in the absence 
of thermal equilibrium.

2.2 Discrete Symmetries And Their Violations

Symmetry conservation is a critical aspect of physics [4]. Presently, there is 
considerable interest in the investigation of symmetry violations. In particle 
physics, the discrete symmetries are as follows: parity transformation P, 
charge conjugation C, and time reversal T symmetry.

2.2.1 Parity Transformation

The parity transformation P changes the sign of a single spatial coordinate. 
A process being symmetric under the parity transformation means that it 
behaves identically to its mirror image process. The parity transformation 
has an effect on polar vectors such as displacement, momentum, and accel­
eration but has no effect on axial vectors such as angular momentum. When 
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It was seen that no matter what the sign of the polarising field was, the 
ejected electrons were more favoured to travel in the direction opposite to 
the nuclear spin. Because the parity transformation has no effect on the po­
larisation direction but affects the momentum and hence the flight direction, 
the measurement provides evidence of parity violation. Furthermore, inves­
tigations of charged pion decays revealed that the neutrino spin is always 
anti-aligned to the momentum vector, whereas the anti-neutrino spin points 
in the direction of the flight. Therefore, left-handed neutrinos and right­
handed anti-neutrinos couple to the weak interaction in the SM if massless 
neutrinos are assumed [8, 9].

2.2.2 Charge Conjugation Transformation

In this transformation, all particles are replaced with their corresponding 
antiparticles. As a result, additive quantum numbers like charge, baryon, 
and lepton number, as well as strangeness, are reversed, but other quantities 
like spin, position, and momentum remain unaffected. Charge inversion leads 
to a change in the direction of electric and magnetic fields. In SM, weak 
interactions violate the C symmetry, e.g. in pion decay:
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it comes to the electromagnetic field, the P transformation reverses the di­
rection of the electric field vector, while the direction of the magnetic field 
vector keeps their orientation since they are represented by axial vectors [5].

In the Standard Model, electromagnetic and strong interactions are symmet­
ric under P transformation, but weak interactions violate P transformation. 
Following the discovery of K + meson decays into final states of two and 
three pions, Lee and Yang [6] proposed investigating decays to explore 
parity violation in weak interactions in 1956. Later that year, Wu performed 
an experiment [7] to establish parity conservation in weak interaction. The 
aim was to measure the angular distribution of electrons for emission angles 
relative to the polarised nucleus spin direction. In that experiment, the beta 
decay of a polarised cobalt was observed:

(2.2)

(2.3)



A left-handed anti-neutrino does not participate in weak interaction in SM. 
Thus, pion decay is an example of the weak interaction violating C symmetry.

2.2.3 Time Reversal Transformation

Time reversal transformation inverts the time coordinate's sign while keeping 
the spatial coordinates the same. It is the third discrete transformation. 
The particular reaction rate for a time symmetric process should be the 
same as the reverse reaction rate. There is no evidence of the presence of 
time violation in strong and electromagnetic interaction. Violation of time 
reversal transformation symmetry was observed in weak interactions, such as 
in the decay of neutral kaons [10].

2.2.4 C P Symmetry Violation

C P violation is the violation of combined C and P symmetries, i.e. a simul­
taneous violation of both charge conjugation and parity symmetries. The 
C P symmetry states that if a particle is interchanged with its antiparticle (C 
symmetry), and the coordinates are inverted, i.e. mirror image (P symme­
try), the laws of physics should remain the same.

In 1951, Schwinger [11] implicitly introduced the CP T -theorem, which states 
that if a local quantum field theory is Lorentz invariant, the combination of 
C, P , and T transformations in any order is conserved. As a result, one can 
determine that a violation of the T symmetry directly results in a violation 
of the CP symmetry in order to conserve the CP T theorem. In 1964, Cronin 
and Fitch [12] discovered the first instance of a process that violated the 
C P while measuring the decay of the KL0 kaon. The KL0 can decay into two 
and three pion final states, but not into a two pion final state if the KL0 is 
a C P eigenstate. To include this effect in Standard Model theory, the CKM 
matrix (Cabibbo-Kobayashi-Maskawa) [13][14] was proposed, which explains 
the mixing of the six quarks, where complex phase causes C P violation. The 
C P violation was also observed in the B meson sector [15][16]. Due to the 
fact that the C P violation in the CKM matrix alone is insufficient to account 
for the matter-antimatter asymmetry, other sources of C P violation are of 
significant interest. The EDM is one such option, which will be described in 
further detail.
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2.3 Electric Dipole Moment

EDM is a fundamental property of particles, much like spin, charge, and 
mass. The presence of a permanent EDM in a non-degenerated system might 
be an additional source of C P violation and contribute to our understanding 
of matter dominance in the universe. This chapter provides a short introduc­
tion of the theoretical background of EDMs as well as an overview of EDM 
measurements and their outcomes in general.

2.3.1 Definition Of EDM

The electric dipole moment (EDM) is a term that refers to the permanent 
separation of two charges inside a system. Thus, EDM (d) for two opposite 
charged particles (q) placed at a distance (r ) is defined classically as follows:

(2.5)

Similarly, the magnetic dipole moment (MDM) is defined as follows:

(2.6)

The current density is denoted by j (X). EDM and MDM can be parallel or 
anti-parallel to the spin direction, as this is the only quantization axis that 
can be distinguished. The EDM and MDM are spin-dependent, as shown by 
[17]:

(2.7)

(2.8)
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Due to asymmetry in charge density distribution, p(x) EDM arises in a sys­
tem, which can be represented as:

(2.4)



where q denotes the charge of the particle, S denotes the spin, m denotes 
the mass of the particle, c denotes the speed of light, and g denotes the di­
mensionless scaling parameter known as the g-factor. In the case of EDM, 
the dimensionless scaling parameter is nEDM, which denotes the EDM mag­
nitude.

2.3.2 EDM Leads To CP Violation

EDM is oriented in the direction of charge distribution from negative to pos­
itive. This section will explain the relationship between CP violations and 
EDM.

The Hamiltonian of the particle at rest in electric and magnetic fields is given 
by the relation (2.9):

(2.9)

(2.10)

(2.11)

When the parity transformation is applied to the Hamiltonian (equation 
2.10), the electric field is reversed while the magnetic field and spin remain 
unchanged, as depicted in figure 2.1. It is concluded that the permanent 
EDM results in a P violation, while the MDM does not. Similarly, when a 
time reversal transformation is applied to the Hamiltonian (equation 2.11), 
the magnetic field's sign changes, the spin vector's direction is reversed, but 
the electric field is unaffected, as depicted in figure 2.1. Whereas, EDM 
and MDM point in the direction of the spin. As a result, the EDM term 
in equation 2.9 changes sign, indicating that permanent EDM results in T 
violation [17]. Thus, a nonzero EDM value violates both the parity and time 
reversal symmetries. As a result of the CPT theorem, an EDM violates the 
CP since it violates both P and T.

2.4 Current EDM Limits

As EDM is a possible source of CP violation, numerous measurements of 
elementary particle's EDM are currently ongoing or have been performed.
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Figure 2.1: In this figure, P represents parity transformation, and T rep­
resents time reversal. The behaviour of the EDM (d) and MDM (^) under 
P and T are depicted on the figure. Due to the fact that both the EDM 
and MDM are aligned with the spin, they behave identically under parity P 
and time reversal T transformations. But, the fields to which they couple 
(E and B) do not align. The electric field E changes sign during the parity 
transformation (P), while the magnetic field B and spin direction remain 
unchanged, and also the EDM and MDM remain unchanged. This results 
in a change in the Hamiltonian's (dE) sign and a violation of the symmetry. 
The same holds true for time reversal (T ), in which everything other than 
the electric field's sign reverses, resulting in the same Hamiltonian as that 
after P transformation and a violation of the symmetry.

Table 2.1: Measured upper limits for the EDM of different particles. So far, 
muon is the only one whose EDM limit was determined by a storage ring 
experiment [21].

Particle Upper EDM limits
Neutron 
Electron
Proton
Muon

dn < 3 • 10-26 e-cm (90% C.L.) [18] 
de < 8.7 • 10-29 e-cm (90% C.L.) [19] 
dp < 7.9 • 10-25 e-cm (95% C.L.) [20] 
d„ < 1.9 • 10-19 e-cm (95% C.L.) [21]
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For example, the neutron's EDM limit was first measured in 1957 by Smith, 
Ramsey, and Purcell, and the outcome was [22] dn = (0.1 ± 2.4) • 10-20 e^cm. 
A number of theories beyond SM predict non-zero EDMs of other particles. 
In order to confirm these theories and compare their predictions with exper­
imental data, it is important to measure the EDM of numerous additional 
particles. Table 2.1 represents the current experimental upper limits for EDM 
of elementary particles. Jülich Electric Dipole Moment Investigations (JEDI 
collaboration) aims to investigate EDM for proton and deuteron particles. 
So far, the upper limit for the proton has only been determined indirectly, 
and there has been no measurement of the deuteron.

Neutral systems, in particular, neutrons, neutral molecules, or atoms, have 
been favored in many circumstances due to the relatively easy construction 
of a trapping system with minimal influence on translational motion from 
electromagnetic fields. Since the translational motion of charge particle can 
be effected by applied electromagnetic field, the process of trapping and 
analysing of charge particles becomes more challenging. As a result, new 
ways of measurement must be introduced [23]. The advantageous property 
of storage rings is that they can store and circulate charged particles for very 
extended beam lifetimes. Proposed methods of storage ring will be discussed 
in detail in section 3.6.

For charged hadrons, the Standard Model prediction for EDM's order of 
magnitude is 10-32 to 10-31 e^cm, which is too small to be measured by 
the proposed JEDI experiment [24]. But Standard Model extension such as 
supersymmetry [25, 26] predict a higher order of magnitude of EDM, which 
may surpass 10-29 e-cm, which is anticipated to be in the range of dedicated 
storage ring investigations.

2.5 JEDI Collaboration

JEDI (Jülich Electric Dipole Moment Investigations) was founded in 2011 
with the objective of utilising COSY (Cooler Synchrotron) [27] not only for 
the development of key technologies for srEDM but also for the first direct 
EDM measurement of deuterons ("precursor experiment"). Due to the fact 
that COSY is a conventional storage ring with magnetic bending, it requires 
a particular insertion ("Radio-frequency (RF) Wien filter") to be sensitive
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Figure 2.2: The Cooler Synchrotron (COSY) at Forschungszentrum Jülich, 
Germany.

to EDM. This latter research, which aims to demonstrate the feasibility of 
srEDM, is funded by an "Advanced Grant" from the "European Research 
Council" (2016-2021).

The JEDI collaboration has already gathered a lot of information [28-35], 
further research is ongoing [3, 28-36], and a precursor experiment has been 
set up. Whereas the statistical accuracy required to achieve a sensitivity of 
10-21 e-cm for the EDM can be achieved in a short measurement. In order 
to reach this goal it is necessary to know the systematic uncertainties with 
sufficiently good precision.
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Chapter 3

Beam and Spin Dynamics In 
Storage Ring

To comprehend the measurement methods of a charged particle's electric 
dipole moment (EDM) with the use of a storage ring, one must first un­
derstand the behavior of a particle beam as well as spin in a storage ring. 
Electric and magnetic fields have an influence on particle motion and spin 
precession as well as it keep particles in the storage ring. The evolution of the 
particle's path is described by beam dynamics. Spin dynamics, on the other 
hand, describes spin precession in the presence of electromagnetic fields. This 
chapter also discusses the coordinate system in a storage ring and is followed 
by an explanation of the interaction of particles with the electromagnetic 
field of different elements in a storage ring.

3.1 Beam Physics

A beam can be defined as an ensemble of particles. A particle's motion is 
generally defined by its momentum and position called a state vector, Z. 
The coordinates of state vector Z are known as phase space coordinates 
and are denoted as,
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3.1.1 Lorentz Force

where the charge of the particle is q , magnetic and electric fields are given by 
B and E respectively, c/3 denotes the velocity of the particle. Both magnetic 
and electric fields can be used to bend charged particles in the storage ring. 
Additionally, an electric field can be utilised to accelerate the particles. How­
ever, magnetic fields are the most widely utilised for beam guidance. Since it 
is easier to generate a magnetic field of 1 T in comparison to an electric field 
of order 3 • 109 V^cm-1 which corresponds to the same force acting on a rela­
tivistic particle. Because such large electric fields are technically impossible 
to make, magnetic bending components have been used almost extensively 
in the past. Since the transverse magnetic field has no effect on the change in 
longitudinal momentum, the electric field can be used to accelerate particles 
in the longitudinal direction.

3.1.2 Coordinate System

To describe the motion of particles in a storage ring, a predefined coordinate 
system is necessary. All of the elements in a storage ring have fixed positions 
and have either a static or variable field. So, it is more convenient to de­
scribe the position and other beam parameters as a function of the position 
s along the reference trajectory rref (s). A reference particle is defined as a 
particle that follows the reference orbit rref(s) of the beam with the reference 
momentum pref to describe the motion of any arbitrary particle inside the 
storage ring.

A co-moving coordinate system (ex, ey ,es) may be used to study the motion 
of an arbitrary particle with respect to the reference particle. The position 
of the reference particle acts as the origin of this coordinate system. Figure 
3.1 (a) depicts a co-moving coordinate system on the reference orbit from a 
starting point si to a final point sf. The momentum of the reference particle 
pref is always aligned with the basis vector es. An transverse plane is defined
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In an electromagnetic field, the force on the particle is represented by the 
Lorentz force,

(3.2)



by the basis vectors ex, which is perpendicular to es and points radially, and 
ey = esx ex, which points vertically. Figure 3.1 (b) helps in visualising the 
coordinates.

Figure 3.1: Figure (a) Geometrical view: The Cartesian coordinate system 
is co-moving with the reference particle and has its origin at the reference 
particle's position. The s-axis points tangentially to the reference orbit, 
whereas the z -axis is oriented radially, and y indicates vertical direction. 
Also, (x, y, s) coordinates are known as curvilinear coordinates. Figure (b) 
helps in visualising the coordinate system (the illustration is taken from [37]).

The coordinate system transformation from point si to another sf are given 
by [38]:

(3.3)
(3.4)
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with

(3.5)

(3.6)

Here, p(s) denotes the reference orbit's bending radius, while h(s) denotes 
the bending radius's inverse. The change of the basis vectors (eX,ey,eS) is 
defined as follows:

(3.7)

(3.8)

(3.9)

To characterise the trajectory of a particle, r(s) in a beam, it is sufficient to 
know its position relative to the reference particle trajectory, r0(s).

3.2 Beam Dynamics

This section will cover the dynamics of the beam, transverse motion, and 
longitudinal motion of particles inside the storage ring. Coordinate system 
used in storage ring is also discussed.

3.2.1 Transverse Motion

Consider the Cartesian coordinate system (eX,ey, eS) for a particle travelling 
along the s-direction with a velocity of v = (0, 0, vs) and in the presence of a 
magnetic field composed entirely of transverse components, B = (Bx, By, 0). 
As a result, particles in the horizontal plane will encounter Lorentz force 
Fx = —qvsBy and centrifugal force Fr = mvs2/R. Here, m denotes the 
particle's mass and R denotes the trajectory's radius of curvature. These 
forces are balanced so that Fx + Fr = 0. The momentum of a particle is 
equal to p = mvs. We then have an equation for the radius of curvature:

(3.10)
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The field expansion may be used to express the magnetic fields of a storage 
ring:

(3.11)

where k, mst, and o indicate the magnet strength of quadrupoles, sextupoles, 
and octupoles, respectively. If k is negative, the quadrupole is focusing, and 
it is defocusing if k is positive.

Equation Of Motion In A Co-Moving Coordinate System

The equations of motion for a particle passing through a storage ring's mag­
netic structure will be introduced in this section. The general tra jectory of 
a particle in relation to the reference orbit is described as [39]:

(3.13)

(3.14)

The position s on the passage through the storage ring is determined at every 
moment in time and may therefore be utilized as an independent variable. 
As a result, time derivatives can be converted into derivatives with respect 
to s, resulting in:

(3.15)
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The time derivatives of r(s) are required for the formulation of the equations 
of motion using equations from 3.7 to 3.9:

(3.12)



Using the above mentioned relations 3.13 and 3.14, and similarly for y' and 
y''.

(3.17)

(3.18)

Lorentz force equation 3.2 describe particle motion in electromagnetic fields.
With a pure magnetic storage ring (substituting p = mr(s) and also v = r(s) 
in equation 3.2), equation reduces to:

(3.19)

Now, the equations of motion for a variety of conditions are:

Case 1:

Assuming that only the transverse components of the magnetic field are non­
zero, B = (Bx, By, 0). This assumption is often satisfied to a large degree in 
particle storage ring. Now, equation 3.19 depicts:

(3.20)

Co-moving coordinate system means that the reference particle's coor­
dinate system is moving at the velocity s, while the charged particle under 
observation is traveling at the velocity v. This velocity does not have to be 
equal to the reference particle's velocity. It may be dependent on the charged
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particle's position relative to the reference particle. As seen in figure 3.2, if 
the charged particle is in an inner orbit, it has a lower velocity, and if it is in 
an outer orbit, it has a greater velocity compared to the reference particle.

Figure 3.2: Figure (a) The reference particle's velocity is not the same as the 
random particle's velocity in the beam. If the charged particle is in an inner 
orbit, it has a lower velocity, and if it is in an outer orbit, it has a greater 
velocity compared to the reference particle. Figure (b) With respect to the 
ideal or reference trajectory, this is the tra jectory for the random particle in 
the transverse coordinates of x and y .

Case 2:

The relative change in longitudinal velocity for relativistic particles is negli­
gible in magnetic fields and it can be ignored. The vertical components of 
equations 3.18 and 3.20 are compared to get the equations of motion.

for horizontal component:

for vertical component:

(3.21)

(3.22)
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Case 3:

To simplify the equation, suppose the particles' velocity varies very slowly as 
they pass through the magnetic field, so s ~ 0. As seen in figure 3.2 v = s. 
The velocity of an arbitrary particle in a beam may be described as follows:

(3.23)

Case 4:

Further simplifying the equations 3.21 and 3.22, using p = mv and s' ~ 0, we 
get the equation of motion components as:

for horizontal component:

for vertical component:

(3.24)

(3.25)

Momentum of the particle :

Assuming the particle's momentum is p = p0 + Ap, and the momentum 
deviation is denoted as Ap. The momentum deviation of Ap is quite small 
when compared to the nominal momentum of p0. These variances Ap are 
often smaller than 1%, at which point the inverse of the momentum may be 
approximated using a linear approximation. Therefore,

(3.26)

Case 5:

Assuming the particles are bent in the horizontal plane according to equation 
3.11, the magnetic fields in each direction may be stated as follows:

(3.27)
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(3.28)

Now, substituting equations 3.24 and 3.25 with 3.27 and 3.28 we get:

for horizontal component:

(3.29)

for vertical component:

(3.30)

Case 6:

Furthermore, assuming the equation of motion for a particle moving through 
a magnetic structure in a pure magnetic ring with dipoles and quadrupoles 
only present with their vertical magnetic fields. Also, the bending radius is 
substantially larger than the transverse deviations from the reference orbit 
x and y, (x << p), (y << p), ((Ap/p) << 1), therefore neglecting the
terms which contains x,y, and Ap/po we get:

for horizontal component:

(3.31)

for vertical component:

(3.32)

These equations are the basis of calculations in linear beam optics.

3.2.2 Beta Function And Betatron Oscillation

The equation of motion 3.31 and 3.32 can be rewritten with assumption that 
if dispersive effects are neglected, Ap/p = 0 and 1/p = 0, equation of motion 
becomes:

32



(3.33)
(3.34)

Equation 3.33 and 3.34 are also known as Hill's differential equation 
of motion. A transverse oscillation across the reference orbit is known as 
a betatron oscillation, and is described by the trajectory function x(s). 
The Betatron oscillation's amplitude (^£y/^(s)) and phase (^(s)) are de­
pendent upon the position s along the orbit. As both equations have the 
same structure and can be solved using the same approach, it is sufficient 
to investigate only the horizontal solution. The vertical solution is then ob­
tained in a similar manner. The solution to Hill's differential equation above 
is:

(3.35)

where A and 0 are the integration constants that define an individual parti­
cle's trajectory.

Replacing A by y/s (where e is emittance, it will be discussed in details 
in section 3.2.3) and ft(s) = u2(s) in equation 3.33 we will get solution to 
trajectory equation:

(3.36)

(3.37)

where, ft(s) is Beta function and also commonly known as amplitude func­
tion, Beta function describes the angle and position of transverse oscillation 
at a given position s for a particle in a beam. The first derivative of the 
trajectory function x(s),

where, Alpha function is given as:

(3.38)

(3.39)
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Functions (s),a(s) along with dispersion D(s) and its derivative D'(s) de­
scribe the linear beam optics in a plane.

Envelope of the beam: The particles undergo betatron oscillations with 
a position-dependent amplitude within the magnet structure, which has a 
net focusing effect. This position-dependent amplitude is also known as the 
envelope [39] (represented in figure 3.3) and it is stated as,

Particles move in a transverse direction around the orbit within the envelope 
E (s). Since all particle tra jectories fall inside this envelope, it determines 
the beam's transverse size, as shown in figure 3.3. The beam's envelope E (s) 
is defined by the particle with the highest emittance because the amplitude 
of the betatron oscillations is provided by the relation 3.40.

Figure 3.3: Particle trajectories x(s) within the beam's envelope E(s). The 
upper figure depicts a single trajectory, whereas the lower figure depicts a 
group of various separate trajectories. All of the separate trajectories to­
gether form the beam. The figure is taken from [39].
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3.2.3 Beam Emittance And Betatron Tune

To get an equation characterising particle motion in the x — X phase space 
plane, we must first remove the phase-dependent terms from equation 3.36. 
By rearranging 3.36 we'll obtain:

(3.41)

Using this substitution and rearrangement in equation 3.38 leads to:

(3.42)

Using the relation sin2 0 + cos2 0 = 1 we get,

(3.43)

New variable called gamma function is defined as:

(3.44)

Substituting this variable in equation 3.43, we will get equation of phase
ellipse in the x — X plane:

(3.45)

Beam Emittance: Beam emittance (s) or Courant-Snyder invariant is de­
fined as the area of the phase ellipse (F) within a factor of n, that is s = Fn 
[37]. Figure 3.4 depicts phase space ellipse with a given emittance s at a 
specified position s.
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According to Liouville's theorem [40], if the particles satisfy the canonical 
equations of motion, every element in a volume of phase space is constant 
with respect to time, which means the area of the phase ellipse is constant and 
also the beam emittance is invariant of particle motion. The phase space of a 
linear transverse particle motion is characterised by an ellipse with constant 
area that depends on the particle's Courant-Snyder invariant. The ellipse 
rotates in the coordinate system along with the magnetic structure of the 
ring, but its size and shape remain constant.

Figure 3.4: Phase space ellipse in the x — X plane of particle motion. The 
phase space of a linear transverse particle motion is characterised by an ellipse 
with constant area that depends on the particle's Courant-Snyder invariant. 
The ellipse rotates in the coordinate system along with the magnetic structure 
of the ring, but its size and shape remain constant.

Betatron tune is the number of betatron oscillations per turn, which is 
transverse oscillation's total phase advance per rotation and is generally de­
fined in units of 2n. It is denoted by Q [41],

(3.46)
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3.2.4 Longitudinal Motion
So far, only the transverse motion of particles in the storage ring has been 
considered. Now longitudinal motion will be discussed. The accelerating 
cavity, or radiofrequency (RF) cavity, generates a longitudinally oscillating 
electric field which accelerates the particles or bunch of particles. It has the 
greatest impact on the longitudinal motion. When the reference particle or 
synchronous particle enters the RF cavity, it has precisely the right momen­
tum as well as the right transit time, so that it gets the exact amount of 
energy it needs to move in a closed orbit, crossing through the centre of all 
magnets. However, a particle beam consists of dispersed particles with dif­
ferent momentums and transit times across the RF cavity, which leads to a 
phase stability issue.

Phase Stability

A synchronous particle (particle which always passes through the RF cavity 
when the field is at the same phase) with electric charge q passes through 
the RF cavity, during each revolution of the ring, its energy gain per turn is 
equal to [42]:
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(3.48)

where V0 is the accelerating voltage amplitude and is the RF phase. Ref­
erence (synchronised) particles have the same phase ^s as that of the RF 
cavity. The synchronous particle passes through the centre of magnets in the 
ring with the same phase, 0s, and gains the same energy with each turn.

Beam particles are likely to deviate from their reference trajectory. Consid­
ering a particle with a different momentum p, than the synchronous particle 
p0. If L is the circumference of the ring and v is the velocity of the particle 
under consideration, the time required to complete one revolution is t = L/v. 
The fractional change in t due to variations in L and v is given as:

Here, v0 is the velocity of the reference particle. Equation 3.48 demonstrates 
how a particle travelling faster than the reference particle takes less time



to complete one revolution. However, if the path length is longer, the time 
required to reach the RF cavity will be increased. In terms of the fractional 
momentum deviation, the fractional change in velocity may be written as 
follows [43]:

(3.50)

Substituting equation 3.50 and 3.49 in equation 3.48, we will get,

(3.51)

Here, n is the coefficient called slip factor:

(3.52)

Transition energy is the energy for which the slip factor is equal to zero for 
a specific Ytr, which means that the revolution frequency of particles with a 
small momentum deviation does not vary. Ytr is denoted as,

(3.53)

Equation 3.51 may also be expressed in terms of revolution frequency,

(3.54)

Here, fo is the revolution frequency of reference particle. From figure 3.5 and 
equation 3.54, we can understand the phase stability principle.
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Magnetic rigidity is Bp = p/q in circular storage rings. Since it is related to 
momentum, one may anticipate the orbit circumference to be greater for a 
particle with a momentum somewhat greater than the ideal particle's. The 
momentum compaction factor, ac, determines the orbital length fluctuation 
with momentum, and it is referred to as,

(3.49)



Figure 3.5: RF wave sketch, reference particle in green, other particle with 
higher energy in red ( > 0) and lower energy particle in dark blue (<
0). For stable synchrotron motion, ^s = 0 for n < 0 and ^s = n for n > 0 
[44].

• For a particle with momentum larger than the reference particle mo­
mentum > 0 and energy below transition energy, y < Ytr, the 
particle will have revolution frequency higher than reference particle 
frequency f > f0 that is, it will cross RF cavity faster than reference 
particle. This leads to a negative particle phase, so it acquires less 
energy than the reference particle and hence decelerates.

This method helps to maintain the phase stability from turn to turn by 
reducing both the phase change and the energy difference.

3.3 BMAD Software

The simulations in this thesis are carried out with the help of the BMAD 
[45] software library, which was developed for Elementary Particle Physics 
at Cornell University. BMAD is an object-oriented, open-source, subrou­
tine library written in FORTRAN 95. The library includes subroutines for 
simulating relativistic charged particle beams and spin dynamics. It enables 
single-and multi-particle tracking using a variety of tracking techniques. In 
terms of spin tracking, BMAD enables the incorporation of a non-vanishing 
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EDM. Additionally, BMAD allows for the combination of superimposition of 
elements. Various changes are introduced in BMAD which will be discussed 
in details in upcoming sections.

3.4 Spin Dynamics

A detailed investigation of the spin dynamics in storage rings is required for 
the design of a storage ring based EDM experiment. But the first study of 
spin behaviour is very important, and then how the beam motion is coupled 
to spin motion. In this thesis, beam and spin behaviour studies have a ma jor 
role, so basics are discussed first, such as the spin of particles such as deuteron 
and proton, and then spin motion in an electromagnetic field. Ma jor section 
regarding spin dynamics is taken from following [46-48].

3.4.1 Polarisation Formalism

The term "polarisation" refers to an ensemble of particles' average spin orien­

tation. A particle's single spin may be represented by an operator S in which 
the spin angular momentum is projected along the specified quantization axis 
as Sz = msh. ms is a spin quantum number that may take (2s + 1) values 
and ranges from -s to s, where s is the particle's spin number and z-axis 
is used as the spin quantization axis. Spin 1 and spin 1 will be discussed in 
detail in the following sections.

3.4.2 Spin 1 Particles

Proton has spin 1 and spin quantum number ms can only be present in two 
states, ms = ±1. A single spin 2 particle's state may be described as a 
normalised Pauli spinor [48] with two components:
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(3.55)

with condition |x|2 + |y|2 = 1. In the equation, 3.55 two spinor components 
are ms = ± 1. Cartesian coordinate system (e1,e2,e3) is used for following 
discussion, where e3 is spin quantization axis. Using Pauli spin operator, in 
the case of spin 1 particles, the operator is defined as:



(3.56)

Where,

(3.57)

This set of matrices can be extended by the fourth unit matrix.

(3.58)

These 4 matrices form a complete basis of 2x2 Hermitian matrices. An 
observable is described as the associated operator A's expectation value, 
which is defined as:

(3.59)

Now defining the density matrix:

(3.60)

The expectation value using the trace of the product of a density matrix and 
the operator is written as:

(3.61)

The spin vector S represents the spin operator's expected value.

(3.62)
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When the single particle is replaced by an ensemble of N particles, the quan­
tity of interest becomes the expectation value of the ensemble's spin observ­
ables. In this scenario, the density matrix must be expanded to include the 
following:

(3.63)

In terms of Pauli spin operators:

(3.64)

P signifies the polarisation vector, which is the average of all the spin oper­
ators' expectation values in the ensemble:

Let us consider that the beam is composed of Nms=2 and Nms=-2 particles 
in quantum states, such as ms = +1 and ms = — 2 respectively. Vector 
polarisation Pv is defined as [46]:

(3.66)

From the vector polarisation, we can say that the beam is fully polarised if 
Pv = ±1 and unpolarised if Pv = 0.

3.4.3 Spin 1 Particles
Spin 1 particles (like deuteron) may exist in one of three states: ms = 1, ms =
0, or ms = 1. As a result, it is represented by a three-dimensional spinor 
[48]:
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Spin operators are defined as follows:

Nine independent hermitian matrices are required to characterise a spin 1 
system. And they are the basis for 3x3 hermitian operators. In the Cartesian 
coordinate system, using the identity matrix (I), these operators are:

Sij = 2 (SiSj + SjSi) — 2Uij i,j e 1,2, 3 (3.69)

The density matrix of a spin 1 particle ensemble may be represented as [47]: 

•>

where, Pi and Pij are the polarisation states of spin-1 particle.

Considering the three states ms = -1, 0, 1 for N ms=-1 , N ms=0, N ms=1 particles 
of beam, along the quantization axis the vector polarisation PV and tensor 
polarisation PT is given by[46]:

3.5 Spin Motion In Storage Ring

This section will discuss how spin behaves in electric and magnetic fields. 
Following that, the spin equation of motion in electromagnetic fields in the 
rest frame of reference will be studied. Finally, several EDM experiment 
approaches are discussed.
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with (3.70)

(3.71)

(3.72)



3.5.1 Spin Evolution In Electric And Magnetic Field 
Equation 2.9 gives the Hamiltonian, which describes the particle's EDM and 
MDM interactions with electromagnetic fields in its rest frame. The non- 
relativistic spin equation of motion for the spin vector S in electric and 
magnetic fields is as follows:

(3.73)

where 1 is the magnetic dipole moment (MDM), d is the electric dipole 
moment (EDM), and Q is the angular frequency that represents the rate of 
change of the polarisation due to the magnetic (MDM) and electric (EDM) 
dipole interactions. Equations 2.7 and 2.8, relate electric dipole moment d 
and magnetic dipole moment 1 with spin, respectively. According to the 
equation 3.73, there is a spin precession in the plane perpendicular to Q 
with an angular frequency of |Q |. Experimental measurements are used to 
determine the MDM of different particles. Nuclear magnetons are commonly 
used to describe MDM values for hadronic systems [49] :

where, g is the g -factor. The values of the proton and deuteron gyromagnetic 
anomaly G are 1.792847 (proton) and -0.142987 (deuteron).

3.5.2 Spin Procession - TBMT Equation

In the storage ring physics setup, the laboratory reference frame is more often 
used to describe the fields than the particle rest frame as used in equation 
3.73. As a result, the equation must be recalculated in terms of the lab­
oratory reference frame. The spin equation of motion may be represented
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An anomalous magnetic moment or gyromagnetic anomaly is denoted by G 
as:

(3.74)

(3.75)



in a laboratory system using magnetic and electric fields, while the spin is 
still specified in the particle's rest frame of reference. The resulting equation 
is the so-called Thomas-Bargmann-Michel-Telegdi (TBMT) equation, which 
can be extended in order to include the EDM effect and read as follows [50­
52]:

Here, QEDM and QMDM are the spin precession frequencies due to interaction 
of EDM and MDM with an electromagnetic field, and nEDM = 2dmc/q^.Q 
is a dimensionless EDM parameter. This is still the fundamental equation 
of spin precession since the interaction of field gradients with the electric 
quadrupole and magnetic dipole moment is not included, but this will be 
described in the section 4.2.2, which is the primary basis of my thesis.

Additionally, one may also represent the rotation caused by the MDM in 
terms of parallel and perpendicular field components relative to the momen­
tum vector:

(3.79)

(3.80)

where, QE|| =0 since Q X E^ = 0. The momentum also precesses with the 
angular frequency Qcyc under the influence of electromagnetic fields, which 
is given as:

(3.81)
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(3.77)
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The corresponding equation of motion is given as:

(3.82)

The crossing point of frequencies at which the cyclotron frequency and spin 
precession frequency due to MDM are comparable can be easily estimated 
using:

(3.83)

Substituting the equations 3.80 and 3.81 in equation 3.83 we get the following 
equation:

(3.84)

Now, assuming that the storage ring contains only vertical magnetic fields 
and ignoring EDM, the spin precession may be computed as:

In this scenario, unlike many other spin orientations, an initial spin paral­
lel or anti-parallel to the vertical axis does not precess and remains stable 
throughout time. The axis in which the orientation of spin is preserved 
is known as spin closed orbit or invariant spin axis nc. The number of 
spin oscillations per revolution is known as spin tune (vS), and it is given as:
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(3.85)

(3.86)

Here, one revolution was subtracted to account for the rotation of the co­
moving coordinate system.



3.6 Methods Proposed For EDM Measurement 
In Storage Ring

Various methods for measuring EDM will be discussed in this section. First, 
the basic concept of EDM measurement will be discussed, followed by meth­
ods namely the Frozen Spin method, the Quasi Frozen Spin method, and the 
RF Wien filter method.

3.6.1 Basic Idea Of EDM Measurement

The primary ob jective of such a measurement is to monitor the build-up of 
vertical polarisation caused by an EDM using a horizontally polarised beam 
initially. The spin precession of a charged particle in a rest frame due to EDM 
interaction with an electric field E* and MDM interaction with a magnetic 
field B* is given as [24]:

(3.88)

(3.89)

(3.90)

Spin precession in an ideal storage ring takes place horizontally, and the spin­
closed orbit nc is aligned vertically with the vanishing EDM (sEDM = 0). 
Since sEDM X sMDM, a non-vanishing EDM tilts this precession plane, as 
seen in figure 3.6. The tilt angle is defined as the ratio of the contributions 
of s edm and smdm .
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Equation 3.76, 3.77, 3.78 can be simplified and used to explain spin motion 
when the magnetic and electric fields are assumed to be perpendicular to the 
momentum of the particle. After simplification, the spin precession equation 
is [51, 52]:

(3.87)



Figure 3.6: The tilt £ of the invariant spin axis nc [53], due to spin interaction 
in the guiding fields of a magnetic storage ring. Contribution of MDM and 
EDM are perpendicular to each other. The vertical spin component oscillates 
as a result of the tilt £.

EDM measurements with use of storage ring are feasible if the experimental 
configuration results in a macroscopic buildup of vertical polarisation. The 
above stated idea was used to measure EDM of muons [54]. The protons and 
deuteron' anomalous magnetic moments are two and three order of magni­
tude larger respectively than muons. As a consequence, the resultant tilt 
angle £ would be substantially less in case of similar beam energy and EDM 
value. Different measurements methods have been proposed to overcome this 
problem and to carry out EDM measurements of protons and deuterons such 
as frozen spin method, quasi frozen spin method and RF Wien filter method. 
They will be discussed in details in upcoming sections. The main idea for 
measuring EDM in the storage ring is to keep the spin frozen in the momen­
tum direction in order to eliminate the MDM contribution and maximise the 
EDM signal buildup, which is the frozen spin method 3.6.2.
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(3.91)



3.6.2 Frozen Spin Method
The prerequisite for this approach is that the spin is "frozen," which implies 
that the particle's spin is always parallel to beam momentum vector. That 
means the spin precession frequency must be equal to the momentum preces­
sion frequency in order to ensure this condition. Then vertical polarisation 
buildup over time is directly proportional to the tilt angle £. And by elimi­
nating the Qmdm, the tilt angle may be increased. However, this is feasible 
for protons with the "magic" momentum in a pure electric storage ring. This 
approach is only applicable to deuterons when a superposition of magnetic 
and electric bending fields is used. Now, in order to achieve the frozen spin 
condition, QMDM = 0, using eq. 3.89:
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(3.92)

To satisfy this condition, different combinations of electric and magnetic 
fields must be utilised, depending on the particle and its anomalous magnetic 
moment G. When a particle's spin is initially aligned with the momentum 
direction, the EDM's interaction with the storage ring's guiding fields results 
in the gradual vertical polarisation buildup, which serves as an indicator of 
a non-zero EDM.

Pure electric storage ring

This method can be used for those particles with G > 0, using only electric 
fields, the spin can be frozen. To satisfy this criterion, particles must possess 
a magic momentum:

(3.93)

This method is only applicable to particles with a G > 0; the proton has 
a G = 1.79, implying that its magical momentum is p ~ 0.701 GeV/c. The 
anomalous magnetic moment G for deuteron is negative. Thus, this method 
is invalid for deuteron.



Combined magnetic and electric ring:

In order to freeze particles with a negative anomalous magnetic moment a 
combination of radial electric and vertical magnetic fields is required. Equa­
tion of frozen spin condition 3.92 can be used to calculate the ratio between 
the vertical magnetic field and radial electric field strengths:

(3.94)

Both lattice configurations presented are investigated at JEDI collaboration 
[53] [55]. First MDM has no contribution to spin motion if the frozen spin 
condition is satisfied. Second, the interaction of EDM with electromagnetic 
fields causes a buildup of vertical polarisation. Thirdly, the EDM may be 
determined directly by measuring QEDM the spin rotation frequency. Al­
though suggestions for frozen spin storage rings have been developed, none 
have reached the operating level.

The spin precession frequency could be on the order of 0.1 mHz for a pure 
electric ring with electric fields of 10 MVm-1 and an EDM 10-24 e-cm. 
Because the polarisation lifetime at a typical storage ring is up to 1000 s, the 
polarimeter detects this low frequency, leading in a linear rise in the vertical 
polarisation Py that is proportional to the EDM, Py(t) = P0 • sin(QEDMt) ~ 
P0 • ^EDMt.

Along with the EDM signal, systematic effects may also contribute to the 
development of vertical polarisation. Magnet misalignments and field imper­
fections such as radial magnetic fields produced by misaligned quadrupoles 
may significantly affect the measured signal [38, 56]. These effects may be 
eliminated using beams rotating in clockwise and counter-clockwise direc­
tions inside the same storage ring [57, 58].

3.6.3 Quasi Frozen Spin Method
As described in last section 3.6.2 the concept of a "frozen spin" (FS) where 
reference particle's spin is always oriented parallel to the momentum. Imple­
menting the FS idea in any current storage ring would need a full upgrade.
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So the QFS method [59] was proposed, in which the spin is not frozen with 
respect to the momentum vector but continually oscillates around it with a 
few degrees of amplitude.

To explain the oscillation of spin around momentum vector, let us consider 
separately the spin equations in an electric deflector and in a bending magnet. 
The MDM spin precession part of the TBMT equation in the horizontal 
driving electric field is determined in the laboratory coordinate system as:

(3.95)

Also, the frequency of particle momentum precession in the laboratory coor­
dinate system with E field is given by:

(3.96)

by subtracting equation 3.96 from 3.95 and normalising it by 3.95. The spin 
tune in the electrical deflector related to the momentum is obtained by:

We may apply the same logic to the magnetic field. The frequency of MDM 
spin precession in the laboratory coordinate system in the bending magnet 
is:

and momentum precession frequency in the field B is given by:

(3.99)

Similarly, by subtracting equation 3.99 from 3.98 and normalizing it by 3.98 
the spin tune in the magnetic field related to the momentum is obtained:

(3.100)
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(3.97)
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The ratio between spin tune in electrical (3.97) and magnetic field (3.100) 
in Yu. Senichev et. al. [59] asserts that there is an energy region where 
the MDM spin oscillation is several times faster in an electric field than in a 
magnetic field. As a result, the concept of a quasi-frozen structure may be 
achieved on the basis of two lattice structure options. The first option is us­
ing two kinds of arcs: magnetostatic and electrostatic, with the latter having 
an inverse curvature, which is discussed in more detail in the reference [59]. 
This approach, however, inherits one disadvantage of cylindrical electrodes, 
namely the whole collection of high-order nonlinearities.

In the second choice of lattice, we employ the straight elements arranged on 
the straight sections with Wien filter fields to restore MDM spin rotation in 
the magnetic arcs. The lattice consists of two magnetic arcs and two straight 
sections with the Wien filters, where Lorentz force is equal to zero. The total 
length and field strengths of these elements are specified by the needed spin 
recovery condition.

Figure 3.7: Quasi Frozen Spin lattice: The color-coded sections are shown in 
the figure above, with pink representing a static Wien filter with magnetic 
and electric fields perpendicular to each other, blue at arcs representing bend­
ing magnets, and violet representing focusing and defocusing quadrupoles. 
The lattice has two straight sections and two arcs.
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Figure 3.7 shows the second option of the ring for the deuteron energy of 
270 MeV based on this concept [60]. The lattice of this ring contains the 
dispersion-free straight sections in the arcs (figure 3.7) for the polarimeter, 
beam extraction and injection systems, and the RF cavity. Thus, the parti­
cles' momentum is rotated by the angle $Brc in the magnetic arc, while the 
spin is simultaneously rotated in the horizontal plane relative to the momen­
tum by the angle $^rc = yG • ^Brc. Straight elements with Wien filter fields 
on the straight section give MDM spin rotation in the horizontal plane in the 
opposite direction relative to the momentum in the electric field by an angle 
$E = — (7G + y+h) E2 • ^Es, Where is rotation of momentum vector in 

electric field E. And rotation of spin vector in horizontal plane relative to 
momentum in magnetic field B by an angle = (yG + 1) $B,, where is 
rotation of momentum vector in magnetic field B. Because the Lorenz force 
is zero, the momentum vector rotation angles are equal. There­
fore, the momentum rotation can be defined by any of the two above. The 
momentum rotation in the presence of a magnetic field is given by:

The fundamental relation for the straight element parameters by performing 
simple transformations:

(3.103)

(3.104)

where L denotes the total length of all straight components inside a single 
straight section.

Thus, to achieve a maximum electric field of 120 kV/cm, a magnetic field of 
less than 80 mT is required. The QFS lattice is used to do the numerical 
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where Bss and Lss are the magnetic field and length of the straight element, 
respectively. To implement the idea of quasi-frozen spin, we must satisfy the 
following condition: + $E = $Brc, which mean:

(3.101)

(3.102)



simulation of three-dimensional spin-orbital motion using BMAD software, 
which will be discussed in detail in chapter 4.

3.6.4 RF Wien Filter Method (Partially Frozen Spin)

This method includes substantially updating an existing storage ring's lattice 
by adding an RF Wien filter in order to measure the particle EDM with an 
accuracy of at least 10-25 e^cm [61]. The aim of the method is to measure 
EDM by using a combination of radial electric and vertical magnetic, RF 
fields in a standard Wien filter configuration, where E = B x v/c [62], which 
oscillates at the resonance frequency. This configuration cancels the Lorentz 
force in the Wien filter, hence eliminating the cause of the method's sys­
tematic uncertainties. Thus, particle movement within the RF Wien Filter 
should be unaffected. Unfortunately, this configuration also eliminates the 
Rabi-type resonance [63] between the EDM EDM and the horizontal spin 
component, since the oscillating part of the Lorentz force is equal to zero, so 
does the oscillating component of EDM, according to Eq. (3.78). Also, the 
RF Wien filter set to one of the spin-tuned resonances, (1 + Gy), seems to 
be quite successful for measuring the particle EDM. This RF Wien filter is 
also referred to as a magic Wien filter or mWF.

This phenomenon can be described qualitatively. Without an mWF, the 
spin's planar components oscillate in the standard g - 2 mode. However, 
in the presence of the mWF's resonant fields, each planar component gets a 
zero-frequency mode, among other new modes. This implies that each spin's 
planar component now has a time-constant ("frozen") component. The mWF 
doesn't effect Q EDM, since Q EDM k Bl x BV, where BV denotes dominant 
and constant part of magnetic field. As a consequence, the constant EDM 
torque [(en/2mc)(BL x BV) x (sL)frozen\ rotate the spin around the radial 
axis, where sL is the amplitude of longitudinal spin component. The para­
sitic resonance rotation of the spin caused by the particle magnetic moment 
does not occur concurrently, since the planned mWF fields regulate only the 
magnitude of the g - 2 frequency vector, not its direction, which should be 
perpendicular to the ring plane.

The obvious issue is how such a zero-frequency spin mode might arise. This 
can be answered by the following reasoning. Due to the fact that the mod­
ulation frequency of the g - 2 frequency [61] is equal to the g - 2 frequency 
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itself, the obtained spin g- 2 oscillations are clearly a superposition of an in­
finite number of integer g — 2 modes, N^a0's, and only of such modes. Where 
N = 1 is the first g- 2 dominant mode. N = 0 is the next biggest mode. 
This zero g- 2 frequency mode is the frozen spin mode, the emergence of 
which enables the observation of EDM. According to the original frozen spin 
concept (described in section 3.6.2), the g- 2 spectrum comprises just the 
N = 0 mode. Here, we have various modes available and used one of them 
to measure the EDM. Thus, the mWF approach can be referred to as the 
"partially frozen" spin method. For more details, please refer to [63].

Without a Wien filter and initial polarisation in the horizontal plane, a lon­
gitudinal component of the spin points equally in the direction of the mo­
mentum as in the opposite direction in a purely magnetic storage ring. As 
a result, the vertical polarisation caused by an EDM oscillates at about zero 
and the average value over time vanishes. Once the Wien filter is introduced 
into the storage ring the Wien filter rotates the spin along the vertical axis, 
so that the longitudinal component of the spin is not often parallel to the 
momentum direction, as it is anti-parallel to it. Therefore, a fraction of 
the vertical polarisation buildup of polarisation over time can be observed. 
COSY already had an RF Wien filter installed in it in order to conduct the 
precursor experiment for the first direct deuteron EDM measurement [64].
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Chapter 4

Method To Control Systematics 
And Its Effects On Spin 
Precession

This chapter will discuss one of the methods for controlling systematic uncer­
tainty in the search for EDM using the storage ring at a required sensitivity 
of 10-29 C'-c.m for proton and deuteron. To achieve such high level sensitiv­
ity, an unprecedented level of precision is necessary, and various factors are 
important to be considered. One of the major factors are the interaction 
of electric quadrupole moment (EQM) and magnetic dipole moment (MDM) 
with electromagnetic field gradients which can produce an effect of a similar 
order of magnitude as that expected for EDM. Therefore, spin tracking is 
done by introducing realistic fields and defining their gradients, as well as 
by extending the TBMT equation to evaluate the effect of MDM and EQM 
interactions with field gradients using BMAD software for Quasi Frozen Spin 
lattice (QFS lattice) 3.6.3. For this, first a two-dimensional magnetic field 
is defined in order to benchmark the tracking codes and later modify them 
with realistic three-dimensional equations along with their gradients. It has 
been demonstrated that although the effects of field gradients do not affect 
the determination of EDM, they do allow for precise determination of the 
magnitude of systematic uncertainty [65].
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4.1 QFS Lattice

Figure 4.1: The QFS ring's floor plan. The color-coded sections are shown 
in the figure, with blue boxes representing a static Wien filter with magnetic 
and electric fields perpendicular to each other, black boxes at arcs represent­
ing bending magnets, magenta lines representing focusing and defocusing 
quadrupole configurations, and the green lines representing sextupoles.
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Table 4.1: QFS elements' effective length lef f and their strengths. There are 
four families of quadrupoles and sextupoles.

Multipole type leff [m] Multipole strength [m 1]
Dipole 1.820 0.431

Quadrupole (QFA1) 0.05 3.849
Quadrupole (QDA1) 0.05 -3.368
Quadrupole (QFA2) 0.05 2.908
Quadrupole (QDA2) 0.05 -2.963

Sextupole (SFP) 0.15 0.797
Sextupole (SDP) 0.15 -0.977
Sextupole (SFN) 0.15 -0.603
Sextupole (SDN) 0.15 1.091

In the section 3.6.3, we discussed the quasi frozen spin method and spin pre­
cession in the lattice. The QFS lattice floor plan is illustrated in figure 4.1 
which depicts the schematic overview of the QFS lattice in the X-Z plane, 
as well as the configuration of each component. Numerical simulations are 
performed using BMAD software [45] for a single particle using the fourth­
order Runge-Kutte integration algorithm, which is used for tracking. Here 
the step size is fixed for all elements 0.1 mm.

QFS lattice is dedicated for deuterons with 1042.24 MeV/c momentum (en­
ergy 270 MeV). Lattice consists of two straight sections and two arc sections. 
Four bending magnets are contained within each arc section, and each mag­
net has a magnetic field of 1.5 Tesla, a radius of curvature of 2.318 m, and 
deflects the beam by 45 degrees. In between the two arcs, there are two 
straight sections that consist of Wien filters, quadrupole and sextupole mag­
nets. Quadrupoles are present in four families with different field strengths 
(table 4.1). The sextupoles are introduced into the storage ring's lattice 
to correct chromaticity caused by the focusing elements in the lattice. A 
charged particle travelling off-center gets a kick equivalent to the square of 
its displacement from the centre in a sextupole, i.e. a sextupole operates 
as a quadrupole, with a focusing strength proportional to the closed orbit's 
displacement from the sextupole centre. This allows for the correction of 
chromaticity since the closed orbit of off-momentum particles is shifted rel­
ative to the reference orbit. In QFS, lattice sextupoles are also present in 
a group of four with different field strengths for suppressing non-linear de­
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coherence. Along with that, two straight section also contains eight Wien 
filters. There are a total of 72 quadrupoles and 25 sextupoles used in the 
lattice. The effective length leff and strength of QFS lattice magnets are 
listed in the table 4.1. The total circumference of the storage ring is 149.243
m.

Wien Filter In QFS Lattice

One of the important element of the QFS lattice (detailed discussion in sec­
tion 3.6.3) is the Wien filter. The electric field used in our calculations is the 
maximum value reachable in the lattice given by [66], i.e., E = 12 MV/m.

4.1.1 Optical Functions

Optical functions of the QFS model are depicted in figure 4.2. In the figure, 
the abscissa axis denotes the position along the ring, and the starting point 
for this is the point where the particle is injected. The particle's closed 
orbit motion, dispersion, and beta functions are plotted along with their 
position s on the ordinate axis after each element. In straight sections, 
dispersion is near zero, and dispersive effects are most noticeable in arcs. The 
dispersion function produced by dipoles propagates across these following 
elements and may also have negative values. For periodic machines, all of 
these sections between dipoles must be designed appropriately to ensure that 
the ultimate dispersion function equals zero at the machine's end. Only in 
this circumstance is it possible for the beam to circulate inside the ring. 
However, in the QFS lattice, the dispersion function is zero for the half ring. 
In the orbit plot, we can see that the particle's x-coordinate is in the order 
of 10-8 mm and the y-coordinate is zero. Visible deviations in figure 4.2 are 
due to numerical limitations. At the bottom of figure 4.2, the QFS lattice 
elements are shown in the same order as they are placed in the lattice. In a 
storage ring, the most important condition is that the dispersion should be 
zero at the end of the machine; otherwise, the particles will be lost in the 
storage ring.
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Figure 4.2: The beta functions PA, PB, dispersion nx,ny, and particle vertical 
coordinates (X and Y) in closed orbit in the QFS ring. At the bottom of 
the figure, the QFS lattice elements are shown. Where the blue boxes are 
Wien filter elements, the black boxes are bending magnets, the pink lines 
represent focusing and defocusing quadrupoles, and the green line represents 
sextupoles.
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4.2 BMAD Simulations For Quasi-Frozen Spin 
Method

In this section a new method for dealing with systematic uncertainty will 
be discussed. To use this approach, one must extend the TBMT equation 
in BMAD software, which is discussed in the section 4.2.2. Because this 
approach uses EQM and MDM to interact with field gradients, fringe field 
definition in BMAD is required. In the end of this section we will compare 
between rectangular and fringe field.

4.2.1 New Method For Controlling Systematics

Electromagnetic field gradients are present in every storage ring that might 
be utilised for EDM measurement. When a particle with a magnetic dipole 
moment (MDM) and/or an electric quadrupole moment (EQM) interacts 
with field gradients, additional spin precession occurs. MDM values for pro­
ton and deuteron are known with a precision of 10-8 [67], and EQM values 
for deuteron with a precision of 10-3 [68, 69]. This precision is adequate to 
use the interaction of the MDM and EQM with field gradients to control sys­
tematic uncertainties in the EDM measurement to a level significantly less 
than that required to achieve the 10-29 e^cm sensitivity. Reproducing the 
known MDM and EQM results in the storage ring measurement would verify 
that all systematics are properly controlled.

4.2.2 Extending TBMT Equation

Analytical calculations are done for controlling systematics uncertainties for 
EDM measurement in a storage ring by measuring EQM [70], but this can­
not account for all the effects in a storage ring. However, these calculations 
are used as a benchmark for further simulations. Using existing tracking 
codes, the spin precession equation may be numerically solved in combina­
tion with the equation of motion. However, none of the currently available 
tracking codes provides information on spin precession in the presence of 
field gradients. In the BMAD tracking code, the TBMT [51] equation has 
been extended to include MDM and EQM interaction with electromagnetic 
field derivatives in order to use the MDM and EQM interaction with field 
gradients to control systematic uncertainties in the EDM measurement to 
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a much lower level than necessary to reach the 10-29 e-cm sensitivity. A 
custom field equation for magnets has been added in the BMAD to perform 
a simulation with realistic three-dimensional fields with their field gradients. 
The extended TBMT equation is given as:

(4.1)

where D is the value of the electric dipole moment, Q is the value of the 
electric quadrupole moment, q is the charge of the particle, s is the spin 
vector, m is the mass of the charged particle, I is the particle spin value, g 

Gradients of fields arise in this equation as a result of the V operator acting 
on the B and E fields.

In equation 4.1, the first term is the standard BMT equation, the second 
term represents the EDM effect, the third term depicts the interaction be­
tween MDM and field gradients, whereas the fourth term is related to the 
interaction between EQM and field gradients. Since a particle with spin 1/2 
has zero electric quadrupole moment (e.g. for a proton), the spin precession 
equation is reduced to the first three components of the TBMT equation. For 
proton (last term in equation 4.1 is zero) and deuteron, the coefficients in the 
last three terms of equation 4.1 are of the same order of magnitude. Addi­
tionally, for realistic experimental conditions, the term with time derivative 
d/dt is much smaller than terms with field gradients, and therefore this par­
ticular term with d/dt can be neglected. The other terms are 15-16 orders 
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less than the first term of the equation, which corresponds to the standard 
BMT equation.

4.2.3 Realistic Electromagnetic Field Definition

Before modification of the BMAD code, it is important to check the numerical 
limitations of the code.

Figure 4.3: Background plot: vertical spin component accumulation for a 
reference particle (deuteron) without EDM, EQM, or MDM for 100,000 turns 
for defined lattice in section 4.1

Numerical Limitation

The tracking simulation model has some numerical restrictions, such as the 
vertical spin component for deuteron shows some vertical polarisation, which 
is of the order of 10-9 in the absence of EDM, EQM, and MDM (without 
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the 2nd, 3rd, and 4th parts of equation 4.1). This vertical spin component 
polarisation is referred as background and shown in the figure 4.3 for 100,000 
turns.

Fringe Field

Figure 4.4: A comparison between the standard default field as defined in 
BMAD (denoted by the blue colour) and a custom field for dipole magnets, 
which was implemented in BMAD (denoted by the orange colour) with its 
fringe fields. Where lef f is the actual physical length of the ideal dipole 
magnet. B0 is the maximum field magnitude.

Ideal Magnets produce only transverse magnetic field components that stay 
constant inside the magnet and rapidly decay to zero once the magnet is 
over. However, in realistic magnet there are fringe fields at the magnets' 
ends that also include longitudinal component, where both transverse and 
longitudinal component of the field gradually diminishes to zero. As shown 
in figure 4.4, the fringe field is the region that lies at the edges of the magnets 
where there is a transition from maximum field to zero fields. In the figure 
4.4, one can see the standard (ideal) dipole magnetic field used in BMAD. 
The customised or realistic magnetic field of the dipole along with its rectan­
gular approximation is depicted. The rectangular approximation is the field 
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behaviour that is expected from an ideal dipole magnet (in which fields are 
maximum within the magnet and cut off as soon as the magnet is over). lef f 

is the actual physical length of the dipole magnet. The rectangular approxi­
mation cuts off the fringe field at half its maximum.

In BMAD, new elements with custom magnetic fields are defined. Initially a 
simple two-dimensional (2D) magnetic field equation is implemented. Later 
on, a three-dimensional magnetic field using the Enge function [71] is in­
troduced in BMAD. These new elements are referred to as customized 
elements. We will discuss this in further detail in subsequent sections.

4.3 2D Analytical Field Equations

As discussed earlier in section 4.2.2 realistic field definition is required for 
implementation of extended TBMT equation. All multipole magnets should 
have fringe fields their respective field gradients defined. By default, BMAD 
uses ideal magnet's field, which leads to an infinite field gradient. Therefore 
it was necessary to define custom fields for magnets in order to use the com­
plete TBMT equation for spin precession.

The custom dipole's field was defined using an equation in which the field is 
approximated by the standard analytic mid-plane field profile for a soft-edged 
2D dipole:

(4.2)

where 2L is the dipole magnet length, 2a is the gap between the poles, and 
B0 is the magnetic field applied. This equation is applicable to particles in 
reference orbit.

The respective field gradient for the dipole is:

(4.3)

Other derivative components are equal to zero. When magnets with fringe 
fields are introduced in the lattice, it is important to adjust the length of the 
magnets and elements around it, otherwise total length of magnet increases, 
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which will increase the total length of the lattice. To solve this problem, 
every-time when some length is added to magnet due to fringe field imple­
mentation same length is subtracted from drifts around it. Modified field 
and its gradient are plotted as shown in figure 4.5.

Figure 4.5: The dipole field (red solid line) as a function of z and its field 
gradient (green dashed line) are plotted as a function of position s. The 
magnet limits for the dipole's rectangular approximation, are shown by the 
blue dashed line. Magnetic field By(z) is scaled up by a factor of 10.

The custom field equation for the Wien filter is also implemented in the 
BMAD. The Wien filter magnetic field By(z) and electric field Ex(z) is de­
fined as a function of z using equation 4.2. Where Bw and Ew are the 
magnetic and electric field magnitudes. Knowing magnitude of one field 
(magnetic or electric) the magnitude of other field can be calculated using 
the Lorentz force equation.
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Magnetic field gradient for the Wien filter (dByz(z)) is defined using 4.3, simi­
larly electric field is defined as follows:

Using standard fields for magnets in a Quasi Frozen Spin ring, the QFS con­
dition (which states that spin oscillates around some average fixed direction 
coinciding with the momentum direction) is fulfilled with a precision of 10-9 

and using customised magnetic fields, it is fulfilled with a precision of 10-6 .

After the implementation of simple two-dimensional customised field ele­
ments in BMAD, spin tracking simulations were performed. The vertical 
spin (per unit time) for EDM and EQM values is compared using both ana­
lytical and numerical methods. They are shown in table 4.2.

Table 4.2: Comparison between the vertical spin component of spin obtained 
with analytical and numerical calculations for EDM and EQM per unit time, 
respectively.

Method SEDM/t [s-1] s/t [s-1]

Analytical 3.2 •IO-09 4.7 •IO-10

Numerical 3.2 •IO-09 3.9 • 1O-10

After using customised magnetic field elements for symmetric Wien filter 
field setting (discussed in detail in section 4.5), the EDM signal SyEDM/t is
3.2 • 10-9 e^m/sec, which agrees with the analytical calculations. Whereas 
for an EQM signal, S^QM/t is 3.9 • 10-10, which agrees with the analytical 
calculation for an asymmetric Wien filter setting by 84.6%. The ratio between 
the strengths ofthe EDM and EQM signals is 8.16, which implies that EDM is 
by order of magnitude larger than EQM. These results are used to benchmark 
tracking code with implemented complex three-dimensional fields using the 
Enge function and its field gradient effects.
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4.4 3D Analytical Field Equations

The fringe field in multipole magnets has various effects on the linear and 
nonlinear dynamics of particles moving along an accelerator beam line [71]. 
In this section, analytical expressions for multipole complex fringe fields are 
presented. Using these analytical expressions, fringe field effects can be in­
cluded in beam and spin dynamics simulations.

As discussed in 4.3, a realistic field definition is required for the TBMT 
equation to be implemented with electromagnetic field gradients. Three­
dimensional realistic fields for dipole, Wien filter, and quadrupole are intro­
duced into BMAD for spin tracking simulation to obtain these electromag­
netic field gradients. The three-dimensional functions used to define these 
electromagnetic fields will be discussed in the following sections. Any mathe­
matical function can be used to define the realistic electromagnetic field, but 
it must satisfy the Maxwell equations.

4.4.1 Dipole Field

The objective is to define multipole realistic magnetic field function that sat­
isfy Maxwell's equations. In this section, analytical formulas [71] for realistic 
fields for dipoles are briefly discussed. The Enge function type falloff along 
the z- axis is used to define the dipole fringe field. By is dependent on the 
y and z coordinates. Similarly, Bz is dependent on the y and z coordinates, 
and their relation is as follows:

where,

(4.5)

(4.6)

(4.7)

(4.8)
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For the set of N coefficients An , 2a is the aperture of the dipole. Taking Bx 

component zero [71]. The following components of dipole field gradients are 
implemented in BMAD:

Components of dipole field derivatives are expanded as follows:

(4.10)

(4.11)

(4.12)

(4.13)

A three-dimensional plot for a complex three-dimensional dipole field can be 
seen in figure 4.6.

4.4.2 Quadrupole Field
Analytical field expressions used for defining quadrupole custom field equa­
tions in BMAD in terms of Cartesian coordinates are as follows:
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If b is real number, then h is the complex conjugate of h. Dependency of Bx 

component on b is different from By component dependency on b as shown 
in equations 4.14 and 4.15. So if Bx and By is plotted as a function of z 
along x = 0, y = r0 we will see different field variation along z, where r0 is 
an arbitrary point. It implies that quadrupole field shows asymmetry, which 
is unexpected from a quadrupole magnet with fourfold rotational symmetry. 
Symmetry can be achieved if we add the same expressions as shown in equa­
tion 4.14, 4.15, and 4.16 to Bx, By, Bz respectively, by interchanging x and 
y, and dividing the equation by 2. For full symmetric solution, the value of 
parameter b = 0.1 is selected to define half symmetric field of quadrupole:

(4.19)
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Figure 4.6: Dipole fields - (a) By component of a three-dimensional com­
plex magnetic field as a function of y and z. (b) Bz component of three 
dimensional complex magnetic field as a function of y and z.

Where b is the free parameter, and

(4.16)

(4.17)

(4.18)



(4.20)

(4.21)

A half-symmetric field is shown in figure.

Figure 4.7: Half-symmetric fringe field Bx(sym)(x, y, z) for quadrupoles using 
the Enge function (equation 4.19). This plot is for x = 0.01, y = 0.

In order to get full symmetric field equation of quadrupole, Bi(sym)(x, y, z) 
with (z = z+leff/2)) is subtracted from Bi(sym)(x, y, z) with z = (z-leff/2)), 
where i = x, y, z. Obtained equation are shown below:

Quadrupole three-dimensional field plots for the above equations are shown 
on figure 4.8.
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Figure 4.8: Field components of quadrupole (a), Bx(full)(x, y, z) where x = 0.
(b), By(full)(x, y, z) where y = 0. (c), Bz(full)(x, y, z) where y = 0.1.

The following components of quadrupole field gradients are implemented in 
BMAD:

(4.25)

The expansion of equation 4.25 of derivatives for quadrupole for the full 
half-symmetric function is given in Appendix A.

Focusing And Defocusing In Quadrupole

The magnetic field at the quadrupole magnet's centre is zero, and Lorentz 
force FL = 0. As a result, the particle travelling through the quadrupole's 
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centre remains unaffected. However, if the particle has an initial offset and 
does not pass through the centre, particle encounter magnetic field and there­
fore Lorentz force is nonzero, which results in focusing in one plane and de­
focusing in another plane.

4.4.3 Field For Wien Filter

The custom field equation for the Wien filter is also implemented in the 
BMAD. The magnetic field components of the Wien filter By(z) and Bz(z) 
are functions of y and z. Similarly, electric field components Ex(z), Ez(z) 
are also function of y and z as well. Field components By(z) and Ex(z) are 
defined using equations 4.6 and Bz(z) and Ez(z) are defined using equation 
4.7 respectively. Also, in the Wien filter, magnetic and electric field mag­
nitudes are B0 = Bw and E0 = Ew. Bw magnitude can be calculated for 
respective Ew using Lorentz equation.

The following components of Wien filter electric field gradients are imple­
mented in BMAD (magnetic field gradients are the same as a dipole in 4.9):

(4.26)

Components of the field derivative are the same as in equations 4.10 - 4.13.

Custom fields for dipole, quadrupoles, and Wien filters are implemented for 
the whole lattice using the above equations. The dipole and Wien filter is 
illustrated in figure 4.9. In lattice Sextupoles are still defined using standard 
BMAD fields.

4.4.4 Realistic Field For Two Quadrupoles (Superimpo­
sition Of Quadrupoles)

There are a few locations in the lattice where there are two quadrupoles that 
are placed together. When two adjacent quadrupole magnetic fields are de­
fined without superimposing, then the two quadrupole fields have a gap in
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Figure 4.9: The vertical component of the magnetic field of the whole lattice 
after the introduction of complex magnetic fields for multipoles.

between them, which is not true in the real case. In reality, the fields of one 
quadrupole merge with those of another. They can have the same or different 
fields of strength. Since quadrupoles are placed close together, their fields 
overlap. Such a definition of quadrupoles is difficult to achieve using custom 
fields. To get an overlapped field, the superimposition of two quadrupole 
fields is done to get the resultant field. To accomplish this, the length of the 
drift before and after the first and second quadrupoles is reduced by half the 
length of the fringe field (ltot — leff). To determine if the definition of overlap­
ping quadrupoles with customised fields is correct in comparison to standard 
field quadrupoles, phase-space coordinates of the beam are compared before 
and after entering the superimposed quadrupole. For this purpose, the phase 
space coordinate of the beam is given an initial offset, py = 0.0005 (py is the 
phase space momenta which is normalised by the reference momentum p0). 
Then, particle tracking simulations are performed to compare phase space
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coordinates for superimposed quadrupoles for custom and standard magnetic 
field. The reason for giving an initial offset to the beam is to check if the 
quadrupoles with custom fields are working properly. The above procedure 
is applied when both the same quadrupoles (QDA2) are placed together, as 
well as when two different strengths of quadrupoles (QFA1 and QFA2) are 
placed together. A comparison of the obtained results from the simulation 
is shown in table 4.3. After implementing superimposed quadrupoles in the 
lattice, particle tracking is performed for the whole lattice to ensure that 
the particles do not get lost in the storage ring. The figure 4.10 compares 
the field defined for superimposed quadrupoles with a standard field and a 
customised field.

Figure 4.10: Quadrupole magnetic field (a) for identical quadrupoles QDA2, 
QDA2, (b) for different quadrupoles QFA1, QFA2. The initial phase space 
offset given to the beam is py = 0.0005. The customised (red dashed line) 
and standard field (green solid line) experienced by particle passing through 
superimposed quadrupoles.
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Table 4.3: Particle tracking after superimposed quadrupoles allows the com­
parison of standard and customised for quadrupole field definitions.

Quadrupole setup y Py

QDA1,QDA1 (Standard) 2.868E-004 4.558E-004
QDA1,QDA1 (Customised) 2.868E-004 4.558E-004

Ratio (Custom/Stand) 1.000 1.000
QFA1,QFA2 (Standard) 3.151E-004 5.503E-004

QFA1,QFA2 (Customised) 3.151E-004 5.503E-004
Ratio (Custom/Stand) 1.000 1.000

4.5 Spin Tracking

After implementing fringe fields for customised multipoles and also after the 
extension of the TBMT equation to include the interaction of EQM and 
MDM with field gradients, the QFS lattice spin tracking simulation is per­
formed.

For EDM measurement, a symmetric field setting (Ew = 12 MV and its 
corresponding magnetic field) was used for Wien filters in both straight sec­
tions of the QFS lattice. For a symmetric field, spin oscillates horizontally 
about longitudinal direction as shown in figure 4.11 (a). These horizontal 
oscillations of the spin components (sz, sx) about the momentum direction 
are caused by the influence of bending magnets. Whereas, the Wien filter 
has such a field that it turns the spin back to the starting value. The vertical 
polarisation build-up of spin component sy is generally due to both EDM and 
EQM. For EDM measurement in BMAD, a symmetric field is given to Wien 
filters, EQM is kept at 0 and EDM = 10-31 e- m, then the vertical polarisa­
tion buildup is due to EDM only for the initially horizontally polarised beam.

For EQM measurement, in BMAD, asymmetric field settings are used for the 
Wien filter, along with that EDM is kept at 0 and EQM = 0.2859 • 10-30 e^m2 

[68, 69]. In the first straight section, the Wien filter has an Ew = -12MV 
and in the other straight section, an Ew = -37.6MV. For this lattice, spin 
evolution for four turns is shown in figure 4.11(b). In this case, both the spin 
components, such as sx and sz, vary very rapidly within their limits but do 
not recover their initial value after beam rotations in the lattice. And this
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Figure 4.11: Spin evolution of particles along with four turns in the QFS 
lattice where sx is denoted with a dashed red color, sy with a solid blue 
line, and sz is denoted with a green dashed dot line. Figure (a): Shows spin 
components for symmetric field configuration for Wien filters, (b) shows spin 
components for the asymmetric field setup of Wien filters.

asymmetric field definition for the Wien filter was done to see the EQM effect.

In the symmetric case, it was observed that when EDM is greater than zero, 
vertical polarisation increases linearly with time (see figure 4.12), but the 
impact of EQM interaction with field gradients averages to zero. Also in the 
same figure, the situation is inverted for asymmetric Wien filter settings. For 
non-zero EQM values, the sy spin component increases linearly with time, 
but the EDM has no impact on vertical spin buildup.

The steps in the vertical polarisation of EDM and EQM values are visible 
in figure 4.12 because when particle with EDM experience the field of mag­
nets, vertical polarisation builds up. When particles pass through a drift or 
non-magnetic area, non varying vertical polarisation is seen, resulting in a 
flat step and so on. As a result, step-like behaviour emerges. Similarly, when 
an EQM interacts with electromagnetic field gradients, it also exhibits step 
behavior.
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Figure 4.12: Comparison of vertical spin component for EDM effect for the 
symmetric field, denoted by a red dashed line, and for EQM effect using 
asymmetric field, denoted by the blue solid line for three-dimensional field 
equations.

4.6 Results And Discussion

In this chapter, we discussed the method for reducing systematic uncertainty 
in the search for EDM using QFS lattice at a required sensitivity of 10-31 

e-m for protons and deuterons. The analytical model for this method is al­
ready discussed in [70]. In the above sections, we already described steps for 
the preparation of the BMAD simulation. Defining QFS lattice for BMAD 
software. Extension of the TBMT equation in the BMAD software was done 
for EQM and MDM interaction with electromagnetic field gradients. The 
gradients and 3-dimensional field equations for dipole, quadrupole, and Wien 
filters are defined. After these modifications, the influence of EQM and MDM 
interaction with electromagnetic field gradients on spin precession was ana­
lyzed [65].
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The comparison of vertical spin component per unit time for EDM and 
EQM obtained after BMAD simulations using three-dimensional realistic 
field equations for magnets are:

SyEDM /t = 3.2 10-09s-1 EDM signal value , (4.27)

SyEQM /t = 4.4 10-10s-1 EQM signal value. (4.28)

The ratio of the vertical spin component for the EDM and EQM is 7.2. which 
implies that the EDM and EQM signals had comparable orders of magnitudes 
(in the case of the QFS lattice examined) in both two-dimensional as well as 
three-dimensional field equations. It implies that EQM gradient interaction 
can be used to control systematic uncertainty in EDM measurement.

The conclusions of [70] and the current investigation suggest that when 
analysing the impacts of very small EDM values, the interaction of MDM 
and EQM with field gradients should be considered. It was shown that these 
additional effects are quite valuable for investigating the systematic uncer­
tainties in high precision EDM measurements. At slightly different Wien 
filter settings, the EDM impact is 7.2 times greater than the EQM effect for 
an EDM value of 10-31 e m. In the storage ring planned to achieve a pre­
cision of 10-31 e m for EDM, reproducing the known deuteron EQM value 
with a precision of 10-3 should control systematic uncertainty to 10-34 e m. 
This would enable us to reach the Standard Model prediction for the EDM 
value.

The current research [65] demonstrates that measuring the MDM and EQM 
interactions with field gradients can be very valuable for investigating the 
systematics of high-precision EDM measurements. This study evaluated the 
effects of one specific method of EDM measurement, but it is applicable to 
any proposed method for EDM measurement.
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Chapter 5

Method For Evaluating 
Systematic Uncertainties Due To 
Magnet Misalignment In EDM 
Measurements Using A Storage 
Ring

In this chapter, we are going to introduce a method to evaluate the system­
atic uncertainties due to magnet misalignment in EDM measurement using 
a storage ring. This result has already been published in [72]. Magnet mis­
alignment is a very common systematic uncertainty that can mimic the EDM 
effect. Additional uncertainties arise as a result of the positioning of the beam 
monitors used to control the beam orbit. As a result, a method that allows 
for the separation of these two effects is required for determining the sensi­
tivity of EDM measurement. Therefore, a new novel method (first presented 
in [3]) for evaluating systematic uncertainty is proposed, which enables us to 
simultaneously evaluate the magnet misalignment and EDM induced effects. 
This method is possible only if two polarimeters are available in the stor­
age ring, but they should be located at half the length of the storage ring. 
This proposed method can be applied to EDM measurement at COSY. In 
this chapter, first, a brief introduction to the COSY accelerator complex is 
given in section 5.1, followed by a description of the COSY lattice in section 
5.2. Then a simple analytical calculation using Mathematica software of the 
proposed method was described in sections 5.3. A detailed description of nu­
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merical calculations using BMAD software is presented in section 5.5. The 
final result and conclusion are presented in the section 5.8.

5.1 The Cooler Synchrotron COSY Accelerator 
Facility

The COSY accelerator facility is located at Forschungszentrum Jülich, Ger­
many. Accelerator facility comprises of the ion source (polarised and unpo­
larised), the injector cyclotron Jülich, and the COSY (Cooler Synchrotron 
storage ring).

Figure 5.1: Schematic diagram of the COSY accelerator facility located in 
Jülich. Adapted from [73].

In figure 5.1 the schematic diagram of the COSY accelerator facility is shown. 
The COSY storage ring consists of multipole magnets, electron and stochas­
tic cooling sections for reducing the emittance of beam, and two polarimeters 
(WASA and JePo), which are within half the length of the storage ring. So 
far, there has been a WASA forward detector present [74] in one straight 
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section for measuring beam polarisation in COSY, but recently a new po­
larimeter JePo (JEDI polarimeter) was installed [75, 76] in the straight sec­
tion opposite to the WASA polarimeter.

Polarimeter Installment

In COSY, two polarimeters were installed: WASA (Wide Angle Shower Ap­
paratus) and JePO [75, 76]. The target is installed in front of WASA just 
above the beam orbit. The target can also move within the beam pipe. Af­
ter the beam achieves its final energy, the beam is excited, which leads to 
beam broadening. Some part of the beam is able to hit the target, and it 
scatters into the detector installed in front of it. Slowly, the full beam is 
extracted on target; the feedback loop between excitation and detector rate 
assures that. In another straight section, we have a JePo polarimeter. It is 
installed for better precision for measuring vertical polarisation required for 
EDM measurement.

Ion Source And Magnets Installation

COSY accelerator facility also comprises the ion source that provides the 
negatively charged hydrogen ions H - or deuterium ions D-. They can be 
unpolarized or polarised. The polarisation process occurs when ground state 
nuclear polarised [77] hydrogen or deuterium collides with an intense neu­
tralised cesium beam:
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Afterwards, particles can be accelerated by pre-accelerator JULIC (Jülich 
Isochronous Cyclotron) up to 45 MeV for H- as well as up to 76 MeV for 
D- beams. Subsequently, they are injected into the main synchrotron stor­
age ring of COSY through the injection beamline. A small polarimeter, the 
LEP (low energy polarimeter), is installed on the injection beamline that can 
measure the beam polarisation [78]. Consequently, a deuteron or a proton 
beam electrons are removed using thin carbon foil from the ions by stripping 
reaction at the injection. The beam can be accelerated up to 3.7 GeV/c [79] 
in COSY, with the acceleration taking place in an RF cavity in the centre of 
one of the straight portions. The storage ring circumference is 183.4 m. It 
is made up of two straight sections of 40 m each and two arcs of 52 m each



[80]. Bending of the beam or keeping the beam in orbit is done by using 24 
water-cooled dipoles with a magnetic field of up to 1.58 T. As well as the 56 
magnetic quadrupoles being mounted to focus the beam, they are categorised 
based on dimensions and power supply in four families. COSY storage ring 
also comprises of 17 sextupoles, where 7 are located in straight sections and 
10 in arcs for changing chromaticity. Orbit measurements are done by BPM 
(30) and 22 corrector magnets.

In the COSY ring, two methods are used for reducing beam emittances, such 
as cooling beams using a 2 electron cooler and a stochastic cooler. They 
significantly reduce the emittance of the beam. These cooling systems are:

Electron Cooling

There are two electron coolers in COSY, one present in each straight sec­
tion. In the electron cooling method, electrons are accelerated with the same 
longitudinal velocity as the ion beam, whereas with a smaller transverse mo­
mentum spread. Electrons are guided by the magnets to a section joint in 
the main storage ring, where the ion beam interacts with electrons. The 
electron cooler was designed to cool protons with momenta up to 0.6 GeV/c. 
But later in 2013, a second COSY electron cooler was installed to deal with 
the entire energy range [81, 82]. When electrons and ion beam are in a joint 
section, the momentum distribution of the beam is effectively reduced due 
to Coulomb interaction. After the momentum distribution is reduced, the 
electrons are guided out of the beam pipe [83].

Stochastic Cooling

The stochastic cooler has two parts. The first is the "pickup detector", and 
the second is the "kicker". Stochastic cooling is intended for energy ranges 
greater than 1.5 GeV/c, according to [83, 84]. Stochastic cooling is done in 
such a way that first the particle beam crosses the "pickup detector". There, 
it measures the deviation of the particle beam from the closed orbit. Subse­
quently, when the particle reaches the "kicker" location present diagonally, 
the bump is applied according to the deviation measured.

Furthermore, many devices (RF solenoid, and Siberian snake) are installed 
in the ring to manipulate and detect the polarisation [85-87] of the bunched 
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beam, making COSY an ideal machine for studying the systematic influ­
ence on electric dipole moment experiment.

5.2 Lattice Of COSY

The spin tracking simulations for COSY ring are also performed using BMAD 
software. Spin tracking is done using the Runge-Kutta integration algorithm 
with an adjustable step size. COSY consists of various sets of magnets such 
as dipoles, quadrupoles, and sextupoles as shown in figure 5.2. The lengths 
of various magnets are listed in table 5.1.

Figure 5.2: The COSY ring floor plan plotted using BMAD software. The 
color-coded sections are shown in the figure, with a blue-crossed box repre­
senting an RF Wien filter, black boxes at arcs representing bending magnets, 
magenta lines representing focusing and defocusing quadrupole configura­
tions, the green lines representing sextupoles, and solenoids are represented 
by blue boxes.
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Figure 5.3: The beta functions 0A, , dispersion nx, ny, and particle vertical 
coordinates in closed orbit in the COSY ring are shown in the figure. At the 
bottom of the figure, the QFS lattice elements are shown in the same order 
as they are placed in the lattice. The blue crossed box is the RF Wien filter, 
the black boxes are bending magnets, the magenta lines represent focusing 
and defocusing quadrupoles, and the green line represents sextupoles.

In the COSY lattice, an RF cavity is also shown, which is used for phase 
focusing. An RF Wien filter is also introduced in one of the straight sections. 
BPM's beam position monitors are inserted for determining beam position. 
The magnet misalignments taken from Wagner et. al. [88] are also introduced 
into the simulation.
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Table 5.1: COSY element's effective length leff.

Multipole type leff in meters

Dipole 1.832
Quadrupole (arc) 0.372

Quadrupole (straight) 0.620
Sextupoles ("G") 0.328
Sextupoles ("L") 0.243
Sextupoles ("S") 0.140

Wien filter 1.10

The optical functions of the COSY lattice are shown in figure 5.3. In this 
figure, the location of lattice elements along beam direction (in figure as posi­
tion s) is also shown, Where the initial position 0 is assigned to the injection 
point. In second subplot of the figure, the dispersion in the straight sections 
is nearly zero because of the specified magnet settings. As a consequence, 
dispersive effects are primarily generated in the arc sections. In the closed 
orbit plot (in figure 5.3 depicted as orbit [model]), we can see that the closed 
orbit's X coordinate is in the order of 10-5 mm and Y coordinate is zero. 
Visible deviations of closed orbit's X coordinate from zero value are due to 
numerical limitations.

5.3 Analytical Calculation Using Mathematica 

A simplified analytical model for evaluating systematic uncertainties due to 
magnet misalignment is discussed in this section. This model made it possible 
to develop a method that allows one to directly determine the effect of magnet 
misalignment on the vertical spin component. Mathematica software is used 
to do analytical calculations of the vertical spin component's time dependence 
Sy (t) using similar reasoning as that followed in [70]. In this method, it was 
assumed that there are drift spaces and magnetic dipoles with bending radius 
p are present. It was assumed that a particle has fixed energy and is moving 
all the time in a fixed closed orbit. The Fourier series represents the form 
of the vertical (BV (t)) and horizontal (BH(t)) magnetic field components 
(in the time domain) along the particle trajectory, which are given by the 
following equations:
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(5.1)

(5.2)

Here, œo = ^cV0c/(2p) is the orbital frequency of a particle that is moving 
in a closed orbit. Particle velocity is given by c and Fourier coefficients 
such as Hic, His, Vic, and Vis describe horizontal and vertical magnetic field 
distribution.

BMT equation [50] was solved by neglecting small effects due to the EDM and 
horizontal magnetic fields induced by magnets misalignments. The solution 
for horizontal spin component Sz (t) along with the particle momentum is 
given by:

(5.3)

(5.4)

Where ws is the spin precession frequency in the main vertical field for guiding 
and g is the g factor of the particle. Also, the relation between spin precession 
frequency and orbital frequency is given by:

(5.5)

Using this solution, time dependence of vertical spin component Sy(t) [70] is 
calculated for misalignment Sym(t) and EDM effects Sye(t) such omega as:

(5.6)

(5.7)
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here, x, = D0cBo/ft and D is the EDM value.

Substituting k = 0 in equation 5.3, the leading order vertical spin component 
Sym(t) (magnet misalignment) and Sye(t) (EDM effects) is obtained and their 
time dependence is:

Next-to-leading order terms for Sym(t) and Sye (t) are obtained for k = 1 in 
equation 5.3, and their time dependence is:
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In fact, the formulas for misalignment and EDM-induced vertical polarisa­
tion are very similar and differ only in the normalising factor and Fourier 
coefficients describing the horizontal and vertical magnetic fields. Therefore, 
the misalignment and EDM effects are indistinguishable, and the contribu­
tions of both effects will add up coherently, leading to a common vertical 
spin component. Then the only chance to distinguish between these effects 
is to perform a Fourier analysis of the vertical spin component and examine 
the Fourier amplitudes, which depend on the field Fourier coefficients.

5.4 Fourier Analysis Of Vertical Spin Compo­
nent

From the model presented in section 5.3 it is easy to deduce that the Fourier 
analysis of the harmonic time dependence of the vertical spin components 
Sy(t) and Sym(t) should give maxima of the Fourier amplitudes F(ms) at a 
frequency of m = ms and F(mo ± ms) at a frequency of m = mo ± ms (and at 
higher frequencies m = 2mo ± ms, etc.). The Fourier amplitudes F(ms) and 
F(mo ± ms) are proportional to the Fourier coefficients which describe the 
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horizontal and vertical components of the magnetic field.

Figure 5.4: We can see the Fourier cosine coefficients, i.e., vertical VC (blue 
full circles) and horizontal HC (blue full square). As well as Fourier sine 
coefficients are vertical V£ (crimson full circle) and horizontal Hn (crimson 
full squares). Only dipole magnets field was considered. Dipole magnets are 
randomly rotated (Gaussian distribution with a mean value equal to zero 
and a standard deviation a = 5 mrad) around the beam axis.

To compare the effects caused by magnet misalignments and the EDM, it is 
instructive to check the first terms in equations 5.8 and 5.9 together as well 
as the values of Fourier coefficients describing horizontal and vertical fields. 
Since the storage ring usually has rotational symmetry (at least of order 2), 
the odd Fourier coefficients are equal zero for undistributed vertical fields. 
COSY consists of two identical bending sections and two identical straight 
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sections, so COSY also has rotational symmetry. There are 24 COSY dipole 
magnets randomly rotated (Gaussian distribution with a mean value equal 
to zero and a standard deviation a = 5mrad) around the beam axis for which 
the Fourier coefficient is calculated.

The obtained Fourier coefficients are shown in figure 5.4. The horizontal and 
vertical dipole magnetic field for small-angle 6m scale with and 1 — /2 
respectively. This implies that vertical field Fourier coefficients are slightly 
affected by magnet rotations, so only even coefficients are large, but odd 
coefficients are 100-1000 factors small. In the case of horizontal fields, the 
Fourier coefficients take random values being a factor of about 3000 smaller 
than the vertical coefficients.

The general behavior of Fourier coefficients describing vertical and horizontal 
magnetic fields determines the time dependence of the vertical spin compo­
nent induced by EDM and misalignment effects shown in figure 5.5. It can 
be seen that the term that contains the coefficient Voc completely dominates 
Sy(t') and is mainly described by the function sinwat. Harmonic functions 
of higher frequencies, on the other hand, contribute significantly to the time 
dependence of Sym(t). Therefore, the Fourier analysis of a vertical spin com­
ponent should provide information on the effect of magnet misalignment on 
a vertical spin component. Experimentally, this information could be ex­
tracted by sampling vertical spins with a frequency of at least 2œo. Such a 
sampling is also indicated in figure 5.5.

The Fourier analysis for the signal calculated using the sum of equations 
5.8 and 5.10 for misalignment effect and for EDM effect (with D = 10-21 

e-cm) i.e. the sum of equations 5.9 and 5.11 has been performed. The signals 
were sampled at a frequency of 2œo, which corresponds to vertical polarisation 
measurements at two positions in the storage ring. Figure 5.6 shows the 
resulting Fourier amplitudes for both the effects. There is only one maximum 
for the EDM effect at frequency us and two maxima for the frequency us 

and uo — us are seen for the misalignment effect. This characteristic feature 
enables us to determine the contribution of the misalignment effect, which is 
visible in the Fourier amplitude F(œs) of the EDM signal.
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Figure 5.5: Sym(t) is the vertical spin component due to magnet misalign­
ment (represented by a dashed navy blue line) and Se(t) is the vertical spin 
component due to EDM of D = 10-21 e^cm (represented by a solid orange 
line). Symbols denote the sampling results of vertical spin component with 
a frequency set to 2^o for misalignment (navy blue square) and EDM effects 
(orange circle). In order to compare the amplitude of the misalignment effect 
with the EDM effect, the amplitude of the misalignment effect is artificially 
scaled in the figure.

5.5 BMAD Simulations For EDM And Misalign­
ment Effects

In the last section, a method that can distinguish between EDM and magnet 
misalignment effects was developed using a simple analytical model. This 
model is, however, confined only to the closed orbit. The closed orbit is 
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also distorted by quadruple fields, which cannot be easily perceived in the 
analytical model. Consequently, with the BMAD software library, a further 
detailed analysis of spin evolution was performed.

5.5.1 Magnets Misalignment Introduction

Figure 5.6: We can see the F(w) i.e., Fourier amplitude for misalignment 
effect is denoted by (dotted sky blue line) and for EDM effect (solid orange 
color line) for D = 10-21 e^cm for sampling frequency of 2uo. Two vertical 
lines mark the Fourier amplitude maxima at frequency us and uo — us.

The misalignment, which has a significant effect on the vertical spin com­
ponent, had to be checked first. BMAD simulations were performed with 
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translations and rotations of dipole and quadrupole magnets individually. 
The position of the magnets (separately in x, y, and z directions) was al­
tered randomly with a Gaussian distribution with a mean value equal to 
zero and a standard deviation of a= 1 mm in all cases. Similarly, using 
a Gaussian distribution, magnets rotations (separately around x, y, and z 
axes) with a mean value of zero and a standard deviation of ar = 1 mrad 
are randomly changed. In addition, translation and rotational combinations 
have been separately analysed for dipole and quadrupole magnets, as well as 
for all magnets. The Fourier analysis of the induced vertical spin component 
Sy(t) for each setting was performed. The Fourier amplitude spectra for each 
case show the pattern depicted in Figure 5.6. The Fourier amplitude spec­
trum for nonzero EDM only (without magnet misalignment) is also shown in 
this figure for comparison. The Fourier amplitude for magnet misalignments 
peaks at i^s spin precession frequency and at i^o — wa frequency (wo is beam 
revolution frequency). The Fourier amplitude exhibits only one peak at us 

frequency in the case of nonzero EDM without magnet misalignments.

Table 5.2: Fourier amplitudes for ws and wo — ws frequencies and misalign­
ments of different magnets. The results for every misalignment are the me­
dian values for 100 randomly distributed deviations.

Misalignment
Fourier Amplitudes

Dipole Quadrupole
F (ws) F (wo ws) F (w«) F (wo ws)

Translation x 5 • 10-14 5 • 10-15 3 • 10-14 5 • 10-15

Translation y 2 • 10-14 2 • 10-15 2•10-3 4•10-4

Translation z 5 • 10-14 4 • 10-15 2 • 10-14 4 • 10-16

Rotation x 3 • 10-14 2 • 10-15 5 • 10-14 2 • 10-15

Rotation y 2•10-4 5•10-5 1 •10-5 4•10-6

Rotation z 3•10-5 1 •10-5 5 • 10-14 2 • 10-16

All 2•10-4 5•10-5 2•10-3 4•10-4

The resulting Fourier amplitudes are presented in table 5.2 for frequencies 
us and œo — œs. Quadrupole magnet misalignments clearly play the largest 
role because all misalignments at a time have the same total effect as those 
caused by quadrupole magnets alone. For dipole magnets, rotations around 
the y axis make the largest contribution to Sy (t), while translations along the 
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y axis are the most important part of quadrupole magnet misalignments. All 
misalignments contribute coherently to Sy (t), as they are not distinguishable, 
so Sy (t) cannot be deconvolved and the information about every misalign­
ment type and element cannot be obtained. In addition, misalignment and 
EDM effects are also indistinguishable, therefore only their coherent sum 
could be measured.

5.5.2 Effect Of Emittance On Vertical Spin Component

Figure 5.7: The comparison of the Fourier amplitude spectrum (denoted by 
a solid orange colour line) for a central trajectory and the summation of 81 
points for the grid in the phase space (denoted by a sky blue dotted line).
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Every particle is moving on their individual phase space ellipses. Particles 
that occupy the entire six-dimensional space, therefore, move along different 
trajectories and thus experience different magnetic fields. Therefore, if mis­
alignments are present, it is mandatory to monitor the effect of emittance 
on Sy(t). Calculations were performed for a initial transverse phase space 
(shown in figure 3.4) for a grid with x = (0, ±1 mm), X = (0, ±1 mrad), 
y = (0, ±1 mm), y' = (0, ±1 mrad). An additional peaks appears in the 
Fourier amplitude spectrum for each nonzero phase space parameter. They 
are because of betatron oscillations of the particles which do not move on 
the central trajectory. Non-zero y' gives the largest side peaks, however, 
when comparing the Fourier amplitudes for the central trajectory, F(us) 
and F(wo — i^s) change by 1%. The total of all the phase space points in the 
grid reduces the amplitude of the side peaks. The Fourier amplitudes F(i^s) 
and F(wo — wa) are very similar to those shown in figure 5.7 for the central 
trajectory.

5.5.3 Orbit Correction By Replacing Kickers With 
Dipole Magnets

Due to magnet misalignment, the close orbit deviates from its trajectory 
through all magnet centers. A correction system is thus necessary to ensure 
that the orbit is as close to the central (design) orbit as possible. This sys­
tem consists of additional dipole magnets (steering magnets called steerers), 
which are used to direct the beam vertically and horizontally. To measure 
the position of the beam, beam position monitors (BPMs) in many different 
locations are necessary. The beam correction relies on minimizing the RMS 
(root mean square error) of the closed orbit by varying the steerer magnet 
strengths. The beam correction system works with a certain precision be­
cause steerers and BPMs are positioned with a certain precision and large 
portions of the orbit are not monitored. However, using this orbit correction 
method, the orbit deviations from the central orbit are reduced.

The BMAD simulations for COSY are described in detail in [89] using the 
orbit correction process [90, 91]. The orbit correction system of COSY in 
the horizontal plane consists of 22 steerers and 30 BPMs, while in the ver­
tical plane there are 19 steerers and 29 BPMs. The orbit response due to 
steerer perturbations is linked to the magnetic field strength of the steerer 
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and can be summed up in the so-called orbit matrix. The matrix contains 
information on how the closed orbit is modified by a single steerer and can be 
used to determine the set of steerer strengths that result in an improved orbit.

A beam-based alignment procedure [88] has recently performed at COSY 
enabling to align all 56 magnetic centres of the quadrupole magnets with the 
use of 31 BPM. The beam was aligned with an accuracy of 40 with the 
centre of the quadrupole magnets, while the quadrupole magnets were pre­
cisely aligned to the design beam axis of precision 200 p,m with this process.

Figure 5.8: The comparison of the Fourier amplitude spectrum with (denoted 
by a orange coloured solid line) and without (denoted by a sky blue coloured 
dotted line) orbit correction applied for misalignment effect and for full phase 
space.

The effect of the orbit correction on the Fourier amplitudes has been exam­
ined using dipole magnets (kicker elements). Therefore, kickers affect not 
only the particle orbit but also influence the spin precession as well. The 
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orbit becomes more central as a result, and is less influenced by magnet mis­
alignments. However, kickers introduce additional vertical and horizontal 
dipole fields which have an impact on the spin rotation. Dipole kickers were 
found to also exhibit undesired spin rotation as a result of misalignments. In 
5.8, Fourier amplitudes are compared to evaluate the influence of the orbit 
correction on the spin Sy(t) induced by misalignments. When applying or­
bit correction the Fourier amplitude F(i^s) is reduced by a factor of about 
six, while the Fourier amplitude F(wo — i^s) remains unchanged after the 
orbit correction. Thus, orbit correction enhances the precision of the deter­
mination of EDM effect limits as the EDM effect contributes to the Fourier 
amplitude F(ws) only, whereas the misalignment effect can be deduced from 
the Fourier amplitude F(wo — i^s).

5.6 EDM Limit Determination Using Fourier 
Analysis

BMAD simulations were used to investigate the sensitivity of the proposed 
method of determining the experimental limit of the EDM value. For 104 

randomly selected COSY magnet misalignment sets, calculations were per­
formed. All misalignments of x, y, and z offsets and tilts about the x, y, and 
z-axis were considered for each quadrupole and dipole magnet. Using a Gaus­
sian distribution, random values for magnet misalignments were generated 
with a mean equal to zero and standard deviations of ax = ay = az = 0.2 mm 
for offset and for rotations, = ay> = = 0.2 mrad. Fourier amplitudes
were shown to be unaffected by the phase space of the beam, as shown in 
section 5.5.2. Thus, only on the closed orbit, calculations were carried out. 
The orbit correction described in section 5.5.3 has been applied in each case. 
A Fourier analysis of the calculated vertical spin Sy(t) time dependence was 
carried out for each set of misalignments. For each misalignment setting, 
calculations were carried out for EDM D = 0, 10-20, 10-19, 5 • 10-19, 10-18 

e-cm values. Similar calculations were also performed for quadrupole magnet 
misalignments (only translation in all directions), these misalignments were 
recently measured by the Vermessungsburo Stollenwerk & Burghof [88]. In 
Table 5.3, for only a few EDM values, the results for the Fourier amplitudes 
are presented.
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Table 5.3: Fourier amplitudes for ws and .~o — frequencies and for some 
selected EDM values. The measured misalignments[88] of COSY quadrupole 
magnets were used, and an orbit correction was also applied.

EDM value [e-cm] 104 • F (Ms) 104 • F (Mo — Ms)
0 0.65 1.73

10-20 0.84 1.73
5 • 10-20 1.92 1.73

10-19 3.14 1.73
5 • 10-19 15.58 1.73

10-18 30.83 1.73
5 • 10-18 152.88 1.72

10-17 305.45 1.71

Figure 5.9: The probability distribution of Fourier amplitude F(o?o — o>s), 
this Fourier amplitude is independent of EDM values.

As mentioned earlier, the F(mo — Ms) Fourier amplitude delivers information 
about the misalignment effect only. The data in Table 5.3 confirms the pre­
diction made by the model. Figure 5.9 shows the probability distribution 
for Fourier amplitude F(mo — ms) obtained using BMAD calculations for 104
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Figure 5.10: We can see the correlation of Fourier amplitudes F(i^s) and 
F(wo — ws) for different sets of EDM values, such as D = 0 e^cm (denoted by 
magenta dashed lines), D = 5 •IO-19 e-cm (blue solid lines) and D = 10-18 

e-cm (denoted by green dot-dashed lines.)

magnet misalignments. There is only one distribution visible, as it is inde­
pendent of EDM, thus providing information on the misalignment effect that 
contributes also to Fourier amplitude F(o?s).

Fourier amplitude F(ws) is the coherent sum of misalignment and EDM ef­
fects because they are indistinguishable. The method used to determine the 
EDM value limit is therefore based on the correlation of the Fourier am­
plitudes F(i^s) and F(wo — ws). In figure 5.10 one can see the correlation 
between Fourier amplitudes for various EDM values, such as D = 0, 5 • 10-19, 
10-18 e-cm. In the figure, we cannot see the results for D= 10-20, 10-19 e-cm 
as they overlap the distribution for D = 0 e-cm.

There is clear separation of Fourier amplitudes F(ws) for several EDM values, 
but it depends on the magnitude of Fourier amplitude F(wo — i^s). The dis­
tributions of F(i^s) Fourier amplitude must therefore be checked for various 
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values of F(wo — ws) amplitude. For selected ranges of F(wo — ws) amplitude, 
probability distributions are shown in figure 5.11 for F(ws) amplitude. For 
small F(o?o — o?s) amplitude values, it is observed that all probability distri­
butions can be distinguished for EDM values such as D = 0, 5 - 10-19, 10-18 

e-cm. But for larger values of F(wo — ws) amplitude, the separation becomes 
worse for F(ws) for different EDM values.

Figure 5.11: Probability distribution of Fourier amplitudes F(o>s), for some 
selected intervals of F(o?o — o?s) for different sets of EDM values D = 0 e-cm 
(denoted by magenta dashed lines), D = 5 •IO-19 e-cm (blue solid lines), and 
D = 10-18 e-cm (denoted by green dot-dashed lines).

In the case of magnet misalignment, the experimental limit for EDM value 
could be determined well using the method discussed. For known misalign­
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ments, their accuracy, and the different EDM values, the BMAD calcula­
tions must be performed with large statistics. The probability distributions 
for F(i^s) amplitude could be obtained for the measured F(wo — i^s) ampli­
tude within its exactness limit, similar to what is shown in figure 5.11. The 
upper limit of the EDM measured value can be determined by using these 
distributions for measured amplitude F(i^s).

5.7 EDM Limit Determination Using Fourier 
Analysis And Slope Induced By Wien Fil­
ter

Furthermore, using the same distribution of 104 randomly selected COSY 
magnet misalignment described in section 5.6 for dipoles and quadrupoles 
the closed orbit calculation was carried out. The orbit correction described 
in section 5.5.3 has been applied in each case. Additionally, RF Wien Filter 
is used which is described in detail in [91], from where following equation is 
used to define the RF Wien filter field:

(5.12)
(5.13)

where By is RF Wien filter magnetic field, Bw is the magnitude of the mag­
netic field, k is the harmonic number, G is anomalous magnetic moment of 
deuteron, frev is the revolution frequency, is initial phase angle and y is 
Lorentz factor. In calculation $ = n/2, k = 0 and Bw = 0.000024 T was 
taken. The electric field magnitude was calculated using Ew = Bwflc, where 
ft is beam relativistic speed. The buildup of the average vertical spin compo­
nent can be seen as it is expected due to the RF fields of the Wien filter and 
slope of time dependence of vertical spin component Sy(t) was calculated for 
each misalignment set. A Fourier analysis of the calculated time dependence 
ofvertical spin component Sy(t) was carried out for each set of misalignments.

The calculations were carried out for EDM D = 0, 10-19, 5 • 10-19, 10-18 

e-cm values for each magnet misalignment setting. The correlation between 
slope and Fourier amplitude F(i^s) for EDM values D = 0, 5 • 10-19, 10-18
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Figure 5.12: The correlation of slope and F(ws) Fourier amplitude for four 
ranges of F(wo — i^s) Fourier amplitude. In each plot the results for EDM 
values D = 0 e-cm (blue dashed line), D = 5 •IO-19 e-cm (green solid line), 
and D = 10-18 e-cm (red dash dotted line) are shown.

and four ranges of F(wo — i^s) Fourier amplitude is shown in the figure 5.12. 
In the figure, we cannot see the results for D= 10-19 e-cm as it overlap with 
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the distribution of D = 0 e-cm. The further separation of EDM values as 
compared to that seen in figure 5.11 can be achieved using correlations of 
slope of time dependence of vertical spin and F(ws). It can be observed that 
for range 0 < F(wo — ws) < 7.5 - 10-5 of Fourier amplitude, only a negative 
slope for EDM values D = 5 - 10-19, 10-18 e-cm is seen. Further increasing 
F(wo — ws) Fourier amplitude, the separation between distributions for EDM 
values D = 0, 5 • 10-19, 10-18 e-cm becomes worse but it is better than shown 
in figure 5.11. For D = 10-19 e-cm the results almost completely coincide 
with results for D = 0 e-cm. Therefore the sensitivity of the whole method 
allows to determine EDM limit to D = 10-19 e-cm. This analysis using 
RF Wien filter further improve the method to determine upper limit of the 
EDM measurement. The EDM measured value can be determined by using 
this distribution of the measured slope of time dependence of vertical spin 
component and Fourier amplitude F(Ws) for four ranges of F(Wo — Ws).

5.8 Result And Conclusion

Measurement of the vertical polarisation for the initially horizontally po­
larised beam is used to measure the EDM of the charged particle using a 
storage ring. Since the expected EDM value is very small, all systematic 
uncertainties should be controlled and brought down to the minimum level 
possible. Unavoidable horizontal magnetic fields can lead to dominating sys­
tematic uncertainty. The misalignment of storage ring magnets generate 
these fields. These effects can be simulated with appropriate tracking codes 
for particles.

Through this thesis, we tried to develop a simple model that allows us to 
analytically determine how the horizontal magnetic field can contribute to 
vertical polarisation. The model is applicable to any field distribution de­
scribed by Fourier series coefficients. The analytical formulae are given up 
to first order. Thus, it was possible to calculate the time dependence of the 
vertical spin component for a initially horizontally polarised beam moving 
within the magnetic field. Using the observation from analytical model (from 
section 5.4), we developed a method that allows us to control systematic un­
certainties due to magnets misalignments and determine the limit of EDM 
value.
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More detailed calculations were made using the BMAD software library, in­
cluding dipole and quadrupole fields and their misalignments. The Fourier 
analysis of the obtained time dependence of the vertical spin component was 
performed and Fourier amplitudes for frequencies xg and (xo — xg) were ob­
tained. Due to EDM the Fourier amplitudes only have one peak at frequency 
xg. An additional peak was observed for misalignment at (xo — xg) frequency. 
Further analysis are done on the basis of the correlation of these two Fourier 
amplitudes. The effects of all possible translations and rotations of dipole 
and quadruple magnets were investigated. It was observed that the main 
misalignment effect was caused by quadruple magnets shifts in the vertical 
direction, but the next important effect was due to dipole magnet rotation 
around the vertical axis which is one order of magnitude smaller. The im­
pact of the phase space on the Fourier amplitudes was then investigated. 
It has been observed that extra peaks in the Fourier amplitude arise with 
particles not moving in the closed orbit. However, these side peaks are very 
significantly decreased for full phase space and the average amplitudes at xg 

and (xo — xg) frequencies are equivalent to the closed orbit results. There 
was a discussion on the orbit correction approach, and this method was used 
to carry out calculations. Fourier amplitudes are compared to evaluate the 
influence of the orbit correction on the spin Sy(t) induced by misalignments. 
It has been demonstrated that the orbit correction decreases the Fourier am­
plitude at xg but does not modify the Fourier amplitude at (xo — xg). The 
EDM effect determination is improved since the EDM effect only contributes 
to the Fourier amplitude at the xg.

In the end, calculations were conducted for many randomly distributed dipole 
and quadrupole magnet misalignments for a few EDM values. It has been 
shown that a lower limit of D < 10-19 e^cm for deuteron EDM value can be 
achieved with the present magnet positioning accuracy at COSY. The Fourier 
analysis allows us to differentiate between the EDM and the misalignment 
effect and show the strength of the suggested approach. The analysis using 
RF Wien filter further improve the method to determine upper limit of the 
EDM measurement. The upper limit of the EDM measured value can be 
determined using the correlation between slope and Fourier amplitude F(xg) 
for various EDM values. At present, this approach is the only one that per­
mits the experimental verification of most important systematic uncertainties 
in EDM measurement with a storage ring.
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Chapter 6

Summary

To explain the universe's asymmetry of matter and anti-mater asymmetry, 
the Sakharov conditions needed to be fulfilled. One of the important condi­
tions is CP symmetry violation. In chapter 2, it is explained how permanent 
EDM can lead to CP violation and physics beyond the Standard Model. 
Various efforts are made in search of EDM for particle like muons, protons, 
etc. However, particles' upper limits are only known. JEDI collaboration is 
involved in one of such experiment to detect a permanent EDM of the proton 
with a sensitivity 10-29 e-cm. To achieve this level of sensitivity, it is very 
important to develop tools that consider dominant systematic uncertainties 
that can influence the vertical component. So it is essential to control them so 
that systematic uncertainties can be eventually pinned down to the smallest 
level possible. Two methods are introduced in this thesis for doing so. Both 
are devoted to finding a method through which we can control systematic un­
certainties in EDM measurement, and which can be applicable to any lattice.

In the first method, Quasi Frozen Spin lattice is used. The numerical cal­
culation for this method was performed using the BMAD tracking software. 
These calculation was done after implementing modifications in the tracking 
code, such as the TBMT equation extension to include the effect of MDM 
and EQM interactions with field gradient. Introduction of complex three­
dimensional realistic electromagnetic fields, which satisfy Maxwell equations 
in the BMAD software. These realistic magnetic fields for multipoles and 
electromagnetic field for Wien Filter are introduced for interaction of MDM 
and EQM with field gradients. Particle and spin tracking are done after 
those modifications in the model and their influence on spin precession are 
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studied. In this method, the impact on the vertical spin component due 
to EQM interaction with field gradients was studied. Different sets of field 
values for the Wien filter allowed us to differentiate between impacts due to 
EDM and EQM interacting with field gradients on vertical spin polarisation. 
At slightly different Wien filter settings, the EDM impact is 7.2 times greater 
than the EQM effect for an EDM value of 10-29 e-cm. Therefore, the inter­
action between EQM and gradients may be used to understand the sources 
of the systematic uncertainties in EDM measurement. The deuteron EQM 
value is known with a precision of 10-3, Therefore, reproducing the EQM 
value with the same precision level (10-3) should control the systematic un­
certainty in EDM measurement to 10-31 e-cm.

The second method is to evaluate the systematic uncertainties due to magnet 
misalignment in EDM measurement using a storage ring. Magnet misalign­
ment is one of the major systematic uncertainty in EDM measurement experi­
ments. To evaluate these magnet misalignment effects, analytical calculations 
using Mathematica software and numerical calculations using BMAD track­
ing software are presented in this thesis. The observation of Fourier analysis 
implies that the Fourier amplitude due to EDM has only one maximum at a 
frequency Ws and maximum due to misalignment at frequency Wo — Ws. This 
Fourier analysis result made it possible to develop a method for determin­
ing the limits of the measured EDM value. Furthermore, a more detailed 
numerical calculation was performed using the BMAD software library for 
the COSY ring. The comparison of Fourier amplitude for frequency Ws and 
Wo — Ws was obtained. Which implies that the major misalignment effect is 
due to quadrupole magnet displacement in the vertical direction followed by 
dipole magnet rotation around the vertical axis.

Final calculations are performed with randomly distributed misalignments 
for quadrupoles and dipoles for EDM values D = 0, 10-20, 10-19, 5-10-19, 10-18 

e-cm. It was shown in section 5.6 that with present precision for magnet po­
sitioning at COSY it is possible to achieve a lower limit of D < 10-19 e-cm 
for deuteron EDM value. Fourier analysis allows us to distinguish between 
the EDM and magnet misalignment effects. Further calculation is performed 
using RF Wien Filter and improvement of the method is demonstrated using 
the correlation between slope of time dependence of vertical spin component 
Sy(t) and Fourier amplitude F(Ws). The upper limit of EDM measured value 
can be determined using the correlation between slope and Fourier ampli­
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tudes F(us) with four ranges of F(wo — ws) for various EDM values. At 
present, this method is the only one that permits the experimental verifi­
cation of systematic uncertainties due to the magnet misalignments in the 
EDM measurements using a storage ring.
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