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Chapter 1

Introduction

The phase diagram of the strongly interacting matter is one of the central subjects
in modern physics. The aim of exploring the phase structure of the strongly interacting
matter is to determine how is the matter organized under extreme conditions. At a
distance scale of the order of femtometer, the dominant interaction is the strong force,
and the theory describing strong interactions is the Quantum Chromodynamics (QCD).
Extreme energy densities, corresponding to the femtometer distance scale, can be achieved
by increasing either the temperature or baryon density. Therefore, these two quantities
span the space of the QCD phase diagram. Studying of the properties of matter, at such
high baryon densities and temperatures, is not only a pure academic discussion. On this
basis, one can reveal the history of evolution of the Universe or describe the structure of
the neutron star core.

Since the very beginning of the QCD era, both theoretical and experimental efforts
have been taken to explore the phase structure of matter under extreme conditions. Until
today, the best investigated part of the phase diagram of the strongly interacting matter,
is the region of zero baryon density and high temperature. At this region, lattice QCD
computations give most of the results. As QCD becomes weakly coupled, zero baryon
density - high temperature region, can be treated by the perturbative QCD calculations.
At the same time, this part of the strongly interacting matter phase diagram, is well
explored by the ultra-relativistic heavy ion colisions. On the other hand, at asymptoticly
high baryon density - zero temperature region, direct weak-coupling calculations allow
the understanding of properties of the strongly interacting matter. In this part of the
QCD phase diagram, the ground state of the system is expected to be the so-called color
flavor locked (CFL) phase of color superconductivity. However, this QCD limit is beyond
the man-made laboratories.

None of the above treatments can be adopted in the baryon density range of the
order of several times nuclear matter density. Lattice simulations suffer from the famous
sign problem. At non-zero baryon chemical potential fermion determinant gets complex
and straightforward Monte Carlo sampling loses its effectiveness. Simultaneously, QCD
coupling constant leaves perturbative regime, and weak-coupling methods are not possible.
As a result, the region of moderate densities and temperatures is the less known part of
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Introduction

the QCD phase diagram. Nontheless, there is an expectation that this intermediate
region can reveal us some essential phenomena. Most of all, existence of many different
phases is expected. Among those, the Larkin-Ovchinnikov-Fulde-Ferrell phase of color
superconductivity or spatially nonunifrom chiral condensate, are very good examples.
Secondly, transitions from the hadronic to chirally symmetric and from the confined to
deconfined phases of matter, are presumably separated in this area. It is thus important
to understand the relationship between these two transitions.

Our current theoretical approach to the moderate baryon density range of the QCD
phase diagram is based on the interplay between the general arguments and the effective
model calculations. Extrapolation of the QCD results in the large number of colors or
asymptotic density limits may also shed light on this part of the QCD phase diagram.
Among the effective models, the Nambu Jona-Lasinio (NJL) theory is the widely accepted
and mostly used in the analysis of the phase diagram. It describes the spontaneous brake
down of chiral symmetry and enables us to study the competition between the chiral and
diquark condensates. However, the NJL model has a clear deficiency. In this model,
the non-local color current interaction is reduced to the point like interaction with an
effective coupling constant. As a consequence, the effect of color confinement is beyond
the NJL model description. In order to describe both the spontaneous breakdown of chiral
symmetry and color confinement, the Polyakov loop extended NJL (PNJL) model was
proposed as an extension of the original NJL theory. In the PNJL model, the background
gluon field is introduced, and the expectation value of the Polyakov loop can be an
indicator of a transition from the confined into the deconfined phases of matter.

From the experimental perspective, the phase diagram of the strongly interacting
matter is still insufficiently explored. On the one hand, the strong evidence of the onset
of deconfinement, that have been observed at the RHIC and CERN SPS, is the long-
awaited confirmation of the deconfined quark-gluon matter. The another promising result
of the heavy-ion collision experiments is the chemical freeze-out curve, that is the primary
landmark for mapping the QCD phase diagram. But on the other hand, the lack of a
direct experimental data in the moderate baryon density region is an obvious difficulty.
This is so, because exploration of the moderate baryon densities region corresponds to the
collisions of heavy ions with energies lower than those planned for the RHIC or the LHC.
Hopefully, the near coming progress in the experimental knowledge is expected. Two
experiments designated to cover the region of the QCD phase diagram where the critical
point is presumably located are already in progress. These are the NA61/SHINE at
SPS and the Beam Energy Scan at RHIC. The Compressed Baryonic Matter experiment
at FAIR and the future NICA/MPD project at JINR will also investigate the highly
compressed nuclear matter.

In this thesis we focus on the concept of the spatially nonuniform chiral condensate.
As moderate density region of the QCD phase diagram is unaccessible with ab initio
calculations, inhomogeneous phase is usually studied within effective models. We use
the Nambu Jona-Lasinio and Polyakov NJL models. Results of the effective models are
subjected to uncertainties, exemplarily due to the choice of parameters. This observation
became the one motivation of our study. We ask the technical but important question of
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how does the QCD phase diagram is affected by the fine details of the NJL and PNJL
models. The another motivation is to extend our analysis on some physical effects that
definitely influence the inhomogeneous chiral phase. We discuss the effects due to the
non-zero bare mass of quark, we also point out on the dependence of the effective four-
quark coupling with temperature.

The outline of this work is organized as follows:

In chapter 2 we provide an introductory overview of the issue of the strongly inter-
acting matter phase diagram. In this context we point out the role of existence of the
spatially inhomogeneous chiral condensate.

In chapter 3 the dependence of the NJL model results with respect to the different
regularization schemes is discussed. The influence of the 2SC color superconducting phase
is also considered in this analysis. Calculations were done at zero temperature and in the
chiral limit.

In chapter 4 we study the influence of the non-zero current quark mass on the spa-
tially nonuniform chiral condensate. Within the framework of the NJL model, the first
order correction to the grand thermodynamic potential, due to the non-zero quark current
mass, is evaluated. The role of the 2SC color superconducting phase is also considered,
and the results are presented both for the 3d cut-off and Schwinger regularization schemes.

In chapter 5 within the framework of the Polyakov loop extended NJL theory, the
phase structure of the strongly interacting matter in the temperature - baryon density
plane is investigated. It is shown that existence of the spatially inhomogeneous ground
state is consistent with the PNJL model at the mean field level. Conclusion is that
the nonuniform chiral phase can be interpreted as a special realization of a so-called
quarkyonic matter.
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Chapter 2

Phase diagram of the strongly interacting
matter

2.1 Phase diagram overview

The matter under external conditions, such as temperature or pressure, can exist
in different phases. These various phases of matter, differ with each other by physical
properties and internal symmetries. Depending on the distance scale at which we examine
the organization of matter, different interactions turn out to be crucial for understanding
of matter properties. At the astrophysical scale, it is the gravitational force that captures
matter into the planets and stars and determines their motion. At the everyday life scale
and below, until the atomic scale, the electromagnetic interaction binds atoms and forms
intermolecular bonds. We are familiar with the condensed matter phase diagrams, on
which, regions where matter exhibits various states are marked by a phase coexistence
lines. However, at sufficiently high temperature, any substance undergoes a transition
into a state called plasma. In the plasma, molecules dissociate to form a gas of individual
ions and electrons.

By an analogy, the natural question arises, what happens if the temperature will
continue to grow. One of the first who addressed this problem was Rolph Hagedorn. He
came to a conclusion of the existence of the limiting temperature [1]. With the framework
of the statistical bootstrap model, Hagedorn concluded, that with growing energy of
a system, this is the number of particles that increases, but the temperature becomes
constant. Soon after, Hagedorn paradox was resolved. People realized that hadrons
have internal structure built up from point-like quarks and gluons [2]. At this scale, the
dominant interaction is the color force. With the onset of the QCD era, the existence of a
new state of matter, the quark-gluon plasma, was postulated. Nevertheless, the concept
of limiting temperature remained as an estimation of the transition temperature to the
quark-gluon plasma. Moreover, exponential growth of the number of hadronic states
with mass, predicted by Hagedorn, is confirmed by the experimental data [3]. At that
time people understood, that squeezing of matter leads to a similar effect. At sufficiently
high densities, individual nucleons begin to overlap losing their individuality. Again, the
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2.1 Phase diagram overview

dominant degrees of freedom becomes quarks, and the dominant force becomes the strong
interaction. But yet, this limit is not the same with raising the temperature at zero baryon
density. Nucleons exhibit repulsive force at short distances what makes the difference [4].

The history of the phase diagram of the strongly interacting matter dates back to
those days. The very first conceptual phase diagram was sketched by Cabibbo and Parisi
in 1975 [5]. On those diagram, the hadron sector was separated from the quark-gluon
sector by the second order transition curve. With time, the understanding of the phase
diagram improved. At first, people began to consider the possibility that the so-called
deconfinement transition can exhibit different properties depending on the baryon den-
sity. Baym argumented that at densities above the nuclear matter density, deconfinement
transition is of the first order. While, at higher temperatures and smaller densities limit,
it is of the second order. Further, the question arose about the relationship between
the deconfinement transition and the moment of chiral symmetry restoration. In Ref. [6]
the more elaborated form of the the phase diagram of the strongly interacting matter
appeared (Fig.2.1). In this diagram. deconfinement transition always precedes the chiral
symmetry restoration. Another novel phenomenon in Fig.2.1 is the existence of the pion
condensation.

Figure 2.1: The phase diagram of the strongly interacting matter in the temperature -
baryon density plane, taken from Ref. [6].

Afterwards, early lattice QCD simulations indicated that both transitions coincide, at
least, at zero baryon density [7]. Also at that time, the another characteristic property
of the QCD phase diagram was postulated. At a sufficiently high baryon density and
low temperature quarks are expected to form a Fermi liquid. With an analogy to the
Cooper pairing of electrons, the pairing between quarks is possible [8]. Since the color
superconducting gap was estimated to be of the order of 10-100 MeV [9, 10], this phase
of the quark matter became compelling. Only recently, presented above and historically
established division of the phase diagram, has been disturbed. McLerran and Pisarski
postulated existence of a so-called quarkyonic matter [11]. At high baryon densities the
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Phase diagram of the strongly interacting matter

Fermi sea of quarks is well formed, but at the same time, color is confined and excitations
above the Fermi level are of the colorless baryons. This is the characteristic property of
this novel phase of matter.

Still conjectured, but most updated form of the QCD phase diagram, is shown in
Fig. 2.2.

Figure 2.2: The conjectured phase diagram of QCD; Figure is taken from Ref. [12].

2.2 Moderate density region

In the context of the present study, the most relevant region of the QCD phase dia-
gram, is the regime of moderate densities and low temperatures. By the term ”moderate
density” we refer to the region of baryon density of the order of several times larger than
nuclear density ρ0 ≈ 0.16/fm3. This estimation comes from the fact, that transition
from the nuclear into the quark matter phase is expected to occur when baryons begin
to overlap. The critical baryon density resulting from the model of percolation of (hard-
core) spheres is ρQM ≈ 0.93/fm3 [13]. Baryon chemical potential corresponding to this
transition can be calculated within different models what give µB ∼ 1100 − 1500MeV
[14].

The moderate density region is interesting because this is the only part of the strongly
interacting matter phase diagram (apart from the nuclear matter) that probably finds its
realization in nature, in compact stars. Although the early Universe passed through the
quark matter phase, but the question is, whether today one can observe any signs of this
early stage of the Universe evolution. In contrary, neutron stars are the well known and
intensively studied objects. The basic observation for the neutron star is their frequency
of rotation. One can also measure the mass and the spectrum of thermal radiation. The
process of cooling of the neutron star is also affected by the quark matter core (e.g. [15] ).
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2.3 Color superconductivity

If one incorporates the properties of the quark matter into the compact star description,
astrophysical observations can verify such a model. Until today, astrophysical data are
not sufficient to discriminate between the nuclear and the quark matter models. As
mentioned previously, the novel heavy ion collision experiments would provide us with
the improved insight into the physics of this part of the QCD phase diagram. However,
these experiments are planned to cover the temperature range of order tens MeV, while
temperature inside the compact star is below 1 MeV. Consequently, direct verification of
the zero temperature predictions can only be achieved by the astrophysical observations.

As ab initio calculations are limited, one has to rely on the phenomenological models
and general arguments. In particular, the high symmetry groups involved in the descrip-
tion of strong interactions, suggest the existence of many types of phases in the moderate
density region. Analysis of the QCD in the large number of colors or asymptotic density
limits can also be a hint towards the moderate density region. By such argumentation,
the two important phenomena was postulated. These are the color superconductivity and
the chiral density waves.

2.3 Color superconductivity

The phenomenon of color superconductivity was originally predicted at infinite baryon
density. At this limit, QCD coupling becomes weak and quark matter can be described
as a Fermi liquid. Asymptotically free quarks pair together at the edge of a Fermi sur-
face. Consequently, the standard Bardeen-Cooper-Schrieffer (BCS) [16] mechanism leads
to the formation of a diquark condensate. We recall that unlike superconductivity in met-
als, attractive interaction between quarks is a fundamental property of the color force.
At asymptotic baryon densities, where one gluon-exchange dominates, quarks pair in a
so-called color flavor locked (CFL) pattern [9]. Color and chiral symmetries are broken to
the diagonal subgroup SU(3)c+V and the CFL phase is invariant under the synchronous
color and vector transformations. The above reasoning changes at moderate density re-
gion. The reason is that the split between the Fermi surfaces of different quark flavors is
getting more distinctive. BCS condensation is energetically favoreable until this difference
is smaller than the value of superconducting gap. The current mass of the strange quark is
of the order of magnitude higher than masses of quarks u and d. Due to this fact, the new
pattern of condensation arises. In this so-called 2SC (two flavor color superconductivity)
phase, only the two light quarks participate in condensation, leaving the strange quark
unpaired. 2SC channel is asymmetric in the color and flavor spaces and is a spin singlet
state. The 2SC scalar diquark condensate can be descreibed as below [17]

< Ψα
i Cγ5Ψ

β
j >∼ ∆2SCϵij3ϵ

αβ3

where C is the charge conjugation matrix, ∆2SC is the superconducting gap, and α, i
refer to the color and flavor indices respectively. In the present study we discuss the
phenomenologically relevant densities, and so, we consider only the 2SC pattern of color
superconductivity.
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Phase diagram of the strongly interacting matter

2.4 Chiral density waves

Chiral symmetry is broken by the non-zero vacuum expectation value of the quark-
antiquark pair. Restoration of the chiral symmetry happens when a quark chemical
potential exceed the value of the constituent quark mass. At such density, the Fermi sea
of quarks is formed. The energy cost needed to excite the quark-antiquark pair is higher
than the binding energy of such a pair. This is the standard scenario of the phase diagram
of the strongly interacting matter at zero temperature.

In the presence of the Fermi sea, the chiral symmetry can be broken by a quark-quark
hole excitation. The particle-hole pairs from the opposite sites of the Fermi surface create
a condensate with the non-zero total momentum. The mechanism that may leads to
the existence of such a standing chiral density wave is in close analogy with the solid-
state physics phenomena. The one is the so-called Peierles instability, mechanism which
leads to the standing density wave of charge (CDW) [18, 19]. The ground state of the
low-dimensional metals is unstable against the creation of a periodic modulation of a
charge density in the conduction band. Due to the electron phonon interaction, this is
accompanied by the distortion of ions in the lattice. As a result, the energy gap emerges,
and effectively the energy of electrons is lowered. The stability of such a ground state
depends on the relation between the gain of the electron kinetic energy, and the energy
cost needed for the lattice distortion. Similar mechanism may lead to the existence of the
standing density wave of spins (SDW) [20, 21, 22]. Electrons with opposite spins create
two charge density waves out of phase. The total charge density is uniform, but the
magnetization changes periodically. The kinetic energy of electrons is lowered again due
to the emergence of the energy gap, and Coulomb repulsion between electrons generates
energy loss. In general, standing density waves are typical for the one dimensional systems.
The specific shape of the Fermi surface causes that many electron-hole pairs from the
opposite sides of the Fermi surface can be excited. The total momentum of such a pair is
equal 2kF (kF Fermi momentum). For the higher dimensional systems, the existence of
density waves is less probable.

In the context of the quark matter, the instability of the Fermi surface leading to the
chiral density waves was postulated in the large number of colors limit [23]. The periodic
spatial modulation of the quark condensate was investigated. In the Nc → ∞ limit, and
at high baryon density, chiral density wave ground state turn to be favored over the CFL
condensate. However, analysis for the large, but finite Nc, proved that the region of the
above mentioned instability is restricted to the finite interval of baryon chemical potential
[24].

In the present study, we want to focus on the so-called dual standing chiral density
waves [25, 26, 27]. Both chiral condensate in the scalar and pseudo scalar channels undergo
spatial modulation with the wave vector q⃗

⟨ψ̄ψ⟩ ∼ cos(q⃗ · x⃗), ⟨ψ̄iγ5τaψ⟩ ∼ sin(q⃗ · x⃗),

but the magnitude of the chiral condensate is spatially uniform. The same field configu-
ration correspond to the inhomogeneous pion condensate within the Quark Meson model
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2.5 Nambu Jona-Lasinio model

[28, 29, 34, 35]. The stability of the dual chiral density wave (DCDW) ground state is
also governed by the two competitive processes. On the one hand, the energy spectrum
is modified due to the presence of the DCDW. Quark spectrum separates into the two
branches

E± =

√
k⃗2 +M2 +

q⃗ 2

4
±
√
(q⃗ · k⃗)2 +M2 q⃗ 2 .

Deformation of the Fermi surface due to the density wave with the vector q⃗ of order 2kF is
energetically favourable. On the other hand, the vacuum contribution to the free energy
of the system is modified by an additional positive term proportional to f 2

π q⃗
2 (fπ pion

decay constatnt). Within the QM model, this term has a clear interpretation as a kinetic
energy of the meson fields [29]. These two processes determine whether the DCDW is
likely to appear. Finally, the question arises, if one can experimentally verify the exis-
tence of the chiral density waves in quark matter. The one experimental hint is, that
in the presence of the dual chiral density waves, the system possesses the non-zero total
magnetization [35, 36]. Consequently, the observable strong magnetic field of the com-
pact stars can presumably originate in the properties of the inhomogeneous quark matter.

2.5 Nambu Jona-Lasinio model

The fundamental theory which describes strong interactions between the elementary
constituents of matter, quarks and gluons, is the Quantum Chromodynamics (QCD). In
the large momentum or equivalently small distance scale regimes, because of the asymp-
totic freedom, the strong coupling constant becomes small and the complete mathematical
techniques of perturbative calculations can be applied. However, as mentioned earlier, at
moderate baryon densities region, the strong coupling constant remains large. Lagrangian
density is well defined, but one can not solve the QCD to gain interesting information.
The need of formulation of a mathematically less complicated effective model of strong
interactions is clear. Such simplified theory should still preserve the most relevant prop-
erties of the QCD. The complexity of QCD equations originates in the nonabelian gauge
group that governs the strong interactions. In the hadronic sector, one can approximate
the non-local color current interaction by the point like four fermion vertex with the
effective coupling constant [30]

Lint = −gc(ψγµλAψ)2.

Due to this simplification, the original local color symmetry is replaced by the global
SU(3)c color symmetry and the phenomenon of color confinement can not be described.
Here is the starting point of the Nambu Jona-Lasinio (NJL) type theories (however, we
recall that the NJL model was originally developed as a theory of nucleons [31, 32]). Fierz
transformation of the above color current interaction produces a set of interaction terms,
both in the quark-antiquark and quark-quark channels. In this work, we do not consider
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Phase diagram of the strongly interacting matter

the all possible channels, but restrict to the scalar, pseudoscalar mesons, and scalar di-
quarks. The NJL Lagrangian in its relevant form is given by a formula [33]

LNJL = ψ(iγν∂ν −m)ψ +G
[
(ψψ)2 + (ψiγ5τ⃗ψ)

2
]
+G′[(iψCγ5τ2λ

Aψ)(iψγ5τ2λ
AψC)],

where ψ is the quark field, the vector τ⃗ is the isospin vector of Pauli matrices. The ef-
fective coupling constant G describes the interaction that is responsible for the creation
of a quark-antiquark condensate, G′ describes the interaction that is responsible for the
creation of a diquark condensate. The NJL model was constructed to preserve the fun-
damental symmetries that are observed in nature, and that are symmetries of the QCD
Lagrangian. In its two flavor version, the overall symmetry group of the NJL model
is SU(3)c⊗SUV (2)⊗SUA(2)⊗UV (1). Spontaneous breakdown of the SUA(2) axial vector
symmetry generates the constituent quark mass and give the meson π triplet.
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Chapter 3

Nonuniform chiral condensate at zero
temperature in different regularization
schemes

In this chapter we ask a technical but important question of the regularization depen-
dence of the phase diagram of strongly interacting matter, which contains the nonuniform
chiral condensate. Our calculations are based on the NJL model at zero temperature limit.
NJL local coupling constant G has a dimension MeV−2, and thus, the NJL model is an
effective non-renormalizable theory. In this approach, different regularization schemes
define different models. Thereby, it is important to check if the results are qualitatively
independent of the choice of regulator, and what is their dependence at the quantitative
level. Similar analysis was performed in the case of a single nonuniform chiral phase in
Ref. [34].

Most of the results presented in this chapter have been published in Ref. [48].

3.1 Regularization of the Nambu Joan-Lasinio model

The prior question that emerges is whether any of possible regularization schemes is
especially dedicated to the Nambu Joan-Lasinio model. Firstly, the physical restriction
we impose on regulator is that minimization of regularized total energy should give rise to
the gap equation [33]. We do not explicitly check this restriction, but, it is confirmed by
numerical results for the all discussed methods. Secondly, we examine spatially nonuni-
form phase. Thereby, the quasi-particle spectrum is anisotropic. In turn, the regularizator
determines the upper energy limit of applicability of a given theory. Consequently, some
authors claim [26, 37] that the intuitive 3d cut-off regularization is not appropriate in the
above context. 3d cut-off procedure restricts the value of three dimensional momentum to
the uniform sphere k⃗2 ≤ Λ. They suggest, that Schwinger (proper time) scheme is more
relevant, as it effectively restricts energy spectrum - not momenta. However, revealing
further results of our analysis, in the Schwinger scheme, the another problems appear.
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Nonuniform chiral condensate at zero temperature in different regularization schemes

For instance, quark constituent mass in the proper time scheme is equal only 200 MeV,
which is below the phenomenologically expected value of around 300 MeV. Therefore, we
decided to check the phase diagram against both the 3d cut-off and Schwinger scheme.
To extend our analysis we examine also the two other regularizations: 4d cut-off (four
momentum cut-off in Euclidean space) and Pauli-Villars (PV).

We consider the phase diagram at finite density, which includes the chiral uniform
(Ch), chiral nonuniform (NCh), 2SC color superconducting phase and the plasma of free
quarks [38]. Grand thermodynamic potential of the NJL model, at zero temperature limit,
has a form [38, 39]

Ω0 =
M2

4G
+

|∆|2

4G′ + 2
∑
s=±

∫
Es≤µ

d3k

(2π)3
(Es − µ)− 2

∑
s=±

∫
d3k

(2π)3

(
Es +

∑
i=±

E∆
i,s

)
,

(3.1.1)

where

E∆
±,s =

√
(µ± Es)2 + |∆|2, E± =

√
k⃗2 +M2 +

q⃗ 2

4
±
√
(q⃗ · k⃗)2 +M2q⃗ 2 . (3.1.2)

The last integral in equation (3.1.1) is divergent. Before we introduce different reg-
ularization schemes, let us convert this equation into another form, which much better
suits our purposes and better underlines the physics of the problem. To reach our goal
we translate equation (3.1.1) into the new form

Ω0 =
M2

4G
+

|∆|2

4G′ − 2
∑
s=±

∑
i=±

∫
d3k

(2π)3

[ (
E∆

i,s − E∆
i,0

)
+
(
E∆=0

i,0 − Es

) ]
+ 2

∑
s=±

∫
Es≤µ

d3k

(2π)3
(Es − µ)− 4

∑
i=±

∫
d3k

(2π)3
(
E∆

i,0 − E∆=0
i,0

)
− 6

∑
s=±

∫
d3k

(2π)3
Es , (3.1.3)

where

E∆
±,0 =

√
(µ± E0)2 + |∆|2, E0 =

√
k⃗2 +M2 . (3.1.4)

The first two integrals (3.1.3) give finite contributions and only the last two are diver-
gent. Let us note that in the absence of the color superconducting state the next to the
last term vanishes and the only divergent contribution follows from the infinite Dirac sea
integral. Additionally the last two integrals depend, the first one on ∆ and the other one
on wave vector q⃗ only. This separation is very convenient for the regularization procedure.
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3.1 Regularization of the Nambu Joan-Lasinio model

In the next step we expand the last term of equation (3.1.3) in powers of the wave
vector q⃗. It is known that the parameter at the second order is related to the pion decay
constant fπ [28, 29, 35, 40]

−6
∑
s=±

∫
d3k

(2π)3
Es ≈ −12

∫
d3k

(2π)3
E0 +

M2f 2
π q⃗

2

2M2
0

, (3.1.5)

where M0 is the constituent quark mass at zero density. The formula for the pion decay
constant depends on the regularization and is known from the earlier literature (e.g. [33]).

Finally, the extracted divergent contribution to the thermodynamic potential Ω0 (3.1.3)
is of the form

Ωdiv = −4
∑
i=±

∫
d3k

(2π)3
(
E∆

i,0 − E∆=0
i,0

)
− 12

∫
d3k

(2π)3
E0 . (3.1.6)

3.1.1 Divergent contribution in different regularizations

3.1.1.1 3d cut-off regularization

In this scheme, cut-off parameter Λ restricts the value of three dimensional momentum
( k⃗ 2 ≤ Λ). The regularized contribution takes the form

Ω3d
div = −4

∑
i=±

∫ Λ d3k

(2π)3
(
E∆

i,0 − E∆=0
i,0

)
− 12

∫ Λ d3k

(2π)3
E0 . (3.1.7)

3.1.1.2 4d cut-off regularization

In this scheme, cut-off parameter Λ restricts the value of four-momentum in Euclidean
space (k2E = k⃗ 2 + k24 ≤ Λ). Using the auxiliary formula that holds for A,B ∈ ℜ

|A| − |B| =
∫
dk4
2π

ln
k24 + A2

k24 +B2
(3.1.8)

we replace the integrals over three-momentum by these over four-momentum, and regu-
larized contribution takes the form

Ω4d
div = −8

∫ Λ d4kE
(2π)4

ln
k24 +

1
4
(
∑

i=±E
∆
i,0)

2

k24 +
1
4
(
∑

i=±E
∆=0
i,0 )2

− 12

∫ Λ d4kE
(2π)4

ln(k24 + E2
0) , (3.1.9)

where d4kE = dk4d
3k.

3.1.1.3 Schwinger regularization

In this scheme, the cut-off parameter Λ restricts the value of proper time (τ ≥ 1/Λ2).
We base on the representation of divergent contributions in the form of logarithms and
use the formula for A,B ∈ ℜ+

ln
A

B
=

∫ ∞

0

dτ

τ
[exp (−τ B)− exp (−τ A)] . (3.1.10)
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Nonuniform chiral condensate at zero temperature in different regularization schemes

The obtained regularized expression for the potential is of the form

ΩS
div = 8

∫
d4kE
(2π)4

∫ ∞

1/Λ2

dτ

τ

{
exp

[
τ

(
− k24 −

1

4
(
∑
i=±

E∆
i,0)

2

)]

− exp

[
τ

(
− k24 −

1

4
(
∑
i=±

E∆=0
i,0 )2

)]}

+ 12

∫
d4kE
(2π)4

∫ ∞

1/Λ2

dτ

τ

{
exp

[
τ
(
− k24 − E2

0

)]}
. (3.1.11)

Now, if one integrate over dk4, Ω
S
div takes a form

ΩS
div =

8√
2

∫
d3k

(2π)3.5

∫ ∞

1/Λ2

dτ

τ 1.5

{
exp

[
− τ

(
1

4
(
∑
i=±

E∆
i,0)

2

)]

− exp

[
− τ

(
1

4
(
∑
i=±

E∆=0
i,0 )2

)]}

+
12√
2

∫
d3k

(2π)3.5

∫ ∞

1/Λ2

dτ

τ 1.5
{
exp

[
− τ

(
E2

0

)]}
. (3.1.12)

It can be seen, that however integrals are over the full three dimensional momentum
space, the exponential factors suppress the energy contributions at higher momenta.

3.1.1.4 Pauli-Villars regularization

This is the most tricky scheme of regularization. At first we introduce an arbitrary
number of coupling constants Cα and mass regulatorsMα. After this procedure, divergent
part of the grand thermodynamic potential (3.1.6) transforms into

Ωdiv(M, |∆|, q)−→
∑
α

CαΩdiv(Mα, |∆|, q) . (3.1.13)

In the next step we regularize potential by a 3-dim cut-off regulator Λ.∑
α

CαΩdiv(Mα, |∆|, q)−→
∑
α

CαΩ
3d
div(Mα, |∆|, q,Λ) . (3.1.14)

Finally we expand the thermodynamic potential around the large value of parameter Λ
and impose a condition that final result should be finite and independent on regulator Λ.∑

α

CαΩ
3d
div(Mα, |∆|, q,Λ)

Λ→∞ ∩ ΩPV
div =finite

−−−−−−−−−−−−→ ΩPV
div . (3.1.15)

To satisfy above conditions we derive equations on Cα and Mα, minimaly one has to
introduce three additional parameters Cα and Mα respectively

1 +
3∑

α=1

Cα = 0 ; M2 +
3∑

α=1

CαM
2
α = 0 ; M4 +

3∑
α=1

CαM
4
α = 0 . (3.1.16)
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3.1 Regularization of the Nambu Joan-Lasinio model

Set of equations (3.1.16) is solved by the formula:

C1 = −3, C2 = 3, C3 = −1, M2
1 =M2+Λ2, M2

2 =M2+2Λ2, M2
3 =M2+3Λ2 , (3.1.17)

where Λ is a new free parameter that value will be set by fitting hadron sector properties.
Eventually, the final expression for the divergent part of the thermodynamic potential

in this scheme reads

ΩPV
div =

3

8π2

3∑
α=1

CαM
4
α ln

M2

M2
α

+
1

π2

(
|∆|4

4
− |∆|2µ2

) 3∑
α=1

Cα ln
M2 + |∆|2

M2
α + |∆|2

+
|∆|2

2π2

3∑
α=1

CαM
2
α ln

M2 + |∆|2

M2
α + |∆|2

+
1

4π2

3∑
α=1

CαM
4
α

(
ln
M2 + |∆|2

M2
α + |∆|2

− ln
M2

M2
α

)
.

(3.1.18)

One can directly present which terms of the grand thermodynamic potential Ωdiv

transform into the Pauli-Villars regularized expressions. These are:

−12

∫ Λ d3k

(2π)3
E0

PV−→ 3

8π2

3∑
α=1

CαM
4
α ln

M2

M2
α

, (3.1.19)

4
∑
i=±

∫
d3k

(2π)3
E∆=0

i,0
PV−→ − 1

4π2

3∑
α=1

CαM
4
α ln

M2

M2
α

, (3.1.20)

−4
∑
i=±

∫
d3k

(2π)3
E∆

i,0
PV−→ 1

π2

(
|∆|4

4
− |∆|2µ2

) 3∑
α=1

Cα ln
M2 + |∆|2

M2
α + |∆|2

+
|∆|2

2π2

3∑
α=1

CαM
2
α ln

M2 + |∆|2

M2
α + |∆|2

+
1

4π2

3∑
α=1

CαM
4
α ln

M2 + |∆|2

M2
α + |∆|2

. (3.1.21)

3.1.2 Parameters of the Nambu Jona-Lasinio model

Once we have chosen the specified method of regularization of infinite integrals, there
are still three parameters to determine. These are: effective coupling constant in the
quark-antiquark channel G, effective coupling constant in the quark-quark channel G′

and regularization parameter Λ. The values of G and Λ can be determined by match-
ing the hadron sector properties. Following Ref. [33], G and Λ are fixed by two phys-
ical quantities: pion decay constant fπ = 93 MeV and the quark condensate density
⟨ūu⟩ =

⟨
d̄d
⟩
= −(250 MeV)3. These quantities are functions of M0 (constituent quark

mass at zero baryon density) and Λ, and can be calculated in the framework of the NJL
model. Now using the self-consistency condition, M0 = −4G ⟨ūu⟩ (we discuss massless
quarks), that links G and Λ with M0, we finally get the values of G and Λ.
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Nonuniform chiral condensate at zero temperature in different regularization schemes

In different regularization schemes, one has:

3.1.2.1 3d cut-off regularization

• quark condensate density

⟨ūu⟩ = −6M0

∫ Λ d3k

(2π)3
1

E0

(3.1.22)

• pion decay constant

f2
π = 3M2

0

∫ Λ d3k

(2π)3
1

E3
0

(3.1.23)

3.1.2.2 4d cut-off regularization

• quark condensate density

⟨ūu⟩ = −12M0

∫ Λ d4kE
(2π)4

1

E2
0 + k24

(3.1.24)

• pion decay constant

f 2
π = 12M2

0

∫ Λ d4kE
(2π)4

1

(E2
0 + k24)

2
(3.1.25)

3.1.2.3 Schwinger regularization

• quark condensate density

⟨ūu⟩ = − 3

4π2
M0

∫ ∞

1/Λ2

dτ

τ 2
exp[−τM2

0 ] (3.1.26)

• pion decay constant

f2
π =

3

4π2
M2

0

∫ ∞

1/Λ2

dτ

τ
exp[−τM2

0 ] (3.1.27)

3.1.2.4 Pauli-Villars regularization

• quark condensate density

⟨ūu⟩ = −6M0

∫ Λ d3k

(2π)3
1

E0

PV−→

M0

∑
α

[
− 3

2π2
CαΛ

2 − 3

4π2
CαM

2
α ln

M2
α

Λ2
− 3

4π2
(1− ln 4)CαM

2
α

]
+O(1/Λ2) ,

(3.1.28)
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3.1 Regularization of the Nambu Joan-Lasinio model

and with the conditions (3.1.16) we get

⟨ūu⟩ = 3

4π2
M0

3∑
α=1

CαM
2
α ln

M2
0

M2
α

(3.1.29)

• pion decay constant

f 2
π = 3M2

0

∫ Λ d3k

(2π)3
1

E3
0

PV−→ M2
0

∑
α

[
− 3

4π2
Cα ln

M2
α

Λ2
− 3

2π2
(1− ln 2)Cα

]
+O(1/Λ2)

and with the conditions (3.1.16) we get

f 2
π =

3

4π2
M2

0

3∑
α=1

Cα ln
M2

0

M2
α

(3.1.30)

The values of G and Λ for each regularization scheme are given in Table 3.1.

S PV 4d 3d

Λ 1.086 1.12 1.015 0.635
GΛ2 3.78 4.47 3.93 2.2
M0 0.2 0.22 0.238 0.33

Table 3.1: Numerical values of the regularization parameter Λ in GeV and dimensionless
quantity GΛ2 for different regularization schemes. In the last row, the value of the quark
constituent mass at zero density M0 is given in GeV.

3.1.2.5 Coupling constant G′

Strength of the quark-antiquark interaction was given by fitting vacuum properties. It
appears that one can not perform similar procedure with the quark-quark channel because
effective coupling G′ can not be related to any known physical quantity. One can try to
deduce the value of G′ from the value of G. Starting from underlying interaction of the
type

Lint = −gc(ψγµλAψ)2 , (3.1.31)

and performing a Fierz transformation, the authors of Ref. [41] obtained a relation G′ =
0.75G. Consequently for the presentation of the results we keep G′ = 0.75G. The
strength of the quark-quark interaction influences the value of the 2SC color supercon-
ducting gap ∆, which in turn influences the range of the nonuniform chiral phase at zero
temperature [38]. Thereby, we firstly show the results for G′ = 0, against this background,
the influence of the color superconducting phase can be better illustrated.
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Nonuniform chiral condensate at zero temperature in different regularization schemes

3.2 Results and discussion

gfgfhfghf
We minimize the thermodynamic potential

Ω0 =
M2

4G
+

|∆|2

4G′ +
M2f2

π q⃗
2

2M2
0

− 2
∑
s=±

∑
i=±

∫
d3k

(2π)3
(
E∆

i,s − E∆
i,0 + E∆=0

i,0 − Es

)
+ 2

∑
s=±

∫
Es≤µ

d3k

(2π)3
(Es − µ) + Ωscheme

div (3.2.1)

with respect to the constituent quark mass M , aboslute value of wave vector q⃗ and gap
parameter ∆, as a function of chemical potential. The last term of equation (3.2.1) de-
pends on the regularization scheme, as was described in the previous section.

Figure 3.1: Dependence of quark constituent mass M (solid points) and absolute value of
wave vector q⃗ (open points), as a function of quark chemical potential (all in GeV unites),
at zero temperature, in different regularization schemes.
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3.2 Results and discussion

3.2.1 G′ equal zero

gfgfhfghf
In Fig.3.1, we present phase diagrams for all discussed methods of regularization. Because
we set G′ = 0, there is no 2SC color superconducting phase. With the above constrain,
situation is easier to study and some general observations can be found. This is in contrast
to the case when ∆ ̸= 0 and one can mostly rely on numerical results.

Most of all, the region of nonuniform chiral phase exists on each diagram and the orders
of phase transitions are the same for different regulators. Considering further Fig.3.1, it is
sufficient to concentrate on the simplified version of the grand thermodynamic potential

Ω∆=0
0 =

M2

4G
− 12

∑
s=±

∫
d3k

(2π)3
E0 +

M2f2
π q⃗

2

2M2
0

+ 6
∑
s=±

∫
Es≤µ

d3k

(2π)3
(Es − µ) . (3.2.2)

In the range of quark chemical potential from zero up to some µc1 (its value is of the order
of M0 and depends on regularization scheme) system stays at minimum corresponding to
the chiral uniform phase. This minimum is governed by the chiral symmetry breaking
part of the thermodynamic potential (mass term plus Dirac sea contribution). In this
region, Fermi sea effectively does not contribute to the potential Ω∆=0

0 . Plot of chiral
symmetry breaking terms as a function of constituent mass M for different regularization
schemes is shown in Fig.3.2. We will return to this plot later.

Figure 3.2: Mass term plus Dirac sea contribution (dimensionless units) of the grand
thermodynamic potential (3.2.2) in different regularization schemes: 3d cut-off (thick
line); 4d cut-off (short-dashed line); Pauli-Villars (middle-dashed line); Schwinger (long-
dashed line); as a function of the constituent mass M (in the unites of cut-off Λ).

Around µ = µc1, the value of M begins to lower, system leaves its previous minimum,
and the negative contribution due to the Fermi sea starts to grow. If one consider only
uniform phase, this is the moment of restoration of the chiral symmetry. However, spa-
tially nonuniform chiral condensate gives another possibility. On the one hand, non-zero q
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Nonuniform chiral condensate at zero temperature in different regularization schemes

value effectively weakens minimum corresponding to the uniform chiral phase and moves
it towards lower values of the constituent mass M . On the other hand, because of non-
zero q, Fermi surface is deformed. Consequently, Fermi sea gives negative contribution
already at relatively large values of M. These two effects compete with each other. With
growing µ, absolute value of vector q also increases. At some value of q, minimum corre-
sponding to the broken chiral symmetry disappears. This happens around µ = µc2, there
is a transition into the chirally symmetric phase.

Above description agrees with the numerical results. Inhomogeneous phase appears
with accordance to the constituent mass sequence. The lowest µc1 = 263 MeV is in the
Schwinger scheme (M0 = 200 MeV), higher is in the Pauli-Villars (M0 = 220 MeV) and
in the 4d cut-off (M0 = 238 MeV). The highest µc1 = 320 MeV is in the 3d cut-off
regularization (M0 = 330 MeV). The moment of disappearance of the nonuniform phase
follows the opposite order. This observation can be understand on the basis of Fig.3.2.
Minimum corresponding to the uniform chiral phase, as a function of mass M , is the
weakest in the Schwinger scheme. Consequently, growing value of vector q destroys this
minimum as the first. In turn, the deepest minimum is in the 3d cut-off scheme, and
nonuniform phase persists in this scheme up to µc2 = 580 MeV. Values of the critical
chemical potentials of phase transitions are given in Table 3.2.

µc S PV 4d 3d

Ch/NCh 0.263 0.268 0.274 0.320
NCh/QM 0.298 0.320 0.350 0.580

Table 3.2: Numerical values of critical chemical potentials µc in GeV, for different regu-
larization schemes. Uniform chiral into the nonuniform chiral phase transition (Ch/NCh).
Nonuniform chiral phase into the quark matter transition (NCh/QM).

3.2.2 G′ = 0.75 G

The values of constituent mass, wave vector and gap parameter, as a function of
chemical potential, in different regularization schemes, are given in Figures 3.3 - 3.5. As
can be seen, similarily as for G′ = 0, there is a common pattern of phase transitions. From
uniform to nonuniform chiral phase and then to superconducting phase. All transitions
are of the first order and existence of the nonuniform phase is independent of considered
regularization scheme. However, strength of the transitions depends on the regularization
scheme. This is particularly visible in Fig.3.3.

Some quantitative features change with the scheme. One can find that schemes cluster
in two groups, which one can call ”relativistic” schemes (S, PV, 4d) and 3d cut-off.
However, let us note that the distinction between relativistic and non-relativistic schemes
has no deep meaning because the thermodynamic system singles out one reference frame.
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3.2 Results and discussion

Comparing the quantitative results, we consider values of constituent mass, wave vector,
gap parameter, critical chemical potential, and strength of thefirst order phase transitions.

Figure 3.3: The constituent mass M , as a function of quark chemical potential µ, in
different regularization schemes in GeV units.

Figure 3.4: The value of wave vector q, as a function of quark chemical potential µ, in
the different regularization schemes in GeV units. The values of µ for non-zero q describe
the range of existence of the spatially nonuniform chiral phase.

The position of transition from the uniform to the nonuniform chiral phase is the
most resistant against the choice of regularization scheme. First critical potential changes
within the range of 5 per cent for relativistic schemes, while in the case of 3d within
18 per cent. The same as for G′ = 0, the sequence of µc1 is consistent with the values
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Nonuniform chiral condensate at zero temperature in different regularization schemes

of constituent quark mass at zero density. As one can see, non-zero gap parameter ∆
does not affect the position of µc1 (Ch/NCh) for the so-called relativistic schemes, but
in the 3d cu-off, first critical chemical potential decreases slightly from 320 to 311 MeV.
The position of second transition, changes within the range of 19 per cent for relativistic
schemes, including the 3d cut-off within 34 per cent. In comparison with the previously
discussed situation (G′ = 0), 2SC color superconducting phase restricts the region of
spatially nonuniform phase from the upper values of chemical potential. In the 3d cut-off
scheme, the position of µc2 decreases significantly from 580 MeV to 373 MeV. In the other
regularizations this effect is less visible, however, in the Pauli-Villars scheme, dominance
of the 2SC phase is so strong, that NCh phase is restricted to the interval of only 13
MeV width. Because of this, in opposite to the case of G′ = 0, position of the second
transition is earlier in the PV scheme than in the Schwinger method. Influence of the
coupling constant G′ is understandable because larger G′ strengthens diquark interaction
which dominates over quark - antiquark interaction. In the Pauli-Villars scheme, there is
no region of coexistence of NCh and 2SC phases. As can be seen in Fig.3.5, the value of
gap ∆ is of the same order as in the 3d cut-off scheme. Consequently, in the PV scheme,
above G′ = 0.83G the nonuniform chiral phase vanishes, and phase transition to the color
superconducting phase at µc2 = 0.26 GeV takes place directly from the uniform chiral
phase. However, this value of critical chemical potential is rather low which questions the
physical sensibility to set G′ = 0.83 G in the PV scheme.

Figure 3.5: The gap parameter ∆ as a function of quark chemical potential µ, in different
regularization schemes in GeV units.

The range of variability of the value of mass M for the S, PV and 4d schemes is
about 20 per cent at µ equal to zero and is about 60 per cent at chemical potentials
corresponding to the Ch/NCh transition. Likewise, the range of variability of the wave
vector q is 50 per cent at chemical potentials corresponding to the Ch/NCh transition.
Similar comparison at NCh/QM transition is meaningless because of the large differences
between the NCh/QM critical potentials. The dependence of parameters M and q on
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3.3 Conclusions

the quark chemical potential is the same in different regularizations. With increasing
chemical potential, the value of q is growing and the M value is declining. Relatively
the least correlated is the dependence of gap parameter ∆. However, independently of
the regularization choice, the value of gap ∆ increases with increasing µ. The values of
critical chemical potentials of the phase transitions are given in Table 3.3.

µc S PV 4d 3d

Ch/NCh 0.263 0.268 0.274 0.311
NCh/2SC 0.296 0.281 0.330 0.373

Table 3.3: Numerical values of the critical chemical potentials µc in GeV. Uniform into
the nonuniform chiral phase transition (Ch/NCh) and nonuniform chiral into the super-
conducting phase transition (NCh/2SC), for different regularization schemes. In the S,
4d, 3d schemes the 2SC phase appears already at Ch/NCh phase transition and both
phases coexist, but, the value of the gap parameter is relatively low in the coexistence
region. In the PV scheme, 2SC phase appears at the NCh/2SC phase transition.

The strength of phase transition depends on regularization scheme. The strongest
phase transitions are in the 3d cut-off, the weakest in the Schwinger proper time regular-
ization. In the case of transition to the 2SC phase, the jump of the color superconducting
gap ranges from 28 MeV in the 3d cut-off to only 1 MeV in the Schwinger regularization.
There is still a possibility of coexistence between the chiral and superconducting phases.
Coexistence occurs in the all schemes with the exception of Pauli-Villars. Any conclusion
which follows from this phenomenon is thus model dependent.

3.3 Conclusions

We have studied the nonuniform chiral phase in the Nambu Jona-Lasinio model in
different regularization schemes. We confirm that the qualitative features of the phase
diagram are independent of considered regularization scheme. The generic phase diagram
in the 4d cut-off regularization (including the 2SC phase) is shown in Fig.3.6.

The quantitative results (values of constituent mass, wave vector, critical chemical
potential) match satisfactorily within ”relativistic” schemes. Results obtained with the
3d cut-off differ widely from the previous. Above observation is well-justified by the
dependence of the chiral symmetry breaking term, as a function of constituent mass
(Fig.3.2). It is worth to recall, that Quark Meson model ([65]) gives similar results to
the 3d cut-off regularized NJL model. This argument favours seemingly trivial three-
dimensional momentum cut-off.

Additionally, gap parameter ∆, as well as the magnitude of the jump in the gap
parameter, shows the clear dependence on the choice of regularization scheme. Differences
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Nonuniform chiral condensate at zero temperature in different regularization schemes

Figure 3.6: The phase diagram at one plot in 4d cut-off regularization scheme (in GeV
units).

appear not only between the ”relativistic” and 3d cut-off schemes but also within the set
of ”relativistic” regularizations. These findings tell us that one can set the magnitude
of the gap parameter in the MeV scale but its precise value in the large extand is an
unknown quantity. From the other hand, the general qualitative pattern that the gap
parameter increases with increasing value of the chemical potential µ is independent on
the choice of regularization scheme.

The size of spatially nonuniform phase depends on the relative strength of G′ and G
coupling constants. The larger G′ constant, the shorter the range of nonuniform phase.
This conclusion is also independent of the regularization scheme.

We also find that in the Pauli-Villars scheme, in contrast to the other schemes, there
is no coexistence region of the nonuniform and 2SC phases. Thus, such a coexistence
remains an open question.

There is no general argument which scheme better suits the task of the phase diagram
analysis. Neither the relativistic approach (thermodynamic systems singles out prefered
reference frame) nor gauge independence (the NJL model is not a gauge theory) favor any
scheme in the present considerations. Schwinger regularization gives effectively a constrain
on the energy spectrum and not on the momenta. In this sense, if quasi-particle spectrum
is anisotropic, it appears to be more appropriate. On the other hand, Schwinger scheme
gives the smallest quark constituent mass of the order of 200 MeV. On can partially get
around this problem. We fit the NJL model parameters to the value of quark condensate
density and to the value of pion decay constant. Because the value of quark condensate
density is known with large uncertainty [42], there is some freedom in the parameter fit.
It turns, that for ⟨ūu⟩ ≈ −(200MeV)3, constituent quark mass at zero density is already
above 260 MeV. We will turn back to above discussion in the next chapters of this work.

Finally, let us stress that our analysis does not prove that the spatially nonuniform
chiral phase exists. Above all, we did our study in the chiral limit, when current quark
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3.3 Conclusions

masses are equal zero. This simplification is due to the technical problems that originate
when one calculate the grand thermodynamic potential in the presence of the spatially
nonuniform ansatz together with the non-zero current quark mass. The attempt to discuss
spatially nonuniform condensate, not only in the chiral limit, will be taken in the chapter
4. Nevertheless, the strong result of our analysis is that the main features of the phase
diagram, which includes nonuniform phase, are robust against the choice of regularization
scheme.
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Chapter 4

Influence of the non-zero current quark
mass on the nonuniform chiral and 2SC
color superconducting phases

The main goal of this chapter is to analyze, within the framework of the NJL model,
the influence of the non-zero current quark mass on existence of the nonuniform chiral
phase. In the previous chapter, we have studied the system at zero temperature limit.
We arrived at the result, that independently on the regularization method, there exists
a finite range of quark chemical potential, where spatially inhomogeneous chiral conden-
sate dominates. It follows from the previous chapter, that coexistence of the 2SC color
superconducting and chiral phases is preferable in this limit. Consequently, in the present
chapter we include also the possibility of a diquark condensation. Nevertheless, afore-
mentioned results was obtained in the chiral limit. That is why, natural consequence is
to extend our previous analysis on the influence of the non-zero quark current mass.

Most of the results presented in this chapter have been published in Ref. [44].

4.1 Evaluation of the grand thermodynamic poten-

tial

The starting point is the Nambu Jona-Lasinio Euclidean action

S =

∫ β

0

dτ

∫
d3x

(
ψ̄(iγν∂ν + µγ0 −m)ψ +G

[
(ψ̄ψ)2 + (ψ̄iγ5τ⃗ψ)

2
]

+ G′(ψ̄ciγ5τ2λ
Aψ)(ψ̄iγ5τ2λ

Aψc)

)
, (4.1.1)

where ψ is the quark field, ψc = Cψ̄T is the conjugate field and µ is the quark chemical
potential. The vector τ⃗ is the isospin vector of Pauli matrices and λA, A = 2, 5, 7 are
three color antisymmetric SU(3) group generators.
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4.1 Evaluation of the grand thermodynamic potential

dfsdfsdfsdfsdfdsf
After the Hubbard Stratanovich transformation, that introduces effective bosonic degrees
of freedom, one obtains

SHS =
1

2

∫ β

0

dτ

∫
d3x

(
ψ̄(iγν∂ν + µγ0 −m+ σ + iγ5 π⃗ · τ⃗)

+ψ̄c(iγ
ν∂ν − µγ0 −m+ σ + iγ5 π⃗ · τ⃗)ψc +∆Aψ̄ciγ5τ2λ

Aψ +∆∗
Aψ̄iγ5τ2λ

Aψc −
σ2

2G
− π⃗2

2G
− |∆|2

2G′

)
.

(4.1.2)

Partition function has a form

Z =

∫
Dψ̄DψDψ̄cDψcDσD π⃗D∆AD∆∗

A exp {SHS} . (4.1.3)

Next, we introduce a mean field ansatz

σ = 2G⟨ψ̄ψ⟩ = −M cos q⃗ · x⃗ , πa = 2G⟨ψ̄iγ5τaψ⟩ = −δa3M sin q⃗ · x⃗ ,
∆A = 2G′⟨ψ̄iγ5τ2λAψc⟩ = δA2∆ , (4.1.4)

and perform a chiral rotation at quark fileds

ψ =
√
Uψ′,

√
U = exp {−iγ5τ3q⃗ · x⃗} . (4.1.5)

Than, after the introduction of Nambu-Gorkov basis χT = (ψ, ψc) [43], the mean-field
partition function takes a form

ZMF =

∫
DχDχ exp {SMF} , (4.1.6)

where

SMF =
1

2

∫ β

0

∫
d3x

[
χS−1χ− M2

2G
− |∆|2

2G′

]
. (4.1.7)
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To determine the ground state of the system we calculate the grand thermodynamic
potential

ΩMF = − T

V
ln {ZMF} . (4.1.8)

After performing integrals over the fermion fields we finally get the expression

ΩMF =
M2

4G
+

|∆|2

4G′ − T

2V
ln
{
det
{
S−1

}}
, (4.1.9)

where determinant is to be taken over the Nambu-Gorkov, Dirac, color, flavor and space-
time indices. The matrix of the operator S−1 in the Nambu-Gorkov space has a form

S−1 =

[
iγν(∂ν − 1

2 iγ5τ3qν) + µγ0 −M −me−iγ5τ3 q⃗·x⃗ iγ5τ2λ2∆
∗

iγ5τ2λ2∆ iγν(∂ν − 1
2 iγ5τ3qν)− µγ0 −M −me−iγ5τ3 q⃗·x⃗

]
.

(4.1.10)

4.1.1 Decomposition of the ΩMF

For the non-zero values of current quark mass, operator S−1 (4.1.10) depends explicitly
on a space coordinate x⃗. That is why, the straightforward calculation of determinant in
equation (4.1.9) is impossible. As a consequence, most of the studies on the nonuniform
chiral phases, within the framework of the NJL model, are done in the chiral limit. Only
recently, the author of Refs. [45, 46] have proposed a method that allows to consider the
influence of the non-zero current quark mass. The main idea is to expand the expression
for the potential ΩMF in a series of the current quark mass m. We follow this approach,
however, in our analysis we incorporate also the 2SC color superconducting phase. The
first step is to decompose operator S−1 into the parts dependent and independent on the
mass m

S−1 = S−1
0 − Vm , (4.1.11)

where

S−1
0 =

[
iγν(∂ν − 1

2
iγ5τ3qν) + µγ0 −Mt iγ5τ2λ2∆

∗

iγ5τ2λ2∆ iγν(∂ν − 1
2
iγ5τ3qν)− µγ0 −Mt

]
, (4.1.12)

Vm =

[
m {exp(−iγ5τ3q⃗ · x⃗)− 1} 0

0 m {exp(−iγ5τ3q⃗ · x⃗)− 1}

]
, (4.1.13)
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4.1 Evaluation of the grand thermodynamic potential

Mt =M +m. (4.1.14)

Expanding the grand termodynamic potential (4.1.9) up to the terms of order Vm, we
decompose ΩMF into the two parts [45]

ΩMF = Ω0 + δΩ +O(V 2
m) , (4.1.15)

Ω0 =
(Mt −m)2

4G
+

|∆|2

4G′ − T

2V
ln

{∫
DχDχ exp

(∫ β

0

∫
d3x χS−1

0 χ

)}
, (4.1.16)

δΩ =
T

2V

∫
DχDχ

{∫ β

0

∫
d3x χVmχ

}
exp

{∫ β

0

∫
d3x χS−1

0 χ
}

∫
DχDχ exp

{∫ β

0

∫
d3x χS−1

0 χ
} . (4.1.17)

Using the standard method one can calculate the thermodynamic potential Ω0 [38]

Ω0 =
(Mt −m)2

4G
+

|∆|2

4G′ + 2
∑
s=±

∫
Es≤µ

d3k

(2π)3
(Es − µ)− 2

∑
s=±

∫
d3k

(2π)3

(
Es +

∑
i=±

E∆
i,s

)

−
∑
s=±

4T

∫
d3k

(2π)3

[
ln

(
1 + exp

(
−
E∆

+,s

T

))
+ ln

(
1 + exp

(
−
E∆

−,s

T

))]

−
∑
s=±

2T

∫
d3k

(2π)3

[
ln

(
1 + exp

(
−(Es+ µ)

T

))
+ ln

(
1 + exp

(
−|Es− µ|

T

))]
,

(4.1.18)

where

E∆
±,s =

√
(µ± Es)2 + |∆|2 , E± =

√
k⃗2 +M2

t +
q⃗ 2

4
±
√
( q⃗ · k⃗)2 +M2

t q⃗
2 . (4.1.19)

We explicitly separated equation (4.1.18) into the zero temperature contribution (first line)
and the finite temperature contribution (second and third lines). Temperature dependent
contribution is finite, while zero temperature contribution contains divergent integrals and
the regularization procedure is needed. In the previous chapter we discussed in detailed
the method of regularization of the zero temperature term of the potential Ω0.

Term δΩ (4.1.17) can be calculated with the help of standard integral over Grassmann
variables

∫
DχDχ

{∫ β

0

∫
d3x χχ

}
exp

{∫ β

0

∫
d3x χS−1

0 χ
}

∫
DχDχ exp

{∫ β

0

∫
d3x χS−1

0 χ
} = tr {S0} . (4.1.20)
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Now, one can rewrite Vm in the more convenient form

Vm =

[
m {cos (q⃗ · x⃗)− iγ5τ3 sin (q⃗ · x⃗)− 1} 0

0 m {cos (q⃗ · x⃗)− iγ5τ3 sin (q⃗ · x⃗)− 1}

]
.

(4.1.21)

Matrix τ3 (third Pauli matrix) mixes two flavours, thus part of Vm proportinal to τ3 does
not contribute to the right hand side of the equation (4.1.17). Expanding cosine in the
power series, equation (4.1.17) can be reduced to the form

δΩ =
T

2V

∫
DχDχ

{∫ β

0

∫
d3x

(
1− ( q⃗· x⃗)2

2 !
+ ( q⃗· x⃗)4

4 !
− (...)− 1

)
χχ
}
exp

{∫ β

0

∫
d3x χS−1

0 χ
}

∫
DχDχ exp

{∫ β

0

∫
d3x χS−1

0 χ
} .

(4.1.22)

Next, we follow the scheme

∫
DχDχ

{∫ β

0

∫
d3x ( q⃗· x⃗)j

j !
χχ
}
exp

{∫ β

0

∫
d3x χS−1

0 χ
}

∫
DχDχ exp

{∫ β

0

∫
d3x χS−1

0 χ
} = tr

{
( q⃗ · x⃗ )j

j !
S0

}

=
T

V

∫ β

0

dτ

∫
d3x

∑
k⃗1, k⃗2

∑
n1,n2

tr

{
( q⃗ · x⃗ )j

j !
e−i(ωn1−ωn2 )τ ei( k⃗1− k⃗2)·x⃗ S0(ωn1 , k⃗1;ωn2 , k⃗2)

}

=
∑
k⃗,n

{
(qjLj+1)/(2j)

(j + 1) !
S0(ωn, k⃗)

}
, (4.1.23)

where without loss of generality, we assumed wave vector q⃗ parallel to one of the axis.
Parameter L denotes the space dimension in one direction. The result can be partially
collected in a sine, and finally we get

δΩ =
1

2
mT

{
sin {(qL)/ 2}

(qL)/ 2
− 1

} n=+∞∑
n=−∞

∫
d3k

(2π)3
tr
{
S0(ωn, k⃗)

}
. (4.1.24)

As one can expected, first order correction to the ΩMF , due to the non-zero current quark
mass, does not vanish only for the non-zero values of wave vector q⃗. In the thermodynamic
limit, dependence on L can be neglected, and after the evaluation of the Matsubara sum,
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4.1 Evaluation of the grand thermodynamic potential

that is quite complicated and more detailed study can be found at the next sections, we
obtain

δΩ = − 4m
∑
s=±

∫
d3k

(2π)3

[
−1

2

(
∂(Es + E∆

+,s)

∂Mt

)(
1 + exp

{
−βE∆

+,s

})−1

− 1

2

(
∂(Es − E∆

+,s)

∂Mt

)(
1 + exp

{
βE∆

+,s

})−1

+
1

2

(
∂(Es − E∆

−,s)

∂Mt

)(
1 + exp

{
−βE∆

−,s

})−1

+
1

2

(
∂(Es + E∆

−,s)

∂Mt

)(
1 + exp

{
βE∆

−,s

})−1]
− 2m

∑
s=±

∫
d3k

(2π)3

[
−
(
∂Es

∂Mt

)(
1 + exp {−β(Es + µ)}

)−1

+

(
∂Es

∂Mt

)(
1 + exp {β(Es − µ)}

)−1 ]
.

(4.1.25)

4.1.2 Evaluation of the δΩ

We have to evaluate the expression

δΩ = −1

2
mT

n=+∞∑
n=−∞

∫
d3k

(2π)3
tr
{
S0(ωn, k⃗)

}
, (4.1.26)

where trace is to be taken over the Nambu-Gorkov, color and flavor indices, and the sum
is to be taken over the Matsubara frequencies ωn. We work in the momentum-frequency
basis that is introduced according to the following rule

ψ(x) =
√
V
√
T
∑
n

∫
d3k

(2π)3
exp

{
−i(ωnτ − k⃗ · x⃗)

}
ψ(k), k = (iωn,− k⃗), ωn = 2πT (n+

1

2
) .

(4.1.27)

The matrix form of the operator S−1
0 in the Nambu-Gorkov space, in the momentum-

frequency basis reads

S−1
0 =

[
γ0(k0 + µ)− γiki +

1
2
γ5τ3γ

iqi −Mt iγ5τ2λ2∆
∗

iγ5τ2λ2∆ γ0(k0 − µ)− γiki +
1
2
γ5τ3γ

iqi −Mt]

]
.

(4.1.28)
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4.1.3 Evaluation of the trace of operator S0

The operaor S0 is given by its inverese form of (4.1.28). That is why, to evaluate
the tr {S0}, we have to find the matrix form of this operator. However, because we only
calculate a trace of S0, it is enough to find diagonal elements of this operator. Moreover,
because matrix λ2 mixes only two colors, operator S−1

0 decomposes into the two block-
diagonal matrices in color space. We concentrate on this block-diagonal part of S−1

0 that
contains gap parameter ∆, we name it as S−1

0, 32×32 . In the color space its matrix form is

S−1
0, 32×32 =

[
A B
C D

]
, (4.1.29)

where in the Nambu-Gorkov and flavor spaces

A = D =


γνK+

ν + 1
2γ5γ

iqi −Mt 0 0 0
0 γνK−

ν + 1
2γ5γ

iqi −Mt 0 0
0 0 γνK+

ν − 1
2γ5γ

iqi −Mt 0
0 0 0 γνK−

ν − 1
2γ5γ

iqi −Mt

 ,

(4.1.30)

B = −C =


0 0 0 −iγ5∆∗

0 0 −iγ5∆ 0
0 iγ5∆

∗ 0 0
iγ5∆ 0 0 0

 . (4.1.31)

With the help of known identity

[
A B
C D

]−1

=

[
(A−BD−1C)−1 (C −DB−1A)−1

(B − AC−1D)−1 (D − CA−1B)−1

]
, (4.1.32)

and after doing similar calculations also for the block-diagonal part of S−1
0 that does not

depend on ∆, we finally obtain the result for diagonal elements of the operator S0 in the
momentum-frequency basis

S0ϑβξ
= γ0

(
(δβ2 δ

3−β
1 + δβ1 δ

3−β
2 ) |∆|2

(
−
(
k0 + (−1)ξµ

)
+ γ0

(
k⃗ · γ⃗ −Mt + (−1)ϑ

q

2
γ5γ

3
))−1

+
(
k0 − (−1)ξµ

)
+ γ0

(
k⃗ · γ⃗ −Mt + (−1)ϑ

q

2
γ5γ

3
))−1

,

(4.1.33)
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where indices ϑ, ξ refere respectively to the flavor and Nambu-Gorkov space and are equal
1, 2. Index β refers to the color space and takes the values 1, 2, 3. At this stage we are
prepared to perform the trace of the operator S0 over the whole set of indices. One can
calculate this trace in the eigenbasis (in Dirac space) that diagonalize the matrix

γ0
(
k⃗ · γ⃗ −Mt ±

q

2
γ5γ

3
)

(4.1.34)

The eigenvalues of (4.1.34) to the eigenvectors ψi are λi = ±E± (4.1.19). In this eigenbasis
calculated trace has a form

tr {S0} =
2∑

ϑ, ξ=1

3∑
β=1

4∑
i=1

ψ†
iγ

0 ψi

(
(δβ2 δ

3−β
1 + δβ1 δ

3−β
2 ) |∆|2

(
−k0 − (−1)ξµ+ λi

)−1
+
(
k0 − (−1)ξµ+ λi

))−1

.

(4.1.35)

Finally we get the expression

tr {S0} =

−2

(
4Mt

E2
+ − k⃗ 2 −M2

t + q2

4

2(E2
+ − E2

−)

)[
2

(
− 1

E+

k0 − µ+ E+

(k0 − E∆
−,+)(k0 + E∆

−,+)

+
1

E+

k0 − µ− E+

(k0 − E∆
+,+)(k0 + E∆

+,+)
− 1

E+

k0 + µ+ E+

(k0 − E∆
+,+)(k0 + E∆

+,+)
+

1

E+

k0 + µ− E+

(k0 − E∆
−,+)(k0 + E∆

−,+)

)
+

(
− 1

E+

1

(k0 − µ− E+)
+

1

E+

1

(k0 − µ+ E+)
− 1

E+

1

(k0 + µ− E+)
+

1

E+

1

(k0 + µ+ E+)

)]
+2

(
4Mt

E2
− − k⃗ 2 −M2

t + q2

4

2(E2
+ − E2

−)

)[
2

(
− 1

E−

k0 − µ+ E−

(k0 − E∆
−,−)(k0 + E∆

−,−)

+
1

E−

k0 − µ− E−

(k0 − E∆
+,−)(k0 + E∆

+,−)
− 1

E−

k0 + µ+ E−

(k0 − E∆
+,−)(k0 + E∆

+,−)
+

1

E−

k0 + µ− E−

(k0 − E∆
−,−)(k0 + E∆

−,−)

)
+

(
− 1

E−

1

(k0 − µ− E−)
+

1

E−

1

(k0 − µ+ E−)

− 1

E−

1

(k0 + µ− E−)
+

1

E−

1

(k0 + µ+ E−)

)]
.

(4.1.36)
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4.1.4 Evaluation of the Matsubara summation

At this stage we are ready to perform the sum over the Matsubara frequencies ωn.
This infinite sum can be rewritten as the contour integral. We discuss this method in an
example, choosing one element from the expression (4.1.36),

T
n=+∞∑
n=−∞

{
− 1

Es

1

(k0 − µ− Es)

}∣∣∣∣
k0=T (2n+1)πi

=

− 1

2πi

{∫ i∞+ϵ

−i∞+ϵ

−1

Es

1

(k0 − µ− Es)

1

eβk0 + 1
dk0 +

∫ −i∞−ϵ

i∞−ϵ

−1

Es

1

(k0 − µ− Es)

1

eβk0 + 1
dk0

}
.

(4.1.37)

The integration contour is presented in Fig.4.1 (left panel), inside this contour, the singular
points are exactly at k0 = T (2n + 1)πi. Next, in order to evaluate the two integrals on

Figure 4.1: Integration contours, in the complex plane, that are needed to evaluate ex-
pression (4.1.37). The direction of integration and positions of singular points are shown
schematically.

the right hand side of the equation (4.1.37) the integration contours are chosed such as it
is presented in the right panel of Fig.4.1. The integral on the right semi circle vanishes,
while integral on the left semi circle gives the result −1/2Es. Finally, the sum (4.1.37) is

T

n=+∞∑
n=−∞

{
− 1

Es

1

(k0 − µ− Es)

}∣∣∣∣
k0=T (2n+1)πi

=

− 1

Es

1

(eβ(Es+µ) + 1)
+

1

2Es

=
1

Es

1

(e−β(Es+µ) + 1)
− 1

2Es

. (4.1.38)
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The next observation is that elements of the tr {S0} can be grouped in pairs, one term for
particles and one for antiparticles. This leads to the cancelation of terms proportional to
1/Es

T
n=+∞∑
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− 1
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(4.1.39)

Finally, the subsequent elements of tha Matsubara sum (4.1.36) have the forms:
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(4.1.40)

T
n=+∞∑
n=−∞

∑
s=±

2

(
2Mt

E2
s − k⃗ 2 −M2

t + q2

4

(E2
+ − E2

−)

)
(−s)

{
1

Es

1

(k0 − µ+ Es)
− 1

Es

1

(k0 + µ− Es)

}∣∣∣∣
k0=T (2n+1)πi

= −2
∑
s=±

(
2Mt

E2
s − k⃗ 2 −M2

t + q2

4

Es (E2
+ − E2

−)

)
(−s)

2

(eβ(Es−µ) + 1)
,

(4.1.41)
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(4.1.42)
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With the help of auxiliary formulas
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we finally obtain the simplified result for the δΩ (4.1.25).

4.2 Regularization procedure

The Nambu Jona-Lasinio model is a nonrenormalizable theory and in the previous
chapter the dependence on regularization scheme was discussed. The most evident quan-
titative differences of the results are between the 3d cut-off and Schwinger regularizations.
Consequently, for the presentation of results of the present chapter we decided to choose
these two schemes.

4.2.1 Regularization of the Ω0

The temperature dependent part of the Ω0 (4.1.18) is finite, but the zero temperature
limit of the potential Ω0 contains divergent terms. Ω0 can be rewritten in a more conve-
nient form, where only the last two integrals are divergent. Consequently, regularization
of the thermodynamic potential Ω0 proceeds exactly as was described in the section (3.1).
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4.2.2 Regularization of the δΩ

The infinite contribution to the δΩ (4.1.25) comes from the following terms

∑
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and

∑
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∫
d3k

(2π)3

[
−
(
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1 + exp {−β(Es + µ)}

)−1]
. (4.2.2)

• 3d cut-off regularization
We regularize divergent integrals by introducing a three dimensional momentum
cut-off Λ, ( k⃗ 2 ≤ Λ). We must notice that the integration limit is kept equal Λ also
in the finite, temperature dependent part of the potential Ω0 (4.1.18). Adoption of
this convenction is not without the influence on the results.

• Schwinger proper time regularization
This method is more subtle [26]. The infinite terms contain factors of a type (1 +
exp

{
−βE∆

±,s

}
)−1. With the momentum tending to infinity, above mentioned factors

tends to 1. That is why, the simple method to deal with above divergences is to
add and substract the same infinite integral, which finally is regularized within the
Schwinger scheme. Using this method, integral (4.2.2) can be rearranged into
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. (4.2.3)

The first integral of equation (4.2.3) is finite, while the last one can be regularized within
the Schwinger scheme
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43



Influence of the non-zero current quark mass on the nonuniform chiral and 2SC color
superconducting phases

With the help of results of the previous chapter (3.1.1.3) we get
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. (4.2.5)

Integral (4.2.1) can be rewritten in a similar manner as integral (4.2.2), however, there is
a subtle point about this procedure. At first, we transform the upper line of the equation
(4.2.1) into
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(4.2.6)

However, in the limit ∆→ 0, the grand thermodynamic potential (4.1.25) must transforms
into the potential calculated for ∆ = 0. This may sounds trivially, but in fact, due to
the regularization scheme, it is not so obvious (aforementioned problem is not present in
the 3d cut-off scheme, where all integrals are treated equally by a cut-off Λ). In order
to fulfill the above condition we added and substracted the same term (last term in the
lower line of equation 4.2.7).
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(4.2.7)

Now, only the last integral is infinite, while two others are finite. With the help of results
of the previous chapter (3.1.1.3) we get
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One can then check that, in the limit when ∆→ 0, the equation (4.2.8) reproduces the
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equation (4.2.5). In the same manner we rewrite the lower line of equation (4.2.1).
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(4.2.9)

Finally, equation (4.2.3) with (4.2.5), equation (4.2.7) with (4.2.8) and equation (4.2.9)
give regularized contribution to δΩ.

4.3 Results

The parameters of the NJL model are G,G′,Λ and the bare mass m. As we shall see,
the particular choice of the above mentioned parameters can have a decisive influence on
the conclusions following from the NJL model. The physical quantities in the vacuum
that are used to fix G,Λ and m are: fπ = 93 MeV, mπ = 135 MeV and < ūu >=< d̄d >=
−(250MeV)3. In comparison to the chiral limit, one has to reproduce also the mass of
the pion mπ. We use the Gell-Mann-Oakes-Renner formula

m2
π f

2
π =

mMt

2G
, (4.3.1)

which toogether with the previously introduced relationships (3.1.2) allow us to establish
the NJL model parameters (Table 4.1). Newly obtained parameters differ slightly form
these obtained before (Table 4.2), but this change is not meaningful for the final results
of the model.

We decided to present our results for the two different sets of parameters. Because
of the large uncertainty in the value of quark condensate density, it can be assumed that
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1
2
< q̄q > is within the range −(250 ± 50MeV)3 [42]. Consequently, cut-off Λ can be

chosen arbitrarily, and only coupling G and bare mass m are fitted to reproduce the pion
decay constant and the pion mass. Comparison of the results for different parameters
is especially instructive in the Schwinger scheme. As was mentioned in the previous
chapter, if quark condensate density is set to be −(250MeV)3, the constituent quark
mass M0 in the Schwinger regularization is equal only 200 MeV. Thereby, one can try to
choose parameters in a way, thatM0 takes more reasonable value, and see how this affects
the results. To make the discussion clear, we define the parameters of type 1 (when the
value of < q̄q > is taken into consideration) and of type 2 (when the value of < q̄q >
is neglected). The fitted parameters are collected in the Tables 4.1, 4.2, where also the
value of constituent quark mass in the vacuum M0 is given.

3d S

Λ 0.653 1.086
GΛ2 2.1 3.68
M0 0.313 0.2
m 0.005 0.0049

(−1
2
< q̄q >)

1
3 0.25 0.25

Table 4.1: Numerical values of the regularization parameters in GeV (type 1)

3d S

Λ 0.619 0.635
GΛ2 2.24 7.53
M0 0.35 0.38
m 0.0053 0.0153

(−1
2
< q̄q >)

1
3 0.245 0.17

Table 4.2: Numerical values of the regularization parameters in GeV (type 2)

Our goal is to resolve whether the region of spatially inhomogeneous chiral phase oc-
curs in the NJL model for m ̸= 0. However, this depends also on the value of coupling
constant G′, which can not be related to any known physical quantity. The obvious ob-
servation is that the larger is the value of G′ the lower is the value of potential ΩMF at the
minimum corresponding to the color superconducting phase. We set G′ = 0.5G, it is a
lower bound for the coupling constant G′ considered among the literature [47]. Thanks to
the above choice, we do not exclude the possibility of existence of the mixed NCh/2SC re-
gion (that is preferable in the chiral limit). Simultaneously, we do not favor the existence
of the diquark condensate over the chiral condensate. With fixed parameters G,G′,Λ and
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m, the thermodynamical potential ΩMF (4.1.9) is a function of Mt, q, |∆|, quark chemical
potential µ and temperature T . We begin our analysis in the zero temperature limit.
For a given µ and T we numerically determine the global minimum of potential ΩMF

with respect to the free parameters. We restrict our analysis to the region of µ, where
numerically obtained mass Mt is greater than the quark current mass m.

4.3.1 3d cut-off regularization

4.3.1.1 Type 1 parameters

In Fig.4.2, dependences of Mt, q and |∆| on µ, at T = 0 are shown. The spatially
inhomogeneous quark phase exists. There is a global minimum corresponding to mixed
phase of the nonuniform chiral condensate (NCh) and 2SC color superconductor. At zero
temperature, in the interval of µ from 0.322 GeV to 0.420 GeV, its value is slightly lower
than the value of local minimum corresponding to mixed phase of the 2SC superconductor
and uniform chiral (Ch) phase (Fig.4.2). As one can expected [38], non-zero temperature
does not favor the nonuniform condensate. Phase diagram in the µ - T plane is shown
in Fig.4.3. For temperatures between 0 and 20 MeV, the interval of existence of the in-
homogeneous phase is practically constant, but the region of coexistence of the NCh and
2SC phases is getting smaller with growing temperature (Figs.4.3, 4.4). Above T = 16
MeV, the spatially inhomogeneous quark condensate exists, but without the diquark con-
densate. Further with growing temperature, region in which the NCh phase is a global
minimum systematically decreases.

Figure 4.2: The values of Mt, q and ∆ in the 3d cut-off regularization scheme for T = 0
(GeV units). In the left panel, the global minimum related to the mixed phase NCh/2SC
is plotted. In the right panel, the local minimum related to the mixed phase Ch/2SC is
plotted (type 1 parameters).

47



Influence of the non-zero current quark mass on the nonuniform chiral and 2SC color
superconducting phases

Figure 4.3: The phase diagram in the µ - T plane (3d cut-off, type 1 parameters).

Figure 4.4: The values ofMt, q and ∆ in the 3d cut-off regularization scheme for T = 0.011
(GeV units, type 1 parameters).

4.3.1.2 Type 2 parameters

The large uncertainty range for the quark condensate density allows us to shift the
value of Λ. Moving Λ above the previous value (653 MeV) results in a decrease of the
value of coupling constant G. For the lower values of G, minimum associated to the
NCh phase is getting more shallow, that case will also be discussed later. Hence, we
will rather reduce the value of Λ. On the other hand, Λ is an upper boundary for the
energy scale, so the possible interval for the values of Λ is narrow. We set GΛ2 = 2.44,
Λ = 619 MeV, M0 = 350 MeV and m = 5.3 MeV. With this choice of parameters,
(−1

2
< q̄q >)

1
3 = 245 MeV and it is still within the experimental range for the value

of quark condensate density. Fig.4.5 presents the dependences of Mt, q and |∆| on µ at
T = 0. The spatially inhomogeneous quark phase exists in a region of µ from 340 to 440
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MeV. In that region, the 2SC color superconducting phase coexists with the NCh phase.
As one can expected, with growing T, above mentioned region is getting narrower and the
value of color superconducting order parameter |∆| is decreasing (Fig.4.6). Above T = 20
MeV there is no mixed region of the NCh/2SC phase.

Figure 4.5: The values of Mt, q and ∆ in the 3d cut-off regularization scheme for T = 0
(GeV units). The global minimum related to the mixed phase NCh/2SC is plotted (type
2 parameters).

Figure 4.6: The values ofMt, q and ∆ in the 3d cut-off regularization scheme for T = 0.016
(GeV units). The global minimum related to the nonuniform chiral solution is plotted
(type 2 parameters).
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4.3.2 Schwinger regularization

4.3.2.1 Type 1 parameters

In the proper time scheme at T = 0, the mixed phase of the NCh and 2SC phases is
only a local minimum, and the values of the vector q corresponding to that local minimum
are unphysical (q is considerably greater than the Λ scale). In Fig.4.7, there are presented
dependences ofMt and |∆| on µ at T = 0. In this regularization scheme, the values of |∆|
are of the order of magnitude smaller than in the cut-off scheme. That fact was already
observed [48], we also mention on it in the previous chapter. With growing temperature,
diquark condensate melts very quickly, and already for the values of temperature above 5
MeV, the color superconducting phase vanishes. But yet, the most intriguing observation
is, that even at T = 0, we notice a smooth dependence of Mt on a chemical potential. Mt

decreases from its vacuum value, across the narrow range of the rapid variability, down
to the value of around 5 MeV. This is not what one can expected. The existence of the
critical point in the phase diagram of the strongly interacting matter force that transition
from the hadronic sector to the color superconducting region should be of the first order.
Whereas, we find a smooth crossover. Above observation indicate, that NJL model within
the 3d cut-off scheme reproduce the expected physics in a more reasonable manner than
within the Schwinger method.

Figure 4.7: The values of Mt and ∆ in the Schwinger regularization scheme for T = 0
(GeV units, type 1 parameters).

4.3.2.2 Type 2 parameters

The limit values of the NJL parameters for which (−1
2
< q̄q >)

1
3 > 200 MeV are:

GΛ2 = 4.58, Λ = 760 MeV and m = 12.6 MeV. However, at these limit values, the
spatially nonuniform chiral phase still does not exist. Guided by the findings of [45], we
set GΛ2 = 7.53, Λ = 635 MeV, M0 = 380 MeV and m = 15.3 MeV. With this choice of
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parameters, (−1
2
< q̄q >)

1
3 = 170 MeV and it is already beyond the experimental range

for the value of quark condensate density. Moreover, the current quark mass is three times
greater than the expected value of order 5 MeV. As can be seen in Fig.4.8, the mixed
region of the nonuniform chiral/2SC superconductor appears at µ = 355 MeV. Above the
value of quark chemical potential equal 450 MeV, the value of wave vector q is greater
than Λ. Therefore, above these limit, discussed model is unphysical.

Figure 4.8: The values of Mt, q and ∆ in the Schwinger regularization scheme for T = 0
(GeV units, type 2 parameters). GΛ2=7.53, Λ=0.635 GeV, m=0.0153 GeV.

4.3.3 Discussion

To compare the behavior of potential ΩMF (4.1.15) in different regularizations and at
the different choice of parameters, we take the factor Λ4 ahead of the ΩMF and then we
work with the dimensionless quantities. The δΩ (4.1.25) contribution to the thermody-
namic potential is proportional to the ratio m/Λ. When the value of q is non-zero, δΩ is
positive and therefore, the value of ΩMF is higher than the value of Ω0. As a consequence,
δΩ works against the existence of the NCh phase.

One may ask a question, why so small mass m (in comparison with the other energy
scales) has a significant influence on the ΩMF . In the 3d cut-off scheme with the param-
eters of type 1 the ratio m/Λ equals 0.0076 and with type 2 m/Λ = 0.0085. Similarly in
the proper time scheme, with the parameters of type 1 the ratio m/Λ equals 0.0045 and
with type 2 m/Λ = 0.024. It appears, that the differences between the values of Ω0 at
the global minima corresponding to the NCh/2SC phase and the values of Ω0 at the local
minima corresponding to the uniform chiral phase are also of the order of few percent.
Even so small mass m can moves the global minimum.

There is also another puzzle. Why does the inhomogeneous ground state seem to exist
more likely for higher current masses (type 2 vs. type 1 parameters). Parameters of the
NJL model are linked with each other. It turns, that larger m results in larger coupling
constant G. With increasing G, the distance between the value of Ω0 at global minimum
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corresponding to the NCh/2SC phase and the value of Ω0 at minimum corresponding to
the uniform chiral phase increases also. Consequently, despite the growth of δΩ (with
increasing m), the split between the minima of Ω0 is getting more distinctive. In Fig.4.9
we compare the behavior of the values of entire potential ΩMF at minima corresponding
to the NCh/2SC and Ch/2SC solutions, as a function of mass m in the 3d cut-off scheme
(µ = 360 MeV). The vacuum value of M0 exceeds 400 MeV when the value of current
mass m is above 5.45 MeV. On the other hand, below the current mass value of around
4.7 MeV the nonuniform solution disappears.

Figure 4.9: The values of Ω at minima corresponding to the NCh/2SC phase (gray line)
and to the Ch/2SC phase (dashed line), as a function of mass m at µ = 360 MeV (3d
cut-off scheme, type 1 parameters)

4.4 Conclusions

We have shown, that the possibility of existence of the nonuniform chiral phase
depends significantly on the choice of parameters and type of the regularization scheme.
Our calculations indicates, that in the 3d cut-off regularization scheme, the mixed region
of the NCh and 2SC phases exists for a broad set of parameters. However, in the Schwinger
regularization scheme, if parameters are set to the vacuum values of fπ, mπ and < q̄q >,
then, the mixed region of the NCh and 2SC phases does not exist. In the moderate baryon
density region, there is a local minimum corresponding to the NCh and 2SC phases, but
the ground state is the chiral uniform phase. If we release the constrain on parameters
coming from the value of < q̄q >, then, the NCh solution might be an absolute minimum
of the thermodynamical potential in the moderate baryon density region. However, with
this choice of parameters, not only the < q̄q >, but also the mass m, do not reproduce
their physical values.

The result, irrespective of the choice of parameters and regularization method, is
that if at some chemical potential (at T = 0) there is a minimum associated to the
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NCh/2SC phase, its value is lower than the value of a minimum associated to the spatially
inhomogeneous quark condensate with |∆| equal to zero. Because we chose G′= 0.5 G,
that is a lower bound for the estimated value of the coupling G′, it can be assumed, that
if the NCh condensate exists at zero temperature, it exists together with the diquark
condensate. With growing temperature, diquark condensate starts up at higher µ, and
the region of coexistence of the NCh and 2SC phases eventually disappears.

In summary, our findings do not settle the possible existence of the spatially nonuni-
form chiral condensate. Both methods of regularization give different results. Neverthe-
less we can conclude, that within the 3d cut-off scheme, the physical quantities are easily
reproduced. While, within the Schwinger scheme, there are some problems with it. Addi-
tionally, in the Schwinger scheme with parameters of type 1, transition from the chirally
uniform to the color superconducting phase is a smooth crossover (at T = 0). This makes
the Schwinger scheme results questioned.
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Chapter 5

Chiral density waves in the quarkyonic
matter

The issue of the fifth chapter is the analysis of the strongly interacting matter phase
diagram within the Polyakov Nambu Jona-Lasinio (PNJL) model. We begin with the
short introduction into the PNJL theory (5.1). To show an important sensitiveness of
the PNJL model on the choice of parameters, we investigate a relationship between the
critical temperatures of chiral and deconfinement transitions, both at zero quark chemical
potential (5.2.2) and in the moderate density region (5.2.4). In the section (5.3) we refer
to a very recent concept, namely, to the existence of the quarkyonic matter sector in the
QCD phase diagram. In this context, the spatially inhomogeneous phase of the chiral
density waves is discussed.

Most of the results presented in this chapter have been published in Ref. [68], some of
the results can be found in Ref. [69].

5.1 Polyakov Nambu Jona-Lasinio model

In the seventies of the XX century, the model of hadrons, as being composed of more
fundamental quarks and gluons, was already accepted. With this novel approach, the new
perspective had been oppened. When the system evolves from the sector, where quarks
and gluons are combined to form colorless hadrons, to the region where individual hadrons
overlap, and quarks can move freely in the large volume, a significant change in the number
of effective degrees of freedom gives a strong indication of the phase transition. In this
section we focus on this so-called deconfinement transition. In the following paragraphs,
we limit ourselves to the effects resulting from growing temperature. The effects due to
the growing baryon density are the issue of section (5.3).
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5.1 Polyakov Nambu Jona-Lasinio model

5.1.1 Polyakov loop and deconfinement transition

The primary questions, that arise when considering phase boundaries are: the question
of the nature of the phase transition, and the question of the quantity, that can serves
as the order parameter. In the context of QCD, the nature of deconfinement transition
depends on the relation between the number of flavors Nf and the number of colors Nc.
For the pure gauge SU(Nc) theory it is established, that deconfinement transition is of
the second order for Nc = 2 [49] and of the first order for Nc ≥ 3 [50, 51]. The free energy
of the system scales as order one in the glueball sector and as order N2

c in the deconfined
plasma. Thus, in the limit when Nc goes up to an infinity, the free energy itself can be
the order parameter of the deconfinement transition. Naturally, in the physically relevant
situation Nc = 3. However it turns out, that for the SU(3) gauge theory, there is a
quantity, that vanishes in the confined phase and takes non-zero value in the deconfined
sector. This is the thermal expectation value of the traced Polyakov loop

⟨Φ(x⃗)⟩ = ⟨trcL(x⃗)/Nc⟩ , L(x⃗) = P exp

(
i

∫ β

0

dτA4(x⃗, τ)

)
, (5.1.1)

where P is the path ordering, A4 is the temporal component of the color gauge field in the
fundamental representation and trace is taken over color indices. The traced Polyakov
loop can be viewed as an creation operator for an infinitely heavy quark at position x⃗.
Consequently, the thermal expectation value of the Polyakov loop is linked to the free
energy (Fq) of such a quark [52]

⟨Φ(x⃗)⟩ = exp (−βFq). (5.1.2)

Below some critical temperature, when Fq diverges, ⟨Φ(x⃗)⟩ is equal zero. Above this
temperature, the expectation value of Φ(x⃗) is non-zero. Because the free energy of a
quark-antiquark pair separated by an infinite distance is equal 2Fq, the free energy of a
static quark is a sign of confinement [52]. One can indicate the symmetry underlying the
behavior of the Polyakov loop. The pure glue SU(3) theory is invariant not only under the
gauge transformations that are periodic in time, but also under the gauge transformations
that are periodic up to the element of the center of SU(3) group. The existence of this
non-trivial local gauge transformations is the reflection of the global Z3 symmetry of the
euclidean Yang-Mills action (for a more detailed discussion see paragraph 5.1.1.1). On the
other hand, the traced Polyakov loop transforms under aforementioned gauge symmetries
as

Φ(x⃗) → zΦ(x⃗), (5.1.3)

where z belongs to the center of Z3 group. Thus, in the deconfined phase, the center
symmetry is spontaneously broken.

The incorporation of quark fields as dynamical degrees of freedom significantly affects
the description of the deconfinement transition. Quarks as beeing fermions, obey the
anti-periodic boundary condition
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Ψ(x⃗, 0) = −Ψ(x⃗, β). (5.1.4)

It turns, that maintenance of an anti-periodic boundary conditions is in contradiction to
the local invariance under gauge transformations, that are periodic up to the element of
the center of the SU(3) group. Due to the quark fields, the global Z3 symmetry is explic-
itly broken and the quark free energy (Fq) is always non-vanishing. As a consequence, the
thermal expectation value of the traced Polyakov loop is no longer an exact order parame-
ter of the deconfinemnet. We expect, that in the presence of quarks, deconfinemnet turns
into a rapid crossover and that the clear definition of a critical temperature is impossible.
However, according to the lattice calculations, the thermal expectation value of the traced
Polyakov loop can still be useful as an effective indicator of the deconfinemnet crossover.

5.1.1.1 Z3 center symmetry

QCD Lagrangian is invariant under local transformations ω(x) such that ω(x) is a
smooth function of x and that for every x, ω(x) ∈ SU(3). Evaluating the QCD parti-
tion function within the finite temperature field theory formalism, we impose boundary
conditions on fermion and gauge boson fields [53]

Ψ(x⃗, τ) = −Ψ(x⃗, τ + β)

Aµ(x⃗, τ) = Aµ(x⃗, τ + β). (5.1.5)

Equations (5.1.5) constrain the possible gauge transformations. Indeed, taking into ac-
count that quark and gluon fileds transform under gauge symmetries with respect to the
formulas

Ψ
′
(x⃗, τ) = ω(x⃗, τ)Ψ(x⃗, τ)

A
′

µ(x⃗, τ) = ω(x⃗, τ)Aµ(x⃗, τ)ω
−1(x⃗, τ) + i(∂µω(x⃗, τ))ω

−1(x⃗, τ), (5.1.6)

one can check that boundary conditions (5.1.5) are fulfilled by periodic gauge transfor-
mations ω(x⃗, τ) = ω(x⃗, τ + β). However, we can consider gauge transformations that are
periodic up to the center element z ∈ Z3:

z ω(x⃗, τ) = ω(x⃗, τ + β). (5.1.7)

Periodic boundary conditions for gauge fields are still satisfied untill z ∈ Z3:

A
′

µ(x⃗, τ + β) = z (ω(x⃗, τ)Aµ(x⃗, τ)ω
−1(x⃗, τ) + i(∂µω(x⃗, τ))ω

−1(x⃗, τ)) z−1

= z A
′

µ(x⃗, τ) z
−1 = A

′

µ(x⃗, τ). (5.1.8)

As a result, pure gauge SU(3) Lagrangian is invariant also under this class of gauge
symmetries. Because the gauge transformation law for the Wilson line L(x⃗) is

L
′
(x⃗) = ω(x⃗, β)L(x⃗)ω(x⃗, 0)−1, (5.1.9)
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5.1 Polyakov Nambu Jona-Lasinio model

the Polyakov loop transforms in the following way

Φ
′
(x⃗) = zΦ(x⃗). (5.1.10)

Consequently, if the value of Φ(x⃗) is non-vanishing, global Z3 symmetry is spontaneously
broken. Let us notice that the anti-periodic boundary conditions hold for quark fields
only if z = 1

Ψ
′
(x⃗, τ + β) = −z ω(x⃗, τ)Ψ(x⃗, τ) = −zΨ′

(x⃗, τ). (5.1.11)

5.1.2 Effective Polyakov potential and lattice results

The free energy of the pure Yang-Mills SU(Nc) theory scales (in the number of colors)
as the zeroth power below the critical temperature and as the second power above the
deconfinement transition. It turns, that the contribution of order N2

c is due to the conden-
sation of the Polyakov loop. On that basis, Pisarski suggested to write a mean field theory
[54] in which the free energy in the deconfined phase is controlled by an effective potential
for the Polyakov loop. This potential (so-called Polyakov potential) is formed exclusively
with the Polyakov loop degrees of freedom and it mimics the thermodynamic properties
of the pure gauge theory. Because the original Yang-Mills SU(3) action is invariant under
global Z3 symmetry, the effective potential should also preserves this symmetry. Until
today, some different parametrizations of the Polyakov potential have been proposed. In
the present work, the two of them appear.

The chronologically first is the parametrization based on a polynomial expansion [54]:

U(Φ, Φ̄, T ) = T 4

(
−b2(T )

2
ΦΦ̄− b3

6
(Φ3 + Φ̄3) +

b4
4
(ΦΦ̄)2

)
, (5.1.12)

with parameters

b2(T ) = 6.75− 1.95

(
T0
T

)
+ 2.625

(
T0
T

)2

− 7.44

(
T0
T

)3

, b3 = 0.75, b4 = 7.5, (5.1.13)

where Φ and Φ̄ are the traced Polyakov loop and its conjugate, critical temperature pa-
rameter T0 is equal 270 MeV.

Another form of the Polyakov potentilal is motivated by the SU(3) Haar measure and
was originally presented in Ref. [55]:

U(Φ, Φ̄, T ) = T 4

(
−1

2
a(T ) Φ̄Φ + b(T ) ln

[
1− 6 Φ̄Φ + 4

(
Φ̄3 + Φ3

)
− 3

(
Φ̄Φ
)2] )

, (5.1.14)
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Figure 5.1: Lattice data representing scaled values of the energy density (triangles), en-
tropy density (diamonds) and pressure (boxes) taken from Ref. [57], compared with the
results of the Polyakov potential computations [56].

with parameters

a(T ) = 3.51− 2.47

(
T0
T

)
+ 15.2

(
T0
T

)2

, b(T ) = −1.75

(
T0
T

)3

. (5.1.15)

Free parameters of the above potentials was deliberately fitted to reproduce the ther-
modynamic quantities of the SU(3) gauge theory obtained with the lattice calculations
at zero baryon density. In Fig.5.1 the agreement between the results obtained with the
second (logarithmic) potential (5.1.14) and the lattice results, taken from Ref. [57], is pre-
sented.

The Polyakov potential reflects also the behavior of the thermal expectation value of
the traced Polyakov loop as an order parameter for the deconfinement transition. The
thermal expectation value of the traced Polyakov loop is determined as a global minimum
of the effective potential. With growing temperature, apart from the global minimum
at Φ = 0, the new minimum of the Polyakov potential appears. Above the critical
temperature Tc, this new minimum becomes a global minimum and the expectation value
of Φ becomes non-zero. There is a first order transition.

5.1.3 Coupling of the Polyakov loop to the quark field

It was pointed out in the previous chapters, that the phenomenon of quark confinement
is missed in the NJL theory. Consequently, the moderate temperature predictions of this
model are incomplete. In the present section, on the basis of the traced Polyakov loop
properties, the method to extend the original NJL theory to describe both the chiral and
deconfinement transitions is presented.
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5.1 Polyakov Nambu Jona-Lasinio model

Thermal expectation values of the traced Polyakov loop and its conjugate are defined as

⟨Φ(x⃗)⟩ = ⟨trcL(x⃗)/Nc⟩ , Φ̄(x⃗) =
⟨
trcL(x⃗)

†/Nc

⟩
, L(x⃗) = P exp

(
i

∫ β

0

dτA4(x⃗, τ)

)
.

(5.1.16)

From this moment, we work in the so-called Polyakov gauge [58]. This is a very convenient
choice. In this gauge, the temporal component of the SU(3) color field A0 = −iA4 is
diagonal in color space and time-independent. For the purpose of the PNJL model the
simplifying assumption is that A0 is also homogeneous in space. It follows, that the
Polyakov loop takes a simple form

⟨Φ⟩ = ⟨trcL/3⟩ ,
⟨
Φ̄
⟩
=
⟨
trcL

†/3
⟩
, L = exp (iA4/T ). (5.1.17)

The PNJL Lagrangian is derived from the NJL type Lagrangian (in our case with two
flavors and three colors). Interactions in the scalar and pseudoscalar channels are taken
into account and the covariant derivative operator Dν = ∂ν − iAν(x), combines the quark
field with the background color SU(3) gauge field Aν(x). In the PNJL model, the only
non-vanishing component of the gluon background field is its temporal (longitudinal)
component, consequently transverse gluons are not contained in the PNJL theory. Because
in the PNJL model, the background gluon filed is simplified, this model is expected to
works up to the temperatures of order 2Tc, above which, the transverse gluons is getting
important [59]. In the present work, we concentrate on the regime of temperatures not
higher than of order Tc, thus, above limitation does not alter our analysis. The PNJL
Euclidean action, in the chiral limit, has a form

S =

∫ β

0

dτ

∫
d3x

[
1

2
ψ̄
(
iγν∂ν − iA4γ

0 + µγ0
)
ψ +

1

2
ψ̄c

(
iγν∂ν + iA4γ

0 − µγ0
)
ψc

+ G
[
(ψ̄ψ)2 + (ψ̄iγ5τ⃗ψ)

2
]]
, (5.1.18)

where ψ is the quark field, µ is the quark chemical potential and ψc = Cψ̄T is the
charge conjugate field. The color and spinor indices are suppressed. Further calculations
proceed the same as for the NJL model (chapter 4). After the Hubbard Stratanovich
transformation we introduce the nonuniforn ansatz. The grand thermodynamic potential
in the mean field approximation can be calculated

Ω0 = −T lnZMF . (5.1.19)

Ω0 =
M2

4G
− T

2V
ln detD,c,NG,p

{
S−1(iωn, k⃗)

T

}
, (5.1.20)
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S−1(iωn, k⃗) =

[
γ0(iωn + µ− iA4) +

1
2γ5τ3q

3γ3 −M − γ⃗ · k⃗ 0

0 γ0(iωn − µ+ iA4) +
1
2γ5τ3q

3γ3 −M − γ⃗ · k⃗]

]
.

(5.1.21)

Determinant is to be taken over the Dirac, color, Nambu Gorkov and momentum-frequency
spaces.

Ω0 =
M2

4G
− 6

∑
s=±

∫
d3k

(2π)3
Es

− 2T
∑
s=±

trc

∫
d3k

(2π)3

[
ln
(
1 + L exp−Es+µ

T

)
+ ln

(
1 + L† exp−Es−µ

T

)]
, (5.1.22)

where

E± =

√
k⃗2 +M2 +

q⃗ 2

4
±
√

( q⃗ · k⃗)2 +M2 q⃗ 2 . (5.1.23)

Because in the Poloyakov gauge A0 is diagonal, one can easily evaluate the above trace.

Ω0 =
M2

4G
− 6

∑
s=±

∫
d3k

(2π)3
Es

− 2T
∑
s=±

∫
d3k

(2π)3

[
ln
(
1 + 3(Φ + Φ̄ exp−Es+µ

T ) exp−Es+µ
T +exp−3Es+µ

T

)]
− 2T

∑
s=±

∫
d3k

(2π)3

[
ln
(
1 + 3(Φ̄ + Φ exp−Es−µ

T ) exp−Es−µ
T +exp−3Es−µ

T

)]
(5.1.24)

Finally, the grand thermodynamic potential, expressed by the quark fileds and by the
traced Polyakov loop degrees of freedom, is given as below:

ΩPNJL = Ω0 + U(Φ, Φ̄, T ), (5.1.25)

where U is the effective Polyakov potential.

5.1.4 Comments

Individual phases are determined as a global minima of the potential ΩPNJL (as a
function of temperature and quark chemical potential). FieldsM , q, Φ and Φ̄ are replaced
by their expectation values ⟨M⟩, ⟨q⟩, ⟨Φ⟩ and

⟨
Φ̄
⟩
, taken at the minima of the ΩPNJL. In

principle, Φ and Φ̄ takes different values at the non-zero quark chemical potential. In early
studies concerning PNJL model [56], Φ and Φ̄ were treated as independent quantities at
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the minimization of the grand thermodynamic potential ΩPNJL. The authors of Ref. [55]
suggested, that aforementioned procedure overestimates the difference between ⟨Φ⟩ and⟨
Φ̄
⟩
. The results of Ref. [60] revealed, that at the mean field level ⟨Φ⟩=

⟨
Φ̄
⟩
, and that the

difference between them originates in the corrections to the mean filed approximation.
The actual split between the expectation values of the traced Polyakov loop and its
conjugate is smaller than expected and irrelevant for qualitative interpretations. That is
why, for the the purpose of this work, we keep Φ equal to its conjugate Φ̄. The mean field
equations derived form the ΩPNJL are:

∂ΩPNJL

∂M
=
∂ΩPNJL

∂Φ
=
∂ΩPNJL

∂q
= 0. (5.1.26)

5.2 Deconfinemnet and chiral transitions

Effective models allow us to study phenomena for which the description within the
fundamental theory is much more complicated. Negative aspect of these models is that
their results depend on the choice of parameters. Having above in mind, we devote this
section to study the influence of the PNJL model details on the interplay between the
deconfinement and chiral transitions.

5.2.1 Determination of the deconfinement and chiral transitions

5.2.1.1 Chiral transition

Figure 5.2: In the left panel, the value of the normalized chiral condensate is plotted as a
fuction of a quark chemical potential (blue dots - m = 0; pink (upper) dots - m ̸= 0). In
the right panel, the value of the temperature derivative of a chiral condensate is visualized.

Primarily, we have to clarify how do we define the above mentioned transitions within
the PNJL model. In general, the temperature of chiral symmetry restoration (within the
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NJL model) depends on the bare qurak mass. If the bare quark mass is taken equal to
zero, the chiral symmetry is an exact symmetry. The moment of the chiral transition is
determined as temperature at which the value of the chiral condensate drops to zero. On
the other hand, if we take the non-vanishing current quark mass, the chiral symmetry is
only an approximate symmetry. The value of the chiral condensate is always nonzero. In
this latter scenario, moment of the chiral transition is defined as temperature at which the
derivative of the temperature dependence of the chiral condensate takes its maximum. In
the left panel of Fig.5.2, the normalized chiral condensates are visualized for both m = 0
and m ̸= 0 scenarios. The temperature derivative of the normalized chiral condensates is
presented in the right panel of Fig.5.2. As can be seen in the following figure, the chiral
transition temperature is approximately 190 MeV and coincides for both cases.

5.2.1.2 Deconfinement transition

Figure 5.3: Lattice data representing the values of the traced Polyakov loop taken from
Ref. [61] (solid points - two flavor QCD) and from Ref. [62] (open boxes - pure SU(3)
theory).

For the pure SU(3) theory, the temperature expectation value of the traced Polyakov
loop is an order parameter for deconfinement transition. At critical temperature, there is
a first order transition where ⟨Φ⟩ abruptly changes its value. However, in the presence of
dynamical quarks, the temperature expectation value of the traced Polyakov loop behaves
smoothly. Consequently, ⟨Φ⟩ remains only an approximate indicator of the deconfinement
crossover (see Fig. 5.3). As a consequence, the critical temperature of the deconfinement
transition is defined as temperature at wchich derivative of ⟨Φ⟩ takes its maximum.
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5.2.2 Dependence on the model details at zero baryon density

5.2.2.1 3d cut-off regularization

Now we move to discuss the dependence of the PNJL model results with respect to
the fine details of the model. It turns, that the positions of deconfinement and chiral
transitions are not uniquely determined in the PNJL model. First of all, PNJL theory is
a non-renormalizable theory, thereby, the regularization method must be chosen to clearly
define the model. For the purpose of this study we use the 3d cut-off and the Schwinger
proper time regularization schemes. All the parameters of the PNJL model are fitted
to the hadronic sector, exactly as in the NJL theory. However, there is still a freedom
of choice of the Polyakov loop potential. Finally, the thermodynamic potential ΩPNJL

(5.1.24) can be decomposed into the ”vacuum” and ”matter” terms. The ”vacuum”
contribution diverges, while the ”matter” part (dependent on temperature) is finite and
does not require regularization. Discussion of the NJL model in the limit T → ∞ revealed
that the consistent procedure is to regularize also the ”matter” term [63]. Nevertheless, as
one of the goals of this study is to investigate the parameter dependence of the NJL model,
we examine also the case when the limit of integration in the temperature dependent term
is infinity. Some studies indicate that this second approach can give a better agreement
with the lattice results [64].

Figure 5.4: Left panel: 3d cut-off regularization, T0 = 270 MeV, integration limit=Λ,
logarithmic form of the Polyakov loop potential. Right panel: 3d cut-off regularization,
T0 = 208 MeV, integration limit=Λ, logarithmic form of the Polyakov loop potential.

The individual parametrization of the effective Polyakov loop potentials (5.1.12, 5.1.14)
reproduce the lattcie data. Nevertheless, there is still an open space for the choice of the
critical temperature parameter T0. In early works, T0 was fixed to be 270 MeV, as follows
form the pure gauge theory. It turned however, that the temperature of deconfinement
obtained in the PNJL model with T0 = 270 MeV is much above the expected value.
Color charge is screened in the presence of quark fields. Consequently, for the theory
with Nf > 0, QCD energy scale is lower than in the pure SU(3) theory. On this basis, in
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Ref.[65], the dependence of temperature T0 on the number of flavors Nf was estimated

T0 = Tτ exp
−1/α0b, α0 = 0.304, Tτ = 1.77 GeV, b =

1

6π
(11Nc − 2Nf ). (5.2.1)

According to the above formula, for Nf = 2, Nc = 3 theory, T0 = 208 MeV. In Fig.5.4,
the outcomes of the PNJL model at µ = 0, for T0 = 270 MeV (left panel) and T0 = 208
MeV (right panel) are presented. Due to the change of the parameter T0, the resulting
deconfinement temperature lowers from 0.23 GeV to 0.18 GeV, and the resulting chiral
restoration temperature lowers from 0.25 GeV to 0.225 GeV. Consequently, the split
between these temperatures broadens from 20 MeV to about 40 MeV.

Figure 5.5: Left panel: 3d cut-off regularization, T0 = 208 MeV, integration limit=∞,
logarithmic form of the Polyakov loop potential. Right panel: 3d cut-off regularization,
T0 = 208 MeV, integration limit=∞, polynomial form of the Polyakov loop potential.

In the left panel of Fig.5.5, we present how does the change of the integration limit in
the temperature dependent term of the potential ΩPNJL (5.1.24) affects the PNJL model
outcomes. In the comparison with the right panel of Fig.5.4, one finds that both transi-
tions are at lower temperature, but simultaneously, they are closer to each other. This
effect is understandable. The Polyakov loop variable and quark fields are coupled through
the temperature dependent term of the potential ΩPNJL. Because we integrate up to an
infinity, this term has a greater influence on the position of a global minimum.

In the right panel of Fig.5.5, the results for the polynomial form of the Polyakov loop
potential (5.1.12) are presented. Both temperatures are closer to each other than in the
left panel of Fig.5.5. But yet, the maximum of the temperature dependence of ⟨Φ⟩ is less
clear, and the growth of ⟨Φ⟩ in the region of a transition is less rapid. That is why, the
definition of deconfinement transition (as a maximum of a temperature derivative of ⟨Φ⟩)
is more accurate for the logarithmic form of the Polyakov loop potential (5.1.14).
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5.2.2.2 Schwinger regularization

In the Schwinger regularization scheme, the influence of the specific model details
remains similar as for the 3d cut-off scheme. That is why we present only one diagram for
this method of regularization. The exemplary dependence of the constituent mass and the
traced Polyakov loop, as a function of temperature, is presented in Fig.5.6. However, if
one compare Fig.5.6 with the left panel of Fig.5.5, the slight difference can be observed. In
Fig.5.6 both the deconfinement and the chiral symmetry restoration transitions occur at
lower temperature. Simultaneously, temperature interval between both these transitions
is smaller for the Schwinger regularization. This effect is due to the fact that the Dirac
sea contribution regularized with the Schwinger scheme has shallower minimum than
when regularized with the 3d cut-off scheme (Fig.3.2). Consequently, chiral symmetry is
restored at lower temperature.

Figure 5.6: Dependences of the normalized chiral condensate and traced Polyakov loop,
plotted as a fuction of temperature. Schwinger regularization, Polyakov loop potential
parameter T0 = 208 MeV, integration limit=∞, logarithmic form of the Polyakov loop
potential.

5.2.3 Temperature dependence of coupling constant G

Theoretical relation between the phenomena of color confinement and spontaneous
chiral symmetry breaking is still not sufficiently understood. Casher and Banks argument
[66, 67] indicate, that at zero baryon chemical potential, color confinement automatically
implies broken chiral symmetry. The PNJL model outcomes, presented in the previous
subsection, are in agreement with Casher and Banks argumentation. However, QCD lat-
tice computations [70] implies, that both transitions occur at near the same temperature,
whereas, predictions based on the PNJL model indicate that both transitions are sepa-
rated by the 10-30 MeV distance. The question arises, whether within the PNJL model,
the agreement between the temperatures of chiral symmetry restoration and deconfine-
ment transition can be achieved. The answer lies in the coupling constant G. It’s value
is usually fixed to the vacuum value. But in principle, effective coupling G is a function
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of temperature and quark chemical potential. It contains contributions which follow from
the integration of the gluonic degrees of freedom. At higher values of temperature, gluons
interaction with quarks weakens, which in turn influences the effective four quark inter-
action in the same way. Thus the coupling G decreases with increasing temperature. We
estimate this dependence by the Taylor expansion of G on T [68]

G(T ) = G(1− (T/Tc)) +Gc(T/Tc). (5.2.2)

Empirical values of Gc and Tc result from the numerical determination of the critical
temperature and depend on the choice of regularization.

• 3d cut-off regularization

G = 5.024GeV −2, Gc = 4.221GeV −2, Tc = 167MeV. (5.2.3)

• Schwinger regularization

G = 3.205GeV −2, Gc = 2.985GeV −2, Tc = 167MeV. (5.2.4)

With the G(T ) dependence on T through eq. (5.2.3), the chiral symmetry restores ex-
actly at the critical temperature of deconfinement (Fig. 5.7). The discontinuity in the
temperature derivative of ⟨Φ⟩ at its maximum is due to the fact that quark bare mass is
equal zero.

Figure 5.7: 3d cut-off regularization, T0 = 208 MeV, integration limit=Λ, logarithmic
form of the Polyakov loop potential, G(T ) = 5.024(1− (T/167)) + 4.221(T/167) GeV−2.

We can try to understand why lowering of G implies merging of both transitions. In
this context, the results of the Polyakov Quark Meson (PQM) model may be instructive.
The PQM model is dereived form the Quark Meson model with the full analogy to the
PNJL theory. It turns, that the coincidence between discussed phase transitions is re-
covered in the PQM theory. Independently from any other differences, PQM and PNJL
model leads to almost the same grand thermodynamic poteniatials. The difference lies
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in the chiral symmetry breaking terms of the grand thermodynamic poteniatials. In the
PNJL model, that is the Dirac sea contribution plus the constituent mass term (for q⃗ = 0)

M2

4G
− 12

∫
d3k

(2π)3
E0, (5.2.5)

while in the PQM model, that is the mesonic potential

λ

4
(σ2 − υ2)2, M = gσ. (5.2.6)

Figure 5.8: The chiral symmetry breaking term of the PNJL model (5.2.5) (in the 3d
cu-off regularization) and the mesonic potential of the PQM model (5.2.6) are plotted as
a function of a constituent quark mass.

In Fig. 5.8, the chiral symmetry breaking term of the PNJL model (in the 3d cu-
off regularization) and the mesonic potential of the PQM model (with parameters: g =
3.2, λ = 19.7, υ = 87.6 MeV) are plotted as a function of a constituent quark mass M .
The crucial characteristic is the difference between the values of terms (5.2.5, 5.2.6) at
their minima and at M = 0. This observation was made before in Ref. [40]. As can
be seen in Fig.5.8, this difference is smaller for the PQM mesonic potential than for the
equivalent term of the PNJL model. As a result, the temperature dependent part of
the grand thermodynamic potential has a greater influence on the location of the global
minimum in the PQM model. Because quarks are coupled to the Polyakov loop exactly
by this temperature dependent part, coincidence between the chiral and deconfinement
transitions is improved in the PQM model relative to the PNJL theory. This subtle effect
can also be seen when comparing the left panel of Fig.5.5 with Fig.5.6.

Now, if we lower the value of the effective coupling G, the chiral symmetry breaking
term of the PNJL model will get flatter, resembling the PQM model. Thus, the idea to
assume G to be the function of temperature, that interpolates between its value G at zero
temperature and its lower value Gc at critical temperature, finds its confirmation.

67



Chiral density waves in the quarkyonic matter

5.2.4 Deconfinement and chiral transitions at non-zero baryon
density

Polyakov NJL model gives us the possibility to study both the chiral and deconfinement
transitions. However, as one can find out in the section (5.2.2), at zero density, predictions
of the PNJL theory strongly depend on the fine details of the model. The same situation
persists at non-zero baryon chemical potential. At non-zero densities, apart from the all
previously discussed details, there is also another effect. The question arises how does
the deconfinement temperature depend on µ. According to the Casher’s argument [66],
deconfinement transition should always precedes the moment of chiral symmetry restora-
tion. However, as is argued in Refs. [11, 71], this general argument does not need to be
true at non-zero density. In fact, in the original PNJL model, the temperature parameter
T0 of the Polyakov loop potential (5.1.14) is constant. As a consequence, temperature of
deconfinement is very slowly decreasing with growing quark chemical potential. At some
µ, deconfinement transition line intersects with the chiral transition line. Such a situation
is shown in the left panel of Fig.5.9.

Figure 5.9: Left panel: 3d cut-off regularization, T0 = 208 MeV, integration limit=∞,
logarithmic form of the Polyakov loop potential. Right panel: 3d cut-off regularization,

T0(µB) = 208 × (1 − 0.0278
(
µB

208

)2
) MeV, integration limit=∞, logarithmic form of the

Polyakov loop potential.

Predictions of the PNJL model at non-zero densities can be confronted with the chem-
ical freeze-out points (Fig.5.10). Chemical freeze-out points are obtained through the fit
of the heavy-ion collision data and mark the moment when the abundances of different
hadrons are already fixed. We recall that these points are not a raw experimental data
and depend on the Thermal Statistical Model. Nontheless, chemical freeze-out curve in
the (T, µ) plain is a practical hint for the QCD phase diagram. Various freeze-out cri-
teria give different parametrizations of the these curve. For example, in Ref. [73] such a
parametrization of the freeze-out curve has been given

T (µB) ≈ 0.17− 0.13µ2
B − 0.06µ4

B. (5.2.7)

Since the Thermal Statistical Model allows us to fit the chemical freeze-out points, one
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Figure 5.10: Chemical freeze-out points in the temperature - baryon chemical potential
plane; experimental values taken from Ref. [74].

can use it to calculate the entropy density. Entropy is related to the number of degrees
of freedon, consequently, the region in which there is a rapid growth in the entropy
density, can be linked with the deconfinemnet transition. On that basis, in Ref. [75], the
dependence of the Polyakov loop potential parameter T0 on µ was estimated

T0(µB) = T0 ×

(
1− 0.0278

(
µB

T0

)2
)
. (5.2.8)

If the parametr T0 is fixed to be 208 MeV, the slope of the dependence (5.2.8) is−0.1336µ2
B

and is reasonably consistent with (5.2.7). Incorporation of the formula (5.2.8) to the
PNJL model leads to the significant change in the structure of the phase diagram. This
is presented in the right panel of Fig.5.9. Indeed, deconfinement transition occurs at
smaller temperature than chiral, and only above µ ≈ 300 MeV this sequence is reversed.
Interestingly, simillar formula to the equations (5.2.7, 5.2.8) was introduced in Ref. [65],
where argumentation based on the behaviour of the running coupling constant led to the
formula

T0(µB) = Tτ exp
−1/α0b(µ) ≈ 0.208− 0.105µ2

B,

α0 = 0.304, Tτ = 1.77 GeV, b(µ) =
1

6π
(11Nc − 2Nf )−

16

π
Nf

(
µ

Tτ

)2

. (5.2.9)

It is difficult to decide which one from the two scenarios (Fig.5.9) is closer to reproduce
the real physical situation. At low baryon densities, curvature of the deconfinement tran-
sition line, obtained from lattice computations, agrees with the chemical freeze-out curve.
But at densities above µB ≈ 400 MeV, the chemical freeze-out points bent steeply down
(Fig.5.10). Lattice computations do not settle whether the deconfinement boundary falls
further with the similar curve as the freeze-out points or separates and changes slowly
with growing chemical potential. Nevertheless, clear change of the slope of the chemical
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freeze-out curve may indicate the presence of a new phenomenon. Such an interpretation
is presented in Ref. [11]. In the large Nc limit, temperature of deconfinement is indepen-
dent on µ and a new form of matter (so-called quarkyonic matter) is postulated to appear
in the phase diagram of strongly interacting matter.

5.3 Chiral density waves in the context of quarkyonic

matter

In this section we discuss the spatially nonuniform chiral condensate as a special re-
alization of the quarkyonic matter. Such an approach can be adopted within the PNJL
model. Before we move to the main theme, we sketch a short introduction. From this
perspective, importance of the chiral density waves to the strongly interacting matter
phase diagram, can be better illustrated.

5.3.1 Quarkyonic matter

Quarkyonic matter was postulated by McLerran and Pisarski in Ref. [11]. The conjec-
tured existence of this novel form of matter is based on the QCD analysis in the so-called
′t Hooft limit, where number of colors approaches infinity at gN2

c fixed [72]. At the con-
stant number of flavors Nf , quark loops do not contribute to the Debye screening of the
color potential until baryon densities reach the chemical potential of order

√
NcT . This

happens because the Debye mass is equal m2
D = (Nc/3 + Nf/6)g

2T 2 + (Nf/(2π)
2)g2µ2

[11]. Thus in the large Nc limit, temperature of deconfinement transition is constant in a
wide range of µ. This assumption allows us to postulate some general properties of the
QCD phase diagram.

Number of effective degrees of freedom can serve as an indicator for different phases.
The conjectured QCD phase diagram is usually divided into the two regions separated by
the confinement-deconfinement border. These are the quark gluon plasma with 2(N2

c −1)
gluons plus 2NfNc quarks and hadronic matter with N2

f − 1 degrees of freedom. It turns
however, that in the ′t Hooft limit, one can distinguish one more area. This new phase
is expected to exists to the right of the hadronic sector and below the deconfinement
transition. Conjectured QCD phase diagarm at large Nc is presented in Fig.5.11. This
implies the two consequences. Firstly, deep in the Fermi sea the dominant degrees of
freedom are Nc quarks. Secondly, because of the confinement, near the edge of the Fermi
surface, the baryon description is more appropriate. Hence comes the name quarkyonic
matter. Summing up, quarkyonic matter is a phase with the Fermi sea of quarks and
with confinement. The chiral symmetry is not involved in the above reasoning. However,
it is natural that the restoration of chiral symmetry must occur somewhere inside the
quarkyonic matter [71].
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Figure 5.11: The cojectured phase diagram of QCD at large Nc; Figure based on Ref. [11].

hghgjgjhgjhg ghfghfhgf
Existence of the quarkyonic matter region in the phase diagram of the strongly in-

teracting matter can have a direct connection with the inhomogeneous chiral phase. In
the limit when number of colors goes to infinity, as was firstly shown in Ref. [23], Fermi
surface is unstable against the creation of the chiral density waves (CDW) with momen-
tum equal 2µ. However, analysis for the large, but finite Nc, proved that the region of
aforementioned instability is restricted to the finite interval of baryon chemical potential
[24]. Its width is narrowing with lowering Nc. For the physically relevant number of
colors, another instability, leading to the color superconductivity (CSC), is more likely to
occur. Above reasoning was true with the assumption that quarks form an ideal Fermi
liquid. In the quarkyonic matter description, quarks persists confined, what essentially in-
fluence the Fermi surface phenomena, which are both the CDW and CSC. The estimated
CDW quarkyonic gap turns to be larger then previously suggested [77]. Consequently,
the inhomogeneous phase of chiral density waves is one of the possible candidate for the
quarkyonic matter [78].

Presented arguments hold for the large Nc limit. That is why, any conclusions on
the real QCD diagram, should be taken with a great caution. There are, however, some
experimental results that might confirm such a scenario. For instance, close to the T and
µ values at which the chemical freeze-out curve bends down (Fig.5.10), this is where the
separation of the deconfinement and chiral transition curves is expected, the anomalies
in the particle ratios was observed [79]. Experimentally measured abundances of hadrons
differ from those obtained in the Statistical Thermal Model. This in turn might indicate
the existence of the triple point, that is in agreement with the quarkyonic matter scenario
[80]. We decided that from the above perspective, it is an interesting problem to check
how the inhomogeneous phase of chiral density waves is influenced by the presence of the
Polyakov loop fields [68].
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5.3.2 Results and diagrams

We move to the description of the PNJL model phase diagrams in the full T - µ
plane. As results from the previous sections, outcomes of the PNJL theory depend, at
least quantitatively, on the specific details of the model. That is why, also in this section,
we show the influence of parameters on the phase diagram. At present, one can not
definitively decide, which of the presented diagrams are closer to reproduce the real QCD
phase diagram. Nevertheless, we expect that these diagrams that are in agreement with
the lattice results at small µ and high temperature region, should be strongly considered
as a good reference at high µ and low temperature region. The important observation
is that moderate baryon density part of the PNJL phase diagram is less susceptible to
changes in parameters than the high temperature region. In the presentation below the
Reader can gradually follow the metamorphosis of the phase diagram, starting from these
rather conceptual, to these more realistic. hghgjgjhgjhg

5.3.2.1 3d cut-off regularization

Figure 5.12: 3d cut-off regularization, T0 = 270 MeV, integration limit=∞, logarithmic
form of the Polyakov loop potential, constant G.

Lattice results suggest that the deconfinement and chiral transitions coincide at zero
baryon density and that the above coincidence holds in the high temperature - low µ region
[81]. In the PNJL model, the better agreement between mentioned transitions is achieved
when integration limit, in the temperature dependent part of the grand thermodynamic
potential ΩPNJL, is sent to infinity (5.2.2). Now, we draw the Reader’s attention to
the diagram shown in Fig.5.12. If the possible existence of the spatially inhomogeneous
phase is included, an unexpected result appears. The area in which the chiral density
wave ansatz is favorable extends up to the zero baryon density. We do not regard above
effect as physically relevant. Our results have been obtained at the mean field level and
with this approximation, the thermal fluctuations are neglected. Probably, calculation
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including finite temperature corrections would destroy the CDW phase at low µ region.
However, it is worth mentioning, that similar effect was also observed in Refs. [40, 82].

In the PNJL model phase diagram, quarkyonic matter phase can be identified with
the region below the long-dashed line (deconfinement transition) and to the right of the
dotted-dashed line (this line marks the moment when quark chemical potential exceeds
the value of the constituent quark mass). In this region, the baryon number density is
non-zero but quarks are confined. For the large Nc limit, baryon number density grows
rapidly at µB > MB indicating a phase transition [83]. For Nc = 3 baryon number density
has a discontinuity at µB =MB.

Figure 5.13: 3d cut-off regularization, T0 = 270 MeV, integration limit=∞, logarithmic
form of the Polyakov loop potential, constant G.

In the diagram shown in Fig.5.12, transition to the CDW phase coincides with the
dotted-dashed line. The CDW phase exists in the supposed quarkyonic matter domain
in a vast range of temperature and density. However, if the µ dependence of the critical
temperature T0 is introduced (5.2.4), the situation changes essentially. As one can see in
Fig.5.13 restoration of the chiral symmetry always follows the deconfinement transition.
Due to this fact, the existence of the supposed quarkyonic matter domain is limited to
the small island in the phase diagram.

Diagrams shown in Figs.5.12 and 5.13 do not settle on the relation between the nonuni-
form condensate and the quarkyonic matter phase. Both of these diagrams are presented
for parameter T0 = 270 MeV (at µ = 0). Deconfinement temperature resulting from
this choice is around 220 MeV, what is above expected temperature near 170 MeV and
does not coincide with the lattice simulations. We mentioned earlier (5.2.2) that for the
model with two degenerate flavors the more appropriate choice is T0 = 208 MeV. As it is
presented in Fig.5.14, the lower value of T0 induces the lower temperatures of the chiral
and deconfinement transitions. However, the split between those two is even greater than
before, and the chiral density wave domain at µ = 0 is even wider (than for T0 = 270
MeV). Again the CDW appear to be a possible candidate for the quarkyonic matter.
But, with the above mentioned reasons, diagram shown in Fig.5.14 can not be a good
candidate for the real QCD phase diagram.
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Figure 5.14: 3d cut-off regularization, T0 = 208 MeV, integration limit=∞, logarithmic
form of the Polyakov loop potential, constant G.

Figure 5.15: 3d cut-off regularization, T0 = 208 MeV, integration limit=Λ, logarithmic
form of the Polyakov loop potential, constatnt G.

As can be seen in Fig.5.14, for T0 = 208 MeV, chiral and deconfinement transitions
are separated and nonuniform chiral phase occurs even at zero density. If we hold the
integration limit equal to the finite cut-off Λ in the all terms of the grand thermodynamic
potential ΩPNJL (5.1.24), the resulting phase diagram changes significantly. Such a dia-
gram is shown in Fig.5.15. In the range of µ form 0 up to around 200 MeV, the chiral
uniform sector is separated from the quark-gluon plasma by a continuous transition line.
At a point (T , µ)=(186, 203) MeV, transition line divides into the two first order board-
ers. One divides the uniform chiral sector from the CDW region, the other divides the
CDW region from the quark matter. As can be seen, the chiral uniform, inhomogeneous
chiral and quark-gluon phases meet at one point. Existence of the triple point, where
the hadronic, quarkyonic and quark-gluon phases meet is especially important from the
quarkyonic matter scenario perspective [80]. As can be seen in Fig.5.15, the moment
at which chiral transition changes its order lies surprisingly close to the point at which
the quarkyonic (dotted-dashed) line crosses the deconfinement (long-dashed) line. In this
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case, not only the CDW border coincides with the quarkyonic matter border, but also the
quarkyonic triple point almost coincide with the point at which the Ch, the CDW and
the QGP meet. It turns however, that if we consistently keep the integration limit equal
Λ, the CDW area gets shrunk. At zero temperature it exists from µ equal 310 MeV up
to 450 MeV.

In the all previously presented diagrams, temperatures of the chiral symmetry restora-
tion and deconfinement transition (at zero µ) are separated. Until now we do not take ino
account the dependence of the effective coupling G on temperature (5.2.2). In Fig.5.16,
diagram obtained with G(T ) dependence is shown. In fact, at zero density, both tran-
sitions occur at the same temperature of around 167 MeV. Unfortunately, the another
effect is that even though we consistently keep the integration limit equal Λ, the CDW do-
main reaches down to µ ≈ 50 MeV (see Fig. 5.16). From the other hand, the conjectured
quarkyonic matter island opens already at zero baryon density, where the dotted-dashed
line meets deconfinement transition line. We expect quarkyonic matter to appears at
larger densities. It means that our estimation of the phase boundary between hadronic
and quarkyonic matter is not meaningful at high temperature, where thermal fluctuations
(neglected by us) play an important role.

Figure 5.16: 3d cut-off regularization, T0 = 208 MeV, integration limit=Λ, logarithmic
form of the Polyakov loop potential, G(T ) dependence, CDW phase vanishes for µ ≤ 50
MeV

Finally, we present two diagrams that can provide a good summary of the earlier
discussion. These diagrams include all the intermediate changes. The improved value
of the Polyakov loop potential parameter T0 = 208 (at µ = 0), suggested by the freeze-
out curve dependence of T0 on µ and temperature dependence of the coupling constant
G. Diagram in the left panel of Fig.5.17 is shown only for the uniform chiral phase,
while diagram in the right panel of Fig.5.17 contains the nonuniform chiral condensate.
Particularly important is the dependence of T0 on µ. If deconfinement transition decreases
with the relation T0(µ), and if we consider only the chiral uniform phase, there is no
space for the quarkyonic matter in the PNJL model phase diagram (left panel Fig.5.17).
On the other hand, the chiral density waves open up the possibility of existence of the
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quarkyonic matter (right panel Fig.5.17). Consequently, the phase of chiral density waves
can be regarded as a possible realization of the quarkyonic matter. dasfadsfasdfasdf

Figure 5.17: Left panel: phase diagram of the PNJL model with the homogeneous phase
only. Right panel: phase diagram with the inhomogeneous chiral phase. The Polyakov
loop potential parameter T0(µ) is given by (5.2.8) with T0 = 208 MeV. The finite 3-dim
momentum cut-off Λ = 0.653 GeV regularized the thermodynamic potential and the NJL
coupling constant G(T ) depends on temperature through the eq. (5.2.2).

5.3.2.2 Schwinger regularization

Figure 5.18: Schwinger regularization, T0(µB) = 208×(1−0.0278
(
µB

208

)2
) MeV, integration

limit=Λ, logarithmic form of the Polyakov loop potential, G(T ) = 3.205(1 − T/162) +
2.985(T/162) GeV−2, Λ = 1086 MeV.

Let us now apply the Schwinger regularization scheme to the analysis of the phase
diagram of the PNJL model. For this scheme we do not present the Reader the subsequent
stages of improvements. They follows similarly as for the 3d cut-off method. The final
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diagram is presented in Fig.5.18. It incorporates both the dependence of T0 on chemical
potential and the dependence of coupling G on temperature.

The first observation is that the dotted-dashed line (this line marks the moment when
quark chemical potential exceeds the value of the constituent quark mass) does not coin-
cide with the transition line from the uniform chiral phase into the chiral density waves
domain. The distance is of the order of 50 MeV (at T = 0). It turns, that the almost
perfect coincidence between these lines within the 3d cut-off regularization, was only ac-
cidental. The moment of the appearance of the inhomogeneous phase is the consequence
of the competition between the Dirac and Fermi seas contributions. The contribution
due to the Dirac sea is substantially sensitive on the specific choice of the regularization
scheme.

As can be seen in Fig.5.18, in the Schwinger scheme, the region of chiral density
waves is much narrower than in the 3d cut-off scheme (this is in agreement with the
results of chapter 3). Spatially nonuniform condensate covers only the small fragment of
the conjectured quarkyonic matter region. On the other hand, the right border of the
nonuniform phase is close to the deconfinement transition.

Figure 5.19: Schwinger regularization, T0(µB) = 208×(1−0.0278
(
µB

208

)2
) MeV, integration

limit=Λ, logarithmic form of the Polyakov loop potential, G(T ) = 8.414(1 − T/165) +
6.579(T/165) GeV−2, Λ = 760 MeV.

Here again, the question of the correct choice of the Schwinger regularization param-
eters appears. The parameters that we use (Table 3.1) reproduce the values of the pion
decay constant and the quark condensate density. The problem is that simultaneously,
the constituent quark mass at zero density is only 200 MeV. If we choose another set of
parameters, for example: Λ = 760 MeV, GΛ2 = 4.85; then the fπ value is well reproduced,
quark condensate density is equal −(200 MeV)3 and the constituent quark mass at zero
density is equal 265 MeV. Let us notice that with such parameters, the coincidence be-
tween the transition line to the CDW phase and the moment at which µ > M , is almost
recovered (see Fig.5.19). Moreover, the critical temperature of deconfinement at µ = 0
is 165 MeV and the CDW phase reaches down to µ ≈ 90 MeV, what coincide with the
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recent lattice estimations for the location of deconfinement transition and critical point
[84, 85]. This requires further studies, but it seems that the above set of parameters is
more reasonable and there is clear resemblance between the phase diagrams in the 3d
cut-off and Schwinger reguarizations. The final conclusion is that the correspondence be-
tween the inhomogeneous chiral phase and the quarkyonic matter phase can be achieved
in the Schwinger scheme.

5.3.2.3 Order parameters

Figure 5.20: Dependence of the constituent mass M (solid line), the absolute value of
vector q (open boxes) and the traced Polyakov loop Φ (dotted line) on µ, at one plot in
the 3d cut-off regularization scheme. T=20 MeV, the Polyakov loop potential parameter
T0 = 270 MeV, integration limit=∞, logarithmic form of the Polyakov loop potential.

In the present paragraph we aim to investigate the behavior of the order parame-
ters. The constituent quark mass M , the absolute value of wave vector q and the traced
Polyakov loop Φ are examined as a function of temperature or quark chemical potential.
First of all, comparing both panels of Fig.5.12, one can see that the size of the CDW area
at zero temperature is independent on the behaviour of Φ. From this we can conclude
that the CDW area at zero temperature is the same in the PNJL model as in the NJL
model. In our opinion this is not quite obvious result. One can assume, that the value of
Φ is zero at zero temperature. On the other hand, the original NJL model is reproduced
from the PNJL theory if Φ is fixed to be equal one. Intuition suggests that the outcomes
of these models should differ at zero temperature and draw together for growing temper-
ature. However, it is not like that. It turns, that at zero temperature limit, temperature
dependent contribution to the potential Ω0 (5.1.24) takes the form of the Fermi sea term
both for Φ = 0 and Φ = 1. This can be viewed as below:
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(5.3.1)

Consequently, at low temperatures, as is shown in Fig.5.20, dependences of M and q on
µ resemble these obtained earlier in the NJL theory (Fig.3.1). Both transition from the
uniform chiral to the nonuniform chiral, and transition from the nonuniform chiral phase
to the quark matter phase are of the first order. The absolute value of the wave vector q
steeply increases over the nonuniform region, while the constituent quark mass decreases
gradually in the same range of µ.

Figure 5.21: Dependence of the constituent mass M (solid line), the absolute value of
wave vector q (open boxes) and the traced Polyakov loop Φ (dotted line) on T, at one
plot in the 3d cut-off regularization scheme. Left panel: µ = 400 MeV, Polyakov loop
potential parameter T0 = 270 MeV, integration limit=∞. Right panel: µ = 400 MeV,

T0(µB) = 270× (1− 0.0278
(
µB

270

)2
) MeV, integration limit=∞.

At higher temperatures, the influence of the value of Φ on the chiral density waves
phase becomes significant. This observations is illustrated in Fig.5.21. In the left panel,
the Polyakov loop potential parameter T0 is constant and the value of the traced Polyakov
loop is relatively small in a large range of temperatures. Thereby, the CDW phase reaches
up to the higher temperature than in the right panel of the same figure. In the right panel
of Fig.5.21 parameter T0 depends on µ. As a result, Φ grows rapidly with temperature.
Growing value of Φ affects the position of the minimum of the temperature dependent
part of the thermodynamic potential Ω0 (5.1.24). For example, the depth of the minimum
corresponding to the inhomogeneous chiral phase is greater for the fixed value Φ = 0.1
than for the fixed value Φ = 1. At this point, predictions of the PNJL model are remark-
ably consistent with the general argumentation concerning the nonuniform chiral phases.
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As mentioned earlier (5.3.1), instability of the Fermi surface leading to the CDW phase
is more probable to occur in the confined phase (that in the PNJL model corresponds to
the small values of Φ) than in the phase where quarks form an ideal Fermi liquid. To
sum up, comparing the PNJL and the NJL models, there are two effects. At tempera-
tures in the vicinity of zero, both theories give similar results. However, with growing
temperature, chiral density waves are more favored by the PNJL theory. The range of
this second mechanism depends intensively on the behaviour of the traced Polyakov loop.
This in turn is governed by the Polyakov loop potential. For the constant parameter T0,
broadening of the inhomogeneous phase is significant. But if the parameter T0 decreases
as a function of µ, mentioned effect is only marginal.

5.4 Conclusions

We have shown that the phase of chiral density waves should be considered as a
strong candidate for the quarkyonic matter. Quarkyonic matter is the phase where dom-
inant degrees of freedom are quarks within the Fermi sea, but because of confinement,
excitations above the Fermi sea are colorless baryons or mesons. The possibility of exis-
tence of quarkyonic matter is constrained by the deconfinement transition. Dependence
of the temperature of deconfinement transition on baryon density can be extracted from
the chemical freeze-out points (5.2.4). We recall that if this dependence is included in the
Polyakov NJL model analysis, then, deconfinement and chiral transitions coincide and
there is no region of the quarkyonic matter. However, if the spatially nonuniform chiral
phase is taken into consideration, then, space for the quarkyonic matter in the phase
diagram is opened.

We have examined the Polyakov NJL model regularized with the two different schemes.
Next, guided by the QCD lattice computations, we have assumed that the effective cou-
pling constant in the quark-quark channel interpolates between its vacuum value and
its value at deconfinement transition. Final diagrams obtained in the 3d cut-off and
Schwinger schemes appear to be consistent with each other (Figs.5.17, 5.19). From this
follows, that at least at the mean field level, correspondence between the quarkyonic
matter and the inhomogeneous phase of chiral density waves can be justified.
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Chapter 6

Summary and outlook

The leading theme of this study was the spatially nonuniform chiral condensate.
In contrast to the conventional quark condensate, which is the non-vanishing vacuum
expectation value of the quark and antiquark fields, the nonuniform condensate is a pair
of the quark and quark hole from the opposite sides of the Fermi surface. Such a pair
possesses a non-zero total momentum and thus the condensate is spatially variable.

Existence of the nonuniform chiral phase is of the great importance for the phase
diagram of the strongly interacting matter. Most of all, in the presence of the nonuniform
phase, the chiral symmetry restores at larger baryon densities. In the zero temperature
limit, critical quark chemical potential of the chiral transition is shifted by up to 100 MeV
towards the growing density (e.g. Fig. 4.2).

We have studied the nonuniform condensate in the form of the so-called dual standing
chiral density wave. With this ansatz, condensate undergoes periodic modulation in the
scalar and pseudoscalar channels, but its amplitude is constant. The moderate baryon
density region of the phase diagram, where the spatially nonuniform condensate presum-
ably exists, is unaccessible with ab initio calculations. Therefore, natural question was to
consider how do the fine details of the Nambu Jona-Lasinio model affect the nonuniform
phase.

The first part of this work is the analysis of the NJL model at the mean field level and
in the chiral limit. At zero temperature, nonuniform phase exists irrespectively to the
choice of the regularization scheme. Differences between the four discussed regularization
schemes are on the quantitative level. It is worth to mention that the coexistence of quark
and diquark condensates is preferable in this limit.

The quarks are massive, thus it is interesting to consider the influence of the non-
zero bare mass on the nonuniform condensate. In the fourth chapter we evaluate the
correction to the grand thermodynamic potential due to the non-zero bare quark mas.
This evaluation includes the existence of the diquark condensate. For the non-zero values
of the wave vector, the correction works against the existence of the nonuniform chiral
condensate. Results are presented for the two chosen methods of regularization. In the
3d cut-off scheme nonuniform phase exists, but in the Schwinger scheme, its existence
depends on the choice of parameters.
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Summary and outlook

The last part is the analysis of the phase diagram in the temperature - baryon den-
sity plane. Our calculations are based on the Polyakov Nambu Jona-Lasinio model that
allows study of the chiral and deconfinement transitions. Motivation is to compare the
inhomogeneous chiral phase scenario with the quarkyonic matter scenario, as possible
candidates for the new phase of matter at moderate density. The main result is that the
µ-dependence of the deconfinement temperature causes that the quarkyonic matter exists
only provided the existence of the nonuniform condensate.

Summarizing, this study indicates that it is possible that the spatially nonuniform
chiral condensate is the real-world phase of the strongly interacting matter. Our analysis
was done at the mean field level. Thus, it would be instructive to extend this study
and examine the inhomogeneous phase also beyond the mean field. But probably, low
temperature predictions would not be much affected by the thermal fluctuations. Another
interesting direction is to look for the different ansatz of the nonuniform chiral condensate,
which could provide the ground state of lower energy. But again, dual chiral density wave
ansatz is motivated by the condensed matter phenomena, like spin density waves in metals.
Therefore, it is non-trivial to suggest a better ansatz. Finally, it is an open question, if
one can confirm existence of the nonuniform chiral phase. Hopefully, experimental studies
of the QCD phase diagram are under intensive progress, and for sure, coming years will
bring us the new results.
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Appendix A

Numerical calculations

Phases of the strongly interacting matter are determined by solving the mean field
equations. By use of the standard Nelder - Mead algorithm [86], minima of the grand
thermodynamic potential are found numerically. To gain a satisfactory control over a
computational process, we decided to implement this algorithm in the Wolfram Math-
ematica. The Nelder - Mead algorithm (also known as a downhill simplex algorithm) is
dedicated to finding extrema of multivariable, scalar valued functions. Because the op-
timization procedure does not involve the calculation of derivatives, this method is very
practical. The values of the n-real variable function are calculated at n+1 points (which
form the n-simplex in the n-dimensional space). Next, this n + 1 values are sorted as-
cendingly, and then, compared with the function values calculated at some test points. In
the each following step of the iteration, the vertices of the n-simplex are modified in the
direction of decreasing values of a given function. The Nelder - Mead algorithm allows to
determine only the local minima. Consequently, to be sure that the global minimum of
a system was found, the procedure must be initiated from the different starting points -
corresponding to the different phases. The basic code of the Nelder - Mead algorithm, in
the case of a 3-variable function, written in the Wolfram Mathematica, is attached to this
manuscript.
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