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Introduction

Technology development strives for construction of possibly small and fast

devices. Thus, future electronics is expected to be realized at the nanoscale.

Speci�cally designed and synthesized molecules will act as individual func-

tional units [1].

With this end in view, the following two aspects need to be considered:

precise control of large number of such elements constituting a macro-scale

device, and mastery of structures at the atomic level. Research on the latter

problem was revolutionized by advent of the scanning probe microscopy.

Direct manipulation of single atoms was made possible.

Flat and clean crystal surfaces have become an arena of these experi-

ments. Two- and one-dimensional structures are grown and examined, but

also local phenomena, such as defects and interaction with individual atoms

or molecules are observed. Before more complex systems are developed,

properties of their anticipated constituents is investigated.

In particular, a well-known organic semiconductor molecule PTCDA has

been extensively studied on many substrates. Among them is the (001)
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surface of indium antimonide. The surface has very complex structure, as it

is common for compound semiconductors. It was a subject of many studies

and there were several models of it proposed. The work presented in this

dissertation advances its understanding further and, at the same time, solves

the problem of adsorption and conformations of PTCDA molecule on this

surface. This is achieved by means of DFT calculations.

Their outcome proved entirely consistent with results of experiments con-

ducted in parallel to the research presented here. It exempli�es the great help

coming from coordination of theoretical and experimental e�orts.
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Chapter 1

Computational methods

Computer simulation of physical phenomena can be seen as a replacement

for experiments or as a tool that complements them. When it is considered

as an in silico experiment itself, it can not only reveal the �nal outcome,

but also brings a possibility to look inside, to understand causes of the iden-

ti�ed behaviour that are not directly observable. Thus, for example, if we

predict infra-red spectrum of a molecule by theoretical calculation, not only

vibrational spectra are delivered but also a detailed insight into individual

vibrational modes is gained.

Broad range of problems in solid state physics and chemistry can be ad-

dressed this way. They are well represented by a simple model. It consists

of possibly in�nite set of atoms. Each nucleus and each electron moves in

electrostatic potential of all other particles. Some problems require interac-

tion with an external �eld to be included. As the core parts of the heaviest
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atoms can be approximately represented by a pseudopotential, so that the

innermost electrons do not appear explicitly in the calculations, it is possible

to avoid explicit relativistic treatment.

This simple model, a description of interacting electrons and nuclei, covers

much of our reality down to the nanometre scale. Its application is limited

only by available computational power.

The frequently used term ab initio describes a calculation done purely

from �rst principles, namely the Schrödinger equation together with Hamil-

tonian of particles bound by Coulomb interaction. The same can be said

in case of the the work presented here, although to some extent, usage of

pseudopotentials, which are tuned for speci�c applications, encumbers the

method by some dependence on experimental data.

1.1 General statement of the considered prob-

lem

Since atomic nuclei are much heavier than electrons, their dynamics can be

treated separately. State of the electrons can be found with good accuracy if

the nuclei are assumed to stay at rest. This is so-called Born-Oppenheimer

approximation. With help of it, energetics of the whole system is studied

at two levels. The core many-body problem involves electrons only and is

solved for a given potential V , which is the �eld of all nuclei. On top of this

solution, the classical behaviour of nuclei is easily described, leading to the
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notion of energy surface discussed below.

Hence, at �rst we are given coordinates Ri of atomic nuclei, leading to a

particular potential V . It su�ces to solve stationary Schrödinger equation,

Hψ = Eψ (1.1)

for a spectrum of energies Ei and states ψi. The Hamiltonian contains kinetic

energy term and Coulombic interactions (for clarity, atomic units are used):

H = −1

2

∑
i

∇2
ri

+
∑
i

V (ri) +
∑
i<j

1

|ri − rj|
(1.2)

In practice, most often only the ground state ψ0 is needed and it is the

easiest one to obtain. Closer examination of the calculated wavefuction per-

mits discussion of issues such as chemical binding [6], localization of charges,

vacuum states, etc.

Usually the electronic problem is solved many times for many con�gura-

tions of nuclei. This makes possible to �nd the optimal arrangement of atoms

in the simulated system, examine its vibrational properties, �nd metastable

con�gurations, discover paths of chemical reactions, etc. This is most conve-

niently discussed with the notion of energy surface.
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1.2 The energy surface

Consider an investigation of dynamics of the whole system, in which number

M of atoms in the system remains constant. The positions R1, . . . , RM of

nuclei are varied and the system is solved for ground state. The ground state

energy E(R1, . . . , RM) as a function of these positions is called an energy

surface.

Since its domain has many dimensions, it is possible to explore only tiny

part of it and its typical depictions are in fact only two or three-dimensional

cross-sections.

It is natural to seek for a guidance in this vast space, to follow only the

most important directions. In our case the coordinates of crucial signi�cance

are the positions of atoms that belong to the PTCDA molecule. Since we

want to control the translational component of its movement, it su�ces to

pay attention to only one atom. For the di�usion study, described in section

3.7, one of the innermost carbon atoms of the perylene core was chosen.

1.3 Optimization

Although only �nite, non-zero temperatures are realized in nature, �nding

the state corresponding to absolute zero is often enough for understanding of

the system at its equilibrium. This state is found where the energy surface

has its global minimum.

For this, two tasks can be distinguished. First, to discover which of all
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the minima (which can be numerous) is the deepest one. In other words,

to �nd its basin in the phase space. The second problem concerns precise

location of the minimum.

Function optimization, in both of these aspects, is a very general and

universally applicable concept. However, only some of the great number of

developed methods are applicable for the speci�c case of atomic simulations.

Number of atoms in currently attainable DFT-level calculations reaches

the order of thousands. Optimization of atomic positions with this number of

degrees of freedom can be considered as medium-sized problem. The explored

energy surface is continuous. Evaluation of each point is costly, but the

numerical noise of the results is usually so small, that it does not in�uence

choice of the optimization algorithm.

While for typically sized problems exhaustive search in the whole phase

space is impossible, satisfactory solutions can be obtained thanks to advan-

tageous properties of the energy surface. Namely, it appears as if it was a

sum of simpler functions, so that the deepest basins make the surrounding

local minima lower. Also, in the same way, the right direction of search can

be found following low-energy barrier crossings [7].

Of the two problems mentioned above, the second one, namely, local

optimization of energy, is much simpler. Since the examined function is

smooth, it is usually modelled by a truncated Taylor expansion. A minimum

of the model itself is easily found. As the expansion coe�cients are re�ned,

the model minimum comes closer to the true optimal point. The assumed
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model often serves only as a justi�cation of a simpler, one-dimensional model

built along carefully chosen series of directions.

In particular, if optimization proceeds along gradient vectors found at

each of the examined points (the so-called steepest descent algorithm), the

convergence can be slow. Much better results are achieved if one makes use of

second derivatives (the Hessian matrix) of the objective function. However,

since matrix inversion is a costly operation, approximations are used. For ex-

ample, one of methods, that are important in the context of atomic-scale cal-

culations, is the limited-memory version of Broyden�Fletcher�Goldfarb�Shanno

scheme[8]. It makes use of few gradient vectors available from the most recent

steps to estimate local curvature of the optimized function.

Another widely used method, the method of conjugate gradients [9] is

based on the idea that subsequent one-dimensional searches should be inde-

pendent. The formula is derived to lead to the exact solution in N steps

for N -dimensional domain in an idealized case of quadratic function. Still,

it is reformulated and used to solve other nonlinear problems for which the

assumed model is reasonable.

Because of the above-mentioned sum-like appearance of the objective

function, global optimization can be helped if the function is smoothed. This

can be done by averaging the slope observed along the search path. In this

case it is said that a momentum is introduced into the scheme. In the context

of chemistry and physics simple optimization methods with gradient averag-

ing are often called damped molecular dynamics. If the idea is paired with
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clever heuristics, the resulting algorithm can deal with both local and global

optimization problems [10]. This property makes it very convenient to be

used to work with atomic structures.

In the cases when the optimized function is poorly understood, one turns

to stochastic optimization. It means that the choice of sampling points in

the search space is in large part randomized. For the work presented here

the most relevant method of this sort is the so-called simulated annealing

[11]. It can be realized as a molecular dynamics with continuously lowered

temperature.

1.4 Search for a transition path

It is often desirable to predict theoretically what evolution of state of a system

can lead from one energy well (basin of a minimum) to another. Given two

extreme states, it is possible to �nd a path connecting them with locally

minimal free energy � the most likely transition sought for.

The most straightforward solution is to start with an initial guess of the

path, for example a straight line in the phase space, and then optimize it to

meet the desired criteria. It is convenient to represent the path as a series

of points. Then a vibrational analysis or simple molecular dynamic helps

to determine the entropic contribution at each point. Optimization of free

energy leads to movements of these points across the path. The above ideas

are the basis of a family of the so-called elastic band methods and many
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other algorithms that �nd transition states [12].

1.4.1 Search by simple constrained minimization

If less accurate results are acceptable, a much simpler scheme is of use.

Namely, the path can be built point by point, starting from a chosen end

state. Steady progress of this procedure is enforced by constraining subse-

quent points so that their projections to a line which joins the extreme states

are at equal distances. A simpler projection of similar properties can be used

as well. For each added point local minimum serves as a best guess. This is

not always the right choice, as demonstrated on Fig. 1.1. The picture shows

an example of energy surface and two transition paths: as obtained by the

procedure described here (a) and the optimal one (b). A sudden transition

to another energy basin along the dashed line manifests itself as a discon-

tinuity in the energy. Thus, in general, the energy barriers discovered with

this method are possibly overestimated.

1.5 Overview of the methods to solve the prob-

lem of many electrons

Now we return to the problem of many electrons. The �rst striking property

of our task is its high dimensionality. We wish to deliver a wavefunction as an

output of the most important �rst stage of the calculation. Alas, this function
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Figure 1.1: An example of energy surface for which the energy barrier found
by series of constrained optimizations is too high. The path found by this
method (a) and the optimal path (b) are shown.

ψ, which carries complete description of state of N electrons, is a R3N → C

function. So for relatively small count of electrons N = 100 and for any

naive sampling of some �nite region of the real space, the function cannot

be directly represented in any imaginable volume of computer hardware.

Therefore ψ has to be encoded in a compact way and in practice it has

also to be approximated. This is done with great success with the family

of methods called Quantum Monte-Carlo [13]. Among them the Di�usion

Monte Carlo [14, 15, 16] is based on a very fortunate coincidence, namely

that the evolution steps of wavefunction that are dictated by imaginary-time

Schrödinger equation can be directly performed on a Monte-Carlo-friendly

representation of the wavefunction, that is, a set of points in R3N space.

Very compact and computationally cheap representations of the wave-

function can be chosen if signi�cant approximations are to be made from

start. First of all, one can consider only the simplest antisymmetric states,
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namely, Slater determinants. One can look for the state of lowest energy in

this convenient space. This method is called Hartree-Fock [17, 18]. As an

aside, it is interesting to note that the density functional theory in the Kohn-

Sham formulation discussed in section 1.5.2 works in the same space, but

di�erent condition is imposed on the solution chosen, so eventually a di�er-

ent state is selected. The Hartree-Fock method is a �rst member of a broader

family of algorithms. If the explored space consists of states built from many

Slater determinants, the methods are called Con�guration Interaction [19].

The Coupled-Cluster methods [20, 21], which deliver results of very high

accuracy, can also be seen as derived from Hartree-Fock. In this case the state

is represented as eTφ, where φ is a simple Slater state and the exponentiation

eT captures in�nitely many excitations (or, in practice, as many as the chosen

basis permits). The coe�cients constructing the operator T are what the

methods �nds.

Alternatively, we can give up dealing with the highly dimensional space

containing ψ and seek for other quantity, derived from ψ, that would serve

our particular goals as well.

Intuitively, since the computed many-body wavefunction is antisymmet-

ric with respect to exchange of electrons, very little should be lost when

its domain is reduced by some kind of integration. It turns out that such

reduction is useful if done to the density matrices.
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Our model involves only two-body interactions, so, in fact, we can get

rid of nearly all of the dimensions and still have an exact expression of E in

terms of quantities derived from the wavefunction ψ. Two-particle density

matrix in a basis of position is a R12 → C function[22]:

Γ(r1, r2, R1, R2) =

N(N − 1)

∫
dp3...

∫
dpNψ

∗(r1, r2, p3, ..., pN)ψ(R1, R2, p3, ..., pN) (1.3)

The one-particle density matrix

γ(r, R) = N

∫
dp2...

∫
dpNψ

∗(r, p2, ..., pN)ψ(R, p2, ..., pN) (1.4)

can be expressed as γ(r, R) = 1
N−1

∫
dp2Γ(r, p2, R, p2) and also particle den-

sity is

n(r) = N

∫
dp2...

∫
dpNψ

∗(r, p2, ..., pN)ψ(r, p2, ..., pN) = γ(r, r) (1.5)

The energy then becomes [22]

E = −1

2

∫
dr∇2

Rγ(r, R)|R=r +

∫
drV (r)n(r) +

1

2

∫
dr1

∫
dr2

Γ(r1, r2, r1, r2)

|R− r|
(1.6)

This allows us to employ variational methods working in an approach-

able space of R12 → C functions. A �rst impression may be that this should

lead to a computationally feasible method solving our many-body problem
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exactly. But, surprisingly, the whole complexity lies hidden in the indispens-

able condition, that the outcome Γ has to correspond to some normalized

N -body wavefunction [23]. Nevertheless, these methods, labelled 2-RDM

(meaning two-particle reduced density matrix), provide high quality results

even if the representability condition is not exactly satis�ed [24].

If the above-mentioned dimensionality reduction is carried a little fur-

ther, the search can be performed in even smaller space, but the results are

no longer conceptually exact. The Density Matrix Functional Theory as-

sumes γ as a basic variable. In this case the electron-electron interaction

term in equation 1.6 can rely only on approximation of Γ(γ), which becomes

a function of γ. Practically useful approximations contain corrections ex-

pressed in terms of natural orbitals φ of γ. For example, a starting point

given by Müller [25] and later by Buijse and Baerends [26]:

ΓBB(r1, r2) = n(r1)n(r2)−
∑
ij

√
µiµjφ

∗
i (r1)φj(r1)φi(r2)φ∗j(r2) (1.7)

where µ denote occupancies of the orbitals. The approximation is then re�ned

by adding more correction terms.

Finally, if just the particle density n(r) is used as the basic quantity, exact

kinetic energy becomes no longer available and a framework called Density

Functional Theory emerges.
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1.5.1 Density Functional Theory

Let S denote basis of space of states of a single electron. Then, states of

N electrons belong sto the antisymmetric portion of the space spanned by

SN . For example, points in real space with spin can serve this purpose:

S = R3×{↑, ↓}. For brevity, coordinates in the following discussion are from

S, that is, ri ∈ S. The expression |r1− r2|, a particle-particle distance, will

accordingly refer to a norm in S which ignores the spin dimension.

As explained below, working only with electron densities

nψ(r) = N

∫
dr2 . . .

∫
drnψ

∗(r, r2, . . . , rn)ψ(r, r2, . . . , rn) (1.8)

it is possible to �nd some description of the ground state: its energy E0

and the corresponding density n0(r). To be precise, Kohn-Sham methods,

as described later, use auxiliary orbitals and thus go beyond the simple idea

of calculation based on density only. This is especially visible in case of

the most elaborate approximations, in which the orbitals serve calculation of

exact exchange energy. Still, the density n(r) retains its central position at

the conceptual level.

The looked-for density n0 corresponds to the state ψ0 of the lowest energy.

It can be found by optimization of energy expressed as a function of n (called

a functional as the density n itself is a function and E ∈ RRS with some
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R ⊂ R) in the following way [27]:

E(n) = min
ψ:nψ=n

〈ψ|H|ψ〉 (1.9)

Obviously, direct Rayleigh-Ritz variational procedure and the two stage op-

timization described above both explore the whole space of antisymmetric

N -particle wavefunctions and come to the same ground state energy E0:

E0 = E(n0) = 〈ψ0|H|ψ0〉 (1.10)

Hence, the ground state density and energy can be found at minimum of

the functional E(n). This result is known as the second Hohenberg-Kohn

theorem [28].

For further discussion of properties of E(n), the following form of the

Hamiltonian H will be assumed:

H = T + U + V (1.11)

where T is the kinetic energy operator, U is electron-electron interaction and

V is some local multiplicative potential. Together with boundary conditions

and assumed number of particles
∫
drn(r) = N the potential V provides

complete description of the problem to be solved. V is a one-particle operator
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diagonal in real space, hence:

〈ψ|H|ψ〉 = 〈ψ|T + U |ψ〉+

∫
drn(r)V (r) (1.12)

Given a particular potential V , the density nV0 that yields the optimal

energy E(nV0 ), always changes as the potential V is altered in a non-trivial

way. This is obvious in the typical case when V is generated by atomic

nuclei and the change of V is a result of their movement. Since the potential

diverges at their locations, the ground state wavefunction and its density

have cusps there [29]. Nevertheless, the claim can be rigorously justi�ed as

follows.

For given state ψ, the term 〈ψ|T + U |ψ〉 of the equation 1.12 does not

change with V . The rest of the energy depends on V in the same way for all

states which share the same corresponding electron density.

Let ∆E(ψ) denote change of energy of given state ψ as the term ∆V is

introduced:

∆E(ψ) = 〈ψ|T + U + V + ∆V |ψ〉 − 〈ψ|T + U + V |ψ〉 =

∫
drnψ(r)∆V (r)

(1.13)

It is crucial here that these changes depend only on electron densities instead

of the full wavefuction ψ.

Nontrivial changes ∆V (r) 6= const inevitably mix1 the ground state ψV0
1Suppose that the ground state remains unchanged after ∆V is added to the potential,

namely ψV
0 = ψV +∆V

0 . Energy change ∆E is an eigenvalue of potential change: ∆HψV
0 =
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with some excited states ψVi and the pure ψV0 remains no longer of the lowest

energy with the new Hamiltonian T + U + V + ∆V . Thus, energy of this

state grows more than energy of some mixed state ψV+∆V
0 as the potential

V is changed:

∆E(ψV0 ) > ∆E(ψV+∆V
0 ) (1.14)

The system �nds a new electron density so that the above inequality holds:

∫
drnV0 (r)∆V (r) >

∫
drnV+∆V

0 (r)∆V (r) (1.15)

It means that the new ground state has di�erent electron density. Hence the

mapping of classes of equivalent external potentials V to the corresponding

ground state densities nV0 is bijective. This observation, known as the �rst

Hohenberg-Kohn theorem [28], was one of most important steps in develop-

ment of density functional theory. Densities contained in codomain of this

mapping are called v-representable. Intuitively, the theorem shows that these

densities contain as much information as the corresponding wavefunctions ψ.

Curiously, while density functional theory has its roots in the above con-

siderations, in fact, its success doesn't depend on them being correct. The

practically attainable approximations do not require the underlying func-

tional to be precisely correct nor to lead to the true ground state. Moreover,

routinely employed non-local pseudopotentials violate the basic assumption

∆EψV
0 . Since ∆V is diagonal in real space and at the same time ψ is its eigenvector, it

must be degenerate: ∆V (r) = const.
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about locality of the external potential V , which is probably inescapable [30]

in the above reasoning. Still the DFT methods are successful.

Having the considered particular form of the Hamiltonian in mind, the

previously de�ned function E(n) can be expressed as a sum:

E(n) = min
ψ:nψ=n

〈ψ|T + U + V |ψ〉 = min
ψ:nψ=n

〈ψ|T + U |ψ〉+

∫
drn(r)V (r)

(1.16)

The �rst term doesn't depend on V and thus it is universal. It is called the

Hohenber-Kohn functional:

F (n) = min
ψ:nψ=n

〈ψ|T + U |ψ〉 (1.17)

Clearly, this leads to a simple recipe solving the problem of N electrons

in the potential v: once F is known, it su�ces to minimize E(n) = F (n) +∫
drn(r)V (r) as expressed in equation 1.16 in the space of densities n which

correspond to a N -body wavefunction. In general, such condition is called

N -representability. In case of the one-particle density n, it reduces just to a

norm constraint [31]: ∫
drn(r) = N (1.18)

The functional F encapsulates all the complexity of the many-body prob-

lem, hence its natural that no closed form of it was found. Several families

of its aproximations were developed, but none of them admits a way of sys-

tematic accuracy improvement.
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1.5.2 Kohn-Sham method

It is possible to have an approximation of F based directly on the density n.

This leads to the so-called orbital-free approach [32]. More accurate results

are achieved if an auxiliary system of noninteracting particles is employed.

This method, named after Kohn and Sham, is the more popular way followed

in practical implementations. It addresses the di�culty of estimation of

kinetic energy term of F . The idea is to de�ne the auxiliary system to exactly

reproduce the true electronic density and energy, making its state somewhat

similar to the solution. Consequently, it is possible to capture large portion

of the energy in few simple terms. The auxiliary Hamiltonian T + Ve� lacks

the usual electron-electron repulsion term. Instead, the e�ective potential

Ve� is changed as the density n changes and this dependence is laboriously

tuned to reproduce many-body e�ects.

This auxilary problem contains only one-particle operators, so a simple

Slater determinant |φ〉 solves it. Hence given the right Ve� , it su�ces to diag-

onalize the e�ective Hamiltonian using one of many well established methods,

in order to obtain the orbitals of φ and the energy 〈φ|T + Ve� |φ〉. Because

of mutual dependency of Ve� and n, a consistent solution needs to be found

iteratively. Extrapolation techniques, such as DIIS [33], are used for good

convergence.

The auxiliary solution |φ〉 is a function of electron density n. It is used

as a tool to decompose the true energy F (n), as shown below.
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First, de�ne the correlation energy

Ec(n) = F (n)− 〈φ(n)|T + U |φ(n)〉 (1.19)

which is the energy released by relaxation of |φ〉 to the true ground state |ψ〉.

It is the main quantity for which complicated approximations are employed.

In addition to this, calculations of F (n) require determination of 〈φ(n)|T |φ(n)〉,

which is easy, and 〈φ(n)|U |φ(n)〉.

As φ(n) is a determinant state, evaluation of 〈φ(n)|U |φ(n)〉 is costly, so

in practice often the pure Hartree repulsion

UH(n) =
1

2

∫
dr1

∫
dr2

n(r1)n(r2)

|r1 − r2|
(1.20)

is used as a base for another approximation, that is, the exchange energy

Ex(n) de�ned as

〈φ(n)|U |φ(n)〉 = UH(n) + Ex(n) (1.21)

has to be expressed in terms of electon density as accurately as possible.

In summary, the energy is calculated as follows:

F (n) = Tφ(n) + (UH(n) + Ex(n)) +Ec(n) = Tφ(n) +UH(n) +Exc(n) (1.22)

The last term is called exchange-correlation energy. Luckily, in case of

the basic density functionals, errors in Ex and Ec tend to cancel each other
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for valence electrons [34].

1.5.3 Approximate functionals

Useful approximations of Exc are found after a general form is imposed, as

implied by loosely assumed computational costs. This could be for example

integration of semi-local contributions all over the space:

F (n) =

∫
drf (n(r),∆n(r)) (1.23)

Then, limits with known behaviour are chosen to be obeyed. The functional

can be �tted to accurate Quantum Monte-Carlo calculations and tuned to a

set of benchmark tests (like, for example, large number of molecules).

As said, the densities n are de�ned in space-spin coordinates. They con-

sist of n↑ and n↓ components, thus allowing studies of magnetic e�ects. Even

if they are of no interest, keeping the components separate leads to better

results than with single spinless electron density.

The simplest recipe for Exc that was widely applied is called Local Den-

sity Approximation: F (n) =
∫
dxf(n↑(x) + n↓(x)), where x is a space coor-

dinate. It assumes that at each point in space electrons can be treated as

homogeneous gas. A version generalized to a spin-dependent form F (n) =∫
drf(n(r)) (note that r is a space-spin coordinate) is called Local Spin Den-

sity Approximation [35].

Many analytical forms of it were developed, such as a functional by
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Perdew and Wang [36]. This approximation works well for solid-state calcu-

lations but its description of molecules is worse [34].

All calculations in this work were performed using the so-called gener-

alized gradient approximation (GGA), which has wider applicability. The

commonly used parametrisation found by Perdew, Burke and Ernzerho� [37]

was used.

The GGA permits the energy to depend on density gradient:

Exc(n↑, n↓) =

∫
drf (n↑, n↓,∇n↑,∇n↓) (1.24)

The PBE approximation was built speci�cally to obey many correct scal-

ing relations: limits of slowly varying density, rapid variations and high

density, also spin-scalinig property of exchange energy and the Lieb-Oxford

bound [37].

Inclusion of the density gradient results in important enhancement of

description of electronic behaviour far from nuclei. It corrects the tendency

of LDA to bind too strongly.

More accurate exchange-correlation functionals are classi�ed as meta-

GGAs (making use of local kinetic energy or density Laplacian), hyper-GGAs

(that rely on exact exchange energy) and methods using the unoccupied

Kohn-Sham orbitals. The so-called hybrid functionals mix some of the exact

exchange energy into ordinary GGAs. As the DFT methods were general-

ized and extended, many more schemes were developed to address particular
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concerns like correlation in Mott insulators and inclusion of van der Waals

forces.

1.6 Treatment of in�nite-sized systems

Among many interesting in�nitely extended systems imaginable, only trans-

lationally symmetric ones can be practically treated by the available DFT

tools. In other words, periodic boundary conditions are commonly imposed.

They are de�ned by lattice vectors together with content of the unit cell.

As all e�ects of electron-electron interaction and also the exchange energy

is encompassed by the density functional, hiding many-body nature and an-

tisymmetricity of the wavefunction, a problem of single particle in e�ective

potential eventually remains to be solved. In case of periodic system, the

single-particle solutions obey the Bloch theorem. Namely, a plane wave eikr

can be factored out of the solution, so the remaining factor has the same

periodicity as the potential. The solutions are therefore arranged in groups

indexed by the vector k, which belongs to the �rst Brillouin zone. It can

be assumed that they change continuously with k. Hence the computational

e�ort need not to be in�nite � thanks to interpolation or even simple sum-

mation only few k-points are needed to integrate over all the Brillouin zone.

For calculations performed in this work the Monkhorst-Pack [38] selec-

tion of k-points is used � a regular grid in the reciprocal space. In all cases

the periodic boundary conditions were imposed. Single molecule on an in-
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�nite surface was approximated by an in�nite array of molecules placed on

supercells (multiple surface reconstruction cells) chosen big enough to keep

interaction between the molecules negligible.

In fact, only a portion of these k-points is retained in accordance with

the expected dimensionality of the relevant part of the Brillouin zone. The

vacuum region between model surface slabs reduces it to a plane. In the

extreme case of isolated molecules, only k = 0 (denoted Γ) is kept.

1.7 Simulation of Scanning Tunneling Microscopy

The nanoscale systems studied in this work are most commonly observed with

scanning probe microscopy (SPM). In particular, the scanning tunnelling

microscopy (STM) provides insight into electronic details in real space.

High spatial resolutions are possible thanks to the fact that the current

tunnelling through the vacuum region separating the probe and a sample

decays exponentially with increase of the distance [39]. In the most often

used mode of its operation, the constant current mode, height of the tip is

continuously adjusted to drive the current to a constant prescribed value.

Typical values of the current are from pico- to nanoampers. Maps of height

as a function of probe position are subject to interpretation.

In order to simulate STM action, the tunnelling current needs to be calcu-

lated. A very simple approximation of it was derived by Terso� and Hamann

[40]. It comes from the expression obtained by Bardeen for a tunnel junction

33



[41], after small bias voltage and zero temperature is assumed and the probe

tip is represented by a spherically-symmetric potential. The model reduces

so that the tip can be considered as perfectly localized and, �nally, the cur-

rent is proportional to local density of states of the sample at Fermi level

that would be found where the centre of the tip is located:

I ∼ U

∫
i

|ψi(r0)|2 δ(Ei − EF )

Here ψi are single-electron states of energies Ei and r0 is the tip centre.

For approximate treatment of nonzero bias voltages U the formalism is

extended by summation (or integration) of densities of more orbitals as dic-

tated by the model employed by Bardeen:

I ∼
∑

i:EF<Ei<EF+eU

|ψi(r0)|2

where the condition for domain of summation should be reversed for negative

U .

In principle, it is impossible to �nd the tunnelling current with help of

DFT calculation since it delivers only the ground state electron density and

energy. However, it was found that if the auxiliary non-interacting Kohn-

Sham orbitals are used to derive other quantities, as if they were the ground

state, useful results are obtained. Hence, throughout this work this approxi-

mation is used for modelling of STM.
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In this scheme, it su�ces to �nd an isosurface of the integrated local

density of states in order to simulate an STM microscope working in the

constant current mode. However, the proportionality constant, even in the

simplest Terso�-Hamann model, cannot be predicted, because it depends

on the tip radius, decay constant of the assumed s-type orbital and work

function of the tip and substrate. Therefore, the density values used for STM

simulation are chosen to correspond to reasonable probe-surface distances.

In case of calculations with localized orbitals, the distance is limited by range

of these orbitals. An e�ect of such a local de�ciency of the basis set can be

seen on plots of the �awed isosurfaces for extremely small density values. On

the other hand, too high density guess yields a surface which is unrealistically

close to the model atoms. In this regime the used approximation is no longer

valid anyway.

In all cases the programs, that perform DFT calculations, were set to

integrate local density of states within a prescribed energy window. The

resulting volumetric data was processed by a separate tool.

1.8 The software packages used

The multitude of existing DFT software packages is overwhelming. Three of

them were used to deliver results presented in this work.

The main di�erences among them are

• choice of the basis set
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• form of the pseudopotentials (or alternative method)

• speci�c optimizations e.g. to leverage sparsity of certain matrices

• algorithms employed to solve eigenvalue problems

1.8.1 The SIESTA method

The software package called SIESTA [42, 43], which was the one most used in

this study, was created with systems of thousands of atoms in mind. Care was

taken to make computational cost scaling linearly with system size. However,

all results from SIESTA presented in this work are obtained with direct

matrix diagonalization instead of the special order-N functional.

The basis set employed by this method consists of atomic orbitals of

�nite size. Arbitrary numerical radial function is multiplied by a spherical

harmonic. Their sizes, the cuto� radii can be arbitrary and one can test

convergence of the results as they are increased.

There can be multiple orbitals de�ned per one angular momentum. Typ-

ically, two of them (a set called double-ζ) with polarization orbital (DZP)

basis is used.

In order to achieve strictly linear scaling in all stages of computation,

several new ideas found their implementation in the program. In general,

the one-electron states can be found by direct diagonalization, taking cubic

time or some sort of optimization, which requires extra e�ort to keep them

orthogonal (usually cubic time too). The authors of SIESTA implemented
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an idea that extra terms added to the energy functional will ensure the �nal

states to be orthogonal.

1.8.2 The Quickstep method

Another implementation used in this work, based on the Quickstep [44]

method, is contained in the CP2K program. Being carefully designed, it

achieves excellent e�ciency in parallel environments with thousands of pro-

cessors.

The method make use of two basis sets: plane waves and atomic orbitals,

which are combinations of Gaussians. Wavefunctions can be expanded by

the localized atomic orbitals in a space-e�cient way. The electronic density

is expressed in terms of plane waves.

The program implements the so-called Orbital Transformation method

[45]. The Kohn-Sham orbitals are transformed so that the needed constraints

are only linear and, at the same time, the procedure is guaranteed to con-

verge.

1.8.3 The VASP package

For best description of electronic states in vacuum regions the the VASP

program [46, 47, 48, 49] was employed, because it uses plane wave basis set.

The basis can be easily improved by setting a single cuto� value and thus

testing convergence of results with respect to the size of the basis is simple.
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In practice, with calculations performed for this work, VASP turned out to be

computationally more demanding than the other two programs. However, it

is useful when an insight into states extending into vacuum is needed, which

cannot be well described using orbitals localized on atoms.

38



Chapter 2

Study of pure InSb and InAs

surfaces

2.1 Considered compounds

Indium antimonide is a narrow-gap semiconductor of the III-V family. It

found many applications, for example in optoelectronic devices. Many struc-

tures are grown by molecular beam epitaxy starting with the surfaces, so

it is important to know their exact structure. There are established meth-

ods with which clean and �at crystal surfaces can be prepared, ready for

measurements and other experimental work.

InSb (and also InAs, the other compound considered in this chaper) crys-

tallizes in a zinc blende structure. The (001) planes coincide with either only

indium atoms or only antimony. It was found experimentally that, depend-
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ing on the imposed preparation conditions, such (001) surfaces can be made

rich in one of the components [50]. During the preparation of a clean crystal

surface atoms are exchanged with the gas phase. This process can result

in stoichiometry change and in�uences the �nal equilibrium geometry of the

reconstruction.

It is worthy to note a related research results here. There were observed

gallium clusters on one of the Ga-rich GaAs surface reconstructions [51].

They are ordered so that the surface has 4× 6 periodicity. The order is not

perfect, but it is clearly better than in the case of InSb and InAs discussed

here.

2.2 Reconstruction of the InSb(001) surface

Surface of a crystal breaks translational symmetry in one direction. The most

obvious consequence of this fact is that the equilibrium positions of atoms

change with the distance from the surface. The most distorted structure, in

the most asymmetric environment, where atoms struggle to saturate their

bonds, is found next to vacuum (or, possibly, interface). The term surface

reconstruction refers to the structure of these top layers.

Cleaning and annealing of the (001) surface of InSb crystal, performed in

an indium-rich environment, usually results in formation of the c(8×2) phase

[52]. LEED experiments con�rm its presence in broad range of temperatures

[2]. The reconstructed surface has high anisotropy and is very reactive, so it
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is an interesting template for growing nanostructures.

It is important to note that a disorder was recently observed on this

surface by STM in low temperatures [53].

2.2.1 The ζ model

In the past there were proposed models of this surface [54, 55], which contain

dimers in the surface layer. They were later found not fully consistent with

results of STM measurements.

In the year 2000 a new family of models was proposed independently by

two groups. Lee et al [56] found them with ab-initio calculations and Kumpf

et al [5] derived them from X-ray surface di�raction data for InSb, InAs and

GaAs.

The model shown on the Figure 2.1 di�ers from the above original data,

because the atomic positions shown are already optimized by DFT calcula-

tions described in Section 2.3. Nevertheless, it retains qualitative similarity

to the original model, called ζ.

The most outstanding its feature is presence of subsurface indium dimers.

These atoms are labelled In-9 and reside in the �rst layer below the top bi-

layer. Other atoms of this layer stay close to their ideal crystal bulk positions.

The topmost part of the model, which corresponds to two atomic layers, is

heavily reconstructed.

The model features symmetries with respect to the following lines and

planes perpendicular to the surface: axes going through In-1 atoms, each
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Figure 2.1: DFT-optimized ζ model of reconstruction of the InSb(001) sur-
face with c(8 × 2) symmetry. Atoms of the top bilayer are shown as black
(indium) and white (antimony) discs. The next subsurface layer contains
indium atoms (dark grey circles). The atoms labelled In-9 form dimers in
this layer. The last displayed surface is a bulk-like layer of antimony (light
grey circles).
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Figure 2.2: A schematic representation of symmetries of the discussed surface
reconstruction.

plane situated on In-2,3,4,5 and Sb-7,8 atoms and planes containing positions

of In-2 and In-3 (Fig. 2.2). These symmetries are observed by electron

di�raction measurements.

A remarkable feature of this structure is that the In-1 atoms, being the

most elevated, form outstanding rows in the [110] direction. In-3 are the

lowest atoms of the reconstructed bilayer.

The general model found by Kumpf et al describes surface reconstructions

of a family of compounds by assignment of di�erent occupation numbers to

a selection of sites. In case of InSb, the sites labelled In-1 are about 57%

occupied.

2.2.2 The model resulting from this work

This work re�nes this picture by discovery of mobility of the In-1 atoms. It

was also found that they readily form dimers and trimers. The performed

calculations show that there are many di�erent low energy con�gurations in

which some of the In atoms are clustered above the row of In-1 sites.
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2.3 Theoretical treatment of the surface

Since this is probably the �rst DFT-level treatment of the InSb(001) c(8×2)

surface, the data derived from X-ray experiments [5] was used as a starting

point.

Accuracy of a DFT calculation depends on many factors. It cannot be sys-

tematically improved by choice of more complex exchange-correlation func-

tional, as there are only several approximations researched in depth. Only

some of them are actually implemented in the software packages used in this

work. While it would be an interesting undertaking to assess performance

of hybrid functionals applied to the systems studied in this work, they are

computationally too demanding and thus PBE GGA was used exclusively.

Another parameter a�ecting calculation accuracy is the basis set size. Set

of plane waves used in VASP calculations is de�ned by a cut-o� value, which

can be increased for a convergence test. In case of localized atomic orbitals

used in Siesta and CP2K, it is harder to increase the basis set and a single

setting was used for this work.

In general, in order to accurately treat surfaces, the used localized basis

may need to be extended into vacuum [57]. The presented here results ob-

tained with VASP, whose basis uniformly covers all the simulation cell, are

free from such concerns. However, more work was done using localized basis,

because it allows for lower computational costs. This usage can be justi�ed

by comparison of LDOS plots based on Kohn-Sham orbitals delivered by
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these two methods. They are shown on Fig. 2.4. Fortunately, the di�erences

are not signi�cant enough to a�ect how the STM images can be interpreted.

Results obtained for in�nitely extended systems depend on �neness of the

sampling of Brillouin zone. For all calculations of local density of states, used

for STM simulation, it was increased. Number of chosen k-points was limited

by available processing power (and also by apparent software failures). In

case of structure relaxations with big simulation cells, which correspond to

small Brrilouin zones, only the Γ point (zone centre) was engaged.

Apart from the above factors, there are also chosen pseudopotentials,

convergence conditions (stopping criteria) and many choices related to par-

ticular speci�c optimizations made to the DFT solvers. These were generally

kept at their recommended values found in documentation.

Even if the electronic problem was exactly solved, quality of the problem

statement itself remains of importance. The periodic boundary conditions

applied in all three dimensions require that care must be taken to represent

systems of lower dimensionality. While isolated molecules are adequately

approximated by a grid of well separated images and thin �lms can be simply

stacked keeping su�cient vacuum region between them, a half-space occupied

by a crystal with a single surface must be cut.

Two decisions must be made about this cut. First, a suitable termination

has to be chosen, which would imitate the missing bulk of crystal. For all

the surfaces studied here a single layer of hydrogen atoms was chosen as a

reasonable way to saturate bonds of the bottom atoms. The added hydrogen
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a b c

Figure 2.3: Schematic representation of some possible arrangements of In-9
dimers. The rectangles indicate areas of 8× 2 size.

atoms are placed at equilibrium distance, but at the would-be lines of bonds

to the next missing layer.

Second choice determines the thickness of the retained portion of the

crystal. For a given quantity of interest its convergence with respect to

increasing the thickness can be checked. This way one can estimate how

accurate is, for example, the surface energy obtained with the a�ordable

model sizes. This issue becomes problematic, when derivation of the observed

object is costly, as in the case of LDOS plots.

In order to study the discussed reconstruction, several InSb(001) surface

models of di�erent thickness were built. Let the symbol Ln mean here a

(001) surface model with n bulk-like layers.

Although the available experimental data indicated that about 2/5 of the

In-1 sites are vacant, the �rst examined models were built with all the In-1

positions occupied (four In-1 atoms in the 8× 2 unit cell).

Arrangement of In-9 dimers determines structure of the top bilayer and

symmetry of the reconstruction. Fig. 2.3b shows it for the c(8×2) model. A
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4× 2 c(8× 2)
Atom SIESTA VASP SIESTA Experiment [5]
In-1 2.000 0.506 -0.052 2.000 0.508 -0.051 2.000 0.500 -0.051 2.000 0.500 -0.051
In-2 0.000 1.000 -0.132 0.000 1.000 -0.127 0.000 1.000 -0.270 0.000 1.000 -0.295
In-3 0.000 0.000 -0.223 0.000 0.000 -0.206 0.000 0.000 -0.172 0.000 0.000 -0.203
In-4 0.876 0.000 -0.160 0.880 0.000 -0.146 0.889 0.000 -0.113 0.881 0.000 -0.159
In-5 0.885 1.000 -0.087 0.881 1.000 -0.085 0.887 1.000 -0.154 0.884 1.000 -0.162
Sb-6 0.514 0.483 -0.069 0.509 0.483 -0.063 0.528 0.509 -0.081 0.532 0.511 -0.106
Sb-7 1.496 0.000 -0.209 1.500 0.001 -0.196 1.493 -0.000 -0.200 1.485 0.000 -0.220
Sb-8 1.498 1.000 -0.202 1.499 1.000 -0.190 1.496 1.000 -0.205 1.493 1.000 -0.255
In-9 0.504 0.691 -0.478 0.504 0.690 -0.473 0.511 0.315 -0.502 0.516 0.315 -0.536
In-10 1.476 0.504 -0.466 1.476 0.503 -0.454 1.484 0.497 -0.469 1.483 0.500 -0.490

Table 2.1: Atomic coordinates x, y, z (in LEED units) of the main atoms in
the upper layers of the surface shown for two L4 reconstruction models for
comparison with the available experimental data [5]. The x and y axes are
along the directions [11̄0] and [110], respectively.

structure of 4×2 symmetry (Fig. 2.3a) was created, also based on the data of

Kumpf et al [5]. Note that these two are not all of the possible arrangements

(Fig. 2.3c).

For the smaller unit cell of 4 × 2 size optimal atomic coordinates were

calculated with both VASP and Siesta (Table 2.1). Similarity of these re-

sults con�rm that correct settings and pseudopotentials were used in the

calculations.

The Table 2.1 also contains coordinates of the relaxed c(8 × 2) model

which can be compared to the experimental data given in the last column.

The model surface does not undergo signi�cant changes when every sec-

ond In-1 atom is removed. The simulated STM images (Fig. 2.7) are also

similar to the corresponding plots obtained with 100% In-1 occupancy (Figs.

2.6 and 2.5). These results were obtained with Siesta.
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Figure 2.4: Simulated STM images for -1 V (left) and +1 V (right) obtained
for the L4 model. Upper and lower plots made with data from VASP and
Siesta, respectively.

The CP2K package allows to do DFT calculations with much bigger cells.

An InSb surface cell of 8× 8 size was created. Energies of pairs of vacancies

at di�erent separations were compared. Relaxations of these models resulted

in very small corrections of atomic positions. It was found that di�erences

between their total energies are of order of 10−2eV . It can be therefore safely

assumed that there is no preferred distribution of vacancies on this surface

(within the set of models considered here).

2.3.1 Simulated STM images

Initially, the models up to L4 were relaxed and convergence of atomic po-

sitions of L4 was considered satisfactory. Subsequently, L4 was used as a

substrate for the PTCDA adsorption studies described in Chapter 3. Also, a
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Figure 2.5: LDOS plot for +1 V bias (unoccupied states). Pure InSb(001)
surface relaxed in a model with 10 bulk-like layers. All In-1 sites occupied.
LDOS calculated in a model with two layers less. Left: overview of an area
of 16 × 16 size. Right: four reconstruction unit cells (total size is 16 × 4);
crosses indicate positions of atoms of the top bilayer.

Figure 2.6: LDOS plot for -1 V bias (occupied states). Otherwise identical
to the Fig. 2.5.

series of LDOS plots were made with this model. Examples with ±1 V bias

voltages are shown on Fig. 2.4.

It was much later discovered that these results can be improved, because

of very minute corrections of atoms positions obtained with L10 model. It is

somewhat surprising that a crucial change occurs when the model is extended

to be as large as L10. Sb-6 atoms moved up and are visible as bright features

(Fig. 2.6), which are no longer dominated by image of In-4,5 atoms (compare

to Fig. 2.4, upper left part).

The plots shown on Figs. 2.5 and 2.6 are obtained with the relaxed L10

model cut to L8 size, with the terminating hydrogen layer attached anew.

The resulting smaller number of atoms helps to perform computations with

49



Figure 2.7: Simulated STM imates for -1 V (upper) and +1 V bias (lower
plots). 50% occupancy of In-1 sites, otherwise identical structure to the one
used for Figs. 2.5 and 2.6.

high number of k-points. The used grid of k-points was generated by 3

divisions along the 8 LEED units long side of the reconstruction cell, and 11

divisions along the short side. There is no point in sampling the Brillouin

zone in the direction perpendicular to the surface, as the vacuum region kept

between surface images makes the zone �at.

The above presented results pertain to the InSb(001) model with 100%

occupancy of the In-1 sites. The model can be made closer to the observed

stoichiometry if every second In-1 atom is removed from it. Relaxation of this

50%-occupied model revealed that the overall surface structure is insensitive

to the presence of In-1 atoms. Since displacements of atoms are very small,

the resulting simulated STM images (Figs. 2.7) are similar to the previous

ones, apart from the obvious changes to the appearance of the In-1 row.

The LDOS plots for models with 100% and 50% occupancy of the In-1

rows are shown together with results of low temperature STM in the Fig. 2.8.
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Figure 2.8: Comparison of experimental low-temperature STM images of the
InSb(001) c(8 × 2) surface and the results of calculations presented in this
work. The �gures are taken from [2]. Bias voltage: -1 V (left), +1 V (right).
Both panels contain: a simulated image for 50% In-1 occupancy � left (a)
and right (c); (b) experimental data; and a simulated pattern for In-1 row
occupied in 100% � left (c) and right (a). The dashed rectangle represents
unit cell of the surface reconstruction.

In case of negative bias voltage two main features are observed: dominant

rows or separate protrusions representing In-1 atoms and groups of four spots

located above the Sb-6 atoms. They are seen the same both in experiment

and theory. The microscopic image contains areas of di�erent concentration

of In-1 atoms, because the occupancy is between 50% and 100%.

Appearance of the In-1 row in the images of unoccupied states (positive

bias voltage) is also consistent. Since lack of contrast between the rows in

the STM image is likely caused by worse imaging conditions, the comparison

can be considered entirely satisfactory.

2.3.2 Mobility of the In-1 atoms

While the work presented in this thesis progressed, our understanding of

both the In(001) c(8 × 2) surface reconstruction and behaviour of PTCDA
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Figure 2.9: Energy of the surface with pushed In-1 atom shown as it changes
along its simulated di�usion path along the [110] direction.
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molecules adsorbed on it evolved in parallel. The study of di�usion of

PTCDA molecule described below in section 3.7 revealed that indium atoms

belonging to the In-1 row can be pulled by the adsorbate. Consequently it

was supposed that indium atoms encounter little barrier moving along the

path formed by pair of rows of Sb-7 and Sb-8 atoms.

In order to verify this hypothesis, a search for a transition path was set

up in the manner described in section 1.4.1. Di�usion of a single indium

atom was considered. It was pushed along the In-1 row. Steady movement

of its projection onto the [110] direction was the only enforced feature of

the trajectory to be found. During each optimization step the indium atom

of interest was allowed to freely move within a plane perpendicular to the

direction of surface rows. The plane was �xed at successive positions pushing

the constrained atom for up to 9.75 Å in steps of 0.25 Å (as measured along

[110]). All other atoms except the lowest layers of the slab could freely relax

in these calculations.

The initial structure used for this simulation (Fig. 2.10) features the In-1

atom to be pushed, which is placed between two vacant In-1 sites. Since

all calculations are performed with periodic boundary conditions, the cell

needed in this case has to be at least of 8× 4 size (in standard LEED units).

Such model would have two In-1 rows with four distinct In-1 sites in each.

It turned out that among the DFT codes used for this work, CP2K was the

fastest for the purpose of this calculation. Its calculations involve only the

Γ point of Brillouin zone, hence a large cell of 8 × 8 size was used. The
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Figure 2.10: The initial structure used for simulation of di�usion of In-1
atoms (top view and side view). The pushed atom is located between the
two visible vacancies.

slab consisted of top bilayer and only four bulk-like layers with hydrogen

termination, still it contained about 500 atoms in total.

The energy plot (Fig. 2.9) shows barriers it overcomes as the simulation

proceeds. The �rst small barrier of 0.08 eV has its peak where the atom sits

just in between Sb-7 and Sb-8 atoms (Fig. 2.11a). The next energy minimum

is close to the usual In-1 site, but not precisely at it (Fig. 2.11b). Asymmetry

of arrangement of the surrounding atoms causes this slight deviation. The

next encountered barrier is similar (Fig. 2.11c). It is followed by sharp

decrease in energy caused by formation of an indium dimer (Fig. 2.11d).

This structural change yields 0.1 eV relative to the model of Kumpf. The

basin of energy surface explored up to now becomes more and more shallow at

the constraint plane and disappears when the plane is moved after the 34-th

step of the search procedure. The next run of the optimization �nds another

energy minimum, causing a sudden energy drop. It means that the peak seen

at about 8 Å (Fig. 2.9) is higher than the real energy barrier corresponding

to the transition. The energy minimum corresponds to a trimer-like structure
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Figure 2.11: Steps of the simulation of di�usion of In-1 atom that correspond
to the discussed changes of total energy.
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Figure 2.12: Comparison of calculated (left) and experimental STM images
taken at room temperature (right). The bias voltages are as indicated. The
superimposed surface model contains top bilayer indium (red) and antimony
(blue) atoms. Taken from [3].

depicted in Fig. 2.11e.

In light of these results we can state that indium atoms can freely move

along the In-1 rows at room temperature. This explains the uniform ap-

pearance of these rows observed by SPM. The indium atoms can jump many

times while the scanning tip moves from one In-1 site to the next one. Fig.

2.12 shows a room temperature STM scan demonstrating such smearing of

the In-1 row. If scans are acquired in low temperature, speci�c instabilities

of In-1 atoms are revealed. Namely, jumps of groups of atoms are witnessed

when consecutive lines are scanned over the twin InAs(001) surface [58].

Interestingly, in 77 K, both cluster and chain forms are observed simulta-
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neously. This precludes large energy di�erence between these con�gurations.

The last, most favourable con�guration, the indium trimer deserves more

attention. The elevated atom in the bridging position gives rise to an out-

standing spot on STM scans, hence it is very good explanation of the bright-

est features of the STM images acquired in low temperatures. As will be

shown in the following section, it turns out that there are other possible

arrangements of In atoms close to the In-1 sites, which have similar energies.

2.4 Search for possible structures of indium clus-

ters

Pure theoretical prediction of the structure of the In-1 rows would require

comparison of free energies of exhaustive set of arrangements of atoms. This

would be most practically conducted in two steps: search for local energy

minima and evaluation of curvature of the energy surface in neighbourhood

of these points. However, in case of clustering of indium atoms, only the low

temperature behaviour can be discovered by SPM experiments. Hence, it is

satisfactory to obtain theoretical results near 0 K and assume that entropic

e�ects are negligible.

As said before, simulation of behaviour of PTCDA adsorbed on the sur-

face has led to the discovery of cluster structures of In-1 atoms. The �rst

study of such structure was based on an optimized geometry of PTCDA

with additional In atom lifted (Fig. 3.14). The molecule was erased from the
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Figure 2.13: Simulated STM image of the �rst model of cluster structure on
the In-1 row. Occupied states with -1 V bias (left) and unoccupied states
with +1 V bias (right).

dataset and it was relaxed again. The model is an L4 slab of 4× 4 size with

four In-1 atoms (100% occupancy).

Surprisingly, the atoms remained roughly at the same positions and the

energy turned out to be lower than of the original model slab of the same

size with all In-1 atoms in their ideal positions. For this con�guration LDOS

plots were prepared. Two of them are shown on Fig. 2.13. The structure

can be described as an asymmetric indium trimer. Two of the In atoms are

substantially elevated, so they could be seen as bright elongated feature on

STM images. This is con�rmed by the computed plots (Fig. 2.13).

More studies of this phenomenon were conducted with indium arsenide,

whose (001) surface exhibits very similar reconstruction if prepared in arsenic-

de�cient conditions. It is denoted c(8 × 2)/4 × 2. It means that there are

domains of two kinds found in this surface. One is characterized by the

c(8×2) symmetry shown on Fig. 2.2. The other di�ers mainly by location of

the In-9 dimers leading to the 4× 2 symmetry. Location of the In-9 dimers
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determines structure of the top bilayer above. The areas of 4× 2 reconstruc-

tion can be considered as boundaries of the domains of the 8 × 2 structure.

In case of the discussed indium antimonide surface the 8 × 2 areas are so

large, that the 4× 2 reconstruction is rarely observed [58].

The model slab of InAs(001) surface was prepared starting from the co-

ordinates given by Kumpf et al [5]. They were scaled to match the InAs bulk

lattice constant optimal for the Siesta settings used.

This way the locally optimal ζ structure with all the In-1 atoms present

was obtained. Subsequently, all the In-1 atoms were removed. In place of this

row many indium structures were built and examined, as described below.

The primitive unit cell of the 4× 2 reconstruction encompasses two In-1

sites that belong to the same row. In order to study clustered arrangements

of up to four indium atoms a larger cell of 4× 4 was used.

Truly exhaustive search for globally optimal positions of a set of atoms

with DFT level of accuracy requires minimal distance between local minima

to be assumed. Then the search space can be divided so that all nonequiva-

lent con�gurations can be enumerated. Number of instances generated this

way grows exponentially with the number of atoms. Hence this approach is

feasible only in case of the smallest systems.

Fortunately, for the particular system considered here, it is possible to

de�nitely answer the question of the best arrangement of indium atoms over

the In-1 row as predicted by DFT.

In order to examine all interesting cases, it is enough to consider eight
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sites. In each of them there can be an indium atom or it can be left unoccu-

pied. These are: four In-1 sites of the ideal ζ reconstruction and further four

bridge positions (above the point in the middle between two In-1 sites).

These 28 cases are enough to solve the problem of low temperature struc-

tures forming on the In-1 rows, for the following reasons:

• it is unlikely that a stable structure would consist of three indium atoms

stacked vertically

• as experiment shows, there are no elementary structures longer than 4

LEED units forming on the row

• the chosen sites are distant by 0.5 LEED unit and further re�nement of

spatial resolution would not introduce any new local energy minimum

Some of the con�gurations were considered unreasonable and excluded

from the set. Moreover, the used 4× 4 surface slab has translational symme-

try, as it consists of two identical halves. Also there is a plane of symmetry

going through each As-7/8 pair. An extracted set of inequivalent arrange-

ments contains models with up to 8 indium atoms added.

The most relevant cases among them, which can be compared to ex-

perimental results, have 2, 3 or 4 indium atoms in the model cell. This

corresponds to 50%, 75% or 100% occupation of In-1 sites.

All the generated models were relaxed. Some of the structures converged

to the same stable �nal geometry. For the most of the optimal structures
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LDOS isosurfaces were plotted to serve as approximation of STM images

with -1 V (not shown) and +1 V (shown in table 2.2) bias voltages.

In the table 2.2 the results are presented in groups of the same number

of indium atoms placed on the surface. The ground state energies are shown

relative to the simplest case, in which indium atoms sit close to the positions

given by the ζ model. To compare two structures with di�erent number of In

atoms it would be necessary to assume particular value of chemical potential.

This would not make sense for interpretation of the experiments aimed at

the problem discussed here.

The brightest features seen on the plots correspond to the atoms placed

on the In-1 row (horizontal line in the middle). There are also In-4/5 rows

visible as series of alternating dim and bright spots. As-6 atoms are less

exposed on these images.

As we can see, in some cases a high energy gain of 0.56 eV relative to the

simple structure (denoted E4) is achieved. However this is accompanied by

signi�cant displacement of In-5/6 atoms, which is not observed experimen-

tally.

Interestingly, the middle of the rectangle given by As-7/8 atoms is not a

stable position for indium atoms. Instead, they prefer to stay shifted by 0.21

LEED unit o� this position in either direction.

The �rst case in the table (x3) features a pair of In atoms and a pair

of consecutive vacancies. The second case (x5) has every second In-1 site

vacant. These geometries have the same energies.
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Among structures with 100% In-1 occupancy, the aggregated ones have

the lowest energies. The pure ζ structure is by about 0.4 eV less favourable.

Theoretical description of the areas of the surface with c(8×2) symmetry

appears to be very similar. A model slab of 8 × 4 size was used. First

calculations have shown that the added In-1 atoms undergo only minor shifts

relative to the results previously obtained with the 4× 2 model. These shifts

adapt atomic positions to the symmetries of the 8× 4 model, otherwise the

structure remains the same. Hence, it can be expected that all the solutions

for 4× 2 lattice apply to the c(8× 2) case as well.

One remarkable property of the InAs surface studied here is that the equi-

librium positions of the indium atoms that belong to the In-1 rows are not

at the exact In-1 sites dictated by the ζ model. They prefer to move along

[110] towards the point between As-7 and As-8, thereby breaking the sym-

metry. This observation explains certain features seen in the experimental

STM images [58].
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In-1 Initial Label Relaxed LDOS Energy

0.5 x3 Ex3 = 0.00eV + E2

0.5 x5 Ex5 = E2

0.5 x6 Ex6 = −0.05eV + E2

0.5 x10 Ex10 = −0.00eV + E2

0.5 x48 Ex48 = −0.29eV + E2

0.75 x7 Ex7 = E3

0.75 x19 Ex19 = −0.04eV + E3

0.75 x38 Ex38 = −0.17eV + E3

1. x15 Ex15 = E4

1. x29 Ex29 = −0.56eV + E4

1. x53 Ex53 = −0.44eV + E4

1. x58 Ex58 = −0.56eV + E4

1. x83 Ex83 = −0.23eV + E4

1. x85 Ex85 = −0.40eV + E4

1. x86 (no image) Ex86 = −0.64eV + E4

1. x170 (no image) Ex170 = −0.54eV + E4

Table 2.2: Results of the search for low-energy con�gurations of the indium
atoms in the In-1 surface row. Columns contain: occupancy of the In-1 sites,
initial structure � a side view with indium atoms (dark circles) and As-7,8
atoms (white discs), a label, side view of the relaxed structure, simulated
STM image for unoccupied states, energy shown relative to the ideal models
which contain n indium atoms occupying the In-1 sites. They are based on
ζ and their energies are denoted En.
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Chapter 3

Adsorption of PTCDA molecules

Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA, Fig. 3.1) is widely

studied as a model organic semiconductor [59]. In particular, its adsorption

on a variety of surfaces was examined and structures of the thin layers it

forms were determined.

The molecule is planar with a core consisting of aromatic rings. The

calculations presented here show that it bends signi�cantly when deposited

on the InSb(001) surface. This enables formation of chemical bonds. Mobility

of the molecule is essentially constrained to one dimension.

Figure 3.1: Model of the perylene-3,4,9,10-tetracarboxylic dianhydride
(PTCDA) molecule consisting of oxygen (red spheres), hydrogen (white) and
carbon (grey) atoms.
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The most important and most readily available outcome of theoretical

modelling of the molecule adsorption are: positions of atoms in the ener-

getically most favourable con�gurations, deformations of the involved parts,

accompanying change of distribution of electrons and several energy di�er-

ences, which are explained in detail in the following section.

One could also examine shape of energy wells of the energy surface (as

discussed in Section 1.2), especially the relevant energy barriers. This would

lead to �nite temperature considerations, i.e. comparison of free energies of

the considered adsorption geometries, but it is beyond the scope of this work.

3.1 Description of the adsorption in terms of

energy

Consider two parts of an atomic system, called A and B. In particular, let

A0 and B0 denote their con�guration unperturbed by external interactions

(vacuum state) of the lowest energy. They can form a combined system,

denoted AB when they come close together, in our case driven by simple

adsorption process. In a response to a new neighbourhood the atoms change

their positions and the resulting deformed geometries, being di�erent than

A0 and B0, will be denoted here as A and B.

It is crucial to compare energies of the two considered states of the two

parts: staying far apart and interacting in the combined system. Thus we
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de�ne an adsorption energy, in the following way:

Eads = EA0 + EB0 − EAB

Positive value of Eads indicates that formation of the combined system is pre-

ferred, provided that its temperature is low enough. This extra assumption

stems from the fact, that entropic e�ects are entirely neglected here since we

study only isolated points in phase space.

The energy expenditure for shape change of the constituents is called

deformation energy:

Edef = EA
def + EB

def = EA − EA0 + EB − EB0

We can say that the energy gain originating from interaction between

the parts, has to make up for the deformation and what remains is the Eads

mentioned above. Therefore we de�ne interaction energy Eint, which satis�es:

Eint − Edef = Eads

All the above energies can be determined by DFT calculations with relax-

ation of atomic positions. This direct scheme is simple, but better precision

can be achieved incurring little additional cost, by looking more carefully at

the inaccuracies which appear here.

In DFT calculations, the used basis set is �nite and thus incomplete. It
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is chosen as small as possible for the required accuracy to save processing

power. The error introduced in this way can be reduced by extrapolation

procedures and also by simple subtraction of energies of systems that are

similar enough. We can usually expect that the error is largely cancelled in

the energy di�erence, because basis set truncation overestimates the energy

in the two systems in a very similar way.

If the basis set depends on positions of atoms, as in the case of atom-

centred orbitals, we can no longer bene�t from the above cancellation as the

error introduced by basis set truncation can be di�erent for a two systems,

which we want to compare. In practice it is the case, if the DFT method we

use is not based on plane waves.

This is especially important for determination of adsorption energies. We

compare the energies EA0 + EB0 and EAB. As the combined system AB is

formed, some atoms get new neighbours, and so more basis orbitals become

available for the electrons. This can reduce the basis set truncation error

signi�cantly.

In order to regain the accuracy of Eads, extra intermediate geometries A

and B, the deformed but non-interacting parts are considered. It is then

possible to calculate energies of the parts with the larger basis corresponding

to AB. This leads to the so-called counterpoise formula [60, 61].

Let Ej
i denote energy of system i as calculated using the basis set prepared

for the geometry j. E∞i are fully converged energies which could be obtained

with a high quality basis.
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Energy di�erences Ej→k
i are de�ned so that:

Ej
i = Ej→k

i + Ek
i

We aim at cancellation of errors related with the basis AB. Therefore we

rewrite the energies E∞A0
and E∞B0

in the following manner, keeping in mind

that A and A0 are similar:

E∞A0
= E∞→A0

A0
+ EA0

A0
≈ E∞→AA + EA0

A0
= E∞→ABA + EAB→A

A + EA0
A0

The adsorption energy becomes:

Eads = E∞A0
+ E∞B0

− E∞AB ≈

≈ E∞→ABA +EAB→A
A +EA0

A0
+E∞→ABB +EAB→B

B +EB0
B0
−
(
E∞→ABAB + EAB

AB

)
=

=
(
E∞→ABA + E∞→ABB − E∞→ABAB

)
+EA0

A0
+EB0

B0
−EAB

AB +
(
EAB→A
A + EAB→B

B

)
The �rst term in parenthesis is small and thus neglected. The last two terms

are called basis set superposition error:

EBSSE = EAB→A
A + EAB→B

B

The resulting formula contains explicit correction of the adsorption energy:

Eads = EA0
A0

+ EB0
B0
− EAB

AB + EBSSE
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In order to determine its value, four extra calculations are required, two with

the ordinary basis (EA
A and EB

B ) and two with the enriched basis set: EAB
A ,

EAB
B . The added basis orbitals are placed where atoms of the AB system

are, but no new electrons nor nuclei are introduced. In case of SIESTA, they

are called ghost atoms.

The energies calculated for the PTCDA/InSb system and presented below

include the BSSE correction.

3.2 Related research

An example of large organic molecule adsorbed on the InSb(001) surface is

given in [62]. The STM results made possible to determine the preferred

adsorption sites. Similar to the PTCDA/InSb(001) case, the Violet Lander

molecules adjust their geometry to the structure of surface reconstruction.

As with PTCDA, molecular chains were observed. However, they form only

at the step edges, whereas there is no correlation between conformations

chosen at �at terraces. Interpretation of the images with sub-molecular reso-

lution obtained in low temperature requires certain assumptions to be made.

Similar uncertainties related to PTCDA appearance were solved by this work.
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3.3 First series of relaxations of adsorbed PTCDA

A model surface slab of su�cient size is needed to examine all orientations

of the molecule. The 8×2 cell is too small for a PTCDA longer axis oriented

along the direction of In-1 rows. Enough room is found in a supercell of 8×4

size, but a L4 model of this size contains 256 atoms. DFT calculations with

this model would be too heavy for systematic search for the best adsorption

sites.

It was therefore necessary to approximate the c(8×2) reconstruction cell.

The top bilayer has almost 4 × 2 symmetry, lowering of which is primarily

caused by the In-9 dimers. Therefore it is reasonable to use half of the cell

as its approximation. At this point it is not important how exactly the 8× 2

cell is divided (there are basically two possibilities), because the results will

be later veri�ed using the full surface model.

Consequently, the model surface slab used at this stage was of 4× 4 size

and consisted of two 4 × 2 primitive cells. For simplicity, its In-1 row was

fully occupied.

The molecule was placed parallel to the surface in several places. Three

orientations were used: 0◦, 90◦ and 45◦ with respect to the In-1 surface rows.

Initially, the relaxations were done in two stages: the L2 model was used

�rst, then two layers were added so it became L4. It was found that no

considerable speedup is achieved this way, so most optimizations were sub-

sequently done in one stage.
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α0 x0 y0 xf yf Eint EInSb
def EPTCDAdef β EBSSE Eads

0
◦

0 0 -0.00 -0.00 -3.51 0.43 1.00 34
◦

0.45 -2.08

45
◦

0 0 -0.03 -0.01 -3.59 0.41 0.87 31
◦

0.46 -2.31

90
◦

0 0 0.00 0.00 -1.76 0.08 0.18 4
◦

0.36 -1.50

0
◦

1 0 0.97 -0.00 -3.17 0.61 0.66 22
◦

0.44 -1.90

45
◦

1 0 0.97 0.09 -2.94 0.42 0.59 19
◦

0.40 -1.93

90
◦

1 0 0.58 0.01 -3.58 0.30 0.63 18
◦

0.47 -2.65

0
◦

2 0 2.01 -0.01 -3.65 0.28 1.17 39
◦

0.46 -2.20

45
◦

2 0 1.98 -0.01 -2.15 0.20 0.60 21
◦

0.30 -1.36

90
◦

2 0 2.01 0.00 -1.01 0.04 0.08 8
◦

0.26 -0.89

0
◦

0 1 -0.00 1.00 -3.52 0.43 1.01 34
◦

0.45 -2.07

45
◦

0 1 -0.02 0.98 -3.52 0.29 0.84 29
◦

0.46 -2.39

90
◦

0 1 -0.00 1.00 -1.76 0.08 0.17 4
◦

0.36 -1.51

0
◦

1 1 0.97 1.00 -3.14 0.59 0.65 21
◦

0.43 -1.90

45
◦

1 1 0.99 1.08 -2.84 0.36 0.61 21
◦

0.40 -1.87

90
◦

1 1 0.59 0.99 -3.59 0.30 0.64 19
◦

0.47 -2.65

0
◦

2 1 2.01 1.00 -3.69 0.28 1.19 40
◦

0.46 -2.22

45
◦

2 1 2.00 0.99 -1.76 0.24 0.16 11
◦

0.33 -1.36

90
◦

2 1 2.00 0.99 -1.03 0.04 0.09 9
◦

0.26 -0.89

90
◦

1 0.5 0.47 0.51 -3.83 0.19 0.71 23
◦

0.47 -2.92

Table 3.1: Results of the �rst systematic search for the optimal adsorption
site of PTCDA in the InSb(001) c(8× 2) surface. α0, x0 and y0 is the initial
position of the molecule (orientation and two coordinates in LEED units).
xf and yf are the corresponding �nal coordinates (in the relaxed system).
The β is the bending angle of the molecule explained by Fig. 3.2.

Figure 3.2: De�nition of the bending angle β used in the Table 3.1. The
three points are averages of positions of the corresponding atoms. The red
circles denote the oxygen atoms of the molecule.
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The table 3.1 summarizes the results of relaxation of these models. First

three columns describe initial positions of the molecule. Here, x names the

axis perpendicular to the In-1 rows and the axis y is parallel to it. The

initial x and y coordinates shown in second and third column and the �nal

coordinates found in two next columns are given in LEED units, a. Distance

between two consecutive In-1 atoms is a. Diagonal of a face of the crystal-

lographic unit cell of bulk InSb has length of 2a. The energies are given in

electronvolts and their exact meaing is explained in section 3.1.

The last line of the table is a result of examination of an extra case added

when it became apparent that choice of α0 = 90◦ and x0 = 1 leads to high

adsorption energies.

Final coordinates of the molecule centre are shown in the Table 3.1 as xf

and yf for the [11̄0] and [110] (along the In-1 rows) directions respectively.

Orientation of the molecule did not change considerably during optimization

in all cases. Also, the y coordinate changed only slightly in the process.

However, in the cases with α0 = 90◦ and x0 = 1, when the molecule placed

along the In-4,5 row with its centre above it, it prefers to move by about half

of LEED unit towards the In-1 tow to be able to form four O-In chemical

bonds.

The �rst conclusion drawn from these calculations is that the four corner

oxygen atoms of the PTCDA molecule readily form bonds with the indium

atoms of the surface.

In all calculations the In-4,5 atoms remained immobile. Together with
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Figure 3.3: Examples of relaxation results. The �rst column shows a top view
of the structures. Indium atoms are marked with black circles, antimony �
white circles, oxygen � grey circles. The row of In-1 atoms is indicated by
a vertical line. The primitive cell of 4 × 2 size used in these calculations is
shown with a dashed rectangle. The ball-and-stick models show side-views
of the same structures. The shown cases are: α0 = 90◦, x0 = 1, y0 = 0.5 (a),
α0 = 90◦, x0 = 1, y0 = 0 (b), α0 = 45◦, x0 = 0, y0 = 1 (c), α0 = 0◦, x0 = 0,
y0 = 0 (d), α0 = 90◦, x0 = 2, y0 = 0 (e).

73



the indium atoms freely moving along the rows of In-1 sites, they are of

particular importance for the adsorption of PTCDA. These lines and the In-

4,5 sites act on the surface as a pattern that determines possible orientations

and positions where the molecule can be anchored.

In order to gain further insight into this interaction, a charge redistribu-

tion in the system was calculated as follows. First, the density of electrons

in real space was obtained for the full system in its relaxed state, name it

nAB(r). Then the density was calculated for each component separately with

atomic positions taken exactly from the optimized combined system. These

are nA(r) and nB(r). The di�erence

∆n(r) = nAB(r)− nA(r)− nB(r)

describes e�ects of interaction of the two parts. Such redistribution of charge

density can indicate chemical binding. Result of the analysis performed for

the molecule and the substrate in one of the low energy con�gurations is

depicted on Fig. 3.4. There are clearly visible signs of formation of four

bonds between the molecule and surface indium atoms.

Simple examination of the stable atomic positions can also help to iden-

tify the binding. For each of the four corner oxygen atoms its nearest neigh-

bouring indium atom was chosen. Distances between these O-In pairs were

added. Fig. 3.5 is a plot of interaction energy Eint as a function of this sum of

distances d. The visible clusters of data points correspond to con�gurations
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Figure 3.4: Geometry of high binding energy that corresponds to the results
shown in the last line of Table 3.1 (left) with a corresponding charge density
di�erence plot (right). Red and green surfaces indicate depletion and excess
of electrons, respectively. They are plotted for -0.017 and +0.017 electron/Å2

density di�erences.

with di�erent numbers of bonds as counted by simple distance criterion: four

bonds for d < 1.1 nm, three for 1.1d < 1.35 nm and less for higher d. Hence,

it can be said that each O-In bond brings an energy gain of order of 0.5 eV.

The actual bonds have lengths between 0.24 and 0.27 nm.

This extra energy available makes it possible for the molecule to bend

substantially.

Because various atomic structures can be found in the In-1 row, it can be

expected that there are many stable geometries possible in a real PTCDA/InSb(001)

system, all of which share the same basic features: long axis of the molecule

oriented along the [110] direction and four corner oxygen atoms bound to

In-1, In-4 and In-5 atoms of the surface.

As discussed in Section 2.2.1, the InSb(001) c(8×2) reconstruction cell is

symmetric with respect to a plane which contains the In-1 row of the highest

atoms. Therefore each existing stable adsorption geometry has a symmetric
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Figure 3.5: Interaction energies Eint of all the considered stable PTCDA
adsorption sites plotted against sum of four O-In distances. These four pairs
of atoms are selected to look at chemical bonds: for each corner oxygen atom
of the PTCDA molecule a nearest indium atom was chosen.
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Figure 3.6: LDOS plots for the most favourable adsorption geometry without
signi�cant displacements of In-1 atoms (the case with α0 = 90◦, x0 = 1,
y0 = 0.5). Bias voltages are (left to right): -1 V, -0.05 V and +0.2 V. Crosses
indicate exact positions of molecule atoms: hydrogen (white), oxygen (red)
and carbon (grey).

counterpart. They should appear with equal probability in experiments.

3.4 Simulated STM images of the adsorbed molecule

In order to allow direct comparison of the above results with experimental

�ndings and to help to interpret it, plots of isosurfaces of local density of

states were prepared. As explained in section 1.7, they serve as simulated

STM images. Examples for three bias voltages are shown on Fig. 3.6.

All of them are remarkably similar. A dark vertical line in the middle

of image of the molecule is a trench in the isosurface that splits it in two

halves. The left one, located above the In-1 row, is dimmer. This di�erence

in the appearance of the two halves is caused by a minor tilt of the molecule,

a rotation around a line in the [110] direction. It raises four hydrogen atoms

so that they give rise to the brightest part of the image.
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Figure 3.7: Calculated STM images of a low energy con�guration (α0 = 90◦,
x0 = 1, y0 = 0.5) (right panels) shown for two possible positions of the
molecule (left panels) with respect to the In-1 row indicated by the solid line
(Vt =-1.0 V). The In-1 rows in both STM images are aligned with each other
for convenience.

The case of low voltage essentially probes the orbitals at the Fermi energy

EF . Very similar results were obtained when the states were integrated on

either side of EF .

The image simulated for -1 V bias voltage shows occupied states. It is

similar to the lowest unoccupied molecular orbital of free PTCDA. Indeed,

energy levels of the molecule lie relatively low compared to the EF imposed

by the surface, as discussed in section 3.6.

The surface symmetry (see Fig. 2.1) is such that both sides of an In-1

row can equally serve as a adsorption site (Fig. 3.7). This can be most easily

observed where two molecules sit close together. Their relative position in-
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Figure 3.8: STM images of PTCDA molecules adsorbed on the InSb(001).
This illustration is taken from [4]. (a), (b) room temperature, V = −2.0V;
(c) 77 K, V = −1.0V; (d) 77 K, V = 0.5V. A high resolution image of a
single PTCDA molecule is shown in the inset.

cludes a displacement in the [11̄0] direction, if they choose to occupy opposite

sides of the row. The appearance of such pair of PTCDA molecules predicted

by DFT calculations can be roughly predicted by simple composition of two

simulated STM images. The right panel of Fig. 3.7 consists of two such

plots, one of which is a mirror image of the other. This prediction agrees

very well with actual observations of the molecular chains (see Fig. 3.8d).
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3.5 Relaxation of PTCDA with the full surface

model

With basic understanding of the adsorption mechanism, three models of

PTCDA put on the full model of InSb(001) c(8× 2) surface were built. The

system was accommodate to the size of PTCDA by extension of the surface

to 8× 4 size.

Every second atom of a In-4,5 row, the In-4 atom, is higher by 0.27 Å

than In-5. Two atoms of this row are bound to the molecule. There can

be two or one atom of this row between them. Hence, the molecule can be

bound either to two In-5 atoms or to two In-4 atoms or with In-5 and In-4.

Only three distinct possibilities are possible if the substrate has ideal

c(8× 2) reconstruction with In-1 sites occupied in 100%. A full model with

In-1 mobility and vacancies would likely admit more stable con�gurations,

but all having the same basic properties.

The table 3.2 and the �gure 3.9 shows the results obtained with the full

c(8 × 2) surface model. The highest binding energy is achieved in case one

chemical bond is formed with In-4 atom and another one is formed with In-5

atoms.

Note that the deformation energy of the surface EInSb
def in the �rst case is

negative. There is no indication of mistake, since the ζ structure used here

is not the ground state. Hence, an accidental lowering of the energy is not

surprising. However, the considered very minute correction of InSb energy
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Figure 3.9: The three adsorption sites considered in the calculations with 8×4
surface cell. The order is the same as in the table 3.2. Gray lines indicate
the In-1 rows. The dashed line encompasses 8×2 surface reconstruction cell.
Atoms are shown in black (indium), white (antimony) and gray (oxygen).
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atoms bound to O β Eint EInSb
def EPTCDA

def EBSSE Eads
In-1, In-1, In-5, In-4 16◦ -3.73 -0.02 0.58 0.49 -3.18
In-1, In-1, In-4, In-4 21◦ -3.76 0.08 0.66 0.47 -3.01
In-1, In-1, In-5, In-5 24◦ -3.85 0.03 0.72 0.47 -3.10

Table 3.2: Results of relaxation of the three structures built on the full c(8×2)
surface model. All energies are reported in eV.

does not correspond to any qualitative change of the model.

3.6 Charge transfer

Isolated molecule in a vacuum features a discrete density of states, which

essentially enumerates its orbitals. Interaction of an adsorbed molecule with

a substrate mixes them with the surface states so the DOS peaks are smeared

[63]. Moreover, in a combined system of surface with a molecule a common

Fermi level must be established.

In case of PTCDA adsorbed on the InSb surface, the potential well of the

molecule is e�ectively deeper, so some electron density is transferred to the

molecule.

In order to calculate the amount of charge transferred in the considered

systems, total charge in real space was obtained with the Siesta program in

a form of volumetric data. Two integration volumes were delimited in the

simulation cell. It was divided using the following criterion: a given point is

included in the �rst volume if the atom that is closest to it belongs to the

molecule. This is essentially a part of a Voronoi diagram.
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Figure 3.10: Charge redistribution (the same as in Fig. 3.4) showing ten π
orbitals �lled.

Cases presented in Tabs. 3.2 and 3.1 Transferred charge
In-1, In-1, In-5, In-4 2.35e
In-1, In-1, In-4, In-4 2.12e
In-1, In-1, In-5, In-5 2.16e

α0 = 90◦, x0 = 1, y0 = 0.5 2.03e
α0 = 90◦, x0 = 1, y0 = 2 2.27e

Table 3.3: Charge transferred to the molecule in its energetically most
favourable con�gurations. First three entries are results of calculations with
the full surface model of c(8 × 2) symmetry. They are shown in the Table
3.2.

The Table 3.3 shows the resulting charges. They are all above 2e. The

molecule is charged negatively. This is relatively large in comparison to the

transfers reported for metallic surfaces [64].

Close examination of the charge di�erence shown in Fig. 3.10, reveals that

some electron density migrates to several of the π orbitals of the perylene core.

Similar phenomenon was discovered taking place in the PTCDA/Ag(111)

system [65].

This result explains the similarity between LUMO of free PTCDA (shown
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in e.g. [65]) and the STM images for occupied states of the adsorbed molecule.

3.7 Di�usion of the molecules

Chains of PTCDA molecules are clearly visible on STM images like Fig.

3.8(a). To help understanding of their formation process, a next problem was

stated: how the molecules can move on the surface. For this, two di�usion

processes were simulated: one driven along the In-1 rows (the [110] direction)

and one across ([11̄0]).

The method of series of constrained optimizations, described in section

1.4.1, was used for this task. In our case, the model, that is, the molecule

and a surface slab of 4 × 4 size, consists of 166 atoms. Because of its size,

for this work, local shape of the energy surface along the transition path was

not determined and the entropy assumed constant.

There were performed and compared two series of calculations in which

the molecule position was advanced di�erently. Either single carbon atom

or the whole molecule had the considered coordinate updated. Preliminary

checks have shown that this di�erence has no e�ect on the numerical results

and computing time required.

As the molecule was pulled across the surface rows, it rotated to avoid

breaking the O-In bonds. The abrupt energy drops visible at about 2.5 Å

and 5.5 Å on the Fig. 3.11 are artifacts of the method used and correspond

to discontinuous movement of the molecule as it departs form a top of en-
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Figure 3.11: Energy of the PTCDA/InSb(001) system along the path of
simulated di�usion across the surface rows ([11̄0]). The horizontal axis shows
the travelled distance in Å and the dashed vertical lines are spaced by one
LEED unit. The yellow line corresponds to half of the length of the simulation
cell and to a quarter of the length of the true c(8× 2) reconstruction cell.
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Figure 3.12: Energy of the PTCDA/InSb(001) system along the path of sim-
ulated di�usion along the surface rows ([110]). The horizontal axis shows the
travelled distance in Å and the dashed vertical lines are spaced by one LEED
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ergy barrier. These barriers are of about 0.5 eV and are accessible in room

temperature. However, as the �nal points of the plot show, a barrier of more

than 1 eV is encountered as the molecule. It makes further movement of

PTCDA in this direction impossible.

Di�usion in the other direction, along the surface rows, is found to be

also complex, but not hindered by high barriers. Since the substrate has

periodic structure, we could expect that energy of a molecule pushed over

it would change periodically too. Still, results of the procedure performed

here do not repeat as the whole width of the reconstruction cell is traversed.

This behaviour is caused be an additional indium atom pulled behind the

molecule. The starting geometry of the system used in this simulation is the

low energy case shown in the Table 3.1 as α0 = 90◦, x0 = 1, y0 = 1. The

case α0 = 90◦, x0 = 1, y0 = 0.5 has even more favourable binding energy,

but it was not known at the time the di�usion simulation was started. This

fact manifests itself as the energy minimum on the plot located at 0.5 LEED

distance (blue vertical line). The discontinuities on the plot correspond to

switching of the chemical bonds of oxygen and indium. To illustrate this, two

subsequent frames of the simulation, that embrace the event are presented

in Fig. 3.13.

The energy maximum visible on the plot (Fig. 3.12) delimit the energy

barriers that the di�using molecule has to overcome. They are about 0.5 eV

at most, hence we conclude that in room temperature the molecule can move

along the rows, in the [110] direction. These barriers are so low, because the
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Figure 3.13: Two consecutive optimal con�gurations taken from the di�usion
calculation. Two indium atoms involved in the bond switching are repre-
sented as yellow spheres.

four chemical bonds, in which the molecule is involved, are not simultaneously

broken, but the indium atoms are exchanged one by one instead.

A particularly low energy con�guration which gives rise to the minimum

seen at 8.5 Å on Fig. 3.12 was discovered. Two of the indium atoms, which

originally occupy the In-1 sites, being involved in the O-In bonds in this

structure are signi�cantly displaced and seemingly bonded together. After

the clustering of surface indium atoms was studied, it is now understood that

the proximity of these two indium atoms causes the energy gain observed.

3.8 Interaction with In-1 atoms

When seeking for theoretical predictions about a system like PTCDA ad-

sorbed on crystal surface or about the reconstructed surface alone, the fol-

lowing two problems can be formulated: how the system behaves locally,

what possible geometries of unit cell correspond to low energies, and what

is its global behaviour, how often these particular local structures should be
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Figure 3.14: PTCDA adsorbed on the surface with an additional indium
atom elevated (right arrow) to form a bond with the In atom involved in the
O-In bond (left arrow). An optimized geometry (left) and a corresponding
simulated STM image for -1 V bias voltage (right).

encountered.

The global �nite temperature properties of InSb(001) c(8×2) surface are

governed by small energy di�erences and cannot be reproduced by DFT cal-

culations employed in this work. Similar di�culties prevent complete treat-

ment of the PTCDA/InSb problem.

As was discussed before, a particularly preferable arrangement of In-1

atoms close to the molecule is obtained if one In-1 atom is moved close

to the In-1 atom bound to oxygen, so that an extra dimer is formed (Fig.

3.14). This change lowers the total energy by about 0.1 eV. Figure 3.14

(right part) is a simulated STM image of occupied states of this new system.

It demonstrates that the lifted atom appears as a bright spot next to the

image of PTCDA. It is located on the In-1 row, so it is closer to the the less

pronounced half of PTCDA image.

Such bright spots are indeed observed in STM images at ends of molecular
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chains (Fig. 3.8 a, c). As can be seen on Fig. 3.8c, these extra spots are

located near the smaller oval of image of the last molecule in the chain. In

this case the agreement between experiment and simulation is excellent.

Once we understand the nature of these bright spots, an important ques-

tion is raised: can chain assembly be hindered by presence of these elevated

indium atoms?

For this, a transition between two states was studied by series of simple

constrained optimizations, as discussed in Section 1.4.1. The arrangement

with dimer with elevated indium atom was chosen as the initial state (Fig.

3.14). This atom was pushed towards the next In-1 site, which was initially

unoccupied. Evolution of system energy is shown on Fig. 3.15.

As expected, the energy grows. The barrier which the pulled away atoms

has to overcome is 0.2 eV. The reverse transition requires half of this energy.

It means that the elevated indium atoms are able to recede to nearest vacant

In-1 site. It should be noted that in this case it remains unknown how much

these barriers are a�ected by entropic e�ects.

As discussed before, the atoms labelled In-1 are mobile. Also, there about

two vacancies per every �ve In-1 sites. The problem of energetically most

favourable arrangements of these atoms on pure InSb surface was mostly

solved. However, this knowledge is not very helpful when seeking for best

geometries with PTCDA molecule involved. This is because the strong in-

teraction of In-1 atoms and the molecule distorts formation of the dimers or

trimers discussed in section 2.4.
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Several cases of PTCDA adsorbed on the surface with In-1 vacancies were

studied. It was found that whenever there are four indium atoms available

close to the molecule, four covalent O-In bonds are formed the same way as

previous calculations unveiled. In these cases adsorption energies are also

similar to those previously found. If location of the vacancies prevents for-

mation of one of these bonds, the binding energy is lower by approximately

0.4 eV. Because coverages of PTCDA considered in this work are low, we

can assume that there is always an indium atom available that can move

along the In-1 row to form the energetically favourable chemical bond. We

can conclude that thorough examination of the many possible arrangements

of PTCDA on surface with lower In-1 occupancy would not bring any new

insight.
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Summary

The work presented in this thesis is concerned with atomic and molecular

structures on a crystal surface and their theoretical treatment by means of

density functional theory calculations. The surface science and nanotechnol-

ogy meets computational physics in this work.

The �rst chapter explains how the problem of many electrons in the poten-

tial of atomic nuclei is solved. It also highlights the problems and algorithms

of exploration of the phase space of classical motion of the atoms. Next, justi-

�cation of density functional theory is presented and its essence is explained.

These techniques were then employed to deliver the results discussed in the

remaining chapters.

In particular, a complicated reconstruction of indium-rich InSb and InAs

surfaces is studied. It is known from experiments that c(8 × 2) and 4 × 2

symmetries are present on these surfaces. However, STM observations also

reveal that at low temperatures this order is broken and the acquired images

feature complicated patterns. Their nature was initially not understood.

The mystery was solved as calculations, presented in the second chapter,
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indicated that clustered structures of the In-1 atoms have lower energies

than the corresponding, initially assumed model arrangement. It was also

discovered that the their movement along these rows does not require large

energies, so that they are mobile in room temperature.

The indium cluster structures described here are observed in low temper-

atures and not visible above 180 K. Therefore an interesting question arises,

namely whether they undergo a phase transition. The issue is complicated

by the fact that these di�erent structures in various environments enjoy very

di�erent stability. Hence we cannot expect to �nd a single particular tem-

perature corresponding to the transition in general.

Let us note another interesting fact, that the traces left by the �uctuations

of the In-1 row in the STM images observed at room temperature are very

unspeci�c. There appears a smooth line along the outstanding indium row, so

that the �rst model considered in this work, with all the In-1 sites occupied,

seems su�cient.

To summarize, the combined experimental and theoretical results dis-

cussed here, lead to a model of the indium-rich InSb(001) and InAs (001)

surfaces that is similar to the model ζ proposed by Kumpf et al., but the in-

dium atoms in its dominant rows form clustered structures. The base model

ζ served as a starting point and computations have shown that it is stable,

but with higher total energy.

In the third chapter calculations and �ndings about PTCDA adsorbed on

the InSb surface are discussed. Several con�gurations featuring the highest
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binding energy are found. Bound molecules are no longer �at and the avail-

able energy permits signi�cant bending of its perylene core. Calculations

reveal also that in this system a charge of more than 2e is transferred.

Several simulated STM images were presented in this thesis. In gen-

eral, they all are in agreement with experimental observations. We are able

to recognize corresponding features on the images. Most prominently, the

PTCDA molecule exhibits many details which have close resemblance to the

ones found in the real scan results. This consistency su�ces so that the way

the molecule adsorbs to the surface can be unequivocally stated. Moreover,

we attain understanding of the role played by the covalent bods formed be-

tween oxygen atoms of the molecule and surface indium atoms. It is shown

that they constrain movements of the molecule to the direction of outstand-

ing surface rows. Interestingly, the four bonds the molecule forms with the

surface act as four legs: they can move forward to next lattice sites one by

one. The above facts can serve as a basis for possible explanation why the

molecules form chains on the surface. We are only missing the intermolec-

ular attraction to be elucidated. It would give us complete picture of the

considered system.

Some of the results of calculations performed for this work are published

together with corresponding experimental studies in the papers [i], [ii], [iii]

and [iv].

It should be said that thanks to the experimental e�orts and the results

made available to help the work presented here, it was possible to perform
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these calculations in a well focused manner. This interaction helped to make

them satisfactory and conclusive. Hopefully, not only the results and con-

clusions can be helpful for related future work, but also the reasoning and

methods found here can suggest new solutions in related areas of nanotech-

nology and surface science.
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