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Abstract
This thesis is concerned with the quantum transport properties of ballistic systems
based on mono and bilayer graphene. Within the Landauer-Büttiker formalism,
the Dirac systems have been investigated in terms of electrical conductivity and
related quantum effects. The main subject of our research is connected with the so-
called pseudodiffusive transport regime which appears (at zero temperature and zero
field) when the Fermi energy is close to the Dirac point. At high magnetic field,
the pseudodiffusive transport appears also in close vicinity to the Landau levels.
Physical discussion, carried out mostly in analytical terms, is based on the effective
low-energy Hamiltonian.
The first part of the thesis is devoted to the ballistic conductance of bilayer

graphene within the pseudodiffusive regime. We have shown that conductivity of
this material, contrary to the monolayer case, is not universal but depends on the
system size. The scaling function, based on this dependence, reproduces the behav-
ior of disordered Dirac systems with Coulomb interaction included. Higher charge
transfer cumulants, the Fano factor F and the R factor, approach with increasing
system size their pseudodiffusive values (1/3 and 1/15, respectively). This suggests
that the pseudodiffusive behavior is connected with shot noise characteristics rather
than a constant value of the conductivity.
An external magnetic field, perpendicular to the sample surface, leads to a sup-

pression of conductivity outside the pseudodiffusive regime. The pseudodiffusive
value of the conductivity strongly depends on the coupling between the layers,
quantified by interlayer hopping integrals between nearest (t⊥) and next nearest
neighbors (t′). The conductivity increases with the magnetic field, reaching its max-
imal value near a crossover field Bres, depending both on t′ and t⊥. Above the
field Bres, conductivity decreases with the magnetic field, approaching the value
σ = σBLG = 8e2/ (πh) at the Dirac point and σ = σMLG = 4e2/ (πh), identically
as in a monolayer, at other Landau levels. An external, perpendicular electric field
decreases the conductivity of bilayer graphene up to a value twice as small than in
a single layer. This is due to the fact that such a field lifts the valley degeneracy.
The next section describes the magnetoconductance of graphene based systems in

the Corbino geometry. The quantum relativistic Corbino effect (QRCE), in which
charge transfer cumulants oscillate with magnetic flux piercing the disk area, is
manifested in bilayer graphene by pronounced beating patterns with a period pro-
portional to the square root of magnetic field. In contrast to mean conductance
enhancement due to t′ 6= 0, beating patterns remain visible even for large magnetic
fields. Similar analysis of a system based on 2DEG proves that QRCE does not
appear in standard Schrödinger systems.
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For the sake of completeness, magnetoconductance of graphene based systems as
well as QRCE have been analyzed outside of the linear response regime. For finite
source-drain voltages as well as for fluctuating doping, charge transfer cumulants
drastically diverge from their pseudodiffusive values. We have shown that for such
a setup, although the conductance is suppressed, the Fano factor F as well as the
factor R approach the finite high-voltage limits F ' 0.74 and R ' 0.51.
In the last part of this thesis we have investigated conductance quantization in

graphene on the example of a section of the Corbino disk. For a proper ratio of outer
and inner radii, such a geometry leads to a suppression of Fabry-Perot resonances
present in a rectangular system. By adapting the neutrino billiards theory by Berry
and Mondragon to open graphene nanosystems, we have shown that the conductance
can emerge for disk sections with an opening angle θ . π/3. An emergence of n-th
quantization step requires a condition

√
nθ/π � 1, which suggest a smearing of

conductance with increasing n.
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Streszczenie
Niniejsza rozprawa dotyczy badań nad balistycznymi układami na bazie monowar-
stwowego i dwuwarstwowego grafenu. W oparciu o formułę Landauera-Büttikera
zbadano zachowanie układów dirakowskich w kontekście przewodnictwa elektrycz-
nego oraz efektów kwantowych bezpośrednio z nim związanych. Główna tematyka
badań dotyczy tak zwanego pseudodyfuzyjnego reżimu przewodnictwa. Reżim ten,
w przypadku zerowej temeratury i zrowych pól, pojawia się w sąsiedztwie punktu
Diraca. W przypadku wysokich pól magnetycznych, reżim ten rozszerza się również
na bliskie otoczenie poziomów Landaua. Przeprowadzone obliczenia, w przeważa-
jącej części analityczne, zostały oparte o hamiltonian efektywny dla niskoenergety-
cznych kwazicząstek.
Pierwsza część pracy dotyczy przewodności balistycznej dwuwarstwy grafenowej

w reżimie transportu pseudodyfuzyjnego. Wykazaliśmy, iż przewodność właściwa
tego materiału zależy od rozmiaru układu. Zależność ta pozwoliła na wyznacze-
nie uniwersalnej funkcji skalującej, która odtwarza zachowanie układu fermionów
dirakowskich z domieszkami. Wyższe kumulanty transferu ładunku, czynnik Fano
F oraz trzecia kumulanta R, zbliżają się do swych wartości pseudodyfuzyjnych
(odpowiednio 1/3 i 1/15) wraz ze wzrostem rozmiaru układu. Wynik ten sugeruje,
iż zachowanie pseudodyfuzyjne jest nie tyle związane ze stałą wartością przewod-
nictwa, co z charakterystyką szumu śrutowego układu.
Przyłożenie do dwuwarstwy prostopadłego, zewnętrznego pola magnetycznego

prowadzi do wygaszenia przewodnictwa poza reżimem pseudodyfuzyjnym. W ob-
szarze tym przewodność silnie zależy od sprzężenia między warstwami, które defini-
ują międzywarstwowe hoppingi między najbliższymi (t⊥) oraz drugimi sąsiadami
(t′). W reżimie niskich pól, w punkcie Diraca, przewodnictwo rośnie monotonicznie
aż do wartości maksymalnej osiągniętej dla pola magnetycznego Bres. Powyżej Bres

przewodnictwo maleje odwrotnie proporcjonalnie do pola, zbliżając się do wartości
asymptotycznej σ = σBLG = 8e2/h. Na wyższych poziomach Landaua przewod-
ność w granicy wysokich pól osiąga wartość σ=σMLG = 4e2/h, identycznie jak
w monowarstwie. Co więcej, po przyłożeniu do układu prostopadłego pola elek-
trycznego, przewodność dwuwarstwy w reżimie pseudodyfuzyjnymmoże być dwukrot-
nie niższa niż w monowarstwie, co jest wynikiem zniesienia degeneracji dolinowej.
Kolejna część pracy dotyczy tzw. kwantowego relatywistycznego efektu Corbino -

periodycznych oscylacji przewodnictwa i wyższych kumulant transferu ładunku jako
funkcji pola magnetycznego w układach grafenowych o geometrii dysku Corbino.
W dwuwarstwowym grafenie efekt ten przejawia się w postaci dudnień o okresie pro-
porcjonalnym do pierwiastka z pola magnetycznego. W porównaniu ze wzmocnie-
niem średniej wartości przewodności w obecności niezerowych hoppingów skośnych,
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częstość dudnień zanika znacznie wolniej ze wzrostem pola magnetycznego. Ana-
logiczna analiza przeprowadzona dla standardowego dwuwymiarowego gazu elek-
tronowego sugeruje, iż efekt Corbino nie występuje w układach schrödingerowskich.
Magnetoprzewodnictwo dwuwarstwy grafenowej jak i efekt Corbino były badane

również poza obszarem liniowej odpowiedzi. Wykazaliśmy, iż wartość kumulant
transferu ładunku w przypadku niezerowej różnicy potencjałów źródło-dren ulega
znacznej zmianie. Choć przewodność w takim układzie szybko ulega wygasze-
niu przez pole magnetyczne, czynniki Fano F i R osiągają w granicy wysokich
napięć wartości F ' 0.74 oraz R ' 0.51. Analogiczne zachowanie spodziewane jest
w układach o fluktuującym wypełnieniu.
Ostatnia część pracy dotyczy zagadnienia kwantowania przewodnictwa w grafe-

nie na przykładzie sekcji dysku Corbino oraz dla próbki prostokątnej. Geometria
tego typu, przy odpowiednim stosunku promieni, pozwala na wygaszenie oscylacji
Fabry Perota obecnych w prostokątnych układach. Adaptując teorię bilardów neu-
trinowych Berrego i Mondragona do otwartych nanoukładów grafenowych, określi-
liśmy analitycznie warunki, dla których schodki przewodnictwa są dobrze widoczne.
Wykazaliśmy, iż kwantyzacja pojawia się już dla sekcji o kącie rozwarcia θ = π/3.
Obserwacja n-tego schodka w rozważanym układzie grafenowym wymaga spełnienia
warunku

√
nθ/π � 1, co przewiduje rozmycie przewodnictwa wraz ze wzrostem n.
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Frequently used abbreviations
2DEG Two dimensional electron gas
BLG Bilayer graphene
LL(s) Landau level(s)
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Frequently used symbols
t0 intralayer hopping integral, t0 ≈ 3.16 eV [1–3]
t⊥ interlayer nearest neighbor hopping integral, t⊥ ≈ 0.38 eV [1–3]
t′ skew interlayer hopping integral (unknown precisely), t′ ≈ 0.1− 0.38 eV [1–3]
a lattice constant in a single layer, a = 0.246 nm
vF Fermi velocity, vF =

√
3t0a/ (2~) ≈ 106 m/s

V potential difference between layers
Vsd source drain voltage
EL Lifshitz energy, EL = t⊥t

′2/ (2t0)2 ≈ 0.095− 1.374 meV
G Landauer-Büttiker conductance
F Fano factor (a dimensionless quantifier of the shot-noise power)
R dimensionless quantifier of the third charge transfer cumulant
g0 conductance quantum, e2/h
σ conductivity
σMLG pseudodiffusive conductivity of MLG, σMLG = 4e2/ (πh)
σBLG pseudodiffusive conductivity of BLG, σBLG = 8e2/ (πh)
σ? asymptotic conductivity of BLG in L→∞ limit, σ? = 3σBLG
β (σ) scaling function, β (σ) = dlog (σ) /dlog (L)
Ri(Ro) inner (outer) radius of the Corbino disk
L ln (Ro/Ri)
lB magnetic length, lB =

√
~/ (e |B|)

rc cyclotron radius, rc = |~k/ (eB)|
ΦD magnetic flux piercing the Corbino disk, ΦD = Bπ (R2

o −R2
i )

Φ0 basic oscillation period in QRCE, Φ0 = (2h/e)L
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1 Introduction
The whole field of electronic materials is driven by the discovery of new phases, which
provide the playgrounds in which to search for new macroscopic physical properties.
These words, while said in a recent interview by David Hsieh in context of super-
conductivity [4], greatly depict graphene’s impact on condensed matter physics. It
is remarkable that more than seventy years1 of studies over an abstract two dimen-
sional material, turned out to be something much more than just an intellectual
challenge.
Before graphene’s discovery in 2004 [6], it had been believed that free standing

two dimensional systems should not exist. Landau and others argued that, due to
divergent thermal fluctuations, displacements of atoms would be so large that the
material would be unstable [7–10]. These theoretical predictions seemed bulletproof.
Investigation of thin films proved that the fewer the layers, the more fragile the
material becomes and breaks into small islands [10–12]. Graphene has been the first
two dimensional material being able to persevere the expected breakdown [10, 13].
As it turns out, the thermal fluctuations can be suppressed by ripples stabilizing
the two dimensional material at a price of large height fluctuations. This feature,
next to the absence of the band gap, makes graphene exceptional in the group
of novel 2D materials such as silicene, hexagonal boron nitride, black phosphorus,
or molybdenum disulfide [14], which usually require to be sustained by a three-
dimensional substrate.
A lot of attention brought on graphene was due to its linear dispersion rela-

tion. Low energy quasiparticles are massless and thus their behavior is far from the
expected from Schrödinger equation. This new type of emergent particles, Dirac
fermions, introduced a variety of new phenomena to condensed matter physics, the
most prominent of which is the Klein effect [15]. It is also worth to mention that
graphene is the first material which allows to observe a purely quantum mechanical
effect at room temperatures - the quantum Hall effect [6, 16].
Although monolayer graphene (MLG) is considered as a material for multiple

applications - from transistors to gas sensors and water filters [17–19] - its lack of an
energy gap limits its potential in the field of electronics. This is not the case of bilayer
graphene (BLG). While maintaining graphene’s treats such as mechanical durability
and high mobility of charge carriers, it allows one to control the energy gap through
external electric field [20]. BLG is also interesting from the fundamental science

1It is known that the band structure theory of graphite and its single layer was formulated by
Wallace [5] during his work for National Research Council of Canada in the Montréal Lab,
1943-1946 in the group lead by George Placzek.
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Chapter 1 Introduction

point of view since it hosts massive chiral fermions, another type of dual-natured
quasiparticles.

1.1 Pseudodiffusive charge-transport regime
One of the most prominent examples of new physical phenomena discovered in
graphene-based materials is the pseudodiffusive charge-transport. Ideal samples of
undoped graphene have the same shot-noise characteristics, quantified by the Fano
factor F = 1/3, as a diffusive wire [21–27], albeit a current passing through a
normal ballistic sample is expected to show no fluctuations (F = 0) [28, 29]. The
pseudodiffusive transport is expected to emerge in mono- and bilayer graphene close
to the Dirac (charge-neutrality) point, as well as in the vicinity of each Landau level
(LL) in case the nonzero magnetic field is applied (see Fig. 1.1) [22, 30–32].
The unexpected shot-noise in the pseudodiffusive regime is attributed to the so-

called Zitterbewegung (eng. trembling motion), already considered by Schrödinger
in 1930 [33–36]. This quantum-relativistic effect, described as a jittering motion of
charge carriers (even in absence of external fields or interactions), emerges in Dirac
systems in which the current operator does not commute with the Hamiltonian
[37, 38]. A physical view on this phenomenon links it with the position uncertainty
of the relativistic particles due to creation of virtual particle-antiparticle pairs during
the measurement [34, 39, 40].
Zitterbewegung leads to an interesting conductivity behavior in the pseudodiffusive

regime. First experimental papers on transport properties of graphene revealed that,
though the density of states at the Dirac point is zero, conductivity of monolayer
graphene is finite [6, 16]. Numerous theoretical groups claimed to explain this result,
though for some time there has been an argument about the actual value of minimal
conductivity.
In particular, an inconsistency occurred between different theoretical predictions

and early experimental results [6, 16]. The Landauer-Büttiker formalism suggested
the minimal conductivity was σ = 4e2/ (πh) ≡ σMLG

2 [22, 34]. Results based on
the Kubo formula, from σ = 4e2/ (πh) to even σ = πe2/h, depending on order in
which certain limits are taken [41–44]. More recent experimental results [23, 24, 45]
seem to favor σMLG as the minimal value. Further theoretical investigations proved
that σMLG is expected to appear in presence of magnetic field at the Landau levels
as well [30].
Similarly as in the monolayer case, there have been several attempts to derive min-

imal conductivity of bilayer graphene (BLG). Based on the approximate low-energy
dispersion relation as well as different formalisms (either the Kubo or Landauer-
Büttiker), several results have been obtained [46–50]. If the coupling between the
layers is defined solely by the interlayer nearest-neighbor hopping integral t⊥, the
dispersion relation is close to paraboloidal. Papers based on this approximation
suggested that the BLG minimal conductivity is simply twice as large as the MLG

2The prefactor 4 originates from both spin and valley degeneracy.
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1.1 Pseudodiffusive charge-transport regime

Figure 1.1: Pseudodiffusive transport regimes in MLG (left) and BLG (right)
in presence of the magnetic field B. E stands for the Fermi energy, µ is the
electrochemical potential (µ = E at zero temperature), lB =

√
~/ (e |B|) is the

magnetic length, vF ≈ 106 m/s is the Fermi velocity and t⊥ is the interlayer
nearest-neighbor hopping integral. In case the cyclotron diameter is smaller than
the system’s length 2rc < L, the conductance at each Landau level remains finite
while at other energies it is suppressed by magnetic field. Figures adapted from
Refs. [30, 32].

minimal conductivity, σBLG = 2σMLG [47, 48]. Moreover, it has been shown that
the pseudodiffusive shot-noise characteristics (F = 1/3) are the same as in MLG3.
Inclusion of the skew-interlayer hopping integrals t′ has triggered a very nontriv-

ial effect - an enhancement of minimal conductivity up to σ = 3σBLG (six times
larger than minimal conductivity of a single layer) [49]. This dramatic change is
attributed to the Lifshitz transition of the Fermi surface in which three additional
Dirac cones emerge for t′ 6= 0 (see Fig. 1.2). Further analysis proved that this result
can be obtained only for asymptotically large samples. Also, since t′ 6= 0 breaks
the cylindrical symmetry of the dispersion relation, charge-transport is no longer
isotropic. Depending on the orientation of the sample, the asymptotic conductivity
may take values from σ = (7/3)σBLG to σ = 3σBLG [50].
If we neglect the edge channels in a sample, classical trajectories of charge carries

would not allow to pass the current further than the cyclotron diameter 2rc. Such

3An interesting result, σ = 2e2/h and F = 1−2/π , has been obtained by Katsnelson by utilizing
the two-band effective mass Hamiltonian corresponding to the limit t⊥ →∞ [46, 51]. Snyman
and Beenakker have proved that such an approximation usually fails to reproduce quantum-
transport properties of BLG sample attached to heavily-doped BLG leads, apart from the case
the doping in leads is set to approximately 0.2t⊥ [48].
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Chapter 1 Introduction

Figure 1.2: Left: Two honeycomb lattices in the AB Bernal stacking. The arrows
depict connections between distinct nodes through hopping integrals (t0 ≡ γ0,
t⊥ ≡ γ1, t′ ≡ γ3). Picture adapted from Refs. [51]. Right: Dispersion relation in
vicinity of the Dirac point with the skew interlayer hopping integral set to t′ = 0.3
eV. The satellite Dirac cones are shifted in the momentum space from the central
one by k` = νt⊥/ (~vF ) with ν = t′/t0.

an effect would not occur in both undoped MLG and BLG. The wavefunctions of
quasiparticles at the Dirac point are of an evanescent nature and do not follow
the classical picture. Nonzero conductivity at the Dirac point is preserved in both
single and bilayer graphene in applied external magnetic field4. The Dirac point in
both these materials coincides with the lowest Landau level (in case we disregard the
Zeeman effect and the electrostatic bias between the layers in BLG case) [16, 52–55].
Quantum-transport properties characteristic for the Dirac (charge-neutrality) point
appear on higher Landau levels as well5. Nonzero conductance in high magnetic field
allows a novel type of quantum effect to appear - the quantum relativistic Corbino
effect (QRCE) [56–58]. This interference-related effect manifests itself in oscillations
of charge transfer cumulants with magnetic field. Contrary to a similar Aharonov
Bohm effect [59–61], QRCE seems not to have a counterpart for Schrödinger electron
systems [62].

1.2 Aim and scope of the thesis
The rich physics of the pseudodiffusive regime was mainly explored in the context
of a single layer of graphene. We have tried to fill this gap by investigating bilayer

4In contrast to the Landau levels (LLs) in standard two-dimensional electron gas (2DEG), the
Dirac point is a peculiar case in which the position of LL does not depend on magnetic field
(as long as one neglects the Zeeman effect and the bias between the layers in BLG case). In
fact, the Dirac point in bilayer graphene hosts two degenerate Landau levels, see Ref. [52].

5In the case of BLG, many of these properties may be altered due to interlayer coupling.

12
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graphene-based systems. The coupling between its layers not only leads to more
complex quantum effects than in a single layer, but also introduces a novel class of
effective quasiparticles, massive chiral fermions, which are introduced via low-energy
excitation in the vicinity of the Dirac point.
Several suppositions have been taken into account in our discussion. All types of

disorder as well as the edge states are disregarded6. While the impact of impurities
on the physics of relativistic quasiparticles is an important and ever-growing subject
[63–67], we focus here on perfect ballistic samples. Most of the topics tackled in this
thesis have not been considered in the literature earlier thus it is natural to deal
with impurity free samples first and treat the results as reference points for future,
more complete discussions.
Another important point is the description of wavefunctions in the leads. In our

investigations we suppose that the doping in the contacts is infinite. In a general
situation, analytical results show some dependence on the doping at the leads [48].
In order to limit the number physical parameters, it is a common practice to consider
the limit of heavily-doped graphene leads in which measurable quantities become
insensitive to this doping. Such an approximation seems to reasonably reproduce
typical experimental situations with graphene samples overlapped by metallic leads.
Since we are dealing with energies in the vicinity of the Dirac (charge-neutrality)

point, our methodology is based on the effective low-energy Hamiltonians. Employ-
ing the Landauer-Büttiker formalism along with the Levitov formula [29, 68], we
were able to produce analytical results, supplemented by numerical simulations in
more complex situations.
The pseudodiffusive transport regime is limited to the Dirac point or to the vicinity

of the Landau levels in case of nonzero magnetic field. As this regime rapidly shrinks
with increasing magnetic field [30], the role of a finite source-drain voltage on both
the magnetoconductance and higher charge-transfer cumulants is considered.
Several problems regarding bilayer graphene have been tackled:

• The conductivity dependence on the system size.

• Influence of magnetic field on the charge transfer cumulants (G, F and R) in
the pseudodiffusive limit.

• The quantum relativistic Corbino effect in the opposite, quantum-tunneling
limit.

Additionally, the above tasks have been supplemented by investigation of other
closely related issues on the example of single layer graphene:

• The finite source-drain voltage on magnetoconductance and other charge-
transfer cumulants.

6For instance, we have considered periodic boundary conditions in rectangular samples. The
pseudodiffusive transport regime requires a large number of transmission channels thus the edge
currents should not have a considerable impact on the quantum transport. These boundary
conditions also can model carbon nanotubes.
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Chapter 1 Introduction

• Conductance quantization in a section of the Corbino disk.

While this list does not reflect the chronological order of problems tackled, it includes
the most important tasks undertaken in this thesis.

14



2 Methodology

2.1 Effective low-energy Hamiltonian
Since we are dealing with charge transport in the linear-response regime, it is suf-
ficient to take into account only the energies in a close vicinity of the Fermi level
E. While in free-standing MLG and BLG samples the Fermi energy is localized at
the Dirac (charge-neutrality) point, in existing transistor-like devices, the back gate
voltage allows one to tune the doping in the range of |E| < 0.1 eV � t0 [38]. The
dispersion relation in such a range can be approximated by valleys placed at two
inequivalent points in the Brillouin zone - K and K ′ (see Fig. 2.1).

Figure 2.1: Left: Reciprocal space (same for both MLG and BLG) spanned by
primitive vectors b1 =

[
2π/a, 2π/

(√
3a
)]

and b2 =
[
2π/a,−2π/

(√
3a
)]
. Points

K = [4π/ (3a) , 0] and K ′ = [−4π/ (3a) , 0] mark two independent corners of
the first Brillouin zone (shaded area). Picture adapted from Ref. [69]. Right:
Dispersion relation of MLG. Note the approximately linear energy dependence on
the wavevector near E = 0.

The dynamics of charge carriers with energies close to the Fermi energy can be
described within effective low energy Hamiltonians. At valleys K and K ′, in the
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Chapter 2 Methodology

MLG case we have

HK = vF~σ · ~p = −HT
K′ , (2.1)

where ~σ = (σx, σy) is an operator built of Pauli matrices, ~p = −i~ (∂x, ∂y) is the
in-plane momentum, and vF =

√
3at0/2 ≈ 106 m/s is the Fermi velocity, with the

lattice parameter a ≈ 2.46 nm and t0 ≈ 3.16 eV the intralayer nearest neighbor
hopping integral. Since the effective Hamiltonian is a 2 × 2 matrix operator, the
wavefunctions take the form of 2-element spinors.
Contrary to high energy particles, the pseudospin index of graphene’s quasipar-

ticles does not refer to an actual spin but to the contribution from sublattices A
and B (see Fig. 1.2). Projection of this pseudospin on the direction of momentum
is referred as pseudochirality [70], which is further related to an intrinsic symmetry
between electrons and holes [15]. Electrons with energy E have the same pseudochi-
rality as holes with energy −E and opposite momentum. The term chiral particles
applies generically to Dirac fermions, including also massive quasiparticles in bilayer
graphene.
In case of bilayer graphene, since there are four atoms in the basic cell of the

lattice, the effective low energy Hamiltonian is given by a 4×4 operator of the form

Hξ = ξ


−V/2 πν 0 π†

νπ† −V/2 π 0
0 π† V/2 t⊥ξ
π 0 t⊥ξ V/2

 , (2.2)

where π = vF (px + ipy), V is the difference between electrochemical potentials on
the layers1, and the ξ = 1 (−1) describes the case of K (K ′) valley. Moreover,
t⊥ ≈ 0.38 eV is the nearest neighbor interlayer hopping integral and ν = t′/t0 is
the ratio between next nearest neighbor hopping integral t′ ≈ 0.1 − 0.38 eV [1–3]
(the directions of these hopping integrals as well as low energy dispersion relation
of BLG are presented in Fig. 1.2). The skew interlayer hopping integral t′ has been
so far measured with a very limited accuracy thus a novel approach of estimating
this parameter is very desired.

2.2 Derivation of quantum transport properties
In our analysis we have employed the Landauer-Büttiker formalism which allows one
to describe quantum transport in terms of the scattering properties of the system. In
this picture, the analyzed graphene sample is treated as a scattering region connected

1This bias potential can be in principle induced by an external, perpendicular to the plane, electric
field [20]. Some experimental results suggest that an intrinsic bias potential may appear in BLG
due to electron-electron interaction [71, 72].
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2.2 Derivation of quantum transport properties

by ideal waveguides to two reservoirs (metallic leads) of charge carriers between
which the current is passed. It is assumed that the electrons or holes exit and enter
the leads with negligible probability of reflection, i.e., the scattering takes place only
in the sample region [29, 73].

Figure 2.2: Schematic picture of the analyzed system. Charge carries are trans-
fered between two reservoirs, source (L) and drain (R), characterized by the chem-
ical potential µL (µR) and temperature TL (TR), through a scatterer (the anal-
ysed sample). The reservoirs are connected with the scattering area through ideal
waveguides (with NL and NR opened transmission channels, respectively). The
wavefunctions in the waveguides, φL (consisting of both incoming and reflected
waves) and φR (the transmitted wave), are mode matched with the wavefunction
of the scaterrer φS at the borders of the scattering area.

Here we focus on the linear-response regime applicable for systems with approxi-
mately constant transmission properties in the vicinity of the Fermi energy, in which
the transport occurs [29, 73]. We disregard both effects of finite temperature and
impurities, thus the only noise in the system is connected with discrete nature of
charge carriers (see chapter 1).
We have restricted our attention to first three charge transfer cumulants. The first

cumulant is quantified by the conductance G, which is given by the ratio between
current passed through a system and voltage between the leads. The second one,
quantified by the Fano factor F , is a measure of the shot noise in the system (its
two limiting values, F = 0 and F = 1, correspond to zero and Poisson noise,
respectively). Last one, the R factor, connected with the third moment, expresses
the asymmetry of current fluctuations [68, 74]. An interest in these higher moments
of charge transfer is motivated by the complementary character of the information
they carry.
In brief, the Landauer-Büttiker formalism in the linear-response transport regime

[29, 73] allows one to express the conductance G, the Fano factor F and the factor

17



Chapter 2 Methodology

R as

G = e2

h
TrT , (2.3)

F = Tr [T (1− T )]
TrT , (2.4)

R = Tr [T (1− T ) (1− 2T )]
TrT , (2.5)

where T = t†t and t is a matrix of transmission amplitudes tmn between channels
m and n.
Scattering properties of the system are obtained by mode matching of wavefunc-

tions at the boundary of the leads and the sample. Contrary to the wavefunctions
of nonrelativistic charge carriers described by the Schrödinger equation, in case of
both MLG and BLG it is enough to match only the wavefunctions and disregard
their derivatives. This is due to the fact that the Dirac equation is equivalent to a
system of first order differential equations.
The mode matching between wavefunctions (which in principle can be expressed

as vectors, see sec. 2.2.2) in the leads φL and in the sample area φS for the Corbino
disk, with the inner radius Ri and outer radius Ro, can be expressed as

φL+ (Ri) + rφL− (Ri) = φS (Ri) ,
φS (Ro) = tφL+ (Ro) , (2.6)

where the lower index refers to waves propagating from r = 0 (+) or from r = ∞
(−), and r is a matrix of reflection amplitudes rmn between channels m and n.
In most of the cases we have disregarded mode mixing, i.e., tmn = tm. This is

justified since the subject of our investigation is an ideal, impurity-free system in
which quantum channels are protected by the symmetry. Mode mixing is naturally
introduced in case the system has a random-like position dependent potential, which
is usually employed to model disordered systems. The important exception is the
Corbino disk in bilayer graphene. In our investigation of trigonal warping’s impact
on the quantum transport, we have treated the skew interlayer hopping integrals
as a peculiar type of symmetry-breaking potential, introducing the mixing between
the channels.

2.2.1 Charge transfer cumulants at finite source-drain voltage
In order to take into account the finite source drain voltage, we have employed the
Levitov formula [68]. This formalism concerns a random charge Q passing through
the system in a time interval ∆t in presence of a bias voltage Vsd. The statistical
distribution of the random variable Q/e has a characteristic function
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2.2 Derivation of quantum transport properties

Λ(χ) = 〈exp (iχQ/e)〉

= (∆t/h)×
ˆ E0+eVsd/2

E0−eVsd/2
dE ′ ln

{
det

[
I +

(
eiχ−1

)
T (E ′)

]}
, (2.7)

where E0 is the mean doping. Them-th moment of the transmitted charge 〈〈Qm〉〉 ≡
〈Qm − 〈Q〉m〉 is expressed through Λ(χ) as its m-th derivative over iχ at χ = 0, i.e.,

〈〈Qm〉〉 = ∂m ln Λ
∂(iχ)m

∣∣∣∣∣
χ=0

. (2.8)

Within this formalism, the conductance G, the Fano factor F , and the factor R
can be quantified as follows

G(Vsd) = 〈Q〉
Vsd∆t

= e

Vsd∆t
∂ ln Λ
∂(iχ)

∣∣∣∣∣
χ=0
≡ G0

〈
TrT

〉
|E−E0|6eVsd/2

, (2.9)

F(Vsd) = 〈〈Q2〉〉
〈〈Q2〉〉Poisson

≡

〈
Tr [T (I − T )]

〉
|E−E0|6eVsd/2〈

TrT
〉
|E−E0|6eVsd/2

, (2.10)

R(Vsd) = 〈〈Q3〉〉
〈〈Q3〉〉Poisson

≡

〈
Tr [T (I − T ) (I − 2T )]

〉
|E−E0|6eVsd/2〈

TrT
〉
|E−E0|6eVsd/2

, (2.11)

where 〈〈Qm〉〉Poisson = em〈Q〉 denotes the value of 〈〈Qm〉〉 in the Poisson limit, in
which all transmission probabilities are small.

2.2.2 Transfer matrix approach
Here we present a consistent way of extracting the scattering properties of a sys-
tem through the mode matching. While the following description is devoted to
monolayer graphene in the Corbino geometry (Appendix A in Ref. [75] describes a
similar procedure for BLG), the adaptation of the method for rectangular systems
is straightforward.
A generic wavefunction corresponding to a transmission channel l is given by a lin-

ear combination of two spinor functions corresponding to two independent solutions,

φl (r) = al1φ
l
1 (r) + al2φ

l
2 (r) , (2.12)
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where alα are arbitrary amplitudes and φlα (r) =
[
φlα,A, φ

l
α,B

]T
(r) is a normalized

spinor function with A and B corresponding to sublattice indices. The normalization
has to be carried out in such a way that the total current remains constant. The
current density can be written as

~j = evF
[
φl (r)

]†
Jφl (r) , (2.13)

where2

J = ~σ. (2.14)

In principle, it is sufficient to normalize only the wavefunctions in the leads since the
relation between them (the incoming, transmitted and reflected wavefunctions) ul-
timately defines matrices r and t. Current conservation guarantees that amplitudes
rmn and tmn preserve their probabilistic interpretation. A normalization carried out
for the wavefunctions in the sample area is not necessary for successful mode match-
ing. Although the amplitudes {alα} quantifying the share of different solutions φlα (r)
in the total wavefunction φl (r) lose their probability-related interpretation, one is
not interested in them in the first place.
It is convenient to present a set of wavefunctions as a vector with each element

corresponding to a different transmission channel. Since only a limited number of
channels effectively contributes to the quantum transport, one can introduce the
cutoff transmission channel M such that l ∈ [−M,M ]. The cutoff is chosen large
enough for the results not to be affected by M . One can write

φ (r) = M (r)
(
a1
a2

)
, (2.15)

where M (r) is a (4M + 2) × (4M + 2) matrix, aα =
[
a−Mα , . . . , aMα

]T
. The explicit

form of matrix M (r) will be presented later. The notation introduced in Eq. (2.15)
is especially convenient in the case when we are dealing with a system with mode
mixing introduced by position-dependent potential.
We are primarily interested in the relation between amplitudes aα connected with

wavefunctions at different radii, say, r and Ri. The relation between wavefunctions
at r and Ri can be represented by a propagator U (r, Ri)

φ (r) = U (r, Ri)φ (Ri) . (2.16)

The operator U (r, Ri) can be derived from an equation obtained by inserting (2.16)
into the Dirac equation. The equation takes then the following form

∂rU (r, Ri) = A (r)U (r, Ri) , (2.17)

with an initial condition U (Ri, Ri) = I(4M+2)×(4M+2). Matrix A (r) carries the com-
plete information about the potential and couplings in the system. If this matrix is

2For bilayer graphene, J = I2×2 ⊗ ~σ, see [48, 76].
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2.2 Derivation of quantum transport properties

diagonal (for instance, in the MLG case, see [64, 65, 77]) we have [A (r) ,A (r′)] = 0
for arbitrary r and r′, and Eq. (2.17) has a simple solution

U (r, Ri) = exp


rˆ

Ri

dr′A (r′)

 . (2.18)

Even if the condition [A (r) ,A (r′)] = 0 is not met, an analytical solution is still
possible as long as we can derive the wavefunctions. In such a case, the propagator
is simply U (r, Ri) = [φ (r)]−1φ (Ri). In other cases, one has to find U (r, Ri) nu-
merically3. In the last article attached to this thesis, we have employed a fixed-step
explicit Runge Kutta method of the 4th order [80–82]. Both the step as well as the
angular-momentum cutoff M depend on the system size as well as on the magnetic
field in an approximately linear manner (see Ref. [75]).
Once we know the propagator in the sample area, we can now translate it into a

transfer matrix of the whole system by simply connecting the wavefunctions in the
leads with the wavefunctions in the sample via the mode-matching

φL (Ro) = φS (Ro)
= U (Ro, Ri)φS (Ri)
= U (Ro, Ri)φL (Ri) , (2.19)

where φL (Ro) = ML (r)a, and we have set doping in the leads to infinity. In
such an approximation, the matrix ML (r) can be presented as a Kronecker product
ML (r) = B (r) ⊗ I(2M+1)×(2M+1) (we have dropped the phase constant connected
with the doping in the leads as it is insignificant when calculating the transport
properties), where

B (r) = f (r)
(

1 1
1 −1

)
, (2.20)

with f (r) = 1/
√
r for the Corbino geometry4. Matrix B (r) is created from in-

dependent wavefunctions corresponding to two different directions of propagations
(incoming and outgoing waves). The transfer matrix thus reads

T = M−1
L (Ro)U (Ro, Ri)ML (Ri) . (2.21)

Note that M (r) can be expressed through the propagator U (r, Ri) and ML (Ri),
i.e.,

M (r) = U (r, Ri)ML (Ri) . (2.22)
3The solution has a general Dyson series like form U (r,Ri) = T exp

[´ r

Ri
dr′A (r′)

]
, with T being

a time ordering operator, see Refs. [78, 79].
4For a rectangular system, f (r) = 1.
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Next, in order to obtain the transmission properties of the system, one needs to
retrieve the scattering-matrix elements from T. The transfer matrix can be expressed
by blocks of the scattering matrix as follows

T =
 (

t†
)−1

r′ · (t′)−1

− (t′)−1 · r′ (t′)−1

 , (2.23)

with t (r) being the transmission (reflection) matrix for a wavefunction incoming
from the inner lead, and t′ (r′) being the transmission (reflection) matrix for a
wavefunction incoming from the outer lead [29, 73].
Unfortunately, the transfer matrix acts as a two-edged sword. As mentioned

above, the transfer matrix is directly linked with the propagator for the wave func-
tion in a system. Contrary to scattering matrices, transfer matrices can be combined
with each other through a simple product, i.e., T1,2 ≡ T2·T1. The problem lies within
the eigenvalues of these matrices - they can be both exponentially small and large
thus the multiplication of subsequent transfer matrices can be numerically unstable
[65]. One can overcome this hurdle by translating the transfer matrices into scatter-
ing matrices which usually appear to be numerically stable [83–85]. The scattering
matrices can be combined as follows

S1,2 ≡ S1 ◦ S2 =
(
r1 + t′1ρ1r2t1 t′1ρ1t

′
2

t2ρ2t1 r′2 + t2ρ2r
′
1t
′
2

)
, (2.24)

where ρ1 = (1− r2r
′
1)−1 and ρ2 = (1− r′1r2)−1. Although being aware of this

workaround, we have disregarded it and applied the floating-point arithmetics, set-
ting the precision up to 300 decimal digits. This way it is sufficient to directly
consider the transfer matrices.
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3 Conductance scaling for ballistic
bilayer graphene

3.1 Conductance of disordered systems and the
scaling function

One of the core concepts behind the scaling theory of localization is the single
parameter scaling hypothesis. It states that the so-called scaling function β (g) =
dlogg/dlogL, describing the dependance of dimensionless conductance g = G/ (e2/~)
on the system size L, is a function of conductivity only, disregarding the size of
the system or the magnitude of disorder in the system [86, 87]. Introduced by
Abrahams and his coworkers [88] after earlier works of Anderson, Thouless, Wegner
and coauthors [89–91], the scaling function β differs from system to system based
on the dimensionality as well as symmetry classes of the microscopic Hamiltonians.

Figure 3.1: Scaling function for disordered systems of different dimensionality.
Note that both 1D and 2D systems are expected to be insulating, provided no
interaction is taken into account. Adapted from Ref. [87].

When dealing with a highly conducting metal, one expects an ohmic-like behavior,
i.e., g ∝ Ld−2 (where d is the dimension of the system). In such a case, the scaling
function is constant, β = d − 2. In an opposite scenario, if the charge carriers
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Chapter 3 Conductance scaling for ballistic bilayer graphene

in a material are localized due to impurities (the so-called Anderson localization),
conductance decreases exponentially with the system size g = g1exp (−αL), and
thus β = ln (g/g1). These two limits are connected since it is assumed that β is a
continuous function1. In general, if β < 0, the conductance decreases with increasing
L, and the system is in the localization regime. If β > 0, the system is in a metallic
regime (see Fig. 3.1). The metal-insulator transition takes place if β = 0 and β′ > 0.
For d = 2 the conductivity σ and the conductance G are connected through a
simple relation σ = GW/L. Since we are considering the case with W/L = const,
hereinafter we redefine β ≡ β (σ).
In an undoped monolayer graphene, three different scenarios are expected. If

there is no disorder, the conductivity σ = σMLG is L-independent [22, 34]. The
long range disorder2 (responsible for the intravalley scattering) leads to σ →∞ for
L → ∞ [65, 66]. To the contrary, the short range disorder3 introducing intervalley
scattering leads to suppression of conductivity (σ → 0) for sufficiently large systems
[94, 95].

�(�)

0 �

�(�)

0 �

supermetal

insulator insulator

critical point

�? ⇠ 1

Figure 3.2: Comparison between scaling functions for Dirac and spin-orbit systems
depicted with solid and dashed lines, respectively. The left (right) picture shows
a system without (with) Coulomb interaction taken into account. Adapted from
Ref. [96].

Coulomb interaction between the charge carriers may significantly alter the con-
ductance scaling (see Fig. 3.2). While a noninteracting spin-orbit system has a
repulsive transition point separating insulating and metallic phases, the Coulomb
interaction turns it to an insulator. Similarly, a disordered system of noninteracting
Dirac fermions always behaves like a metal. Coulomb repulsion affects this behavior

1In some particular cases the continuity of β can be lifted, for instance by the spin-orbit impurities
[86].

2This type of disorder can describe for instance the impact of charged dopants or the influence
of the ripples [67].

3For instance, the Anderson type of disorder modeling adatoms or charged impurities [92, 93].
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3.2 Conductivity dependence on the system size: single parameter scaling for BLG

introducing an attractive critical point, for which the conductivity σ = σ? no longer
depends on the system size [65, 66, 97].
A similar analysis can be carried out for bilayer graphene. As its charge carriers

are both chiral and massive, it can be anticipated that conductance scaling in this
system may show a new, nontrivial behavior. In particular, the skew interlayer
hopping integrals introduce conductance dependence on both the orientation and
the size of the sample [50]. In Refs. [75, 96] the author and Rycerz have investigated
the scaling properties of the conductivity in the context of one parameter scaling
hypothesis.

3.2 Conductivity dependence on the system size:
single parameter scaling for BLG

The considered system is a ballistic (disorder free) sample. Following Moghaddam
and Zareyan [50], we employ the four-band Hamiltonian with skew-interlayer hop-
ping integrals (in such a picture electron-electron interactions are not taken into
account) and the Landauer-Büttiker formalism. Our analysis is focused on the tran-
sition between σ = σBLG for small systems (L � 50 nm) to σ → 3σBLG ≡ σ? for
L → ∞. The latter limit may be affected by a specific choice of crystallographic
orientation since BLG conductance is not isotropic for t′ 6= 0 (see above).
Size dependence of the conductivity has been already considered in Ref. [32]

on the example of a wide, rectangular sample (W � L) with a zigzag orientation
(identified by the angle θ = 0°). Based on the smooth and monotonic G (L) behavior
for large L, we have proposed the size dependence of the conductivity σ = GL/W ≈
σ∞ [1− (λ/L)γ] in which σ∞, λ and γ are free parameters. These parameters have
been subsequently fitted to data sets obtained numerically for different values of the
skew interlayer hopping integral t′. Best fitted parameters γ ≈ 0.23 and σ∞ ≈ σ?
for two different values of skew hopping integral, t′ = 0.16 eV and t′ = 0.32 eV,
suggested a more general nature of the conductivity dependence on L.
The size-dependent conductivity may contribute to the explanation of the dis-

crepancy between the experimental value of the minimal conductivity σ = 3/2σBLG
- 5/2σBLG [98–100] and theoretical predictions for ballistic samples [49, 50]. While
the disorder as well as interactions may contribute to this difference, the size of the
measured sample may be a crucial factor.
The analysis is expanded in Ref. [96] by numerically reproducing the scaling

function β. Contrary to the previous case, we have considered an orientation for
which4 θ = 45o. Based on the fitted parameters, we have recovered the approximate
scaling function β = dlogσ/dlogL = −γ (1− σ?/σ). Best fitted parameters γ ≈ 0.53
and σ? ≈ 0.98 lead to β > 0 for σ < σ?, which indicates a metallic character of bilayer
graphene. Interestingly, σ = σ? is an attractive point (β′ (σ?) < 0 for γ ≈ 0.53) of

4As mentioned in Ref. [50], conductivity for asymptotically large systems with θ = 0o should be
σ ' 7/3σBLG while for θ = 45o it approaches σ ' 3σBLG.
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the renormalization group flow. Surprisingly, such a behavior was earlier predicted
for disordered Dirac systems with Coulomb interaction [97]. The inclusion of t′ in
the analysis of ballistic BLG, with no interaction taken into account, thus creates a
nontrivial analogy between these two systems.

3.2.1 Shot noise characteristics
Results from Ref. [96] have been supplemented by an analysis of the Corbino disk
in which the influence of crystallographic orientation is eliminated [75]. Apart from
investigation of the scaling function, we have considered the length dependence of
the Fano factor F , and the third charge transfer cumulant R. We have chosen
two radii ratios (Ro/Ri = 3/2 and Ro/Ri = 2) for which the system has a large
number of transmission channels. At the charge-neutrality point such systems are
expected to exhibit a pseudodiffusive behavior. With increasing size of the system,
the conductivity strongly diverges from the pseudodiffusive value σBLG, whereas
both F and R are close to pseudodiffusive average values (F̄ = 1/3 and R̄ = 1/15).
Both these characteristics show Fabry-Perot like oscillations slowly decreasing with
the system length Ro−Ri. These results suggest that the pseudodiffusive regime of
the quantum transport perseveres the breakdown of the parabolic dispersion relation
due to the trigonal warping. However, in such a case the pseudodiffusive character
of the charge transport is indicated by the higher charge-transfer cumulants rather
than by the universal conductivity.

3.2.2 Impact of electrostatic bias between the layers
Another problem tackled in Ref. [96] is the effect of bias between the layers V on
the conductivity (discussed as a function of Fermi energy). The bias potential can
emerge by applying an external, perpendicular, electric field and is responsible for
opening an energy gap [20]. Some experiments suggest that the bias between the
layers can spontaneously emerge in BLG samples with dopings near the charge-
neutrality point due to electron-electron interactions [71, 72].
While it is possible to obtain analytically wavefunctions for t′ = 0, the case

with t′ 6= 0 and E 6= 0 has no analytical solution. This is not an issue as it
is sufficient to find numerical forms of wavefunctions and follow standard mode
matching procedures. Notice that there is no mode mixing in case of a rectangular
sample. At zero bias potential (V = 0), in a small vicinity of the Dirac point |E| <
EL ' t⊥ (t′/t0)2 /4 (where EL is the Lifshitz energy), the conductivity monotonically
increases with t′. Outside this region, the conductivity gradually loses its dependence
on t′ with increasing Fermi energy. At V � EL (but still of the order of meV) the
conductivity reaches a maximum close to σ ≈ σBLG for E = ±V/2 and an arbitrary
value of t′. This maximum is substantially smaller than the first peak in conductivity
for V = 0, and seems to reproduce the behavior of a monolayer sample at the Dirac
point. Again, effects of V and t′ are suppressed at Fermi energies E � V � t′.
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3.2 Conductivity dependence on the system size: single parameter scaling for BLG

Results presented in this chapter are based on the following publications:

• G. Rut and A. Rycerz, Pseudodiffusive conductance, quantum-limited shot
noise, and Landau-level hierarchy in biased graphene bilayer, Physical Re-
view B 89, 045421 (2014);

• G. Rut and A. Rycerz, Minimal conductivity and signatures of quantum criti-
cality in ballistic graphene bilayer, Europhysics Letters 107, 47005 (2014);
and the unpublished manuscript

• G. Rut and A. Rycerz, Trigonal warping, pseudodiffusive transport, and finite-
system version of the Lifshitz transition in magnetoconductance of bilayer-
graphene Corbino disks, http://arxiv.org/abs/1511.04705.
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4 Magnetoconductance of bilayer
graphene

4.1 Overview
In 2006, Prada and coworkers investigated the magnetoconductance of a short and
wide (W � L) ballistic graphene junction1 [30]. Similarly as in 2DEG, the character
of charge transport depends the mutual relation between the system size L and the
cyclotron diameter 2rc = 2l2BE/ (~vF ), with lB =

√
~/ (eB) being the magnetic

length. Namely, the conductance remains ballistic (if 2rc > L) or is field suppressed
(if 2rc < L). Strikingly, quantum transport in close vicinity of the LLs counter-
intuitively avoids the field suppression even if 2rc � L. The conductance as well
as higher charge transfer cumulants F and R, remain close to their pseudodiffusive
values at the Dirac point (the lowest Landau level is pinned to the charge-neutrality
point, in case the Zeeman splitting is neglected) and other Landau levels. In other
words, the pseudodiffusive transport regime appears in the finite vicinity of any LL,
the width of which decays as exp

[
− (L/lB)2 /2

]
.

The pseudodiffusive character of quantum transport on LLs in a monolayer graphene
suggested that an analogous regime has to exist in bilayer graphene. A question re-
mained, how the additional degeneracy of the two lowest LLs (0th and 1st), occur-
ring at the charge-neutrality point [52], affects the conductance and higher charge-
transfer cumulants.

4.2 Method of approach
Following Snyman and Beenakker [48], we have derived BLG magnetoconductance
by applying the effective low energy Hamiltonian first without skew interlayer hop-
ping integrals (t′ = 0). Subsequently, we have investigated how the conductance is
affected by the trigonal warping. Our analysis revealed that the impact of t′, above
a crossover magnetic field BL, is swiftly suppressed with B, approaching the high
magnetic field limit in which one can disregard the skew interlayer hopping integrals,
at least for W/L � 1. Below we summarize our results for these cases in separate
sections devoted to the high magnetic field limit (for t′ = 0) and to the impact of
trigonal warping (for t′ 6= 0) .

1The Authors considered edge currents in the limit W � L as negligible.
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4.3 High magnetic field limit for t′ = 0

It must be noted that the applicability of an approximation neglecting trigonal
warping is limited. McCann and Fal’ko have shown that the spectrum of Landau
levels in bilayer graphene can be accurately described by neglecting t′ as long as
~l−1
B > t′t⊥/ (2vF t0) [52]. Moreover, McCann and Koshino specified the energy

range (t′/t0)2 t⊥ < E < t⊥ in which the trigonal warping does not have to be
taken into account [101, 102]. Lastly, Moghaddam and Zareyan, through quantum
transport analysis of BLG with t′ 6= 0, have proved that for systems of length
L� π~vF t0/ (t′t⊥) ≈ 50nm the transmission amplitudes for ballistic BLG have the
same asymptotic form as derived by Snyman and Beenakker [48, 50].

4.3 High magnetic field limit for t′ = 0
As in a monolayer graphene, the BLG conductance, G ' σBLGW/L, is not affected
by magnetic field at the Dirac point. Moreover, we have shown that at higher LLs
the conductance of bilayer graphene, G ' σMLGW/L = σBLGW/ (2L), turned out
to be the same as in a single layer2. The result can be associated with the fact
that, as mentioned in the previous section, the Dirac point is shared by two Landau
levels while other LLs are not degenerated. This has been confirmed by further
investigations for a BLG with an electrostatic bias between the layers.
An external electric field, perpendicular to the sample plane, creates a potential

difference between the layer which results in an energy gap [20, 101] and lifted
valley degeneracy of LLs. In effect, the lowest LL breaks into four distinct Landau
resonances while each of the other LLs splits into two. The conductance at each
of these resonances is equal to G = σBLGW/ (4L), that is, a half of the monolayer
conductance. The second and the third charge-transfer cumulants, F = 1/3 and
R = 1/15, remain the same as in MLG.

4.4 Finite voltage effect
While the above results have been derived supposing the linear response regime,
their physical meaning may be limited, especially in high magnetic fields. Res-
onances with Landau levels rapidly shrink with increasing magnetic field [30] and
experimental systems always have a finite source-drain voltage Vsd, often larger than
the transmission resonance width W , Vsd & W . Similar reasoning applies for sys-
tems with fluctuating dopings which might especially affect long-time measurements
of shot noise characteristics. Both these situations can be treated with the Levitov
formula [29, 68], in which the finite voltage (or the fluctuating doping) is introduced
through an average over a relevant doping integral.
We have proposed an empirical model of transmission resonances T (E, ky) in the

wavevector-doping parameter plane. Each resonance is modeled as a product of
the Breit-Wigner distribution, describing the doping dependence, and a function

2The same result is expected for t′ 6= 0 in high magnetic fields.
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Chapter 4 Magnetoconductance of bilayer graphene

1/ cosh2 (AkyL), where ky is the transverse wavevector, and A is a free parameter
close to unity. An analytical approximation for wide samples has allowed us to
predict the dependence of both F(Vsd) and R(Vsd) on the voltage Vsd. Apart from
restoring the pseudodiffusive values F(0) = 1/3 and R(0) = 1/15 for zero voltage,
we have predicted F (∞) → 2/3 and R (∞) → 2/5 for high voltages. A numerical
analysis, based on actual transmission resonances following from the mode matching,
revealed that the limiting values are F (∞) ' 0.7 and R (∞) ' 0.5, respectively.
These results allow us to expect that both F(Vsd) and R(Vsd) are still quantum-
limited beyond the linear transport regime.

4.5 Effect of trigonal warping
In chapter 5, we investigate the impact of skew interlayer hopping integrals in the
context of the Corbino geometry. As the Corbino geometry with t′ 6= 0 can be ap-
proached only numerically, we first attempt to understand its properties by explor-
ing, in this section, its resemblance with narrow rectangular samples. For moderate
width-to-length ratios W/L . 5, such a system also shows magnetoconductance
oscillations3. The main advantage of such a geometry over a disk is the absence of
mode mixing, which allows one to derive the properties of BLG in analytical terms,
at least in principle.
The magnetoconductance of BLG monotonically increases with magnetic field

from, B = 0 up to a crossover field Bres, for which the effect of trigonal warping
is maximal. Above this crossover field Bres the influence of t′ is slowly suppressed
by the magnetic field B and the conductance decreases asymptotically as B−1, ap-
proaching G ' σBLGW/L (for large W/L). This, in principle, means that the
effective Hamiltonian with t′ = 0 correctly describes pseudodiffusive systems in the
high magnetic field limit (B →∞).
The second effect, present in systems with W ∼ L, is the emergence of beating

patterns, with the envelope period proportional to square root of magnetic field
√
B.

In the high field limit, these beating patterns remain visible thus the interference
effect predicted in Ref. [103] should not emerge for t′ 6= 0.
During the mode matching we have discovered a peculiar effect which manifests

itself both via beating patterns in magnetoconductance as well as via the aver-
age conductance. Due to a nonzero skew interlayer hopping integrals two species
of quasiparticles, feeling a different system size L± (with the index ± related to
the presence of two layers), dependent on both the magnetic field B and the hop-
ping integral t′. These two effective sizes of the system, L+ and L−, lead to dif-
ferent conductance values originating from two distinct transmission resonances
G± ' σBLGW/ (2L±) which in moderate magnetic fields are larger (as a sum) than
G ' σBLGW/L, G+ +G− > G ' σBLGW/L. Also, L+ and L− lead to two different

3One should not expect these oscillations to appear in real life systems. Here they appear due to
a simplified description with no boundary effects taken into account.
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4.5 Effect of trigonal warping

magnetic fluxes Φ± = BWL± piercing the system. This results in magnetoconduc-
tance oscillations with different frequencies, leading to the appearance of beating
patterns.

Results referred in this chapter are based on the following publications:

• G. Rut and A. Rycerz, Pseudodiffusive conductance, quantum-limited shot
noise, and Landau-level hierarchy in biased graphene bilayer, Physical Re-
view B 89, 045421 (2014);

• G. Rut and A. Rycerz, Trigonal warping, pseudodiffusive transport, and finite-
system version of the Lifshitz transition in magnetoconductance of bilayer-
graphene Corbino disks, http://arxiv.org/abs/1511.04705.
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5 Quantum relativistic Corbino effect
(QRCE)

5.1 Introduction
The Corbino disk is an experimental setup in which a ring-shaped sample, charac-
terized by the inner radius Ri and the outer radius Ro, is surrounded from both
exterior and interior sides with metallic leads (see Fig. 5.1). The Corbino geometry
has been known in physics for over a century [104, 105] and has been employed in
the investigation of magnetic field related properties and effects such as magnetore-
sistivity or classical and quantum Hall effects. Such a system is free of boundary
effects, which are often difficult to cope, allowing to focus on intrinsic properties of
the analyzed material.
The theoretical analysis of conductance in nano-scale Corbino disks in 2DEG was

provided by George Kirczenow in 1994 [106]. Conductance of a disk with ideal
contacts turned out to be quantized with steps of odd multiples of 2e2/h. Further
analysis revealed linear suppression of conductance in the magnetic field [107, 108].
In 2009 Rycerz, Recher and Wimmer showed that, while the conductance of MLG
Corbino disk exhibits a modulation with a period ∼ π~vF/(Ro −Ri), the quantiza-
tion will not occur [109]. Moreover, in 2010 Rycerz and Katsnelson independently
investigated the magnetoconductance of MLG disks [56, 57]. In the pseudodiffusive
transport regime, conductance exhibits oscillatory dependence on magnetic field due
to discrete spectrum of transmission channels. This unexpected behavior allows to
coin the term: quantum relativistic Corbino effect (QRCE) [62].
In the pseudodiffusive regime, conductance of graphene Corbino disk oscillates

periodically with magnetic flux piercing the disk area ΦD = Bπ (R2
o −R2

i ). The
larger the radii ratio Ro/Ri, the larger the oscillations amplitude. The amplitude
exceeds 5% of the mean conductance G = 8g0/log (Ro/Ri), where g0 = e2/h, for a
system with the radii ratio Ro/Ri & 5.
In 2006 Akhmerov and Beenakker considered the pseudodiffusive transport through

a graphene junction with one of the contacts being a superconductor[111]. Similarly
as for a system with two metallic leads, the conductance for such a setup can be
expressed in terms of transmission probabilities, and reads

G = 8g0
∑
j

T 2
j

(2− Tj)2 . (5.1)

Setting the superconductor as the inner lead in the Corbino disk defines the so-called
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5.1 Introduction
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RiRo

B = (0, 0, B)

Figure 5.1: Left: Visualization of the Corbino disk in graphene in a perpendicular
magnetic field B. The ring shaped sample are is characterized by inner Ri and
outer Ro radii. The current is passed through the sample between metallic leads
(yellow areas) which are modeled by infinitely doped graphene. Doping in the
sample is controlled by a gate electrode (not shown). Right: Scanning electron
micrograph of a real device. Pictures reprinted from Refs. [57] (left) and [110]
(right).

Andreev-Corbino geometry. In such a setup the QRCE oscillations amplitude is
magnified. For instance, amplitudes exceeding 5% of the mean conductance appear
already for Ro/Ri & 2.2.
Briefly speaking, the oscillations associated with QRCE emerge due to a limited

number of transmission channels contributing to the transport. The transmission
probabilities of passing through the disk are given by

Tj ≡ T (j + ΦD/Φ0) = 1
cosh2 [L (j + ΦD/Φ0)]

, (5.2)

where Φ0 = (2h/e)L, with L = log (Ro/Ri), and j = ±1/2,±3/2, ... denotes an
eigenvalue of the total angular momentum operator Jz = −i~∂φ + ~σz/2. The
larger the radii ratio Ro/Ri, the narrower the transmission resonance in the space
of angular momentum eigenvalues. While the spectrum of Jz eigenvalues is dis-
crete, ΦD/Φ0 changes continuously with magnetic field, and thus a periodic be-
havior is predicted for the conductance G = 4g0

∑
j Tj. At radii ratios of the

order of Ro/Ri & 5, each conductance maximum (Gmax
Ro�Ri→ 4g0) corresponds

to single-channel transport at j = −ΦD/Φ0, whereas the conductance minimum
(Gmin

Ro�Ri' 32g0Ri/Ro) originates from two equivalent transmission channels with
j± = −int (ΦD/Φ0 ∓ 1/2)− 1/2.
Both the conductance amplitude and the period can be extracted from the Landauer-

Buttiker formula by expanding it in the Fourier series in units of ΦD/Φ0. Since the
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Chapter 5 Quantum relativistic Corbino effect (QRCE)

period in flux units ΦD/Φ0 is simply 1, we can write

G

4g0
= a0

2 +
∞∑
m=1

am cos (2πmΦD/Φ0) , (5.3)

where aα = 2
´ 1

0
∑
j T (j + x) cos (2παx) dx. The expression for aα can be simplified

into an integral over a single transmission mode, since

ˆ 1

0

∑
j

T (j + x) cos (2παx) dx =
∑
j

ˆ j+1

j

T (x) cos (2παx) (−1)αdx

' (−1)α
ˆ ∞
−∞

T (x) cos (2παx) dx = 2π2α(−1)α
L2sinh (π2α/L) . (5.4)

The conductance expressed in the Fourier series reads

G = 8g0

L
+
∞∑
m=1

Gm cos [2πmΦD/Φ0] , (5.5)

in which Gm = g0 (4π/L)2 (−1)mmcsch (π2m/L). The first part of Eq. (5.5), 8g0/L,
represents the pseudodiffusive value of conductance, the latter describes the oscil-
lations. For moderate radii ratios, say Ro/Ri . 10, we get G1 � G2 � ..., thus
G ≈ 8g0/L + G1 cos [2πmΦD/Φ0] becomes a reasonable approximation. One can
now easily link Φ0 with the period and G1 with oscillations amplitude. For the
Andreev-Corbino setup, while the mean conductance remains the same, the ampli-
tudes are transformed as Gm (L)→ GAC

m (L) ≡ 2Gm (2L), which effectively leads to
a significant amplification of the oscillations at given L.

5.2 QRCE in bilayer graphene
Since coupling between the layers in BLG plays an important role in the description
of transport properties of this material, it has been anticipated that its magneto-
conductance oscillations would not be simply twice as large as in MLG even in the
absence of trigonal warping. Skew interlayer hopping integrals t′ lead to trigonal
warping of the dispersion relation in which secondary Dirac points are created. The
cylindrical symmetry, allowing one to discuss the quantum transport in analytical
terms, is in this case broken making it necessary to find a workaround. On the other
hand, the results of Ref. [32] allow to expect that in the high field limit it is enough
to consider t⊥ as the only interlayer hopping integral. For such a simplified model it
was possible to obtain an analytical description of QRCE. Here we refer results for
the case of t′ = 0 (after Ref. [103] - the high magnetic field limit) and t′ 6= 0 (after
Ref. [75]).
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5.2 QRCE in bilayer graphene

5.2.1 High magnetic field limit; t′ = 0
The cylindrical symmetry of the low energy Hamiltonian (applicable for t′ = 0),
which correctly describes the pseudodiffusive behavior of BLG in high magnetic field
limit, allows us to analytically derive the transmission properties of the Corbino
disk at the charge-neutrality point. As it was shown in Refs. [32, 48], there are
two transmission resonances in the angular-momentum space1. While the shape of
these resonances is determined only by the radii ratio Ro/Ri, the distance between
them depends on the system size as well as on the coupling between the layers
characterized by t⊥. Regardless of t⊥, pseudodiffusive conductance is simply twice as
large as the conductance of MLG. On the other hand, the varying distance between
the resonances leads to an interference effect modulating oscillations amplitude. If
the system is large enough (Ri & 10l⊥, Ro/Ri & 3), it is possible to estimate a
condition for two extreme cases of this interference

L ≈ 4 ln (Ri/2l⊥) /p, (5.6)

where p is an odd (even) integer for vanishing (maximal) oscillations. Generally
speaking, the Corbino-Andreev setup, in which one of the contacts is a supercon-
ductor, magnifies the oscillations. Even if a system satisfies condition (5.6) with
p being an odd integer, the oscillations do not vanish in the same manner as in
a regular system. Instead, they still remain pronounced and their period is twice
smaller than ΦD. This is due to the ratio of Fourier amplitudes GAC

1 /GAC
2 6� 1 for

radii ratios Ro/Ri & 2.
As there is only a single transmission resonance in the angular-momentum space

associated with any LL other than those at the Dirac point, the BLG disk effectively
behaves in the same way as in MLG. The mean conductance, as well as the oscillation
amplitudes, are equal. If an electrostatic bias between the layers opens an energy
gap, a similar behavior is expected for the lowest LL as well (LLs in such a case are
no longer degenerated, thus interference effects originating from t⊥ are lifted).

5.2.2 Impact of trigonal warping
The skew interlayer hopping integrals break the cylindrical symmetry of the effective
low-energy Hamiltonian. We have overcome this problem by treating elements of
the Hamiltonian proportional to t′ as a perturbation potential and expressing the
wavefunctions as linear combinations of angular-momentum eigenfunctions. At the
cost of introducing mode mixing to our analysis, this procedure allows us to retrieve
the transmission properties of the analyzed system due to a simple relation between
the Dirac equation and the transfer matrix. Furthermore, we have based a qualita-
tive description of the Corbino disk’s behavior on its resemblance to a rectangular
sample with periodic boundary conditions (see sec. 4.5).

1In the Corbino disk, these channels correspond simply to eigenvalues of the angular momentum
operator Jz, while in a rectangular geometry they are connected with the transverse momentum
py.
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Chapter 5 Quantum relativistic Corbino effect (QRCE)

Most remarkably, the suppression of oscillations, predicted for some particular
parameter in the t′ = 0 case (see Eq. (5.6)), do not appear in the presence of
trigonal warping. Instead, similarly as in the rectangular sample, magnetoconduc-
tance oscillations show beating patterns. Although the envelope is not as regular as
in a rectangular system (presumably because of the mode mixing), their period is
still proportional to

√
B/t′. Beating patterns appear also for other charge transfer

cumulants, such as F and R. Other trigonal-warping effects identified for a rect-
angular sample, such as the enhanced mean conductance (with a maximum near
a crossover field Bres), reappear for the Corbino geometry as well. Since both the
envelope period and the mean conductance depend on t′, the QRCE can be utilized
to determine the skew interlayer hopping integrals.
It is important to point out that the beating patterns appear only at the charge-

neutrality point as it hosts two LLs. In the high field limit, the quantum transport
at Landau levels outside the Dirac point can be correctly described with t′ = 0.

5.3 Beyond the linear response regime
The energy range in the vicinity of a given LL, in which the pseudodiffusive transport
regime occurs, decays exponentially with the magnetic field. For this reason, access-
ing the linear response regime may become challenging (see also sec. 4.4). With this
hurdle in mind, the QRCE has been investigated in a MLG system with a finite
source-drain voltage Vsd [112]. Following a similar procedure as in the case with a
rectangular sample of BLG (see Ref. [32]), the charge transfer cumulants have been
derived using the Levitov formula [29].
It turns out that the conductance vanishes in the high-field limit for any finite

voltage Vsd 6= 0, yet the oscillations for F and R persevere. The magnitude, as
well as the period of these oscillations are approximately independent of Vsd, and
mean values of F and R for any Vsd 6= 0 monotonically approach limits F̄ ' 0.76
and R̄ ' 0.55 with increasing magnetic field. Interestingly, these asymptotic values
do not depend on the size of the disk or its radii ratio and thus should reappear
for other graphene-based devices with finite source drain voltages at high magnetic
fields. These limits can be considered as high-fields analogs of pseudodiffusive shot
noise characteristics (F = 1/3 andR = 1/15), relevant for ballistic graphene systems
with finite voltage and high magnetic field.

5.4 QRCE in 2DEG
The QRCE appears either in BLG or MLG, two examples of systems with quasipar-
ticles described by the Dirac equation. As a natural consequence, an investigation
whether this effect has an analog in the Schrödinger system has been carried out
in Ref. [103]. In principle, magnetoconductance of 2DEG Corbino disk has been
already analyzed by George Kirczenow in 1994 [106], yet the particular scenario at
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5.4 QRCE in 2DEG

which QRCE may emerge has not been considered. Firstly, QRCE may appear only
on LLs. The conductance at LLs has not been discussed in Ref. [106] since these
energy levels depend on the magnetic field and thus it might have seem of a lim-
ited importance, also because relatively large radii ratios (Ro/Ri & 3) are required.
Moreover, Kirczenow has modeled ideal contacts by applying a peculiar angular-
momentum dependent potential, allowing to introduce wavefunctions in form of
cylindrical waves. In order to focus on the case with clear relation to Dirac systems,
a system in which potential in the leads is large but constant has been considered.
At low magnetic fields, the conductance of 2DEG Corbino disk shows several

distinct maxima corresponding to quantum-dot energy levels. They gradually evolve
with increasing magnetic field into resonances corresponding to LLs. Away from
these resonances, the conductance is suppressed provided the field exceeds the value
B >

√
2mE/ [e (Ro −Ri)] (here m is the effective mass and −e is the electron

charge), which separates the ballistic and quantum-tunneling transport regimes.
The difference between BLG and 2DEG emerges in the quantum-tunneling trans-

port regime. In the Dirac system the conductance oscillates with increasing mag-
netic field but its average value remains constant. In the Schrödinger system the
conductance simply vanishes at strong magnetic fields. This shows that the QRCE
appearing in the pseudodiffusive transport regime is a purely relativistic effect and
has no analog in nonrelativistic systems.

Results presented in this chapter are based on the following publications:

• G. Rut and A. Rycerz, Magnetoconductance of the Corbino disk in graphene:
Chiral tunneling and quantum interference in the bilayer case, Journal of
Physics: Condensed Matter 26, 485301 (2014);

• G. Rut and A. Rycerz, Quantum-limited shot noise and quantum interfer-
ence in graphene based Corbino disk, Philosophical Magazine 95, 599-608,
(2015); and the unpublished manuscript

• G. Rut and A. Rycerz, Trigonal warping, pseudodiffusive transport, and finite-
system version of the Lifshitz transition in magnetoconductance of bilayer-
graphene Corbino disks, http://arxiv.org/abs/1511.04705.
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6 Conditions for conductance
quantization in graphene
nanostructures

6.1 Overview
Conductance quantization visualizes the role of transmission channels in the de-
scription of quantum transport [29, 73]. The effect was observed for the first time
in 1988 in GaAlAs-GaAs heterostructures [113, 114]. The 2DEG formed close to
the interface of the two structures has been modeled by gate electrodes to create an
effective waveguide with a constriction. The applied gate voltage allowed to con-
trol the width of the constriction and, in result, the number of transmission modes.
With continuously increasing gate voltage, the conductance of the system varied in
steps of 2e2/h (see Fig. 6.1).
A relatively simple condition for conductance quantization can be derived for a

2DEG waveguide with an adiabatic constriction characterized by the minimal width
a and the second derivative of the width as a function of the longitudinal coordinate
a′′ [29, 115]. The smearing of nth step is of the order Ωn = [~2n/ (2m)]

√
a′′/a3. The

conductance of a system with such a constriction can be approximated by

G = 2g0

{
n− 1 +

[
1 + exp

(
−E −Wn

Ωn

)]−1}
, (6.1)

where Wn = h2n2/ (8a2m) is an effective potential barrier the charge carriers have
to pass. As long as

|E −Wn| � Ωn, (6.2)

conductance steps are sharp and well pronounced.
Conductance quantization has been previously studied in both graphene nanocon-

strictions [116, 117] and nanoribbons [118, 119]. Different boundary conditions in
such systems allow one to expect different transport behaviors. For the armchair
edges, the conductance has a quantization sequence 0, 1, 2... in units of 2e2/h, where
2 stands for spin degeneracy1 [120]. On the other hand, for zigzag edges, conduc-
tance takes values in odd multiples (1, 3, 5, ...) of 2e2/h, due to the spin and valley
degeneracy.

1In a disorder free graphene sample with archair edges the valley degeneracy is lifted.
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6.2 Conductance of MLG disk section

Figure 6.1: Conductance (in units of 2e2/h) measured for GaAlAs-GaAs het-
erostructure. Inset: schematic representation of the system. The shape of 2DEG
is modulated by two gate electrodes on two sides of the system. Picture adapted
from Refs. [29, 73].

While the conductance quantization is clearly visible in GNR [22, 119], Rycerz,
Recher, and Wimmer have shown that it does not occur in graphene-based Corbino
disks [109]. One can expect a section of a disk, with the opening angle θ, to interpo-
late between the GNR behavior (reproduced for θ � π) and the disk-like behavior
(θ ≥ π).

6.2 Conductance of MLG disk section
Theoretical description of the disk section starts from imposing the conditions for
vanishing angular currents at the edges of the sample. Such conditions have been de-
rived by Berry and Mondragon in their insightful 1986 work on neutrino bilards [121].
The wavefunctions have been chosen as linear combinations of angular momentum
operator (Jz) eigenfunctions ajψj+b−jψ−j, where j is the angular-momentum quan-
tum number. Such a choice guaranteed that they carry zero angular momentum.
From a physical point of view, this leads to a more radial path of the quasiparticle
traveling through the sample.
By employing the condition of Berry and Mondragon, eigenvalues of Jz contribut-

ing to the transport through the disk sections with opening angles θ = π/m, with
m an odd integer, have been derived.
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Chapter 6 Conditions for conductance quantization in graphene nanostructures

At small radii ratios Ro/Ri . 2 and relatively wide opening angles θ & π/3,
conductance of the disk section, in the vicinity of the Dirac point, follows the formula
for pseudodiffusive conductance Gdiff ≈ 4g0θ/ (πL) derived within the conformal
mapping technique in Ref. [109]. For smaller opening angles and larger radii ratios,
the system is in the quantum-tunneling regime, characterized by the limited number
of transmission channels, and the above formula works no more.
The first step of conductance, as a function of doping, emerges already for opening

angles θ = π/3. By decreasing the angle even further, more steps become visible.
Due to the interference between incoming and outgoing waves from one lead to an-
other, a Fabry Perot like oscillations appear. These can be suppressed by increasing
the radii ratio.
Surprisingly, the steepness of consecutive steps decreases. Based on the semi-

classical transmission probability through a electrostatic potential barrier, we have
derived a similar condition for sharpness of nth conductance step in graphene

√
nθ/π � 1. (6.3)

This may explain why, contrary to 2DEG, only first steps in conductance are ob-
served in graphene nanoconstrictions [120].

This chapter refers the results of the article

• G. Rut and A. Rycerz, Conditions for conductance quantization in mesoscopic
Dirac systems on the examples of graphene nanoconstrictions, Acta Physica
Polonica A 126, A-114 (2014).
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Conclusions and perspectives

We have discussed several topics regarding the pseudodiffusive transport regime in
both monolayer (MLG) and bilayer graphene (BLG). In particular, quantum trans-
port dependence on such factors as external electric and magnetic fields, the size, and
the geometry of the system has been investigated. Our calculations, employing the
effective Dirac-like Hamiltonians, have been carried out in the vicinity of the Dirac
point. Our description of the conductivity and higher charge transfer cumulants is
based on the Landauer-Büttiker formalism along with the Levitov formula.
We have investigated the evolution of bilayer graphene conductivity, at the charge-

neutrality point, with the system size for different values of the skew-interlayer
integrals t′. The scaling function β (σ) is insensitive to the value of t′, as long as it
is nonzero. Most surprisingly, the shape of the scaling function suggests a possible
analogy between disordered Dirac systems with repulsive Coulomb interaction and
a perfectly clean ballistic bilayer graphene.
The enhancement of BLG conductivity in the vicinity of the charge-neutrality

point, emerging for t′ 6= 0, can be lifted by strong magnetic field. Above a crossover
field Bres for which the conductivity is maximized, the asymptotic value σ ' σBLG is
approached and σ − σBLG ∝ t′/B. This high magnetic field limit can be effectively
described by a 4-band Hamiltonian including the interlayer coupling t⊥ only. In
this limit, the conductivity of bilayer graphene is twice as large as in a single layer.
However, in case of higher Landau levels the conductivity is equal for both systems.
Moreover, the conductivity is halved in case we apply an electric field leading to a
different potential between the layers.
Quantum transport through the Corbino disk in bilayer graphene is strongly af-

fected by the interlayer hopping integrals. In particular, the trigonal warping (t′ 6= 0)
leads to the appearance of beating patterns for all charge transfer cumulants. The
envelope period is approximately proportional to

√
B/t′ and can be, in principle,

used to estimate the value of t′. In the high field limit, the scenario derived for
t = 0′ is reproduced at LLs outside the charge-neutrality point, as well as in case of
a nonzero potential difference between the layers. The amplitudes of the oscillations
are then the same or twice as small as in MLG, respectively.
In high magnetic fields, the pseudodiffusive transport regime appears in narrow

intervals of chemical potential centered at the charge-neutrality point or at higher
Landau levels. This applies to both monolayer and bilayer graphene. It is possible
to observe several effects, indicating the presence of the pseudodiffusive transport
regime, by applying a finite source-drain voltage. The voltage leads to a suppres-
sion of conductivity and to an enhancement of higher charge-transfer cumulants (F
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and R). In the Corbino geometry, these quantities still preserve their oscillatory
behavior.
Finally, we have shown that a section of graphene-based Corbino disk character-

ized by an opening angle close to θ ' π/3 may demonstrate conductance quantiza-
tion. We have derived a simple condition for the sharpness of nth conductance step√
nθ/π � 1. Contrary to standard 2DEG, each consecutive step is less pronounced.
Since we have dealt with perfect systems, a natural extension of our research

would be to investigate the robustness of our results. Below we have pointed out
three main topics, a further analysis of which would be particularly beneficial.

• Several factors may affect the conductivity scaling, including mechanical strains,
different types of disorder (long range, short range and edge disorder) as well
the Coulomb repulsion. While the Landauer-Büttiker formalism together with
mode matching could in principle handle all types of disorder, inclusion of
interaction between charge carries would require more advanced techniques.
Natural candidates are methods based on the Green functions [73, 79, 122,
123]. Although these techniques are much more complex and numerically
challenging, there are several software packages with their efficient implemen-
tation [124–126].

• The main issue related to QRCE is its missing experimental observation. It
should be expected that the real-life devices based on the Corbino disk may
diverge from an ideally cylindrical symmetry. There are other, more subtle
difficulties such as reproduction of coaxial leads or the fragility of the bridge
between them. In our analysis of the QRCE we have considered a perfect
Corbino disk. It is an open question to what extent the oscillations of charge
transfer cumulants depend on such details of the geometry. It may also be
interesting to investigate how the system would behave, if the inner lead is
removed and the charge carriers are injected through an STM tip. Such a
setup, consisting of a circular quantum dot surrounded by a simple metallic
lead from the exterior only, might be much simpler in realization.

• The pseudodiffusive transport regime occupies a rather narrow part of a phase
diagram in the field-doping parameter plane. It would be interesting to explore
the perspective of its broadening. Preliminary numerical results suggest that
long-range disorder enlarges the area around LLs with nonzero conductivity.
Also, a uniaxial strain seems to lead to a similar effect [31, 58].
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We discuss, by means of mode-matching analysis for the Dirac equation, how splittings of the Landau-level
(LL) degeneracies associated with spin, valley, and layer degrees of freedom affect the ballistic conductance of
graphene bilayer. The results show that for wide samples (W � L) the Landauer-Büttiker conductance reaches
the maximum G � se2/(πh) × W/L at the resonance via each LL, with the prefactor varying from s = 8 if all
three degeneracies are preserved, to s = 1 if all the degeneracies are split. In the absence of bias between the
layers, the degeneracies associated with spin and layer degrees of freedom may be split by manipulating the
doping and magnetic field; the conductance at the zeroth LL is twice as large, while the conductance at any
other LL equals to the corresponding conductance of graphene monolayer. The presence of bias potential allows
one also to split the valley degeneracy. Our results show that the charge transfer at each LL has pseudodiffusive
character, with the second and third cumulant quantified by F = 1/3 and R = 1/15 (respectively). In case the
electrochemical potential is allowed to slowly fluctuate in a finite vicinity of LL, the resulting charge-transfer
characteristics are still quantum limited, with F � 0.7 and R � 0.5 in the limit of large fluctuations. Analogously,
the above values of F and R are predicted to be approached in the limit of high source-drain voltage difference
applied. The possible effects of indirect interlayer hopping integrals are also briefly discussed.

DOI: 10.1103/PhysRevB.89.045421 PACS number(s): 72.80.Vp, 73.43.Qt, 73.63.−b, 73.50.Td

I. INTRODUCTION

Several unique physical phenomena were observed in
graphene or its derivatives at high magnetic fields [1–3].
These include Shubnikov-de-Haas oscillations indicating zero
quasiparticle rest mass [4], room-temperature quantum Hall
effect with a nonstandard (half-odd integer) sequence of
Landau levels [5], signatures of a fractal energy spectrum
known as Hofstadter’s butterfly [6], and many others. This
new subarea of condensed-matter physics emerges primarily
due to the nature of effective quasiparticles, which are chiral
Dirac fermions with zero (the case of graphene monolayer)
or small effective masses (meff = 0.033 me in the case of
graphene bilayer, with me the free electron mass) coupled
to the external electromagnetic field via additive terms in
low-energy Hamiltonians, which are linear in both scalar and
vector potentials [7]. A remarkable consequence of such a
coupling is the quantization of the visible light absorption [8].

Among numerous phenomena which were predicted theo-
retically but not yet fully confirmed experimentally, we focus
our attention on the so-called pseudodiffusive transport in bal-
listic graphene. For an undoped monolayer, elementary mode-
matching analysis for the Dirac equation [9,10] leads to the
Landauer-Büttiker conductance [11] of a rectangular sample
(with the width W and the length L) scaling as G = σ0 × W/L

for W � L, where σ0 = (4/π )e2/h is the universal quantum
value of the conductivity. Additionally, the Fano factor is
F = 1/3, and all the other charge-transfer characteristics are
indistinguishable from those of a classical diffusive conductor
[12,13]. In the pseudodiffusive regime, applied magnetic
field is predicted to affect neither the conductance [14,15]
nor other transport characteristics [16]. Existing experiments
[17–19] generally support these theoretical results, leaving
some ambiguity concerning the origin of the F value observed
[2,20]. For high dopings and magnetic fields, charge transport

through a monolayer was discussed in analytical terms for the
rectangular [16] and the disklike (Corbino geometry) samples
[21,22]. In both cases, pseudodiffusive behavior is expected
to be recovered at each resonance with the Landau level
(LL) in the absence of disorder. Remarkably, recent numerical
study of large disordered samples [23] reports the longitudinal
conductivity σxx � 1.4 e2/h (which is numerically close to
σ0) appearing at each LL for wide ranges of disorder and
magnetic fields. The nature of this coincidence, however,
remains unclear so far.

For a bilayer, a few theoretical studies [24–26] showed
that regardless massive Dirac fermions govern low-energy
properties of the system, the pseudodiffusive conductivity of
undoped ballistic samples is (8/π )e2/h = 2σ0 (twice as large
as in the case of a monolayer), and the Fano factor F = 1/3
again. Surprisingly, a role of the most desired property of
graphene bilayer, which is a tunability of the energy gap
related to the potential energy difference between the layers
V [27–30], has been only marginally discussed in the context
of pseudodiffusive transport [31]. We notice here, that for
a Hall-bar setup (for which W � L and the pseudodiffusive
limit is usually inaccessible) it was shown both numerically
and experimentally that the eightfold degeneracy of the lowest
LL can be lifted by manipulating the external electromagnetic
fields (see Fig. 1), and the effect was usually attributed to
electron-electron interactions [32–34].

Here, transport properties of graphene bilayer in the
presence of potential energy difference between the layers
and external magnetic fields are discussed in analytical terms.
Namely, we start from the four-band Dirac Hamiltonian [27]
taking into account the inter- and intralayer nearest neighbor
hopping parameters, and employ the Landauer-Büttiker for-
malism [11] to investigate the field-dependent conductance
and other transport characteristics of a ballistic sample. The
geometry considered (wide-and-short sample) is chosen in

1098-0121/2014/89(4)/045421(12) 045421-1 ©2014 American Physical Society
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FIG. 1. (Color online) Schematics of system studied analytically
in the paper and energy band structure in the quantum Hall regime.
(a) A strip of graphene bilayer of width W attached to two electrodes
(shaded rectangles) at a distance L. A voltage source drives a current
through the sample area. Separate top and bottom gate electrodes
(not shown) allow one to tune the carrier concentration and the band
gap (related to the potential energy difference between the layers V ).
(b), (c) The formation of Landau levels in bilayer graphene with and
without a band gap. Landau levels are indexed with the orbital index n

and the valley pseudospin (K or K ′); the twofold spin degeneracy of
each level is assumed for clarity. In the absence of a band gap (V =
0) almost every Landau level shows the fourfold (spin and valley)
degeneracy, with the exception of eightfold degenerate zero-energy
level, for which the states arising from two layers (red and blue lines)
coexist. Both layer and valley degeneracies are split in the presence
of a band gap (V > 0).

such a way that the boundary conditions applied to the Dirac
equation do not affect the resulting physical quantities.

The remaining part of the paper is organized as follows.
In Sec. II we present the system details and find all linearly-
independent solutions of the corresponding Dirac equation at
finite dopings, biases, and magnetic fields. Then, in Sec. III
we discuss the field-dependent transport characteristics in
three different situations: at the Dirac point, in an unbiased
sample (V = 0), and in a sample with different potentials on
the layers (V �= 0). In Sec. IV we analyze the influence of a
finite voltage difference or doping fluctuations (in the vicinity
of pseudodiffusive regions), on the shot-noise power and on the
third charge-transfer cumulant. Also in Sec. IV we compare,
with a help of the so-called partial conductance, the statistical
distribution of transmission probabilities for graphene bilayer
in high magnetic fields with the corresponding distribution
for a generic diffusive system. In Sec. V we discuss, by
solving the appropriately modified Dirac equation numerically,
the possible role of indirect interlayer hopping integrals. The
conclusions are given in Sec. VI.

II. THE SETUP AND MODE-MATCHING
FOR THE DIRAC EQUATION

A. The effective Hamiltonian

Following Snyman and Beenakker [25], we consider a
rectangular, weakly doped bilayer sample attached to two
heavily-doped strips modeling contacts [see Fig. 1(a)]. It is
also assumed that the magnetic field (B �= 0) is present only

in the sample area. Our analysis starts from the four-band
Hamiltonian for the K valley [27]

H =

⎛
⎜⎜⎜⎝

U1(x) πx +iπy t⊥ 0

πx −iπy U1(x) 0 0

t⊥ 0 U2(x) πx −iπy

0 0 πx +iπy U2(x)

⎞
⎟⎟⎟⎠ , (1)

where t⊥ � 0.4 eV is the interlayer nearest-neighbor hopping
energy, πj/vF = (−i� ∂j + eAj ) is the gauge-invariant in-
plane momentum operator (j = 1,2), the electron charge is
−e, and vF � 106 m/s is the Fermi velocity in a single
layer. Ul(x) (with l = 1,2 the layer index) is the electrostatic
potential energy chosen as

Ul(x) =
{
U∞ if x < 0 or x > L,

λlV − gμBB ms if 0 < x < L,
(2)

where V is the difference between potentials on the layers,
λl = 1

2 (−1)l , and gμBBms is the Zeeman term (the z com-
ponent of spin ms = ± 1

2 ). The experimental values of the
Lande factor for graphene bilayer are g � 2 − 3 [35–37], thus
we set g = 2 for the numerical discussion. In order to obtain
the Hamiltonian for the other valley (K ′), it is sufficient to
substitute V → − V and πj → − πj in Eq. (1).

B. The sample area

We choose the Landau gauge A ≡ (Ax,Ay) = (0, − Bx),
with the uniform magnetic field B �= 0 for 0 < x < L (oth-
erwise, B = 0). The wave function is a four-component
spinor, which can be written as ψ = (φA1,iφB1 ,φB2 ,iφA2 )T .
The Hamiltonian (1) commutes with −i∂y , and thus ψ varies in
the y direction as a plane wave of a form ∝ exp(ikyy), with the
transverse wave number ky . The Dirac equation for a sample
area, after a substitution ξ = l−1

B x − kylB (with lB = √
�/|eB|

the magnetic length), can be written as

⎛
⎜⎜⎜⎝

−ε − δ ∂ξ + ξ t 0

∂ξ − ξ ε + δ 0 0

t 0 −ε + δ ∂ξ − ξ

0 0 ∂ξ + ξ ε − δ

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

φA1

φB1

φB2

φA2

⎞
⎟⎟⎟⎠ = 0, (3)

where we have defined ε = (E − gμBBms)lB/(�vF ), δ =
−V lB/(2�vF ), and t = t⊥lB/(�vF ). The functions φα are
given explicitly in Appendix A. Here we only mention that
solutions at the Dirac point (ε = δ = 0) still have a peculiar
form of evanescent waves, leading to zero-field value of the
pseudodiffusive conductance [25] unaltered for arbitrarily high
magnetic fields. We address this issue in a detailed manner in
Sec. III.

C. Contact regions

For contact regions, one can neglect the bias potential (δ �
0) due to a high doping. The Dirac equation can thus be written
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as ⎛
⎜⎜⎜⎝

−ε̃ keiθk t̃ 0

ke−iθk −ε̃ 0 0

t̃ 0 −ε̃ ke−iθk

0 0 keiθk −ε̃

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

φA1

iφB1

φB2

iφA2

⎞
⎟⎟⎟⎠ = 0, (4)

with ε̃ = (E − U∞)/(� νF ), t̃ = t⊥/(� νF ), k =
√

k2
x + k2

y ,
and θk = arg(kx + i ky). After straightforward calculations,
one obtains the dispersion relation

ε̃(k)2 =
(

η

2
t̃ +

√
1

4
t̃2 + k2

)2

, (5)

with η = ±1 referring to the two subbands.
The eigenfunctions in contact regions take the form of plane

wave spinors, namely

ψ±
L (x) = C(ε̃,k±

x ) exp(−ixk±
x )

⎛
⎜⎜⎜⎝

∓ε̃

±(k±
x + i ky)

ε̃

−k±
x + i ky

⎞
⎟⎟⎟⎠ , (6)

ψ±
R (x) = C(ε̃,k±

x ) exp(ixk±
x )

⎛
⎜⎜⎜⎝

∓ε̃

∓(k±
x − i ky)

ε̃

k±
x + i ky

⎞
⎟⎟⎟⎠ . (7)

The symbols ψ±
R and ψ±

L denote the solutions moving
to the right and to the left (respectively), with the signs
± referring to the two subbands again. The normalization
factors C(ε̃,k±

x ) are chosen such that the total current I±
L(R) =

evF

∫ W

0 dy(ψ±
L(R))

†(σx 0
0 σx

)
ψ±

L(R) satisfies |I±
L(R)| = evF , imply-

ing C(ε̃,k±
x ) = 1/

√
4Wε̃k±

x .
For instance, we can model the heavily electron-doped

contacts by taking the limit U∞ → −∞, leading to k±
x =√

ε̃ (ε̃ ± t̃) − k2
y � |ε̃|. Also, in such a limit, the wave functions

ψ±
R (6) and ψ±

L (7) take asymptotic forms in which they depend
on ε̃ (and U∞) only via phase factors. In turn, the measurable
quantities become insensitive to the specific value of U∞.

III. TRANSPORT OF DIRAC FERMIONS

In this section we present our main results concerning
the conductance G, the Fano factor F , and the factor R
quantifying the third charge-transfer cumulant for ballistic
graphene bilayer. We employ the standard Landauer-Büttiker
formalism [11], namely

G = G0Tr T , (8)

F = Tr[T (1 − T )]

Tr T
, (9)

R = Tr[T (1 − T )(1 − 2T )]

Tr T
, (10)

where G0 = e2/h is the conductance quantum, T = t† t , and
t is a block-diagonal matrix with each block [of the form

given by Eq. (B3) in Appendix B] corresponding to a single
transmission channel, identified by the valley index (K or
K ′), the transverse momentum ky , and the z component of
spin ms . Details of the mode-matching analysis are given in
Appendix B.

A. Unbiased graphene bilayer

At zero doping and zero bias potential (ε = δ = 0) we
obtain the transmission probabilities

T ±
ky

(0) = cosh−2

[(
ky − 1

2
l−2
B L ± kc

)
L

]
, (11)

where kc = 1
L

ln
[

Lt⊥
2�vF

+
√

1 + ( Lt⊥
2�vF

)2
]

and the pairwise struc-
ture {T +

ky
,T −

ky
} for a given ky can be attributed to the presence of

two graphene layers. [Hereinafter, the limit of heavily-doped
contacts is imposed.] In comparison to the case of bilayer
graphene at the Dirac point at zero magnetic field studied in
Ref. [25], the wave vector is shifted by a factor −l−2

B L/2, which
is proportional to B. Provided the sample width is much larger
than the length (W � L) the boundary effects do not play
an important role and one can choose the periodic boundary
conditions; i.e., ky = 2πn/W with n = 0,±1,±2, . . . . In
such a limit, each of the sums over transverse momenta in
Eqs. (8–10) can be approximated by an integral according to∑

ky

�
W�L

W

∫ ∞

−∞

dky

2π
.

In case the Zeeman splitting can be neglected (g � 0) this leads
to the field-independent pseudodiffusive conductance twice as
large as in the case of a monolayer, i.e.,

G
(2)
diff = 2G

(1)
diff = G0

8

π

W

L
, (12)

where the upper index denotes the number of layers. Also, the
shot-noise power and the third charge-transfer cumulant are
field-independent and quantified by F � 1/3 and R � 1/15,
respectively.

At finite dopings and zero bias potential (ε �= 0, δ = 0),
one can identify three distinct transport regimes: the highly-
conducting (G � G

(2)
diff ), the field suppressed (G 
 G

(2)
diff ), and

the pseudodiffusive (G � G
(2)
diff ), as depicted in Fig. 2. The

highly-conducting regime shows up in relatively weak fields,
when the cyclotron radius rC = �k/|eB| � L/2. Using the
energy dispersion for the lower conductance (or the higher
valence) subband given by Eq. (5), one can rewrite this
condition as

|E| � 1

2

[√
t2
⊥ +

(
�vF L

l2
B

)2

− t⊥

]
. (13)

In stronger fields, the charge transport is suppressed and a
considerable conductance G � G0 emerges only in narrow
energy intervals near LLs, in analogy with corresponding
results for a monolayer reported in Refs. [16] and [22].
For any of these intervals, it is possible to increase B

keeping the doping such that ε2 ±
√

(εt)2 + 1 � 2n − 1 (with
n being the number of LL). Following such a procedure, we
have numerically reproduced the pseudodiffusive transport
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FIG. 2. (Color online) Transport regimes in unbiased graphene
bilayer (Zeeman splitting is not taken into account). Two solid
lines delimit the areas with G/G0 > 8 W/L (red) and G/G0 <

2.4 W/L (yellow), where we set W/L = 20 and L = 48 �vF /t⊥ �
77 nm. Dashed line marks a border of the highly-conducting regime
following from Eq. (13).

characteristics of a monolayer, i.e., G � G
(1)
diff , F � 1/3, and

R � 1/15, for any n ≥ 1. [Notice that we have set g = 0 for
clarity. When the Zeeman term is taken into account (g = 2),
the conductance approaches G

(1)
diff/2 = (2/π )G0W/L per each

direction of spin, whereas the values of F and R are not
altered.]

B. Graphene bilayer with nonzero bias

We focus now on the effects appearing in the presence
of a bias between the layers (δ �= 0). Analyzing normalization
conditions for the wave functions, one can obtain the following
equation for LL energies:

ε2 + δ2 ±
√

(1 − 2 δ ε)2 + t2 (ε2 − δ2) = 2 n − 1, (14)

with n = 0,1, . . . . This supplements the results reported in the
first paper of Ref. [30]. In a peculiar situation when ε = ±δ,
the differential equations untangle and two additional solutions
corresponding to LLs emerge, although it is not possible to
find them in a closed analytic form. Numerical values of LL
energies are presented in the physical units in Fig. 3.

As illustrated in Figs. 3 and 4, the bias field lifts the valley
degeneracy (see Fig. 3), and thus the conductance per spin at
any LL becomes two times smaller than for a monolayer, G �
G

(1)
diff/4 = (1/π )G0W/L (see Fig. 4). The second and third

charge-transfer cumulants are still quantified by F � 1/3 and
R � 1/15 (respectively), see Fig. 5. Also, the electron-hole
symmetry is broken and the two lowest LLs (n = 0,1) exist
for electrons (or holes) only in the K ′ (or K) valley, see Fig. 3.

It is worth stressing here that each LL in biased bi-
layer is associated with a bunch of transmission resonances
corresponding to different kys, similarly as in the simplest
case of unbiased system at the Dirac point described by
Eq. (11). Remarkably, for the energy close to any given LL,

K’K’

KK

0.02

0.0204

0.0208

0.0 0.1 0.2 0.3 0.4 0.5 0.6

−0.02

−0.0204

−0.0208

B [T]

E
 [

t  
]

FIG. 3. (Color online) Magnetic field dependence of LL energies
in graphene bilayer with a potential bias V = 4 × 10−2t⊥ obtained
from Eq. (14). (The Zeeman splitting is not taken into account for
clarity.) Notice that the states corresponding to different valleys (K
or K ′) are exchanged between the conductance and the valence bands
(top and bottom panels).

the transmission resonances merge in the momentum space.
In fact, the wave number shift of −l−2

B L/2 appears to provide
a reasonable approximation of the typical resonance position,
regardless δ = 0 or δ �= 0. For these reasons, in the numerical
discussion presented in the remaining part of the paper,
we suppose the mean position of transmission resonances
associated with a single LL (up to an integer multiplicity of
2π/W ) is given by

kres = 2π

W
nint

(
WL

4πl2
B

)
, (15)

where nint (x) is the nearest integer to x.

IV. EFFECTS OF A FINITE VOLTAGE DIFFERENCE
OR DOPING FLUCTUATIONS

So far, we have discussed transport properties of graphene
bilayer in situations when the doping E is sharply defined
and the standard Landauer-Büttiker formulas for the linear-
response regime [see Eqs. (8)–(10)] can be applied. Such an
approach may not be fully justified at high fields, when the
nonzero transmission appears only at narrow doping intervals
centered around LLs. For instance, the experimental results
may deviate from our theoretical predictions even at zero
temperature due to a finite source-drain potential difference
Vsd , as we may have (at sufficiently high B) eVsd � W0,
with W0 being the typical transmission resonance width. We
also argue that similar effects originate from slow doping
fluctuations, which may occur in nanosystems when long-time
measurements of the higher charge-transfer cumulants are
performed.
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FIG. 4. (Color online) Hierarchy of Landau levels and pseudod-
iffusive conductance in biased graphene bilayer. (a), (b) Magnetocon-
ductance for the field-dependent doping obtained by solving Eq. (14)
for n = 2 and ms = − 1

2 . Two panels show the contributions from
the transmission channels corresponding to ms = − 1

2 and different
valleys [panel (a)] and the conductance summed over the valleys for
different directions of spin [panel (b)]. Notice the suppression of the
contribution from K valley and ms = + 1

2 . (c) Magnetoconductance
for the doping fixed at E = 0.2 t⊥. Inset shows the separation of
resonances corresponding to K ′ and K valleys for LL with n = 3 and
ms = − 1

2 . We took V = 2 × 10−4 t⊥ and g = 2. Remaining system
parameters are the same as in Fig. 2.

We now extend our analysis in order to describe the
above-mentioned effects of finite Vsd (or fluctuating dop-
ing) in a systematic manner. We start from presenting an
empirical model describing the dependence transmission
probabilities Tky

(E) on ky and E (see Sec. IV A). Next,
theoretical predictions for F and R as functions of Vsd ,
arising from our model, are confronted with the corresponding
results of computational experiments (see Sec. IV B). The
evolution of statistical distribution of transmission eigen-
values ρ(T ) with increasing Vsd is also briefly discussed
(in Sec. IV C).

1 31 3

1 151 15

6 8 10 12 14 16 18
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0.4
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0.8

1.0

B T

,

FIG. 5. (Color online) Shot-noise power and the third charge-
transfer cumulant, quantified by the Fano factor F (9) and the
R-factor (10), as functions of the magnetic field B. Physical
parameters are same as used in Fig. 4(c). Dashed horizontal lines
mark the pseudodiffusive values F = 1/3 and R = 1/15.

A. Charge-transfer cumulants at finite Vsd

In the so-called shot-noise limit eVsd � kBT , electric
charge Q passing a nanoscale graphene device during the
time �t is a random variable, a distribution of which can
be expressed via the characteristic function

�(χ ) = 〈exp(iχQ/e)〉 (16)

(with 〈X〉 denoting the expectation value of X), which is given
by the Levitov formula [11]

ln �(χ ) = (�t/h) ×
∫ E0+eVsd/2

E0−eVsd/2
dE′

× ln{det[I + (eiχ −1)T (E′)]}, (17)

where I is the identity matrix, E0 is mean doping in the sample
area, and we have assumed Vsd > 0 for simplicity. The average
charge 〈Q〉, as well as higher charge-transfer cumulants
〈〈Qm〉〉 ≡ 〈 (Q − 〈Q〉)m 〉 may be obtained by subsequent
differentiation of ln �(χ ) with respect to iχ at χ = 0. In
particular, the conductance

G(Vsd ) = 〈Q〉
Vsd�t

= e

Vsd�t

∂ ln �

∂(iχ )

∣∣∣∣
χ=0

= G0

eVsd

∫ E0+eVsd/2

E0−eVsd/2
dE′ Tr T (E′)

≡ G0〈Tr T 〉|E−E0|≤eVsd/2, (18)

where we have identified the value of Tr T (E) averaged over
the energy interval |E − E0| ≤ eVsd/2. Equation (8) gets
restored for Vsd → 0. Analogously,

F(Vsd ) = 〈〈Q2〉〉
〈〈Q2〉〉Poisson

≡ 〈Tr [T (I − T )]〉|E−E0|≤eVsd/2

〈Tr T 〉|E−E0|≤eVsd/2
(19)
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and

R(Vsd ) = 〈〈Q3〉〉
〈〈Q3〉〉Poisson

≡ 〈Tr [T (I − T )(I − 2T )]〉|E−E0|≤eVsd/2

〈Tr T 〉|E−E0|≤eVsd/2
, (20)

where 〈〈Qm〉〉Poisson ≡ em〈Q〉 denotes the value of 〈〈Qm〉〉 for
the Poissonian limit, at which all transmission probabilities
Tky

(E) 
 1. We notice that Eqs. (9) and (10) are restored for
Vsd → 0.

The structure of last expressions in Eqs. (18)–(20) allows
us to expect that the results presented in this section are also
relevant for a slightly different physical situation, namely,
when eVsd 
 W0, but the doping slowly fluctuates during
a measurement procedure, covering uniformly the energy
interval

|E − E0| ≤ W0�/2, (21)

with � being the dimensionless scaling factor. For the
sake of clarity, charge-transfer characteristics are hereinafter
discussed as functions of �, and the theoretical predictions
for the finite-voltage situation can be immediately obtained by
setting � ≡ eVsd/W0.

Our numerical results for Tky
(E) in case the doping E is

close to LL can be summarized as follows:
(i) The transmission probability depends on the wave vector

ky in a similar manner as for a system at zero magnetic
field, i.e., Tky

(E) ∝ cosh−2[A(ky − kres)L], where A is the
momentum-independent empirical parameter close to unity,
and kres is given by Eq. (15).

(ii) The dependence of Tky
(E) on the doping E can be ra-

tionalized with the Breit-Wigner distribution, characterized by
W(ky), the momentum-dependent full width at half maximum
(FWHM).

Subsequently,

Tky
(E) � cosh−2[A(ky − kres)L]

1 + [2(E − E0)/W(ky)]2
, (22)

where we have further assumed that the mean doping E0

corresponds to the transmission maximum. Substituting the
above to Eqs. [19 and 20] and taking W(ky) � W0 at the first
step, we obtain the approximating formulas for F and R in
the W � L limit

F(�) =2

3
− �

3(1+�2) arctan �
, (23)

R(�) = 2

5
− �

5(1+�2) arctan �

[
3 − 4

3(1 + �2)

]
. (24)

We observe that F(�) (23) reaches its minimum at � =
0, restoring the linear-response value F(0) = 1/3. To the
contrary, the minimum of R(�) corresponds to a nonzero
voltage difference (or the amplitude of doping fluctuations),
namely �min = 0.34 and R(�min) = 0.064, which is slightly
lower than the linear-response value R(0) = 1/15. A striking
consequence of Eqs. (23) and (24) is that the second and
third charge-transfer cumulants are expected to be quantum
limited also for � → ∞, with F and R approaching the values

close to F(∞) = 2/3 and R(∞) = 2/5, respectively, which
are still significantly smaller than for the Poissonian process
(FPoisson = RPoisson = 1).

B. Numerical results

Instead of employing the empirical expression for Tky
(E)

(22), one can calculate the averages in Eqs. (19) and (20)
numerically, for the ensemble of actual transmission matrices
T (E) obtained by repeating the mode matching (as presented
in Appendix B) for different values of E sampled over a desired
energy interval [38]. Such a computational experiment brought
us to the conclusion that F(�) (23) and R(�) (24) provide
reasonable approximations of the actual F and R values for
� � 2 only.

Nevertheless, we find both the approximations are substan-
tially improved when taking

W(ky) � W0 + α

[
W (ky − kres)

2π

]2

, (25)

with the additional empirical parameter α. A comparison
of W(ky) given by Eq. (25) with the values of FWHW
obtained numerically is presented in Fig. 6. Next, in Fig. 7,
we compare the values of F and R obtained by means of
the mode-matching analysis [solid lines], with these following
from the empirical model for Tky

(E) constituted by Eqs. (22)
and (25) [dashed lines]. F(�) (23) and R(�) (24) are also
shown in Fig. 7 [dotted lines]. Our results show that the model
for Tky

(E) as presented, generically reproduces the actual
values of F and R within 1% accuracy, provided � � 20 and
the position in the doping-field plane (E0,B) is chosen such
that W0 � 10−3 t⊥. Moreover, our prediction that the second
and third charge-transfer cumulant are quantum limited for
� → ∞ is now further supported, and the limiting values of
F and R can be approximated by

F∞ � 0.7 and R∞ � 0.5. (26)

C. Transmission statistics

For the sake of completeness, we discuss now the evolution
of statistical distribution of transmission eigenvalues ρ(T ) with
the increasing voltage difference (or the amplitude of doping
fluctuations), quantified by the factor � again [see Eq. (21)].
For the linear-response regime (� → 0) such a distribution
reads [12,13]

ρ
(1,2)
diff (T ) = 2G

(1,2)
diff

πσ0

1

T
√

1 − T
, (27)

where G
(1,2)
diff are given by Eq. (12) for graphene or its bilayer

in the pseudodiffusive limit W 
 L. We further notice that the
distribution ρ

(1,2)
diff (T ) (27) is normalized such that∫ 1

0
dT ρ

(1,2)
diff (T )T = G

(1,2)
diff . (28)

In our numerical discussion, the sample aspect ratio is
fixed at the large but finite value W/L = 20. (Such an
approach is partly motivated by the existing experimental
studies of pseudodiffusive graphene, see Refs. [17–19].) For
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FIG. 6. (Color online) Transmission resonances for the second
LL at B = 5 T with the remaining parameters the same as in Fig. 2.
(a) The resonance width W as a function of ky . Data points are
derived from the mode matching analysis; solid line depicts W(ky)
approximated by Eq. (25) with the best-fitted parameters α � 1.27 ×
10−5t⊥ and W0 � 4.2 × 10−4t⊥. [The inset shows the same data as a
function of (ky − kres)2.] (b) Transmission probabilities for different
ky and the doping fixed at E = E0 = 0.060 72 t⊥ � 0.024 eV. Solid
(or dashed) line corresponds to Eq. (22) with the best-fitted A � 0.80
(or the fixed A = 1). (c) Transmission probability as a function of the
doping for different ky : Solid, dashed, and dash-dotted line depict the
values obtained from Eq. (22) for ky −kres = 0, 4π/W , and −8π/W

(with A � 0.80 for all three cases).

this reason, the total number of distinct nonzero transmission
eigenvalues Tky

(E) in the energy interval (21) is relatively
small, particularly for � � 1. In effect, the corresponding
histograms depicting ρ(T ) are sensitive to the choice of a bin
size. To overcome this difficulty, we introduce the so-called
partial conductance

G̃(T )/G0 =
∫ T

0
dT ′ρ(T ′)T ′

≡
∫ T

0
dT ′〈Tr [T δξ→0(T − T ′ I)]〉|E−E0|≤W0�/2,

(29)

where δξ→0(M) is an analytic representation of the Dirac
delta function with a matrix argument M. [For instance, G̃(1)
reproduces the conductance as given by Eq. (18).] In the

0 2 4 6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Δ

,

FIG. 7. (Color online) F and R as functions of the voltage
difference (or the amplitude of doping fluctuations), quantified by
the scaling factor � defined via Eq. (21). The values of E0 and B

are the same as in Fig. 6(b), the remaining parameters are the same
as in Fig. 2. Solid lines depict the values obtained by calculating
the averages in Eqs. [(19) and (20)] numerically, for transmission
matrices derived via the mode matching, whereas dashed lines
correspond to the empirical model constituted by Eqs. (22) and (25)
with A = 0.80, W0 = 4.2 × 10−4 t⊥, and α = 1.27 × 10−5 t⊥. The
approximating values of F(�) (23) and R(�) (24) are also shown
(with dotted lines).

pseudodiffusive limit, we have

G̃
(1,2)
diff (T ) = G0

∫ T

0
dT ′ρ(1,2)

diff (T ′)T ′

= G
(1,2)
diff (1 − √

1 − T ). (30)

In Fig. 8, we compare G̃(T ) obtained from Eq. (29)
utilizing three different numerical approaches, in analogy
to the earlier presentation of Fig. 7. First, the average in
Eq. (29) is calculated for actual transmission matrices derived
via the mode matching [solid lines]. Next, the empirical
model constituted by Eqs. (22) and (25) [dotted lines] and its
simplified version obtained by setting W(ky) � W0 [dashed
lines] are employed. The values of G

(2)
diff (T ) [Eq. (30)] are

also shown in Fig. 8 [dot-dashed lines]. Our results show that
the actual distribution of transmission eigenvalues ρ(T ) may
follow the pseudodiffusive distribution ρ

(2)
diff (T ) (27) only if

the doping energy is adjusted rather closely to LL (� = 0.1).
When doping fluctuations get larger (� = 1), a significant
deviation of ρ(T ) from ρ

(2)
diff (T ) is observed, due to the

enhanced contribution of low transmission eigenvalues. In
both cases, the agreement with the empirical model presented
earlier [see Eqs. (22) and (25)] is excellent.

V. INFLUENCE OF INDIRECT INTERLAYER HOPPING
INTEGRALS

Theoretical calculations based on the Kubo formula [39]
show that the minimal conductivity of ballistic graphene
bilayer may be unstable with respect to indirect interlayer
hopping integrals [40], which are neglected in the Hamiltonian
(1). At zero field and zero bias situation (B = V = 0), the
minimal conductivity is predicted to be (24/π ) e2/h = 6σ0

(i.e, six times larger than the conductivity of a monolayer) for
arbitrarily small indirect interlayer hoppings. In the absence of
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FIG. 8. (Color online) Partial conductance G̃(T ) [Eq. (29)] for
the two values of � [Eq. (21)] [specified for each panel] and the
physical parameters same as in Fig. 7. Solid lines mark the values
obtained by calculating the average in Eq. (29) numerically for
transmission matrices derived via the mode matching. Dotted lines
correspond to the empirical model constituted by Eqs. (22) and
(25) with A = 0.80, W0 = 4.2 × 10−4 t⊥, and α = 1.27 × 10−5 t⊥,
whereas dashed lines present the values obtained by setting A = 1,
α = 0, and leaving W0 same as for dotted lines. The pseudodiffusive
values of G

(2)
diff (T ) [Eq. (30)] are also shown (with dot-dashed lines).

such hoppings, the Kubo conductivity drops back to 2σ0, what
is attributed to the disappearance of additional Fermi surface
pockets at low energies [41,42]. (We notice here, that the effect
has no high-frequency analog, which beautifully manifests
itself by direct scaling of visible light absorption with the
number of layers, see Ref. [8].) The experimental value of
σxx � 5σ0 [43] is close to the prediction of Ref. [39], with a
small deviation which may be related to several factors, such as
a finite system size, the presence of disorder, electron-phonon
coupling, or electron-electron interactions, not taken into
account by existing theory in a rigorous manner. Additionally,
the values following from the Kubo formula are known to be
sensitive to the order in which certain limits are taken [44].
For these reasons, an independent calculation employing the
Landauer-Büttiker formalism for a ballistic system of a given
length L and a width W , allowing one at least to identify the
possible effects of a finite system size, is desired.

The Hamiltonian for K valley [Eq. (1)] is now replaced by

H ′ =

⎛
⎜⎜⎜⎝

U1(x) πx +iπy t⊥ 0

πx −iπy U1(x) 0 π ′
x +iπ ′

y

t⊥ 0 U2(x) πx −iπy

0 π ′
x −iπ ′

y πx +iπy U2(x)

⎞
⎟⎟⎟⎠ ,

(31)

G=4G0 WL −1 −1G=4G0 WL −1π−1

t =0.32 eV

t =0.16 eV

t =0 eV
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FIG. 9. (Color online) Magnetoconductance of unbiased
graphene bilayer (per one direction of spin) for different values of
the next-nearest neighbor interlayer hopping t ′. The field-dependent
doping is adjusted to follow the transmission maxima for n = 0
(top panel) and n = 2 (bottom panel) Landau levels. The system
parameters are the same as used in Fig. 2.

where π ′
j = (t ′/t0) πj with j = 1,2, t0 = 2

3

√
3�vF /a is the

nearest neighbor hopping in a single layer defined via the Fermi
velocity and the lattice spacing a = 0.246 nm, t ′ is the next-
nearest-neighbor interlayer hopping [45], and the remaining
symbols are the same as in Eq. (1). Next, the Dirac equation
H ′ψ = Eψ is solved numerically for the sample area 0 < x <

L, separately for each value of the transverse wave number
ky = 2πn/W (with n = 0,±1,±2, . . . ) following from the
periodic boundary conditions. The mode matching analysis
is then carried out as reported in Appendix B. Although the
wave functions for t ′ �= 0 can still be obtained analytically
in some particular situations (and will be given elsewhere),
the compact-form expressions for transmission eigenvalues
Tky

(E), such as given by Eq. (11), are now unavailable even
for the simplest E = 0 and B = 0 case. The numerical results
are presented in Figs. 9 and 10, where we have further limited
our discussion to the case of a zero bias between the layers
(V = 0) and to the limit of wide samples (W � L).

In Fig. 9, we demonstrate (as a proof of principle) that
indirect interlayer hoppings play no role at high magnetic
fields, for which lB 
 L, and the transmission resonances
via individual LLs are well defined. In such a limit, the
conductance per one direction of spin approaches the value
of G

(1)
diff = (4/π ) G0W/L for the Dirac point (see top panel)

or G
(1)
diff/2 for higher LLs (see bottom panel for n = 2 case)

consistent with the results reported in Sec. III A for the
t ′ = 0 case. In the opposite limit of B → 0, the zero-energy
conductance is enhanced by a factor of 1.6 for t ′ = 0.32 eV
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FIG. 10. (Color online) Minimal conductivity of unbiased bi-
layer as a function of the sample length L for W/L = 20 (open
symbols) and W/L = 50 (solid symbols). The value of t ′ is specified
for each data set. Lines show the best fitted power-law relations (32)
with parameters given by Eq. (33) [solid lines] and Eq. (34) [dashed
lines]. Top panel shows the raw data. In the bottom panel the data
sets are shifted horizontally to demonstrate the universal behavior for
L/l� � 1.

[or 1.3 for t ′ = 0.16 eV] above the pseudodiffusive value,
which is significantly smaller than a t ′-independent factor 3
predicted by Ref. [39]. The pseudodiffusive values of F and
R are unaffected by t ′. (We further notice that the numerical
results presented in Fig. 9 correspond to W/L = 20 and
L = 48 �vF /t⊥ � 77 nm.)

To further understand the nature of this clear discrepancy
between the results obtained employing the Kubo formula and
the Landauer-Büttiker formalism, we analyze numerically the
ballistic conductivity at E = B = 0 as a function of L (see
Fig. 10). We find that the conductivity is no longer universal
for t ′ > 0, but slowly grows with L, and can be approximated
(for large L) within a power law relation

σ (L) = σ∞

[
1 −

(
l�

L

)γ ]
. (32)

Least-square fitted parameters in Eq. (32) are

σ∞ = 6.05σ0, l� = 2.5 nm, γ = 0.23 for t ′ = 0.32 eV,

(33)

and

σ∞ = 6.0 σ0, l� = 6.7 nm, γ = 0.23 for t ′ =0.16 eV,

(34)

with the standard deviations not exceeding 1% in all cases. We
observe that only the parameter l� significantly varies with t ′.
Replotting the conductivity as a function of the dimensionless
variable L/l� (see bottom panel in Fig. 10) shows the universal
nature of the length dependence of the conductivity.

Although the Landauer-Büttiker conductivity approaches
the value of σ∞ � 6σ0 for L → ∞, restoring the results of
Ref. [39], the values of σ (L) following from Eq. (32) for
typical lengths of ballistic samples used in the experiments
are still significantly smaller that 6σ0. In particular, using the
parameters given by Eqs. [(33) and (34)] for an extrapolation,
one gets σ (L = 1 μm) = 4.1 − 4.6 σ0 and σ (L = 10 μm) =
4.9 − 5.2 σ0, where the upper (lower) limit corresponds to t ′ =
0.32 eV (t ′ = 0.16 eV). Therefore, the fact that experimental
values of the minimal conductivity [43] are noticeably smaller
than the prediction of Ref. [39] may be predominantly caused
by finite system sizes, with only a secondary role played by
the disorder or many-body effects.

VI. CONCLUSIONS

We have calculated the conductance G, the Fano factor
F , and the factor R quantifying the third charge-transfer
cumulant, for a ballistic strip in graphene bilayer, in the
presence of bias between the layers and strong magnetic
fields. Our results show that the so-called pseudodiffusive
charge-transport regime appears generically for a sample with
large aspect ratio (W � L) not only at the Dirac point (DP),
but also in the vicinity of any Landau level (LL). However,
the conductivity σ = GL/W in the pseudodiffusive regime
is not always equal to 2σ0 [with σ0 = (4/π ) e2/h being the
conductivity of a monolayer] as predicted for a zero-field and
zero-bias situation by Snyman and Beenakker [25], but takes
quantized values of sσ0/2, with the prefactor s = 1, 2, 4, or 8,
depending whether each of spin, valley, and layer degeneracies
is present or absent (see Table I).

Other charge-transfer characteristics studied are insensitive
to the splittings of degeneracies, leading to F � 1/3 and R �
1/15 in any case the pseudodiffusive regime is approached.
This observation is further supported with statistical analysis
of the distribution of transmission eigenvalues, which follows
the corresponding distribution for a diffusive wire, provided
the sample doping is kept in a vicinity of DP or LL.

TABLE I. The degeneracy prefactors occurring in the expression
for pseudodiffusive conductance G = se2/(πh) × W/L for graphene
or its bilayer in different physical situations. Indexes σ , v, and l marks
the degeneracies associated with spin, valley, and layer degrees of
freedom (respectively).

Degeneracy, B �= 0

s B = 0 0th LL Other LLs

Monolayer 4(σ,v) 2(v) 2(v)

Bilayer, V = 0 8(σ,v,l)
a 4(v,l) 2(v)

Bilayer, V �= 0 4(σ,v) 1 1

aThis particular value applies in the absence of indirect interlayer
hopping (t ′ = 0) only.
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Additionally, the analysis is extended beyond the stan-
dard linear-response regime, i.e., we considered the effects
of a finite voltage difference or slow doping fluctuations.
Numerical analysis of transmission matrices obtained via the
mode matching for the Dirac equation at different dopings
allows us to propose an empirical model for transmission
probabilities, which is then used to rationalize the dependence
of charge-transfer characteristics on the voltage difference
(or the amplitude of doping fluctuations). Probably, the most
remarkable feature of these results is that both the shot-noise
power and the third charge-transfer cumulant are predicted to
be quantum limited also for large doping fluctuations, leading
to F and R approaching the limiting values of F∞ � 0.5 and
R∞ � 0.7.

Finally, we have discussed the influence of indirect in-
terlayer hoppings (quantified by t ′) on the conductance and
other charge-transfer characteristics. The results show that
such hoppings may only affect the conductance at zero or weak
magnetic fields. At stronger fields, when LLs are formed, the
behavior earlier identified for t ′ = 0 is restored. Surprisingly,
for t ′ �= 0 the zero-field zero-bias conductivity at the Dirac
point is neither equal to 2σ0 [25] nor 6σ0 [39], but grows
monotonically with the system length, taking the values from
an interval 2σ0 < σ (L) < 6σ0. A very slow convergence to
the upper conductivity limit is observed for large L and
can be rationalized as σ (L) � 6σ0[1 − (l�/L)−γ ], with a t ′-
independent exponent γ � 0.23. The characteristic length l� is
of the order of nanometers and strongly depends on t ′, offering
a possibility to determine the effective value of t ′ solely by the
minimal conductivity measurement at fixed L 
 W .
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APPENDIX A: WAVE FUNCTIONS

In this Appendix we present the wave functions of a charge
carrier in a carbon bilayer at the Dirac point as well as at finite
dopings, in the presence of a uniform magnetic field.

1. The Dirac point (ε = δ = 0)

A general solution of Eq. (3) for ε = δ = 0 has the form of a
linear combination of four independent spinors with arbitrary
coefficients C1, . . . ,C4, namely⎛

⎜⎜⎜⎝
φA1 (x)

φB1 (x)

φB2 (x)

φA2 (x)

⎞
⎟⎟⎟⎠ = C1

⎛
⎜⎜⎜⎝

fB,ky
(x)

0

0

−t⊥xfB,ky
(x)

⎞
⎟⎟⎟⎠ + C2

⎛
⎜⎜⎜⎝

0

f̄B,ky
(x)

0

0

⎞
⎟⎟⎟⎠

+C3

⎛
⎜⎜⎜⎝

0

−t⊥xf̄B,ky
(x)

f̄B,ky
(x)

0

⎞
⎟⎟⎟⎠ + C4

⎛
⎜⎜⎜⎝

0

0

0

fB,ky
(x)

⎞
⎟⎟⎟⎠ ,

(A1)

where fB,ky
(x) = exp(l−2

B x2/2 − x ky) and f̄B,ky
(x) =

1/fB,ky
(x).

2. Finite dopings (ε �= 0 or δ �= 0)

In the case of finite dopings (ε �= 0 or δ �= 0) we have two
pairs of solutions, hereinafter labeled as φ±

1,α and φ±
2,α (with

the signs ± related to the two subbands), which are given by

φ±
1,A1

(ε,δ; ξ ) = e−ξ 2/4
1F1

(
1 − 2ζ±

4
;

1

2
;

ξ 2

2

)

φ±
2,A1

(ε,δ; ξ ) = ξ e−ξ 2/4
1F1

(
3 − 2ζ±

4
;

3

2
;

ξ 2

2

)
,

φ±
1,B1

(ε,δ; ξ ) = (1 + 2 ζ±)[(δ + ε)
√

2]−1 ξ e−ξ 2/4
1F1

(
1 − 2ζ±

4
;

3

2
;

ξ 2

2

)
,

φ±
2,B1

(ε,δ; ξ ) = [(δ + ε) 3
√

2]−1 e−ξ 2/4

{
(3 + 2 ζ±) ξ 2

1F1

(
3 − 2ζ±

4
;

5

2
;

ξ 2

2

)
− 6 1F1

(
3 − 2ζ±

4
;

3

2
;

ξ 2

2

)}
,

φ±
1,B2

(ε,δ; ξ ) = (δ + ε)−1 α± e−ξ 2/4
1F1

(
1 − 2ζ±

4
;

1

2
;

ξ 2

2

)
,

φ±
2,B2

(ε,δ; ξ ) = (δ + ε)−1 α± ξ e−ξ 2/4
1F1

(
3 − 2ζ±

4
;

3

2
;

ξ 2

2

)
,

φ±
1,A2

(ε,δ; ξ ) = [(1 − 2 ζ±) α±/
√

2] ξ e−ξ 2/4
1F1

(
5 − 2ζ±

4
;

3

2
;

ξ 2

2

)
,

φ±
2,A2

(ε,δ; ξ ) = α±[(δ2 − ε2)3
√

2]−1 e−ξ 2/4

{
6 (1 + ξ 2) 1F1

(
3 − 2ζ±

4
;

3

2
;

ξ 2

2

)
− ξ 2 (3 + 2 ζ±) 1F1

(
3 − 2ζ±

4
;

5

2
;

ξ 2

2

)}
,

(A2)
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where ξ = √
2(l−1

B x + lB ky), α± = [(δ + ε)2 − 1 − 2 ζ±]/t , ζ± = 1
2 [ε2 + δ2 ±

√
(1 − 2δε)2 + t2(ε2 − δ2)],

pFq(a1, . . . ,ap; b1, . . . ,bq ; z) denotes the generalized hypergeometric function [46], and the remaining symbols are the
same as in Eq. (3) in the main text.

APPENDIX B: TRANSMISSION EIGENVALUES

Using wave functions of the form ψ = (φA1,iφB1 ,φB2 ,iφA2 )T , one can write the charge-conservation conditions for a strip of
width W and length L (see Fig. 1) in graphene bilayer as follows

ψ±
R,I(x0) + r±

p ψ+
L,I(x0) + r±

n ψ−
L,I(x0) = ψII(x0), t±p ψ+

R,III(x1) + t±n ψ−
R,III(x1) = ψII(x1), (B1)

where we set x0 = 0, x1 = L. The lower indexes R and L refer to the solutions moving to the right or left (respectively), whereas
the indexes I, II, and III refer to left contact, sample, and right contact. The upper indexes ± refer to the two subbands, and r±

p , r±
l

(t±p , t±l ) denote the corresponding reflection (transmission) amplitudes. We further suppose that the functions ψ±
R , ψ±

L in regions
I and III are normalized to carry a unit current.

Taking the limit of |U∞| → ∞ [i.e., choosing the functions ψ±
R , ψ±

L for regions I and III as given by Eqs. (6) and (7) in the
main text] we obtain the following system of linear equations⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 φ+
1,A1

(ε,δ; ξ0) φ−
1,A1

(ε,δ; ξ0) φ+
2,A1

(ε,δ; ξ0) φ−
2,A1

(ε,δ; ξ0) 0 0

−1 1 iφ+
1,B1

(ε,δ; ξ0) iφ−
1,B1

(ε,δ; ξ0) iφ+
2,B1

(ε,δ; ξ0) iφ−
2,B1

(ε,δ; ξ0) 0 0

−1 −1 φ+
1,B2

(ε,δ; ξ0) φ−
1,B2

(ε,δ; ξ0) φ+
2,B2

(ε,δ; ξ0) φ−
2,B2

(ε,δ; ξ0) 0 0

1 1 iφ+
1,A2

(ε,δ; ξ0) iφ−
1,A2

(ε,δ; ξ0) iφ+
2,A2

(ε,δ; ξ0) iφ−
2,A2

(ε,δ; ξ0) 0 0

0 0 φ+
1,A1

(ε,δ; ξ1) φ−
1,A1

(ε,δ; ξ1) φ+
2,A1

(ε,δ; ξ1) φ−
2,A1

(ε,δ; ξ1) 1 −1

0 0 iφ+
1,B1

(ε,δ; ξ1) iφ−
1,B1

(ε,δ; ξ1) iφ+
2,B1

(ε,δ; ξ1) iφ−
2,B1

(ε,δ; ξ1) 1 −1

0 0 φ+
1,B2

(ε,δ; ξ1) φ−
1,B2

(ε,δ; ξ1) φ+
2,B2

(ε,δ; ξ1) φ−
2,B2

(ε,δ; ξ1) −1 −1

0 0 iφ+
1,A2

(ε,δ; ξ1) iφ−
1,A2

(ε,δ; ξ1) iφ+
2,A2

(ε,δ; ξ1) iφ−
2,A2

(ε,δ; ξ1) −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r±
p

r±
n

C±
1

C±
2

C±
3

C±
4

t±p
t±n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∓1

∓1

1

1

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B2)

where ξ0 = √
2 lB ky , ξ1 = √

2(l−1
B L + lB ky), and the remaining symbols are the same as used in Appendix A. In turn, the

transmission matrix for the K valley and the transverse momentum fixed at ky is of the form:

tK,ky
(ε,δ) =

(
t+p t+n
t−p t−n

)
. (B3)

[Notice that the dependence on the z component of spin ms is incorporated in ε, see Eq. (3) in the main text.] The
transmission matrix for the K ′ valley can be obtained from an analogous procedure, starting from the wave function
ψ ′ = (φA1 , − iφB1 ,φB2 ,−iφA2 )T , with the components given by Eq. (A2) after the substitution δ → − δ.
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1. Introduction

Conductance quantization was observed a quarter-
-century ago in heterostructures with two-dimensional
electron gas (2DEG) [1]. The emergence of quantiza-
tion steps as multiples of 2e2/h was swiftly associated to
�nite number of transmission modes. Further theoret-
ical investigation revealed the generic conditions under
which conductance quantization appears in systems with
constrictions [2, 3]. It is predicted that conductance of
the Corbino disks in 2DEG is also quantized, yet in odd-
integer multiples of 2e2/h [4]. Unfortunately, the exper-
imental con�rmation of this result is missing so far.
In the case of graphene, theoretical calculations predict

the emergence of conductance quantization in multiples
of 4e2/h for nanoribbons (GNRs) as well as for systems
with modulated width [5�8]. Experimental demonstra-
tion of these phenomena is challenging, mainly due to
the role of disorder and boundary e�ects [9]. These issues
encourage us to study other systems exhibiting conduc-
tance quantization which may be more resistant to the
above-mentioned factors.
Transport properties of the full Corbino disk in

graphene were discussed by numerous authors [10�12].
In contrast to a similar disk in 2DEG [4], conductance of
the graphene-based system is not quantized. In the case
of �nite disk sections, systems with wide opening angles
θ (see Fig. 1) should exhibit a behavior similar to com-
plete disks as currents at the edges play a minor role. On
the other hand, narrow section strongly resemble GNR,
thus one could raise a question: At which opening angle
the quantization will emerge? In this paper we show that
conductance steps may appear for disk sections, provided
that the ratio of outer to inner radius R2/R1 is large, and
the opening angle is narrow.
The paper is organized as follows. In Sect. 2 we discuss

solutions of the Dirac equation for a system with cylin-
drical symmetry. Following Berry and Mondragon [13],
we then impose the so-called in�nite-mass boundary con-
ditions [14]. In Sect. 3 we discuss the exact results

of mode-matching for various radii ratios and opening
angles. In Sect. 4, the semiclassical approximation for
transmission probability is used to determine the condi-
tions for conductance quantization in mesoscopic Dirac
systems. For such systems, the step width is ∝ √n
(where n is the channel index), thus steps corresponding
to large n are smeared out. Also in Sect. 4, the conduc-
tance spectra a disk section GNR are compared.

2. Model

Our system is a section of the Corbino disk in graphene
characterized by the opening angle θ and the inner
(outer) radius R1 (R2) (see Fig. 1). The leads are
modelled with heavily-doped graphene areas [5]. Mode-
matching analysis (see Appendices A and B) gives
the transmission amplitudes for quasiparticles passing
through the sample area. The conductance is obtained by
summing the transmission probabilities over the modes
in the Landauer�Büttiker formula

G = G0

∑

j

|tj |2 , (1)

with G0 = 4e2/h due to spin and valley degeneracies.

✓

R1

R2

Fig. 1. A section of the Corbino disk in graphene at-
tached to two metal contacts (shaded areas). Tick lines
at the system edges depict in�nite-mass boundary con-
ditions. The opening angle θ = π/3 and the radii ratio
R2/R1 = 2 are set for an illustration only.
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As the wave functions should in general possess cylin-
drical symmetry, we start from the analysis of the full
disk. The Dirac equation in polar coordinates (r, φ) can
be written as


ε e− iφ

(
i∂r+

∂φ

r

)

e iφ

(
i∂r−

∂φ

r

)
ε




(
ψA
ψB

)
=0,(2)

where ε = (E − V ) /~vF, vF ≈ c/300 is the Fermi veloc-
ity, and the electrostatic potential energy is

V (r) =

{
−V∞ if r < R1 or r > R2,

0 if R1 < r < R2.
(3)

Since the Hamiltonian commutes with the total angular
momentum operator Jz = − i~∂φ+~σz/2, the wave func-
tion reads

ψj (r, φ)=exp (iφ (j − 1/2))

(
ϕA (r)

exp (iφ)ϕB (r)

)
, (4)

where j = ± 1
2 ,± 3

2 , . . . is the angular momentum quan-
tum number. Substituting ψj into Eq. (2) we can derive

ϕj (r) ≡
(
ϕA (r)

ϕB (r)

)
=

(
H

(ζ)
j−1/2 (εr)

iH
(ζ)
j+1/2 (εr)

)
, (5)

where H
(ζ)
ν , with ζ = 2 (1) for the incoming (out-

going) waves, is the Hankel function of the second
(�rst) kind [15]. The momentum-independent radial cur-

rent density is (j)r = −evFψ†j (σx cosφ+ σy sinφ)ψj =

4λζevF/(πεr), with λζ = (−1)ζ . In the high-doping limit
ϕj (r) (5) simpli�es to

ϕj (r)
|ε|→∞'

√
2

πεr
exp (− iλζ (εr − πj/2))

(
1

−λζ

)
.(6)

Now, the sample edges are introduced to our analy-
sis via the in�nite-mass boundary conditions. Following
Ref. [13], we demand that the angular current vanishes at

the sample edges; i.e., (j)n = n̂·
[
ψ†j (x̂σx + ŷσy)ψj

]
= 0,

where n̂ denotes the unit vector normal to the boundary.
This leads to

ψB/ψA = i exp(γ), (7)

where γ = 0 for φ = π/2 or γ = θ + π for φ = θ + π/2
(without loss of generality we set the boarders at φ = π/2
and φ = θ+ π/2). In particular, for θ = π/(2k+ 1) with
k = 0, 1, 2, . . . , the solutions can be found as linear com-
binations of the form ajψj+bjψ−j and are given explicitly
in Appendix A. Due to Eq. (7), the values of j contribut-
ing to the sum in Eq. (1) are further restricted to

j = −π (2n− 1)

2θ
, n = 1, 2, 3 . . . (8)

3. Conductance quantization

The numerical results for disk sections with di�er-
ent geometric parameters are presented in Fig. 2. For
small radii ratios R2/R1 . 2 and large opening angles

θ & π/3, the approximating formula for the pseudodi�u-
sive limit [10]

Gdiff ≈
4e2

πh

θ

ln(R2/R1)
(9)

reproduces the exact values obtained via Eq. (1) for ε→
0. In other cases, the conductance near the Dirac point is
highly suppressed due to the limited number of transmis-
sion modes. At higher dopings and for R2/R1 . 10, we
notice the Fabry�Perot oscillations arising from strong
interference between the incoming and outgoing waves in
the sample area. The conductance quantization is clearly
visible for θ . π/3. Decreasing θ, one can systemat-
ically increase the number of sharp conductance steps
(see Fig. 2a).

ππ
π/3π/3

π/5π/5
π/7π/7

π/9π/9
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Fig. 2. (a) Conductance of the disk section as a func-
tion of doping for the opening angle varying from θ = π
down to π/9 (speci�ed for each curve) and the radii ratio
�xed at R2/R1 = 10. (b) Same as (a) but for θ = π/15
and two values of R2/R1. Notice the suppression of the
Fabry�Perot oscillations for R2/R1 = 50.

To describe the above-mentioned e�ect in a quantita-
tive manner, we plotted (in Fig. 3) the squared step width
∆µ2 of several consecutive conductance steps (1 6 n 6 7)
for R2/R1 = 10 and di�erent angles θ. The n-th step
width is quanti�ed by the inverse slope of the straight
line least-square �tted to the exact conductance-doping
dependence; i.e.,

G/G0 ≈
1√
∆µ2

εR1 + const, (10)

where the �tting is performed near the in�ection point
corresponding to the n-th conductance step. Remark-
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ably, ∆µ2 increases systematically with n. This observa-
tion can be rationalized by calculating the transmission
probability for electrostatic potential barrier within the
semiclassical approximation [16]. For the classically for-
bidden regime, R1 < r < j/ε, one can write

Tj ≈ exp


−2

j/ε∫

R1

dr

√(
j

r

)2

− ε2


 , (11)

where j/r [with j given by Eq. (8)] plays a role of the
transverse wave number and we have further supposed
that R2 � R1. Each individual step, associated with the
in�ection point on the conductance-doping plot, corre-
sponds to Tj ≈ 1/2 for a given j. A clear step becomes
visible when Tj rises fast enough with ε, such that the
step width is signi�cantly smaller than distances to the
neighboring steps. These lead to√

n θ/π � 1. (12)

In turn, for any �nite θ only a limited number of the
conductance steps near zero doping (n 6 nmax) is visi-
ble, whereas the higher steps get smeared out. This e�ect
has no direct analogue in similar Schrödinger systems.
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Fig. 3. Squared width ∆µ2 versus the step index n for
R2/R1 = 10 and di�erent values of θ. Solid lines are
guides for the eye only; dashed lines depict best-�tted
linear dependence of ∆µ2 on n.
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Fig. 4. Conductance as a function of doping for
graphene nanoribbon (thin gray line) narrow disk sec-
tion (thick red line). Inset: schematics of the two sys-
tems considered.

We compare now our results with more familiar con-
ductance quantization appearing for GNRs, using the
analytic formula for a strip with in�nite-mass bound-
ary conditions derived by Tworzydªo et al. [5]. In fact,
a rectangular sample of the width W = θR1 and the
length L = R2 − R1 essentially reproduces a geometric
quantization appearing in a disk section for small open-
ing angles. As shown in Fig. 4, the conductance-doping
curves for the two systems closely follow each other, ex-
cept from the Fabry�Perot oscillations present in GNR
and strongly suppressed in the disk section with nonpar-
allel borders.

4. Conclusion

We have investigated ballistic charge transport
through a �nite section of the Corbino disk in graphene
with the in�nite-mass boundaries. The system conduc-
tance as a function of doping shows sharp quantization
steps for opening angles θ . π/3. In comparison to the
situation in graphene nanoribbons, the Fabry�Perot os-
cillations are strongly suppressed, particularly for large
radii ratios R2/R1 & 10. For these reasons, our theo-
retical study suggests that a narrow section of the disk,
or a triangle, may be the most suitable sample geome-
try for experimental demonstration of the conductance
quantization in graphene or other Dirac system.
Additionally, a special feature of the conductance-

-doping dependence for the Dirac systems has been iden-
ti�ed. Namely, the quantization steps are blurred such
that the step width is proportional to

√
n, with n being

the step number. This observation helps to understand
why only a very limited number of sharp conductance
steps were identi�ed so far in both experimental [9] and
numerical studies [8].
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Appendix A: Wave functions

In this Appendix we give explicitly the pairs of linearly-

-independent solutions [fA,j , fB,j ]
T

and [gA,j , gB,j ]
T

of
Eq. (2) with the boundary conditions (7). For the leads
(r < R1 or r > R2) we de�ne the dimensionless variable
ρ = ε∞r and get

fLα,j(ρ, φ) =

√
8

πρ
exp (i (ρ∓ φ/2))

× cos
(
j
(
φ− π

2

))
, (13)

gLα,j(ρ, φ) = ±
√

8

πρ
exp (− i (ρ± φ/2))
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× cos
(
j
(
φ+

π

2

))
, (14)

where the upper (lower) signs correspond to the sublat-

tice index α = A (α = B). Similarly, for the sample area
(R1 < r < R2) ρ = εr, and the wave functions read

fSA,j(ρ, φ) = exp (i(j + 1/2)(π − φ))H
(1)
j+1/2(ρ) + exp (i (j − 1/2)φ)H

(1)
j−1/2(ρ), (15)

fSB,j(ρ, φ) = i
{

exp (i (j + 1/2)φ)H
(1)
j+1/2(ρ) + exp (i(j − 1/2)(π − φ))H

(1)
j−1/2(ρ)

}
, (16)

gSA,j(ρ, φ) = exp (− i(j + 1/2)(φ+ π))H
(2)
j+1/2(ρ) + exp (i (j − 1/2)φ)H

(2)
j−1/2(ρ), (17)

gSB,j(ρ, φ) = i
{

exp (i (j + 1/2)φ)H
(2)
j+1/2(ρ) + exp (− i(j − 1/2)(φ+ π))H

(2)
j−1/2(ρ)

}
. (18)

Appendix B: Mode-matching

The current conservation conditions at r = R1 and r = R2 lead to the system of linear equations


0 −fLA,j(ε∞R1, φ) fSA,j(εR1, φ) gSA,j(εR1, φ)

0 −fLB,j(ε∞R1, φ) fSB,j(εR1, φ) gSB,j(εR1, φ)

−gLA,j(ε∞R2, φ) 0 fSA,j(εR2, φ) gSA,j(εR2, φ)

−gLB,j(ε∞R2, φ) 0 fSB,j(εR2, φ) gSB,j(εR2, φ)







tj
rj
aj
bj


 =




gLA,j(ε∞R1, φ)

gLB,j(ε∞R1, φ)

0

0


 , (19)

where we have supposed that the wave is incident from the inner lead. We further notice that the transmission
probability |tj |2 is insensitive to the speci�c value of ε∞, as it only a�ects the phases of wave functions fLα,j (13) and

gLα,j (14).
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Abstract – We study the ballistic conductivity of graphene bilayer in the presence of next-nearest
neighbor hoppings between the layers. An undoped and unbiased system was found in Rut G.
and Rycerz A., Phys. Rev. B, 89 (2014) 045421, to show a nonuniversal (length-dependent)
conductivity σ(L), approaching the value of σ� = 3/π � 0.95 for large L. Here we demonstrate
one-parameter scaling and determine the scaling function β(σ) = d lnσ/d lnL. The scaling flow has
an attractive fixed point ( β(σ�) = 0, β′(σ�) < 0 ) reproducing the scenario predicted for random
impurity scattering of Dirac fermions with Coulomb repulsion, albeit the system considered is
perfectly ballistic and interactions are not taken into account. The role of electrostatic bias
between the layers is also briefly discussed.

Copyright c© EPLA, 2014

Introduction. – One of the most unexpected prop-
erties of graphene —a two-dimensional form of carbon
discovered in 2005 [1]— is the pseudodiffusive nature of
charge transport via undoped ballistic samples, manifest-
ing itself by the fact that dc conductance obeys Ohm’s
law for classical conductors characterized by the universal
quantum value of the conductivity [2–5], namely

G = σ0
W

L
, σ0 =

1

π

[
se2

h

]
, (1)

where W is the sample width, L is the length [6], and
the units of se2/h with s = 4 are chosen to account the
spin and valley degeneracies. Such a macroscopic quan-
tum phenomenon has a remarkable high-frequency analog,
i.e., the visible light opacity of graphene also takes quan-
tized values [7]. Although the opacity directly scales with
the number of graphene layers, such an additive property
usually does not apply for dc conductance [8].

Early theoretical works on ballistic graphene bilay-
ers [9,10] showed that the minimal conductivity at zero
bias situation changes abruptly as a function of the next-
nearest neighbor interlayer hopping integral t′, taking the
value of σ0 = 1/π for t′ = 0, or σ� = 3σ0 for any t′ �= 0 [11],
provided that s = 8 in eq. (1) due to the additional layer
degeneracy. The appearance of such a quantum-critical
behavior was attributed to the topological transition of

the Fermi surface at low energies [8]. Experimental val-
ues of the minimal conductivity are generally lower than
σ�, covering the range from ∼ σ0 [12] up to 2.5 σ0 [13].
We have recently shown, employing the Landauer-Büttiker
formalism, that the minimal conductivity of finite, ballis-
tic samples is not universal but length dependent [14], and
can be rationalized, for large L, as

σ(L) � σ(L) = σ� [1 − (λ/L)
γ
] , (2)

where the characteristic length λ = λ(t′), and γ < 1 is the
parameter-independent exponent. In turn, the predictions
of refs. [9,10] are restored for L → ∞, whereas in the
opposite limit (L → 0) one gets σ(L) → σ0 regardless of
t′ = 0 or t′ �= 0. It is also shown in ref. [14] that the
universal conductivity is restored for resonances with the
Landau levels at high magnetic fields [15].

In this paper, we point out that the scaling function

β(σ) =
d lnσ

d lnL
, (3)

which plays a central role in the conceptual understand-
ing of the metal insulator transition [16] and is widely
considered in the context of disordered Dirac or spin-orbit
systems [17–19] (see fig. 1), also unveils an intriguing anal-
ogy between interaction-induced quantum criticality in
disordered Dirac systems [19] and transport properties of
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β(σ)

0 σ

β(σ)

0 σ
σ ∼ 1

Fig. 1: (Colour on-line) Schematic scaling functions β(σ) (3)
for two-dimensional disordered Dirac (solid lines) and spin-
orbit (dashed lined) systems. Left: noninteracting case [17];
right: Coulomb interaction included [19]. Arrows indicate the
flows of the dimensionless conductivity σ with increasing L.
(Adapted from ref. [19].)

ballistic graphene bilayer with skew interlayer hoppings.
The paper is organized as follows: In the next section we
present the mode-matching analysis for transport of Dirac
fermions via finite samples of ballistic bilayer. In the third
section we discuss the functions σ(L) for different values
of t′ and demonstrate one-parameter scaling. Possible ef-
fects of nonzero bias between the layers are summarized
in the fourth section. A brief overview of the results given
in the last section.

Mode-matching for Dirac fermions. – The analysis
starts from the four-band effective Hamiltonian for low-
energy excitations [8], which can be written as

H = ξ

⎛
⎜⎜⎜⎜⎝

−V/2 e−iθπ ξt⊥ 0

eiθπ† −V/2 0 νe−iθπ

ξt⊥ 0 V/2 eiθπ†

0 νeiθπ† e−iθπ V/2

⎞
⎟⎟⎟⎟⎠

, (4)

where the valley index ξ = 1 (−1) for the K (K ′) val-
ley, θ denotes the angle between the x-axis and the arm-
chair direction (see fig. 2), π = �vF (−i∂x + ∂y) with vF =√

3 t0a/2 � 106 m/s being the Fermi velocity (in a mono-
layer) defined via the interlayer hopping t0 = 3.16 eV [20]
and the lattice parameter a = 0.246 nm, the nearest-
neighbor interlayer hopping t⊥ = 0.38 eV, ν = t′/t0 with
t′ being the next-nearest neighbor interlayer hopping, and
V is the electrostatic bias between the layers. We further
consider solutions of the Dirac equation HΨ = EΨ in the
form

Ψ(x, y) =

⎛
⎜⎜⎜⎜⎝

φ1(x)

φ2(x)

φ3(x)

φ4(x)

⎞
⎟⎟⎟⎟⎠

exp(ikyy) (5)

due to the translational invariance in the y-direction.

We focus here on a zero bias case V = 0 (for the dis-
cussion of V �= 0 case see the fourth section), for which
a general solution for E = 0 (the sample area) and the K

x

y

θ

L

W

Fig. 2: A strip of bilayer graphene (shaded area) of width W,
contacted by two electrodes (white rectangles) at a distance L.
A voltage source drives the electric current through the device.
Separate top- and bottom-gate electrodes (not shown) allow
both the Fermi energy E and the bias between the layers V
to be controlled electrostatically. A magnified view exhibits
the crystallographic orientation, with the angle θ between an
armchair direction (dashed line in the main plot) and x-axis of
the coordinate system (see bottom left).

valley reads

⎛
⎜⎜⎜⎜⎝

φ1(x)

φ2(x)

φ3(x)

φ4(x)

⎞
⎟⎟⎟⎟⎠

= c1

⎛
⎜⎜⎜⎜⎝

−α+
1 f+

1

0

0

eiθf+
1

⎞
⎟⎟⎟⎟⎠

+ c2

⎛
⎜⎜⎜⎜⎝

−α+
−1f

+
−1

0

0

eiθf+
−1

⎞
⎟⎟⎟⎟⎠

+ c3

⎛
⎜⎜⎜⎜⎝

0

e−iθf−
−1

−α−
−1f

−
−1

0

⎞
⎟⎟⎟⎟⎠

+ c4

⎛
⎜⎜⎜⎜⎝

0

e−iθf−
1

−α−
1 f−

1

0

⎞
⎟⎟⎟⎟⎠

, (6)

where α±
ζ =ν exp (±3iθ) [i+ζ

√
±8iky/

[
exp (±3iθ) t̃ν

]
+1],

f±
ζ = exp[(±ky + α±

ζ t̃)x], t̃ = t⊥/(�vF ), and the coeffi-
cients c1, . . . , c4 are to be determined later. In the op-
posite limit of E → ∞ (heavily doped leads) we obtain

⎛
⎜⎜⎜⎜⎝

φ±
1,s(x)

φ±
2,s(x)

φ±
3,s(x)

φ±
4,s(x)

⎞
⎟⎟⎟⎟⎠

= N±(ν)

× exp(ikxx)

⎛
⎜⎜⎜⎜⎝

− (μ∓/2) exp (−2iθ)

sη±
(
μ±/

√
2
)
exp (−iθ)

s
√

2η± exp (iθ)

1

⎞
⎟⎟⎟⎟⎠

, (7)

where s = sgn (kx), μ± = ν ±
√

ν2 + 4, η± = 1/
√

2 + νμ±,
and the factors N±(ν) =

√
μ±/ [2 (μ± + 2)] are chosen to

normalize the current. Matching the solutions given by
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ+
1,−1 φ−

1,−1 α+
1 α+

−1 0 0 0 0

φ+
2,−1 φ−

2,−1 0 0 −e−iθ −e−iθ 0 0

φ+
3,−1 φ−

3,−1 0 0 α−
−1 α−

1 0 0

φ+
4,−1 φ−

4,−1 −e−iθ −e−iθ 0 0 0 0

0 0 α+
1 f+

1 α+
−1f

+
−1 0 0 φ+

1,1 φ−
1,1

0 0 0 0 −e−iθf−
−1 −e−iθf−

1 φ+
2,1 φ−

2,1

0 0 0 0 α−
−1f

−
−1 α−

1 f−
1 φ+

3,1 φ−
3,1

0 0 −eiθf+
1 −eiθf+

−1 0 0 φ+
4,1 φ−

4,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r±
p

r±
n

c±
1

c±
2

c±
3

c±
4

t±p

t±n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−φ±
1,1

−φ±
2,1

−φ±
3,1

−φ±
4,1

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

3/π

 0

 0.2

 0.4

 0.6

 0.8

 100  1000
L/l⊥

σ
[8

e2
/h

]

β
=

d
ln

σ
/
d

ln
L

 0

 0.4

 0.8

 0.6  0.8  1
σ [8e2/h]

Fig. 3: (Colour on-line) Minimal conductivity of an unbiased
graphene bilayer as a function of the sample length L (speci-
fied in units of l⊥ = �vF /t⊥ � 1.60 nm). Different datapoints
correspond to different values of the next-nearest neighbor in-
terlayer hopping: t′ = 0.1 eV (�), 0.2 eV (©), and 0.3 eV (•).
Lines depict best-fitted approximating functions σ(L) (2) (see
table 1 for further details). The inset shows the scaling function
β(σ) (3) obtained by numerical differentiation of the data. (No-
tice that the approximating function is replotted for t′ = 0.1 eV
only, as the three lines overlap for the variables used in the
inset.) The sample aspect ratio is fixed at W/L = 20; the
crystallographic orientation is θ = π/4.

eqs. (6), (7) at x = 0 and x = L leads to

see eq. (8) above

where we have further defined φ±
j,s ≡ φ±

j,s(0), f±
q = f±

q (L).
Solving the linear system of equations (8) one obtains the
transmission and reflection matrices for a given transverse
wave number

t(ky) =

(
t+p t+n

t−p t−n

)
, r(ky) =

(
r+
p r+

n

r−
p r−

n

)
, (9)

where the internal structure arises from the presence of
two subbands in the dispersion relation. At zero magnetic
field, time-reversal symmetry coupling the valleys K and

Table 1: Least-square fitted parameters σ�, λ, and γ of the
function σ(L), defined by eq. (2), corresponding to the lines
in fig. 3. The values of L0.01, such that for L � L0.01 the
function σ(L) matches the actual conductivity with accuracy
better that 1%, are given in the last column.

t′ (eV) σ� (8e2/h) λ/l⊥ γ L0.01/l⊥
0.1 0.96 16.8 0.50 935
0.2 0.98 12.6 0.55 457
0.3 0.99 6.1 0.53 278

K ′ is preserved, and each transmission eigenvalue from
one valley has a copy in the other valley [21].

Conductivity and one-parameter scaling. – Next,
the dimensionless conductivity is determined from the
Landauer-Büttiker formula [22]

σ(L) =
L

W

∑

{ky}
Tr
[
t(ky) t†(ky)

]
, (10)

where we have assumed periodic boundary conditions at
y-direction, leading to the quantization of the transverse
wave number ky = 0, ±2π/W, ±4π/W, . . . . Our numer-
ical results for E = V = 0 are summarized in fig. 3
and table 1. For demonstrative purposes, we have chosen
W/L = 20 and θ = π/4. For any t′ �= 0, the conduc-
tivity given by eq. (10) slowly grows with L, taking the
values from the interval 1/π � σ(L) � 3/π, with the up-
per (lower) bound approached for L → 0 (L → ∞). The
best-fitted approximating functions σ(L) of the form given
by eq. (2) (lines in fig. 3) rationalize the numerical results
for large L (datapoints). The least-square fitted param-
eters σ� and γ (see table 1) weakly depend on t′, taking
the values close to σ� � 3/π and γ � 1/2 for small t′.
These scaling characteristics appear generically for other
crystallographic orientations θ, except for θ = π/6+nπ/3
(with integer n), corresponding to the propagation along
a zigzag direction, for which a lower value of γ � 1/4 was
found (see also ref. [14]).

The scaling function β(σ) (3) can be obtained by nu-
merical differentiation of σ(L) given by eq. (10) (see inset
in fig. 3). For the asymptotic range, eq. (2) leads to

β(σ) � − γ (1 − σ�/σ) , (11)

47005-p3
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with σ = σ� � 3/π being an attractive fixed point
(β′(σ�) < 0 for γ � 1/2 > 0) of the renormalization
group flow. Such a scenario, earlier predicted for disor-
dered Dirac systems with Coulomb interaction [19], is re-
produced by our results for graphene bilayer. The values
of β(σ) obtained numerically become t′-independent and
follow eq. (11) for σ � 0.8.

This surprising coincidence (it is worth stressing here
that the system we consider is ballistic and no interac-
tions are taken into account) seems difficult to understand
in terms of the existing symmetry-based theory of lo-
calization [18,19]. Particular features of the results sug-
gest that next-nearest neighbor interlayer hoppings, apart
from breaking the rotational symmetry of the Hamilto-
nian in a single valley (a phenomenon known as trig-
onal warping [8]), may also induce corrections to β(σ)
of the Altshuler-Aronov type [23], destroying the super-
metallic phase in graphene. A further clarification of
the above-mentioned issue requires a numerical study of
charge transport through the disordered graphene bilayer,
which is beyond the scope of this paper.

Effects of finite bias between the layers. – Proba-
bly, the most intriguing property of a graphene bilayer is
the possibility to convert it from semimetal to narrow-gap
semiconductor by applying a perpendicular electrostatic
field [24–28], leading to a finite bias between the layers
V in the effective Hamiltonian H (4). Also, some experi-
mental works showed that the energy gap may also appear
spontaneously, due to electron-electron interactions, for
bilayer samples close to the charge-neutrality point [29,30].
For these reasons, the extension of our discussion on the
V �= 0 case is desirable.

In such a case, the effective Dirac equation HΨ = EΨ,
with Ψ(x, y) in the form given by eq. (5), is integrated
numerically for the sample area (0 < x < L), separately
for each value of the transverse wave number ky . The
obtained solutions are then matched with wave functions
in the leads (see eq. (7)), in analogy with the procedure
presented in the second section.

The resulting conductivity spectra, for selected values
of V and t′, are displayed in figs. 4(a)–(d). For demon-
strating purposes the sample dimensions are fixed at
W/L = 20, L = 48 �vF /t⊥. For the unbiased sample case
(see fig. 4(a)) the conductivity systematically grows with
increasing t′ in the small vicinity of the Dirac point, the
width of which can be roughly approximated by |E| � EL,
with

EL =
1

4
t⊥ (t′/t0)

2
(12)

being the Lifshitz energy [8], reaching the value of EL �
1 meV for t′ = 0.32 eV. For V = 0 and higher Fermi en-
ergies, σ is weakly affected by t′. For V > 0, the conduc-
tivity is strongly suppressed in the range of |E| < V/2 for
any t′ (see figs. 4(b)–(d)), provided that V 	 EL. Again,
for sufficiently high energies the conductivity is almost un-
affected by either the value of V or t′.
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Fig. 4: (Colour on-line) Conductivity of a graphene bilayer
as a function of the Fermi energy. The value of bias between
the layers V is varied between the panels. Different lines at
each panel depict the data obtained numerically for different
values of the next-nearest neighbor interlayer hopping: t′ = 0
(red dashed line), t′ = 0.16 eV (green dash-dotted line), and
t′ = 0.32 eV (blue solid line). The vertical dashed line marks
the value of E = V/2, the horizontal solid line corresponds to
σ0 = 1/π. The sample length is fixed at L = 48 l⊥ � 77 nm;
the remaining system parameters are the same as in fig. 3.

Probably, the most interesting feature of the results pre-
sented in fig. 4 is that the dimensionless conductivity at
its first maximum as a function of E reaches the value
close to σ � 1/π for V 	 EL and arbitrary t′, while it is
significantly higher for V = 0. For this reason, the mea-
surements of the conductivity spectra of ballistic samples
at zero magnetic field, and different biases between the
layers, may constitute an alternative experimental method
for detecting the Lifshitz transition in a graphene bilayer,
supplementing the recent study focusing on the anomalies
in the sequence of Landau levels [31], at least in principle.

A brief overview. – We have investigated, by means
of analytical mode-matching for the effective Dirac equa-
tion, the length-dependent minimal conductivity σ(L) of
unbiased graphene bilayer with the nearest (t⊥) and the
next-nearest neighbor (t′) interlayer hoppings included.
The scaling function β(σ) = d lnσ/d lnL was found i) to
be insensitive to the precise value of t′ and to the crys-
tallographic orientation of the sample, provided that the
physical dimensions are in the asymptotic range, i.e.,
that W 	 L 	 �vF /t⊥ (with vF being the energy-
independent Fermi velocity in a monolayer), and ii) to
have an attractive fixed point at σ� � 3/π. These features
closely resemble the quantum-critical behavior predicted
theoretically for disordered Dirac systems with Coulomb
interaction [19], although the system we consider is bal-
listic and interactions are not taken into account. Our
results show that the well-known correspondence between
charge-transfer characteristics of a classical diffusive con-
ductor and perfectly clean monolayer graphene [3,32] is ac-
companied by another, probably more surprising, analogy
between chaotic impurity scattering of interacting Dirac
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fermions and ballistic transport via bilayer samples, which
gets unveiled when one-parameter scaling is demonstrated.

The actual effects of electron-electron interaction in bi-
layer graphene are generally beyond the scope of this
paper. Nevertheless, it is worth pointing out that possible
effects primarily include the gap opening due to sponta-
neous breaking of the symmetry between the layers [29,30].
We show, by numerically analysing the transport through
a biased bilayer, that opening a few meV gap V (i.e.,
larger than the Lifshitz energy) leads to the appearance
of conductivity peaks at Fermi energies E � ± V/2,
where σ � 1/π, reproducing the dimensionless conduc-
tivity of a ballistic monolayer. These are the reasons for
which an extensive experimental study of size-dependent
conductance for clean bilayer samples (with their lengths
L > 1 μm and widths W 	 L), which is missing so far,
seems crucial to determine the significance of the factors
such as the trigonal warping and the electron-electron
interaction in the effective description of bilayer-based
graphene nanodevices1.

∗ ∗ ∗
The work was supported by the National Science Cen-

tre of Poland (NCN) via Grant No. N-N202-031440, and
partly by Foundation for Polish Science (FNP) under the
program TEAM “Correlations and coherence in quantum
materials and structures (CCQM)”. Computations were
partly performed using the PL-Grid infrastructure.

REFERENCES

[1] Novoselov K. S., Geim A. K., Morozov S. V. et
al., Nature, 438 (2005) 197; Zhang Y., Tan Y.-W.,
Stormer H. L. and Kim P., Nature, 438 (2005) 201.

[2] Katsnelson M. I., Eur. Phys. J. B, 51 (2006) 157.
[3] Tworzyd�lo J., Trauzettel B., Titov M., Rycerz A.

and Beenakker C. W. J., Phys. Rev. Lett., 96 (2006)
246802.

[4] Miao F., Wijeratne S., Zhang Y., Coscun U. C.,
Bao W. and Lau C. N., Science, 317 (2007) 1530.

[5] Danneau R., Wu F., Craciun M. F., Russo S. et al.,
Phys. Rev. Lett., 100 (2008) 196802.

[6] The rectangular sample geometry is assumed for simplic-
ity. For a generalization, see: Rycerz A., Recher P. and
Wimmer M., Phys. Rev. B, 80 (2009) 125417.

[7] Nair R. R., Blake P., Grigorenko A. N. et al., Sci-
ence, 320 (1308) 2008; Stauber T., Peres N. M. R.
and Geim A. K., Phys. Rev. B, 78 (2008) 085432.

[8] McCann E. and Koshino M., Rep. Prog. Phys., 76
(2013) 056503.

[9] Snyman I. and Beenakker C. W. J., Phys. Rev. B, 75
(2007) 045322.

[10] Cserti J., Csordás A. and Dávid G., Phys. Rev. Lett.,
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Abstract
Quantum transport through an impurity-free Corbino disk in bilayer graphene is investigated
analytically, using the mode-matching method to give an effective Dirac equation, in the
presence of uniform magnetic fields. Similarly as in the monolayer case (see Rycerz 2010
Phys. Rev. B 81 121404; Katsnelson 2010 Europhys. Lett. 89 17001), conductance at the
Dirac point shows oscillations with the flux piercing the disk area �D characterized by the
period �0 = 2 (h/e) ln(Ro/Ri), where Ro (Ri) is the outer (inner) disk radius. The oscillation
magnitude depends either on the radii ratio or on the physical disk size, with the condition for
maximal oscillations being Ro/Ri � [ Rit⊥/(2h̄vF) ]4/p (for Ro/Ri � 1), where t⊥ is the
interlayer hopping integral, vF is the Fermi velocity in graphene, and p is an even integer.
Odd-integer values of p correspond to vanishing oscillations for the normal Corbino setup, or
to oscillation frequency doubling for the Andreev–Corbino setup. At higher Landau levels,
magnetoconductance behaves almost identically in the monolayer and bilayer cases. A brief
comparison with the Corbino disk in a two-dimensional electron gas is also provided in order
to illustrate the role of chiral tunneling in graphene.

Keywords: graphene, graphene bilayer, magnetoconductance, Corbino geometry, quantum
transport

(Some figures may appear in colour only in the online journal)

1. Introduction

The potential of bilayer graphene (BLG) for carbon-based
electronics rests on the possibility for controlling its transport
properties using external electromagnetic fields employing
the mechanisms that have no analogs in monolayer graphene
(MLG) or in semiconducting heterostructures containing two-
dimensional electron gas (2DEG) (for a recent review of the
topic, see [3]). BLG with an AB stacking order can be
converted from a semimetal to a narrow gap semiconductor
by applying a perpendicular electrostatic field [4–8]. This
is possible, because: (i) the interlayer hoppings break the
sublattice symmetry in a single layer, leading to the formation
of two parabolic chiral bands touching themselves at the
so-called Dirac points [4]1, and (ii) the perpendicular electric

field further breaks the inversion symmetry, opening a gap
between conduction and valence bands. Several experiments
on dual-gated devices in ultraclean BLG have pursued the
possibility of exploiting such a field-tunable energy gap [9–15].
Yan and Fuhrer [11] used the Corbino geometry, proposed
over a century ago, to measure the magnetoresistance without
generating the Hall voltage (for a historical introduction, see
[16]). In such a geometry (see figure 1), the current is

passed through a disk-shaped sample surrounded on both its
exterior and interior sides with metallic leads, which suppress
the influence of boundary modes [17] on various dynamical
properties of nanosystems in both BLG and MLG [18–21].

1 Skew-interlayer hoppings may lead to the appearance of secondary Dirac
points affecting the transport properties of unbiased samples, but a gap still
opens when applying the electrostatic field; see [3].

0953-8984/14/485301+12$33.00 1 © 2014 IOP Publishing Ltd Printed in the UK
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From a more fundamental point of view, several relativistic
quantum effects, observed for MLG and resulting from the
chiral nature of effective quasiparticles, are predicted to
manifest themselves in BLG in slightly modified versions,
mainly due to the presence of a new characteristic length scale
for low-energy excitations [22]

l⊥ = h̄vF/t⊥ � 11 d0, (1)

where vF � 106 m s−1 is the energy-independent Fermi
velocity in MLG, t⊥ � 0.4 eV is the nearest-neighbor
interlayer hopping integral, and d0 = 0.142 nm is a C–C
bond length. For instance, the universal ballistic conductivity
of MLG σ0 = (4/π) e2/h, characterizing the so-called
pseudodiffusive transport regime [23–27], is replaced by the
length-dependent value σ(L), which varies from σ0 to 3σ0

per layer [28–30], with the upper limit approached for the
system size L → ∞. In the quantum-Hall regime, the zero-
energy Landau level (LL) shows the eightfold degeneracy for
BLG (instead of the fourfold degeneracy for MLG), which can
be lifted by manipulating the external electromagnetic fields,
partly due to electron–electron interactions [10, 13, 20]. Also,
the quantum interference in graphene Aharonov–Bohm rings
(for a review, see [31]) may result in different oscillation
patterns appearing for MLG and BLG [32–34].

An intriguing quantum-interference phenomenon was
predicted theoretically for impurity-free Corbino disks in MLG
[1, 2, 35–38]. In brief, periodic (approximately sinusoidal)
magnetoconductance oscillations are followed, for an undoped
sample, by similar oscillations of the shot-noise power
[2] and the third charge-transfer cumulant [35, 38]. The
effect has a direct analog for strain-induced pseudomagnetic
fields [36], allowing consideration of a fully mesoscopic
counterpart to the earlier proposed valley filters in MLG
[39–41] or carbon nanotubes [42]. At higher dopings, the
oscillations reappear provided the magnetic field is adjusted
to the positions of the n-th LLs in the field-doping parameter
plane [1]. Also very recently, LL splittings due to a possible
substrate-induced spin–orbit interaction in Corbino devices
were discussed as an alternative mechanism [43] for graphene-
based spintronics [44].

Most remarkably, the disk conductance averaged over
a single period restores the pseudodiffusive value [27]

GMLG
diff = 2πσ0

ln (Ro/Ri)
. (2)

Analogous behavior is predicted for higher charge-transfer
cumulants2, showing that the effect is another manifestation
of the chiral nature of Dirac fermions in graphene. For
these reasons, we have coined the term of quantum-relativistic
Corbino effect (QRCE).

In this paper, magnetoconductance of the Corbino disk in
BLG is discussed in analytical terms, starting from the four-
band effective Hamiltonian [4] and employing the Landauer–
Büttiker formalism [45] for the linear-response regime. The

2 In the linear-response regime, the average Fano factor quantifying the shot-
noise power F = Fdiff = 1/3, and the average R-factor quantifying the
third charge-transfer cumulant R = Rdiff = 1/15. For a discussion of a
finite-voltage situation, see [38].
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U(x)
E
0

U∞

Ri Ro−Ri−Ro
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V
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B = (0, 0, B)

Figure 1. The Corbino disk in AB stacked bilayer graphene. Top:
device schematics. The current is passed through the disk-shaped
area with inner radius Ri and outer radius Ro in a perpendicular
magnetic field B = (0, 0, B). Bottom: the electrostatic potential
cross section along the x-axis U(x) following from equation (4)
(black solid line). The leads (yellow areas) are modeled as infinitely
doped graphene regions (|U∞| → ∞). The additional top- and
bottom-gate electrodes (not shown) are used to tune the Fermi
energy (E) (grey dotted line) and to induce the electrostatic bias
between the layers (V ), leading to the local potential energies
U(x) + V/2 (red dash–dot line) and U(x) − V/2 (blue dashed line).

paper is organized as follows. In section 2 we present the
system details and discuss the solutions of the corresponding
Dirac equation for arbitrary dopings and magnetic fields.
Then, in section 3, magnetotransport signatures of QRCE are
demonstrated for the normal Corbino and for the Andreev–
Corbino setups. Section 4 provides a quantitative comparison
with the magnetoconductance spectra for the Corbino disk in
2DEG. The conclusions are given in section 5.

2. Mode-matching for the effective Dirac equation

2.1. The Hamiltonian and envelope wavefunctions

The analysis starts from the four-band effective Hamiltonian
for K valley [4], which is given by

H =




V/2 π t⊥ 0
π† V/2 0 0
t⊥ 0 −V/2 π†

0 0 π −V/2


 + U(r) I, (3)

where V is the electrostatic bias between the layers, π =
πx + iπy and π† = πx − iπy , with πj/vF = (−ih̄ ∂j + eAj )

being a component of the gauge-invariant momentum operator
(j = 1, 2). The electron charge is −e, the potential energy
term U(r) I depends only on r =

√
x2 + y2 (with I the

identity matrix), and the remaining symbols are the same

2
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as in equation (1). We choose the symmetric gauge A ≡
(Ax, Ay) = (B/2) (−y, x), with the uniform magnetic field
B �= 0 in the disk area (Ri < r < Ro) and B = 0 otherwise.
The inner and outer contacts are modeled with heavily doped
BLG areas; that is, we set the potential energy profile in
equation (3) as follows

U(r) =
{
U∞ if r < Ri or r > Ro,
0 if Ri < r < Ro,

(4)

and focus on the limit of |U∞| → ∞. In order to obtain
the Hamiltonian for the other valley (K ′), it is sufficient to
substitute V → − V and π → − π in equation (3).

Since our model system possesses a cylindrical symmetry,
the Hamiltonian (3) commutes with the total angular-
momentum operator [46]

Jz = −ih̄∂ϕ +
h̄

2

(
σ0 0
0 −σ0

)
+

h̄

2

(−σz 0
0 σz

)
, (5)

where σ0 is the 2 × 2 identity matrix, σz is one of the Pauli
matrices, and we have used the polar coordinates (r, ϕ). In turn,
the wavefunctions can be written as products of angular and
radial parts (the so-called envelope wavefunctions), namely

ψ (r, ϕ) = eimϕ




φ1(r)

ie−iϕφ2(r)

φ3(r)

ieiϕφ4(r)


 (6)

where m = 0, ±1, ±2, . . .. Notice that the angular momentum
quantum number in the BLG case is an integer m, in contrast
to the half-odd integer the j in MLG case [47].

2.2. The contact regions

For the contact regions (r < Ri or r > Ro), we have B = 0
and thus the four-band Dirac equation Hψ = Eψ , with H

given by equation (3) and E being the Fermi energy, can be
written as


ε̃ + 	 κ+ −l−1

⊥ 0
κ− ε̃ + 	 0 0

−l−1
⊥ 0 ε̃ − 	 κ−

0 0 κ+ ε̃ − 	


 ψ (r, φ) = 0 (7)

where ε̃ = (E − U∞)/ (h̄vF), κ± = ie±iϕ
(
∂r ± ir−1∂ϕ

)
and

	 = −V/ (2h̄vF). Substituting ψ (r, ϕ) (6) into equation (7)
and decoupling the equation for φ±

1 (r) one gets

(
∂2
r +

1

r
∂r − m2

r2
+ η±

)
φ±

1 (r) = 0, (8)

where η± = (
	2 + ε̃2

) ±
√

ε̃2
(
4	2 + 1/l2

⊥
) − 	2/l2

⊥. Next,
using the differential relations following from equation (7),
one can obtain the remaining components of the wavefunction
φ±(r) = [

φ±
1 (r), φ±

2 (r), φ±
3 (r), φ±

4 (r)
]T

, which are given
explicitly in appendix A.

2.3. The disk area

For the disk area (Ri < r < Ro), we have B �= 0 and it
is convenient to define the dimensionless variable ρ = r/ lB ,
with the magnetic length lB = √

h̄/|eB|. In turn, equation (7)
is replaced by


ε + δ ξ+ −t 0
ξ− ε + δ 0 0
−t 0 ε − δ ξ−
0 0 ξ+ ε − δ


 ψ (ρ, φ) = 0, (9)

where t = lB/ l⊥, ε = ElB/(h̄vF), δ = −V lB/(2h̄vF)

and ξ± = i exp (±iϕ)
(
∂ρ ± iρ−1 ∂ϕ ∓ ρ/2

)
. Eliminating the

angle-dependent part of the wavefunction, we obtain(
∂2
ρ +

1

ρ
∂ρ − ρ2

4
− m2

ρ2
− m−1 + γ±

)
φ±

1 (ρ) = 0, (10)

where γ± = (
δ2 + ε2

) ±
√

ε2
(
4δ2 + t2

) − δ2t2. The complete
solution of equation (9) is presented in appendix A. It can be
shown that the normalization condition for the wavefunction
leads to the energies of LLs [8]

γ± = n +
|m| + m + 1

2
, (11)

where n = 0, 1, 2, . . ..

2.4. Reflection and transmission coefficients

Next, we consider the scattering problem for the radial wave
functions, assuming that the initial wave is incoming from the
inner lead. The solutions of equation (7) for the inner and outer
leads can be presented as follows

φ±
i (r) = φ±

in (r) + r±
p φ+

out(r) + r±
n φ−

out(r), (12)

φ±
o (r) = t±p φ+

in(r) + t±n φ−
in (r), (13)

where φ±
in (r) and φ±

out(r) denote the wavefunctions propagating
from r = 0 and r = ∞ (respectively) and carrying the unit
current. In analogy, a general solution of equation (9) for
the disk area corresponds to the linear combination of four
eigenspinors, namely

φ±
d (r) =

4∑
µ=1

α±
µ φµ(r), (14)

where {α±
µ }µ=1,...,4 are arbitrary complex coefficients.

Matching the wavefunctions φ±
i (r) (12) and φ±

d (r) (14)
at r = Ri, as well as φ±

d (r) (14) and φ±
o (r) (13) at

r = Ro, we obtain the reflection and transmission coefficients
corresponding to the K valley and the angular momentum
quantum number m, which can be arranged in 2 × 2 matrices,
namely

rK,m =
(

r+
p r+

n

r−
p r−

n

)
, tK,m =

(
t+
p t+

n

t−p t−n

)
. (15)

3
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The remaining details of the mode-matching procedure are
given in appendix B.

It is worth mentioning here that skew-interlayer hoppings
[3], neglected in the Hamiltonian H (3), are predicted

theoretically to enhance, typically by a factor of 3, the zero-
magnetic field conductivity of large bilayer samples at the
Dirac point [3, 28, 48]. The experimental values reported
by [12] are close, but noticeably smaller than the theoretical
prediction, which can be attributed to several factors, including
the finite system size [30]. Nevertheless, it is also shown in
[30] that the conductance of finite bilayer samples (with length
L � 100 nm) becomes insensitive to skew-interlayer hoppings
at high magnetic fields B � 5 T, and thus the scattering
approach constituted by the four-band Hamiltonian (3) is
sufficient to discuss basic magnetotransport characteristics of
nanoscale devices in BLG.

3. Quantum relativistic Corbino effect in BLG

In this section, we present our main results concerning the
magnetoconductance of the Corbino disk in BLG. In the linear-
response regime, the conductance is given by the Landauer–
Büttiker formula [49]

G = 2s2vg0Tr T , (16)

where g0 = e2/h is the conductance quantum, 2s(v) is the spin
(valley) degeneracy, T = t†t and t is a block-diagonal matrix
with each block given by the second equality in equation (15).
The Zeeman splitting is neglected for clarity. As the first step,
we have also assumed the unbiased sample case (V = 0), for
which the twofold valley degeneracy occurs. The V �= 0 case
is discussed separately later in this section.

3.1. Magnetoconductance at the Dirac point

For E = V = 0 and |U∞| → ∞, transmission eigenvalues
can be found analytically, and read

T ±
m = 1

cosh2 [L(m ± A + �D/�0)]
, (17)

where �D = π
(
R2

o − R2
i

)
B is the flux piercing the disk area,

L = ln (Ro/Ri) and �0 = 2 (h/e) L. The parameter

A = −
ln

(
ϒ − √

ϒ2 − 1
)

2L , (18)

with ϒ = cosh(L) + � sinh(L) and � = (R2
o − R2

i )/(4l2
⊥),

takes values from the range 1/2 < A < ∞. Summing
over the normal modes labeled by integer m, one immediately
finds that G (16) shows periodic oscillations as a function
of �D , with a period equal to �0 (see figure 2), closely
resembling the magnetoconductance behavior predicted for
the Corbino disk in MLG [1, 2]. However, for any fixed �D ,
equation (17) describes the two transmission maxima separated
by a distance of 2A h̄ in the angular-momentum space. In turn,
the corresponding contributions to the magnetoconductance
may interfere constructively or destructively with each other.

(a)

(b)

Figure 2. Conductance of different graphene-based Corbino devices
with inner radius Ri = 50 l⊥ � 80 nm as a function of the magnetic
field. (a) Magnetoconductance oscillations in mono- and bilayer
disks at the Dirac point for the two values of the radii ratio, for
which the oscillation magnitude is close to the maximal
(Ro/Ri = 5) and to the minimal values (Ro/Ri = 6.2) in the bilayer
case. (b) Magnetoconductance of bilayer disks in normal Corbino
and Andreev–Corbino (NS) setups. Notice the oscillation frequency
doubling for the Andreev–Corbino setup and Ro/Ri = 6.2.

The nature of the interference depends both on the sample size
and on the interlayer hopping integral t⊥3.

For a clear overview of the effect, we represent G

following from equations (16) and (17) by a Fourier series

G = 16g0

L +
∞∑

q=1

Gq cos

(
2πq �D

�0

)
, (19)

where

Gq = 32π2q g0 cos (2πqA)

L2 sinh
(
π2q/L

) ≡ 2(−)qGMLG
q cos (2πqA) ,

q = 1, 2, 3, . . . . (20)

The constant term in equation (19), 16g0/L ≡ 2GMLG
diff (see

equation (2)), gives the average conductance, which is simply
twice as large as in the monolayer case [1, 2]. Such a sum
rule does not generically apply to the Fourier amplitudes Gq ,
which are related to the corresponding amplitudes for MLG
(GMLG

q ) via the second equality in equation (20). A special case
of Gq = 2GMLG

q occurs for A = 1/2. For sufficiently large

3 In the limit t⊥ → 0, corresponding to the separation of two layers, we have
l⊥ → ∞ and A → 1/2, leading to the same conductance per layer as in the
monolayer case.
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Figure 3. Oscillation magnitudes ratio for bilayer and monolayer
disks, 	GBLG/	GMLG (where 	G ≡ Gmax − Gmin). Dashed lines
mark the parameter values obtained from the approximating
equation (21) for p = 1, 3, 5, . . ..

systems, we have |G1| � |G2| � . . ., and it is possible to find
approximate conditions for maximal and minimal oscillation
magnitudes 	G ≡ Gmax − Gmin � 2|G1|, namely

pL � 4 ln

(
Ri

2l⊥

)
, (21)

where p are even (odd) integers for maximal (minimal)
oscillation magnitudes. As illustrated in figure 3, the parameter
values following from equation (21) for odd p (white dashed
lines) coincide with the actual regions where the oscillation
magnitude vanishes (black areas), provided that Ro/Ri � 3
and Ri/l⊥ � 10.

For the sake of completeness, we discuss now the
magnetoconductance in the Andreev–Corbino setup, in which
the disk-shaped sample is attached to one normal and one
superconducting lead. In such a situation, the conductance
is given by [50]

GNS = 2s2vg0Tr
[

2T 2(2 − T )−2
]
. (22)

For a BLG disk at the Dirac point, this leads to

GNS = 8g0

∞∑
m=−∞

{
1

cosh2 [2L(m + A)]

+
1

cosh2 [2L(m − A)]

}
, (23)

where we have defined m = m + �D/�0. GNS (23) can
be represented by a Fourier series of the form given by
equation (19) with the same average conductance (2GMLG

diff ),
and the amplitudes Gq (20) replaced by

GNS
q = 16π2q g0 cos (2πqA)

L2 sinh
[
π2q/(2L)

] . (24)

Strictly speaking, the scaling rule earlier found for the disk in
MLG, namely GMLG,NS

q (L) = 2GMLG
q (2L) [1], does not apply

in the bilayer case due to the interlayer coupling manifesting

itself via the A-dependent factor in equation (24). However,
we still have GNS

q /Gq → 1 for Ro/Ri → ∞ (and arbitrary q).
Also, magnetoconductance oscillations for bilayer disks with
moderate radii ratios are noticeably amplified in the Andreev–
Corbino setup in comparison to the normal Corbino setup (see
figures 2(a) and (b)).

The approximate conditions for maximal and minimal
oscillations, given by equation (21), are essentially valid for
both the normal Corbino and the Andreev–Corbino setups.
The relation |GNS

1 | � |GNS
2 | � |GNS

3 | � . . . is satisfied,
for moderate radii ratios, near the oscillation maxima (even p

in equation (21)), whereas close to the minima one typically
gets GNS

1 � 0 and |GNS
2 | � |GNS

3 | � . . ., leading to the
visible oscillation frequency doubling (see figure 2(b)). In
the normal Corbino setup, with the radii fixed at Ri = 50 l⊥
and Ro = 6.2 Ri, the magnetoconductance is almost constant
(yellow dotted line). On the other hand, if one of the leads is
superconducting, the frequency of conductance oscillations is
doubled in comparison to �−1

0 (green dashed line).

3.2. Finite-doping effects

We now extend our analysis to situations where the Fermi
energy is close but not precisely adjusted to the Dirac point,
keeping the zero bias between the layers (E �= 0 and V = 0).
(Hereinafter, the normal Corbino setup is considered.) The
corresponding magnetoconductance spectra are presented in
figure 4. In the monolayer case, the disk conductance at weak
dopings follows the zero-doping curve for first few oscillation
periods, and then starts to decrease rapidly with increasing
field [1] (see blue dashed lines in all panels of figure 4).
For BLG (see red solid lines) we have a relatively wide
crossover field interval, separating the oscillating and the field-
suppressed conductance ranges. Typically, the conductance
in the crossover interval does not decay monotonically with
the field. Instead, a well-defined magnetoconductance peak
appears, with G � GMLG

diff near the maximum. Below, we
link these features to the presence—in the vicinity of the
Dirac point—of the two independent transmission channels
for any angular momentum quantum number m, characterized
by the transmission probabilities, which are numerically close
to T ±

m (17).
The contribution to the disk conductance originating from

evanescent waves, for either MLG or BLG close to the Dirac
point, can be roughly estimated by

∑
l, eva

Tl ∼
(

Ri

Ro

)2|lmax|
(for Ri � Ro), (25)

where lmax denotes the angular momentum corresponding to
the maximal transmission at E = 0, namely lmax = ηA −
�D/�0, where η = 0 for MLG or η = ±1 for BLG. The
contribution from the propagating waves appearing for E �= 0
is of the order of∑

l, pro

Tl ∼ (k0Ri)
2 (for k0Ri � 1), (26)

where we have defined the wavevector k0 = |E|/(h̄vF).
Quasiperiodic magnetoconductance oscillations can be
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Figure 4. Same as figure 2, but for the Fermi energy E > 0 (specified for each panel). The radii ratio is fixed at Ro/Ri = 8. Blue dashed
and red solid lines correspond to the mono- and bilayer cases (respectively); zero bias (V = 0) is supposed for BLG. Vertical lines mark the
values of �

max, η

D (27) for η = 0 (grey dashed lines) and η = ±1 (grey solid lines).

observed as long as
∑

l, eva Tl �
∑

l, pro Tl , directly leading
to the limits for magnetic fluxes

|�D| � �
max, η

D = 2h

e

[
ηAL − ln (k0Ri)

]
. (27)

The values of �
max, η

D , for η = 0, ±1, are also depicted in
figure 4 (see vertical lines), showing that the flux range defined
as �

max, −1
D � �D � �

max, +1
D coincides with the crossover

field interval for a BLG disk with Ri = 50 l⊥, Ro/Ri = 8 and
|E| � 10−6 eV. For larger Ro, such a coincidence can also be
observed at higher E, provided that �

max, −1
D � 2�0.

3.3. The biased sample case (V �= 0)

We focus now on the effect of a nonzero electrostatic
bias between the layers in the normal Corbino geometry.
The corresponding magnetoconductance spectra for the two
selected radii ratios Ro/Ri = 5 and Ro/Ri = 6.2 (with
Ri = 50 l⊥) are presented in figure 5, where we have fixed the
Fermi energy at E = V/2 = 0.1 eV. The disk conductance
first shows rather irregular behavior with increasing field,
varying in the range 0 < G � GMLG

diff (the corresponding
magnetoconductance spectra for E = V = 0, and for undoped
MLG disks, are also shown in figure 5). For �D � 10 �0,
periodic oscillations are restored, but the average conductance
is 4g0/L = GMLG

diff /2. Also, the oscillation magnitude
	G = 	GMLG. (Notice that we have selected the disk radii
such that 	GBLG is close to the maximal and to the minimal
value in the E = V = 0 case, see green dashed lines.) These
features can be attributed to the splittings of layer and valley
degeneracies of the lowest LL in the presence of a band gap
and magnetic field (see [30]).

Also for higher LLs, the disk conductance oscillates
periodically with �D , qualitatively reproducing the behavior

(a)

(b)

Figure 5. Same as figures 2 and 4, but for the electrostatic bias
between the layers V/2 = E = 0.1 meV (blue solid lines).
Remaining lines show the magnetoconductance spectra for the
Corbino disk in unbiased and undoped BLG (V/2 = E = 0) (green
dashed lines), as well as in undoped MLG (red dash-dot lines). The
values of the radii ratios are Ro/Ri = 5 (top panel) and Ro/Ri = 6.2
(bottom panel).

predicted for the monolayer case in [1]. This is because finite
doping eliminated the level degeneracy associated with the two
layers, even in the absence of the electrostatic bias (V = 0).
For V �= 0, the valley degeneracy no longer applies, and
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the conductance further drops by a factor of 2. A complete
overview of different transport regimes on the field-doping
parameter plane is given in section 4, where we compare (in
a quantitative manner) the magnetoconductance of the Corbino
disks in BLG and in 2DEG.

4. Magnetoconductance of the Corbino disk in 2DEG

For both BLG and 2DEG systems, parabolic bands appear in
the low-energy dispersion relation, and the effective masses
are in the range m�/me = 10−2 to 10−1 (where me denotes the
free electron mass). Therefore, a detailed comparison of the
magnetic field effects described in section 3, with analogous
effects for the Corbino disk in 2DEG, is desired to identify the
role of chiral tunneling of Dirac fermions in BLG. Below, we
extend the mode-matching analysis presented in [27] for the
nonzero field situation.

The effective Schrödinger equation for electrons in a
2DEG system reads[

1

2m�

(
h̄

i
∇ + eA

)2

+ U (r)

]
ψ = Eψ, (28)

where ψ(r) is the complex-scalar wavefunction, the vector
potential A is same as in equation (3) and the Zeeman term
is neglected again. The electrostatic potential energy U(r) is
still given by equation (4), but we no longer assume infinite
doping in the leads, as the mismatch in Fermi velocities results
in zero transmission in such a limit [51–53]4. Instead, U∞ can
be adjusted such that πRi

√
m�(E − U∞)/h̄2 � 10, entering

the multimode leads regime, in which the conductance only
weakly depends on U∞.

Since the Hamiltonian in equation (28) commutes with
the orbital momentum operator Lz = −ih̄∂φ , we choose
wavefunctions of the form ψ (r, φ) = ϕ (r) exp (ilφ), with l

integer. This bring us to solving the effective one-dimensional
scattering problem, with the Schödinger equation

[
−∂2

r − 1

r
∂r +

l2

r2
+

r2

4l4
B

]
ϕ (r) = ζlϕ (r) , (29)

where ζl = 2m� [E − U (r)] /h̄2 − l/ l2
B . For the contact

regions we have l−1
B = 0, and the solutions are given by the

Hankel functions [54], namely

ϕ
(i)
l (r) = H

(1)
l (Kr) + rlH

(2)
l (Kr),

ϕ
(o)
l (r) = tlH

(1)
l (Kr), (30)

where K =
√

2m�(E − U∞)/h̄2, rl (tl) is the reflection
(transmission) coefficient, and we have assumed scattering
from the inner lead.

4 We further notice that the early theoretical works on the Corbino disks
in 2DEG [51, 52] utilized a particular form of the effective radial potential,
leading to conductance quantization. The quantization steps are smeared out
when employing the direct mode-matching technique (see [27]), leading to yet
another surprise when discussing the applicability of the adiabatic expansion
to scattering problems in physics [53].

Figure 6. Conductance as a function of doping and magnetic field
for the Corbino disks in unbiased BLG (left) and in 2DEG (right).
The radii are fixed at Ri = 25 l⊥ � 40 nm and Ro = 4Ri for both
cases. Black dashed lines mark the condition for cyclotronic
diameters 2rC = Ro − Ri. White dotted lines depict the energy
levels given by equation (33).

For the disk area, we get

ϕ
(d)
l (r) = (Cl/r) W�l, l/2

(− 1
2 r2/l2

B

)
+ (Dl/r) W−�l, l/2

(
1
2 r2/l2

B

)
, (31)

where �l = (
l − k2l2

B

)
/2 with k =

√
2m�E/h̄2, Wκ,µ(x) is

the Whittaker function [55], and Cl , Dl are arbitrary constants.
In particular, imposing the normalization of ϕ

(d)
l , one can

obtain the well-known energy quantization

En = h̄ωc (n + 1/2) , (32)

with ωc = eB/h̄ and n = 0, 1, 2, .... For the open system
studied here, the normalization condition for wavefunctions
does not apply, but the LL energies En (32) coincide with the
transmission maxima of Tl = |tl|2.

Carrying out the mode-matching procedure for each value
of l separately (see appendix C for the details), we get the
Landauer–Büttiker conductance G = 2sg0

∑
l Tl for arbitrary

dopings and magnetic fields. For the numerical analysis, we
set the effective mass to be the same as in GaAs systems
m� = 0.067me, the inner radius is Ri = 25 l⊥ � 40 nm and
the doping on the leads is such that E − U∞ = 0.4 eV.

The results are displayed in figures 6 and 7. Both for BLG
and 2DEG disks (see figure 6) we observe, at low magnetic
fields, well-defined conductance maxima corresponding to the
quantum-dot energy levels

Eq =



1

2

[
−t⊥ +

√
t2
⊥ +

(
hvF
L

)2
q2

]
for BLG,

h2q2/ (8m�L) for 2DEG,

(33)

with L ≡ Ro − Ri and q an integer. These maxima
gradually evolve, with increasing field, towards narrow peaks
corresponding to the resonances with LLs, at energies given
by equation (11) for BLG or equation (32) for 2DEG. Away
from the maxima, some background conductance G � g0
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Figure 7. Conductance as a function of doping at fixed B = 5 T.
The parameters are the same as in figure 6. The inset shows the
maximal conductance at the resonance with the n-th LL, for two
different values of the magnetic field (B = 2.5 and 5 T).

appears when the cyclotronic diameter 2rC � L. (Otherwise,
G � g0.) In turn, the ballistic and the quantum-tunneling
transport regimes can be identified for both the systems
considered.

The key difference in charge transport via Corbino disks in
BLG and in 2DEG appears in the quantum-tunneling regime,
and is visualized in figure 7. For BLG, the conductance at the
local maximum corresponding to the resonance with the n-th
LL is Gmax � 2GMLG

diff for n = 0, or Gmax � GMLG
diff for n �= 0.

When increasing the magnetic field, every single resonance
gets narrow in the energy scale, but the peak conductance is
almost unaffected5.

In contrast, transmission resonances for the disk in 2DEG
simply vanish with increasing field (see inset in figure 7), as
the pseudodiffusive charge transport regime does not occur in
this case.

5. Conclusions

We have investigated, by means of analytical mode matching
for the effective Dirac equation, the effects of the interlayer
hopping and the electrostatic bias on magnetoconductance of
a Corbino disk in bilayer graphene. Most remarkably, the disk
conductance still shows periodic (approximately sinusoidal)
oscillations with the applied field, typically with the same
period as in the monolayer case [1, 2], both when the system is
at the Dirac point, or when the values of electrochemical doping
follow the field-dependent position of any higher LL at a given
bias. In any case, the average conductance coincides with
the pseudodiffusive value for a disk-shaped bilayer sample,
provided the degeneracies associated with valley and layer
degrees of freedom are correctly taken into account [30].
A quantitative comparison with a similar system in 2DEG,

5 The system parameters Ri = 25 l⊥ and Ro = 4Ri are adjusted such that
the oscillation magnitude at the Dirac point 	GBLG � 0. At higher LLs,
the relative magnitude is given by 	GMLG/GMLG

diff � 0.05, defining the
range in which the peak conductance may vary with increasing field, namely:
|Gn �=0

max − GMLG
diff | � 	GMLG/2.

for which the conductance gradually decays with increasing
field, makes it clear that the chiral tunneling of Dirac fermions
governs the charge transport through the Corbino disk in
bilayer graphene.

A special feature of the magnetoconductance spectra,
directly linked to the presence of the hopping between the
layers, may be observed for an unbiased disk at the Dirac
point. In such a case, the two periodic contributions to the
disk conductance may interfere constructively or destructively,
depending on the geometric parameters (i.e. the radii Ri and
Ro) and on the interlayer hopping integral (t⊥). For particular
combinations of these variables, obeying the approximation
equation (21), which can be rewritten as

Ro

Ri
�

(
Ri t⊥
2h̄vF

)4/p

with p = 1, 3, 5, . . . , (34)

the interference is maximally destructive, leading to the
approximately field-independent conductance (twice as large
as the pseudodiffusive value for the disk setup in a monolayer
[27]) for moderate radii ratios Ro/Ri � 10 in the normal
Corbino setup, or to the oscillation frequency doubling for
the Andreev–Corbino setup. We notice that the effect that
we described offers, at least in principle, an independent way
of determining the basic microscopic parameters of bilayer
graphene.

Quite remarkably, the energy-gap opening from applying
the external electrostatic bias affects the transport properties
of the Corbino disk in bilayer graphene in a rather unexpected
manner. New features, mentioned above and absent in
the monolayer, appear for unbiased disks at the Dirac
point, whereas the gap opening essentially reduces the
variety of magnetotransport behavior to that earlier described
for monolayer disks. This observation seems particularly
significant, as some experimental works showed that the
energy gap may also appear spontaneously, due to electron–
electron interactions, for bilayer samples close to the charge-
neutrality point [13, 14]. It must be noticed, however, that
the results of other conductance measurements [12] coincide
with theoretical predictions for an unbiased bilayer, leaving an
ambiguity concerning the role of interactions in the system.

The effects of disorder [3], lattice defects [56] or magnetic
impurities [57, 58], which may modify the transport properties
of graphene-based devices, are beyond the scope of this paper
as we have focused on perfectly clean ballistic systems. Certain
features of the results, including the fact that unit transmission
appears periodically (for consecutive normal modes) with
increasing field, and that the oscillation period is proportional
to the ratio of fundamental constants h/e, allow us to believe
that symmetry-protected quantum channels [59] would lead to
magnetoconductance oscillations appearing in a more general
situation as well.
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Appendix A. Wavefunctions

In this appendix, we present the wavefunctions of a charge
carrier in bilayer graphene, having the form of eigenspinors of
the total angular-momentum operator Jz (5), and thus adjusted
for a scattering problem with cylindrical symmetry. The cases
of zero and nonzero magnetic fields, relevant for the leads
and the sample area in the system of figure 1, are discussed
separately.

A.1. Zero magnetic field

Four linearly independent solutions of the Dirac equation
Hψ = Eψ with the Hamiltonian given by equation (3),
corresponding to the angular-momentum quantum number m,
have forms of envelope wavefunctions given by equation (6).
For B = 0, the radial parts of these functions can be written as

φ±
in (r) =




H(1)
m (s±r)

−s± ε−1
u H

(1)
m−1(s±r)

(ε2
u−η±)l⊥ε−1

u H (1)
m (s±r)

s±(ε2
u−η±)l⊥(εuεd)

−1H
(1)
m+1(s±r)


 (A1)

for the waves propagating from r = 0 (the index ± refers to
the two subbands), or

φ±
out(r) =




H(2)
m (s±r)

−s± ε−1
u H

(2)
m−1(s±r)

(ε2
u−η±)l⊥ε−1

u H (2)
m (s±r)

s±(ε2
u−η±)l⊥(εuεd)

−1H
(2)
m+1(s±r)


 (A2)

for the waves propagating from r = ∞, with s± = √
η±,

η± = (
	2 + ε̃2

) ±
√

ε̃2
(
4	2 + 1/l2

⊥
) − 	2/l2

⊥, εu = ε̃ + 	,

εd = ε̃ − 	, H(1)
m (x) (H(2)

m (x)) being the Hankel function of
the first (second) kind [54], and the remaining symbols are the
same as in equation (7). For ε̃ → ∞, the asymptotic forms of
the radial wavefunctions are6

φ±
in (r) �

√
2

πε̃ r
exp

[
i

(
ε̃ r− 1

2
πm− 1

4

)] 


1
−i

∓1
±i


 (A3)

and

φ±
out(r) �

√
2

πε̃ r
exp

[
−i

(
ε̃ r− 1

2
πm− 1

4

)] 


1
i

∓1
∓i


 .

(A4)

6 We use H
(1)
ν (ρ) ≈ √

2/(πρ) exp[i(ρ − νπ/2 − π/4)] for ρ � 1, and
H

(2)
ν (ρ) = [H(1)

ν (ρ)]�.

A.2. Nonzero magnetic field

At the Dirac point (ε = δ = 0), the radial part of the
wavefunction, being a general solution of equation (9), reads

φd(r) = α1




fm(ρ)

0
0

tρfm(ρ)/2


 + α2




0
ρ−1f̄m(ρ)

0
0




+α3




0
tρf̄m(ρ)/2

f̄m(ρ)

0


 + α4




0
0
0

ρ−1fm(ρ)


 , (A5)

where fm(ρ) = exp
(−m lnρ − ρ2/4

)
, f̄m(ρ) = 1/fm(ρ),

αj are arbitrary complex coefficients (taking different values
depending whether the mode-matching analysis is carried out
for the wave incoming from r = 0 given by φ+

in(r) or φ−
in (r);

see appendix B), and the remaining symbols are the same as
in equation (9).

At finite dopings (ε �= 0 or δ �= 0), the radial
wavefunctions are given by

φ±
l (r) =




a±
m,l(ε, δ; ρ)

b±
m,l(ε, δ; ρ)

c±
m,l(ε, δ; ρ)

d±
m,l(ε, δ; ρ)


 ( l = 1, 2 ), (A6)

where the spinor components can be written as

a±
m,1(ε, δ; ρ) = 2(m+1)/2eρ2/4ρm U

(
γ±
2

, m+1, −ρ2

2

)
,

b±
m,1(ε, δ; ρ) = −(δ + ε)−1 2(m+1)/2 eρ2/4 ρm−1

×
[ (

2m + ρ2
)

U

(
γ±
2

, m+1, −ρ2

2

)

+
ρ2

2
γ±U

(
γ±
2

+1, m+2, −ρ2

2

) ]
,

c±
m,1(ε, δ; ρ) = (δ + ε)−1 2(m+1)/2eρ2/4 ρm t−1

× [−γ± + (δ + ε)2 + 2
]

U

(
γ±
2

, m+1, −ρ2

2

)
,

d±
m,1(ε, δ; ρ) = (δ2 − ε2)−1 2(m−1)/2eρ2/4 ρm+1 t−1γ±

× [−γ± + (δ + ε)2 + 2
]

U

(
γ±
2

+1, m+2, −ρ2

2

)
, (A7)

and

a±
m,2(ε, δ; ρ) = 2(m+1)/2eρ2/4ρm Lm

−γ±/2

(
−ρ2

2

)
,

b±
m,2(ε, δ; ρ) = −(δ + ε)−1 2(m+1)/2 eρ2/4 ρm−1

×
[
ρ2 Lm+1

−γ±/2−1

(
−ρ2

2

)
+

(
2m + ρ2

)
Lm

−γ±/2

(
−ρ2

2

)]
,

c±
m,2(ε, δ; ρ) = (δ + ε)−1 2(m+1)/2 eρ2/4 ρm t−1

× [−γ± + (δ + ε)2 + 2
] � (m − γ±/2 + 1)

� (1 − γ±/2)

×F
(

γ±
2

; m+1; −ρ2

2

)
,
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d±
m,2(ε, δ; ρ) = (δ2 − ε2)−1 2(m+1)/2 eρ2/4 ρm+1 t−1

× [−γ± + (δ + ε)2 + 2
] � (m − γ±/2 + 1)

� (−γ±/2)

×F
(

γ±
2

+1; m+2; −ρ2

2

)
. (A8)

We have further defined γ± = (
δ2 + ε2

) ±√
ε2

(
4δ2 + t2

) − δ2t2. La
b (x) is the generalized Laguerre

polynomial (see [54], Chapter 22), U(a, b, x) denotes the con-
fluent hypergeometric function [55], �(z) = ∫ ∞

0 xz−1e−xdx

is the Euler gamma function, F (a; b; z) ≡ 1F1(a; b; z) �(b)

with pFq(a1, . . . , ap; b1, . . . , bq; z) denoting the generalized
hypergeometric function [60], and the remaining symbols are
the same as in equation (9) in the main text.

Appendix B. Transmission eigenvalues

The charge conservation conditions for the interfaces between
the disk area and the leads (r = Ri and r = Ro; see also
figure 1) can be written, in terms of the radial wavefunctions
presented in appendix A, as

φ±
in (Ri) + r±

p φ+
out(Ri) + r±

n φ−
out(Ri) = φd(Ri),

φd(Ro) = t±p φ+
in(Ro) + t±n φ−

in (Ro), (B1)

where we have represented wavefunctions in the leads
following equations (12) and (13) in the main text. If the disk
area is undoped and unbiased (ε = δ = 0), the function φd(r) is
given by equation (A5). Taking the limit of |U∞| → ∞ for the
leads (i.e. choosing the functions φ±

in (r) and φ±
out(r) as given

by equations (A3) and (A4)) and solving the system of linear
equations following from equation (B1), one gets the closed-
form expression for T ±

m transmission eigenvalues for a given
angular momentum quantum number m (see equation (17) in
the main text).

For a more general case of finite dopings in the disk area
(ε �= 0 or δ �= 0), the limit |U∞| → ∞ for the leads, combined
with radial wavefunctions of the form φ±

1 (r) and φ±
2 (r) (see

equations (A6)–(A8)) for the disk area, bring us to the system
of linear equations


−1 −1 a+
m,1 a+

m,2 a−
m,1 a−

m,2 0 0
(ε, δ; ρ0) (ε, δ; ρ0) (ε, δ; ρ0) (ε, δ; ρ0)

−i −i b+
m,1 b+

m,2 b−
m,1 b−

m,2 0 0
(ε, δ; ρ0) (ε, δ; ρ0) (ε, δ; ρ0) (ε, δ; ρ0)

1 −1 c+
m,1 c+

m,2 c−
m,1 c−

m,2 0 0
(ε, δ; ρ0) (ε, δ; ρ0) (ε, δ; ρ0) (ε, δ; ρ0)

i −i d+
m,1c d+

m,2 d−
m,1 d−

m,2 0 0
(ε, δ; ρ0) (ε, δ; ρ0) (ε, δ; ρ0) (ε, δ; ρ0)

0 0 a+
m,1 a+

m,2 a−
m,1 a−

m,2 −R −R
(ε, δ; ρ1) (ε, δ; ρ1) (ε, δ; ρ1) (ε, δ; ρ1)

0 0 b+
m,1 b+

m,2 b−
m,1 b−

m,2 iR iR
(ε, δ; ρ1) (ε, δ; ρ1) (ε, δ; ρ1) (ε, δ; ρ1)

0 0 c+
m,1 c+

m,2 c−
m,1 c−

m,2 R −R
(ε, δ; ρ1) (ε, δ; ρ1) (ε, δ; ρ1) (ε, δ; ρ1)

0 0 d+
m,1 d+

m,2 d−
m,1 d−

m,2 −iR iR
(ε, δ; ρ1) (ε, δ; ρ1) (ε, δ; ρ1) (ε, δ; ρ1)




×




r±
p

r±
n

α±
1

α±
2

α±
3

α±
4

t±p
t±n




=




1
−i

∓1
±i

0
0
0
0




, (B2)

with ρ0 = Ri/lB , ρ1 = Ro/lB and R = √
Ri/Ro. The

elements of the reflection and transmission matrices r̃K,m and
t̃K,m occurring in equation (B2) differ from the corresponding
elements of rK,m and tK,m (see also equation (15) in the main
text) only via phase factors, which are insignificant when
calculating transmission eigenvalues. Solving equation (B2),
one obtains the matrices r̃K,m and t̃K,m for the K valley
and the angular momentum quantum number m. The
reflection and transmission matrices for the K ′ valley can be
obtained from an analogous procedure, starting from radial
wavefunctions modified according to (φ1, φ2, φ3, φ4)

T →
(φ1, −φ2, φ3, −φ4)

T , with a substitution δ → − δ.

Appendix C. Mode matching for a disk in 2DEG

For Schrödinger electrons in the Corbino setup, current
conservation at r = Ri and r = Ro leads to four independent
matching conditions

ϕ
(i)
l (Ri) = ϕ

(d)
l (Ri), ϕ

(d)
l (Ro) = ϕ

(o)
l (Ro),

dϕ
(i)
l

dr

∣∣∣∣∣
Ri

= dϕ
(d)
l

dr

∣∣∣∣∣
Ri

,
dϕ

(d)
l

dr

∣∣∣∣∣
Ro

= dϕ
(o)
l

dr

∣∣∣∣∣
Ro

, (C1)

determining the coefficients rl , tl , Cl and Dl , defined via
equations (30) and (31) in the main text. Let us further define
the wavefunctions in the disk area

ϕ
(d)
1,l (r) = 1

r
W�l,l/2

(
− r2

2l2
B

)
and ϕ

(d)
2,l (r)

= 1

r
W−�l,l/2

(
r2

2l2
B

)
, (C2)

where �l = (
l − k2l2

B

)
/2, k =

√
2m�E/h̄2 and Wκ,µ(x) is

the Whittaker function [55]. (In turn, ϕ
(d)
l (r) ≡ Clϕ

(d)
1,l (r) +

Dlϕ
(d)
1,l (r).) The transmission probability for the angular

momentum quantum number l can now be written as

Tl = |tl|2 = 1

|Ml|2
(

4

πl2
BRiRo

)2

, (C3)

where

Ml = H(1)
l (KRi) H(2)

l (KRo)

×
[
∂rϕ

(d)
1,l (Ro) ∂rϕ

(d)
2,l (Ri) − ∂rϕ

(d)
1,l (Ri) ∂rϕ

(d)
2,l (Ro)

]
+K2

[
∂ρH(1)

l (KRi)
] [

∂ρH(2)
l (KRo)

]
×

[
ϕ

(d)
1,l (Ro) ϕ

(d)
2,l (Ri) − ϕ

(d)
1,l (Ri) ϕ

(d)
2,l (Ro)

]
+KH(1)

l (KRi)
[
∂ρH(2)

l (KRo)
]

10
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×
[
∂rϕ

(d)
1,l (Ri) ϕ

(d)
2,l (Ro) − ϕ

(d)
1,l (Ro) ∂rϕ

(d)
2,l (Ri)

]
+K

[
∂ρH(1)

l (KRi)
]

H(2)
l (KRo)

×
[
ϕ

(d)
1,l (Ri) ∂rϕ

(d)
2,l (Ro) − ∂rϕ

(d)
1,l (Ro) ϕ

(d)
2,l (Ri)

]
, (C4)

and the derivatives are given by

∂ρH(α)
l (ρ) = H(α)

l−1 (ρ) − l

ρ
H(α)

l (ρ) , (C5)

∂rϕ
(d)
α,l (r)=− 1

r2

[ (
2λα�l + 1 +

λαr2

2l2
B

)
Wλα�l, l/2

(
−λαr2

2l2
B

)

+2W1+λα�l, l/2

(
−λαr2

2l2
B

) ]
, (C6)

for α = 1, 2, and λα = −(−1)α .
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This is a theoretical study of finite voltage effects on the conductance, the shot-
noise power and the third, charge-transfer cumulant for graphene-based Corbino
disk in the presence of external magnetic fields. Periodic magnetoconductance
oscillations, predicted in earlier works, become invisible for relatively small
source–drain voltages, as the current decays rapidly with magnetic field. Quantum
interference still governs the behaviour of higher charge-transfer cumulants.

Keywords: graphene; shot noise; Corbino disk; quantum interference

1. Introduction

The Corbino geometry, in which electric current is passed through a disk-shaped sample
area attached to two circular leads [see Figure 1(a), the inset] was proposed over a century
ago [1,2] to measure the magnetoresistance without generating the Hall voltage, making a
significant step towards understanding the nature of charge transport in ordinary solids [3].
An interest in such a geometry has reappeared due to the fabrication of GaAs/AlGaAs
heterostructures [4,5]. Also, after the discovery of high-temperature superconductivity,
Corbino measurements have provided a valuable insight into the vortex dynamics, as the
influence of sample edges was eliminated [6].

In the context of graphene, various transport properties of Corbino disks were recently
studied experimentally [7–10] and theoretically [11–15]. Next to the case of a rectangular
strip geometry [16,17], the Corbino geometry provides another situation when transport
properties of a graphene nanodevice can be investigated analytically [11], by solving the
scattering problem for Dirac fermions, at arbitrary dopings and magnetic fields. In particular,
mode-matching analysis for the effective Dirac equation gives transmission probabilities
for undoped disk in graphene monolayer [11,12]

T (0)
j = 1

cosh2 [( j + �/�0) ln(Ro/Ri)]
, (1)

where j = ± 1
2 ,± 3

2 , . . . is the angular momentum quantum number labelling normal modes
in the leads, � = π(R2

o − R2
i )B is the flux piercing the disk in the uniform magnetic field

∗Corresponding author. Email: adam.rycerz@uj.edu.pl
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(B), Ri is the inner radius , Ro is the outer radius and �0 = 2 (h/e) ln(Ro/Ri). Moreover,
in the derivation of Equation (1), the limit of heavily doped graphene leads [16] is imposed.
Summing Tj -s over the normal modes in the leads, one finds that the Landauer–Büttiker
conductance, in the linear-response regime, shows periodic (approximately sinusoidal)
oscillations with the flux �, with �0 being the oscillations period. Additionally, the disk
conductance averaged over a single period restores the pseudo-diffusive value [18]

Gdiff = 2πσ0

ln(Ro/Ri)
, (2)

with σ0 = (4/π) e2/h being the universal conductivity of graphene. Analogous behaviour
is predicted for higher charge-transfer cumulants [12,19].

In this paper, we extend the analysis beyond the linear-response regime by calculating the
conductance, the Fano factor F quantifying the shot-noise power, and R-factor quantifying
the third charge-transfer cumulant, in a situation when finite source–drain voltage is applied
to graphene-based Corbino disk in the shot-noise limit. Our results show that albeit the
conductance oscillations vanish rapidly with the voltage and magnetic field, F and R
still oscillate periodically and their mean values approach F∞ � 0.76 and R∞ � 0.55
(respectively) in the high-field limit. In the remaining parts of the paper, we first (in Section 2)
recall briefly the formula allowing one to determine the conductance and other charge-
transfer characteristics of graphene-based Corbino disk at arbitrary voltages and magnetic
fields. Next, in Section 3, our numerical results are presented in details. The conclusions
are given in Section 4.

2. Charge-transfer cumulants

In the shot-noise limit eVeff � kB T , with Veff being the effective source–drain voltage
(We assume the inner (or the outer) lead is characterized by the electrochemical potential
μ0 − eVeff /2 (or μ0 + eVeff /2); the actual source–drain voltage may differ from Veff due to
charge-screening effects. ), the charge Q passing a nanoscale device in a time interval �t
is A random variable, with the characteristic function �(χ) given by the Levitov formula
[20]

ln �(χ) ≡ ln 〈exp (iχ Q/e)〉

= 4(σ,v)

�t

h

μ0+ eVeff
2∫

μ0− eVeff
2

dε
∑

j

ln
[
1 +

(
eiχ −1

)
Tj (ε)

]
, (3)

where 〈X〉 denotes the expectation value of X , the factor 4(σ,v) accounts for spin and valley
degeneracies, and we have assumed Veff > 0 without loss of a generality. The average
charge 〈Q〉, as well as any charge-transfer cumulant 〈〈Qm〉〉 ≡ 〈 (Q − 〈Q〉)m 〉, may be
obtained by subsequent differentiation of ln �(χ) with respect to iχ at χ = 0. In particular,
the conductance
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G(Veff ) = 〈Q〉
Veff �t

= e

Veff �t

∂ ln �

∂(iχ)

∣∣∣∣
χ=0

≡ 4(σ,v)e2

h

∑
j

〈
Tj

〉
|ε−μ0|� eVeff

2
, (4)

where transmission probabilities Tj (ε) are averaged over the energy interval |ε − μ0| �
eVeff /2. Analogously,

F(Veff ) = 〈〈Q2〉〉/〈〈Q2〉〉Poisson

=
∑

j

〈
Tj

(
1 − Tj

) 〉
|ε−μ0|� eVeff

2∑
j

〈
Tj

〉
|ε−μ0|� eVeff

2

(5)

and

R(Veff ) = 〈〈Q3〉〉/〈〈Q3〉〉Poisson

=
∑

j

〈
T

(
1 − Tj

) (
1 − 2Tj

) 〉
|ε−μ0|� eVeff

2∑
j

〈
Tj

〉
|ε−μ0|� eVeff

2

, (6)

with 〈〈Qm〉〉Poisson the value of mth cumulant for the Poissonian limit ( Tj (ε) 	 1 ), given
by a generalized Schottky formula 〈〈Qm〉〉Poisson = em−1〈Q〉.

In the case of graphene-based Corbino disk, the energy-dependent transmission proba-
bilities are given by [11]

Tj (ε) = 16 (ε̃2/β)|2 j−1|

ε̃2 Ri Ro (X2
j + Y 2

j )

[
�(γ j↑)

�(α j↑)

]2

, (7)

where ε̃ = ε/(�vF ) with vF � 106 m/s the energy-independent Fermi velocity, β =
eB/(2�), �(z) is the Euler Gamma function and

α js = 1

4

[
2( j + ms + | j − ms | + 1) − ε̃2

β

]
,

γ js = | j − ms | + 1, (8)

with ms = ± 1
2 for the lattice pseudospin s =↑,↓. The remaining symbols in Equation (7)

are defined as:

X j = w−
j↑↑ + z j,1z j,2w

−
j↓↓,

Y j = z j,2w
+
j↑↓ − z j,1w

+
j↓↑, (9)

where

w±
jss′ = ξ

(1)
js (Ri)ξ

(2)

js′ (Ro) ± ξ
(1)
js (Ro)ξ

(2)

js′ (Ri),

z j,1 = [2( j + s j )]−2s j ,

z j,2 = 2(β/ε̃2)s j +1/2, (10)
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with s j ≡ 1
2 sgn( j). The functions ξ

(1)
js (r) and ξ

(2)
js (r) in the first line of Equation (10) are

given by:

ξ
(ν)
js (r) = (ε̃r)| j−ms | exp(−βr2/2)

×
{

M(α js, γ js, βr2), if ν =1,

U (α js, γ js, βr2), it ν =2,
(11)

where M(a, b, z) and U (a, b, z) are the confluent hypergeometric functions [21] (Without
loss of generality, we choose B > 0. For B < 0 one gets Tj (B) = T− j (−B).).

It can be shown that in the zero-energy limit (ε → 0) Equation (7) simplifies to
Equation (1). Similarly, in case the energy is adjusted to a higher Landau level (LL), namely,
ε̃2/(4β) = n = 1, 2, . . . , the transmission probability for j-th normal mode (in the high-
field limit) is T (n)

j = T (0)
j−2n [11]. In effect, periodic magnetoconductance oscillations in

the linear-response regime are followed by similar oscillations of F and R (for analytic
Fourier decompositions, see Ref. [19]), with the mean values

Fdiff = 1/3 and Rdiff = 1/15, (12)

provided the disk is undoped or the doping is adjusted to any higher LL. These are the basic
features of a nonstandard quantum interference phenomenon, which may appear when
charge transport in graphene (or other Dirac system) is primarily carried by evanescent
modes [22].

3. Results and discussion

Several factors, not taken into account in the above analysis, may make it difficult to confirm
experimentally the effects which are described in Refs. [11,12]. These include the influence
of disorder, electron-phonon coupling or electron-electron interactions, i.e. the factors which
are absent (or suppressed) in several analogues of graphene [23–25], and which are beyond
the scope of this paper. Another potential obstacle is related to the fact that resonances with
distinct LLs shrink rapidly with increasing field, making the linear-response regime hard to
access. Here, we point out that theoretical discussion of charge transport through graphene-
based Corbino disk still can be carried out, in a rigorous manner, beyond the linear-response
regime.

For the purpose of numerical demonstration, we choose Ro/Ri = 5, and focus on the
vicinity of the Dirac point by setting μ0 = 0 (We notice that this supposition does not
affect the universality of the results. For any eVeff > 2|μ0|, in the high-field limit, the
leading contributions to averages in Equations (5) and (6) originate from a small vicinity of
the Dirac point. The same reasoning applies to higher LLs). The corresponding oscillation
magnitudes, in the linear-response limit, are [19]

�G(Veff → 0) = 0.11 Gdiff ,

�F(Veff → 0) = 0.27, �R(Veff → 0) = 0.14. (13)

For any finite Veff and any flux �, the averages in Equations (4), (5) and (6) can be calculated
numerically after substituting Tj (ε) given by Equation (7). Our main results are presented
in Figures 1–3.
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(a)

(b)

(c)

Figure 1. (colour online) Variation ranges for the finite-voltage conductance (a), Fano factor (b), and
R-factor (c) in cases the magnetic flux � piercing the disk area Ri < r < Ro [see inset in panel (a)]
is varied in the limits given by Equation (14) with m� = 3 and m� = 7. The values for � = 0 are
also shown.
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(a)

(b)

(c)

Figure 2. (colour online) Magnetic flux effect on the finite-voltage conductance (a), Fano factor (b),
and R-factor (c). The effective source–drain voltage Veff is specified for each curve.

D
ow

nl
oa

de
d 

by
 [

14
9.

15
6.

41
.6

4]
 a

t 0
5:

04
 2

4 
M

ay
 2

01
5 



Philosophical Magazine 605

(a)

(b)

(c)

Figure 3. (colour online)Average values X (a) and oscillation magnitudes �X = max (X)−min (X)
(b), with X = F (squares) and X = R (circles), calculated for several consecutive flux intervals
defined by Equation (14). Open (or closed) symbols at each panel correspond to eVeff Ri/(�vF ) =
0.25 (or 0.5). Lines in panels (a) and (b) depict the linear-response values given by Equations (12)
and (13). Panel (c) illustrates the scaling of F and R with 1/m� → 0 (see the main text for details).

First, in Figure 1(a)–(c), we have depicted the values taken by G(Veff ), F(Veff ) and
R(Veff ), when the flux is varied in separate intervals, each of which having �0 width,
namely,

(m�−1)�0 ≤ � ≤ m��0, m� = 1, 2, . . . . (14)

The two shaded areas are for m� = 3 and m� = 7; distinct solid line (at each panel)
depicts the corresponding charge-transfer characteristic at � = 0. It is clear from Figure 1
that G(Veff ) is strongly suppresed by the magnetic field provided that eVeff � �vF/Ri. For
higher Veff , the ballistic transport regime is entered, leading to G(Veff ) ∝ Veff , F(Veff ) �
0.2 and R(Veff ) � 0 in the eVeff � �vF/Ri limit. Most remarkably, for 0 < eVeff �
�vF/Ri and the highest discussed flux interval (m� = 7), F(Veff ) and R(Veff ) take the
values from narrow ranges around F � 0.7 and R � 0.5 [see Figure 1(b) and (c)],
coinciding with recent findings for transport near LLs in graphene bilayer [26].

These observations are further supported with the data presented in Figure 2, where
the conductance and other charge-transfer characteristics are plotted directly as functions
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606 G. Rut and A. Rycerz

Table 1. Limiting values of period-averaged F , R and oscillation magnitudes �F , �R obtained
by least-squares fitting of the parameters in Equation (15). Numbers in parentheses are standard
deviations for the last digit (see also Ref. (We have fixed the voltage at eVeff Ri/(�vF ) = 0.5 for the
data presented. No statistically signifficant effects were detected for other Veff -s in the 1/m� → 0
limit.)).

Ro/Ri F∞ �F∞ R∞ �R∞

2.5 0.761(1) 0.0014(1) 0.552(3) 0.0064(2)
5.0 0.763(1) 0.061(1) 0.555(2) 0.017(1)
10 0.771(5) 0.191(2) 0.56(1) 0.170(2)

of �, for selected values of Veff . Although G(Veff ) decays relatively fast with � for any
Veff �= 0, such that magnetoconductance oscillations are visible for eVeff 	 �vF/Ri
only [see Figure 2(a)], F(Veff ) and R(Veff ) show periodic oscillations at high fields for
arbitrary Veff [see Figure 2(b) and (c)]. In order to describe these oscillations in a quantitative
manner, we have calculated numerically the average values of F(Veff ) and R(Veff ), as well
as the corresponding oscillation magnitudes, for several consecutive flux intervals defined
by Equation (14), and depicted them as functions of the interval number (m�) in Figure
3(a) and (b). Next, the scaling with 1/m� → 0 is performed by least-squares fitting of the
approximating formula

Y [m�] � Y∞ + AY

(
1

m�

)2

, (15)

for Y = F , R, �F , and �R. The examples of F [m�] and R[m�] are presented in Figure
3(a); the values of Y∞ for different ratios Ro/Ri are listed in Table 1 (We have fixed the
voltage at eVeff Ri/(�vF ) = 0.5 for the data presented. No statistically signifficant effects
were detected for other Veff -s in the 1/m� → 0 limit.).

A striking feature of the results presented in Table 1 is the total lack of effects of both
the radii ratio Ro/Ri and the source–drain voltage Veff on limiting values of F∞ and R∞.
(In contrast, �F∞ and �R∞ strongly depends on Ro/Ri.) This fact allows us to expect
the quantum-limited shot noise, characterized by

F∞ � 0.76 and R∞ � 0.55, (16)

to appear generically in graphene-based nanosystems at high magnetic fields and for finite
source–drain voltages, similarly as pseudo-diffusive shot noise (with Fdiff = 1/3 and
Rdiff = 1/15) appears generically at the Dirac point in the linear-response limit.

4. Conclusions

We have investigated the finite-voltage effects on the magnetoconductance, as well as the
magnetic field dependence of the shot-noise power and the third charge-transfer cumulant,
for the Corbino disk in ballistic graphene. Periodic magnetoconductance oscillations, earlier
discussed theoretically in the linear-response limit [11,12], are found to decay rapidly with
increasing field at finite voltages. To the contrary, the F and R-factors, quantifying the
higher charge-transfer cumulants, show periodic oscillations for arbitrary high fields, for
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both the linear-response limit and the finite-voltage case. Although such oscillations must
be regarded as signatures of a nonstandard quantum interference phenomena, specific for
graphene-based disks near zero doping (and having counterparts for higher Landau levels),
the parameter-independent mean values of F∞ � 0.76 and R∞ � 0.55 suggest the
existence of a generic, finite-voltage and high-field analogue of a familiar pseudo-diffusive
charge-transport regime in ballistic graphene.

We hope our findings will motivate some experimental attempts to understand the
peculiar nature of quantum transport via evanescent waves in graphene, which manifests
itself not only in the well-elaborated multimode case of wide rectangular samples [16–18],
but also when a very limited number of normal modes contribute to the system conductance
and other charge-transfer characteristics, as in the case of Corbino disks with large radii
ratios Ro/Ri � 1. Albeit the discussion is, in principle, limited to the system with a
perfect circular symmetry and the uniform magnetic field, special features of the results,
in particular, the fact that mean values of the F and R-factors are insensitive to the radii
ratio and to the voltage, allow us to believe that quantum-limited shot noise as well as the
signatures of quantum interference should appear in more general situations as well.
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Trigonal warping, pseudodiffusive transport, and finite-system version of the Lifshitz
transition in magnetoconductance of bilayer-graphene Corbino disks

Grzegorz Rut and Adam Rycerz
Marian Smoluchowski Institute of Physics, Jagiellonian University,  Lojasiewicza 11, PL–30348 Kraków, Poland

(Dated: January 21, 2015)

Using the transfer matrix in the angular-momentum space we investigate the impact of trigonal
warping on magnetotransport and scaling properties of a ballistic bilayer graphene in the Corbino
geometry. Although the conductivity at the charge-neutrality point and zero magnetic field ex-
hibits a one-parameter scaling, the shot-noise characteristics, quantified by the Fano factor F and
the third charge-transfer cumulant R, remain pseudodiffusive. This shows that the pseudodiffusive
transport regime in bilayer graphene is not related to the universal value of the conductivity but
can be identified by higher charge-transfer cumulants. For Corbino disks with larger radii ratios
the conductivity is suppressed by the trigonal warping, mainly because the symmetry reduction
amplifies backscattering for normal modes corresponding to angular-momentum eigenvalues ±2~.
Weak magnetic fields enhance the conductivity, reaching the maximal value near the crossover field

BL = 4
3

√
3 (~/e) t′t⊥

[
t20a(Ro−Ri)

]−1
, where t0 (t⊥) is the nearest-neighbor intra- (inter-) layer hop-

ping integral, t′ is the skew-interlayer hopping integral, and Ro (Ri) is the outer (inner) disk radius.
For magnetic fields B & BL we observe quasiperiodic conductance oscillations characterized by the
decreasing mean value 〈σ〉−σ0 ∝ BL/B, where σ0 = (8/π) e2/h. The conductivity, as well as higher

charge-transfer cumulants, show beating patterns with an envelope period proportional to
√
B/BL.

This constitutes a qualitative difference between the high-field (B � BL) magnetotransport in the
t′ = 0 case (earlier discussed in Ref. [1]) and in the t′ 6= 0 case, providing a finite-system analog of
the Lifshitz transition.

PACS numbers: 72.80.Vp, 73.43.Qt, 73.63.-b

I. INTRODUCTION

Bilayer graphene (BLG) rises as a top-tier candidate
material for the upcoming carbon-based electronics [2–
4] either due to a tunable band gap [5] or due to
topologically-protected quantum channels along domain
walls [6–8], recently proposed to host nonlocal Einstein-
Podolsky-Rosen pairs [9]. Low-energy physics of BLG
is mainly governed by microscopic parameters describing
the coupling between the two layers [5], some of which
are still far from being precisely determined.

In the most common Bernal stacking, the leading tight-
binding parameters: the intralayer hopping integral be-
tween nearest neighbors t0 = 3.16 eV, and the nearest
neighbor interlayer hopping integral t⊥ = 0.38 eV, are
both link to the basic BLG band-structure characteris-
tics, which are the Fermi velocity

vF =

√
3 t0a

2~
≈ 106 m/s (1)

and the electron effective mass

meff =
t⊥

2v2
F

≈ 0.033me, (2)

where a = 0.246 nm is the lattice constant in a single
layer and me is the free electron mass. For the next-
nearest neighbor (or skew) interlayer hopping integral t′,
the corresponding characteristic is the Lifshitz energy

EL =
1

4
t⊥ (t′/t0)

2
, (3)

which can be defined as a value of the electrochemical po-
tential below which the Fermi surface splits into a four-
element manifold. EL is difficult to be directly deter-
mined in the experiment; values of t′ obtained from the
infrared spectroscopy covers the range from 0.10 eV [10]
up to 0.38 eV [11].

On the other hand, in BLG even a tiny band structure
modification near the Dirac point due to t′ 6= 0 may have
a significant impact on the minimal conductivity [12].
For t′ = 0, both the mode-matching analysis [13] and the
Kubo formalism [14] lead to

σ0 = 2σMLG =
8e2

πh
, (4)

where σMLG denotes the universal conductivity of
a monolayer [15–17]. For t′ 6= 0, similar theoretical
considerations show the conductivity σ(L) is no longer
universal but size-dependent, and monotonically grows
with the system size L. Depending on the crystallo-
graphic orientation of a sample, the conductivity ap-
proaches (7/3)σ0 6 σ(∞) 6 3σ0 [18]. The transport
anisotropy appears as the secondary Dirac cones, present
for t′ 6= 0, break the rotational invariance of the disper-
sion relation [19]. In principle, the experimental study
of σ(L) for clean bilayer samples should be sufficient to
determine t′ [20], also in the presence of small interaction-
induced energy gap [21–23]. (For instance, the value
of σ ≈ 2.5σ0 reported by Mayorov et al. [24] coincides
with the above-mentioned large-L predictions.) Unfortu-
nately, device-to-device conductance fluctuations in real
disordered systems may put the effectiveness of such a
procedure in question. For this reason, new phenomena,
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unveiling the influence of t′ on transport characteristics
which can be measured in a single-device setup, are de-
sired.

In this paper, we consider the Corbino geometry, in
which a disk-shaped sample is surrounded from both inte-
rior and exterior sides with metallic leads [see Fig. 1(a)].
Such a choice is motivated by the absence of boundary
effects, and irrelevance of the sample crystallographic ori-
entation. It is worth to stress that anisotropic aspects of
quantum transport are still present in such a system as
the rotational symmetry is intrinsically broken due to
trigonal warping. In effect, the total angular momen-
tum is not conserved, and the standard mode-matching
method cannot be applied as in simpler systems stud-
ied earlier (namely, the monolayer disk [25, 26] and the
BLG disk with t′ = 0 [1]). Here, we overcome this
difficulty by developing a numerical transfer-matrix ap-
proach in the angular momentum space. Contrary to
real-space discretization applied in some related works
[27–29], our approach takes benefit from the sparsity of
transfer matrix in such a representation allowing highly-
efficient (albeit conceptually simple) transport calcula-
tions for physical disk diameters exceeding 10µm. Re-
cently developed linear-scaling approach employing the
time evolution scheme [30] seems to be a possible coun-
terpart but its efficient adaptation for calculating higher
charge-transfer cumulants might be difficult.

The paper is organized as follows. In Sec. II we present
details of the system considered, the effective Dirac equa-
tion for low-energy excitations, and provide a description
of our numerical procedure. Sec. III focuses on the size
dependence of the conductivity σ, the Fano factor F , and
the third charge-transfer cumulant for BLG Corbino disk
at zero magnetic field. In Sec. IV, the effects of perpen-
dicular magnetic field on the above-mentioned transport
characteristics are discussed. Also in Sec. IV, the nu-
merical results for the disk are compared with analytical
ones, obtained for an artificial system [a rectangular de-
vice with periodic boundary conditions, see Fig. 1(b)],
for which the mode-matching analysis is possible, and
the universal magnetoconductance characteristics, rele-
vant for large system sizes and high magnetic fields, are
identified. The conclusions are given in Sec. V.

II. THE MODEL AND THE NUMERICAL
APPROACH

A. Effective Dirac equation

The Corbino disk in Bernal-stacked BLG is depicted
schematically in Fig. 1(a). We start our analysis from
the four-band low-energy Hamiltonian for K valley [5],

Ri Ro

(a) (b)

r

U(r)

U1

E

W

L

Ri Ro

B

x

z

y

B = (0, 0, B)

FIG. 1: Systems discussed in the paper (schematic). (a) The
Corbino disk in Bernal-stacked bilayer graphene. The current
flows through the disk-shaped area with the inner radius Ri

and the outer radius Ro in a perpendicular magnetic field
B = (0, 0, B). The coordinate system and the electrostatic

potential U(r) (with r =
√
x2 + y2) are also shown. The

leads (white areas) are modeled as infinitely-doped graphene
regions (|U∞| → ∞). (b) An artificial (nanotube-like) system
formed of a BLG strip of the width W , contacted by two
electrodes at a distance L in uniform field B, upon applying
periodic boundary conditions.

which is given by

H =




0 π t⊥ 0
π† 0 0 νπ
t⊥ 0 0 π†

0 νπ† π 0


+ U(r), (5)

where π = vF (px + ipy) = −i~vF eiϕ
(
∂r + i

∂ϕ
r − eB

2~ r
)

,

with the gauge-invariant momenta pj = (−i~∂j +
eAj) (j = 1, 2) and the symmetric gauge (Ax, Ay) =
(B/2)(−y, x) corresponding to the uniform magnetic field
parallel to z-axis. We have further defined the dimen-
sionless parameter ν = t′/t0, and introduced the polar
coordinates (r, ϕ). The potential energy U(r) depends

only on r =
√
x2 + y2, and the remaining symbols are

the same as in Eqs. (1–3). As mentioned earlier, the
available values of t′ following from different experimen-
tal [10, 11, 31] and computational [32] approaches are far
from being consistent. Magnetotransport through BLG
disk with t′ = 0 were discussed in analytical terms in Ref.
[1]. In this paper we take the values of t′ varying from
0.1 eV up to 0.3 eV in order to investigate numerically
how it affects the system behavior.

For the disk area, Ri < r < Ro, we set U(r) = 0 and
the effective Dirac equation Hψ = Eψ (with E the Fermi
energy) can be written as




ε −f −it 0
−f∗ ε 0 −νf
−it 0 ε −f∗
0 −νf∗ −f ε


ψ (r, φ) = 0, (6)

where t = t⊥/(~vF ) ≡ l−1
⊥ , f = eiϕ

(
∂r + i

∂ϕ
r − 1

2l2B
r
)

,

ε = E/(~vF ), and the magnetic length lB =
√

~/(e|B|).



3

In the absence of trigonal warping (ν = 0) the system
possesses a cylindrical symmetry and the effective Hamil-
tonian (5) commutes with the total angular momentum
operator [33]

Jz = −i~∂ϕ +
~
2

(
σ0 0
0 −σ0

)
+

~
2

(
−σz 0

0 σz

)
, (7)

where σ0 is the 2 × 2 identity matrix, and σz is one of
the Pauli matrices. In such a case, the wavefunctions
are products of angular and radial parts φm (r, ϕ) =

eimϕ
[
φm1 , e

−iϕφm2 , φ
m
3 , e

iϕφm4
]T

(r) with m being an in-
teger angular-momentum quantum number.

B. Outline of the approach

In the presence of trigonal warping (ν 6= 0) the
cylindrical symmetry is broken, and the wavefunctions
do not correspond directly to eigenstates of Jz. A
generic workaround has been developed for systems with
symmetry-breaking potentials (or impurities), where
one can still express wavefunctions as linear combi-
nations of eigenfunctions of an ideal system [34–36].
Souma and Suzuki [35] considered quantum transport
through Corbino disks in two-dimensional electron gas
and showed that the effects of impurities can be stud-
ied numerically, starting from truncated wavefunctions
in the basis of angular-momentum eigenstates. Here we
adapt this method for BLG Corbino disk, as the term
proportional to ν in the Hamiltonian (5) can be regarded
as a peculiar type of a symmetry-breaking potential.

A general solution of the Dirac equation (6) can be
written as an infinite linear combination of angular mo-
mentum eigenfunctions, namely

ψ (r, φ) =
∑

m

amφ
m (r, ϕ) , (8)

with arbitrary amplitudes am, m = 0,±1,±2, . . . . Mul-
tiplying the Dirac equation (6) by the factor e−ilϕ (with l
an arbitrary integer) and integrating over the polar angle
ϕ, we obtain the system of equations

∂rφ
l
1 = −g (l, r)φl1 + iεφl2 + iνtφl−3

1

−iνεφl−3
3 + 2νg (l − 2, r)φl−3

4 ,

∂rφ
l
2 = iεφl1 + g (l − 1, r)φl2 − itφl3,

∂rφ
l
3 = g (l, r)φl3 + iεφl4 + iνtφl+3

3

−iνεφl+3
1 − 2νg (l + 2, r)φl+3

2 ,

∂rφ
l
4 = −itφl1 + iεφl3 − g (l + 1, r)φl4, (9)

where

g (l, r) =
l

r
+

r

2l2B
. (10)

Notice that the terms proportional to ν correspond to
the mode mixing due to trigonal warping. The D3d dihe-
dral symmetry of these terms (coinciding with the BLG

lattice symmetry) results in the fact that equation for
φl is coupled only to φl−3 and φl+3, which tremendously
simplifies the numerical integration.

Eqs. (9) and (10), along with the mode-matching con-
ditions for r = Ri and r = Ro (we model the leads
as heavily-doped BLG areas), allows us to construct a
transfer matrix (see Appendix A for details) which can
be utilized in the Landauer-Büttiker formalism in order
to calculate the conductivity and other charge-transfer
characteristics. Typically, the convergence is reached for
the wavefunction truncated by taking |l| . M in Eq.
(9), with M = 25 − 500 depending on the system size,
the strength of the trigonal warping, and the applied
field (with the upper value corresponding to Ro ≈ 5µm,
t′ = 0.3 eV, and B ≈ 80 T). Other computational aspects
are also described in Appendix A.

III. QUANTUM TRANSPORT DEPENDENCE
ON THE SYSTEM SIZE

A. One-parameter scaling

A particularly intriguing property, arising from the
earlier theoretical study of ballistic transport in BLG
with skew interlayer hoppings (t′ 6= 0), is the one-
parameter scaling [23]. In the absence of disorder and
electron-electron interactions the scaling function

β(σ) =
d lnσ

d lnL
, (11)

which plays a central role in conceptual understand-
ing of the metal insulator transition [37], reproduces
the scenario predicted for disordered Dirac systems with
Coulomb interaction [38]. Here, the discussion is comple-
mented by calculating the Fano factor F quantifying the
shot-noise power, and the factor R quantifying the third
charge transfer cumulant.

Employing the Landauer-Büttiker formula for the
linear-response regime one can write [39]

σ = g0ΘαTrT, (12)

F =
Tr [T (1−T) ]

TrT
, (13)

R =
Tr [T (1−T) (1− 2T) ]

TrT
, (14)

where g0 = 4e2/h is the conductance quantum (with the
factor 4 following from the spin and valley degeneracies),
the dimensionless prefactor (Θα) in Eq. (12) is equal to
ΘCor = ln(Ro/Ri)/(2π) for the Corbino geometry of Fig.
1(a) or Θrec = L/W for the rectangular geometry [40],
and T = t†t, with t the transmission matrix determined
via the transfer matrix (see Appendix A). It was shown in
Refs. [20] and [23] that the conductivity of ballistic BLG
with t′ 6= 0 scales with the system size. For a rectangular
geometry, we still get σ ≈ σ0 for small systems, while
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for the larger ones (L & 500 nm) the conductivity can be
rationalized as

σ(L) ' σ? [ 1− (λ/L)
γ

] , (15)

with typical parameters

σ? ≈ 3σ0, γ ≈ 0.5, (16)

and λ depending both on t′ and the sample orientation
[23]. The approximating formula given by Eqs. (15) and
(16) applies for generic crystallographic orientation of
the sample. However, for some particular orientations
one obtains different asymptotic behaviors, including a
slower power-law convergence to σ? with the exponent
γ ≈ 0.25 if the current is passed precisely along an arm-
chair direction [20], or the oscillating conductivity with
the lower bound of σ . (7/3)σ0 if the current is passed
precisely along a zigzag direction [18]. Such issues are
absent in the Corbino geometry, allowing one to focus on
the universal scaling properties of the material.

TABLE I: Least-squares fitted parameters in Eq. (15) cor-
responding to the lines in Fig. 2. The last column gives the
values of L0.01/`, such that the function given by Eq. (15)
matches the actual conductivity with 1% accuracy.

t′ (eV) ` (nm) σ? (8e2/h) λ (nm) γ L0.01/`

0.1 352 0.97 97 0.47 6.21

0.2 176 0.97 40 0.49 5.19

0.3 117 0.98 21 0.48 4.44

TABLE II: Least-squares fitted parameters in Eq. (15) cor-
responding to the lines in Fig. 3. The last column is same as
in Table I, but for Ro/Ri = 1.5.

t′ (eV) ` (nm) σ? (8e2/h) λ (nm) γ L0.01/`

0.1 352 1.01 110 0.48 4.79

0.2 176 1.00 38 0.49 4.29

0.3 117 1.02 23 0.49 3.79

In the numerical calculations presented in this section,
we chose radii ratios Ro/Ri = 2 and Ro/Ri = 1.5, for
which the number of nonzero transmission eigenvalues
Tl is relatively large even at the charge-neutrality point,
allowing one to expect some remainders of the pseudod-
iffusive behavior known for a monolayer [16, 40]. It is
also worth to mention that such radii ratios are close to
that of real Corbino device in a monolayer [41]. A mul-
timode character of the charge transport, combined with
a mode mixing due to the trigonal warping, and with
a necessity to study large systems in attempt to demon-
strate a one-parameter scaling, provides us with an ex-
cellent test case to investigate computational aspects of
the numerical approach presented in Section IIB. (For
the details, see Appendix A.)

Zero-magnetic field results are presented in Figs. 2, 3,
4, and 5. In order to present the data for different t′ on
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FIG. 2: Minimal conductivity of unbiased BLG Corbino
disk with the radii ratio Ro/Ri = 2 as a function of the radii
differenceRo−Ri, specified in the units of ` [see Eqs. (17,18) in
the main text], for different values of t′. Triangles, squares and
circles represent the data obtained numerically for t′ = 0.3 eV,
t′ = 0.2 eV, and t′ = 0.1 eV (respectively), with the lines (dot-
dashed, solid and dotted) depicting the approximating Eq.
(15) with best-fitted parameters listed in Table I. The inset
in the top panel presents the scaling function β(σ) [see Eq.
(11)], with L ≡ Ro − Ri, extracted numerically from σ (Ri)
datasets. (Notice that the best-fitted lines almost overlap
each other.) The bottom panel is a zoom in, for smaller radii
differences, which allows to depict the region where the actual
value of the conductivity may deviate from Eq. (15). We
further notice that only selected datapoints from the bottom
panel are shown in the top panel for clarity.

a single plot, we have defined the length `, related to the
distance between primary and secondary Dirac points in
quasimomentum space

2π

`
≡ k` =

ν

l⊥
=

2

3

√
3
t′t⊥
t20a

, (17)

leading to

` t′ = 35.2 nm·eV. (18)

Briefly speaking, the actual conductivity reaches a
close-to-asymptotic behavior, described by Eq. (15) with
L ≡ Ro − Ri, for radii differences lying in a relatively
narrow interval of 4 . L/` . 6 (notice that varying the
skew-interlayer hopping from t′ = 0.1 eV to t′ = 0.3 eV is
equivalent to changing the parameter ` by a factor of 3
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FIG. 3: Same as Fig. 2 but for the radii ratio Ro/Ri = 1.5.
For the parameters in Eq. (15) corresponding to the lines
depicted, see Table II.
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FIG. 4: The Fano factor F [red solid lines] and the third
charge transfer cumulantR [blue dashed lines] for the Corbino
disk with Ro/Ri = 2 as functions of Ro−Ri. Skew-interlayer
hopping t′ is varied between the panels. For large system
size, where the Fabry-Perot oscillations become negligible, the
numerical results obtained in the presence of trigonal warping
approach the pseudodiffusive values of F = 1/3 andR = 1/15
[horizontal lines].
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FIG. 5: Same as Fig. 4 but for Ro/Ri = 1.5.

between the datasets). For larger L, lines in Figs. 2 and
3, corresponding to Eq. (15) with the least-squares fitted
parameters σ?, λ, and γ listed in Tables I and II, are
closely followed by the datapoints obtained numerically
for t′ = 0.1 eV, 0.2 eV, and 0.3 eV. For each case, the spe-
cific value of L0.01; i.e, the radii difference above which
the approximating Eq. (15) matches the actual conduc-
tivity with an accuracy better than 1%; is also given in
Table I or II. For smaller L, in particular for L/` ∼ 1 [see
bottom panels in Figs. 2 and 3], the conductivity becomes
nonuniversal (both parameter- and geometry-dependent
[42]) approaching σ0 for L� `.

Although the conductivity strongly deviates from the
pseudodiffusive value σ0 (even for the lowest considered
value of t′ = 0.1 eV), the shot-noise power and the third
charge-transfer cumulant are close to their pseudodiffu-
sive values, i.e., F ≈ 1/3 and R ≈ 1/15, which are usu-
ally approached for 4 . L/` . 6 (see Figs. 4 and 5).

The approximating Eq. (15) leads, via Eq. (11), to the
scaling function of the form

β(σ) ' − γ (1− σ?/σ) . (19)

In turn, the parametres γ and σ? defines the position
and the slope coefficient at the attractive fixed point
(β(σ?) = 0, β′(σ?) > 0) of the renormalization group
flow [23]. The scaling functions β(σ) [see Eq. (11)], calcu-
lated numerically for the Corbino disks with Ro/Ri = 2
and Ro/Ri = 1.5 (see insets in Figs. 2 and 3, respec-
tively), t′ = 0.1 eV, 0.2 eV, and 0.3 eV, suggest that
one-parameter scaling is universal with respect to the
strength of the trigonal warping. These numerical results
coincide with the corresponding analysis of Ref. [23] for
a rectangular sample.
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B. Crossover to a quantum-tunneling regime

It was pointed out that generic MLG billiard with (at
least) one narrow opening shows a crossover to the so-
called quantum-tunneling transport regime [40], in which
charge-transfer characteristics are governed by a limited
number of quantum channels, with transmission proba-
bilities showing a power-law decay with the system size.
In particular, for an undoped Corbino disk the conduc-
tance G = 2πσ/ ln(Ro/Ri) at zero field reads

GMLG

g0
=

∑

j=± 1
2 ,± 3

2 ,...

1

cosh2 [ j ln(Ro/Ri) ]
' 8Ri

Ro
, (20)

where the asymptotic form applies for Ro � Ri, and rep-
resents contributions from the two channels with angular-
momentum quantum numbers j = −1/2 and 1/2.

For BLG billiards, the conformal mapping technique
employed in Ref. [40] cannot be utilized even in the
absence of trigonal warping, and the existence of a
quantum-tunneling regime is not obvious. For BLG
Corbino disk the conductance, for t′ = 0 and at the
charge-neutrality point, can be written as [1]

GBLG(t′ = 0)

g0
=
∑

m

(
T+
m + T−m

)
, (21)

T±m =
1

cosh2 [ (m±A) ln (Ro/Ri) ]
, (22)

where the transmission probabilities T±m (with m =
0,±1,±2, . . . being the angular-momentum quantum
number) correspond to eigenvalues of the matrix T = t†t
in Eqs. (12–14), and we have further defined

A =− ln
(

Υ−
√

Υ2 − 1
)

2 ln (Ro/Ri)
, (23)

Υ = cosh

[
ln

(
Ro

Ri

)]
+
R2

o−R2
i

4l2⊥
sinh

[
ln

(
Ro

Ri

)]
. (24)

We focus now on the system behavior for Ro � Ri �
l⊥ [43]. In such a parameter range, Eqs. (23, 24) lead to

A ≈ 3

2
+

ln [Ri/ (2l⊥) ]

ln (Ro/Ri)
. (25)

For any integer A = q > 2 the conductance, analyzed
as a function of Ro/Ri, reaches a local maximum with
GBLG ≈ 2g0, following from the presence of two ballistic
channels with T−q = T+

−q = 1 [see Eqs. (21) and (22)],
occurring at

Ro

Ri
≈
(
Ri

2l⊥

)2/(2q−3)

. (26)

Similarly, Eq. (26) with half-odd integer q > 5/2 ap-
proximates a local conductance minimum (as A ≈ q)
with GBLG ≈ 16g0Ri/Ro; i.e., twice as large as the

MLG disk conductance, see Eq. (20); and four dom-
inant channels characterized by T−q+1/2 = T+

−q−1/2 ≈
T−q−1/2 = T+

−q+1/2 ≈ 4Ri/Ro. In turn, a quantum-

tunneling regime reappears periodically when varying
Ro/Ri, near any local conductance minimum. The num-
ber of well-pronounced minima can roughly be estimated
as 0.72 × ln[Ri/(2l⊥) ], as for Ro/Ri . 4 the system en-
ters a multimode pseudodiffusive transport regime. On
the other hand, for Ro/Ri & R2

i /(4l
2
⊥), where the thresh-

old value corresponds to the last conductance maximum
following from Eq. (26) with q = 2, charge transport is
governed by two equivalent channels, with angular mo-
menta ±2~ and T−2 = T+

−2 monotonically decaying with
increasing Ro/Ri. This suggests the system may re-enter
a quantum-tunneling limit for Ro/Ri � R2

i /(4l
2
⊥).

In fact, for a fixed Ri � l⊥ and Ro →∞ we have A →
3/2, and such a limit can be regarded as an additional
conductance minimum. The asymptotic form of Eq. (21)
then reads

GBLG(t′ = 0)

g0
' 2R3

i

l2⊥Ro
(Ri � l⊥, Ro →∞). (27)

Although qualitative features of the quantum-tunneling
regime for the Corbino geometry are reproduced [in par-
ticular, GBLG(t′ = 0) ∝ R−1

o ], the asymptotic conduc-
tance is elevated by a large factor of R2

i /(4l
2
⊥) in com-

parison to the MLG disk case [44].
In Fig. 6, we compare the conductance (in the top

panel) and the effective number of transmission channels
(in the bottom panel)

Nch =
G

g0 (1−F)
=

(
∑
l Tl)

2

∑
l T

2
l

, (28)

with the index l ≡ (m,±) accounting for angular-
momenta and layer degrees of freedom, following from
Eqs. (21–24) [red lines] for t′ = 0; as well as for the case
of decoupled MLG disks (t⊥ = t′ = 0) [blue lines]; with
the numerical results obtained from Eqs. (12) and (13)
for t′ = 0.1 eV, 0.2 eV, and 0.3 eV [remaining lines]. The
inner radius is fixed at Ri = 15 l⊥, and the outer radius
is varied in the range of 1.5 < Ro/Ri < 80. The effects
of trigonal warping are visible for all radii ratios consid-
ered, and become particularly significant when approach-
ing Ro/Ri = R2

i /(4l
2
⊥) ≈ 56, corresponding to A ≈ 2

[following from Eq. (25)]. In such a parameter range,
G systematically decreases, whereas Nch systematically
increases when enlarging t′. We also notice that Fabry-
Perot resonances, corresponding to integer k`(Ro − Ri),
are visible for t′ 6= 0, indicating the contribution from
secondary Dirac points.

For smaller radii ratios, including Ro/Ri = 7.5 (cor-
responding to A ≈ 5/2) and Ro/Ri = 3.83 (correspond-
ing to A ≈ 3) [see vertical lines in Fig. 6], the system
is close to the pseudodiffusive charge-transport regime.
In the t′ = 0 case, the conductance minimum is shifted
from Ro/Ri = 7.5 to Ro/Ri ≈ 10 due to the influence
of transmission channels with higher angular momenta.
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FIG. 6: Radii-ratio dependence of the conductance G =
2πσ/ ln(Ro/Ri) (top panel) and the effective number of trans-
mission channels (bottom panel) at a fixed Ri = 15 l⊥ ≈
24 nm and varying t′ (specified for each line). Vertical lines
mark the values of A ≈ 3 (left), A ≈ 5/2 (middle), and A ≈ 2
(right) following from Eq. (25). The corresponding results for
two decoupled MLG disks (t⊥ = t′ = 0) are also shown.

(We further notice that the effective number of channels
has a local maximum Nch ≈ 4.2 at Ro/Ri ≈ 7.5, where it
also precisely matches the value for two decoupled MLG
disks, in good agreement with predictions for a quantum-
tunneling regime reported earlier in this subsection.) The
trigonal warping noticeably enhances the conductance for
Ro/Ri . 10; i.e., the effect is opposite then for larger
Ro/Ri; with some exception for the smallest considered
t′ = 0.1 eV and Ro/Ri . 7, as the disk diameter 2Ro . `
in such a case.

The evolution of G and Nch with the trigonal warp-
ing strength, illustrated in Fig. 6, clearly shows that the
role of two transmission channels with angular momenta
±2~, prominent for t′ = 0 and large Ro/Ri, is strongly
suppressed for t′ 6= 0, indicating the gradual crossover to
a quantum tunneling regime characterized by G ∝ R−1

o .
We attribute it to the fact that a d-wave symmetry of
normal modes in leads with m = ±2 does not match
the D3d dihedral symmetry of the low-energy Hamilto-
nian for t′ 6= 0. Moreover, for the two largest considered
values of t′ = 0.2 eV and 0.3 eV, both G and Nch are
noticeably amplified in comparison to the relevant char-

acteristics for two decoupled MLG disks, signalling the
role of quantum states close to the secondary Dirac points
is important when the crossover to a quantum-tunneling
regime occurs.

IV. MAGNETOTRANSPORT
CHARACTERISTICS

A. Analytically soluble disk-shaped systems

Our discussion of the magnetotransport characteristics
starts from pointing out that the influence of a uniform
magnetic field B [45] on analytical results given by Eqs.
(20) and (21) can be expressed in a very compact form:
Namely, it is sufficient to replace j and m in arguments
of hyperbolic cosine by [1, 25, 26]

 = j +
ΦD
Φ0

and m = m+
ΦD
Φ0

, (29)

with

ΦD = πB(R2
o −R2

i ) (30)

and Φ0 =
2h

e
ln(Ro/Ri), (31)

denoting the flux piercing the disk area (ΦD) and the
basic period of magnetoconductance oscillations (Φ0).

All the considered charge-transfer characteristics σ
(12), F (13), and R (14), are predicted theoretically
to show periodic oscillations with the magnetic flux ΦD
[see Eq. (30)] piercing a graphene-based Corbino disk
[1, 25, 26, 46], provided the Fermi energy corresponds
to the Dirac point or to any other Landau level (LL).
The oscillations appear due to a limited number of trans-
mission channels for Ro � Ri, and show a formal anal-
ogy with similar effects discussed for a nanotube in a
magnetic field applied along the axis [47]. One should
notice, however, that the oscillation period Φ0 [see Eq.
(31)] for a disk in a uniform, perpendicular field, corre-
sponds to a physical field of 18 mT for a typical 1µm
disk (Ro = 5Ri = 500 nm), while for a 1 nm diameter
nanotube in axial field the period, given by the standard
Aharonov-Bohm flux quantum ΦAB = h/e, corresponds
to B ≈ 5300 T.

Similar effects were also considered for graphene disks
with strain-induced pseudomagnetic fields [48] and with
the spin-orbit coupling [49], extending the list of different
theoretical proposals for producing a valley polarization
with graphene-based nanostructures [50–55] and related
systems [56–59].

For MLG disks, the oscillations magnitude depends
only on the radii ratio Ro/Ri. For the conductivity, we
have ∆σMLG & 0.1σMLG if Ro/Ri > 5. For BLG disks,
the mode-matching analysis for the t′ = 0 case [1] unveils
an interference between the two transmission channels for
each angular momentum eigenvalue, following from the
coupling between the layers quantified by t⊥. In turn,
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the oscillations magnitude depends also on the physical
system size. For instance, conductivity oscillations are
predicted to vanish (∆σ = 0) for

Ro

Ri
'
(
Rit⊥
2~vF

)4/p

(for Ro � Ri), (32)

where p = 1, 2, 3, . . . . Eq. (32) with even p [equiva-
lent to half-odd integer q in Eq. (26)] gives the condi-
tion for maximal oscillations, with the magnitude ∆σ =
2∆σMLG, same in the limit of decoupled layers (t⊥ → 0).

If the Fermi energy E is close but not precisely adjusted
to the Dirac point, the oscillations in both MLG and BLG
disks are still predicted to appear in the limited range of
magnetic fluxes, namely

|ΦD| 6 Φmax
D ' − 2h

e
ln(kFRi), (for kFRi � 1), (33)

with kF = |E|/(~vF ), away from which the conductiv-
ity is strongly suppressed. Eq. (33) can be rewritten to
obtain the corresponding energy range for a given field

|E| . ~vF
Ri

exp

(
−R

2
o −R2

i

l2B

)
. (34)

The limits given by Eqs. (33) and (34) essentially ap-
plies to higher charge-transfer cumulants as well, albeit
the dimensionless characteristics F and R were recently
found to show stable, quasiperiodic oscillations in the
high source-drain voltage limit [46].

Later this Section, we employ the numerical procedure
described in Section II in order to find out how the mag-
netotransport characteristics of BLG disks are affected
by the trigonal warping (t′ 6= 0).

B. Rectangular BLG device with periodic
boundary conditions

Before discussing magnetotransport of the Corbino
disk, it is instructive to consider a simpler artificial sys-
tem depicted schematically in Fig. 1(b). A BLG strip of
width W , contacted by the electrodes at a distance L,
in a uniform field B, and with periodic boundary con-
ditions in the transverse direction, was earlier discussed
in the W � L limit [20], in which the pseudodiffusive
charge transport is predicted to appear near LLs. Here
we primarily focus on the W . πL range (a nanotube-
like geometry) which do not seem to have a direct physi-
cal analogue, but can be treated in analytical terms and
possesses a discrete spectrum of transmission channels
closely resembling the situation in the Corbino disk.

The wavefunctions for a rectangular sample are pre-
sented in Appendix B. Each spinor component can
be written as a product of the exponential function
and the Airy function, with their arguments scaling as
l−2
B ∝ B for high fields; see Eq. (B2). In turn, tak-

ing the asymptotic form of the Airy function Ai (z) '

exp
(
−2z3/2/3

)
/
(
2z1/4

√
π
)
, we find the conductivity in

the high-field limit can roughly be approximated by

σL�lB ≈
g0L

W

∑

k,±
cosh−2

{
L

(
k − L

2l2B

)

± 1

24
< [γk (L)− γk (0)]

}
, (35)

where k = 0,±2π/W,±4π/W, . . . ,

γk (x) =

√
− iνlB

l⊥

(
8x

lB
− 8klB −

iνlB
l⊥

)3/2

, (36)

and < (z) denotes the real part of z. In the absence of
trigonal warping, Eq. (35) is replaced by exact expression
for the conductivity, namely

σrec(t′=0)

σ0
= 1 +

∞∑

n=1

{(
πnW

L

)
cos(nkcW )

×
[
sinh

(
πnW

2L

)]−1

cos
(πne
h
LWB

)}
, (37)

where kc = (1/L) arsinh [Lt⊥/(2~vF ) ]. A Fourier se-
ries on the right-hand side represents periodic (approxi-
mately sinusoidal for moderate aspect ratios W/L & 2)
magnetoconductance oscillations with the period T0 =
(2h/e)(LW )−1 [60].

For t′ 6= 0, the approximating expression given by
Eqs. (35,36) is particularly convenient when extracting
the beating frequency which governs high-field magneto-
transport characteristics of the system. It can be shown
that the presence of two relevant transmission eigenval-
ues for each momentum k in Eq. (35) follows directly
from the fact that the lowest LL in BLG has an addi-
tional twofold degeneracy absent for higher LLs [20]. We
define the two field-dependent effective system sizes de-
termining transmission probabilities in Eq. (35), namely

L± = Lµ±, (38)

and the corresponding momentum-quantization shifts

∆k± =
L

2l2Bµ±
, (39)

where

µ± = 1±
√

8νl2B
9Ll⊥

. (40)

The above reasoning holds true for high magnetic fields
and arbitrary W/L ratio. For instance, the conductivity
in the W � L limit can be approximated by

σW�L�lB ≈
2g0

π

(
1

µ+
+

1

µ−

)
= σ0

(
1− 8νl2B

9Ll⊥

)−1

,

(41)
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FIG. 7: Conductivity of the rectangular BLG sample at the
charge-neutrality point as a function of the magnetic field B.
The sample length is fixed at L = 300 l⊥ ' 480 nm, the width
is W = 10L, and the skew-interlayer hopping integral t′ is
varied between the panels. Red solid lines: exact numeri-
cal results obtained from the mode-matching analysis via Eq.
(12). Blue solid lines: results from Eqs. (35,36) for L � lB .
Dashed lines: results from Eq. (41) for W � L� lB .

restoring the t′ = 0 value (σ → σ0) for lB → 0.

In Fig. 7 we compare exact numerical results obtained
from Eq. (12) for W = 10L = 3000 l⊥ and different val-
ues of skew-interlayer hopping t′ [red solid lines] with
corresponding results following from the approximating
Eqs. (35,36) [blue solid lines] and Eq. (41) [dashed lines].
For low magnetic fields, the conductivity monotonically
grows with increasing B (for any t′ 6= 0), up to the max-
imal value (at B = Bpeak) which may exceed 3σ0 for
larger t′-s. For B > Bpeak, the effect of trigonal warping
on the conductivity is gradually suppressed, leading to
σ−σ0 ∝ t′/B, in agreement with the approximating Eq.
(41).

The value of Bpeak is related to the quasimomentum
shifts given by Eq. (39). For a finite aspect ratio W/L,
maximal conductivity appears when the average shift is
of the same order of magnitude as the distance between
primary and secondary Dirac points [given by Eq. (17)],
namely

(
∆k+ + ∆k−

2

)

peak

∼ k`, (42)

0.4
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1.6

σ
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e
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]
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t'=0.1eV

●
●

●
●

●
●

■
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■
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■
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■
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■
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0

5
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15

B [T]


[T
]

L=45l⟂
W/L=2

FIG. 8: Magnetoconductance oscillations for the rectangular
BLG sample of the length L = 45 l⊥ ' 72 nm and the width
W = 2L at the charge-neutrality point. Top panel: The
conductivity as a function of magnetic field for three values
of the skew-interlayer hopping integral t′ (specified for each
line). The lines for t′ = 0.3 eV and t′ = 0.2 eV are shifted by
1 and 1/2 for clarity. Bottom panel: Consecutive periods of
the beating envelope extracted from the data shown in the
top panel, for t′ = 0.1 eV (circles), t′ = 0.2 eV (squares),
and t′ = 0.3 eV (diamonds). Solid lines correspond to the
approximating Eq. (44).

what can be rewritten as

Bpeak ∼
2h

e

1

L`
≡ BL, (43)

where we have defined the crossover Lifshitz field BL. It
is also visible in the top panel of Fig. 7 that the approx-
imating Eqs. (35,36) [blue dashed lines] reproduces the
peak position (albeit not the maximal conductivity) with
a good accuracy for t′ = 0.3 eV.

The conductivity maximum at Bpeak ∼ BL 6= 0 can
be regarded as the first effect of the trigonal warping,
appearing for samples with finite aspect ratios, but still
well-visible for W/L = 10.

The second effect, present in systems with W . πL, is
the emergence of beating patterns. In the top panel of
Fig. 8 we display the conductivity, as a function of mag-
netic field, for W = 2L = 90 l⊥. Quasiperiodic beatings
are characterized by the field-dependent envelope period,
which can be approximated by

T (B) ≈ 4h

eLW

µ+µ−
µ+ − µ−

' 3h

e

1

LW

(
B

BL

)1/2

, (44)

while the period of internal oscillations remains the same
as in Eq. (37). The comparison between the actual enve-
lope periods refined from the numerical data [datapoints]
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FIG. 9: Conductivity σ [ specified in the units of 8e2/h ],
the Fano factor F , and the R factor for BLG Corbino disk
with Ri = 300 l⊥, Ro = 2Ri, and different skew-interlayer
hopping integrals t′ (specified for each panel). Vertical lines
correspond to B = BL [see Eq. (45)], the horizontal lines
mark the pseudodiffusive values F = 1/3 and R = 1/15, the
dashed lines represent the approximating Eq. (46).

and the values following from Eq. (44) [lines] is provided
in the bottom panel of Fig. 8.

For high magnetic fields, Eq. (44) leads to T (B) ∝√
B. In turn, the t′ = 0 behavior characterized by

single-frequency, sinusoidal magnetoconductance oscil-
lations with a size-dependent amplitude [see Eq. (37)]
cannot be restored for any t′ 6= 0 in the high-field
limit. We interpret this effect as a finite-system ana-
log of the zero-temperature conductance instability (the
parameter-driven Lifshitz transition) in bulk BLG sam-
ples [12].

C. BLG Corbino disks

Our numerical study of magnetotransport through
BLG Corbino disks focuses on two different systems:
First one, characterized by Ri = 300 l⊥ and Ro = 2Ri is

Ro/Ri=4.84

Ri=15l⟂

t'=0eV

t'=0.3eV

0.3

0.4

0.5

0.6

σ
[8
e
2
/h
]

○○○
○○○○ ○ ○ ○ ○
■ ■

■ ■ ■
■ ■

▽ ▽
▽

▽
▽

10 20 30

5

10

15


[T
]

B [T]

0.2

0.3

0.4

ℱ

0 10 20 30
0.

0.05

0.1

0.15

ℛ

B [T]

FIG. 10: Charge-transfer characteristics σ, F , and R for
BLG disk with Ri = 15 l⊥, Ro = 4.84Ri. Each of the main
panels compares the numerical results for t′ = 0 (blue line)
and t′ = 0.3 eV (red line). The vertical grey line in the
top panel marks the value of BL obtained from Eq. (45)
for t′ = 0.3 eV. The inset: Period of the beating envelope
for three different values of t′ = 0.3 eV (circles), 0.2 eV (or-
ange squares), 0.1 eV (triangles). Solid lines correspond to
Eq. (47).

in the pseudodiffusive charge-transport regime, whereas
the second one, with Ri = 15 l⊥ and Ro = 4.84Ri, shows
the beating patterns. In the latter case, the parame-
ters are chosen such that the magnetoconductance oscil-
lations vanish for t′ = 0 (see Ref. [1]), in order to illus-
trate the role of trigonal warping more clearly.

The numerical results for σ, F , and R are presented,
as functions of magnetic field B, in Figs. 9 and 10.

In the pseudodiffusive transport regime (see Fig. 9)
some irregular fluctuations, visible for all the discussed
charge-transfer characteristics (and all three values of t′),
are suppressed for magnetic fields B & 0.5 T. We at-
tribute these fluctuations rather to a Fabry-Perot inter-
ference than to the angular momentum quantization. A
striking feature of the data presented in Fig. 9 is that a
distinct conductance peak appears at each panel near the
field

BL =
4

3

√
3

~ t′t⊥
e t20a (Ro −Ri)

, (45)

closely resembling the phenomena described above for
a rectangular sample. [Notice that the rightmost equality
in Eq. (43) and Eq. (45) are equivalent provided that L ≡
Ro−Ri]. Above the crossover field BL, the conductivity
can be approximated by the formula

σB�BL
≈ σ0

(
1− 0.5

BL
B

)−1

, (46)
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which is visualized with dashed lines in Fig. 9, and can
be regarded as a version of Eq. (41) for BLG disk.

For the disk with larger radii ratio (see Fig. 10) all
three magnetotransport characteristics exhibit quasiperi-
odic beating patterns for t′ = 0.3 eV. This is not the case
for t′ = 0, when each characteristic shows approximately
sinusoidal, single-frequency, oscillations with a constant
amplitude. As the system no longer possesses a rotational
symmetry in the presence of trigonal warping, the mag-
netotransport cannot be simply rationalized by defining
two effective system sizes in analogy to Eq. (38). Com-
paring to the rectangular system case (which can be
regarded, due to the periodic boundary conditions, as
a nanotube-like, i.e., possessing the rotational symme-
try also for t′ 6= 0) illustrated in Fig. 8, the beatings are
slightly less regular now, clustering in the groups of three.
This certain feature of the data displayed in Fig. 10 sug-
gests the presence of four, rather than two, quasiperiodic
components determining the transmission probabilities.

It is worth to stress here that the main features of the
magnetotransport characteristics still resemble the rect-
angular (or a nanotube-like) system case. In particular,
we found that the beating-envelope period can now be
approximated by

T (B) ≈ 6.9

π(R2
o −R2

i )

h

e

(
B

BL

)1/2

, (47)

see the inset in Fig. 10. On the other hand, the period
of the internal oscillations, T0 = Φ0/

[
π(Ro

2 −Ri
2)
]
, re-

mains the same as the basic period for MLG disks or BLG
disks with t′ = 0 [1, 25, 26]. Also, a high-field behavior
of the conductivity averaged over consecutive intervals,
each one of the T0 width, can be approximated by Eq.
(46).

V. CONCLUSIONS

We have investigated, by means of numerical transfer-
matrix approach in the angular-momentum space, the
effects of the skew-interlayer hopping integrals (the trig-
onal warping) on selected transport characteristics of
bilayer-graphene (BLG) Corbino disks. Additionally,
the analytical mode-matching for an artificial (nanotube-
like) system, formed of a BLG strip upon applying the
periodic boundary conditions, was briefly presented and
the analogies between these two systems were put for-
ward.

If the Fermi energy is close to the charge-neutrality
point, both the scaling behavior at zero magnetic field
(which would require a comparison between devices of
different sizes in an experimental study) and the single-
device magnetotransport discussion unveils several phe-
nomena, in which transport characteristics, such as the
conductivity, the Fano factor, and the third charge-
transfer cumulant, are noticeably affected by the trigonal
warping.

In the pseudodiffusive transport regime, corresponding
to the disk radii ratios Ro/Ri . 2, the conductivity shows
a one-parameter scaling, in agreement with predictions
of Ref. [23] for a rectangular sample. In the Corbino
geometry, however, the role a crystallographic orientation
is eliminated, and the zero-field minimal conductivity can
be approximated by

σmin ≈ 3σ0

[
1−

(
λ

Ro−Ri

)0.5
]
, (48)

where λ = λ(t′) depends only on the skew-interlayer hop-
ping t′, and varies from λ ≈ 20 nm for t′ = 0.3 eV to
λ ≈ 100 nm for t′ = 0.1 eV. In the uniform magnetic field
B, the conductivity increases reaching the maximal value
σmax & 3σ0 near the so-called Lifshitz field BL, for which
the magnetic length follows the relation

(Ro−Ri) ` = 4πl2B , (49)

where ` =
√

3πat20/(t⊥t
′) is defined by t′ and other mi-

croscopic parameters: the lattice spacing a as well as
the nearest-neighbor intra- and interlayer hoppings t0
and t⊥. Above BL, the conductivity gradually decreases
showing the asymptotic behavior σ − σ0 ∝ BL/B [see
Eq. (46)]. The second and third charge transfer cumu-
lants stay close to their pseudodiffusive values (F = 1/3,
R = 1/15) when varying the system size or the magnetic
field.

In the opposite, quantum-tunneling regime (corre-
sponding to Ro/Ri & 4), the charge-transfer character-
istics are also sensitive to t′. At zero field and t′ = 0,
the transport is governed by two quantum channels with
angular momenta ±2~. For t′ 6= 0, the backscattering
is enhanced for these channels, as the related wavefunc-
tions no longer match the symmetry of the low-energy
Hamiltonian. At high magnetic fields, all the charge-
transfer characteristics show quasiperiodic beating pat-
terns, with the envelope period T (B) ∝

√
B/BL [see

Eq. (47)]. Most remarkably, the beating patterns, trig-
gered by the trigonal-warping (t′ 6= 0), remain well-
pronounced in the Landau quantization regime. (Un-
like the average conductivity enhancement, which is usu-
ally eliminated by a few Tesla field.) It seems this
finite-system version of the Lifshitz transition can be
related to numerous phenomena appearing in different
branches of physics, starting from semiconducting het-
erostructures [61], via strongly-correlated electron sys-
tems [62], to neutrino physics [63], in which scattering
the particles between quantum states with different ef-
fective masses leads to oscillations in relevant counting
statistics, although this time the interference occurs be-
tween the evanescent waves.

We stress here that finding the Lifshitz field BL, via
the asymptotic behavior of the conductivity, or via the
beating period, may allow one – at least in principle – to
determine the value of t′ from a single-device magneto-
transport measurement.
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Apart from the possible verification of tight-binding
parameters in BLG Hamiltonian, we believe the effects
we describe, when confirmed experimentally, will provide
a thorough insight into the interplay between massless-
and massive-chiral states ruling the quantum transport
through BLG devices near the charge-neutrality point.
For instance, the conductivity enhancement for B ∼ BL
may dominate the signatures of interaction-related mag-
netic catalysis phenomenon [64] (particularly in finite-
size systems), and one should precisely distinguish single-
and many-body aspects when searching for this intrigu-
ing phenomenon in BLG.

As we have focused on clean ballistic systems, sev-
eral factors which may modify the transport properties of
graphene-based devices, including the disorder [5], lattice
defects [65], or magnetic impurities [66–68], are beyond
the scope of this work. Some experimental [17, 24] and
numerical [30, 69] findings suggest that charge-transfer
characteristics in the pseudodiffusive transport regime
are quite robust against such factors. For the oppo-
site, quantum-tunneling regime, we put forward the fol-
lowing reasoning: In the presence of trigonal warping,
the rotational symmetry supposed in earlier studies of
MLG [25, 26] or BLG [1] disks, no longer applies. In
spite of this fact, the basic oscillation period [ Φ0 =
2 (h/e) ln(Ro/Ri), in terms of magnetic flux piercing the
disk area] remains unaltered, allowing one to believe that
oscillations and beating patterns would appear in a more
general situation as well.
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Appendix A: Transfer-matrix approach in the
angular momentum space

A version of the transfer-matrix approach utilized in
this paper is chosen such that the differential equation
for transfer matrix can be directly derived from Eqs. (9)
and (10) [see Section IIB] for the wavefunctions, and
solved analytically in the absence of trigonal warping
(ν ≡ t′/t0 = 0). The numerical procedure for ν 6= 0
is described below.

First, a basis set for the transfer matrix is con-
structed starting from a general angular-momentum
eigenstate in the disk area (Ri < Ro), corresponding
to a given angular-momentum quantum number l =
0,±1,±2, . . . , a radial part of which can be written as

a linear combination of four spinor functions φl (r) =∑4
α=1 a

l
αφ

l
α (r). The coefficients {alα} are arbitrary am-

plitudes and φlα (r) =
(
φα,l1 , φα,l2 , φα,l3 , φα,l4

)T
(r) is a nor-

malized spinor function. (The normalization is carried
out in such a way that the total radial current remains
constant.) The wavefunction φl(r) can be represented as

φl (r) = Wl (r)al, (A1)

where Wl (r) is the 4 × 4 matrix with elements
[
Wl (r)

]
m,n

= φn,lm (r), and al =
(
al1, a

l
2, a

l
3, a

l
4

)T
.

Next, the radial part of the actual wavefunction [see
Eq. (8) in the main text], describing the system in the
presence of trigonal warping, is truncated by the linear
combination of limited number (2M + 1) of basis func-
tions, each given by Eq. (A1), corresponding to angular-
momentum quantum numbers l = −M, . . . ,M . Namely,
we define

φ (r) = [φ1(r),φ2(r),φ3(r),φ4(r)]
T
, (A2)

with

φi (r) =
4∑

j=1

M (i, j; r)aj , (i = 1, . . . , 4), (A3)

where aj =
[
a−Mj , . . . , aMj

]T
, and the (2M+1)×(2M+1)

matrix M (i, j; r) is to be specified later in this Appendix.
The relation between wavefunctions at different radii,
say r and Ri, can be expressed within the propagator
U (r,Ri) as follows

φ (r) = U (r,Ri)φ (Ri) . (A4)

Substituting Eq. (A4) into Eq. (9) in the main text, we
obtain

∂rU (r,Ri) = A (r)U (r,Ri) , (A5)

with the boundary condition

U (Ri, Ri) = I(8M+4)×(8M+4), (A6)

where IN×N denotes the N × N identity matrix. The
sparse matrix A(r) in Eq. (A5) has nonzero elements
[A(r) ]m,n directly following from Eq. (9). Defining

lm = M − [(m− 1) mod (2M + 1)] ,

αm = b(m− 1) / (2M + 1)c , (A7)

where bxc denotes the largest integer smaller or equal to
x, one can write down
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[A(r) ]m,n = [−g(lm, r)δm,n + iνtδm,n−3 + 2νg(lm−2, r)δm,n−6M−6] δαm,0 + [g(lm−1, r)δm,n − itδm,n−2M−1] δαm,1

+ [g(lm, r)δm,n + iνtδm,n+3 − 2νg(lm+2, r)δm,n+2M+4] δαm,2 − [g(lm+1, r)δm,n + itδm,n+6M+3] δαm,3,
(A8)

where 1 6 m,n 6 8M + 4, the symbol δα,β denotes the
Kronecker delta of α and β, t = t⊥/(~vF ), and g(l, r) is
given by Eq. (10) in the main text.

The angular-momentum cutoff M is chosen to be large
enough to reach the convergence of the charge-transfer
characteristics. We observe that the desired relative pre-
cision of 10−4 requires M growing approximately linearly
with the system size Ro − Ri, the magnetic field B, and
the skew-interlayer hopping t′. For instance, in our nu-
merical examples with t′ = 0.3 eV, the number of modes
varies from 2M +1 = 50 for Ro−Ri = 90 nm and B = 0,
up to 2M + 1 = 1000 for Ro −Ri = 5µm and B = 80 T.
It is also worth to mention, that in the magnetic field
B > 0 efficient computation requires the angular mo-
mentum quantum numbers are varied in a range

l = −M − bΦD/Φ0c, . . . ,M − bΦD/Φ0c, (A9)

where ΦD = π(R2
o −R2

i )B.
The numerical integration of Eq. (A5), with the bound-

ary condition given by Eq. (A6) and the matrix A(r)
given by Eqs. (A7,A8), was carried out by employing the
4-th order explicit Runge-Kutta method with a fixed step
size [70, 71]. Floating-point arithmetic, with up to 300
decimal digits, was used to guarantee the numerical sta-
bility when inverting the blocks of the resulting transfer
matrix for the whole system (see below).

A procedure, described in the above, brings us to the
propagator for the disk area U(Ro, Ri). Writing down the
standard mode-matching conditions for wavefunctions in
the leads and in the disk area

φlead (Ro) = φsample (Ro) ,

φsample (Ri) = φlead (Ri) , (A10)

together with Eq. (A4) for r = Ro, gives us

φlead (Ro) = U (Ro, Ri)φ
lead (Ri) . (A11)

In order to find the transfer matrix for the whole system,
we choose the wavefunctions in the leads such that

φlead (Ro) = Mlead(Ro)a,

φlead (Ri) = Mlead(Ri) b, (A12)

where the vector a (b) contains 8M + 4 amplitudes for
normal modes in the outer (inner) lead. Taking the limit
of infinite doping in the leads one can disregard the pa-
rameter ν, and write down

Mlead (r) = B (r)⊗ I(2M+1)×(2M+1), (A13)

for r < Ri or r > Ro, where

B (r) =
1√
r




1 1 1 1

1 1 −1 −1

−1 1 −1 1

−1 1 1 −1


 , (A14)

A ⊗ B denotes the Kronecker product of the matrices
A and B, and we have further skipped the physically-
irrelevant constant phase. In turn, the matrices M(i, j; r)
defining the wavefunction via Eqs. (A2) and (A3) can be
found as blocks of the matrix U(r,Ri)Mlead(Ri).

The transfer matrix thus reads

T = M−1
lead (Ro)U (Ro, Ri)Mlead (Ri)

=

( (
t†
)−1

r′ · (t′)−1

− (t′)−1 · r′ (t′)−1

)
, (A15)

where the rightmost equality maps the matrix blocks of
T onto the elements of the scattering matrix: t, r – the
transmission and reflection matrices for a wavefunction
incoming from the inner lead, and t′, r′ – the transmis-
sion and reflection matrices for a wavefunction incoming
from the outer lead [39].

Appendix B: Wavefunctions for a rectangular
sample in uniform magnetic field

In this Appendix we present the wavefunctions utilized
in Sec. IVB to discuss the magnetotransport through a
rectangular BLG sample at the charge-neutrality point.
The low-energy Hamiltonian has a general form as given
by Eq. (5) in the main text, but the potential energy now
depends only on the x-coordinate

U(x) =

{
U∞, if x < 0 or x > L,

0, if 0 < x < L,
(B1)

and we choose the Landau gauge (Ax, Ay) = (0, Bx).
Subsequently, the solution of the Dirac equation Hψ =
Eψ, corresponding to a given transverse wavenumber k,
can be written as ψ(x, y) = φk(x) exp(iky). (For the
sample width W and the periodic boundary conditions
along y-direction, we have k = 0,±2π/W,±4π/W, . . . .)

Using the compact notation: ψαβ (x) ≡ ψαβ , γ ≡
[ γk (x) /16 ]2/3 [see Eq. (36) in the main text], and
χ = x

[
k + itν/2− x/

(
2l2B
)]

, one can write down a zero-
energy wavefunction for the sample area (0 < x < L) as
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a combination of four linearly-independent spinors

φsample
k (x) = Ck1




ψ1
1

0

0

ψ4
1


+ Ck2




ψ1
2

0

0

ψ4
2




+ Ck3




0

ψ2
1

ψ3
1

0


+ Ck4




ψ2
2

0

ψ3
2

0


 , (B2)

with Ck1 , . . . , C
k
4 being arbitrary coefficients. The spinor

components in Eq. (B2) are given by

ψ1
1 = eχ

[
iτAi′ (γ)− (ν/2)Ai (γ)

]
,

ψ1
2 = eχ

[
iτBi′ (γ)− (ν/2)Bi (γ)

]
,

ψ2
1 = e−χ

∗
Ai (γ∗) ,

ψ2
2 = e−χ

∗
Bi (γ∗) ,

ψ3
1 = e−χ

∗ [
iτ∗Ai′ (γ∗)− (ν/2)Ai (γ∗)

]
,

ψ3
2 = e−χ

∗ [
iτ∗Bi′ (γ∗)− (ν/2)Bi (γ∗)

]
,

ψ4
1 = eχAi (γ) ,

ψ4
2 = eχBi (γ) , (B3)

where Ai (z) and Bi (z) are the Airy functions [72], and

we have further defined τ = 3
√
−2iνt−2.

Remaining details of the mode-matching analysis are
same as in Refs. [13, 20].
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99, 066802 (2007); M. Koshino and T. Ando, Phys. Rev.
B 73, 245403 (2006).

[13] I. Snyman and C.W.J. Beenakker, Phys. Rev. B 75,
045322 (2007).

[14] J. Cserti, Phys. Rev. B 75, 033405 (2007).
[15] M.I. Katsnelson, Eur. Phys. J. B 51, 157 (2006).
[16] J. Tworzyd lo, B. Trauzettel, M. Titov, A. Rycerz, and

C.W.J. Beenakker, Phys. Rev. Lett. 96, 246802 (2006).
[17] F. Miao, S. Wijeratne, Y. Zhang, U.C. Coscun, W. Bao,

and C.N. Lau, Science 317, 1530 (2007).
[18] A.G. Moghaddam and M. Zareyan, Phys. Rev. B 79,

073401 (2009).
[19] E. McCann and V.I. Fal’ko, Phys. Rev. Lett. 96, 086805

(2006).
[20] G. Rut and A. Rycerz, Phys. Rev. B 89, 045421 (2014).
[21] G.M. Rutter, S. Jung, N.N. Klimov, D.B. Newell,

N.B. Zhitenev, and J.A. Stroscio, Nat. Phys. 7, 649
(2011).

[22] W. Bao, J. Velasco, Jr., F. Zhang, L. Jing, B. Stand-
ley, D. Smirnov, M. Bockrath, A.H. MacDonald, and
C.N. Lau, Proc. Natl. Acad. Sci. USA 109, 10802 (2012).

[23] G. Rut and A. Rycerz, Europhys. Lett. 107, 47005
(2014).

[24] A.S. Mayorov, D.C. Elias, M. Mucha-Kruczyński et al.,
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