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Introduction

Until the end of the twentieth century the ways of thinking of geometry
were based on the ideas developed in the Riemannian approach. This more
or less is to treat geometry as study specified by its unique object - a set
locally looking like a piece of Rn. The aim of this investigation is to give
possibly the most general quantitative description of this object using the
tools intended for this purpose. These include the concepts and methods
developed in topology, differential geometry, algebraic topology, theory of
elliptic operators etc.

A novelty was Gelfand-Naimark theorem and the observation of duality
between locally compact Hausdorff spaces and commutative C∗−algebras.
Having a manifold M we can define an algebra of complex valued functions
vanishing at infinity. The closure of this algebra in a supremum norm, de-
noted C0(M), is commutative C∗−algebra. This procedure shows that for ev-
ery locally compact Hausdorff space there exists a corresponding C∗−algebra.
What is not trivial is that the converse is also true. Israel Gelfand and Mark
Naimark in 1943 proved a theorem which states that for every commutative
C∗−algebra A there exists a locally compact Hausdorff space X, such that
A ' C0(X). Thus there is one to one correspondence between the cate-
gory of locally compact Hausdorff spaces and the category of commutative
C∗−algebras. This raised a question if it is possible to redefine old topo-
logical and geometrical concepts in a new C∗−algebraical language. It was
also natural to ask if those notions could be extended to the case of noncom-
mutative C∗−algebras. The basic ground for noncommuative geometry was
set.

A motivation for noncommuative geometry came also from the physics
with the discovery of quantum mechanics. One of the crucial ingredients
in classical mechanics is the configuration manifold, which is the set of all
possible values of positions and momenta a physical system can have at
the same time. Because of the uncertainty principle this notion is not well
defined in a quantum world - the simultaneous determination of position
and momentum does not correspond to any physical situation. Thus all
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x INTRODUCTION

concepts defined ”locally”, such as point, tangent space, etc., are useless in a
search of a quantum counterpart to the configuration manifold. In 1930 Paul
Dirac gave the description of a quantum theory in terms of the Hilbert space
and a theory of operators. In this approach the position and momentum
are represented by two hermitian operators x̂ and p̂. The classical physical
variables, which are functions on a coordinate manifold, are now replaced
with the observables - the selfadjoint elements of the ∗−algebra generated
by x̂ and p̂.

The example of quantum mechanics together with the general form of
Gelfand-Naimark theorem gave rise to the concept of the not necessarily
commutative C∗−algebra as, roughly speaking, ”the algebra of functions on
a noncommutative manifold”. This concept caused an interest in noncom-
mutative C∗−algebras with possible geometrical interpretations. One idea,
which we shall only mention here, was to adopt directly this quantum pro-
cedure and to deal with the algebras generated by the selfadjoint ”noncom-
muative coordinates”. This lead to various independent considerations, such
as quantum groups and related Hopf algebras, fuzzy sphere, κ−Minkowski
space time, doubly special relativity to mention few of them.

Revolutionary, in a story which we plot here, was the concept of spectral
triples defined by Alain Connes. In the 1980’s he constructed the noncom-
mutative differential calculus and the cyclic cohomology - noncommutative
counterpart to de Rham (co)homology. He tied it to the concept of Fredholm
modules, which serve as a representation of the differential calculus. This, in
turn, gave rise to the concept of unbounded Fredholm modules or spectral
triples defined in 1994 in his book on ”Noncommutative Geometry” [12, 13].
We shall not go into more details here as the rest of our dissertation serves
better understanding of this notion.

Since noncommutative geometry is still very recent, at least to mathe-
matical standards, and rapidly developing theory there is a great need for
further development of its basic tools and concepts. The procedure is more or
less always the same - one attempts to redefine the topological concept in the
language of commutative C∗−algebras and then check whether the definition
continues to make sense in the case of noncommuative C∗−algebras. Usually
one also would like to have the way backwards, i.e. a way to assign (hav-
ing a commutative C∗−algebra) to a given C∗−algebraical concept a unique
geometrical interpretation as in the case of Gelfand-Naimark theorem. We
shall now list ”the basic vocabulary” of some of concepts of noncommutative
geometry with its classical counterparts. We restrict our attention mostly to
such notions which are connected with the computation carried out in our
dissertation.

Further analogues could be found in numerous textbooks and review pa-
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locally compact Hausdorff spaces – C∗−algebras
compact Hausdorff spaces – unital C∗−algebras

regular Borel measures – states
quotient manifolds – fixed point algebras

vector bundles – finitely generated projective modules

pers (see for example [26]).
Having a spinC− manifold one can easily construct a commutative spec-

tral triple, moreover one gets different spectral triples for different spinC

structures. In 2008 in [17] Connes proved a celebrated reconstruction theo-
rem. It states that for any spectral triple over a commutative pre−C∗−algebra
A there exists a smooth oriented and compact spinC−manifold M , such that
A ' C∞(M). This result is a milestone in the study of noncommuative
generalisation of spin structures. Classically the definition of a spin struc-
ture, which is roughly speaking a further refinement of orientability, involves
such concepts as tangent spaces, Clifford bundles, double coverings of spaces
etc. As we already said these concepts no longer make sense in the case of
noncommutative C∗−algebras. On the other hand, spectral triple remains
well defined in both commutative and noncommutative situations. The re-
construction theorem shows that the notion of spectral triple appears to be
”the correct” generalisation of spin structure in an algebraic language.

In this dissertation we are mostly interested in the following correspon-
dence:

noncommutative � classes of equivalence of
spin structures irreducible real spectral triples .

In 2003 Andrzej Sitarz in [50] elaborated the concept of equivariant real
spectral triples and later, in 2006 with Mario Paschke in [44] he proved that
the number of inequivalent equivariant irreducible spectral triples over non-
commutative two torus is exactly the same as the number of spin structures
over topological two torus. This result was generalised for any dimension in
2010 by Jan Jitse Venselaar in [55]. We would like to investigate these no-
tions in the case of noncommutative generalisation of flat compact orientable
three-dimensional manifolds. Classically each such manifold is homeomor-
phic to one of six three-dimensional Bieberbach manifolds, which are quotient
of three torus by the action of a finite group. The classification of spin struc-
tures over three-dimensional Bieberbach manifolds was done by Frank Pfäffle
in [45] in 2000. The main aim of this dissertation is to give a noncommutative
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generalisation of Bieberbach manifolds and to classify the flat real spectral
triples over them.

We shall now briefly sketch the main content of our dissertation. The
reader would find all necessary preliminaries in Chapter 1. This include the
basics of K−theory, Fredholm modules and K−homology. Chapter 2 is de-
voted to the presentation of the definition of spectral triple. First we recall
the classical case, i.e. the definition of spin structure and the corresponding
classical Dirac operator as the differential operator acting on the sections of
spinor bundle. After this we shall present the formulation of the definition of
real spectral triples as quite natural generalisation of the classical case. We
end this part with the definition of equivariant spectral triple. Chapters 3
contains the definition of noncommutative spin structure as a class of unitar-
ily equivalent real spectral triples. We examine this notion on the example of
the noncommutative three-dimensional torus, recalling the results of Vense-
laar. In this chapter we shall also introduce three different definitions of the
irreducibility of spectral triple, illustrating the necessity for them with a toy
model A(T1)ZN .

Chapter 4 opens part of the dissertation directly referring to the noncom-
mutative Bieberbach manifolds. First we discuss their classical definition
and classification in dimension three, then following Pfäffle [45] we recall
the classification of spin structures over three-dimensional Bieberbach man-
ifolds. In Chapter 5 we also propose their noncommutative generalisation,
using the fact that classically Bieberbach manifolds are quotients of tori by
finite groups.

In Chapter 5 we compute the K−theory of noncommutative Bieber-
bach manifolds. First we discuss the Morita equivalence of noncommutative
Bieberbach spaces and the crossed product of noncommutative three torus
by the action of cyclic group. The we present three methods of computation
on our toy model, which is Klein bottle. After choosing the most transpar-
ent of them we proceed to computation of the K−theory of noncommutative
Bieberbach spaces.

Chapter 6 and Chapter 7 are devoted to the computation of the spectral
triples and spectral action over noncommutative Bieberbach spaces. The
classification of real spectral triples over noncommutative Bieberbach spaces,
which come from restriction of ZN−equivariant flat spectral triples over non-
commutative torus is presented in Chapter 7. We discuss the three definitions
of reducibility introduced in previous part. Then we show that reducibil-
ity up to bounded perturbation of Dirac operator appears to be ”the best
suited”. The number of irreducible real flat spectral triples classified in this
approach agrees with the number of classical spin structures computed by
Pfäffle in each case. We also discuss the equality of the spectra of Dirac op-
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erator computed classically and through the classification of equivariant and
then irreducible spectral triples. The same applies to eta invariants of Dirac
operators. In the last chapter we present the computation of the spectral
action. We show that its nonperturbative part equals (up to multiplication)
the spectral action functional over torus, while the perturbative expansion in
energy scale parameter Λ differs by a constant number proportional to the
eta invariant of the ZN−equivariant Dirac operator.
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Chapter 1

Preliminaries

While in differential geometry the main objects are manifolds, i.e. sets
equipped with a suitable structure, the approach of noncommutative geome-
try is based on algebras. Similarly, as a set is not enough and we need to in-
troduce topology, differentiability, and local morphisms with open set in Rn,
the algebra itself is not enough and we need to have corresponding structures.
We shall begin with recalling basic facts concerning C∗−algebras. Most of
proofs, which we omit here, could be found in any textbook on C∗−algebras
(see for example [29]).

1.1 C∗−algebras

Definition 1.1. We say that ‖ · ‖ : A → R is a norm on an algebra A if A
is a normed complex vector space and

‖1‖ = 1, ‖ab‖ ≤ ‖a‖ ‖b‖.

Definition 1.2. An involutive algebra is an algebra A, together with an
antilinear map ∗ : A 3 a → a∗ ∈ A, called involution, which for all a, b ∈ A
satisfies:

(ab)∗ = b∗a∗, (a∗)∗ = a.

Definition 1.3. We say that A is a pre−C∗−algebra if it is a normed invo-
lutive algebra such that for all a ∈ A, ‖a∗‖ = ‖a‖ and C∗−identity holds:

‖aa∗‖ = ‖a‖2.

If A is moreover complete we say that it is a C∗−algebra.

We recall here some basic facts about C∗-algebras...

1



2 CHAPTER 1. PRELIMINARIES

Lemma 1.4. Let f : A → B be an isomorphism of involutive algebras:

f : A → B, f(a)∗ = f(a∗), ∀a ∈ A.

If A and B are C∗-algebras then f is an isometry:

‖f(a)‖B = ‖a‖A ∀a ∈ A.

Proof. See [29].

An immediate consequence of that lemma is that a C∗−algebra norm is
uniquely determined, i.e. if (A, ‖ · ‖1) and (A, ‖ · ‖2) are both C∗−algebras,
then ‖a‖1 = ‖a‖2.

Example 1.5 (Commutative pre-C∗-algebra). We say that function f over
a locally compact set M vanishes at infinity if for all ε > 0 there exists a
compact subset N ⊆ M such that for any x /∈ N , |f(x)| < ε. Let C∞0 (M)
denote the algebra of smooth functions over M which vanish at infinity. Then
C∞0 (M) is a pre-C∗-algebra with pointwise addition and multiplication and
involution defined as

(f ∗)(x) = f(x).

The norm is uniquely determined by the algebraic operation to be a supremum
norm:

‖f‖ = sup
x∈M
{|f(x)|}.

Example 1.6 (Commutative C∗−algebra). Let us take C∞0 (M) from the
previous example then C∞0 (M), the C∗− completion in the supremum norm
is a C∗−algebra. It is easy to see that C∞0 (M) = C0(M) is an algebra of
continuous functions vanishing at infinity. C0(M) is unital if and only if M
is compact.

Example 1.7 ( C∗−algebra of bounded operators). Let H be a complex
Hilbert space and let A = B(H) be the algebra of bounded operators over
H. Then we take usual multiplication and addition and for any T ∈ B(H)
define:

• involution as the formal adjoint of T, i.e.

〈T †η, θ〉 = 〈η, Tθ〉.

• norm as the supremum operator norm, i.e.

‖T‖B(H) = sup
〈η,η〉=1

{
√
〈Tη, Tη〉}.
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Example 1.8 (Noncommutative C∗−algebra). Let us take the Hilbert space
and the algebra of bounded operators from the previous example. Any algebra
A isomorphic to the subalgebra of B(H) which is self adjoint and norm closed
is a C∗−algebra. The norm and involution of A has to be compatible with
B(H) through the isomorphism π : A → B(H):

π(a∗) = π(a)†, ||a||A = ||π(a)||B(H) ∀a ∈ A.

The latter example evokes an important concept of representation which
we shall recall here.

Definition 1.9. Let A be a ∗−algebra and let H be a Hilbert space. Then a
∗−morphism π : A → L(H) is called a representation of A on the space H.
Moreover we shall say that representation is:

• reducible if and only if there exists a nontrivial π invariant subspace
of H, i.e. H′ ( H such that H′ 6= 0 and:

π(a)ψ ∈ H′ ∀a ∈ A, ψ ∈ H′.

• irreducible if and only if the only π invariant subspaces are 0 and H;

• faithful if and only if π is a monomorphism.

1.2 Gelfand-Naimark Theorem and GNS Rep-

resentation

The Gelfand-Naimark theorem states that every commutative C∗−algebra
is in fact the algebra of continuous complex functions over locally compact
Hausdorff space. On the other hand the Gelfand-Naimark-Segal theorem
provides a method to assign to every C∗−algebra (commutative or not) a
representation on the Hilbert space.

Theorem 1.10 (Gelfand-Naimark-Segal, [29]). Let A be a C∗−algebra, then
it is isomorphic to norm closed (in the operator norm) C∗−subalgebra of the
algebra of bounded linear operators on the separable Hilbert space.

We shall now briefly recall those results - first the commutative case and
then the representation theorem.
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1.2.1 Commutative Case

Definition 1.11. If A is a complex algebra (not necessarily C∗−algebra) then
any non-zero morphism χ : A → C, i.e. a multiplicative linear functional
shall be called a character of A. The set of characters of A shall be denoted
Ω(A)

Lemma 1.12. For a commutative unital complex algebra there is one to one
correspondence between the set of character Ω(A) and the set of maximal
ideals through the relation:

I = kerχ.

It is a well known fact that a pointwise limit of characters is again a
character, thus Ω(A) is a closed subset of the dual space A∗.

Lemma 1.13. Let A be a C∗−algebra, then Ω(A) is a locally compact Haus-
dorff space, moreover it is compact if and only if A is unital.

Now we define a Gelfand transform. We use the fact, that Ω(A) is a locally
compact Hausdorff space and thus C0(M) is a commutative C∗−algebra.

Definition 1.14. For any a ∈ A we define a function â : Ω(A) 3 χ →
â(χ) = χ(a) ∈ C. The map Γ defined by:

Γ: A 3 a→ â ∈ C0(Ω(A))

shall be called a Gelfand transform.

Theorem 1.15 (Gelfand-Naimark, [29]). Let A be a commutative C∗−algebra
and let Ω(A) denote the space of maximal ideals of A. Ω(A) has a struc-
ture of locally compact Hausdorff space. Moreover the Gelfand transform
Γ: A → C0(Ω(A)) is an isomorphism of C∗−algebras.

1.2.2 Noncommutative Case

Definition 1.16. We say that a linear map φ : A → C is a positive linear
functional on a C∗−algebra A if it is positive φ(a∗a) ≥ 0 for all a ∈ A. If
moreover φ(1) = 1 we shall call φ a state.

If φ and ψ are states over on a C∗−algebra, then tφ + (1− t)ψ is also a
state if only 0 ≤ t ≤ 1. Thus the set of states is a convex set.

Definition 1.17. Let φ be a state. We say that φ is a pure state if there are
no such states φ1, φ2 and a real number t that φ = tφ1 + (1− t)φ2.
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Lemma 1.18. For any selfadjoint element a of a C∗−algebra A there exists
a pure state φ such that φ(a) = ||a||.

Example 1.19. C(M) is a commutative C∗−algebra of complex functions
over a compact manifold M . Let µ be a Borel measure on M . Then :

φµ(f) =

∫
M

f(x)µ(dx)

is a positive linear functional on C(M). If we assume that
∫
M
µ(dx) = 1,

then φµ is a state. The only pure states on C(M) are characters - for a fixed
element x ∈M :

φx(f) = f(x),

which corresponds to δx measure, such that δx(A) = 1 if x ∈ A and δx(A) = 0
otherwise.

Any state and pure state over a commutative unital C∗−algebra is exactly
one of the described in previous example. To see this we use:

Theorem 1.20 (Riesz-Markov, [28]). Let M be a compact Hausdorff space.
For any state φ on C(M) there exists a unique regular Borel probability mea-
sure µφ such that:

φ(f) =

∫
M

f(x)µφ(dx) ∀f ∈ C(M).

Thus the states on C(M) and the regular Borel probability measures
on M are in one to one correspondence. In particular if M is a manifold,
which is a metrizable set, then the states on C(M) and the Borel probability
measures on M are in one to one correspondence (see [28]).

Example 1.21. Let A = M(n,C) and choose a positive matrix p such that
tr(p) = 1. Then

φp(a) = tr(ap)

is a state on M(n,C). In physics, especially in quantum mechanics, such ma-
trices and their infinite-dimensional analogues are called a density matrices
and corresponds to quantum states of a physical system.

Lemma 1.22. Let A be a C∗−algebra and let φ be state on A, then:

〈a, b〉φ = φ(b∗a)

defines an inner product over A treated as a vector space.
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The set I = {a ∈ A : φ(a∗a) = 0} is a closed left ideal of A. The inner
product 〈·, ·〉φ is well defined on the A/I.

Lemma 1.23. The completion of A/I in the norm induced by the scalar
product 〈·, ·〉φ is a Hilbert space. We shall denote it by Hφ.

We shall now define function m : A×A/I 3 (a, [b])→ m(a, [b]) = [ab] ∈
A/I. For any a ∈ A the operator m(a, ·) is densely defined on Hφ. We shall
denote by πφ its unique extension to Hφ.

Lemma 1.24. πφ : A → L(Hφ) is a representation of A. We shall call it a
GNS representation associated to A by the state φ. Moreover πφ is irreducible
if and only if φ is a pure state.

Example 1.25. Let A = C(M) for a compact manifold M and let us take
the Lebesgue measure ω, then φω(f) =

∫
M
fdω, where dω is a volume form.

We conclude that φω(f ∗f) = 0 if and only if f ≡ 0 on a dense subset of M ,
so Hω = l2(M) as a completion of C(M) in the integral norm and the inner
product:

〈η, θ〉 =

∫
M

η̄(x)θ(x)dω ∀η, θ ∈ l2(M).

The representation πω acts on l2(M) through the pointwise multiplication,
i.e.

(πω(f)η)(x) = f(x)η(x) ∀f ∈ C(M), η ∈ l2(M).

This representation if faithful.

Example 1.26. Similarly A = C(M) but let us take φy(f) = f(y) for a
chosen y ∈M . As we have already said it is a pure state. From φy(f

∗f) = 0
we conclude that f(y) = 0, so Iy = ker{C(M) 3 f → f(y) ∈ C} is a
maximal ideal of C(M). The Hy ' C with the ”inner product” :

(η, θ) = η̄θ ∀η, θ ∈ C.

The representation of C(M) on C is a multiplication by the value in point y:

πy(f)η = f(y)η ∀f ∈ C(M), η ∈ C.

As we see this representation has to be irreducible, as it is one-dimensional.
It is a general statement that for a commutative algebras the only irreducible
representations are one-dimensional.
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1.3 C∗-dynamical systems

Definition 1.27. Let A be a C∗−algebra and let G be a compact abelian
group. We say that α is an action of G on A if for any g ∈ G there exists
an automorphism αg of A, such that:

αg ◦ αh = αgh ∀g, h ∈ G.

In such situation we shall also introduce the concept of a C∗-dynamical
system, i.e a triple (A, G;α). Moreover we shall define a crossed product
algebra (for simplicity we shall restrict only to dicrete groups G).

Definition 1.28 ([31]). Let (A, G;α) be a C∗-dynamical system and let G be
discrete. The C∗-crossed product algebra AoαG is defined as the enveloping
C∗−algebra of l1(G;A), the set of all Bochner summable A-valued functions
on G equipped with the following Banach ∗−stucture:

(xy)(g) =
∑
h∈G

x(h)αh
(
y(h−1g)

)
,

x∗(g) = αg
(
x(g−1)

)
,

‖x‖ =
∑
g∈G

‖x(g)‖.

The crossed product can be equally redefined as a C∗−algebra generated
by pairs (a, g) ∈ A×G with multiplication:

(a, g) · (b, h) = (aαg(b), gh) ∀a, b ∈ A, g, h ∈ G.

We shall use this convention especially for finite groups.
For a C∗-dynamical system the action of group defines a gradation on the

algebra A. Let Ĝ be a dual group to G (the group of characters on G), for
any p ∈ Ĝ we define:

A(p) = {a ∈ A|αg(a) = p(g)a ∀g ∈ G}.

Then the family {A(p)|p ∈ Ĝ} satisfies (see [31]):

A(p)A(q) ⊂ A(pq) ∀p, q ∈ Ĝ and A =
⊕
p∈Ĝ

A(p).

Definition 1.29. The C∗-closure of A(e), where e is a neutral element of
Ĝ, is a C∗−algebra. We shall call it a fixed point algebra of A under the
action of G and denote it AG.
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1.3.1 Fixed Point Algebras of C(M)

Consider a discrete group G acting on a compact manifold M . We can
introduce the equivalence relation:

x ∼G y ⇔ ∃g ∈ G|x = g . y.

Then we shall recall that M/G is a topological manifold consisting of orbits
of G, i.e. the classes of equivalence of the relation ∼G.

Let C(M) be a C∗−algebra of continuous functions over a compact man-
ifold M . Then we have the C∗-dynamical system (C(M), G;α) where:

(αg(f)) (x) = f(g−1 . x) ∀f ∈ C(M), g ∈ G.

Lemma 1.30. Let (C(M), G;α) be a C∗-dynamical system based on the α
action of a discrete abelian group G on a compact manifold M . Then we
have an isomorphism of C∗−algebras:

C(M)G ' C(M/G).

Proof. For any f ∈ C(M)G let us define tf ∈ C(M/G) such that:

f(x) = tf ([x]) ∀x ∈M.

It is easy to see, that t : C(M)G 3 f → tf ∈ C(M/G) is an isomorphism
of algebras. From the uniqueness of C∗-norm we conclude that it is also an
isomorphism of C∗−algebras.

1.4 K−theory in a Nutshell

Most of differential geometry is concentrate around vector budles, which start
to appear early, with the construction of tangent and cotangent bundles. A
natural mathematical question was to aks about classification of them. The
mathematical setup, similar to a homology theory was laid by Atiyah [1] and
later grew into a substantial part of mathematics.

The formulation of K−theory in the language of projections and projec-
tive modules made it possible to extend the tools to the realm of algebras
(when it developed into algebraic K−theory), while it became more inter-
esting for C∗-algebra (known as K−theory of operator algebras).

In such version it became a significant tool in all studies of C∗-algebras
and one of the basic ingredents of noncommutative geometry. We shall briefly
recall the main definitions here, as one of the results presented is the com-
putation of K-theory groups for noncommutative Bieberbach algebras.
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Let A be a unital C∗-algebra. We define M∞(A) =
⋃∞
n=1Mn(A). There

exist a natural embedding algebra morphisms of projections and unitaries
from Mq(A) to Mq+p(A) for all p, q > 0:

• if e is a projection, i.e. e2 = e, then we define:

Mq(A) 3 e→ diag(e, 0p) ∈Mq+p(A);

• and if t is a unitary:

Mq(A) 3 t→ diag(t,1p) ∈Mq+p(A).

This allows to identify any projection or unitary from Mp(A) as am element
of Mp+q(A) and thus an element of M∞(A).

Definition 1.31. We say that two projections e0, e1 ∈ M∞(A) are unitar-
ily equivalent if there exists a unitary u ∈ M∞(A) such that ue0u

∗ = e1.
Similarly we say that e0 and e1 are homotopy equivalent if there exists a con-
tinuous path of projections [0, 1] 3 t → et ∈ M∞(A) such that each et is
a projection. We shall say that two projections are Murray-von Neumann
equivalent if they are unitarily equivalent or homotopy equivalent.

It is nontrivial fact that for a C∗-algebra all the above conditions are
equivalent to each other. It is much easier to see that they define an equiva-
lence relation.

Definition 1.32. We say that two unitaries u, v ∈ M∞(A) are equivalent
if there exists a continuous path of unitaries [0, 1] 3 t → ut ∈ M∞(A) such
that u0 = u and u1 = v.

Lemma 1.33. The set V (A) consisting of equivalence classes of projections
e ∈M∞(A) is a semigroup with addition:

[e] + [f ] = [diag(e, f)] ∀e, f ∈M∞(A).

Definition 1.34. Let A be a unital C∗−algebra then the unique Grothendieck
extension of the semigroup V (A) is denoted K0(A).

Lemma 1.35. The set of equivalence classes of unitaries in M∞(A) forms
a commutative group with addition defined through:

[u] + [v] = [uv] ∀u, v ∈M∞(A).

We shall denote it K1(A).
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The above definitions are not really intuitive, and, unfortunately, so is
K−theory. However, at least in the case of K0(A) we have a nice geometric
picture. It uses finitely generate projective module over A. Recall that a
module is projective, if it is a direct summand of a free module, the latter
isomorphic to An for some n > 0.

Lemma 1.36. Let M be a finitely generated projective module over A, then
there exists a projection e ∈Mq(A) such that M' A⊗qe.

Using it, it becomes rather easy to see that K0 group tells us about the
(stable) isomorphism classes of finitely projective modules over A. The word
stable means that we need to consider two projective modules equivalent also
when their direct sum with some free modules are isomorphic to each other.

There is no simple geometric intepretation of K1(A), the closest one can
get is the group parametrising connected components of the group of invert-
ible elements in M∞(A).

1.5 Fredholm Modules in a Nutshell

Since (roughly speaking) K−theory is a homology theory (satisfying Eilen-
berg - Steenrod axioms [51, Chapter 5]), it was expected that a dual theory
will have also a natural geometrical realisation. It was the ingenious step
made by Atiyah, who realised that the theory dual to K−theory (in the case
of manifolds, or commutative algebras using the language of K-theory for
operator algebras) has as basic objects elliptic operators. This led Kasparov
to the theory of generalised operators of that type and, consequently, to the
present formulation of K-homology in the language of Fredholm modules.

Fredholm Modules and K−homology

Definition 1.37. A triple (A, F,H), consisting of a pre−C∗−algebra, rep-
resented on a Hilbert space H, a selfadjoint, unitary operator F , is called a
Fredholm module if [π(a), F ] is a compact operator for any a ∈ A. Moreover,
if there exists another selfadjoint unitary operator γ, such that π(a)γ = γπ(a)
and γF = −Fγ call the Fredholm module even, otherwise it is odd.

The model for such construction is given (in the case of an algebra of
continuous functions on a manifold) by a triple (C∞(M), l2(E), F ). where
C∞(M) is a pre−C∗−algebra of smooth functions over M , l2(E) square
summable sections of a hermitian vector bundle E and F - sigh of an elliptic
differential operator on E. In particular, E could be the bundle of spinors
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and F = sign(D), where D is a classical Dirac operator (see Sections 2.1.4
and 2.2).

Definition 1.38. Let (A, F1,H) and (A, F2,H) be Fredholm modules. We
shall say that (A, F1,H) ∼h (A, F2,H), i.e. are homotopy equivalent, if there
is a continous path of operators [0, 1] 3 t→ F (t) such that F (0) = F0, F (1) =
F1 and (A, F (t),H) is a Fredholm module for each t ∈ [0, 1]. Similarly we
shall say that (A, F1,H) ∼u (A, F2,H), i.e are unitarly equivalent, if there
exists a unitary operator u ∈ L(H) such that uF0u

∗ = F1. We say that two
Fredholm modules are equivalent if they are homotopy equivalent of unitarly
equivalent.

Definition 1.39. Let us consider the set of all (even or odd) Fredholm mod-
ules over a C∗−algebra A. Then K0(A) (respectively K1(A)) is the set of
its equivalence classes of even (respectively odd) Fredholm modules.

Lemma 1.40. The sets Ki(A) have a group structure with addition defined
by [(A, F1,H1)] + [(A, F2,H2)] = [(A, F1 ⊕ F2,H1 ⊕H2)].

That all this is well-defined is a highly nontrivial fact, for details and
proofs we refer to [51].

On the Use of Fredholm Modules

Apart from the natural use of Fredholm modules as representatives of K-
homology (which allows us to compute explicitly pairing with K−theory)
Fredholm modules give interesting geometrical constructions.

First of all, using Fredholm module one can obtain a noncommutative
counterpart to a graded algebra Ω∗F =

⊕n
k=0 Ωk

F .

We define Ω0
F = A and Ωk

F is defined for k > 0 as a linear span of
operators:

a0[F, a1] . . . [F, ak] ∀ai ∈ A,

with product in Ω∗ defined as a product of operators.

If we define a differential:

d : Ωk 3 ω → Fω − (−1)kωF ∈ Ωk+1,

then Ω∗F (A) becomes a cochain complex and d is a coboundary map.
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1.5.1 Pairing between K−theory and K−homology

The functor which assigns to any C∗−algebra group Ki i = 0, 1, is homol-
ogy dual to the K−theory functor. This allows us to formulate an abstract
pairing between the K−theory and K−homology. Using the demonstrated
presentations of the representatives of both groups it is, however, possible to
construct an explicit formula for the pairing, which uses the index of Fred-
holm operators. The latter are operators on a separable Hilbert space such
their kernels and cokernels are finite dimensional subspaces of the Hilbert
space.

Theorem 1.41 ([11]). Let A be an involutive unital algebra, (A,H, F ) a
Fredholm module over A and for q ∈ N let (A,Hq, Fq) be the Fredholm module
over Mq(A) = A⊗Mq(C) given by

Hq = H⊗ Cq, Fq = F ⊗ 1 , πq = π ⊗ 1.

(a) Let (A,H, F ) be even, with Z2 grading γ, and let e ∈ Proj(Mq(A)).
Then the operator π−q (e)Fqπ

+
q (e) from π+

q (e)H+
q to π−q (e)H−q is a Fred-

holm operator. An additive map φ of K0(A) to Z is determined by

φ([e]) = Index(π−q (e)Fqπ
+
q (e)).

(b) Let (A,H, F ) be odd and let Eq = 1
2
(1 + Fq). Let u ∈ GLq(A). Then

the operator Eqπq(u)Eq from EqHq to itself is a Fredholm operator. An
additive map of K1(A) to Z is determined by

φ([u]) = Index(Eqπq(u)Eq).

1.5.2 Unbounded Fredholm Modules

As the origins of K-homology and the theorey of Fredholm modules are in
fact related with the theory of elliptic operators, it is no wonder that this
led to the following definition, which was the starting point of the theory of
spectral triples:

Definition 1.42 ([11]). Let A be a C∗−algebra represented as a bounded
operators on a Hilbert space H. An unbounded Fredholm module is (A,H, D),
where D is an unbounded selfadjoint operator with compact resolvent such
that [D, π(a)] is bounded for all a ∈ A.

The role of unbounded Fredholm modules (with some extra data as the
Z2-grading γ etc.)is just to give us Fredholm modules:
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Example 1.43 ([12]). Let (A, D,H) be an unbounded Fredholm module, then
(A, F,H) is a Fredholm module if we define F = sgn(D).

An unbounded Fredholm module is a prototype of a spectral triple - but
there is more to spectral triples, which we shall see next.



14 CHAPTER 1. PRELIMINARIES



Chapter 2

Spectral Triples

2.1 Spin Structures

In contrast to the classical differential geometry, where the notion of spin
structure over a Riemannian manifold is well-established, in noncommutative
geometry there is no clear and straightforward definition. One reason is that
the classical picture involves principal fibre bundles with SO(n) and Spin(n)
groups, an element, which is totally missing in the noncommutative approach.

To see the classical construction and show the links to the noncommuta-
tive case we later study, we present the key elements of the definitions and
crucial lemmas. We skip most of the proofs, as they can be found in the
numerous literature.

2.1.1 Clifford Algebras

Definition 2.1 (see [36]). Let V be an n-dimensional real vector space, i.e.
V ' Rn, equipped with an inner product Q : V × V → R, which for any
t, u, v ∈ V and α ∈ R is:

symmetric : Q(u, v) = Q(v, u),

linear : Q(αu, v) = αQ(u, v), Q(u+ t, v) = Q(u, v) +Q(t, v),

positive : Q(u, u) ≥ 0.

The Clifford algebra Cliff(V ) is the universal unital associative algebra over
R generated by all v ∈ V subject to the relation:

v · w + w · v = −2Q(v, w), ∀v, w ∈ V.

Remark 2.2. Clifford algebra is, in principle, a real algebra. Its complexi-
fication, Cliff(V )⊗R C shall be denoted by Cliff(V ).

15
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Example 2.3 (see [34]). For low dimensional cases we have:

Cliff(R) = C, Cliff(R2) = H, Cliff(R3) = H⊕H.

In general:
dim(Cliff(n)) = 2dim(V ).

The complexified Clifford algebras are easier to handle:

Cliff(R2k) = M2k(C), Cliff(R2k+1) = M2k(C)⊕M2k(C).

Lemma 2.4 (see [36]). The algebras
∧∗ V (exterior algebra of V ) and Cliff(V )

are isomorphic as vector spaces (though not isomorphic as algebras).

Lemma 2.5 (see [34]). The algebra Cliff(V ) is Z2−graded,

Proof. Let us define a linear map γ : V 3 v → −v ∈ V . It extends to the
automorphism γ : Cliff(V )→ Cliff(V ). Since γ2 = id, there is a decomposi-
tion:

Cliff(V ) = Cliff0(V )⊕ Cliff1(V ),

where Cliffa(V ) = {φ ∈ Cliff(V ) : γ(φ) = (−1)aφ}.

Real Conjugation over Complex Clifford Algebras

Definition 2.6. Let us take a complexified Clifford algebra Cliff(V ) and con-
sider the following map:

(v1 · v2 · · · vk)∗ = vk · · · v2 · v1, ∀vi ∈ V.

Its antilinear extension to all of Cliff(V ) is called an involution.

The composition of the involution with the Z2-grading γ is called (in
physics) charge conjugation, which we denote by C(x). It is again, an
antilinear antiautomorphism of the complexified Clifford algebra.

2.1.2 SO(n) and Spin(n) Groups

Let T be an element of linear transformations of V which leaves the inner
product Q invariant. Such elements form a group called orthogonal group
O(n).

Definition 2.7. A special orthogonal group SO(n) is a subgroup of O(n)
consisting of elements with determinant equals 1, i.e. for any u, v ∈ V and
T ∈ SO(n):

Q(u, v) = Q(Tu, Tv) and detT = 1.
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Definition 2.8. The group Spin(n) is defined as a universal covering group
of SO(n), for n > 2 (and for n = 2 we set Spin(2) = U(1)). Since the first
homotopy groups of SO(n) are

π1(SO(n)) = Z2,

then the covering is a double covering and the following is an exact sequence
of groups:

1→ Z2 → Spin(n)→ SO(n)→ 1.

Clifford Algebra and the Spin Group

Since the Clifford algebra contains the information about the inner product
on a real vector space, it comes as no surprise that its group of invertible
elements may contain a lot of subgroups related to that inner product.

Definition 2.9 (see [34]). Let us define the following subset of the Clifford
algebra:

Spin(V ) = {v1 · v2 · . . . v2r ∈ Cliff(V ) : vi ∈ V, Q(vi, vi)=1, ∀i = 1, . . . 2r}.

Then for V ∼ Rn, Spin(V ) is isomorphic to the Spin(n) group.

If we take the complexified Clifford algebra Cliff(V ) then we have:

Definition 2.10 (see [34]). Let us define the following subset of the com-
plexified Clifford algebra:

Spinc(V ) = {v1·v2·. . . v2r ∈ Cliff(V ) : vi ∈ V ⊗C, Q(v̄i, vi)=1, ∀i = 1, . . . 2r}.

Then Spinc(V ) is a group and we have the following exact sequence of groups:

1→ U(1)→ Spinc(V )→ SO(V )→ 1.

Lemma 2.11 (see [26]). The subgroup of Spinc(V ), which is invariant under
charge conjugation is the group Spin(V ).

2.1.3 Representation of the Clifford Algebra

Since complexified Clifford algebra have a rather simple structure (as seen in
the Example 2.3) their representation theory is straightforward:

Lemma 2.12 (see [36]). For n = 2k there exists a unique irreducible repre-
sentation of Cliff(Rn) on C2k whereas for n = 2k + 1 there are exactly two
irreducible representations of Cliff(Rn) on C2k .
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It is easy to see that these representations provide us with the representa-
tions of the groups Spinc(n) and Spin(n). To obtain in turn their irreducible
representations requires little work and discussing separately the even and
the odd case.

Lemma 2.13. In the even case (n = 2k) the irreducible representation of
Cliff(Rn) splits into S+ ⊕ S−, which are both isomorphic to C2k−1

and are
irreducible and inequivalent representations of Spinc(n).

In the odd case (n = 2k + 1) each of the irreducible representations of
Cliff(Rn) gives an irreducible representation of the Spinc(n) group, which
are equivalent to each other.

The proof can be found, for instance, in [26], pp. 192-194.
What we are interested, however, is a more general construction: a rep-

resentation of the Clifford algebra together with an implementation of the
charge conjugation.

Definition 2.14. Let us consider a representation ρ of the complex Clifford
algebra on H, such that there exists an antilinear operator C on H, which
implements the involution on Cliff(Rn):

ρ(x∗) = C−1ρ(x)C, ∀x ∈ Cliff(Rn).

It is a nontrivial fact that such C exists, for details of the explicit con-
struction see [26], for example.

2.1.4 Spin Structures and Bundles

Clifford Algebra Bundles and Clifford Bundles

As a next step we need to have a global picture: instead of working at a fixed
point of the manifold, consider all points and all Clifford algebras constructed
from the bundle of tangent spaces at all x ∈M .

Definition 2.15. A Clifford algebra bundle over a Riemannian manifold M
is an algebra bundle, such that the fibre is isomorphic to Cliff(TxM), x ∈M
and the pointwise product of two C∞ sections is again a C∞ section.

Definition 2.16. A Clifford bundle over a Riemannian manifold M is a real
vector bundle, such that its C∞-sections are a left module over the Clifford
algebra bundle over M for the pointwise product.

The definitions extend naturally if we take any other bundle E equipped
with an inner product (instead of taking TM).
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Spin structure

We begin with the classical definition of the spin structure.

Definition 2.17 (see [34]). Let E be an oriented n-dimensional vector bundle
over a Riemannian manifold M , and let PSO(E) be its bundle of oriented
orthonormal frames. Suppose n ≥ 2, then a spin structure on E is a principal
Spin(n)-bundle, PSpin(E), together with a 2−sheeted covering

ξ : PSpin(E)→ PSO(E)

such that ξ(gp) = ξ0(g)ξ(p) for all p ∈ PSpin(E) and all g ∈ Spinn, where
ξ0 : Spin(n)→ SO(n) is a connected double covering of SO(n).

One can reformulate this definition, saying that a spin structure is a
principal Spin(n) bundle such that the associated bundle with fibre Rn is
isomorphic with the tangent bundle [4, Proposition,3.34].

As we can see, the definition is phrased in the terms of principal fibre
bundles. We shall briefly sketch how to make a link between this definition
and the approach based on Clifford algebras. The element we need are vector
bundles, which are associated bundles. Since there exists a 1 : 1 correspon-
dence between principal fibre bundles over M with a structure group G and
vector bundles with a fibre isomorphic to a representation space of the group
G ([30]) we might study instead such vector bundles.

So, a spinor bundle for a given spin structure is defined as an associated
bundle for the PSpin(E) principal bundle which arises from an irreducible rep-
resentation of Spin(n). Having such a bundle, we might recover the principal
bundle, which will give us the spin structure (in the original meaning). There
may be, on one hand, topological obstructions to the existence of spin struc-
ture, while - if they exist - they may be several, distinct from each other. It is
shown that the existence is equivalent to the vanishing of the second Stieffel-
Whitney class w2 ∈ H2(M,Z2), whereas the structures are parametrized by
the elements of H1(M,Z2) (see [4, Definition,3.33])

Although in the definition we take E to be any vector bundle, we are
mostly concerned with E = TM , the tangent bundle of the manifold.

The definition extends naturally (with obvious modifications) to the case
of SpinC group, then we have spinC-structures.

From Clifford Bundles to Spin Structures and Back

Now, the link between the description of the spin structures using the lan-
guage of principal fibre bundles (or equivalently, associated bundles) and the
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description of Clifford modules and Clifford algebra bundles becomes obvi-
ous.

We begin by the relation with spinC structure. It has been shown by
Plymen [48]:

Lemma 2.18 ([48]). If M is an oriented Riemannian manifold then it admits
a spinC structure if there exists a complex vector bundle S over M such that
for all x ∈ M we have that Sx is an irreducible representation space for
Cliff(TxM, g).

Furthermore one has that every Clifford module is, in fact, isomorphic
to a twisted spinor bundle S ⊗W , for a complex vector bundle W . (see [4,
Proposition 3.34], [25, Lemma 2.35]).

The passage to spin (and not spinC) structures is (as expected) based on
real Clifford algebra bundles and real Clifford modules and is discussed in
[34, 26].

For us the crucial element, however, is not the real Clifford bundle (or a
real Clifford module), but the complexified Clifford bundle together with the
Clifford algebra involution (or the charge conjugation operation). Once such
structure exist, then we can construct a real spinor bundle and, equivalently,
a spin structure over a manifold. Of course, not all Clifford modules (for
complex Clifford bundles) admit the involution operation. For example, the
involution in the Clifford algebra exchanges the twisted spinor bundles (which
are line bundles with a fixed magnetic monopole charge c) over a two-sphere
unless c = 0 (see [54], p.18). However, if the involution exists then we have
a spin structure.

Now, let us see that by that passage we can pass from the language of
principal fibre bundles into the language of Clifford bundles or modules and
various algebraic operations on them.

It remains only one gap to be bridged: the metric. Indeed, to define
a Clifford algebra one needs a Riemannian metric defined on the tangent
space (or any real vector bundle). Here appears the Dirac operator, which,
in an ingenious way allows to give us the Clifford algebra bundle without any
reference to the metric tensor.

This motivated the axiomatic formulation of the real spectral triples as
we shall see later.

2.2 Classical Dirac Operator

Throughout this section E is a vector bundle over a compact Riemanian
manifold (M, g) and Γ(E) is a set of smooth sections of E. The Serre-Swan
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theorem [52] assures that Γ(E) is a finitely generated projective module over
C∞(M). We take Ω1(M) = Γ(T ∗M) to be a bimodule of differential forms
over M (sections of the bundle of smooth one-forms over TM). Moreover we
will use a short notation of tensor product · ⊗• · instead of · ⊗C∞(M) ·.

Definition 2.19. A linear connection ∇ over a vector bundle E is a linear
map ∇ : Γ(E)→ Ω1(M)⊗ Γ(E) such that:

∇(fω) = df ⊗• ω + f∇(ω) ∀f ∈ C∞(M), ω ∈ Γ(E).

Definition 2.20. Let E = TM , then Γ(E) ' Ω1(M). We say that the
connection ∇ is torsion free if for any ω ∈ Ω1(M):

π(∇(ω)) = 0,

where π : Ω1(M)⊗• Ω1(M) 3 ω1 ⊗• ω2 → ω1 ∧ ω2 ∈ Ω2(M).

Definition 2.21. We say that ∇g, a connection over Ω1(M), is metric if
for all ω1, ω2 ∈ Ω1(M):

dg(ω1, ω2) = (g ⊗ id)(ω1 ⊗• ∇(ω2)) + (id⊗ g)(∇(ω1)⊗• ω2).

To see the application of the above definitions, let us give an example:

Example 2.22. If Ω1(M) is a free module over C∞(M) (which means that
the cotangent bundle is trivial), with the basis ωi, i = 1, 2, . . . n, then any
linear connection is fully determined on the generating one forms:

∇(ωi) =
∑
j,k

Γijkω
j ⊗• ωk.

We shall call functions Γijk Christoffel symbols.

A linear connection with all Γijk = 0 is called flat. In terms of Christoffel
symbols we say that connection is torsion-free is those symbols are symmetric,
i.e. Γijk = Γikj, and that it is metric if ∂ig

jk = gjlΓkli + gklΓjil.

Lemma 2.23. Let ∇ be a torsion-free metric connection over a cotangent
bundle T ∗M , then ∇ is unique. We shall call ∇ a Levi-Civita connection.

The uniqueness of Levi-Civita connection is easily expressed through an
explicit formula for the Christoffel symbols (valid globally in the case of a
trivial cotangent bundle):

Γijk =
1

2

∑
l

gli(∂jgkl + ∂kgjl − ∂lgjk).
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From now on if not stated otherwise we shall always assume here that the
connection is torsion-free and any connection ∇g is assumed to be the Levi-
Civita connection. Though in principle we work with real bundles and real-
valued functions, all considerations extend naturally to the complex bundles
(sections of which are modules over complex-valued functions), hermitian
connections etc.

Recall that in previous section we have defined a spinor bundle as an
irreducible representation of Clifford bundle Cliff(TM). We assume that the
manifold is spin and denote the (complex) bundle of spinors S(M).

Let Γ(S) be the set of smooth sections of S(M). Introducing the following
inner product of two sections ψ, φ,

(φ, ψ) =

∫
M

〈φ(x), ψ(x)〉dω,

where 〈φ(x), ψ(x)〉 is a standard inner product in the fibre Sx over point
x ∈M . We shall denote by Σ(M) the closure of Γ(S) in the resulting norm.

Since the Clifford bundle and the bundle of differential forms are iso-
morphic (as vector bundles) we shall use in the construction the canonical
isomorphism map c : Ω∗(M)→ Clif(TM) called Clifford multiplication. Next
we can have:

Definition 2.24. We say that ∇S : S(M) → Ω1(M) ⊗• S(M) is a spin
connection if it is a connection over the vector bundle S(M),

∇(fψ) = f∇S(ψ) + df ⊗∗ ψ ∀f ∈ C∞(M), ψ ∈ S(M),

and for all ω ∈ Ω1(M), ψ ∈ S(M) the following condition is met:

∇S(γ(ω) · ψ) = ((id⊗• γ)∇g(ω))(ψ) + γ(ω) · ∇S(ψ).

The existence of the spin connection for spin manifolds is a consequence
of the fact that the spin structure data amount to lifting the structure group
to Spin(n). Finally we have:

Definition 2.25. Let us define an operator D on the smooth sections ψ ∈
S(M) as:

Dψ = (c⊗• id)∇S(ψ) ∀ψ ∈ S(M).

The closure of D in Σ(M) is called a Dirac operator.

Lemma 2.26 ([34], p.117). The Dirac operator over a Riemannian manifold
is formally selfadjoint,i.e.:

(Dφ,ψ) = (φ,Dψ) ∀φ, ψ ∈ Σ(M).

Moreover kerD = kerD2 and is finite dimensional.
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Theorem 2.27 ([34]). Let M be a closed Riemannian manifold and denote
by Sp(D) the spectrum of its Dirac operator. Then the following holds:

• The set Sp(D) is a closed subset of R consisting of an unbounded dis-
crete sequence of eigenvalues.

• Each eigenspace of D is finite dimensional and consists of smooth sec-
tions of S(M).

• The eigenspaces of D form a complete orthonormal decomposition of
Σ(M),

• The set Sp(D) is unbounded on both sides of R and, if moreover n 6=
3 mod 4, then it is symmetric about the origin.

Finally, let us state a theorem on the asymptotical behaviour of the eigen-
values:

Theorem 2.28. Let M be a closed Riemannian manifold of dimension n.
Then for large k, the k-th eigenvalue, λk of |D| (ordered in a non-decreasing
sequence, counted with multiplicities) is related to k through the Weyl formula
[25]:

k ∼ (λk)
n
2 Vol(M).

2.3 Real Spectral Triple – Definition

The definition of what is the spectral triple appears not to be fixed yet. The
first idea, which appeared in late 1980s [11] used rather the notion of un-
bounded Fredholm modules. Later, some more precise definitions appeared,
to be finally presented by Connes [13] as a set of axioms.

For a long time, this formultion was accepted, however - apart from the
classical case of Riemannian spin manifolds there were very few examples of
objects satisfying all of the axioms.

Moreover, attempts to prove the reconstruction theorem (show that any
commutative spectral triple satisfying all the axioms necessarily is the one
coming from a Riemannian spin manifold) were unsuccesful for a long time.
It appears that the final version of the theorem, proved by Connes used a
slightly changed version of some axioms.

For completeness we present all original axioms, stressing their impor-
tance for our results and the limits of their applications. We alway assume
that we are dealing with unital algebras.
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2.3.1 Axioms

We will consider a triple (A,H, D) consisting of the unital pre−C∗−algebra
A faithfully represented as bounded operators on a separable Hilbert space
H and operator D called a Dirac operator.

Axiom (0). We will demand of D to be unbounded and selfadjoint to ensure
that D2 is a positive operator. Moreover, we assume the kernel of D has a
finite dimension.

We set D−1 to be the inverse of D restricted to orthogonal complement
of the kernel of D. In many cases one can restrict oneself to the situation
when D has an empty kernel.

Axiom (I. - Dimension). The operator D has a compact resolvent, i.e. D−1

is a compact operator. Then its spectrum is discrete.
Furthermore, there exists a nonnegative integer n called a metric dimen-

sion of spectral triple, such that series of λk the eigenvalues of |D|−1 arranged
in a decreasing order are:

λk ∈ O(k−n).

This uniquely determines number n. If n is even we will call spectral
triple even or graded, respectively odd or ungraded if n is odd. Note that
although we assume here that n ∈ Z, n ≥ 0, there are known examples of
spectral triples with fractional metric dimensions (in particular, over fractal
sets).

Axiom (II. - Regularity/ Smoothness). For all a ∈ A operators [D, a] are
bounded and moreover for a derivation δ(T ) = [|D|, T ] we demand that both
a and [D, a] belong to Dom(δm) for any integer m.

The first condition is a part of the most known requirement for the spec-
tral triple: that the commutators with D are bounded. Classically, this is
(roughly speaking) equivalent to the fact that the algebra consists at least of
functions, which are differentiable.

The remaining part assures that, in fact, we should be dealing with an
algebra of smooth functions.

Axiom (III. - Finiteness). The algebra A is a pre−C∗−algebra. The space of
smooth vectors H∞ = ∩mDom(|D|m) is a finitely generated projective module
over A. Moreover it bears a Hermitian structure:

〈η, θ〉 =

∫
Dix

(η, θ)|D|−n,

where
∫
Dix

is a noncommutative ingeral (expressed in terms of Dixmier trace).
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Axiom (IV - Odd and even spectral triples). A spectral triple is called even
if there exists an operator γ = γ†, such that γ2 = 1, [γ, a] = 0 for each a ∈ A
and Dγ + γD = 0. In other words γ is a Z2-grading of the Hilbert space,
such that all a ∈ A are even and D is an odd operator.

If there is no γ, we call the spectral triple odd.

Axiom (V - Reality condition an KR-dimension). There exists an antilinear
unitary element J , such that:

J2 = ζJ , JD = ζDDJ, Jγ = ζγJγ,

where ζJ , ζD and ζγ equals ±1 depending on N 3 nKR mod 8 and are listed
in the table below:

nKR mod 8 0 1 2 3 4 5 6 7
ζD + – + + + – + +
ζJ + + – – – – + +
ζγ + – + –

The number nKR is even for even spectral triples (with γ) and odd for the
odd ones. It is called KR- (or K-) dimension and is determined modulo 8.

Furthermore, we assume that for any a, b ∈ A the following identities are
true:

[a, JbJ−1] = 0,

[[D, a], JbJ−1] = 0.

The first condition means that conjugation by J maps the algebra A
to its commutant, while the second one states that it is, at the same time,
commutant of the one forms. Classically this enforces that D is a differential
operator of the first order.

Apart from the commutative spectral triples, 0-dimensional spectral triples
and the noncommutative tori there are very few genuine noncommutative ex-
amples satisfy that part of definition.

Out of the examples based on quantum spaces only the spectral triple
over the standard Podles sphere [22] satisfies the reality axiom (with the
order one condition). In other case cases the order-one is satisfied almost -
that is - up to compact operators.

It is known that in many examples the metric dimension and the KR-
dimension might be different (for example, for finite matrix algebras, or the
standard Podles sphere). Classically, both are equal to the dimension of the
manifold.
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Axiom (VI. - Orientability). There exists a Hochschild cycle c ∈ A⊗A0 ⊗
A⊗n such that b(c) = 0 and for n even πD(c) = γ, for n odd πD(c) = 1.

Let us recall Hochschild k−chain is defined as an element of Ck(M,A) =
M ⊗ A⊗k, where M is a bimodule over A. A boundary map is defined
through:

b(m⊗ a1 ⊗ · · · ⊗ ak) =ma1 ⊗ a2 · · · ⊗ ak+ (2.1)

k−1∑
i=1

(−1)im⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ak+

(−1)kakm⊗ a1 ⊗ · · · ⊗ ak−1.

As b2 = 0 we conclude that (Ck, b) is a chain complex. The representation
of c on the Hilbert space H is defined as:

πD(m⊗ a1 ⊗ · · · ⊗ ak) = m[D, a1] . . . [D, ak].

Axiom (VII. - Poincaire duality). The additive pairing with the K-theory,
Ki(A), determined by the index map of D, is nondegenerate.

This axiom, though satisfied classically, is, apart from the zero-dimensional
examples and the noncommatative tori most difficult to verify and most dif-
ficult to satisify.

Axiom (VIII. - Irreducibility). There is no nontrivial subspace of H′ ( H,
such that (A, D,H′, J, γ) is itself a real spectral triple.

This axiom, as we shall see, requires either some additional data or needs
reformulation.

Definition 2.29. The set (A, , DH, J) consisting of not necessarily com-
mutative pre−C∗−algebra A, its representation on a Hilbert space H, Dirac
operator D and a real structure operator J will be called a spectral triple if it
fulfils the axiom 0. and axioms from I. to VIII.

In our work we shall be considering algebraic real spectral triples in the
following sense:

Definition 2.30. An algebraic real spectral triple, is an object consisting of
a dense subalgebra A of a C∗-algebra, faithfully represented on a separable
Hilbert space, together with D, J (and possibly γ, such that [D, a] is bounded
for any a ∈ A, and axioms I, IV and V are satisfied.
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2.3.2 Commutative Real Spectral Triples

As we already said in this dissertation we are especially interested in the
correspondence between the irreducible real spectral triples and spin struc-
tures. Let us recall that Gefland-Naimark theorem provides a one to one
correspondence between the locally compact Hausdorff spaces and commu-
tative C∗−algebras. Similar theorem which would connect spin structures
and real commutative spectral triples would be the Holy Grail of noncom-
mutative geometry - to be precise - of noncommutative geometry described
in the language of spectral triples. There are two steps of this research. First
we need to show that for any spin manifold with a given spin structure one
can construct a corresponding real commutative spectral triple. Then there
is a question of reconstruction procedure, i.e. one need to prove that having
a real commutative spectral triple there exists a corresponding spin mani-
fold with a uniquely determined spin structure. The second step is much
more difficult. Note that as each spin or spinC manifold is a locally com-
pact Hausdorff space the reconstruction theorem for spectral triples would
be refinement of Gelfand-Naimark result.

The problem is very complex and we shall not go into much details. We
shall only sketch the main results.

Theorem 2.31 ([26], Definition 11.1, Theorem 11.1). Let S(M) be a spinor
bundle (which is uniquely determined by the spin structure PSpin(TM)) on a
compact spin manifold without boundary. Then (C∞(M), D,Σ(M), C), if M
is odd-dimensional, and (C∞(M), D,Σ(M), C, χ), if M is even-dimensional,
is a commutative real spectral triple, where:

• C∞(M) is a pre−C∗−algebra of smooth complex functions over M ;

• Σ(M) is a Hilber space completion of smooth square summable sections
of S(M) (see Section 2.2);

• D is a classical Dirac operator (see Definition 2.25);

• C is a charge conjugation operator over Cliff(Tm) (see Definition 2.14);

• if dimension of M is even then χ is a chirality operator (see Lemma
2.13).

First let us note that in the axiomatic definition the components of a real
spectral triple were tacitly assumed to be a noncommutative generalisation
of classical Dirac operator, spinor bundle, charge conjugation etc. Thus
the construction of commutative spectral triple for a given spin manifold is
nothing else but the exemplification of its definition.



28 CHAPTER 2. SPECTRAL TRIPLES

Remark 2.32. The way backward is, as we already said, much more dif-
ficult. The most up to date result in this matter is so called reconstruction
theorem proved by Connes in 2008. Consider a commutative pre−C∗−algebra
A and (A, D,H) be a spectral triple fulfilling certain technical assumptions
(for details see [17]), Connes proved, that there exists a compact smooth spinC

manifold M such that A ' C∞(M). This result justifies the concept of real
spectral triple as a generalisation of spin structure.



Chapter 3

Noncommutative Spin
Structures

In this section we shall discuss further concepts connected with spectral
triples. The most important is the noncommutative generalisation of spin
structure. This concept involves the notions of reducibility and equivalence
of spectral triples. Both notions are still quite unspecified in literature and
we shall use our examples (i.e. a noncommutative three torus, a toy model
discussed at the end of this section and Bieberbach manifolds in the next
chapters) to discuss the possibilities. The second concept is the G-equivariant
spectral triple. We shall restrict our attention only to the odd spectral triples.
The even case is straightforward.

3.1 Noncommutative Spin Structure

Equivalence of spectral triples

The most intuitive concept of equivalence is the following one.

Definition 3.1. Consider two spectral triples (A, D,H, J) and (A, D′,H′, J ′).
We shall say that (A, D,H, J) is unitarily equivalent to (A, D′,H′, J ′) if there
exists a unitary operator t : H → H′ and σ an automorphism of A, such that:

tDt−1 = D′, tJt−1 = J ′

and tπ(a)t−1 = π′(σ(a)).

In order to express the unitarily equivalence we shall write:

(A, D,H, J) 't (A, D′,H′, J ′).

29
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The other notion specific for the noncommutative algebras is the following
definition of internal perturbation.

Definition 3.2. Let (A, D,H, J) be a spectral triple, then we shall call

DA = D + A+ ζDJ
−1AJ

an internal perturbation of Dirac operator, where ζD depends on the dimen-
sion of the spectral triple, and

A =
∑
i

π(ai)[D, π(bi)],

for ai, bi ∈ A.

Although in our computation we shall use another concept of perturba-
tion:

Definition 3.3. Let (A, D,H, J) be a real spectral triple. Consider a bounded
operator A ∈ B(H) such that:

[π(a), A] = 0 ∀a ∈ A.

If (A, D + A,H, J) is a real spectral triple, then we shall call D′ = D + A a
bounded perturbation of Dirac operator D.

Reducibility

The most common and the strongest is the following definition of reducibility.

Definition 3.4. The odd spectral triple (A, D,H, J) is called reducible (in
a strong sense) if there exists a subspace H′ ( H such that A is faithfully
represented on H′ and (A, D|H′ ,H′, J |H′) is an odd spectral triple. Then we
shall call (A, D|H′ ,H′, J |H′) a reduction of (A, D,H, J).

In the literature also another two definition can be found.

Definition 3.5. We shall say that an odd real spectral triple (A, D,H, J)
is J−reducible if there exists a subspace H′ ( H on which A is faithfully
represented, JH′ ⊂ H′ and moreover there exists an operator D′ defined on
a dense subspace of H′ such that (A, D′,H′, J |H′) is a real spectral triple.

Definition 3.6. We shall say that an odd real spectral triple (A, D,H, J) is
D−reducible, if there exists a subspace H′ ( H with faithful representation
of A such that (A, D|H′ ,H′) is a complex spectral triple.
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Moreover we shall introduce another concept of reducibility connected
with the bounded perturbations.

Definition 3.7. We say that spectral triple (A, D,H, J) is reducible up to
bounded perturbation if there exists an operator A ∈ B(H) such that spectral
triple (A, D + A,H, J):

• is a bounded perturbation of (A, D,H, J);

• is reducible in a strong sense.

Note that we have following implications:

reducible ⇒ reducible
(strong sense) up to bounded perturbation;

reducible ⇒ J-reducible.
up to bounded perturbation

Definition 3.8. We shall call a real spectral triple (A, D,H, J) irreducible if
it is not reducible up to bounded perturbation. The class of unitarily equiva-
lent irreducible spectral triples over a ∗−algebra A shall be called a noncom-
mutative real spin structure.

It is easy to see the dependence of the definition of noncommutative
spin structure on the assumed definition of reducibility. In the latter part of
dissertation we shall show that the number of noncommuative spin structures
agrees with the number of classical spin structure when the reducibility up
to perturbation is chosen.

3.2 Equivariant Spectral Triples - Definition

One of the most important concepts of the tools of spectral geometry is the
concept of equivariant spectral triple. It is the noncommutative counterpart
to the classical notion of symmetries of manifolds, e.g. symmetry of metric
tensor. The original definition elaborated by Sitarz and Paschke in [50, 43]
involves operation connected with Hopf algebras, which generalise the action
of classical groups, groups algebras and Lie algebras. As in this dissertation
we shall not use ”the noncommutative symmetries” of Hopf algebras we shall
not go into detailed general definition of equivariance of spectral triples. In
our case we only need to deal with the equivariance induced by the classical
symmetries rephrased in the algebraic language. We shall distinguish to
specific types of such symmetries - the Lie algebra type symmetry ( induced
by derivations) and the group action type symmetry.
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Lie algebra type

Definition 3.9. Consider a real spectral triple (A, D,HJ). Let L be the
Lie algebra of derivations acting on A and denote by l the representation
of L on Hl the dense subspace of Hilbert space H. Then we shall say that
(A, D,H, J) is L-equivariant spectral triple if for all λ ∈ L and ψ ∈ Hl we
have:

l(λ)Dψ = Dl(λ)ψ, l(λ)Jψ = −l(λ)Jψ

and a Leibniz rule:

l(λ)π(a)ψ = π(λ . a)ψ + π(a)l(λ)ψ ∀a ∈ A.

One of the most transparent and instructive examples of Lie algebra type
symmetries are the flat spectral triples over noncommutative tori. We shall
present the details of this construction in the next section.

Group action type

Definition 3.10. Consider a real spectral triple (A, D,HJ) and a group G
acting by automorphisms on the algebra A. Let ρ be the representation of
group G on HG. i.e. the dense subspace of Hilbert space H. Then we shall
say that (A, D,H, J) is G-equivariant spectral triple if for all g ∈ G and
ψ ∈ HG we have:

ρ(g)Dψ = Dρ(g)ψ, ρ(g)Jψ = ρ(g)Jψ,

ρ(g)π(a)ψ = π(g . a)ρ(g)ψ ∀a ∈ A.

3.3 Noncommutative Spin Structures over the

Noncommutative Torus

In this section we shall examine the equivariant spectral triples over nonocom-
mutative three torus. We will briefly summarise the main results obtained
by Sitarz in [44] and by Venselaar in [55], the most important of them is full
classification of equivariant real spectral triples or simply noncommutative
spin structures.

Consider a twisted group algebra C∗(Zn, ωΘ) with the cocycle over Zn:

ωθ(p, q) = exp(πi
n∑

j,k=1

θjkpjqk), ∀p, q ∈ Z3,
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where θjk is a real antisymmetric matrix (0≤θjk < 1). We denote the
product in the twisted convolution algebra by ∗ω. We have

δp ∗ωθ δq = ωθ(p, q)δp+q ∀p, q ∈ Zn.

Taking the canonical basis of Zn, e1, e2, . . . , en, we then identify ui with
δei for each i = 1, . . . , n. We will now define an abstract algebra generated
by the set of n elements ui. We have the following relations on generators:

(ui)
∗ = u−1

i , ujui = e2πiθjiuiuj ∀i, j = 1, . . . , n,

where θij = −θji. Moreover we define unitaries:

xp : = eπi
∑
i<j θjipjpi(u1)p1(u2)p2 . . . (un)pn ∀p ∈ Zn.

For such elements we have:

xpxq = ωΘ(p, q)xp+q,

where ωΘ(p, q) is a cocycle over Zn defined above.

3.3.1 Algebra

Now we can define the algebraical noncommuatative generalisation of n-
dimensional torus.

Definition 3.11. We shall denote by A(TnΘ) the set consisting of polynomials
in unitaries u1, u2, . . . , un, i.e. a finite sums:∑

p∈I

apx
p,

where I ⊂ Zn is finite and ap ∈ C for all p ∈ I. Then A(TnΘ) is closed under
addition and multiplication and forms a complex ∗-algebra. We shall call it
an algebra of polynomials on noncommutative n-torus.

We can complete A(TnΘ) to the algebra of smooth functions on noncom-
mutative n−dimensional torus, C∞(TnΘ) consisting of power series:

x =
∑
p∈Zn

apx
p,

where ap belongs to a Schwartz space S(Zn), i.e.

‖(ap)‖k : = sup
p∈Zn
|ap|(1 +

n∑
i=1

|pi|)k <∞ ∀k ≥ 0.
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Moreover we can also consider a C∗−algebra completion in a unique norm
respecting C∗−identity ‖aa∗‖ = ‖a‖2 for all a ∈ C∞(TnΘ). We shall denote
the C∗−algebra closure of C∞(TnΘ) (which is at the same time a C∗-closure
of A(TnΘ)) by C(TnΘ). The latter algebra is commonly called the algebra of
functions over noncommuatative n−torus.

Remark 3.12. If θij = 0 for all i, j = 1, . . . , n then the C∗−algebra defined
in abstract approach coincides with the algebra of complex functions over a
topological n−torus, i.e. C(TnΘ) ' C(Tn). It is easy to see if we define the
complete set of characters:

χx(ui) = e2πixi ∀x ∈ [0, 1)n.

Then one can easily check that densely defined:

t : C∞(TnΘ) 3
∑
p∈Zn

ap
∏

i=1,...,n

(ui)
pi →

∑
p∈Zn

ape
2πi(p,x) ∈ C(Rn/Zn) ' C(Tn)

extends to an isomorphism of C∗−algebras due to Gelfand-Naimark theorem.

3.3.2 Representation

To construct the spectral triple over three torus we shall conduct most of
computation on a pre−C∗−algebra A(T3

Θ). We shall denote three unitaries
generating polynomials of A(T3

Θ) by u1, u2, u3. As we are dealing with spec-
tral triple over flat (i.e. u(1)×u(1)×u(1) equivariant) torus we need both a a
representation of the Lie algebra of derivations and an equivariant representa-
tion of A(T3

Θ). We set the universal enveloping algebra of Lie algebra u(1)3

as generated by three selfadjoint mutually commuting derivations δ1, δ2, δ3

acting on A(T3
Θ):

δi . uj =

{
uj if i = j
0 if i 6= j

.

The minimal equivariant space is then an infinite direct sum:
⊕

m∈Z3Hε+m,
where each Hε+m u C is an eigenspace of derivations:

l(δi)eµ = µieµ,

for eµ a basis vector of Hµ where µ = m+ ε ∈ Z3 + ε.
When equipped with the inner product and completed it becomes a

Hilbert space of square summable series l2(Z3). Moreover the representa-
tion π of noncommutative 3−torus have to respect the Leibniz rule:

l(δi)π(a) = π(δi . a) + π(a)l(δi) ∀a ∈ A(te3
Θ).
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Theorem 3.13 ([55]). All representations of A(T3
Θ) on l2(Z3) respecting the

Leibniz rule are unitarily equivalent to the following:

π(xp)eµ = ωθ(p, µ)ep+µ,

where ωθ(p, µ) = exp(πi
∑

1≤j<i≤3 θji(pjµi − piµj)) is the cocycle of twisted

group algebra C∗(Z3, ω).

3.3.3 Equivariant real spectral triples over A(T3
Θ)

Now we proceed to the definition of the spectral triples over noncommutative
three torus. We recall that it will consist of an equivariant representation of
A(T3

Θ) on a Hilbert space H, Dirac operator D and a real structure J . It
occurs that those requirements are enough to define an inequivalent noncom-
mutative spectral triples uniquely up to choice of spin structure.

Firstly we define the Hilber space H ' l2(Z) ⊗ C2. Now let us choose
an ε ∈ R3. The basis vectors of H are eaµ, i.e indexed by two numbers:
µ ∈ Z3 + ε and a = ±1. The representation of the Lie algebra of derivation
and the representation of the algebra A(T3

Θ) is diagonal and to simplify
notation also denoted l and π:

l(δi)e
a
µ = µie

a
µ, π(xp)e

a
µ = ω(p, µ)eap+µ.

Let (A(T3
Θ), D,H, J) be an equivariant real spectral triple, i.e. moreover

we assume that Dl(δi) = l(δi)D and Jl(δi) = l(δi)J . It occurs that we obtain
a huge restriction on the parameters ε’s, each εi = 0, 1

2
.

Theorem 3.14 ([55]). Let (A(T3
Θ), D,H, J) be a real irreducible flat spectral

triple over the noncommutative three torus, then there exist three numbers
ε1, ε2 and ε3 such that each εi = 0, 1

2
and

• Hilbert space H has a countable basis consisting of vectors eaµ, where
a = ±1 and µ ∈ Z3 + ε;

• the A(T3
Θ) representation is unitarily equivalent to the following:

π(xp)e
a
µ = eπi

∑
i<j θji(pjµi−piµj)eap+µ.

• the Dirac operator (up to rescaling) is :

Deaµ = aRµ1e
a
µ + (µ2 + τ−aµ3)e−aµ ,

where τ ∈ U(1) and R ∈ R;
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• the real structure:
Jeaµ = ae−a−µ.

There are in total 8 inequivalent irreducible real spectral triples over noncom-
mutative three torus. They are indexed by three parameters ε1, ε2, ε3.

3.4 Spectral Triples over Quotient Spaces -

Toy Model

We shall now discuss the reducibility and the group type equivariance on the
second example. As a toy model we will consider the case of a circle, with a
standard one-dimensional spectral triple. The algebra taken are smooth func-
tions over the circle, its C∗−algebra completion being continuous functions
C(T1), while most of the computations are done on the algebra of polynomi-
als, generated by one unitary element u and denoted A(T1). We also define
π, its representation on the Hilbert space H (spanned by the eigenvectors
eµ) via:

π(u)eµ = eµ+1,

where eµ are eigenvectors of derivations with respect to the eigenvalue µ.
A triple (A(T1),H, d, j) is a real, u(1)-equivariant spectral triple if we define:

deµ = µeµ; jeµ = e−µ.

3.4.1 Reducible spectral triples

There are two inequivalent irreducible, equivariant real spectral triples over
A(T1) - one for µ ∈ Z and the other for µ ∈ Z + 1

2
(see [55]). We will

distinguish these two cases using parameter ε = 0, 1
2
, such that µ ∈ Z + ε

and Sε = (A(T1),Hε, d, j).
However let us consider new spectral triple S∗ = (A(T1),Hν ⊕H−ν , d, j),

where Hν ⊕H−ν = Span(e±m±ν)m∈Z and ν 6= 0, 1
2
. Representation of A(T1)

and the action of d and j is defined as follows:

π(u)e±m±ν = e±m+1±ν ; de±m±ν = (m± ν)e±m±ν ; je±m±ν = e∓−m∓ν .

It is easy to verify that S∗ is indeed a real and u(1)-equivariant spectral
triple. Moreover one can also easily check that it is not reducible in a strong
sense (d, j−reducibility). However, we have:
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Lemma 3.15. S∗ is reducible up to bounded perturbation of d. Moreover

S∗ ' S0 ⊕ S0 ' S 1
2
⊕ S 1

2
.

Proof. Firstly let us define (for a = 0, 1):

fam : = e+
m+a+ν + e−m−ν , gam = ie+

m+a+ν − ie−m−ν .

These sets of vectors span two Hilbert subspaces H+
a = Span(fam)m∈Z and

H−a = Span(gam)m∈Z and since each vector from Hν ⊕H−ν can be uniquely
decompose into vectors from H±a we have:

Hν ⊕H−ν = H+
0 ⊕H−0 = H+

1 ⊕H−1 .

Spaces H±a are subrepresentations of algebra A(T1) since π(u)fam = fam+1

and π(u)gam = gam+1. Moreover for fixed a those spaces are isomorphic, i.e.
H+
a ' H−a . Then one can check, that for a real structure operator j we have:

jfam = j(e+
m+a+ν + e−m−ν) = fa−m−a

and

jgam = j(ie+
m+a+ν − ie−m−ν) = ga−m−a.

Vectors fam and gam are not eigenvectors of the Dirac operator d, moreover
even Hilbert spaces H±a are not eigenspaces neither for a = 0 or a = 1.

The only possibility to get a suitable Dirac operator is to modify d by some
perturbation. We demand, firstly that new Dirac operator da anticommutes
with j and secondly that it is still u(1)-equivariant. This means that we are
looking for a Dirac operator of the form

dae
±
m±ν = (±xa + d)e±m±ν ,

where xa is a real number. We define:

dae
±
m±ν = (∓ν ∓ a

2
+ d)e±m±ν .

Applying this to fa and ga we get:

daf
a
m = da(e

+
m+a+ν + e−m−ν) = (m+

a

2
)fam

and

dag
a
m = da(ie

+
m+a+ν − ie−m−ν) = (m+

a

2
)gam.
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This almost ends the proof. It is easy to see, that the spectral triples
(A(T1),H+

a , da, j) and (A(T1),H−a , da, j) are unitarily equivalent. If we now
just rename vectors fa and ga via:

eµ : = fam = gam,

where µ = m+ a
2
, we check that:

π(u)eµ = eµ+1, jeµ = e−µ, daeµ = µeµ.

So in the end we have up to bounded perturbations of Dirac operator a
unitary equivalence of spectral triples:

S0 ' (A(T1),H+
0 , da, j) ' (A(T1),H−0 , da, j).

S 1
2
' (A(T1),H+

1 , da, j) ' (A(T1),H−1 , da, j).

and

S∗ ' S0 ⊕ S0 ' S 1
2
⊕ S 1

2
.

Finally let us have a look at the perturbation of the Dirac operator, which
gives the full (j, d, π)-reducibility. It could be explicitely checked that the
perturbation is neither in Ω1

d(A(T1)) nor in jΩ1
d(A(T1))j−1. In fact, the per-

turbation is in the common commutant of A(T1),Ω1
d(A(T1)), jA(T1)j−1 and

jΩ1
dD(A(T1))j−1. Indeed, it is a generic situation, if that set contains more

than only mutiples of the identity, then one can always perturb the Dirac
by an element from that set. However, such perturbation has no geometric
intepretation.

3.4.2 Spectral Triples over A(T1)ZN

We will now consider spectral triples over quotient algebras in the simplest
toy example one can think of: S1. Let us firstly define the action of the
group ZN on the algebra A(T1). For h, the generator of ZN we assume:

h . u = λu,

where λ is the N -th root of unity. The fixed point algebra is generated by
the unitary element uN and clearly it is isomorphic to the initial algebra.

A(T1)ZN ' A(T1).
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The full spectral triple

We will consider spectral triple over fixed point algebraA(T1)ZN with Hilbert
space, Dirac operator and real structure taken from the spectral triple over
initial algebra and ask about its reducibility.

Let us define S̃ZN : = (A(T1)ZN ,Hε, d, j). To study the possible re-
ductions of the spectral triples, we need to find the subspaces, which are
preserved by the invariant subalgebra, d and j. Assuming that such sub-
space is spanned by the eigenvectors of the Dirac operator, we find that the
minimal subspaces preserved by the invariant subalgebra are

Hs : = Span(eNm+ε+s)m∈Z,

where s = 0, 1, 2, . . . , N − 1 so that eNm+s+ε ∈ H0 or H 1
2 .

Let us see whether they are j-invariant. From the definition jeµ = e−µ,
so we see that:

j : Hs −→ H−s−2ε,

and, of course, −s is taken mod N . Thus we obtain a condition (if we
demand the j-invariance of Hs):

2s = −2ε mod N.

If N is even it has to solutions for ε = 0, i.e. s = 0, N
2

, and does not have
solution if ε = 1

2
. If N is odd there is one solution for each ε: if ε = 0 then

s = 0 and if ε = 1
2

then s = N−1
2

.

ε N even N odd

0 0, N
2

0
1
2

– N−1
2

Table 3.1: j−equivariance condition

If s is one of the listed in the table (for given N and ε) one concludes
that Hs is the eigenspace of both d and j. Otherwise the invariant subspace
is the direct sum of Hs ⊕H−s−2ε. Any d and j-invariant subspace gives rise
to a spectral triple over A(T1)ZN . To summarise these results:

Theorem 3.16. Spectral triple S̃ZNε : = (A(T1)ZN ,Hε, d, j) is reducible. We
have following reduction:

• for N even:

S̃ZN0 ' S0 ⊕ S 1
2
⊕ (S∗)⊕

N
2
−1 and (3.1)

S̃ZN1
2

' (S∗)⊕
N
2 . (3.2)
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• for N odd:

S̃ZN0 ' S0 ⊕ (S∗)⊕
N−1

2 and (3.3)

S̃ZN1
2

' S 1
2
⊕ (S∗)⊕

N−1
2 . (3.4)

Note that by the Lemma 3.15 each of the S∗ spectral triples is irreducible
in the strong sense but is reducible up to perturbation of the Dirac operator,
i.e. up to bounded perturbation we have S∗ ' S0 ⊕ S0 ' S 1

2
⊕ S 1

2
.

The equivariant action The aim of classification of irreducible flat spec-
tral triples overA(T1)ZN can be obtained using different path: that of looking
for an equivariant action. It is easy to see that the d-invariant and u(1)-
equivariant representation of ZN on the Hilbert space, which implements the
action on the algebra is (for h the generator of ZN):

ρ(h)eµ = λµ−ε−seµ,

for some s = 0, 1, 2, . . . , N − 1. It is clear that the action is j-equivariant if
and only if:

λ−µ−ε−s = λ−µ+ε+s,

so that
2s+ 2ε = 0 mod N.

The possible solutions are again listed in Table 3.1. Observe that each of the
cases corresponds exactly to the single invariant subspace giving a spectral
triple S0 or S 1

2
and not S∗.

3.4.3 Summary

We see that taking spectral triples over A(T1)ZN we should restore the situa-
tion of A(T1) (as in fact those two algebras are isomorphic), i.e two inequiv-
alent irreducible flat real spectral triples which corresponds to two classically
defined spin structures over circle. But using canonical definition of full
(d, j, π)−reducibility in a strong sense we obtain a lot too many strongly
irreducible spectral triples. To get the correct result we should use the new
definition - reducibility up to bounded perturbation of the Dirac operator.
We have also observed that this result coincides with the number of all pos-
sible d−equivariant and j−equivariant actions of group ZN on a spectral
(A(T1),H, d, j).



Chapter 4

Noncommutative Bieberbach
Manifolds

Exactly one hundred years ago, in 1912, Ludwig Bieberbach proved a theorem
which states that any n-dimensional flat compact manifold is finitely covered
by the n-torus, i.e. is a Bieberbach manifold (see [5, 6] for details). Moreover
Bieberbach showed that any flat compact manifold is a quotient Tn/G, where
G is a finite group. It was a significant result for the topology. From this
moment there was a new tool to solve problems related to flat compact
manifolds M - one could rephrase the problem in terms of groups G such

that: Tn
G−→ M . For example the aim of classification of manifolds for

a given dimension could be translate into the problem of classification of
possible free actions of finite groups on the n-torus, which appears to be a
simpler question.

Today we shall deal with the fixed point algebras of the noncommuata-
tive three torus A(T3

Θ), which was defined in the previous chapter, under
the action of finite groups. The algebra A(T3

Θ) is a noncommutative gener-
alisation of a topological three torus, to be precise the C∗−algebra closure
of A(T3

Θ) for θij = 0 is isomorphic to the algebra of continuous complex
valued functions over a topological T3. It is quite trivial to see that torus is
a Bieberbach manifold. Moreover for any manifold M and group G (acting
freely on M) one has a C∗−algebraical one to one correspondence:

continuous functions ' fixed point subalgebras of C(M)
on the quotient manifold M/G under the action of G .

We shall use this to define the noncommutative counterpart to topological
three-dimensional Bieberbach manifolds. The schedule of this chapter is as
follows. Firstly we shall recall the basic facts relating to the definition of topo-
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logical Bieberbach manifolds. Then we shall focus on the three-dimensional
case and give a classification of free actions of finite groups on three torus in
a C∗−algebraic approach, i.e. we shall characterise C∗−algebras of continu-
ous functions over Bieberbach manifolds as a fixed point algebras of C(T3).
Finely we shall show how one can generalise this result to the case of non-
commutative torus.

4.1 Classical Bieberbach Manifolds

Let Rn be a real space with canonical flat metric, i.e. d(x, y) =
∑n

i=1(xi −
yi)

2 for all x, y ∈ Rn. The orthogonal group O(n) is the set consisting of
A ∈ Mn(R) such that ATA = 1 with the usual multiplication of matrices.
Elements of the groups O(n) and Rn (acting as translations ) are isometries
of V ( T is an isometry if d(x, y) = d(T .x, T .y) for all x, y ∈ Rn). Moreover
we can define a more general isometry of this type:

(A, t) . x = Ax+ t, ∀A ∈ O(n), t, x ∈ Rn

We can as well consider the group generated by such transformations.
A Euclidean group is a crossed product group O(n) n Rn composed of the
orthogonal group and the group of translation, such that the multiplication
is defined as:

(A, t)(A′, t′) = (AA′, t+ At′) ∀A,A′ ∈ O(n) t, t′ ∈ Rn.

We shall now proceed to the definition of Bieberbach manifolds.

Definition 4.1. Let Γ ⊂ O(n) n Rn be discrete and let the action of Γ be
proper discontinous. If the quotient manifold M = Rn/Γ is compact, then
we shall call Γ an infinite Bieberbach group and M a Bieberbach manifold.

Moreover another useful lemma can be stated:

Lemma 4.2. A Bieberbach manifold M = Rn/Γ is orientable if and only if
Γ ⊂ SO(n) nRn.

We shall now recall the most essential of the theorems stated by Bieber-
bach.

Theorem 4.3 (Bieberbach, [5, 6]). Let M be a flat and compact manifold of
dimension n. Then there exists Γ a subgroup of O(n) nRn such, that Rn/Γ
is isometric to M .
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In the Definition 4.1 we have defined Bieberbach manifolds as the quotient
of real space by the action of a specific subgroup of O(n)nRn. On the other
hand by the Theorem 4.3 we see that our definition applies to all flat and
compact manifolds. As any Bieberbach manifold is flat and compact we
conclude that following definition is equivalent.

Definition 4.4. A manifold M is called a Bieberbach manifold if it is flat
and compact.

The following two theorems are especially important in our case:

Theorem 4.5 (Bieberbach, [5, 6]). Let Γ be an infinite Bieberbach group,
then the set of pure translations in Γ defined as Tn = Γ ∩ Rn is a lattice
isomorphic to Zn.

Theorem 4.6 (Bieberbach, [5, 6]). Tn is a normal subgroup of Γ. Moreover
the quotient group G := Γ/Zn is finite. We shall call G a finite Bieberbach
group.

The proof of previous theorems implies another very interesting fact (see
[45]). If we define a function r : O(n) n Rn 3 (A, a) → A ∈ O(n), then
r(Γ) ' G. Moreover G acting on Rn leaves Tn = Γ ∩ Rn invariant, i.e. G
acts on Tn. These facts implies the following theorem.

Theorem 4.7 (Bieberbach, [5, 6]). Every Bieberbach manifold is normally

covered by a flat torus Tn
G−→ M , and the covering map is a local isometry.

Moreover M = Rn/Γ = Tn/G.

Bieberbach manifolds are fully classified by their fundamental groups
π(M) and holonomy groups. Recall that holonomy group of a manifold
M is discrete if and only if M is flat (see [3]).

Lemma 4.8. Let Γ be a discrete group ( not necessarily a subgroup of ⊂
O(n) n Rn) which acts freely on Rn. Let π(M) be a fundamental group
of manifold M = Rn/Γ. Then M is a Bieberbach manifold if and only if
π(M) = Γ. Moreover then G = Γ/Zn is a holonomy of M .

The simplest example of Bieberbach manifold is torus, which has a trivial
holonomy for any dimension. Whereas the lowest dimension in which the
holonomy group of an orientable Bieberbach manifold is not trivial is three.
The following GN = 1,Z2,Z3Z4,Z2 × Z2,Z6 classifies six nonhomotopic
orientable Bieberbach manifolds T3/GN . In the following sections we shall
give a precise definitions of three-dimensional Bieberbach manifolds case by
case in the C∗−algebraic approach.
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4.2 Three-dimensional Bieberbach Manifolds

In this section we shall briefly recall the description of three-dimensional
Bieberbach manifolds as quotients of the three-dimensional tori by the ac-
tion of a finite group. We use the algebraic language, taking the algebra
of the polynomial functions on the three-torus T3 generated by three mu-
tually commuting unitaries U, V,W . This algebra could be then completed
first to the algebra of smooth functions on the torus C∞(T3) and later to a
C∗-algebra of continuous functions C(T3).

There are, in total, 10 different Bieberbach three-dimensional manifolds,
six orientable (including the three-torus itself) and four nonorientable ones.
This follows directly from the classification of Bieberbach groups of R3 out
of which six do not change orientation and four change the orientation. The
action of the finite groups on the unitaries U, V,W , which generate the al-
gebra of continuous functions on the three-torus is presented in the table
below and comes directly from the action of Bieberbach groups on R3. For
each GN we obtain a fixed point algebra C(T3)G (denoted BN in the ori-
entable case and by NN in the nonorientable) which is isomorphic to the
C∗−algebra of complex functions over three-dimensional Bieberbach mani-
fold. The above actions give rise to five oriented flat three-manifolds different

name group G action of the generators of G on U, V,W

B2 Z2 h . U = −U , h . V = V ∗, h . W = W ∗

B3 Z3 h . U = e
2
3
πiU , h . V = W , h . W = V ∗W ∗

B4 Z4 h . U = iU , h . V = W , h . W = V ∗

B5 Z2 × Z2 h1 . U = −U , h1 . V = V ∗, h1 . W = W ∗

h2 . U = U∗, h2 . V = −V , h2 . W = −W ∗

B6 Z6 h . U = e
1
3
πiU , h . V = W , h . W = V ∗W

Table 4.1: Orientable actions of finite groups on three-torus

from the torus. The remaining four nonorientable quotients, originate from
the following actions:

For full details and classifications of all free actions of finite groups on
three-torus see [27, 35], note, however, that the resulting quotient manifolds
are always one of the above Bieberbach manifolds. It is easy to see that N1
is just the Cartesian product of S1 with the Klein bottle, whereas N3 and
N4 are two distinct Z2 quotients of B2.



4.3. NONCOMMUTATIVE BIEBERBACH SPACES 45

algebra group G action of the generators of G on U, V,W

N1 Z2 h . U = −U , h . V = V , h . W = W ∗

N2 Z2 h . U = −U , h . V = VW , h1 . W = W ∗

N3 Z2 × Z2 h1 . U = −U , h1 . V = V ∗, h1 . W = W ∗

h2 . U = U , h2 . V = −V , h2 . W = W ∗

N4 Z2 × Z2 h1 . U = −U , h1 . V = V ∗, h1 . W = W ∗

h2 . U = U , h2 . V = −V , h2 . W = −W ∗

Table 4.2: Nonorientable action of finite groups on three-torus

4.2.1 Spin structures over Bieberbach manifolds

Each three-dimensional orientable Bieberbach manifold is a spin manifold
and as such carries a spin structure. Full classification of spin structures
over topological three-dimensional Bieberbach manifolds was done by Pfäffle
in [45]. To obtain this result he used the fundamental groups. Recall that in
case of Bieberbach manifolds of dimension three we have the following long
exact sequence:

0→ Z3 i−→ ΓN
r−→ GN → 0,

where ΓN is a fundamental group (i.e. infinite Bieberbach group) of T3/GN

and GN is holonomy (i.e. finite Bieberbach group) of T3/GN . The morphism
r is also called a holonomy of ΓN , while i is just the inclusion of Z3 in ΓN .

Theorem 4.9 (Pfäffle, [45]). Let M = R3/Γ be a Bieberbach manifold.
Then there is one to one correspondence between the spin structures on M
and homomorphisms ε : Γ→ Spin(3) such that:

r = λ ◦ ε,

where r is the holonomy of Γ and λ is the double covering of SO(3).

Description of fundamental groups ΓN is quite complicated and sophisti-
cated task, on the other hand it is barely connected with our construction
of spectral triples over noncommutative Bieberbach spaces. We shall only
present the number of spin structures for each manifold.

4.3 Noncommutative Bieberbach Spaces

Since a convenient description of Bieberbach manifolds is as quotients of
three-torus by the action of finite groups we can ask whether starting from a
noncommutative three-dimensional torus we can obtain interesting examples
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name group G number of spin structures

C(T3) 1 8
B2 Z2 8
B3 Z3 2
B4 Z4 4
B5 Z2 × Z2 4
B6 Z6 2

Table 4.3: Spin structures over Bieberbach manifolds

of nontrivial flat noncommutative manifolds. Recall that the most general
noncommutative three-torus A(T3

Θ) can be realized as a pre−C∗−algebra of
polynomials generated by three unitaries U, V,W with respect to commuta-
tion relations:

V U = e2πiθ21UV, WU = e2πiθ31UW, WV = e2πiθ32VW.

The algebra A(T3
Θ), i.e. the algebra of polynomials in U, V,W , can be

then completed to the algebra of ”smooth functions” C∞(T3
Θ) and to the

C∗−algebra C(T3
Θ) (for details of the construction see Section 3.3). It is

worth to recall that A(T3
Θ) is dense in C(T3

Θ) in the C∗−norm and as such
is a pre−C∗−algebra for C(T3

Θ).

Next, we shall find all possible values of the matrix θjk such that the
actions of the finite group G (as discussed earlier) are compatible with the
commutation relation. We might define the compatibility with the action
of G in the following way. We say that the action of the finite group G is
compatible with the commutation relations imposed by θjk if:

g . (ab) = (g . a)(g . b) ∀a, b ∈ A(T3
Θ), g ∈ G.

We have:

Lemma 4.10. The commutation relations imposed by the θjk are compatible
with the actions of group G, given in the tables 4.1 and 4.2 if 0 ≤ θjk < 1
are as follows:

As we are interested in the genuine noncommutative case, where the
three-dimensional torus has at least one irrational rotation subalgebra (that
is, at least one of the independent entries of the matrix θjk is irrational),
we see that we might obtain only 4 nontrivial orientable noncommutative
Bieberbach manifolds and two nonorientable ones.
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group G θ12 θ13 θ23 conditions

Z2
k
2

l
2

θ k, l = 0, 1,

Z3
k
3

3−k
3

θ k = 0, 1, 2,

Z4
k
2

k
2

θ k = 0, 1,

Z2 × Z2
k
2

l
2

m
2

k, l,m = 0, 1

Z6
k
3

3−k
3

θ k = 0, 1, 2,

Table 4.4: Values of θjk for compatible cocycles for orientable actions

group G θ12 θ13 θ23 conditions

Z2 θ k
2

l
2

k, l = 0, 1,

Z2 θ k
2

l
2

k, l = 0, 1

Z2 × Z2
k
2

l
2

m
2

k, l,m = 0, 1

Z2 × Z2
k
2

l
2

m
2

k, l,m = 0, 1

Table 4.5: Values of θjk for compatible cocycles for nonorientable actions

Definition 4.11. Let C(T3
θ), be a C∗−algebra of noncommutative torus with

commutation relation obtained from θ12 = θ21 = 0 and θ23 = −θ for an
irrational 0 < θ < 1. Then the generating unitaries U, V,W satisfy relations:

UV = V U, UW = WU, WV = e2πiθVW.

We define the algebras of noncommutative Bieberbach manifolds as the
fixed point algebras of the following actions of finite groups G on C(T3

θ)
(note that for N1θ and N2θ we need to relabel the generators: {U, V,W} →
{W,U, V } so that always the V and W are from the irrational rotation sub-
algebra), which are combine in the table 4.6. For convenience and to match
the notation of other papers we rescaled the generators V,W in the case of
Z3 and Z6 actions, also, for Z3 we take the other generator of the Z3 action.

name group G action of the generators of G on U, V,W

B2θ Z2 h . U = −U , h . V = V ∗, h . W = W ∗,

B3θ Z3 h . U = e
2
3
πiU , h . V = e−πiθV ∗W , h . W = V ∗,

B4θ Z4 h . U = iU , h . V = W , h . W = V ∗,

B6θ Z6 h . U = e
1
3
πiU , h . V = W , h . W = e−πiθV ∗W ,

N1θ Z2 h . U = U∗, h . V = −V , h . W = W ,
N2θ Z2 h . U = U∗, h . V = −V , h . W = WU∗,

Table 4.6: The action of finite cyclic groups on C(T 3
θ )
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Lemma 4.12. The actions of the cyclic groups ZN , N = 2, 3, 4, 6 on the
noncommutative three-torus, as given in the table 4.6 is free.

Proof. This proposition was stated in our paper ( for details see [40]). It
involves the concept of Hopf algebras, which we shall not introduce in this
dissertation. So we shall not go into details of the proof.



Chapter 5

K−theory of Noncommutative
Bieberbach Manifolds

The definition of spectral triple involves the concept of finitely generated
projective module. To be precise, having a spectral triple (A,H, D) we
define H∞, the subspace of H consisting of smooth vectors, i.e. H∞ =
H ∩

⋂∞
k=1 Dom(Dk). One of the axioms states that H∞ is a finitely gen-

erated projective module over a pre−C∗−algebra A. This leads us to a
question whether we can classify, in some manner, the finitely generated
projective modules over the C∗−algebra C(T3

Θ)GN , thus to the K−theory
of noncommutative Bieberbach spaces. In this chapter we shall present the
computation of the K-theory groups of the C∗−algebras of Bieberbach spaces
obtained by the action of the cyclic group ZN , N = 2, 3, 4, 6. As K−theory
groups of pre-C∗-algebra are the same as K0 and K1 of its C∗−completion,
in this chapter we shall concentrate on C∗−algebras.

The layout of the chapter is as follows. First we shall discuss the Morita
equivalence of Bieberbach spaces and crossed product algebras, this allows
us to equate the K−theory of both algebras. Then we shall present possible
methods of computation and show how they can be explicitly applied on the
toy model of Klein bottle. Finally after choosing the most transparent of
them we present the computation of K−theory of C(T3

Θ)ZN .

5.1 The Morita Equivalence and Takai Dual-

ity

We shall begin with the recalling the Kishimoto-Takai theorem concerning
stable isomorphism of crossed product and fixed point algebras (for more
details see [31, 53]).

49
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Theorem 5.1 (Kishimoto, Takai,[31]). Let (A, G, α) be C∗−dynamical sys-
tem based of a compact abelian group G and let A be unital. For each ĝ ∈ Ĝ
let Iĝ be the closed ideal of AG = AG(1) generated by AG(ĝ)∗AG(ĝ). If

Iĝ = AG for all ĝ ∈ Ĝ then Aoα G is stably isomorphic to AG ⊗K (l2(G)).

We shall now discuss the assumptions of this theorem when applied to
noncommutative Bieberbach spaces. In this case the group G is cyclic finite
group so the assumption of compactness is trivially fulfilled. The dual Ĝ
is again ZN . There exists a unitary U ∈ C(T3

Θ) such that αh(U) = e
2πi
N

for h the generator of ZN , thus Up ∈ C(T3
Θ)ZN (p) is a unitary for each

p ∈ Ĝ = ZN . This implies

C(T3
Θ)ZN (p) = UpC(T3

Θ)ZN (1)

and moreover

Ip = C(T3
Θ)ZN .

The action of cyclic group fulfils the assumptions of Takai-Kishimoto
theorem thus the fixed point algebra C(T3

Θ)ZN is Morita equivalent to the
crossed product algebra C(T3

θ) o ZN , N = 2, 3, 4, 6. In fact we can apply
directly the Takai isomorphism (see [53]) to determine explicitly the isomor-
phism between C(T3

θ)
Zn ⊗MN(C) and C(T3

θ) o ZN , which we shall present
now.

Lemma 5.2. Consider the action of a finite group ZN on C(T3
θ) determined

by the action of the generator h :

h . U = λU, h . V = β(V ), h . W = β(W ),

where U is central in C(T3
Θ), λ = e

2πi
N and β is an automorphism of the

rotation algebra C(T2
Θ) with generators V and W (with θ not necessarily

irrational). The crossed product algebra C(T3
θ) oλ⊗β ZN , is generated by

U, V,W and h with relations:

hU = λUh, hV = β(V )h, hW = β(W )h, hN = 1.

Then C(T3
θ) oλ⊗β ZN is canonically isomorphic to C(T3

θ)
Zn ⊗MN(C).

Proof. Consider an element ĥ in the crossed product algebra:

ĥ := U +

(
1

N

N∑
k=1

hk

)(
U1−N − U

)
. (5.1)



5.1. THE MORITA EQUIVALENCE AND TAKAI DUALITY 51

It is easy to verify that:

ĥN = 1, hĥ = λĥh,

so h and ĥ generate the matrix algebra MN(C). Since U is central both h
and ĥ commute with any element of the fixed point subalgebra C(T3

θ)
Zn .

We shall demonstrate now the isomorphism from the lemma, which we
shall denote by Ψ. First, the relation (5.1) could be inverted, yielding:

Ψ(U) = ĥ+

(
1

N

N∑
k=1

hk

)
ĥ
(
UN − 1

)
.

Since UN is an invariant element of the algebra then Ψ(U) is clearly in
C(T3

θ)
ZN ⊗MN(C). Take now arbitrary x ∈ C(T 3

θ ). It is easy to see that
x could be uniquely decomposed as a sum of elements homogeneous with
respect to the action of ZN :

x =
N−1∑
k=0

xk, h . xk = λkxk.

Indeed, it is sufficient to take:

xk =
1

N

N−1∑
j=0

λ̄kj(hj . x), k = 0, . . . , N − 1.

Then if we define:

Ψ(x) =
N−1∑
k=0

(xkU
−k)Ψ(U)k,

then the range of Ψ is clearly in C(T3
θ)
ZN⊗MN(C), since each of the elements

xkU
−k is invariant and in the fixed point algebra. The verification that Ψ

is an algebra morphism and is an isomorphism is trivial and we shall omit
it.

Note that the isomorphism Ψ which provides the Morita equivalence in
our case does not depend on the value of the parameter θ, hence for the
Bieberbach manifolds (commutative and noncommutative) their K-theory
groups are the same as the K-theory groups of the crossed product algebras.

A technical tool for the computations is the following lemma.

Lemma 5.3. Let A be a C∗-algebra, β its automorphism and let U be a
unitary implementing the action β in the crossed product A oβ Z. Now
consider an action α of ZN on Aoβ Z, such that for h the generator of ZN :
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• it is a multiplication by a root of unity ( λN = 1) on the generator of
CZ:

h . U = λU ;

• its restriction to the algebra A gives an automorphism of the latter:

h . a = α(a) ∈ A ∀a ∈ A,

such that it commutes with β, i.e. α(β(a)) = β(α(a)) for any a ∈ A.

Then the algebra (AoβZ)oα̂ZN is isomorphic to (AoαZN)oα̂Z, where
the action α̂ of Z for its generator U is β on A and a multiplication by a λ̄
on the generator h of CZN .

Proof. With the notation like above U denotes the generator of Z and h the
generator of ZN . We have:

U . a = UaU∗ = β(a), h . a = hah∗ = α(a),

h . U = hUh∗ = λU ∀a ∈ A.

The action α̂ is defined as follows:

U . a = UaU∗ = β(a) = α̂(a), ∀a ∈ A,

U . h = UhU∗ = λh = α̂(h). (5.2)

It is easy to see that both crossed product algebras are mutually isomorphic
to each other as the defining relations are identical.

Applying this to the case of the C(T3
Θ) and cross product by the action

of ZN (N=2,3,4,6) we have:

Corollary 5.4. The algebra of the noncommutative three-torus C(T3
Θ) equals

C(T2
Θ) ⊗ C(T1) (in the case of torus with the automorphism induced by

Bieberbach groups), which can be equivalently rewritten as a crossed product
C(T2

Θ)oZ with the trivial action of Z. For N = 2, 3, 4, 6 the action α of ZN
on it is by multiplication on the generator of Z and leaves the algebra C(T2

θ)
invariant. This action comes, in fact, from the SL(2,Z) group of automor-
phisms of C(T2

Θ). Therefore by the Lemma 5.3 we have for N = 2, 3, 4, 6 the
following isomorphism:

C(T3
θ) oα ZN ' (C(T2

θ) oα ZN) oα̂ Z, (5.3)

where α̂(a) = a,∀a ∈ C(T2
θ) and α̂(h) = λ̄h, for h ∈ CZn (generator of ZN).
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Remark 5.5. We shall refer several times in our further computation to
algebras which fulfils the assumptions of lemma 5.3 and have trivial action
β. To fix our terminology we will say that the crossed product algebra

(A⊗ C(T1)) oα ZN

is Bieberbach-like if for h the generator of group ZN we have:

• the action of h is a multiplication by a root of unity on the generator
of C(T1) denoted U , i.e. h . U = e

2πi
N U ;

• restriction of the action α to the C∗−algebra A gives an automorphism
of the latter, i.e. h . a = α(a) ∈ A ∀a ∈ A.

By the Lemma 5.3 the Bieberbach-like algebra can be equivalently rewritten
as:

(Aoα ZN) oα̂ Z.

5.2 The Methods of Computation

We shall now discuss three methods of computation. The first one can be
applied only to the case B2θ, while the other two can be used to compute
K−theory in each of the cases BNθ. In the next sections we shall show how
to use all those methods to compute the K−theory of our toy model, which
is Klein bottle, and after this choose the best one for the computation for
Bieberbach manifolds.

5.2.1 Lance-Natsume Six Term Exact Sequence

Let us recall that G1 ∗ G2 a free product of groups is a group consisting
of ”words” composed of ”letters” (which are elements) of G1 and G2. Now
having a crossed product algebra Aoα(G∗H) we define AoαG1 and AoαG2

as another crossed product algebras with the action coming from restriction
of α to G1 or G2 respectively. In the papers of Lance and Natsume the
following theorem was proven.

Theorem 5.6 ([33, 38]). Let Γ = G1 ∗G2 be a free product of discrete groups
G1 and G2 and let α denote the action of Γ on the C∗−algebra A. Then for
the crossed products there is a six term exact sequence:

K0(A)
i∗1⊕−i∗2 // K0(Aoα G1)⊕K0(Aoα G2)

j∗1 +j∗2 // K0(Aoα Γ)

��
K1(Aoα Γ)

OO

K1(Aoα G1)⊕K1(Aoα G2)
j∗1 +j∗2oo K1(A),

i∗1⊕−i∗2oo
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where the restriction of action of Γ is also denoted α. The horizontal line
are morphism of groups induced by the canonical inclusions of algebras:

ik : A → Aoα Gk, jk : Aoα Gk → Aoα (G1 ∗G2),

where k = 1, 2.

We could use this six term exact sequence providing we know how to
rewrite the Bieberbach crossed products as Bo(G1∗G2) for some C∗−algebra
B and groups G1 and G2. In the next section we shall show how one can do
this in the case of our toy model.

5.2.2 Six Term Exact Sequence for Cyclic Group

The crucial for this subsection is the six term exact sequence obtained by
Blackadar in [8]. He describe it as a byproduct of proving the Pimsner-
Voiculescu sequence, while we shall use it to get some relevant results con-
cerning a class of crossed product algebras by the finite cyclic groups.

Theorem 5.7 (Blackadar, p. 77). Let B be a C∗−algebra and let β be its
automorphism such that βN = id. Then there is a six term exact sequence
for crossed products:

K1(B oβ ZN) // K0(B oβ Z) π∗ // K0(B oβ ZN)

1−β̂∗
��

K1(B oβ ZN)

1−β̂∗
OO

K1(B oβ Z)
π∗

oo K0(B oβ ZN)oo

,

where connecting morphisms are induced as follows: β̂∗ by the action of dual
group on the crossed product B oβ ZN and π∗ by canonical surjection of CZ
in CZN .

We are about to state the lemma dealing with crossed products Morita
equivalent to Bieberbach spaces with cyclic groups using the above theorem.
Firstly let us recall a theorem which is necessary to this aim.

Theorem 5.8 (Takai-Takesaki duality). Let A be a C∗−algebra and let G
be a locally compact abelian group. Consider a crossed product (Aoα G) oα̂

Ĝ with its canonical automorphism ˆ̂α. Then the following C∗−dynamical
systems are isomorphic:

((Aoα G) oα̂ Ĝ; ˆ̂α) ' (A⊗K(G);α⊗ Ad(λ)),

where K(G) is the C∗−algebra of compact operators on l2(G) and Ad(λ) is
the adjoint action of the left translation λ of G on l2(G).
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In the case of Bieberbach-like crossed products we have following lemma.

Lemma 5.9. Consider a C∗−algebra C and its automorphism α such that
A = (C ⊗ C(T1)) oα ZN is a Bieberbach-like crossed product (see Remark
5.5). Then there is a six term exact sequence:

K1(C) // K0(A) π∗ // K0(C)
1−α∗

��
K1(C)

1−α∗
OO

K1(A)
π∗

oo K0(C)oo

The morphisms in the vertical lines are induced by the restricion of action α
to the subalgebra C.

Proof. Recall that by the Lemma 5.3 we have the following isomorphism of
C∗−algebras:

(C ⊗ C(T1)) oα ZN = (C oα ZN) oα̂ Z.

The six term exact sequence of the lemma comes from the application of
Theorem 5.7 with B = C oα ZN and β = id⊗ α̂.

Note that in the crossed product (C oα ZN) oα̂ ZN the action α̂ is in
fact the action of dual group ZN and, as such, fulfils the assumptions of
Takai-Takesaki duality. What we need to do to prove lemma is to replace
(C oα ZN) oα̂ ZN with C and ˆ̂α with α.

To be precise, with the use of the Takai-Takesaki duality, we are free to
replace (C oα ZN) oα̂ ZN with C ⊗MN(C) in the six term exact sequence
if at the same time we replace ˆ̂α with α ⊗ Ad(λ). Then by the definition
of unitarily equivalence of classes in K0 and K1 we get ∀a ∈ M∞(C),m ∈
MN(C), u ∈ U(N):

[a⊗m] = [(1⊗ u)(a⊗m)(1⊗ u∗)] = [a⊗ umu∗], .

As the adjoin action Ad(λ) is implemented by the unitary in U(N) (called h
in the case of Bieberbach spaces) we conclude that:

(α⊗ Ad(λ))∗[a⊗m] = [α(a)⊗ umu∗] = (α⊗ 1)∗[a⊗m]

∀a⊗m ∈M∞(C)⊗MN(C).

This shows that in the six term exact sequence we can replace the mor-
phisms of K-theory groups via:

α∗ ⊗ Ad(λ)∗ = α∗ ⊗ 1.

The last step comes from the fact that K-theory functor is stable, so Ki(C ⊗
MN(C)) = Ki(C). This ends the proof.
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Corollary 5.10. Let BN be a three-dimensional noncommutative Bieber-
bach space. We restrict α the action of ZN on C(T2

Θ) ⊗ C(T1) to the non-
commutative part C(T2

Θ). Then as a direct consequence of previous lemma
we get the six term exact sequence:

K1(C(T2
Θ)) // K0(BN) π∗ // K0(C(T2

Θ))

1−α∗
��

K1(C(T2
Θ))

1−α∗
OO

K1(BN)
π∗

oo K0(C(T2
Θ))oo

5.2.3 The Pimsner-Voiculescu Six Term Exact Sequence

We begin this subsection by the recalling of well known Pimsner-Voiculescu
six term exact sequence.

Theorem 5.11 (Pimsner,Voiculescu,1980,[47]). Let B be a C∗−algebra, let
β be its automorphism. Then consider a crossed product B oβ Z, where for
the generator of Z we have h . a = β(a) for any a ∈ B. Then the diagram:

K0(B)
1−β∗ // K0(B) i∗ // K0(B oβ ZN)

��
K1(B oβ ZN)

OO

K1(B)
i∗

oo K1(B)
1−β∗

oo

is an exact sequence.

We shall use it to obtain the next lemma:

Lemma 5.12. Let A = (C ⊗ C(T1)) oα ZN be a Bieberbach-like crossed
product (see Remark 5.5) for a C∗−algebra C and its automorphism α. Then
there is a six term exact sequence:

K0(C oα ZN)
1−α̂∗ // K0(C oα ZN) i∗ // K0(A)

��
K1(A)

OO

K1(C oα ZN)
i∗

oo K1(C oα ZN)
1−α̂∗
oo

,

where the connecting morphisms α̂∗ are induced by the action of dual group
on the crossed product CoαZN and i∗ are induced by the canonical inclusion.

Proof. First recall that by the Lemma 5.3 we have:

(C ⊗ C(T1)) oα ZN = (C oα ZN) oα̂ Z.

Then we obtain a six term exact sequence of the Lemma as a direct conse-
quence of Pimsner-Voiculescu sequence with B = C oα ZN and β = α̂.
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Corollary 5.13. For three dimensional noncommutative Bieberbach crossed
products C(T3

Θ) oα ZN we immediately get:

K0(C(T2
Θ) oα ZN)

1−α̂∗ // K0(C(T2
Θ) oα ZN)

i∗ // K0(BN)

��
K1(BN)

OO

K1(C(T2
Θ) oα ZN)

i∗
oo K1(C(T2

Θ) oα ZN)
1−α̂∗
oo

5.3 A toy model - Klein Bottle

While defining classical Bieberbach manifolds we restricted our attention to
the orientable case. It is due to the aim of giving description of classical
spin structures and propose correspondence to the irreducible real spectral
triples. Manifolds which were the object of consideration need to be spin
manifolds and as such necessarily orientable. Without this restriction we
find an example of nontrivial (i.e. with nontrivial holonomy) two-dimensional
Bieberbach manifold, namely Klein bottle.

We will now briefly define the Klein bottle in the C∗−algebraic approach.
We shall as previously use the fact that for each Bieberbach manifold torus
is a covering space. Let C(T2) be a C∗−algebra closure of the algebra of
polynomials generated by two commuting unitaries U and V . The group Z2

(the holonomy of Klein bottle) acts on C(T2) via:

h . U = αh(u) = −U, h . V = αh(V ) = V ∗,

for h a nontrivial element of Z2.

Definition 5.14. We shall call the fixed point algebra C(T2)Z2 the Klein
bottle and denote it K2.

It is easy to see using the commutative version of Gelfand-Naimark the-
orem that K2 is isomorphic as a C∗−algebra to the complex algebra of con-
tinuous functions over a topological Klein bottle.

Lemma 5.15. Let K2 be a Klein bottle. Consider the crossed product algebra
C(T2) oα Z2 generated by two commuting unitaries U, V and a selfadjoint
unitary h such that:

hU = −Uh, hV = V ∗h, h2 = 1.

Then K2⊗M2(C) is isomorphic to C(T2) oα Z2.
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Proof. We define the element:

ĥ = U +
1

2
(1 + h)(U∗ + U)

and the ”inverse” relation:

Ψ(U) = ĥ+
1

2
(1 + h)ĥ(U2 − 1).

Then analogously to the Lemma 5.2 the proof that Ψ can be expanded to
the isomorphism Ψ : C(T2) o Z2 → K2 ⊗M2(C) comes from the direct use
of Takai duality for finite groups.

K−theory of Klein Bottle

We shall now demonstrate three different methods of computing the K-theory
of Klein bottle. We use the fact that the algebra K2 is stably isomorphic to
C(T2) o Z2 and conduct the computation on the latter algebra.

Lemma 5.16. Let K2 be a Klein bottle, then;

K0(K2) = Z⊕ Z2 K1(K2) = Z.

Moreover we have K2 ⊗ M2(C) = C(T2) o Z2 for i = 0, 1. Then the
generators of Ki(K2) written via the representatives from the crossed product
algebra are:

[
1

2
(1 + h)], [

1

2
(1 + V h)]

for K0 and
[U ]

for K1.

I. Lance-Natsume Six Term Exact Sequence

Firstly we shall prove the following:

Lemma 5.17. Let C(T1)o(h,f)(Z2∗Z2) be the algebra generated by a unitary
U and two elements h, f generating the free product Z2 ∗ Z2 such that:

hUh∗ = fUf ∗ = −U, h2 = 1, f 2 = 1.

Then the following C∗−algebras are isomorphic:

C(T2) oh Z2 ' C(T1) o(h,f) (Z2 ∗ Z2).
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Proof. In the algebra C(T2) oh Z2 sits the element V h. It is a unitary and
moreover:

(V h)2 = 1, (V h)U = −U(V h).

The algebra C(T2)oh Z2 can equivalently described as generated by the set
{U, V h, h}, but on the other hand it is easy to see that it is the same as
C(T1) o(h,f) (Z2 ∗ Z2) if we just rename f : = V h.

Let us now apply this result to the Lance-Natsume six term exact se-
quence (Theorem 5.6). To make full use of it we will need to know:

• the K-theory of C(T1);

• the K-theory of C(T1) oh Z2 and C(T1) of Z2;

• the generators of K-theory groups;

• the morphisms induced by inclusions i1,2 and j1,2.

Of course the simplest of those ingredients is the K-theory of torus, which
is K0(C(T1)) = Z with generator [1] and K1(C(T1)) = Z with generator [U ].
A bit less trivial may be the K-theory of crossed products. Firstly let us note
that in fact C(T1)ohZ2 = C(T1)of Z2, the difference lies only in the name
of the generator of Z2.

Lemma 5.18.
K0(C(T1) o Z2) = Z

with generator [1
2
(1 + h)] (respectively [1

2
(1 + f)]).

K1(C(T1) o Z2) = Z

with generator [U ].

Proof. Using once again explicit form of Takai-Kishimoto isomorphism (see
Lemmas 5.15, 5.2) we obtain that C(T1) o Z2 = C(T1)Z2 ⊗M2(C). Now
as C(T1)Z2 ' C(T1) which K−theory we already know we conclude that
K0(C(T1) o Z2) = K1(C(T1) o Z2) = Z. Now to find the explicit form of
the generators we need to move back through all isomorphisms. Thus we get
for K0(C(T1) oh Z2):

[1]C(T1)Z2 → [diag(1, 0)]C(T1)Z2⊗M2(C) → [
1

2
(1 + h)]C(T1)ohZ2

and for K1(C(T1) oh Z2):

[U2]C(T1)Z2 → [diag(U2, 1)]C(T1)Z2⊗M2(C) → [U ]C(T1)ohZ2
.
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The fist arrow is just an inclusion of C(T1)Z2 in C(T1)Z2 ⊗ M2(C). The
second arrow in both cases comes from the direct application of the explicit
form of Takai-Kishimoto isomorphism (see [31, 53] and Lemma 5.2). The
computation of the generators for C(T1) of Z2 are exactly the same so we
shall omit them.

For the generator of K0(C(T1) oh Z2) we have

[
1

2
(1 + h)] = [U(

1

2
(1 + h))U∗] = [

1

2
(1− h)]

and moreovwer 1
4
(1 + h)(1− h) = 0, so :

[
1

2
(1 + h)] + [

1

2
(1 + h)] = [1]. (5.4)

and similarly for K0(C(T1)ofZ2). We are now ready to explicitly determine
the morphisms i∗1,2 and j∗1,2:

i∗1([1]) = 2[1
2
(1 + h)], j∗1([1

2
(1 + h)]) = [1

2
(1 + h)],

i∗1([U ]) = [U ], j∗1([U ]) = [U ],
i∗2([1]) = 2[1

2
(1 + f)], j∗2([1

2
(1 + f)]) = [1

2
(1 + V h)],

i∗2([U ]) = [U ], j∗2([U ]) = [U ].

We shall now recall all we know about Ki(C(T2) o Z2), put it to the
Lance-Natsume six term exact sequence and use it to compute the Ki(K2).
We have:

Z
2⊕−2 // Z⊕ Z

j∗1 +j∗2 // K0(K2)

0
��

K1(K2)

0

OO

Z⊕ Z
j∗1 +j∗2oo Z,

1⊕−1oo

We compute the K-theory groups from the fact that:

K0(K2) = coker(i∗1 ⊕−i∗2)K0⊕K0
,

K1(K2) = coker(i∗1 ⊕−i∗2)K1⊕K1
,

where coker(i∗1 ⊕−i∗2)Ki⊕Ki , is the cokernel of the morphism

i∗1 ⊕−i∗2 : Ki(C(T1))→ Ki(C(T1) o Z2)⊕Ki(C(T1) o Z2).

When we apply the explicit form of the morphism i∗1 ⊕−i∗2 we obtain:

K0(K2) = Z⊕ Z2,



5.3. A TOY MODEL - KLEIN BOTTLE 61

Now we can use morphisms j∗k to determine the generators of Ki(K2). As
[1
2
(1 + h)]⊕−[1

2
(1 + f)] is not in the image of i∗1 ⊕−i∗2 in the case of K0 we

conclude that j∗1([1
2
(1 + h)]) 6= j∗2([1

2
(1 + f)]). So we see that both [1

2
(1 + h)]

and [1
2
(1 + V h)] are independently generators of K0(K2). On the other hand

2[1
2
(1 + h)]⊕−2[1

2
(1 + f)] is in the image of i∗1 ⊕−i∗2, so there is a relation:

2[
1

2
(1 + h)] = 2[

1

2
(1 + V h)].

It is not surprising, as by the Equation 5.4:

2[
1

2
(1 + h)] = 2[

1

2
(1 + f)] = [1].

For the K1(K2) from the fact that [U ] ⊕ [U∗] is in the image of i∗1 ⊕ −i∗2 we
conclude that:

j∗1([U ]) = j∗2([U ]),

and so there is only one generator denoted [U ].

Remark 5.19. Using similar consideration one can show that in the case of
three-dimensional B2 Bieberbach space one obtatains:

C(T3
Θ) o Z2 ' C(T2) o (Z2 ∗ Z2).

This can be used to compute the K0(B2) and K1(B2). However we shall use
other methods to compute it.

II. Six Term Exact Sequence for Cyclic Groups

Let K2 = C(T2)Z2 be the Klein bottle, then the crossed product C(T2)oαZ2

is Bieberbach-like and we can write it equivalently as (C(T1) oα Z2) oα̂ Z,
where for V the generator of C(T1) we have α(V ) = V ∗. Then as a direct
consequence of the Lemma 5.9 we get the six term exact sequence:

K1(C(T1)) // K0(K2) π // K0(C(T1))

1−α∗
��

K1(C(T1))

1−α∗
OO

K1(K2)π
oo K0(C(T1))oo

We recall that K0(C(T1)) = K1(C(T1)) = Z and the generators of K0

and K1 are [1] and [U ] respectively. Moreover the action of Z2 is defined on
the generator of the algebra via α(V ) = V ∗, thus

α∗([1]K0) = [1]K0 , α∗([V ]K1) = −[V ]K1 .
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Then the six term sequence is:

Z // K0(K2) π // Z

0

��
Z

2

OO

K1(K2)π
oo Zoo

Once again we conclude that:

K0(K2) = ker(1− α∗)K0 ⊕ coker(1− α∗)K1 = Z⊕ Z2,

K1(K2) = ker(1− α∗)K1 = Z.

Note that using this method we do not know how to find the explicit formula
for the generators of K−theory groups.

III. Pimsner-Voiculescu Six Term Exact Sequence

Again recall that K2 ⊗ M2(C) = C(T2) oα Z2 is Bieberbach-like crossed
product. In the case of the Klein bottle the Pimsner-Voiculescu six term
exact sequence from Lemma 5.12 yields:

K0(C(T1) oα Z2)
1−α̂∗ // K0(C(T1) oα Z2)

i∗ // K0(K2)

��
K1(K2)

OO

K1(C(T1) oα Z2)
i∗

oo K1(C(T1) oα Z2)
1−α̂∗
oo

where the action α on the generator of C(T1) is α(V ) = V ∗. It is easy to see
that C(T1) oα Z2 = C(Z2 ∗ Z2). The K-theory of C(Z2 ∗ Z2) is known (see
for example [38]):

K0(C(Z2 ∗ Z2)) = Z3, K1(C(Z2 ∗ Z2)) = 0.

The generators ofK0 (written through the representatives of C(T1)oαZ2) are
[1
2
(1+h)], [1

2
(1−h)] and [1

2
(1+hV )]. We can now compute the endomorphism

of K0(C(T1) oα Z2) induced by α̂:

α̂∗([
1

2
(1 + h)]) = [

1

2
(1− h)];

α̂∗([
1

2
(1− h)]) = [

1

2
(1 + h)];

α̂∗([
1

2
(1 + V h)]) = [

1

2
(1 + h)] + [

1

2
(1− h)]− [

1

2
(1 + V h)].
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Using this we get the following exact sequence:

Z3
1−α̂∗ // Z3 i∗ // K0(K2)

��
K1(K2)

OO

0
i∗

oo 0
1−α̂∗

oo

where the endomorphism (1− α̂∗)K0 equals: 1 −1 0
−1 1 0
−1 −1 2


At the end we obtain:

K0(K2) = coker(1− α̂∗)K0 = Z⊕ Z2,

K1(K2) = ker(1− α̂∗)K0 = Z.

Moreover we can use the morphism i∗ to determine the generators of K0. We
have:

i∗([
1

2
(1 + h)]− [

1

2
(1− h)]) = 0,

i∗(−[
1

2
(1 + h)]− [

1

2
(1− h)] + 2[

1

2
(1 + V h)]) = 0.

Thus as the generators we can take [1
2
(1 + h)]K2 and [1

2
(1 + V h)]K2 with the

relation:

2[
1

2
(1 + h)]K2 = 2[

1

2
(1 + V h)]K2.

5.4 K-theory for Noncommutative Bieberbach

Manifolds from the six term exact se-

quence of Pimsner and Voiculescu

We proceed to the computation of the K−theory groups for noncommutative
Bieberbach spaces. Firstly we have to choose one of three methods of com-
putation. Note that the first one, i.e. connected to Lance-Natsume six term
exact sequence, enables us to carry the computation only for Z2. As we are
interested in the computation of K−theory for all cyclic groups we will have
to choose one of the other two. The second method does not grant us with any
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relevant information on the explicit formula for the generator of Ki(BNθ).
Thus the third one, which enables us to explicitly determine the generators
of K0(BNθ), appears to be the best. We can use this method provided that
we know the K-theory groups of the corresponding crossed product of non-
commutative torus by the actions of the respective cyclic group ZN and the
exact form of the action of Z on the generators of these K-theory groups.
Luckily in the literature on the subject we can find the necessary results .

The crossed product algebras of the noncommutative two torus by the
cyclic subgroups of SL(2,Z) have been studied recently by Echterhoff et
al. as symmetric noncommutative tori and noncommutative spheres [23].
Although classically they correspond to orbifolds rather than to manifolds,
we can nevertheless view the noncommutative Bieberbach algebras as circle
bundles over some noncommutative spheres. One of the result of their con-
sideration was the computation of Ki(C(T2

Θ)oαZN). They have proved that
for each N = 2, 3, 4, 6 the group K0(C(T2

Θ) oα ZN) is a finite direct sum of
the groups of integers and K1(C(T2

Θ) oα ZN) = 0. Thus in the Pimsner-
Voiculescu six term exact sequence two groups are trivial and there is only
one morphism, which we have to determine explicitly. It occurs that this
method is not only the most productive but also the most transparent one.
We shall now sketch briefly the schedule of investigation, while the precise
computation is presented in the next subsections.

Corollary 5.20. Using the Lemma 5.12 (see also Corollary 5.13) and by the
results of Echterhoff et al. discussed above (see also the original paper [23])
we have the following six term exact sequence of K−theory groups for each
N = 2, 3, 4, 6:

K0(C(T2
Θ) oα ZN)

1−α̂∗ // K0(C(T2
Θ) oα ZN)

i∗ // K0(BNθ)

��
K1(BNθ)

OO

0oo 0oo

.

Thus we can compute the K−theory of noncommutative Bieberbach spaces
via:

K0(BNθ) = coker(1− α̂∗)K0 ,

K1(BNθ) = ker(1− α̂∗)K0 .

Moreover using morphism i∗ we can determine the generators of K0(BNθ)
if only we can express the generators of coker(1 − α̂∗) as representatives in
K0(C(T2

Θ) oα ZN).
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The only difficulty is to determine the morphism (1 − α̂∗)K0 . In the
mentioned paper [23] by Echterhoff et al. the generators of K0 for the crossed
product C(T2

Θ) oα ZN were characterised explicitly. The basic tool in our
computation is the existence of traces on the dense subalgebra of the crossed
product algebra of n oncommutative two torus by a finite cyclic group and
their behaviour under the action of α̂, which we shall discuss now.

5.4.1 Traces and Twisted Traces

The origin of the additional traces is easy to understand if one recalls that
in fact they come from twisted traces on the algebra of the noncommutative
torus itself.

Remark 5.21. Let B be an algebra and let β denote an action of a finite
cyclic group ZN . If Φs is an β-invariant and βs-twisted trace on B, i.e. for
0 ≤ s < N :

Φs(β(a)) = Φs(a), Φs(ab) = Φs(β
s(b)a), ∀a, b ∈ A,

then Φs extends to a trace Φ̃s on the crossed product algebra B o ZN via:

Φ̃s

(
N−1∑
k=0

akh
k

)
= Φs(aN−s), 0 < s ≤ N.

where h is the generator of ZN .

The proof of the fact is a simple computation:

Φ̃s

((
N−1∑
k=0

akh
k

)(
N−1∑
j=0

bjh
j

))
= Φ̃s

(
N−1∑
k,j=0

akβ
k(bj)h

k+j

)
=

∑
k+j=N−s

Φs

(
akβ

k(bj)
)

=
∑

k+j=N−s

Φs

(
βk+s(bj)ak

)
=

∑
k+j=N−s

Φs

(
bjβ

j(ak)
)

= Φ̃s

((
N∑
k=0

bje
j

)(
N∑
j=0

ake
k

))
.

In a series of papers Walters, Buck and Walters demonstrated the follow-
ing crucial theorem:

Theorem 5.22. Let C(T2
Θ) be the irrational rotation algebra. Then for

ZN ,N = 2, 3, 4, 6 with the actions (on the generators V,W ) given in table
(4.6) there exists a family of unbounded traces on the algebra C(T2

Θ) o ZN ,
which together with the canonical trace τ on C(T2

Θ) provide an injective mor-
phism from the K0-group into Cr(N), for some r(N).
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The proofs and the exact form of these traces and their value on the
generators of K0-group are to be found in [9, 10, 56, 57, 58]. We skip the
presentation of details, showing as an illustration an example of the N = 2
case. Following [56, page 592] we see that there are four unbounded traces
on C(T2

Θ)oα Z2: τjk, j, k = 0, 1, which are defined as follows on the basis of
C(T2

θ) oα Z2:

τjk(V
ιW κpρ) = 4e−πiθικδρ1δ

ῑ
jδ
κ̄
k , ι, κ ∈ Z, ρ = 0, 1, (5.5)

where x̄ = x mod 2. The other cases (N = 3, 4, 6) can be treated similarly.
The computation done by Walters shows that for θ rational the collection

of traces provides no longer an injective map from K0 into Cr(N). However,
if one adds the nontrivial cyclic two-cocycle then it is again an injective
morphism.

To have all necessary tools we only need to study the behaviour of the
traces under the action of α̂.

Lemma 5.23. If Φ̃s is a trace on a C(T2
θ) oα ZN , which comes from a

αs-twisted trace, then under the action of Z by α̂ we have:

Φ̃s(α̂(a)) = e
2πis
N Φ̃s(a), ∀a ∈ C(T2

θ) oα ZN (5.6)

Proof. The above property follows directly from the form of the action α̂
(5.2).

Φ̃s

(
α̂

(
N∑
k=0

akh
k

))
= Φ̃s

(
N∑
k=0

e−
2πi
N
kakhe

k

)

= e−
2πi
N

(N−s)Φs(aN−s) = e
2πis
N Φ̃s

(
N∑
k=0

akh
k

)
.

Observe, that, in particular, taking s = 0 we see that the usual trace τ is α̂
invariant.

5.4.2 K−theory of B2θ

In the case of the Z2 group action, the algebra C(T2
θ) oα Z2 is one of the

most studied and we have at our disposal all the necessary results.

Theorem 5.24 ([32], [56], [23]).

K0(C(T2
Θ) o Z2) = Z6, K1(C(T2

Θ) o Z2) = 0

and the generators of K0 group are:

[1], [e00], [e01], [e10], [e11], [M2],
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where:

e00 =
1

2
(1+h), e01 =

1

2
(1+V h), e10 =

1

2
(1+Wh), e11 =

1

2
(1+eiπθVWh),

and M2 is a module, which (in the irrational case only) comes from the
projection hM2 of the form 1

2
eθ(1 + h) for a Z2-invariant Powers-Rieffel eθ

projection of trace θ.

To compute the explicit form of the action of the automorphism α on the
above generators we use the Chern-Connes map from K0. Using the usual
trace and the unbounded traces (which we wrote explicitly) one has [56]:

generator α twisted traces
τ τ00 τ01 τ10 τ11 C

[1] 1 0 0 0 0 0
[M2] 1

2
θ 1 −ε ε −1 1

[e01] 1
2

2 0 0 0 0
[e10] 1

2
0 2 0 0 0

[e01] 1
2

0 0 2 0 0
[e10] 1

2
0 0 0 2 0

Table 5.1: Value of traces on the generators of K0(C(T2
θ) o Z2)

where ε is +1 for 0 < θ < 1
2

and −1 for 1
2
< θ < 1. Here, C denotes

the canonical nontrivial cyclic two-cocycle over smooth sub algebra of C(T2
θ)

(which naturally extends to its crossed product with Z2). The actual form of
the cocycle is not relevant, what matters is that its pairing with generators
of K0 group is nonzero only for M (and it has been chosen to be 1).

Proposition 5.25.

K0(B2θ) = Z2 ⊕ (Z2)2, K1(B2θ) = Z2.

Proof. First, combining (5.23) and (5.1) with the Theorem 5.22 we obtain
that the induced morphism α̂∗ on the generators of K0 is as follows:

α̂∗([e00]) = [1]− [e00], α̂∗([e10]) = [1]− [e10],

α̂∗([e01]) = [1]− [e01], α̂∗([e11]) = [1]− [e11],

and

α̂∗([M2]) = [M2]− ([e00]− [e11])− ε ([e10]− [e01]) , α̂∗([1]) = [1].
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Using the above results we obtain the Pimsner-Voiculescu exact sequence:

Z6
1−α̂∗ // Z6 // K0(B2θ)

��
K1(B2θ)

OO

0oo 0oo

where 1− α̂∗ has the form:

1− α̂∗ =


0 −1 −1 −1 −1 0
0 2 0 0 0 1
0 0 2 0 0 ε
0 0 0 2 0 −ε
0 0 0 0 2 −1
0 0 0 0 0 0


Immediately we have:

ker(1− α̂∗) = Z2, Im(1− α̂∗) = Z4,

and basic algebra computations give us the result that the kernel of the map
and the quotient by its image, which are independent of the value of ε.

The generators of K0(B2θ) are [M2], [1
2
(1 + h)], [1

2
(1 + V h)] and [1

2
(1 +

Wh)], regarding relation:

2[
1

2
(1 + h)] = 2[

1

2
(1 + V h)] = 2[

1

2
(1 +Wh)] = [1].

5.4.3 K−theory of B3θ

Here we need to use a similar type of result as the one obtained for the Z2

action.

Theorem 5.26 ([9]). The K-theory groups and generators of C(T2
θ) o Z3

are:
K0(C(T2

θ) o Z3) = Z8, K1(C(T2
θ) o Z3) = 0,

with the generators of K0 group:

[1], [Q0(X)], [Q0(Y )], [Q0(h)], [Q1(X)], [Q1(Y )], [Q1(h)], [M3],

where:

Qj(x) =
1

3

(
1 + e

2πji
3 x+ e

4πji
3 x2

)
,
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and

X = e
1
3
πiθV h, Y = e

2
3
πiθV 2h,

with h, being the generator of Z3 group, h3 = 1. The generator M3 corre-
sponds to an exotic module related to the nontrivial Z3−invariant projective
module over the irrational rotation algebra.

Lemma 5.27. The action of the group Z3 on the above generators of K-
theory is as follows:

α̂∗([1]) = [1], α̂∗([M3]) = [M3]−[Q0(h)]−[Q0(X)]−[Q0(Y )]+[1],

α̂∗([Q1(x)]) = [Q0(x)], α̂∗([Q0(x)]) = [1]− [Q0(x)]− [Q1(x)],

for any x = h,X, Y .

Proof. Since the action is nontrivial only on the generator h of the crossed
product algebra, all results concerning Qj(h), Qj(X), Qj(Y ) are immediate.
The only nontrivial part concernsM3. For this we again use the unbounded
traces and the injectivity of the associated Connes-Chern character.

generator α twisted traces
τ S10 S11 S12 C

[1] 1 0 0 0 0

[M3] θ
3

−i
3
√

3
e

2πi
3

−i
3
√

3
e

2πi
3

−i
3
√

3
e

2πi
3 1

[Q0(h)] 1
3

1
3

0 0 0

[Q1(h)] 1
3

1
3
e−

2πi
3 0 0 0

[Q0(X)] 1
3

0 0 1
3

0

[Q1(X)] 1
3

0 0 1
3
e−

2πi
3 0

[Q0(Y )] 1
3

0 1
3

0 0

[Q1(Y )] 1
3

0 1
3
e−

2πi
3 0 0

Table 5.2: Value of traces on the generators of K0(C(T2
θ) o Z3)

The values of the traces on the generators of K0 group are taken from
[9, Theorem 1.2] (with the same notation) and from them we read out the
action of α̂∗.

Proposition 5.28. The K-theory groups of B3θ are:

K0(B3θ) = Z2 ⊕ Z3, K1(B3θ) = Z2.
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Proof. From the Pimsner-Voiculescu (5.12) exact sequence:

Z8
1−α̂∗ // Z8 // K0(B3θ)

��
K1(B3θ)

OO

0oo 0oo

taking into account Lemma 5.27 we see that the matrix giving the map 1−α̂∗
on the basis ofZ8 ([1], [Q1(h)], [Q0(h)], [Q1(X)], [Q0(X)], [Q1(Y )], [Q0(Y )], [M3])
is:

1− α̂∗ =



0 0 −1 0 −1 0 −1 −1
0 1 1 0 0 0 0 0
0 −1 2 0 0 0 0 1
0 0 0 1 1 0 0 0
0 0 0 −1 2 0 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 −1 2 1
0 0 0 0 0 0 0 0



The generators of K0(B3θ) are [1
3
(1+h+h2)], [1

3
(1+e

1
3
πiθV h+e−

1
3
πiθWh)]

and [M3] with relation:

3[
1

3
(1 + h+ h2)] = 3[

1

3
(1 + e

1
3
πiθV h+ e−

1
3
πiθWh)] = [1].

5.4.4 K−theory of B4θ

Let us begin with the following result:

Lemma 5.29 (Theorem 2.1 [57],[58]). The K-groups of T2
θ o Z4 are

K0(T2
θ o Z4) = Z9, K1(T2

θ o Z4) = 0.

The generators are:

[1], [Q0(h)], [Q1(h)], [Q2(h)], [Q0(e
πiθ
2 V h)],

[Q1(e
πiθ
2 V h)], [Q2(e

πiθ
2 V h)], [Q0(V h2)], [M4],

where

Qk(x) =
1

4
(1 + (ikx) + (ikx)2 + (ikx)3), k = 0, 1, 2,

andM4 is the nontrivial module arising from the nontrivial projective module
over the noncommutative torus.
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As usual we have used the values of the traces (cited with original nota-
tion):

generator α twisted traces α2 twisted traces
τ T10 T11 T20 T21 T22 C

[1] 1 0 0 0 0 0 0

[M4] θ
4

1+−i
8

1+−i
8

1
8

1
8

1
4

1
[Qk(h)] 1

4
(−i)k 1

4
0 (−i)k 1

4
0 0 0

[Qk(e
πiθ
2 V h)] 1

4
0 (−i)k 1

4
0 (−i)k 1

4
0 0

[Q0(V h2)] 1
4

0 0 0 0 1
4

0

Table 5.3: Value of traces on the generators of K0(C(T2
θ) o Z4)

Again, using an injective morphism coming from the Chern-Connes char-
acter from K0(C(T2

Θ)oZ4) to R5×C2 (that does not come as a surprise as
the action of α̂ is in case of some of the unbounded traces multiplication by
±i) an the explicit computation of the traces [58, page 640] we obtain the
following result:

Lemma 5.30. The action of the group Z on the above generators of K-theory
is:

α̂∗([1]) = [1], α̂∗([Q0(V h2)]) = [1]− [Q0(V h2)],

α̂∗([Q2(x)]) = [Q1(x)], α̂∗([Q1(x)]) = [Q0(x)],

α̂∗([Q0(x)]) = [1]− [Q0(x)]− [Q1(x)]− [Q2(x)],

α̂∗([M4]) = [M4]−[Q0(V h2)]−[Q0(h)]−[Q0(e
πiθ
2 V h)]+[1],

for any x = h, e
πiθ
2 V h.

Proposition 5.31. The K-theory groups of B4θ are:

K0(B4θ) = Z2 ⊕ Z2, K1(B4θ) = Z2,

Proof. From the Pimsner-Voiculescu exact sequence:

Z9
1−α̂∗ // Z9 // K1(B4θ)

��
K0(B4θ)

OO

0oo 0oo

using (5.30) we see that the matrix giving 1−α̂∗ on the basis ofK0(C(T 2
θ ) o Z4)

( in this order: [1],[Q2(h)], [Q1(h)], [Q0(h)], [Q2(e
πiθ
2 V h)], [Q1(e

πiθ
2 V h)],

[Q0(e
πiθ
2 V h)], [Q0(V h2)], [M4]) is:
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1− α̂∗ =



0 0 0 −1 0 0 −1 −1 −1
0 1 0 1 0 0 0 0 0
0 −1 1 1 0 0 0 0 0
0 0 −1 2 0 0 0 0 1
0 0 0 0 1 0 1 0 0
0 0 0 0 −1 1 1 0 0
0 0 0 0 0 −1 2 0 1
0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0



The generators of K0(B4θ) as the representatives from C(T3
Θ) oα Z4 are:

[M4], [1
4
(1+h+h2+h3)] and [1

4
(1+e

πiθ
2 V h+eπiθVWh2+e−

πiθ
2 Wh)]. Moreover

there are relations:

2[
1

4
(1 + h+ h2 + h3)] = 2[

1

4
(1 + e

πiθ
2 V h+ eπiθVWh2 + e−

πiθ
2 Wh)]

and

4[
1

4
(1 + h+ h2 + h3)] = [1].

5.4.5 K−theory of B6θ

Similarly as in the case of cubic transform we use the results of hexic trans-
form [9, 10].

Theorem 5.32 ([9], Theorem 1.1). The K-theory groups and generators of
C(T2

θ) o Z6 are:

K0(C(T2
θ) o Z6) = Z10, K1(C(T2

θ) o Z6) = 0,

with the generators of K0 group:

[1], [M6], [Q0(e
πi
3 V h2)], [Q2(e

πi
3 V h2)], [Q0(V h3)], [Qk(h)], k = 0, 1, 2, 3, 4,

where:

Qk(x) =
1

6

5∑
n=0

e
2πnki

3 xn, k = 0, 1, 2, 3, 4.

and the generator M6 is again the exotic one.
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Lemma 5.33. The action of the group Z through α̂∗ on the above generators
of K-theory is:

α̂∗([1]) = [1], α̂∗([Q0(V h3)]) = [1]− [Q0(V h3)],

α̂∗([Qk+1(h)]) = [Qk(h)], k = 1, 2, 3, 4, α̂∗([Q2(e
πi
3 V h2)]) = [Q0(e

πi
3 V h2)],

α̂∗([Q0(h)]) = [1]−
4∑

k=0

[Qk(h)],

α∗([M6]) = [M6]− [Q0(h)]− [Q0(e
πi
3 V h2)]− [Q0(V h3)] + [1],

α∗([Q0(e
πi
3 V h2)]) = [1]− [Q0(e

πi
3 V h2)]− [Q2(e

πi
3 V h2)],

Proof. Again the action is immediate to read on the generatorsQk(h), whereas
using the property of the twisted traces, their behaviour under α̂ and the ex-
plicit table giving the values of these traces on the generators [9, Theorem
1.1]:

generator α twisted α2 twisted α3 twisted
trace traces traces

τ T10 T20 T21 T30 T31 C

[1] 1 0 0 0 0 0 0

[M6] θ
6

1
6
e
πi
3

−i
6
√

3
e

2πi
3

−i
√

3
6
e

2πi
3

1
12

1
3

1

[Qk(h)] 1
6

1
6
e−

πi
3
k 1

6
e−

2πi
3
k 1

6
e−

2πi
3
k (−1)k

6
(−1)k

6
0

[Q0(e
πiθ
3 V h)] 1

3
0 0 1

3
0 0 0

[Q2(e
πiθ
3 V h)] 1

3
0 0 −1

3
e

2πi
3 0 0 0

[Q0(V h3)] 1
2

0 0 0 0 1
2

0

Table 5.4: Value of traces on the generators of K0(C(T2
θ) o Z6)

We obtain the relations above, in particular the highly nontrivial part
concerns [M6].

Proposition 5.34. The K-theory groups of B6θ are:

K0(B6θ) = Z2, K1(B6θ) = Z2.

Proof. From the Pimsner-Voiculescu exact sequence:

Z10
1−α∗ // Z10 // K1(B6θ)

��
K0(B6θ)

OO

0oo 0oo
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taking into account (5.33) we see that the matrix giving the map 1−α∗ on the
basis of K0(C(T2

θ)oZ6) (in the following order) ([1], [Q4(p)], [Q3(p)], [Q2(p)],

[Q1(p)], [Q0(p)], [Q2(e
πi
3 V p2)], [Q0(e

πi
3 V p2)], [Q0(V p3)], [M6]) is:

1− α∗ =



0 0 0 0 0 −1 0 −1 −1 −1
0 1 0 0 0 1 0 0 0 0
0 −1 1 0 0 1 0 0 0 0
0 0 −1 1 0 1 0 0 0 0
0 0 0 −1 1 1 0 0 0 0
0 0 0 0 −1 2 0 0 0 1
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 −1 2 0 1
0 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 0



There are two generators of K0(B6θ): [1
6

∑5
k=0 h

k] and the exotic module
[M6].

5.5 K-theory of Classical Bieberbach Mani-

folds

Although the computations we have presented were for the specific case of
an irrational value of θ the method works, slightly modified, for the rational
case. In particular, the K−theory groups of C(T2

θ)oZN and their generators
are independent of θ and remain unchanged (see [23]), which follows from the
fact that these are twisted group algebras and their K-theory groups depend
on the homotopy class of twisting cocycle, which in this case are, of course,
trivial.

Clearly, the explicit form of the generator of the nontrivial module over
C(T2

Θ) very much depends on whether Θ is rational. The crucial difference
between the rational and irrational case is that to have an injective morphism
from the K0 group of C(T2

Θ)oZN into Rr(N) one needs to use the nontrivial
Chern-Connes character (called second-order Chern character by Walters in
[58]) coming from the cyclic two-cocycle over C(T2

Θ).
For Z2 the original result of Walters [56] is for the value of θ ∈ R \Q but

it is easy to see that the arguments are valid as well for rational θ. For Z4

the result in [58] is valid for all θ ∈ R, and for Z3 the results are combined in
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the papers of Buck and Walters [9] and [10], where, again, they are obtained
for any value of θ, rational or irrational.

Since the nontrivial Chern-Connes character vanishes on all generators
of K0 group apart from the nontrivial one (which is called a Bott class in
[23] and Fourier module by Walters in [58]). For our purpose, the crucial
information is the behavior of this character under the action of β̂. We have:

Lemma 5.35. For any N = 2, 3, 4, 6, the Chern-Connes character induced
by the cyclic 2-cocycle over C(T2

θ) is invariant under the action of α̂.

The proof is trivial: since the action of α does not change C(T2
θ) and

the trace on it as well as derivations are invariant, so must be the nontrivial
Chern-Connes character. Therefore, α̂∗ of the nontrivial generator of K0

group (which we called MN for N = 2, 3, 4, 6) must be a sum of MN with
a combination of remaining generators, as is clearly the case in proof of
Proposition 5.25 and Lemmas 5.27, 5.30, 5.33.

It is worth mentioning that there exists also a much more general argu-
ment, which shows that the K-theory groups of noncommutative Bieberbach
manifolds are independent of θ. Using the description of the families of
Bieberbach manifolds BNθ as C∗−algebra bundles one sees that combining
the results of [23] and Proposition 2.2. of [24] they are a K−fibration. There-
fore the evaluation at any point (any θ) is an isomorphism in K−theory and
the K−theory groups are independent of the value of θ.
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Chapter 6

Equivariant Spectral Triples
over Noncommutative
Bieberbach Manifolds

6.1 Spectral Triples over Bieberbachs

Each noncommutative Bieberbach algebra is a subalgebra of the noncom-
mutative torus. Consider (A(T3

Θ),H, D, J) - the spectral triple over the
noncommutative three torus. By restricting the representation of A(T3

Θ) to
the noncommutative Bieberbach space BNθ, which is a subalgebra of the
latter, we obtain a spectral triple (BNθ,H, D, J), which might be, however,
reducible. Now let us consider H′ ⊆ H, such that (BNθ,H′, D, J) is a spec-
tral triple with the representation of BNθ, Dirac operator and real structure
restricted to the subspace H′. In such case we shall say that (BNθ,H′, D, J)
comes from the restriction of the (A(T3

Θ),H, D, J), the spectral triple over
the noncommutative three torus.

In what follows we shall show that, in fact, each spectral triple over
Bieberbach space is a restriction of a spectral triple over the three torus. To
obtain this result we shall show that each spectral triple over Bieberbach can
be lifted to a spectral triple over the noncommutative torus.

6.1.1 The Lift and the Restriction of Spectral Triples

Lemma 6.1. Let (BNθ,H, D) be an irreducible spectral triple over a non-
commutative Bieberbach manifold BNθ. Then, there exists a spectral triple
over three-torus, such that (BNθ,H, D) is its restriction. Moreover the spec-
tral triple over three torus is ZN−equivariant with respect to the action α.

77
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Proof. Using explicit form of Takai isomorphism we showed in the previous
Chapter (see Section 5.1) that the crossed product algebra A(T3

Θ) o ZN is
isomorphic to the matrix algebra of the noncommutative Biebebarch mani-
fold algebra. To be precise we showed that the C∗−algebra closure of those
algebras are isomorphic, but the explicit form of the isomorphism found there
serves just as well to prove that:

A(T3
Θ) oα ZN ' BNθ ⊗MN(C).

Since we can trivially lift the spectral triple from BNθ to BNθ ⊗MN(C)
using the above isomorphism we obtain a spectral triple over A(T3

Θ) o ZN .
As A(T3

Θ) is a sub algebra of A(T3
Θ)oZN we obtain, in turn, a real spectral

triple over a three-dimensional noncommutative torus.
In fact, we obtain a spectral triple, which is equivariant with respect to

the action of ZN group. Clearly, the fact that we have a representation of the
crossed product algebra is just a rephrasing of the fact that we have a ZN -
equivariant representation of A(T3

Θ). By definition, the Dirac operator lifted

from the spectral triple over BNθ commutes with h and ĥ (the generator of
the group ZN and of dual group, see Section 5.1), and therefore commutes
with the representation of ZN . Thus by this construction we have a real,
ZN -equivariant spectral triple over A(T3

Θ).
It is trivial to see that the original spectral triple over BNθ is a reduc-

tion of the constructed spectral triple by taking the invariant subalgebra
of A(T3

Θ), the ZN -invariant subspace of H and the restriction of D to the
latter.

Definition 6.2. We call the geometry (spectral triple) over the noncommuta-
tive Bieberbach manifold BNθ flat if it is a restriction of a flat spectral triple
over the noncommutative three-torus, that is, the latter being equivariant with
respect to the full action of U(1)× U(1)× U(1).

6.1.2 Equivariant Real Spectral Triples over A(T3
Θ).

Let us take one of the eight canonical equivariant spectral triples over the
noncommutative torus A(T3

Θ) (for a definition of equivariance see [50], for
classification of equivariant real spectral triples over a noncommutative two-
torus see [44], for a generalization to higher dimensions see [55]).

Let us recall, that the Hilbert space H is spanned by two copies of l2(Z3),
each of them with basis eµ, where µ is a three-index and each µ1, µ2, µ3 is
either integer or half-integer depending on the choice of the spin structure.
We parametrize spin structures by εi i = 1, 2, 3, which can take values 0 or
1
2
, so that µi − εi is always integer [55].
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For k = [k1, k2, k3] ∈ Z3 let us define the generic homogeneous element
of the algebra of polynomials over the noncommutative torus:

xk = eπiθk2k3Uk1V k2W k3 .

We fix the representation of the algebra of the noncommutative torus (rele-
vant for the construction of noncommutative Bieberbach manifolds) on l2(Z3)
to be as follows:

π±(xk)e±µ = eπiθ(k3µ2−µ3k2)e±µ+k, (6.1)

and on the Hilbert space H we take it diagonal:

π(x)e±µ = π(x)±e±µ .

The real structure J is of the form:

J =

(
0 −J0

J0 0

)
,

and on the basis of H we have:

Je±µ = ±e∓−µ, ∀µ ∈ Z3 + ε.

The most general equivariant and real Dirac operator (up to rescaling) is
of the form:

D =

(
Rδ1 δ2 + τδ3

δ2 + τ ∗δ3 −Rδ1

)
, (6.2)

where R is a real parameter and τ a complex parameter (parametrizing the
conformal structure of the underlying noncommutative 2-torus).

The derivations δi, i = 1, 2, 3 act diagonally on the l2(Z3):

δie
±
µ = µie

±
µ .

Theorem 6.3 (see [50, 44, 55]). The spectral triple, given by AΘ, π, J,D,H
is an U(1)3-equivariant real spectral triple.

Note that the choice of J and the Dirac operator (6.2) has still some
unnecessary freedom. Indeed, changing J to −J does not influence any of
the axioms. Combining that with a conjugation by Pauli matrices σ2 or σ3

we see that we might restrict ourselves to the case R > 0.The difference
between the choice of τ or τ ∗ shall be discussed at the end of this chapter.
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6.2 The equivariant action of ZN

In this section we shall define the equivariant action of ZN on the spectral
triple (A(T3

Θ), D,H, J). To be more precise we shall find the conditions
under which the spectral triple over three torus is a ZN−equivariant spectral
triple. Of course not every action of group ZN is suitable to our needs
- the requirements of ZN−equivariance of spectral triple is rephrased as a
D−equivariance and J−equivariance of the representation of ZN .

We shall now proceed to the part of computation devoted to determina-
tion of the representation ρ. First we introduce a shorthand general notation
for the action of the group ZN on the generators (and basis) of the algebra
A(T3

Θ). Using the shorthand 6.1 we can write:

h . xp = e2πi
p1
N xAp, (6.3)

where p ∈ Z3, A = diag(1, B) ∈ M3(Z) and B ∈ M2(Z) is the following
matrix (for each of N = 2, 3, 4, 6, respectively):

2 3 4 6(
−1 0
0 −1

) (
−1 −1
1 0

) (
0 −1
1 0

) (
0 −1
1 1

) (6.4)

The Equation 6.3 comes from the direct application of the action listed in
Table 4.6 to the case of elements xp. Note that although the algebra A(T3

Θ)
is not commutative the action 6.3 is exactly the same as in the commutative
case.

6.2.1 D−equivariance

We shall now present a sequence of lemmas following from the assumption
of D−equivariance of the representation ρ.

Before we start the classification relevant for the Bieberbach manifolds,
let us show another auxiliary lemma, specific for the actions of ZN of the
type considered.

Lemma 6.4. Any equivariant representation of ZN on A(T3
Θ) must be di-

agonal:

ρ(g) =

(
ρ+(g) 0

0 ρ−(g)

)
.

and commute with δ1 ⊗ 1.
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Proof. First of all, observe that from the definition of equivariance the ele-
ment σ1 = 1

R
U∗[D,U ] commutes with ρ(g) for any g ∈ G:

ρ(g) (U∗[D,U ]) = αg(U
∗)[D,αg(U)]ρ(g) = U∗[D,U ]ρ(g),

since the action of g on U is by multiplication by a root of 1. Therefore
the action of ZN is diagonal and we can treat the two copies independently.
Moreover, since σ1D + Dσ1 commutes with ρ then we obtain that δ1 ⊗ 1
commutes with ρ as well.

Let us now define the representation of group ZN via the action of its
generator on the basis vectors e±µ . We denote by h the generator of ZN . As
it follows from Lemma (6.4) ρ is diagonal (as it must be D-equivariant):

ρ(h)e±µ = ρ±(h)e±µ ∀µ ∈ Z3 + ε,

with ρ± being operators on l2(Z3).

Lemma 6.5. For any µ ∈ Z3 + ε there exist elements σ±µ ∈ A(T3
Θ) such that

for h the generator of ZN :

ρ(h)e±µ = σ±µ e
±
µ .

Proof. As the representation ρ is D−equivariant it commutes with D2, thus:

D2ρ(h)e±µ = ρ(h)D2e±µ = (R2µ1 + |µ2 + τµ3|2)ρ(h)e±µ .

From this we conclude that ρ(h)e±µ is in the eigenspace of D2 to the eigenvalue
‖µ‖D2 = R2µ1 + |µ2 + τµ3|2. Those are finite dimensional subspaces of H
spanned by the vectors e±κ with ‖κ‖D2 = ‖µ‖D2 . So there exist complex
numbers α±κ such that:

ρ(h)e±µ =
∑

κ∈‖µ‖D2

α±κ x
(κ−µ)e±µ ,

where κ− µ ∈ Z3. Evidently we have that:

σ±µ =
∑

κ∈‖µ‖D2

α±κ x
(κ−µ) ∈ A(T3

Θ).
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Space spanned by the elements xpe±ε for p ∈ Z3 is dense in H. From the
equivariance of the representation of ZN and its action on the algebra for
any such element we have:

ρ(h)xpe±ε = (h . xp)ρ(h)e±ε .

Thus we obtain:
σ±p+ε = xApσ±ε x

−p. (6.5)

Any representation ρσ defined with the use of elements σ±µ and respecting
Equation 6.5 is in accordance with the action of ZN on the algebra A(T3

Θ)
and as such is a candidate to provide a spectral triple over a Bieberbach
manifold. Still the elements σ±ε remain undetermined. We will show that
if we assume that this representation is real-equivariant and D-equivariant,
i.e. ρσ(h)J = Jρσ(h) and ρσ(h)D = Dρσ(h), then if it exists is unique.
Moreover we will also determine for each N which spin structures over three
torus which carry a possibility to define the equivariant action of ZN .

We shall start from the auxiliary lemma.

Lemma 6.6. Let a ∈ A(T3
Θ). If [δ1, a] = 0 and [δ2 + τδ3, a] = 0 for some

τ ∈ C \R then a ∈ C.

Proof. Any element a ∈ A(T3
Θ) can be represented through its expansion in

polynomials in generators U, V,W , i.e there exist a complex sequence (ap)p∈Z3

such that: a =
∑

p∈Z3 apx
p. Now:

[δ1,
∑
p∈Z3

apx
p] =

∑
p∈Z3

app1x
p = 0,

[δ2 + τδ3,
∑
p∈Z3

apx
p] =

∑
p∈Z3

ap(p2 + τp3)xp = 0.

implies:
app1 = ap(p2 + τp3) = 0 ∀p ∈ Z3.

If only p2 6= 0 or p3 6= 0 then p2 + τp3 is a nonzero complex number, so of
course is invertible. We obtain ap = 0 if at least one of p1, p2 or p3 6= 0 and
finely:

a = a0 ∈ C.

From D-equivairance condition we have (for µ ∈ Z3 + ε and a = ±1):

Dσaµe
a
µ = ρ(h)Deaµ = aRµ1σ

a
µe
a
µ + (µ2 + τ−aµ3)σ−aµ e−aµ .
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On the other hand we can write:

σaµDe
a
µ = aRµ1σ

a
µe
a
µ + (µ2 + τ−aµ3)σaµe

−a
µ .

Now we can combine the above equations to compute [D, σaµ]eaµ. Since eaµ is
a separating vector we get:

[δ1, σ
+
µ ] = 0, (6.6)

[δ1, σ
−
µ ] = 0, (6.7)

[∂, σ−µ ] = (µ2 + τµ3)(σ+ − σ−), (6.8)

[∂∗, σ+
µ ] = (µ2 + τ ∗µ3)(σ− − σ+). (6.9)

The first and the second is nothing new, as we have already obtained that ρ
commutes with δ1, but the last two provides us a new information. Let us
now compute the commutator of ∂ = δ2 + τδ3 with σ−µ (σ+

µ )∗:

[∂, σ−µ (σ+
µ )∗] = [∂, σ−µ ](σ+

µ )∗ − σ−µ ([∂∗, σ+
µ ])∗

= (µ2 + τµ3)(σ+
µ − σ−µ )(σ+

µ )∗ − (µ2 + τµ3)σ−µ (σ−µ − σ+
µ )∗

= (µ2 + τµ3)(1− σ−µ (σ+
µ )∗ − 1 + σ−µ (σ+

µ )∗) = 0.

From the Lemma 6.6 we have σ−µ (σ+
µ )∗ ∈ C. We conclude that σ+

µ and
σ−µ are mutually proportional unitaries, i.e. σ+

µ = βµσ
−
µ for βµ ∈ C. From

the fact that σaµ can be expressed as xApσaε x
−p for µ = p + ε (see Equation

6.5)we get that factors βµ are equal for all µ ∈ Z3 +ε. We shall denoted them
simply β. Thus we can rewrite the commutation relation [∂, σ±] as follows
(Equations 6.8,6.9):

[∂, σ+
µ ] = (β − 1)(µ2 + τµ3)σ+

µ , (6.10)

[∂∗, σ+
µ ] = (β∗ − 1)(µ2 + τ ∗µ3)σ+

µ . (6.11)

Let us now once again use the fact that σap+ε = xApσaε x
−p. We get:

[∂, σ+
p+ε] = [δ2 + τδ3, x

Apσaε x
−p] (6.12)

= ((Ap)2 + τ(Ap)3 + (β − 1)(ε2 + τε3)− p2 − τp3)σ+
p+ε. (6.13)

Thus we obtain a condition on D−equivariance:

(Ap)2 + τ(Ap)3 = β(p2 + τp3) ∀p2, p3 ∈ Z.
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Rewriting this in each of the cases:

N = 2 : −p2 − τp3 = β(p2 + τp3),

N = 3 : −p2 − p3 + τp2 = β(p2 + τp3),

N = 4 : −p2 + τp2 = β(p2 + τp3),

N = 6 : −p3 + τ(p2 + p3) = β(p2 + τp3).

(6.14)

which are self-consistent only if:

N β τ

2 −1 τ ∈ U(1) \R no restriction on τ

3 e±
2πi
3 e±

πi
3 τ =

√
β

4 e±
πi
2 e±

πi
2 τ = β

6 e±
πi
3 e±

πi
3 τ = β

Table 6.1: D−equivariance condition

As we can see for each N = 2, 3, 4, 6 we have β = e±
2πi
N , thus we introduce

the parameter σ = ±1 such that β = e
2πiσ
N . When σ is chosen we at the same

time fix β and τ as one can see in the table above.
We shall need one more auxiliary lemma:

Lemma 6.7. Let a ∈ A(T3
Θ) and suppose there exist three real numbers

q1, q2, q3 such that [δi, a] = qia. Then q1, q2, q3 ∈ Z and a ∝ U q1V q2W q3 or
a = 0.

Proof. We begin with the observation that a is an element of pre−C∗−algebra
generated by three unitaries and can be written as a sum of the terms of
sequence: a =

∑
p∈Z3 apx

p, where each ap ∈ C. Then applying the commu-
tation relation with δ’s we get;

[δi,
∑
p∈Z3

apx
p]− qi

∑
p∈Z3

apx
p =

∑
p∈Z3

ap(pi − qi)xp.

This provides us with the set of equations: ap(pi−qi) = 0 which have nonzero
solution only if there exists pi = qi. Moreover at most one ap is nonzero and
then a = apx

p.

We shall now give the last explicit formulation of D−equivariance con-
dition. To do this we use Equations 6.10,6.11 and combine them with the
values of τ and β presented in Table 6.1.

[δ1, σ
+
µ ] = 0; (6.15)

[δ2, σ
+
µ ] = q2σ

+
µ ; (6.16)

[δ3, σ
+
µ ] = q3σ

+
µ . (6.17)
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where the numbers q2 and q3 are presented in the following table for each
N = 2, 3, 4, 6:

N q2 q3

2 −2µ2 −2µ3

3 −2µ2 − µ3 µ2 − µ3

4 −µ2 − µ3 µ2 − µ3

6 −µ2 − µ3 µ2

Table 6.2: D−equivariance condition

We are seeking a nonzero solutions of [δi, σ
+
ε ] = qiσ

+
ε . By the Lemma 6.7

we conclude that numbers q2, q3 have to be integers. This condition provides
us a restriction on the spin structures:

N Restriction Number of
possibilities

2 ε2 = 0, 1
2

and independently ε3 = 0, 1
2

4
3 ε2 = ε3 = 0 1
4 ε2 = ε3 = 0 or ε2 = ε3 = 1

2
2

6 ε2 = ε3 = 0 1

Table 6.3: Spin structure restriction

Now as the last part of the computation conducted in this section we shall
determine the D−equivariant action of cyclic group up to the phase which
shall be determined in the next part of the dissertation. From the Equations
6.15, 6.16, 6.17 we conclude that ρ(h)e±µ are eigenvectors of derivations to
the eigenvalues listed in the Table 6.2. This together with the fact that the
representation ρ is diagonal provides us the following equation:

δiρ(h)e±µ = [δi, σ
±
µ ]e±µ + σ±µ δie

±
µ = (qi + µi)ρ(h)e±µ .

Now we can state the following lemma.

Lemma 6.8. Let ZN be the cyclic group such that BNθ = A(T3
Θ)ZN . Then

the D−equivariant and J−equivariant representation of ZN on the spectral
triple over three torus exists only if the spin structure over A(T3

Θ) is one of
the listed in the Table 6.3. After this restriction the action is determined up
to the phase as one of the following:

• N = 2 : ρ(h)e±µ1,µ2,µ3
∝ e±µ1,−µ2,−µ3

;
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• N = 3 : ρ(h)e±µ1,µ2,µ3
∝ e±µ1,−µ2−µ3,µ2

;

• N = 4 : ρ(h)e±µ1,µ2,µ3
∝ e±µ1,−µ3,µ2

;

• N = 6 : ρ(h)e±µ1,µ2,µ3
∝ e±µ1,−µ3,µ2+µ3

.

Remark 6.9. When we compare the above Lemma 6.8 with the table 6.4 we
easily see that the D−equivariant action is in fact, as one may have suspected,
implemented by the action of matrices A on the indices µ. To be precise -
we can now write the action of ZN in a unified way for all N = 2, 3, 4, 6:

ρ(h)e±µ ∝ e±Aµ.

6.2.2 Complete Determination of the Equivariant Rep-
resentation of ZN

Here we restrict our attention only to the actions for the spin structures
determined in the previous section and we proceed case by case. We begin
with technical lemma.

Lemma 6.10. Let A be one of matrices presented in Table 6.4. Then:

p2q3 − p3q2 = (Ap)2(Aq)3 − (Ap)3(Aq)2 ∀p,q ∈ R3.

Proof. Direct computation in each case.

Before proceeding to the explicit computations for each case we will state
an introductory lemma concerning the computation of the phases of the
action ρ. The remaining part of this section is devoted to complete deter-
mination of the representation case by case and check which spin structures
allows to define the ZN−equivariant spectral triples over A(T3

Θ).

Proposition 6.11. Let ρ be a D−equivariant and J−equivariant action of
group ZN on the spectral triple over three torus then:

ρ(h)e±µ = κe
2πi
N

(µ1±σ2 )e±Aµ,

where κ, σ = ±1 and β = eσ
2πi
N in accordance with Table 6.1.

Proof. Firstly let us recall that ρ+ = e
2πi
N
σρ− - it fully justifies the e±

πi
N
σ fac-

tor. We will now focus to the ρ+ action, while the ρ− will be then determined
by e−

2πi
N
σρ+. We will fix the phase for µ = ε and compute the unknown fac-

tors for the other indices from the definition of the action on A(T3
Θ). Let us

define:
ρ+(h)e+

ε = κe
2πi
N

(ε1+σ
2

)e+
Aε.
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For the other µ = p+ ε:

ρ+(h)e+
p+ε = e−2πiθ(p2ε3−p3ε2)ρ+(h)xpe+

ε =

= κe−2πiθ(p2ε3−p3ε2)e
2πi
N
p1e

2πi
N

(ε1+σ
2

)xApe+
Aε

= κe
2πi
N

(p1+ε1+σ
2

)e−2πiθ(p2ε3−p3ε2)e2πiθ((Ap)2(Aε)3−(Ap)3(Aε)2)e+
Ap+Aε.

Now by the Lemma 6.10 we have p2ε3 − p3ε2 = (Ap)2(Aε)3 − (Ap)3(Aε)2

and the equation simplifies to (µ = p + ε):

ρ+(h)e+
µ = κe

2πi
N

(µ1+σ
2

)e±Aµ.

We only have to prove that κ = ±1. To do this we use the J−equivariance:

ρ(h)Je+
µ = Jρ(h)e+

µ = κ∗e−
2πi
N

(µ1+σ
2

)e−−Aµ.

On the other hand:

ρ(h)Je+
µ = κe−

2πi
N

(µ1+σ
2

)e−−Aµ.

As we see κ ∈ R and as |κ| = 1 the only possibility is κ = ±1.

Remark 6.12. To summarise we shall briefly recall our results obtained at
this point from the D−equivariance and J−equivariance of the action ρ:

• We know that representation is diagonal, i.e. ρ = ρ+ ⊕ ρ−. Moreover
we know that in each case there are two possibilities ρ+ = e

2πi
N
σρ−,

where σ = ±1.

• We have a condition connecting the parameter τ in the Dirac operator
and the number σ (see Table 6.1).

• The ZN−equivariant spectral triple over three torus is possible only for
spin structures listed in the Table 6.3.

• For those spin structures the representation is defined through:

ρ(h)e±µ = κe
2πi
N

(µ1±σ2 )e±Aµ.

At this point we still have four possibilities of different representations:
σ = ±1 and κ = ±1 for each N .

We shall now proceed to explicit computations case by case.
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6.2.3 Specification of the equivariant representation of
ZN case by case

Equivariant Representation for N = 2

Lemma 6.13. For a given spin structure on A(T3
Θ) the following is a most

general real-equivariant and diagonal action of Z2 on H, which implements
the action on the algebra from Table 6.4:

ρ(h)e±µ1,µ2,µ3
= κ(−1)µ1± 1

2 e±µ1,−µ2,−µ3
. (6.18)

where free parameter κ = ±1.

Note, that this is not the canonical action inherited from the action of
Z2 on the algebra itself (unless ε2 = ε3 = 0).

Proof. From direct application of Lemma 6.11 to the case N = 2 we have
that:

ρ(h)e±µ1,µ2,µ3
= κ(−1)µ1±σ2 e±µ1,−µ2,−µ3

.

The representation is invariant under simultaneous change κ to −κ and σ
to −σ, so in fact there is only one parameter which governs the possible
definition of representation.

Lemma 6.14. The only real equivariant and D-equivariant representation
of Z2 exists for ε1 = 1

2
choice of the spin structure.

Proof. Above we have determined the representation of Z2. The only thing
left which has to checked is whether ρ(h)2 = id. Explicit computation shows:

ρe±µ1,µ2,µ3
= κ2(−1)2µ1±1e±µ1,µ2,µ3

.

So we obtain (−1)2ε1 = −1 which is possible only if ε1 = 1
2
.

Equivariant Representation for N = 3

Lemma 6.15. For the spin structures ε2 = ε3 = 0 the following defines the
most general real-equivariant action of Z3, which implements the action on
the algebra from Table 6.4.

ρ(σ)(h)eµ1,µ2,µ3 = κe
2πi
3

(µ1±σ2 )e±µ1,−µ2−µ3,µ2
, (6.19)

where σ, κ = ±1.

Proof. Direct application of Lemma 6.11.
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Lemma 6.16. The D−equivariant and J−equivariant representation of Z3

which implements the action on the algebra A(T3
Θ) presented in the Table 6.4

is one of the following:

• for ε1 = 0:

ρ(σ)(h)e±µ1,µ2,µ3
= e

2πi
3

(µ1±σ)e±µ1,−µ2−µ3,µ2
.

• for ε1 = 1
2
:

ρ(σ)(h)e±µ1,µ2,µ3
= −e

2πi
3

(µ1±σ)e±µ1,−µ2−µ3,µ2
.

Proof. As in the former case we have to check whether ρ(h)3 = id.

ρ(σ)(h)3e±µ1,µ2,µ3
= κ3e2πi(µ1±σ2 )e±µ1,µ2,µ3

= κ3(−1)2ε1(−1)e±µ1,µ2,µ3
.

Which is the same as κ = −(−1)2ε1 . To finish the proof we have to apply:

e±
πi
3 = −e∓ 2πi

3 .

Equivariant Representation for N = 4

Lemma 6.17. The following defines the most general representation of Z4

on the Hilbert space H:

ρ(σ)(h)e±µ1,µ2,µ3
= κe

πi
2

(µ1±σ2 )e±µ1,−µ3,µ2
, (6.20)

which implements the action of Z4 on the algebra and is real-equivariant.

Proof. Direct application of the previous Lemma 6.11.

Lemma 6.18. The only spectral triple over three torus which is Z4−equivariant
is possible for ε1 = 1

2
.

Proof. As usual we check ρ(h)4 = id:

ρ(σ)(h)4e±µ1,µ2,µ3
= κ4e2πi(µ1±σ2 )e±µ1,µ2,µ3

.

We see that there are no restriction on κ = ±1. On the other hand−(−1)2ε1 =
1 which is possible only for ε1 = 1

2
.
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Equivariant Representation for N = 6

Lemma 6.19. For the spin structures ε2 = ε3 = 0 the following defines the
most general real-equivariant action of Z6, which implements the action on
the algebra from Table 6.4.

ρ(σ)(h)e±µ1,µ2,µ3
= κe

πi
3

(µ1±σ2 )e±µ1,−µ3,µ2+µ3
. (6.21)

Lemma 6.20. The only Z6−equivariant spectral triple over three torus is
possible if ε1 = 1

2
.

Proof. As usual we check whether ρ(h)6 = id:

ρ(σ)(h)6e±µ1,µ2,µ3
= κ6e2πi(µ1±σ2 )e±µ1,µ2,µ3

.

We see that there are no restriction on κ = ±1, but ε1 = 1
2

as the equation
−(−1)2ε1 = 1 must be fulfilled.

6.3 Real Flat Spectral Triples

In this section we shall classify all real spectral triples over Bieberbach man-
ifolds, which arise from restriction of flat real spectral triples over the non-
commutative torus. To simplify the notation we shall need the notion of a
generalized Dirac operator on the circle, Dα,β, which is an operator with the
eigenvalues:

λk = αk + β, k ∈ Z, α, β ∈ R,

where α ∈ R+ and 0 ≤ β < 1. We shall denote its spectrum by Sp1
α,β. The

η invariant of this operator (see [45], Lemma 5.5) is:

η(Dα,β) = sgn(β)− 2β

α
.

If we have an operator with the same spectrum, however, with a multi-
plicity M > 1, then the η invariant is M -multiple of the computed value.

Using an analogous notation, we shall denote the spectrum of the Dirac
operator for a given parameter τ (see Equation 6.2 and Table 6.1) and a
given spin structure over A(T3

Θ) by Spτε1,ε2,ε3 , with the usual multiplicities.
In case the multiplicities are changed we shall introduce a factor in front.

We shall determine the ZN inavriant subspaces of H = H+ ⊕ H−. In
the previous sections in the cases N = 2, 4, 6 we have obtained the freedom
of κ = ±1 (the sign in front of the representation). Of course it does not
change the invariant subspaces, so for simplicity we assume that κ = +1.
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6.3.1 Equivariant Real Spectral Triples over B2θ

We define the Z2 invariant subspaces as follows:

H(±,j) : = {ψ ∈ H±|ρ(h)ψ = (−1)jψ},

for j = 0, 1. It is easy to see that the representation of A(T3
Θ)Z2 restricted

to such spaces is faithful.

Proposition 6.21. The following are the real spectral triples over B2θ =
A(T3

Θ)Z2:
S0 = (B2θ,H(+,0) ⊕H(−,0), D, J),

S1 = (B2θ,H(+,1) ⊕H(−,1), D, J).

We have implicitly taken D and J from the three torus and restricted them
to the subspaces.

Proof. By the definition of spaces H(±,j) each of them carries a faithful rep-
resentation of B2θ. From the D−equivariance of the action ρ we have (for
ψ ∈ H(+,j) ⊕H(−,j)):

ρ(h)Dψ = Dρ(h)ψ = (−1)jDψ.

So those subspaces are closed under Dirac operator. Similarly for the real
structure:

ρ(h)Jψ = Jρ(h)ψ = (−1)jJψ.

We have eight possibilities of real spectral triples. First, the choice of the
spin structures over the noncommutative torus given by ε2 and ε3, then there
are still two spectral triples Sν where ν = 0, 1. We shall now give the explicit
description of vectors spanning H(±,ν). To this aim we need to distinguish
two cases.

If ε2 = 1
2

or ε3 = 1
2

For ν = 0, 1 the subspace H(±,ν), which is the Z2−invariant subspace of the
Hilbert space of the spectral triple over the noncommutative torus is spanned
by the vectors:

1√
2

(
e±2k∓σ

2
+a,µ2,µ3

+ (−1)a+νe±2k∓σ
2

+a,−µ2,−µ3

)
, (6.22)

with k ∈ Z, µi ∈ Z+ εi, a = 0, 1.
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The spectrum of the Dirac operator, when restricted to the subspace
H(+,ν) ⊕H(−,ν) consists of:

SpB2θ
ε2,ε3,ν

3 λ = ±
√
R2(2k + a+

1

2
)2 + |µ2 + τµ3|2. (6.23)

As one can see the spectrum of Dirac operator is the same for both spec-
tral triples, i.e. SpB2θ

ε2,ε3,0
= SpB2θ

ε2,ε3,1
, there is no asymmetry in the spectrum,

hence the η invariant vanishes. In fact the spectrum of this Dirac is just the
same as the spectrum of the Dirac on the noncommutative torus, with the
multiplicities halved, so it is 1

2
Spτ1

2
,ε2,ε3

.

If ε2 = 0 and ε3 = 0

Clearly, for µ2 6= 0 or µ3 6= 0 the vectors 6.22 are still the invariant vectors,
the spectrum of the Dirac restricted to that subspace is still given by 6.23.
This part of the spectrum is, however, not the entire spectrum of the Dirac
but only its part, namely:

1

2

(
Spτ1

2
,0,0
\ 2Sp1

R, 1
2
R

)
,

which means that we are not counting the spectrum for eigenvectors with
µ2 = µ3 = 0. In the latter case we have the invariant subspaces spanned by
the:

e±
2k∓ 1

2
+ν,0,0

, (6.24)

and the spectrum of the Dirac operator, restricted to that subspace consists
of the following numbers:

SpB2θ
0,0,ν 3 λ = ±R(2k ∓ 1

2
+ ν) (6.25)

for k ∈ Z.
It is easy to see that these spectra are:

λ+ = R(2k +
1

2
), ν = 1, k ∈ Z,

which corresponds to Sp1
2R, 1

2
R

, and

λ− = R(2k − 1

2
), ν = 0, k ∈ Z,

which gives Sp1
2R,− 1

2
R

. In each case the multiplicity of the spectrum is 2.
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The spectra give different η invariant:

η(DZ2
ν ) =

{
−1 if ν = 0,

+1 if ν = 1.
.

So, in the end the spectrum is:

1

2

(
Spτ1

2
,0,0
\ 2Sp1

R, 1
2
R

)
∪ 2Sp1

2R,± 1
2
R
.

6.3.2 Equivariant Real Spectral Triples over B3θ

Let us recall that the representation is:

ρ(σ)(h)e±µ−1,µ2,µ3
= (−1)2ε1e

2πi
3

(µ1±σ)e±µ1,−µ2−µ3,µ2
.

As in the previous case we begin with the definition of Z3−invariant
subspaces of H, which carries the faithful representation of B3θ = A(T3

Θ)Z3 :

H(±,σ,j) : = {ψ ∈ H±|ρ(σ)ψ = e
2πi
3
jψ},

for j = 0, 12.

Proposition 6.22. The following are the spectral triples over B3θ = A(T3
Θ)Z3:

Sσ,0 = (B3θ,H(+,σ,0) ⊕H(−,σ,0), D, J),

Sσ,1⊕2 = (B3θ,H(+,σ,1) ⊕H(+,σ,2) ⊕H(−,σ,1) ⊕H(−,σ,2), D, J).

Where we have implicitly taken D and J as the restriction of Dirac operator
and real structure from the spectral triple over three torus.

Proof. By the definition of the spaces H(±,σ,j) each of them is a faithful
projective module over B2θ. From the D−equivariance of the action ρ we
have (for ψ ∈ H(+,σ,j) ⊕H(−,σ,j)):

ρ(h)Dψ = Dρ(h)ψ = e
2πi
3
jDψ.

So each subspace consisting of the summands H(+,σ,j) ⊕ H(−,σ,j) is closed
under the Dirac operator. On the other hand let ψ ∈ H(±,σ,j), then:

ρ(h)Jψ = Jρ(h)ψ = e−
2πi
3
jJψ ∈ H(∓,σ,−j).

So in the case of real structure the space closed under J must be direct sum
of spaces H(+,σ,j) ⊕ H(−,σ,−j). The two minimal possibilities of such direct
sums are exactly those from the lemma.
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Remark 6.23. The spectral triples Sσ,1⊕2 are irreducible in a strong sense,
i.e. there are no invariant subspaces closed under the algebra B3θ and oper-
ators D and J . On the other hand it is reducible in both weak senses. The
computation done above shows that it is D−reducible:

Sσ,1⊕2 ' (B3θ,H(+,σ,1) ⊕H(−,σ,1), D)⊕ (B2θ,H(+,σ,2) ⊕H(−,σ,2), D)

and J−reducible as well:

Sσ,1⊕2 ' (B3θ,H(+,σ,1) ⊕H(−,σ,2), J)⊕ (B2θ,H(+,σ,2) ⊕H(−,σ,1), J).

As we are interested only in the case of irreducible spectral triples we shall
restrict our attention only to the cases S+,0 and S−,0.

Proposition 6.24. Up to bounded perturbation of the Dirac operator we
have following unitary equivalence of spectral triples:

Sσ,1⊕2 ' Sσ,0 ⊕ Sσ,0.

Proof. See Appendix 6.5.

At this point we have four candidates for the spin structures over B3θ -
these are two spectral triples S+,0 and S−,0 respectively for the ε1 = 0 and
ε1 = 1

2
. We shall now give explicit description of the vectors spanning spaces

H(±,σ,0). Here we have ε2 = ε3 = 0. For µ2, µ3 6= 0 the invariant vectors are:

1√
3

(
e±3k+3ε1∓σ+a,µ2,µ3

+ e
2πi
3
ae±3k+3ε1∓σ,−µ2−µ3,µ2

+ e−
2πi
3
ae±3k+3ε1∓σ,µ3,−µ2−µ3

)
,

(6.26)

for a = 0, 1, 2.
The spectrum on this subspace is:

SpB3θ
ε1
3 λ = ±

√
R2(3k ∓ σ + a+ 3ε1)2 + (µ2)2 + (µ3)2 + µ2µ3,

and, as a set it is (independently of σ)

1

3

(
Spe

2πi
3

ε1,0,0
\ 2Sp1

R,Rε1

)
.

In the case with µ2 = µ3 = 0 we have the following invariant eigenvectors:

e±3k+3ε1∓σ,0,0,
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so that they are eigenvectors of D to the eigenvalues:

SpB3θ
ε1
3 R(3k + 3ε1 − σ), k ∈ Z.

and the spectrum of the Dirac operator, restricted to that subspace is the
set:

2Sp1
3R,(3ε1−σ)R .

The η(DZ3
ε1

) invariant is, in each of the four possible cases:

σ = +1, ε1 =
1

2
: η =

4

3
,

σ = +1, ε1 = 0 : η = −2

3
,

σ = −1, ε1 =
1

2
: η = −4

3
,

σ = −1, ε1 = 0 : η =
2

3
.

It is no surprise that some of the η invariants differ by sign as, in fact,
the change τ → τ ∗ corresponds to the change D → −D on the subspace
considered and gives, in fact, the same geometry.

Therefore we have in the end two distinct spin structures, each projected
out of different spin structure from three torus: the firs comes from ε1 = 0
and the second from ε1 = 1

2
. They are distinguishable by the η invariants of

the Dirac operators. The case σ = 1 is the situation discussed in [45].

6.3.3 Equivariant Real Spectral Triples over B4θ

The case N = 4 is a very similar situation to that of N = 2. We begin as
usual from defining subspaces:

H(±,σ,j) : = {ψ ∈ H±|ρ(σ)ψ = e
πi
2
jψ},

for j = 0, 1, 2, 3.

Proposition 6.25. The following are spectral triples over B4θ = A(T3
Θ)Z4

coming from the reduction of the Z4−equivariant spectral triple over three
torus:

Sσ,0 = (B4θ,H(+,σ,0) ⊕H(−,σ,0), D, J),

Sσ,2 = (B4θ,H(+,σ,2) ⊕H(−,σ,2), D, J),

Sσ,1⊕3 = (B4θ,H(+,σ,1) ⊕H(+,σ,3) ⊕H(−,σ,1) ⊕H(−,σ,3), D, J).

The operators D and J comes from the spectral triple over three torus and
are tacitly restricted to the invariant subspaces.
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Proof. As in the previous cases we show that if ψ ∈ H(±,σ,j), then:

Dψ ∈ H(+,σ,j) ⊕H(−,σ,j), Jψ ∈ H(∓,σ,−j).

So the space closed under algebra B4θ, Dirac operator and real structure
must be a direct sum of H(+,σ,j)⊕H(−,σ,j) and H(+,σ,j)⊕H(−,σ,−j). There are
exactly three minimal subspaces of this type listed in the lemma.

Remark 6.26. Although all three spectral triples of the lemma are irreducible
only Sσ,0 and Sσ,2 are irreducible in a weak sense,i.e. D−irreducible and
J−irreducible. The Sσ,1⊕3 can be reduced to:

Sσ,1⊕3 ' (B4θ,H(+,σ,1) ⊕H(−,σ,1), D)⊕ (B4θ,H(+,σ,3) ⊕H(−,σ,3), D)

in the case of D−reducibility and:

Sσ,1⊕3 ' (B4θ,H(+,σ,1) ⊕H(−,σ,3), J)⊕ (B4θ,H(+,σ,3) ⊕H(−,σ,1), J)

in the case of real structure. We recall that we are interested only in irre-
ducible spectral triples so from now we restrict only to the cases Sσ,0 and
Sσ,2.

Proposition 6.27. There is a unitary equivalence of spectral triples up to
bounded perturbation of Dirac operator:

Sσ,1⊕3 ' Sσ,0 ⊕ Sσ,0 ' Sσ,2 ⊕ Sσ,2.

Proof. See Appendix 6.5.

We will now determine the spectrum of triples Sσ,ν for ν = 0, 2. Here we
have ε1 = 1

2
and need to distinguish two cases:

If ε2 = ε3 = 1
2

The invariant subspace of the Hilbert space of the spectral triple over the
noncommutative torus for Sσ,ν , where ν = 0, 2, is spanned by the following
vectors:

1

2

(
e±4k∓σ

2
+a,µ2,µ3

+ e
πi
2

(a−ν)e±4k∓σ
2

+a,−µ3,µ2

+(−1)a−νe±4k∓σ
2

+a,µ2,µ3
+ e−

πi
2

(a−ν)e±4k∓σ
2

+a,µ3,−µ2

)
,

(6.27)

for k ∈ Z and a = 0, 1, 2, 3.
The spectrum is symmetric, with the eigenvalues:

SpB4θ
1
2
,ν
3 λ = ±

√
R2(4k ∓ σ

2
+ a)2 + |µ2|2 + |µ3|2, k ∈ Z, a = 0, 1, 2, 3.

and it is clear that it is in fact the original spectrum of the Dirac on the
A(T3

Θ), with 1
4

of its multiplicities, i.e. 1
4
Spi1

2
, 1
2
, 1
2
.



6.3. REAL FLAT SPECTRAL TRIPLES 97

If ε2 = ε3 = 0

Again, similarly as in the N = 2 case if µ2 6= 0 (note here this enforces
µ3 6= 0) we have the same part of the spectrum, on the subspace spanned by
the same vectors (6.27), which are still the invariant vectors for µ2 6= 0.

Again, this is only a part of the spectrum of the Dirac over A(T3
Θ),

namely:
1

4

(
Spi1

2
,0,0
\ 2Sp1

R, 1
2
R

)
,

which means that we are not counting the spectrum for eigenvectors with
µ2 = µ3 = 0 and the remaining part of the spectrum comes with the multi-
plicity 1 instead of 4.

In the latter case, direct computation shows that the following vectors
space the invariant subspaces:

e±4k∓σ
2

+ν,0,0, (6.28)

for ν = 0, 2, and the spectrum of the Dirac operator, restricted to that
subspace contains all the following eigenvalues:

SpB4θ
0,ν 3 λ = ±R(4k ∓ σ

2
+ ν), k ∈ Z.

We have, in all possible cases σ = ±1, ν = 0, 2 the spectra give the
following η(DZ4

ν ) invariants:

σ = +1, ν = 0 : η = −3

2
,

σ = +1, ν = 2 : η =
1

2
,

σ = −1, ν = 0 : η =
3

2
,

σ = −1, ν = 2 : η = −1

2
.

Again, the case σ = +1 and σ = −1 are related by the map D → −D,
the case presented in [45] correspond to σ = −1. In the end we obtain four
geometrically inequivalent spin structures two for ε2 = ε3 = 0 and two for
ε2 = ε3 = 1

2
.

6.3.4 Equivariant Real Spectral Triples over B6θ

Here, one repeats most of the arguments from the N = 3 case. As earlier:

H(±,σ,j) : = {ψ ∈ H±|ρ(σ)ψ = e
πi
3
jψ},

for j = 0, 1, 2, 3, 4, 5.
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Proposition 6.28. In the case N = 6 there are four spectral triples candi-
dates for spin structures over B6θ = A(T3

Θ)Z6 coming from the restriction
and then reduction of Z6−equivariant spectral triples over three torus. Two
irreducible:

Sσ,0 = (B6θ,H(+,σ,0) ⊕H(−,σ,0), D, J),

Sσ,3 = (B6θ,H(+,σ,3) ⊕H(−,σ,3), D, J)

and two reducible (in a sense of D−reducibility and J−reducibility):

Sσ,1⊕5 = (B6θ,H(+,σ,1) ⊕H(+,σ,5) ⊕H(−,σ,1) ⊕H(−,σ,5), D, J)

Sσ,2⊕4 = (B6θ,H(+,σ,2) ⊕H(+,σ,4) ⊕H(−,σ,2) ⊕H(−,σ,4), D, J).

Proof. Computation similar to those which were done earlier shows that the
invariant subspace must be a direct sum of the spaces H(+,σ,j)⊕H(−,σ,j) and
H(+,σ,j) ⊕H(−,σ,−j). Moreover the same computation shows that for j = 1, 2
the spectral triple Sσ,j⊕−j is D−reducible:

Sσ,j⊕−j ' (B6θ,H(+,σ,j) ⊕H(−,σ,j), D)⊕ (B6θ,H(+,σ,−j) ⊕H(−,σ,−j), D)

and J−reducible:

Sσ,j⊕−j ' (B6θ,H(+,σ,j) ⊕H(−,σ,−j), J)⊕ (B6θ,H(+,σ,−j) ⊕H(−,σ,j), J).

Proposition 6.29. There is a unitary equivalence of spectral triples up to
bounded perturbation of Dirac operator:

Sσ,1⊕5 ' Sσ,2⊕4.

Moreover those spectral triples are reducible up to bounded perturbation of D
to the direct sum

Sσ,0 ⊕ Sσ,0 ' Sσ,3 ⊕ Sσ,3.

Proof. See Appendix 6.5.

So we will deal only with Sσ,ν for ν = 0, 3. First of all, there exists a part
of the invariant subspace of the Hilbert space where the spectrum of D is
symmetric and is:

1

6

(
Spe

πi
3

ε1,0,0
\ 2Sp1

R,Rε1

)
.

We do not write explicit expression for the vectors spanning this subspace,
the formula is analogous to the ones derived earlier for N = 3.
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Similarly, there exist additional invariant vectors:

e±6k∓σ
2

+ν,0,0, k ∈ Z,
where σ = ±1 and ν = 0, 3. The eigenvalues are:

SpB6θ
ν 3 λ = ±R(6k ∓ σ

2
+ ν), k ∈ Z

and this gives the spectrum

2Sp1
6R,R(ν−σ

2
).

We have, in all possible cases σ = ±1,ν = 0, 3 the spectra give the
following η(DZ6

ν ) invariants:

σ = +1, ν = 0 : η = −5

3
,

σ = +1, ν = 3 : η =
1

3
,

σ = −1, ν = 0 : η =
5

3
,

σ = −1, ν = 3 : η = −1

3
.

Again, we see that the case presented in [45] is the one σ = −1 and in the
end we have two spin structures for N = 6.

6.4 Summary

The following table presents the number of noncommutative spin structures
over the Bieberbach spaces:

Bieberbach Parametrisation Number of
space spin structures

B2θ ε2, ε3 = 0, 1
2
; ν = 0, 1 8

B3θ ε1 = 0, 1
2

2
B4θ ε2 = ε3 = 0, 1

2
; ν = 0, 2 4

B6θ ν = 0, 3 2

Table 6.4: Noncommutative spin structures over BNθ

Note that η invariant is not zero only for the for the spin structures
with ε2 = ε3 = 0. This gives 2 spin structures over Bieberbach spaces for
each N = 2, 3, 4, 6. The following table shows the η invariant for those spin
structures where it does not vanish:



100 CHAPTER 6. SPECTRAL TRIPLES OVER BNθ

Bieberbach space Parametrisation η(DZN
ν )

B2θ ν = 0 −1

ν = 1 +1

B3θ ε1 = 0 −2
3

ε1 = 1
2

4
3

B4θ ν = 0 3
2

ν = 2 −1
2

B6θ ν = 0 5
3

ν = 4 −1
3

Table 6.5: The η invariant for Bieberbach spaces for ε2 = ε3 = 0

6.5 Appendix

Here we shall give the proof of Propositions 6.24,6.27,6.29. First we shall
fix the notation and briefly recall basic definitions. Let N = 3, 4, 6 and
let ν = 0 for N = 3 and ν = 0, N

2
for N = 4, 6. We have defined (for

j = 0, 1, . . . , N − 1):

H(±,j) : = {ψ ∈ H±|ρ(h)ψ = e
2πi
N
jψ}.

In the original definition of representation we also allowed the freedom of
parameter σ = ±1. Here we tacitly assume that σ is fixed through out the
whole computation and to simplify notation we shall omit it. We define Dν

and Jν as a restriction of respectively Dirac operator and real structure to
the subspaces H(+,ν) ⊕H(−,ν) and similarly for j 6= 0, N

2
Dj⊕−j and Jj⊕−j as

a restriction of D and J to subspace H(+,j) ⊕H(+,−j) ⊕H(−,j) ⊕H(−,−j).
Then there are two types of real spectral triples over BNθ listed below

(see Propositions 6.22,6.25,6.28):

• irreducible ones:

Sν = (BNθ,H(+,ν) ⊕H(−,ν), Dν , Jν),

where: ν = 0 for N = 3; ν = 0, 2 for N = 4; ν = 0, 3 for N = 6.

• reducible in a weak sense:

Sj⊕−j = (BNθ,H(+,j) ⊕H(+,−j) ⊕H(−,j) ⊕H(−,−j), Dj⊕−j, Jj⊕−j),

for j 6= 0, N
2

.
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Lemma 6.30. Using above definitions the spectral triple:

(BNθ,H(+,j) ⊕H(+,−j) ⊕H(−,j) ⊕H(−,−j), Dj⊕−j, Jj⊕−j)

is up to perturbation of Dj⊕−j unitarily equiavalent to a direct sum of spectral
triples:

Sν ⊕ Sν = (BNθ,H(+,ν) ⊕H(−,ν), Dν , Jν)⊕ (BNθ,H(+,ν) ⊕H(−,ν), Dν , Jν),

if only ν = 0 for N = 3 and ν = 0, N
2

for N = 4, 6.

Proof. Firstly to fix notation let us write explicitly the operators Dj⊕−j and
Jj⊕−j as a 4 by 4 matrices over H(+,j)⊕H(+,−j)⊕H(−,j)⊕H(−,−j). We have:

Dj⊕−j =


δ1 0 ∂ 0
0 δ1 0 ∂
∂∗ 0 −δ1 0
0 ∂∗ 0 −δ1


and

Jj⊕−j =


0 0 0 −J0

0 0 −J0 0
0 J0 0 0
J0 0 0 0

 .

To simplify notation we shall write it in a block form:

Dj⊕−j =

(
δ11 ∂1
∂1 −δ11

)
and

Jj⊕−j =

(
0 −J0σ2

J0σ2 0

)
,

where

σ2 =

(
0 1
1 0

)
Now let us define a unitary:

Q =
1√
2

(
U−j+ν U j−ν

−iU−j+ν iU j−ν

)
and:

Q̂ =

(
Q 0
0 Q

)
.
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Now we shall determine a Q̂−equivalent spectral triple to Sj⊕−j. To do

this we have to determine four elements: the Hilbert space H′ = Im(Q̂);
the possibly new representation of Bieberbach space π(a)′ = Q̂π(a)Q̂∗ for
a ∈ BNθ; the real structure J ′ = Q̂JQ̂∗; the new Dirac operator up to
bounded perturbation D′ = Q̂(D + A)Q̂∗, where A is a bounded operator
such that [A, π(a)] = 0 for any a ∈ BNθ.

Hilbert space and representation π′. Let ψ ∈ H(±,j) ⊕ H(±,−j), by
the definition of subspaces and through the direct computation we have
ρ(h)Qψ = e

2πi
N
νQψ. As an element Q is unitary we obtain: Q(H(±,j) ⊕

H(±,−j)) = H(±,ν) ⊕H(±,ν) and thus:

Q̂(H(+,j) ⊕H(+,−j) ⊕H(−,j) ⊕H(−,−j)) =

= H(+,ν) ⊕H(+,ν) ⊕H(−,ν) ⊕H(−,ν) = (H(+,ν) ⊕H(−,ν))⊗ C2.

The representation π is diagonal. Moreover element U is central in A(T3
Θ),

so we quite trivially get that:

Q̂π(a)Q̂∗ = π(a) ∀a ∈ BNθ.

Real structure J ′. By the direct computation:

QJ0σ2Q
∗ =

1

2

(
U−j+ν U j−ν

−iU−j+ν iU j−ν

)(
0 J0

J0 0

)(
U j−ν iU j−ν

U−j+ν −iU−j+ν
)

=

=

(
J0 0
0 J0

)
= J01.

And for the full J :

J ′ = Q̂JQ̂∗ =

(
0 −J01

J01 0

)
= Jν ⊗ 1.

The Dirac operator. Let us take A = diag(−j + ν, j − ν) which is of
course bounded and commutes with diagonal representation π. Then by the
direct computation for the diagonal part of Dj⊕−j:

Q(δ11+ A)Q∗ =

=
1

2

(
U−j+ν U j−ν

−iU−j+ν iU j−ν

)(
δ1 − j + ν 0

0 δ1 + j − ν

)(
U j−ν iU j−ν

U−j+ν −iU−j+ν
)

=

=

(
δ1 0
0 δ1

)
= δ11,
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and for the off diagonal:

Q(∂1)Q∗ = ∂1, Q(∂∗1)Q∗ = ∂∗1.

Which for the full Dj⊕−j is:

Q̂(Dj⊕−j + σ1 ⊗ A)Q̂∗ =

(
δ11 ∂1
∂1 −δ11

)
= Dν ⊗ 1.

The computation conducted to this point shows the unitary Q̂−equivalence
of spectral triples:

Sj⊕−j 'Q̂ (BNθ, (H(+,ν) ⊕H(−,ν))⊗ C2, Dν ⊗ 1, Jν ⊗ 1).

It is easy to see that the latter spectral triple is reducible (in a strong sense
of D, J−reducibility) and it could be rewritten as a direct sum of spectral
triples:

Sj⊕−j 'Q̂ Sν ⊕ Sν .

This ends the proof.
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Chapter 7

Spectrum of Dirac Operator
and Spectral Action

In this chapter we shall once again focus our attention on the spectrum of
Dirac operator for spectral triples classified in the previous part of disser-
tation. We shall use this result to compute the spectral action of Dirac
operators case by case. We begin with the definition and computation of
the spectral action of the Dirac operator over three torus and generalised
spectrum over circle. Evidently this computation is nothing new, but one
can easily see the introductory value of this consideration. Moreover this
calculation will prove to be useful when we move to the case of Bieberbach
manifolds.

7.1 The Spectral Action of a Flat Tori

For a given spectral triple (A, D,H, J) the spectral action is a functional on
the spectrum of the Dirac operator and depends on a real parameter Λ called
the energy scale (for details see [19]). Let f be a test function, i.e. f belongs
to the Schwartz space S(R), then the spectral action is defined as:

S(D,Λ) = tr
(
f(
D

Λ
)
)
.

Usually one takes f as a smooth approximation of a cutoff function. We shall
assume that the spectral action depends on D and not on D2 (that is we do
not restrict ourselves to the even functions over the spectrum), therefore
there is a slight change of notation when compared for example to the [37].

105
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Dirac Operators over Three-dimensional Torus

Let us first fix the notation to present the computation of spectral action of
tori. We take the three-torus with equal lengths of three circles (i.e. when
compared to the previous chapter we shall assume that in the Dirac operator
the parameter R = 1, but still we do not fix the value of the parameter τ).
By D3

τ we denote the Dirac operator with the eigenvalues:

λµ = ±
√
µ2

1 + |µ2 + τµ3|2, µi ∈ Z+ εi, for i = 1, 2, 3,

where ε1, ε2, ε3 are 0 or 1
2

and depend on the choice of the spin structure and
|τ | = 1, τ not real. The choice of τ = i corresponds to the usually assumed
Dirac operator. We shall denote the spectrum of D3

τ over three torus, counted
with the multiplicities, by Spτε for a given spin structure determined by the
choice of ε’s. The spectral action for the torus with the Dirac D3

τ is:

S(D3
τ ,Λ) =

∑
λ∈Spτε

f

(
λ

Λ

)
.

Direct computation shows that:

S(D3
τ ,Λ) = 2

∑
k,l,m

f

(
±
√

(k + ε1)2 + |l + ε2 + τ(m+ ε3)|2
Λ

)
= f̂e(0, 0, 0) + o(Λ−1)

= 2

∫
R3

fe

(√
x2 + |y + τz|2

Λ

)
dxdydz + o(Λ−1)

=
8π2

sinφ
Λ3

∫ ∞
0

fe(ρ)ρ2 dρ+ o(Λ−1).

where τ = eiφ, f̂ denotes the Fourier transform of f considered as a function
of three variables:

f̂(kx, ky, kz) =

∫
R3

f(x, y, z)e2πi(kxx+kyy+kzz) dxdydz,

and fe denotes the even part of f . To obtain this result we have used the
Poisson summation formula.

Generalised Dirac Operator

Further, we shall also need the generalised Dirac operator on the circle, taking
the standard one, with eigenvalues:

λk = αk + β, k ∈ Z, α, β ∈ R,
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we shall denote its spectrum by Sp1
α,β.

For the Dirac operator D1
α,β over the circle we have:

S(D1
α,β,Λ) =

∑
k

f

(
αk + β

Λ

)
= f̂(0) + o(Λ−1) = Λ

∫
R

f

(
αk + β

Λ

)
dx+ o(Λ−1)

=
1

α
Λ

∫
R

f(x)dx+ o(Λ−1).

In the formula above f̂ is the usual Fourier transform of f .

Remark 7.1. Let us observe that the following identity occurs:

S(D1
1,γ,Λ) = αS(D1

α,β,Λ).

independently of the values of α, β and γ.

7.2 The Spectra of the Dirac Operator over

Bieberbach Manifolds

The spectrum of the Dirac operator on classical Bieberbach manifolds has
been first calculated by Pfäffle [45]. Our result on the noncommutative
Bieberbach spaces presented in the previous chapter agree with the com-
putation carried out by Pfaäffle. We shall now briefly recapitulate it and
explicitly recall the spectra of Dirac operator case by case. As the covering
three-torus we shall choose the equilateral one (with lengths of three funda-
mental circles equal, i.e. R = 1). Whenever we write a coefficient in front
of the spectrum set we mean the same set but with the multiplicities re-
duced by that factor (of course, if the coefficient is 1

n
this requires that the

multiplicities must be divisible by n).
We shall parametrize the spins structures of the three-torus by {ε1, ε2, ε3}

being 0 or 1
2
, additionally the choice of invariant subspace can an add ad-

ditional spin structure - this possibility is according to previous notation
denoted by ν. Moreover in each case we shall take the invariant subspace
with representation with σ = 1 for N = 3 and σ = −1 for N = 4, 6 (see
discussion in the section 6.3). In the case of G5 = Z2 × Z2 to define the
action on A(T3

Θ) we must have a commutative algebra (i.e. θij = 0), which
corresponds to classical manifold. Thus in this case we take the spectrum of
D computed classically by Pfäffle.

We have the following spectra of the Dirac operator:
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• G2

Here we have ε1 = 1
2

and eight possible spin structures, parametrized
by choice of ε2, ε3 and ν = 0, 1. As the Dirac operator on three torus

we must take D3
i , with eigenvalues ±

√
(k + 1

2
)2 + (l + ε2)2 + (m+ ε3)2,

k, l,m ∈ Z.

SpB2θ
ε1,ε2,ν

=



1
2
Spe

πi
4

1
2
,ε2,ε3

if ε2 = 1
2

or ε3 = 1
2
, ν = 0, 1,

1
2

(
Spe

πi
4

1
2
,0,0
\ 2Sp1

1, 1
2

)
∪ 2Sp1

2,− 1
2

if ε2 = ε3 = 0, ν = 0

1
2

(
Spe

πi
4

1
2
,0,0
\ 2Sp1

1, 1
2

)
∪ 2Sp1

2, 1
2

if ε2 = ε3 = 0, ν = 1.

Observe that only in the ε2 = ε3 = 0 case the spectrum is not the same
as for the torus.

• G3

In this case only the spin structures with ε2 = ε3 = 0 could be projected
to the quotient space. The parameter ν is fixed by the choice of the
spin structure ε1. As the projectable Dirac we take D3

e
2πi
3

.

SpB3θ
ε1

=


1
3

(
Spe

2πi
3

1
2
,0,0
\ 2Sp1

1, 1
2

)
∪ 2Sp1

3, 1
2

if ε1 = 1
2
,

1
3

(
Spe

2πi
3

0,0,0 \ 2Sp1
1,0

)
∪ 2Sp1

3,−1 if ε1 = 0.

• G4

For the action of Z4 only ε1 = 1
2

and ε2 = ε3 spin structures could be
projected onto the quotient, the Dirac operator which commutes with
the action of the discrete group is D3

e
πi
4

. There are four possible spin

structures and the corresponding spectra are:

SpB4θ
ε,ν =



1
4

(
Spe

πi
4

1
2
, 1
2
, 1
2

)
if ε2 = ε3 = 1

2
, ν = 0, 2,

1
4

(
Spe

πi
4

1
2
,0,0
\ 2Sp1

1, 1
2

)
∪ 2Sp1

4, 1
2

if ε2 = ε3 = 0, ν = 0

1
4

(
Spe

πi
4

1
2
,0,0
\ 2Sp1

1, 1
2

)
∪ 2Sp1

4, 5
2

if ε2 = ε3 = 0, ν = 2.
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• G5

In this case the only projectable spin structure are those with ε1 = ε2 =
ε3 = 1

2
, the projectable Dirac operator is D3

i and the spectrum of D
remains the same (apart from rescaled multiplicities) for each of four
spin structures over B5 (result taken from [45]).

SpB5 =
1

4
Sp3

i .

• G6

Here the situation is similar as in the G3 case and only the spin struc-
tures with ε1 = 1

2
and ε2 = ε3 = 0 could be projected to the quotient

space. The parameter ν is free and gives us two possible spin structures.
The projectable Dirac we take D3

e
2πi
3

.

SpB6θ
ν =


1
6

(
Spe

2πi
3

1
2
,0,0
\ 2Sp1

1, 1
2

)
∪ 2Sp1

6, 1
2

if ν = 0.

1
6

(
Spe

2πi
3

1
2
,0,0
\ 2Sp1

1, 1
2

)
∪ 2Sp1

6, 7
2

if ν = 3.

7.3 The Spectral Action of the Dirac opera-

tor over Bieberbach Manifolds

In section 7.2 we have split the spectra of the Dirac operators into the sets,
which corresponds to the known cases. We can explicitly calculate the dif-
ference between the spectral action on the Bieberbach manifolds and the
spectral action on the three-torus, expanding then the result in Λ.

Remark 7.2. As we have seen if ε2 6= 0 or ε3 6= 0 the spectrum of spectral
triples over Bieberbach spaces is symmetric and equals:

SpBNθ =
1

nN
Spτε ,

where nN is the rank of the group GN . Thus the spectral action of such
Bieberbach manifolds is just 1

nN
S(D3

τ ,Λ).
Only for the spin structures with ε2 = ε3 = 0 the spectra of the Dirac

operator differ from the spectrum of the three torus (apart from the trivial
factor of multiplicities). From now on we shall restrict our attention only to
this eight nontrivial cases.
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In the nontrivial cases, i.e. for Bieberbachs BNθ with N = 2, 3, 4, 6 and
ε2 = ε3 = 0, we have the following general relation of the spectra:

SpBNθ =
1

N

(
Spτε1,0,0 \ 2Sp1

1,ε1

)
∪ 2Sp1

N,ε′ ,

where ε′ depends on the choice of spin structure (i.e. parameter ν, see 7.2).
So the difference between the spectral action on the three-torus A(T3

Θ)
and on the Bieberbach BNθ could be calculated from this difference of the
spectra:

S(BNθ,Λ)− 1

N
S(D3

τ ,Λ) = 2
∑

λ∈Sp1
N,ε′

f

(
λ

Λ

)
− 2

N

∑
λ∈Sp1

1,ε1

f

(
λ

Λ

)
.

Knowing the spectra of the Dirac operator over Bieberbach manifolds when
compared to the three torus we can calculate the difference of spectral ac-
tions. Firstly we shall compute the nonperturbative difference of the spectral
functional. After this we shall split the test function into the even and odd
part:

fe(x) =
1

2
(f(x) + f(−x)), fo(x) =

1

2
(f(x)− f(−x)),

and compute those cases separately.

7.3.1 Nonperturbative Part

We can already formulate the following theorem.

Proposition 7.3. The nonperturbative spectral action over the orientable
Bieberbach manifolds with the Dirac operator projected from the equilateral
Dirac operator over the three-torus is (up to an scaling and order o(Λ−1))
indistinguishable from the spectral action over the three-torus.

Proof. Of course, only the cases when the spectrum differs significantly from
the spectrum of the Dirac over three torus may give rise to some differences.
Observe that then the difference in the spectral actions is always of the form:

− 2

N
S(D1

1,γ,Λ) + 2S(D1
N,β,Λ)

where the sign is connected to substracting or adding the component of spec-
tral action depends on whether we substract or add the subsets of spectrum.
The constants β and γ vary from case to case, N is the order of the group
ZN such that BNθ = A(T3

Θ)ZN .
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From the Remark 7.1, however, we know that the resulting spectral action
components will not depend on β and γ and we will obtain:

− 2

N

(∫
R

f(x)dx

)
+

2

N

(∫
R

f(x)dx

)
= 0,

and hence will not contribute to the leading terms of the spectral action.

7.3.2 Perturbative Expansion - Even Case

Consider now an even function fe. Taking fe to be a Laplace transform of h:

fe(x) =

∫ ∞
0

e−sxh(s)dx,

we can write:

trfe

(
|D|
Λ

)
=

∫ ∞
0

tre−s
|D|
Λ h(s)ds.

First we need the technical lemma. Let Sp1
α,β be (as denoted before)

the spectrum of the rescaled Dirac over the circle. We calculate exactly the
exponential tre−t|D

1
α,β |, assuming that |β| < α.

tre−t|D
1
α,β | = e−t|β| +

∞∑
k=1

e−t(αk+β) +
∞∑
k=1

e−t(αk−β)

= e−t|β| +

(
e−tα

1− e−tα

)
2 cosh(tβ).

Taking into account that t = s
Λ

we can take the Laurent expansion for
large values of Λ:

e−t|β| +

(
e−tα

1− e−tα

)
2 cosh(tβ) ∼ 2

α

Λ

s
+ o(

s

Λ
). (7.1)

We can now state:

Proposition 7.4. The even component of the function f in the spectral
action is the same up to order o(Λ−1) on all three-dimensional Bieberbach
manifolds (including three-torus).

Proof. As the spectra in the difference S(BNθ,Λ)− 1
N
S(D3

τ ,Λ) are the spec-
tra of rescaled Dirac on the circle, using the result 7.1 we see that only the
Λ component in the perturbative expansion could appear. Calculating it
explicitly:
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S(BNθ,Λ)− 1

N
S(D3

τ ,Λ) = Λ

(
2

2

N
− 2

N
2

)∫ ∞
0

1

s
h(s)ds+ o(Λ−1) = o(Λ−1).

Therefore, irrespective of the chosen spin structure and Bieberbach man-
ifold, even component of the function determining the spectral action gives
the same result:

S(BNθ,Λ, fe) =
1

N
S(D3

τ ,Λ) + o(Λ−1).

7.3.3 Perturbative Expansion - Odd Case

The situation discussed above is different for the odd component of f . We
can always write, for an odd function fo:

fo

(
D

Λ

)
= sgn(D)φ

(
|D|
Λ

)
,

where φ is an even function. Assuming that φ is a Laplace transform of h
the odd part of the spectral action becomes:

trfo

(
D

Λ

)
= tr

(
sgn(D)φ

(
|D|
Λ

))
=

∫ ∞
0

tr
(

sgn(D)e−s
|D|
Λ

)
h(s)ds.

For the spectra of Dirac operators, which we know, we can calculate the

function under the integral: tr
(

sgn(D)e−s
|D|
Λ

)
and obtain (again we denote

t = s
Λ

):

tr
(

sgn(D1
α,β)e−t|D

1
α,β |
)

= sgn(β)e−t|β| +
∞∑
k=1

e−t(αk+β) −
∞∑
k=1

e−t(αk−β)

= sgn(β)e−t|β| −
(

e−tα

1− e−tα

)
2 sinh(tβ).

We can expand the function for small t around 0:

sgn(β)e−t|β| −
(

e−tα

1− e−tα

)
2 sinh(tβ) ∼ sgn(β)− 2β

α
+ o(t).

Therefore, only (up to terms of order o(Λ−1)) only scale invariant term
can appear. We have:
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Proposition 7.5. The odd component of the function f gives rise to a differ-
ence in the spectral action on the Bieberbach manifolds in the scale invariant
part of the action. The difference is proportional to the eta-invariant of the
Dirac operator on the Bieberbach manifold.

Proof. First of all, observe that for the rescaled Dirac operator on the circle
D1
α,β the term:

sgn(β)
α− 2|β|

α
,

is the eta invariant η(D1
α,β), which measures the antisymmetry between the

positive and negative parts of the spectrum of D1
α,β. Therefore, for any of the

spin structures of the circle, the term vanishes for the standard Dirac operator
(that is, D1

1, 1
2

or D1
1,0, using the notation of the paper). As a consequence, the

difference between the (rescaled) spectral action on the three-torus A(T3
Θ)

and on the Bieberbach BNθ is (up to order o(Λ−1)):

S(BNθ,Λ)− 1

N
S(D3

τ ),Λ) = 2η(D1
N,ε′N

)φ(0),

where ε′N depends on the chosen spin structure, and we have used that φ is
a Laplace transform of h, so that:∫ ∞

0

h(s)ds = φ(0).

As this is, however, the only asymmetric component of the spectrum of Dirac
operator over BNθ, we have:

2η(D1
N,ε′N

) = η(DZN
ν ),

and, finally:

S(BNθ,Λ) = η(DZN
ν )φ(0).

The η invariant for Bieberbach manifolds was computed for classical Dirac
operator by Pfäffle. We have redone those computation for the spectral
triples in the previous chapter. The reader can find the values of η for those
spin structures for which it does not vanish in the table 6.5.

We can calculate then the leading term of the spectral action arising from
an odd function to be:

S(BNθ,Λ, fo) = η(DZN
ν )φ(0) + o(Λ−1).
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7.4 Summary

We can now express the formula for the spectral action functional for spectral
triples over noncommutative Bieberbach spaces with the canonical ( i.e. flat
and torsion free) Dirac operator taken from the spectral triple over three
torus. Let us take a test function f(x) = fe(x) + sgn(x)φ(x), where fe and
φ are even, then:

S(BNθ,Λ, f) =
1

nN
S(D3

τ ,Λ, fe) + η(DZN
ν )φ(0) + o(Λ−1),

where nN is the rank of group GN such that BNθ = A(T3
Θ)GN , the

number τ depends on the group GN (see table 6.1) and η invariant can be
found in table 6.5.

As we have already noted the odd component of the spectral action is pro-
portional to eta invariant. In fact, the result is not entirely surprising. From
the general results of Bismut and Freed [7] one knows the small-t asymp-
totic of the following function of the Dirac operator on the odd-dimensional
manifolds:

tr
D

|D|
e−t|D| = η(D) +

∞∑
l=0

(Al +Bl log t)t2l+2.

We shall finish this section by observing why this effect was not picked
by the methods used earlier, which involved sum over the entire spectrum
with the help of the Poisson summation formula.

Observe that the η invariant would appear if φ(0) 6= 0. Since our function
f(x) = sgn(x)φ(|x|) that means that f is odd, but discontinuous at x = 0.
Therefore, the previous considerations were valid but since were (implicitly)
assuming continuity of f we could not have obtained any deviation from the
spectral action over the torus.



Chapter 8

Conclusions

8.1 Results

Noncommutative Bieberbach Spaces

Classically three-dimensional Bieberbach manifolds are defined as a quotient
manifolds of the real plane by the discrete subgroup of Euclidean motion
Γ ⊂ R3 o SO(3), which is equivalent to the quotient of a three-dimensional
torus by the discrete group G = Γ/Z3. On the other hand there are more
than one ways to define the noncommutative generalization of classical man-
ifold. For example in the case of the noncommutative three torus C(T3

Θ)
one can define it as a C∗−algebra closure of the abstract algebra of polyno-
mials in three unitaries respecting certain commutation relations (which is
the definition we have adopted), but there are at least two equivalent pos-
sibilities. The first method is based o a procedure called the Connes-Landi
isospectral deformation of the C∗−algebra of complex valued functions over
T3. The second uses the double crossed product (C(T1) o Z) o Z by the
group of integers acting as a rotation by the irrational angle. Our definition
of noncommutative Bieberbach spaces is not similar to any of them. We
have shown that the algebra C(T3

Θ) admits an action of a discrete group ZN
(where N = 2, 3, 4, 6) for a generic values of Θ. Using this we have defined
noncommutative Bieberbach spaces as a fixed point subalgebras of the non-
commuatative three torus. This way we have obtained another example of
noncommutative spaces which serves as a testing ground for basic tools of
noncommutative geometry. As our examples are not isospectral deformation
of the classical Bieberbach manifolds we believe that many final result may
be highly nontrivial.
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K-theory of Bieberbach Spaces

Our dissertation was mainly devoted to the description of spectral triples over
noncommutative Bieberbach spaces. However in the process of construction
of spectral triples we posed a question of possible projective modules. This
lead us to the computation of a K−theory of Bieberbach spaces. As we know
our result is the first one in the literature of this object. During computation
we have used three different six term exact sequences: the first is based on a
Lance-Natsume six term exact sequence and can be used for the case N = 2;
the second is based on a six term exact sequence for the cyclic groups obtained
by Blackadar; the third one uses famous Pimsner-Voiculescu sequence and a
notion of twisted traces. We showed how to compute the K−theory using
each of these methods in a case of our toy model, i.e. Klein bottle (viewed as
a nonorientable two-dimensional Bieberbach manifold). Then we chose only
the most transparent and instructive method to present the explicit compu-
tation. It is worth noting that our result is that the K0 groups for Bieberbach
spaces (both commutative and noncommuative) have torsion part. As we are
concerned, there are no many concrete examples of noncommutative spaces
which exhibit this feature, so we believe that our result is quite interesting.
It is also a noticeable fact that there exists a striking relation between the
K0 groups of the classical manifolds BN (N = 2, 3, 4, 6) and the first ho-
mology groups of the corresponding infinite Bieberbach groups ΓN [35], (so
that BN = R3/ΓN), namely K0(BN) ∼ Z⊕H1(ΓN ,Z), which should follow
from Baum-Connes conjecture for ΓN .

Real Flat Spectral Triples

In the third part of dissertation we presented the classification of spectral
triples over noncommutative Bieberbach spaces coming from the reduction
of flat spectral triples over three torus. To this aim we have used the no-
tion of equivariant spectral triples elaborated by Sitarz and Paschke. First
we classified the ZN−equivariant flat spectral triples over three torus. This
gave us strict restriction on both: the ZN−equiavriant spin structures over
torus and the representation of group ZN on them. Using this method we
obtained a vast set of spectral triples over BNθ. This have been used as a
testing ground for the definitions of the reducibility. It appears that only a
weaker definition, of reducibility up to bounded perturbation of the Dirac
operator, gives exactly the same number of inequivalent irreducible flat spec-
tral triples over noncommutative Bieberbach spaces (i.e. a noncommutative
spin structures) as the number of classical spin structures computed for topo-
logical Bieberbach manifolds. The classification of spectral triples done in
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our approach, the spectrum of Dirac operators coming from them and the
eta invariants fully agrees with the classification of spin structures, classi-
cal Dirac operators and their eta invariants discussed by Pfaffle. Thus the
method of classifying irreducible real spectral triples appears an effective al-
gebraic method of classification of spin structures and computation of spectra
of Dirac operator.

Spectra of Dirac Operator and Spectral Action

As the last part of we computed the spectral action. We have shown that
apart from the possible difference arising from the eta invariant the perturba-
tive spectral action is exactly the same for all three-dimensional Bieberbach
manifolds as for the three torus. This is not at all surprising as all terms in
the perturbative expansion (for the symmetric cut-off) depend on the Rie-
mann curvature and Bieberbach manifolds are flat. The new result is the
appearance of slight modifications when the cut-off function has an asym-
metric part.

8.2 Perspectives

During the computation carried out in the thesis certain observations on
the three-dimensional Bieberbach manifolds were made. When treated as
hypothesis they presumably give rise to more general theorems.

In classical picture one of the criterion of inequivalence between spectral
triples is the difference of the eta invariants of theirs Dirac operators. The
eta invariant for the spectrum of Dirac operator coming from classical con-
sideration is known. We would like to know if for real spectral triples the
eta invariant is stable under the small perturbation of the Dirac operator in
the noncommutative case and (if apparently it isn’t) how this perturbation
looks like. However if the answer to this question is positive it would be
enough to use it to distinguish inequivalent equivariant spectral triples for
both commutative and noncommutative Bieberbach spaces.

During the research we have computed the spectral action for the spectral
triples over noncommutative Bieberbach manifolds. It comes from the cut-off
computation of the trace of Dirac operator from the spectral triples. Those
manifolds are flat and three-dimensional and, as so, they are candidates
for cosmological topology. It would be fruitful to discuss the consequences
of computation in the field of theoretical physics. The question about the
implications of the spectral action of Bieberbach manifolds on the physical
cosmological models still remains without answer.
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From the computation of K0(BNθ) we see that those groups have tor-
sion part - an inclusion of finite discrete group. In most cases those groups
are cyclic Zn groups. There must exist projective modules over Bieberbach
spaces which also have this feature. In noncommutative geometry a projec-
tive module over a C∗−algebra is a noncommutative counterpart to vector
bundle over a classical manifold. For example for T3/Z3 there must exist
a nontrivial vector bundle E such that E ⊕ E ⊕ E is trivial, i.e. equals
T3/Z3 × C3. Then the question of possible relevant consequences for phys-
ical models arise. For example it would be instructive to investigate if it
is possible to describe some Z3−symmetrical particle fields over Bieberbach
manifolds using the sections of those vector bundles.

Recently Oliver Pfante in [46] defined the noncommutative generalisa-
tion of Chern-Simons action. Originally Chern-Simoms theory reffered to
topological quantum field theory of three-dimensional manifolds. As Bieber-
bach manifolds which were the subject of my foregoing research are three-
dimensional it is possible to use the definitions and tools elaborated by Pfante
to the challenge of computation of Chern-Simons theory for Bieberbach
spaces and make a step toward noncommutative counterpart of topological
quantum field theory of Bieberbach manifolds.
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