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Chapter 1

Introduction

”Molecular motor is NOT a steam engine!”

The most popular phrase
of the 2010 Molecular Motors Conference in Santa Fe, NM

Long, long time ago when I still had been in the primary school, there was this
strategy computer game called Settlers. While I hardly remember the plot, charac-
ters or the game mechanics, the flashback of serfs transporting goods along paths
came right in the moment when I close my eyes and started thinking about transport
phenomenon.

Day after, I have searched for some more information and again, right in the
moment I have looked at the game screenshot (Fig. 1.1), an analogy with the topic
of my scientific work got to be even more remarkable. Picture was showing crowded
scene of Barracks, Slaughterhouses, Pig Farms and Gold Mines - all connected by
signposted paths with tiny workers carrying timber, pork heads or gold between the
aforementioned buildings.

Even a short episode of the strategy game shows importance of transport issues.
The easiest way to conquer opponent’s empire is to destroy his carriers and to
blur his paths, cutting down supplies distribution and subsequently bringing it to
a standstill.

The situation in not so different in the case of a biological cell (see Fig. 1.2).
Crowded and busy body of the cell can be forcibly crippled by mutations that in-
duce reduced transport and, as a result, can cause number of neurological defects
[1] as Parkinson’s disease [2], Alzheimer’s disease [3] or Huntington’s disease [4].
But neurology is not an only division of medicine that has to deal with problems
caused by disfunction of cell transport abilities [5]. Disabilites connected with mo-
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Figure 1.1: Screenshot from ”Settlers II” game (1996)

tor protein failures include hypertrophic cardiomyopathy [6], Usher syndrome [7]
or Griscelli syndrome [8].

What constitutes the cell transport infrastructure? Along with microfilaments,
intermediate filaments, the microtubules, formed as a polymers ofα- and β-tubulin
dimers, are the signposted paths.

On the other hand, molecular proteins as myosin, dynein or kinesin are the cell
serfs. While varying in size, complexity and function they all in common convert
chemical energy from the hydrolysis of the biological main source of chemical en-
ergy — adenosine triphosphate (ATP) into the mechanical work.

1.1 Reynolds number

There are two main features that distinguish motors that can be observed around,
like engine in the car, from the molecular ones. First of all, as the name itself indi-
cates, their size is on the molecular scale. As an example, kinesin head which can be
loosely associated with a car wheel is approximately a ball of a 3nm radius [9]. To
compare, a radius of a midsize car wheel is about 300mm — 8 orders of magnitude
larger.

The other crucial aspect is the environment in which a molecular motor op-
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CHAPTER 1. INTRODUCTION

Figure 1.2: Endothelial cells under the microscope. Nuclei are stained blue with
DAPI, microtubles are marked green by an antibody bound to FITC and actin fila-
ments are labelled red with phalloidin bound to TRITC. Bovine pulmonary artery
endothelial cells. From http://rsb.info.nih.gov/ij/images/ (public domain)

5



erates. Instead of sparse air in which most cars cruise, motor proteins as kinesin
have to overcome viscous forces of dense, crowded cell surroundings. It is more
like trying to travel by a car across the Amazonian jungle.

Although it is intuitively known that walking in a pool filled with water is more
struggling than walking in the empty one, it is always convenient to have an objec-
tive measure for certain phenomenon. The basic equation for the fluid dynamics
is the Navier-Stokes equation, i.e. the Newton’s law for a fluid:

ρ

[
∂u⃗

∂t
+
(
u⃗ · ∇⃗

)
u⃗

]
= −∇⃗p+ η∇2u, (1.1)

where p is pressure and η stands for fluid viscosity and ρ represents fluid den-
sity. By introducing the dimensionless quotient

Re =
inertialforces

viscousforces
= ρ

u
t
+ u2

L

η u
L2

(1.2)

and then assuming that t · u ≈ L, with a characteristic lenghth scale L, we
can specify conditions for laminar and turblent fluid flow. The so called Reynolds
number

Re = ρ

L2

u

(
u
t
+ u2

L

)
η

= ρ

L2

u

(
u2

L
+ u2

L

)
η

= ρ
uL

η
, (1.3)

is small for laminar flows, when viscosity η is dominant and diffusion term on
the right hand side of (1.1) governs the fluid dynamics. In contrast, when inertial
forces (LHS of (1.1)) dominate the flow Re is a big number indicating disorganized,
turbulent flow.

For a man (whose spatial dimensions is of order of L = 1 m) swimming (mod-
erately fast about v = 1m/s) in water (kinematic viscosity at 20◦C is ν = η

ρ
=

10−6m2/s,) Reynolds number is about Re = 106. For a Kinesin-1 traveling on an
average velocity of 0.78µm/s [10] along microtubule surrounded by a cytoplasm
it is approximately Re = 10−13. As an other example, a duck flying at 20 m/s ex-
periences Reynolds number of approximately 300000, a dragon-fly at 7 m/s about
an magnitude less. In the context of studying molecular motors it has to be under-
stood what are the practical implications of the kind of environment they operate
in.

As nicely expressed by E. Purcell in his very interesting article:

If you are at very low Reynolds number, what you are doing at the
moment is entirely determined by the forces that are exerted on
you at that moment, and by nothing in the past. [11]
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CHAPTER 1. INTRODUCTION

Those observations will be very important through the thesis and the mathe-
matical aspect of it will be discussed in Section 1.2.

1.2 Langevin equation for a Brownian Motion

The most obvious starting point to model any dynamics is the Newton’s Second
Law:

F⃗ = m⃗̈x (1.4)

That is: a body with a massm experiences acceleration ẍwhen forceF is acting
on that body. The problem is that, as mentioned in previous paragraphs, environ-
ment in which molecular motor operates varies significantly from lab vacuum, for
which eq. 1.4 can be easily applied. Another, viscous force γẋ exerted on an object
should be added to take account of dense cell surroundings:

F⃗ = m⃗̈x+ γ⃗̇x (1.5)

But viscous force is still not enough. In 1827 Robert Brown has been exam-
ining pollen grains floating on a water surface. From what he had observed under
microscope, he developed the idea that leaping of particles in fluid should not be
associated only with organic matter, as it was believed at his time. Instead of that,
irrespectively of a kind of particle he put onto the water, their chaotic movement
was the same. From that, he claimed that this motion is not life-related, but rather
is induced by some external conditions.

It was almost one century until in 1908 Paul Langevin proposed [12] an equa-
tion which described movement of Brown’s grains in a language of, what we call
now, stochastic differential equations (SDE). Langevin’s idea was to account for
action of different degrees of freedom by introducing single random variable η̄.
The resulting one-dimensional Newton-like equation takes the form:

η̄ (t) = mẍ+ γẋ, (1.6)

with η̄ (t) called usually a noise term and having a physical meaning of a stochas-
tic force — a fluctuating, uncorrelated in time force of a zero mean which is inde-
pendent of x and ⟨η̄(t)η̄(t′)⟩ = 2Dδ(t − t′). Usually, instead using η̄ (t) one de-
fines η̄ (t) =

√
2Dη (t). Now, η (t) is a white Gaussian noise with a zero mean and

a correlation function < η (t) η (t′) >= δ(t − t′) and D characterizes the noise
intensity, related to the friction coefficient by the fluctuation-dissipation theorem:

D = γkBT/m (1.7)
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where kB is the Boltzmann constant and T is temperature.
The actual value of noise term will be discussed later in Chapter 2, devoted to

models concepts.

1.3 Smoluchowski experiment and the ratchet poten-
tial

In 1912 polish physicist Marian Smoluchowski [13] analyzed a thought experi-
ment, which has been later popularized by Richard Feynmann in his famous ”Lec-
tures on Physics” [14]. The idea is based on a pawl and ratchet mechanism. Let’s
take a round gear with asymmetric teeth which can freely rotate around axis given
by a rod. Then we put a pivoting finger called pawl that allows movement of a gear
in one direction but blocks it whenever it tries to operate in the opposite direction.
This mechanism now should be put into a heat bath of temperature T2 (see Fig.
1.3). By random collisions of the gas molecules (Brownian motion in fluids) with
gear’s teeth, it will rotate to one side or the other. But because of the ratchet mech-
anism, the actual rotation can only be achieved in the one direction, determined by
the asymmetry of teeth shape. Having rotating rod we can use its motion for some
useful work, the same way as it used in e.g. watermills.

T1 T2

pawl

m

Figure 1.3: Feynman ratchet

The problem is that this experiment would violate the second law of thermody-
namics — no matter how cleverly designed, structural features alone cannot bias
Brownian motion — as formulated by Astumian in [15]. Paradox has been solved
by Feynmann along with his lecture on the topic and the mathematical proof can be
found in the Magnasco’s article [16]. Despite that, apparatus proposed by Smolu-
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CHAPTER 1. INTRODUCTION

chowski could work. There must be however, a temperature gradient ∆T = T1 −
T2 ̸= 0 to obey thermodynamics second law. Experimental realization of a Smoluchowski-
Feynamnn ratchet, yet outside of thermal equilibrium, has been recently constructed
by Eshuis et al. [17].

1.4 Active Brownian motion or Brownian Motors

Motor is a machine that converts some kind of energy into useful mechanical work.
Key features of an engine can be named as follows:

1. Fuel — the kind of energy that is used by engine;

2. Power — which gives information what kind of work can by done by an engine
in a given period of time;

3. Efficiency — the measure of how effectively provided energy is converted
into mechanical power.

For an average car, engine is a gas driven, 120 kW strong device of an efficiency
of about 20%. In this work I focus however on much smaller motors, the ones that
operate inside the living cells.

Kinesin, dynein and other motor proteins work in a dense cell environment,
”Brownian domain” as it is called by Magnasco [16]. That statement has been the
foundation of using Smoluchowski’s idea, as an explanatory model for molecular
motors. As mentioned in Section 1.3, the original device violates the second law of
thermodynamics and it must get something extra to operate.

In biological reality it is hard to achieve thermal gradients large enough to drive
directed motion [15]. There are however other ways of providing energy that will
result in net movement of a particle.

1.4.1 Fluctuation driven ratchets

The first kind of models are based on the external fluctuations of the ratchet-shaped
potentials. This includes cyclicly turning potential on and off (”flashing ratchets”,
see Fig. 1.4) or applying a fluctuating force which appears as rocking potential
(”rocking” or ”tilting” ratchets) [18]. This group of models can be jointly described
by a Langevin equation in the following form: ε

mẍ+ γẋ+
dV (x, t)

dx
= η (t) , (1.8)

where V (x, t) is a periodic, asymmetric potential that fluctuates in time.

9



on

on

off

Figure 1.4: Flashing ratchet over the time. Asymmetric potential is cyclically turned
on and off allowing net movement in designed direction, without breaking the sec-
ond law of thermodynamics. Figure adopted from the Heiner Linke website.
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CHAPTER 1. INTRODUCTION

1.4.2 From Rayleigh friction function to depot models

Models in a previous Section are not in a sense ”active” brownian motors. They are
still passive particles, yet experiencing fluctuations of a potential field in which
they are embedded. Here, I introduce after Lindner [19] two kinds of models in
which particles uptake energy, what is realized by a variable friction coefficient. In
this class of models friction may become negative at low body’s velocity. Langevin
equation under those circumstances reads:

mẍ+ γ (ẋ) ẋ = η (t) , (1.9)

One should notice a non-constant friction coefficient here. Depending on an
approach two different velocity-dependent friction functions are postulated. The
first one proposed by Schweitzer et al. [20] reads:

γ (ẋ)SET = γ0

(
1− β

1 + ẋ2

)
, (1.10)

where β is an arbitrary coefficient.
This model implicates negative friction for low velocities within a region |ẋ| <√

β − 1 and a ”standard” positive value outside of this region. A simpler so called
Rayleigh-Helmholtz friction model has been motivated by studies on propagation
of sound [21]:

γ (ẋ)RH = γ0
(
ẋ2 − α

)
, (1.11)

with α being an arbitrary constant.
Here friction is negative within region of |ẋ| <

√
α. Both models (eqs. (1.10)-

(1.11)) exhibit similar behavior for low velocities.
In Schweitzer’s et al. ”negative friction” scheme one can include internal energy

depot [20], which acquires energy from the environment with a rate q (r), stores it
as an internal energy e (t) and then provides it for conversion into kinetic energy
with a rate d (v):

d

dt
e(t) = q(x)− ce(t)− d(ẋ)e(t) (1.12)

After taking into account mechanical energy balance, Langevin equation for the
depot-based active Brownian particle reads:

mẍ+ γẋ+∇V (x) = d2e(t)ẋ+ η (t) , (1.13)

where d2 = v2/d(ẋ). Detailed discussion is available in [20].
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Figure 1.5: Author’s comparison of Rayleigh-Helmholtz friction model (RH) with
Schweitzer et al. model (SET). For values of |x| < 1 both models reproduce similar
values of friction. Outside of this range, in the Rayleigh-Helmholtz model friction
rises much quicker comparing with the Schweitzer model.

Comparing to eq. (1.8), the most evident difference is the new term d2e(t)ẋ,
which is responsible for coupling the energy depot with the particle motion and
vice versa.

In this work, all of the models are based on the depot concept.

1.5 Chaotic behavior

Majority of works on the subject of molecular motors relate to the overdamped case,
i.e. skip the inertia term in Langevin equation. This is a perfectly legitmate prac-
tice as a single Langevin equation in all those works models behavior of a whole
Brownian motor. Having said that, there are models that incorporate more than
one equation of motion [22]. In case of motor proteins like kinesin, it is a wise
choice to model each protein’s head with a distinct Langevin equation. For a rea-
son which will be presented in the following Chapter, it is convenient to move into
center—of—mass formalism (CM). As a result, one ends up again with two equa-
tions. The one for the CM can be associated with the one and only single equation
considered in other models; its friction coefficient and a consequent low Reynolds
number is a reason for skipping an inertia term. On the other hand, second equa-
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CHAPTER 1. INTRODUCTION

tion is responsible for relative motion of protein’s heads. Motor domains, ”engine”
of a kinesin or dynein ”car”, do not have to necessary operate in the exact same low
Reynolds number. It can be somehow shielded from a crowded cell environment by
other, encircling protein’s structures. Because of that, to stay on a safe side and
to be able to carefully estimate the effect of inertial forces, mẍ term is kept in the
overall analysis.

There are however certain consequences. Including inertiamẍ term in Langevin
equation implicates possible occurrence of chaotic behavior which has been doc-
umented in former studies [23–26].

Figure 1.6: Sensitivity to initial conditions - one of a required features to call dy-
namic system chaotic

In dynamic system theory chaos is explained as a feature of a system where
small change in initial conditions results in a significant change of a time trajec-
tory (see Fig. 1.6). The formal definition of a chaotic system [27] includes also
topological mixing and that occuring periodic orbits should be dense. There are
certain conditions under which model behaves in a chaotic manner and they are
defined by the Poincaré–Bendixson theorem, which implication is that chaos can-
not occur in 2-dimensional phase space.

The models studied in this work include inertia, along with different variables.
As a result, they are all subject of chaotic behavior and in all cases both initial
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conditions and other parameters should be carefully adjusted. In the following
Chapter, integral part of models presentation will be defining limits of parameters
for which they work.

1.6 Outline

In Chapter 2 different models of inertial ratchets will be introduced and commented.
They all are based on a concept, that every motor protein should be modeled with at
least two Langevin equations to emphasize molecular structure information that are
now available. Number of variables and initial conditions result in rich dynamics.
Consequently, stability and work regimes of the motion will be studied.

In Chapter 3 performance aspects of models presented in Chapter 2 will be
studied and compared with other, both theoretical and experimental works.

Appendix Chapter A will try to compare experimental data with the results ob-
tained from the presented models, while in appendix B the idea of rectifying motor
protein movement by allowing backsteps in the context of studied models will be
discussed. Finally, in appendix C I present my technical method of solving stochas-
tic differential equations on the graphic cards using the novel OpenCL framework.
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Chapter 2

Models of the kinesin motors

2.1 Origin

In 1994, in the spirit similar to work of Magnasco [16], Martin Bier and Dean As-
tumian proposed a model [28] which explained then-recent experimental data ob-
tained by Svoboda et al. [29] for a kinesin motor taking regular steps on a micro-
tubule. The model discussed a Brownian particle in a periodic asymmetric potential
with fluctuating barriers. The fluctuating potentialV (x, t)was shown to induce net
transport even for a net zero additive stochastic force.

Subsequently other models have been proposed [20, 22] and are briefly pre-
sented in following sections.

2.1.1 Energy depots models

In the work of Schweitzer et al. [20] a following ratchet model has been proposed:

dv(t)

dt
+ γv(t) + U ′(x) = F0 + de(t)v(t) +

√
2Dξ(t), (2.1)

with a energy dissipation term in a form:

de(t)

dt
= q(t)− ce(t)− dv(t)2e(t). (2.2)

Here mass m = 1, γ stands for friction coefficient, U is a periodic, asymmetric
potential — a function of the position x moving with a velocity v; particle is also
under influence of constant force F0 and a stochastic force ξ(t) with the instensity√
2D. Energy equation 2.2 is coupled with a mechanical Langevin equation 2.2 by

de(t)v(t) term, where d denotes energy transmission rate. Energy depot itself is
supplied with the energy inflow q(t) and energy from it is dissipated with a rate c
and used for mechanical work with a rate d.
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2.1.2 Coupled Brownian heads

Another extension of models aimed to discuss transport by motor proteins was the
work by Imre Derényi and Tamás Vicsek. The authors proposed a model in which
kinesin motor has been composed with two ”elastically coupled Brownian heads”.
In the terms of Langevin equation their model takes the form:

γẋ1(t) = −U ′(x1)− F0 +K (x2 − x1 − l(t)) + ξ1(t),

γẋ2(t) = −U ′(x2)− F0 +K (x1 − x2 − l(t)) + ξ2(t), (2.3)

where mass has been again assigned to m = 1, x1,x2 and ẋ1,ẋ2 denote kinesin
heads positions and velocities respectively and K stands for the stiffness of the
spring, which has a length l(t)=l0+ δl(t)1. Here the spring obeys classical Hooke’s
law — the elastic force is directly proportional to the spring extension .

2.2 A dynamic model of the kinesin motor with two
heads elastically coupled by a rubber band
— Model 1

Taking into account the two aforementioned approaches, we have formulated the
new model [30], which incorporated linear dynamics and coupling to the external
energy depot. We have assumed that for every motor head the separate equation
of motion is needed — in that Derényi’s work has been followed. On the other hand,
we have coupled both heads but in opposite to Derényi and Vicsek, elastomer that
binds the heads together has a nonlinear form. This stays in agreement with a
recent work of Gräter et al. [31].

As discussed in the introductory Chapter, instead of generally used over-
damped approach in which inertia term is omitted, in a presented model a more
general method has been proposed. This leads to much more complicated motor
dynamics. Careful studies of initial conditions and model parameters are substan-
tial part of this Chapter.

The other key feature of the model, shared with the one proposed by Schweitzer
et al. [20]) is existence of an energy depot. In this concept chemical energy (e.g ATP)
is uptaken form the environment, stored in the energy depot and then released and
used for performing mechanical work. This reasoning leads to a third, additional
differential equation for the energy in the depot.

1As one can notice, l(t) is a time variable, not a constant. The authors of the model explain this
choice, as a possible alternation of a rest length due to conformational changes
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CHAPTER 2. MODELS OF THE KINESIN MOTORS

2.2.1 Dimension equations

For motor heads x1,2 of a mass m each, we define a set of twin equations of motion:

m
dv1(t)

dt
+mγ0v1(t) + U ′(x1)− FS(x1 − x2)

= mde(t)v1 −MΓ0
dx0(t)

dt
+m

√
2Dvξ1(t) (2.4)

m
dv2(t)

dt
+mγ0v2(t) + U ′(x2)− FS(x2 − x1)

= mde(t)v2 −MΓ0
dx0(t)

dt
+m

√
2Dvξ2(t) (2.5)

de(t)

dt
= q0 − ce(t)−md(v21 + v22)e(t), (2.6)

where vi =
dxi

dt
and U(x) is a ratchet potential (originating from microtubule’s

periodic structure) given by [32]:

U(x)/E0 = −F0x+ U1(x)

U1(x) = h[0.499− 0.453(sin(2π(x+ 0.1903))

+
1

4
(sin(2π(x+ 0.1903)))]. (2.7)

Here F0 is an external constant force acting on the motor and h controls the
barrier height. Further, M stands for the mass of a cargo carried by the molecular
motor. Due to the presence of a cargo, the motor experiences an additional friction
Γ. γ stands for a friction experienced by motor heads. As presented model is in a
Langevin equation form, white Gaussian noise ξi of an intensity m

√
2Dv is present

as well and its level is governed by Einstein-Smoluchowski relation Dv =
γ
m
kBT .

The final element of the ”head equations” requires some more attention. Fs is an
entropic force from an elastomer, which in this case acts like a rubber connecting
two motor heads. As already mentioned above, in contrary to Derényi and Vicsek
in our model, following recent findings on elastomers behavior [31], force between
two heads is modeled by a nonlinear spring:

FS = 2ax− 4bx3. (2.8)
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It should be also noted, that there is a good reason to call the force entropic. For
a fully stretched polymer there is only one possible state (here: molecular confor-
mation) that can be associated with it. In contrary, for a looser stretching, a higher
number of conformations is expected. When a polymer is slightly less stretched
there are however more options, for a given length there are more than one suitable
conformation. It means that this state is less ordered and its entropy is therefore
higher.

In the third equation of the model (Eq. 2.6) chemical energy is acquired by the
depot with the constant rate q0, some part is dissipated with a rate c and the other
is used for mechanical work with the rate d.

As a simplification, load carried by the molecular motor, is assumed to be con-
stant distance from the two heads center of mass and fixed as dragged (load is
always on the opposite side relatively to the direction of movement):

x0(t) =
1

2
(x1 + x2)− sgn(v1 + v2)s. (2.9)

2.2.2 Dimensionless equations

For the purpose of computer simulations and also for better understanding of ex-
isting relations, it is wise to introduce dimensionless equations. By that, one can
relates physical variables one to other instead of operating on absolute values. It
is especially important when model tries to explain something far from the macro-
scopic world.

Following Machura et al. [33], mass of a Brownian particle (here: kinesin head)
is normalized to one. The unit length of the ratchet l0 is a distance between two
neighboring docking locations on the microtubule and E0 is an energy equal to
value of biological activation energy (E0 ≈ 0.1 eV ≈ 1.602 × 10−20J ≈ 2.3
kcal/mol). Those units can be bind together by the characteristic time t0 as:

t20 = ml20/E0 (2.10)

Given all those units, rescaled equations are of a form:

dv1(t)

dt
+ γv1(t) + Û ′(x1)− F̂S(x1 − x2)

= d̂e(t)v1 − Γ
dx0(t)

dt
+
√
2Dξ1(t), (2.11)

dv2(t)

dt
+ γv2(t) + Û ′(x2)− F̂S(x2 − x1)

= d̂e(t)v2 − Γ
dx0(t)

dt
+
√
2Dξ2(t), (2.12)
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CHAPTER 2. MODELS OF THE KINESIN MOTORS

de(t)

dt
= q̂ − ĉe(t)− d̂(v21 + v22)e(t), (2.13)

where x̂ = x
l0

and t̂ = t
t0

. Consequently γ = γ0t0, Û ′ = U ′/E0, F̂S =

FS/E0, D = mt0
E0

Dv, d̂ = dt0,Γ = MΓ0t0/m, q̂ = q0t0 and ĉ = ct0.
To keep notation simple we will omit ”hats” in the subsequent equations. The

form of Rayleigh oscillator as in [20] is kept in equations (2.11) and (2.12).

2.2.3 Working regime

In presented model there are 5 initial condition variables and 8 more constants. It
sums up to 13D space of parameters. It would be very long and unnecessary to
test the model for all of them at once. On the other hand, if all but one variable
would be fixed, it is possible that the actual working regime would miss some im-
portant areas of the parameter space. Here, a hybrid approach to that problem is
presented. We start with just mentioned simple evaluation for one variable at a time,
even neglecting the stochastic behavior of the process - for each set of parameters
only one simulation is made. Having that preliminary results we choose only those
variables, which behavior seemed to be nonmonotonous in course of simulation.
At that point it is decided which of the parameters should be varied simultaneously
and the results of that operation are presented on the 2-dimensional maps of the
motor performance. This approach, while compromising, let us to conclude about
working regime. In this Section we neglect external force F0 and focus on finding
a parameter region for which motor moves in one defined direction. Further de-
scription of the ”working regime” of the motor defined in Eqs. (2.11)-(2.13) can be
found in Chapter 3.

In the very first plot (see Fig. 2.1 on page 20) we present the model trajectory for
a set of parameters that are in the molecular motion regime. It is also a starting point
for further parameters evaluation. For a given set of variables, one can observe
monotonous motion of the carried load with both heads inexchanging as a leading
ones. It stays with an agreement to a hypothesis, that kinesin performs hand-over-
hand kind of motion along microtubule [34].

Following a ”zero” step, in which example set of parameters have been found,
the next task was to perform simple variation of all of the conditions, one at a time.
Here, we have divided them into two groups. In Fig. 2.2 one can find set of plots
dedicated to initial conditions. On the other hand, in Figs. 2.3 and 2.4 there are
plots for the model parameters.

While all of the plots found in Fig. 2.2 display some kind of dependency of
initial conditions, the weight of this dependency varies. In the case of the initial
depot energy e, mean velocity changes not more that just a few percent. Comparing
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Figure 2.1: Result of a simulation for the parameter set: s0 = 8, a = 0.5, b = 1,
e = 0.1, h = 0.1, γ0 = 0.02, q = 1.0, c = 0.1,d = 1,Γ = 0.5, D = 0.25. We
show the positions of the two heads x1 (green), x2 (blue), the velocities of the heads
v1(t) (light blue), v2(t) (brown). The position of the load x0 is marked in red and
its corresponding velocity v0 is displayed in magenta. The time step of simulations,
∆t = 10−3.
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Figure 2.2: Time-averaged velocity ⟨v0⟩ versus variation of various initial condi-
tions. Result of a simulation for the parameter set: s0 = 8, a = 0.5, b = 1, e = 0.1,
h = 0.1, γ0 = 0.02, q = 1.0, c = 0.1,d = 1,Γ = 0.5, D = 0.25. The time step of
simulations is ∆t = 10−2. 21



with other parameter changes, it makes e variations insignificant.
Contrary to that, both initial velocity and position seem to be very important

parameters. In general, velocity sign (direction of movement) at the beginning of
motion determines very strongly the mean velocity. Interestingly, the actual value
of initial velocity does not have any significant influence on the mean velocity.

The most interesting behavior can be observed when probing initial position
of the kinesin heads. On average, a sign of head’s position does not influence the
sign of the mean velocity. There are some plot spikes (one or two, depending on
whether one considers x1 or x2), where some values of initial position drives mean
velocity to the minus sign region.

Those observations led us to study in more detail initial values of x1 vs x2 and
x1 vs v1. Results of those calculations are presented in the end of this section.

Other 9 plots presented in Fig. 2.3 and 2.4, are dedicated to the analysis of
model parameters. It should be noted that in further study initial conditions have
been chosen in a way that motor would operate in the working regime.

The parameters a and b of the elastomer expansion function play the most sig-
nificant part in the Langevin equation, as the analysis in appendix A reveals. This
term determines how entropic force exerts on kinesin, based on a relative head
position. In turn, variations of a parameter a behavior, as depicted in Fig. 2.3 is
complex and even slight change of this parameter can cause changing regime from
productive, to-the-left direction to nonproductive, to-the-right movement. For a
small a < 0.5 average velocity has almost constant value off 1. For 0.5 < a < 2.5
a motor ceases to operate in either way. In a domain of a variability 0.5 < a < 2.5
two maxima of the velocity can be detected (a = 1.2 and a = 2) with an additional
minimal value of the velocity observed at a = 1.4.

With b situation is much more simple. Under 0.5, motor is in the negative
regime, with a minimum at b = 0.2. By crossing the zero, the mean velocity is
quickly rising, reaching the maximum value at b = 1 and slowly decaying after-
wards.

Moreover, the lower energy dissipation rate c is, the higher the overall mean
velocity of the motor.

For every but very little value of d, the motor proceeds in the right direction. It
reaches a maximum of ⟨v0⟩ for d = 0.3, after which the average velocity decreases
slowly.

Maximal value of mean velocity can be achieved for a tiny noise intensity D.
However, nonzero, mean velocity of directed motion can be registered in the ab-
sence of noise. It should be anyhow noted that a weak noise is leading to better
motor performance than the total absence of it.

Both frictions γ0 and additional Γ should be kept as low as possible to sustain
motion possibility. It applies especially toΓ, for which ⟨v0⟩ experiences exponential-
like decay, cf. Fig. 2.3 and 2.3. However, while high frictional constants can slow
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Figure 2.3: Time-averaged velocity ⟨v0⟩ versus variation of model parameters. Re-
sults for simulations for the parameter set: s0 = 8, a = 0.5, b = 1, e = 0.1,
h = 0.1, γ0 = 0.02, q = 1.0, c = 0.1,d = 1,Γ = 0.5, D = 0.25. The time step of
simulations is ∆t = 10−2.
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Figure 2.4: Time-averaged velocity ⟨v0⟩ versus variation of model parameters. Re-
sults of simulations for the parameter set: s0 = 8, a = 0.5, b = 1, e = 0.1, h = 0.1,
γ0 = 0.02, q = 1.0, c = 0.1,d = 1,Γ = 0.5, D = 0.25. The time step of simulations
is ∆t = 10−2.
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Table 2.1: Model 1 Working Regime Summary

parameter description working regime negative motion
x1(0) head 1 initial position 4 > x1 > −1 fluct. in-between
x2(0) head 2 initial position 3 > x2 > −2 fluct. in-between
v1(0) head 1 initial velocity v1 > 0 v1 < 0
v2(0) head 2 initial velocity v2 > 0 v2 < 0
e(0) depot initial energy — —

a elastomer parameter a < 3 two negative regions
b elastomer parameter 3 > b > 0.5 negative for b < 0.5
c energy dissipation rate — —
d energy transmission rate d > 0.03 —
D noise intensity — —
γ friction frequency — constant drop
Γ additional load friction Γ < 3 —
h ratchet height h < 0.8 two negative regions
q energy inflow rate q > 0.08 —

down or even stop the motor, they would not reverse the motion. That conclusion
is in agreement with a physical intuition.

The barrier height h influences on mean velocity, appears to be one of the most
complex ones. Apart from the elastomer coefficients a and b, this is the only con-
stant parameter that can reverse the direction of motion. For a given set of other
parameters, motor operates for low h < 0.37 after which it alternately goes to the
left or to the right.

The higher energy inflow rate q is, the faster motor operates. There exists how-
ever a minimal value of q, under which kinesin would not move — by inspection of
Fig. 2.4 we conclude that q should be grater than 0.08 for motor to operate.

As in this Section we study actual working regime, summarized version of find-
ings reported in the previous paragraphs is presented in table 2.1.

2.2.4 Further analysis of the working regime

In the table 2.1 the parameters that behave in a unpredictable manner have been
bolded and will be studied in this section.

In figure 2.6 we present a vs b plot. For a given range of parameters (0 < a, b <
2) ”safe” region can be established for points above linear function b(a) = 2a− 1.

Plot of x1(0) vs v1(0) is present in Fig. 2.7 . While plot in Fig. 2.2 show compli-
cated behavior for different initial positions, observation of this plot reveal that the
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Figure 2.5: Time-averaged velocity ⟨v0⟩ versus variation of h and D. Result of a
simulation for the parameter set: s0 = 8, a = 0.5, b = 1, e = 0.1, h = 0.1,
γ0 = 0.02, q = 1.0, c = 0.1,d = 1,Γ = 0.5, D = 0.25. The time step of simulations
is ∆t = 10−2.

initial velocity is really important. Variation of x1(t = 0) has some slight impact
on the resulting mean velocity but is absolutely insignificant in comparison to the
initial velocity. This suggests that system without a load is in a state of metastable
equilibrium and initial direction of one of the heads sets the direction for the whole
system.

In Fig. 2.5 we present h vs D plot. Somehow similarly like in the case of x and
v there is a dominating actor here - ratchet height h. For small values, as presented
before, mean velocity reaches its maximum and decreases afterwards. Noise level
only influences pace given by the ratchet potential.

2.2.5 Criticism

As mentioned at the beginning, in contrary to other works, inertia term has been
kept in our original Langevin equations. While the internal motion of the motor
could be underdamped (that assertion lead to constructing model with inertia), as
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Figure 2.6: Time-averaged velocity ⟨v0⟩ versus variation of a and b. Result of the
simulation for the parameter set: s0 = 8, a = 0.5, b = 1, e = 0.1, h = 0.1, γ0 =
0.02, q = 1.0, c = 0.1,d = 1,Γ = 0.5, D = 0.25. The time step of simulations is
∆t = 10−2. Working regime can be observed for parameters above linear function
b(a) = 2a− 1.

27



Figure 2.7: Time-averaged velocity ⟨v0⟩ versus variation of x1 and v1. Result of
the simulations for the parameter set: s0 = 8, a = 0.5, b = 1, e = 0.1, h = 0.1,
γ0 = 0.02, q = 1.0, c = 0.1,d = 1,Γ = 0.5, D = 0.25. The time step of simulations
is ∆t = 10−2.
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.

Figure 2.8: The effect of inertia in the model. The inertia term v̇(t) is much larger
than the term γv(t) for almost all times.

a whole the molecular motor operates in the crowded environment and should be
extensively damped. To analyze this constraint we have made a simulation in which
ratio of inertial term dv/dt to the friction term γv has been checked against the
time. What we have found out and what is illustrated in Fig. 2.8, is that this ratio is
very much above the level that could be called ”small”. It means that in this context,
the model - while possessing most of the properties needed to study molecular mo-
tor motility - has a serious drawback. Namely, because of the expected overdamped
behavior, low Reynolds number typical for motion in the cell’s environment[35],
this kind of movement would be unlikely to be realized.

2.3 Separation of mass model — Model 2

2.3.1 From the first to the second model

Drawbacks unveiled in the last part of previous Section have prompted us to in-
troduce some modifications of the presented model. Altogether those changes re-
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sulted in a new effective model of molecular motor (Model 2).
The founding assumptions remain the same, so are the first equations (2.4 -

2.6). The trick introduced here separates relative kinesin heads movement from
the general motion of the molecular motor. Along other things, it gives possibility
to use different constants to distinguish two environments.

To get a relative motion formula, one subtracts equations (2.4, 2.5):

mdv(t)

dt
+mγcv(t) + (U ′

1(xc + x(t)/2)− U ′
1(xc − x(t)/2)

−2TS ′(x(t)) = mde(t)v(t) +m
√
2Dvξ(t),

(2.14)

where x = x1 − x2 is a distance between two heads at the given time and
v = v1−v2 is a relative velocity. The energy equation after the change of variables
gets the form:

de(t)

dt
= q − ce(t)−mdv2e(t). (2.15)

As mentioned in previous sections, the author’s intention, was to keep inertial
terms for the internal motion of the motor (that is for the relative motion of two
motor heads) and this has been achieved in equation (2.14). On the other hand, to
meet the requirement of the overall motor motion being overdamped in viscous en-
vironment, we have analyzed the center of mass motion. Here, by adding equations
(2.4, 2.5), we get a formula for CM motion:

(2m)
dvc(t)

dt
+ (2m)γcvc(t) + 2MΓc

dxc(t)

dt
+(U ′(xc + x(t)/2) + U ′(xc − x(t)/2))

= (2m)de(t)vc(t) + (2m)
√

2Dv(ξ1(t) + ξ2(t))/2, (2.16)

where xc = (x1 + x2)/2 stands for the center of mass position and vc =
(v1 + v2)/2 represents center of mass velocity. Index c in this model stands for
the center of mass variables, which is different from index 0 in the previous model,
representing point behind moving two-head motor, as in eq. (2.9). Note that in this
case, by means of Eq. (2.9), vc = v0.

With both equations in hand, there are some simplifications that can be intro-
duced just into one of the formulas. The center of mass equation can be compared
with models, which do not take into account separate heads motility. It is now pos-
sible to neglect inertia term just in the center of mass equation, effectively getting
overdamped formula while still retaining inertia term in the relative head motion.
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CHAPTER 2. MODELS OF THE KINESIN MOTORS

At this point we assume that leading contribution to this motion is coming from the
terms that have not been bolded in eq. (2.16).

In order to retain the Langevin form, this striped-down equation, needs a re-
placement for the lost noise term. Therefore, we introduce here a center of mass
friction Γ = 2MΓc and corresponding noise intensity Dxc . With approximating
the noise level, it must be noted that addition of two separate noise function is not
a sum of them. In case of the Gaussian distribution, as discussed here, the square
of its variance is the sum of the squares of variances (σ2

1+2 = σ2
1 + σ2

2). Further,
we will write ratchet potential as in eq. (2.7) in a form in which bias force Fc is
explicitly present in the center of mass equation:

dxc(t)

dt
=

Fc

Γ
− 1

Γ
[(U ′

1(xc + x(t)/2) + U ′
1(xc − x(t)/2)]

+
√
2Dxcξ0. (2.17)

This model still manages to operate and can perform work against the external
force. Figure 2.9 illustrates the process for different external forces. It can be
observed that for forces not exceeding absolute valueF0 = 0.2, the motor operates
in its working regime.

Without going into the details (Chapter 3 is devoted to the broad aspect of ef-
ficiency), it should be stated that in terms of the parameter relating the work per-
formed by the motor against the bias force with the power supply — the thermo-
dynamical efficiency η = |Fcvc|

q
— the second model is less effective than the first

one.

2.3.2 Initial parameters test for the model

Like in the case of previous model (see Sec. 2.2.3), space of parameters for the
second model is also abounding.

As the first step, we have chosen initial conditions (x0(0), v0(0), e(0) and pa-
rameters (d, Γ, F0) to test their possible impact on motor functioning. Secondly, we
have defined which parameters to keep fixed. Relative motion friction frequency
γ0 = 0.02, noise level for the center of mass equation Dx0 is 1.0 while for the rel-
ative motion Dv is 0.1. In general, kinesin is a subject to the fluctuation that come
from the crowded surroundings. On the other hand, ”shielded” relative motion of
kinesin heads is less exposed to those fluctuations. The other model parameters
values come from the findings for the first model: q = 1 and c = 0.1 while we have
also kept elastomer parameters a = 0.5 and b = 1.0. Simulation were carried out
with head masses m = 1, time step dt = 10−3. The total final time of simulations
has been set to tfin = 50.0.
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Figure 2.9: Trajectories of the center of mass (above) for various values of the load
force: Fc = −0.05,−0.10,−0.15,−0.20. At Fc = −0.20 the motor is already
overloaded and ceases to operate at higher loads. Parameters for the simulation
are a = 0.5, b = 1, γ = 0.02, Γ = 0.2, q = 1.0, h = 0.1, c = 0.1, d = 0.1.
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CHAPTER 2. MODELS OF THE KINESIN MOTORS

Here, we propose an alternative method to explore the working regime. The
approach is as follows:

1. draw values of 6 parameters in following ranges: x0(0) = (0, 6), v0(0) =
(0, 6), e(0) = (0, 1) and d = (0, 1), Γ = (0.1, 1), F0 = (−0.3, 0)

2. make simulation for tfin = 50.0, calculate mean velocity

3. repeat 105 times.

The reason that we have chosen this approach originates from the idea of find-
ing really the ”best” region of initial parameters. The previous approach that we
have used in the study of the first model, have not took into account that other
parameters can play the role at the same time, e.g there might be certain value of
x0(0) for which Γ = 0.2, F0 = −0.1 is the most efficient and for different value of
x0(0) optimal value of Γ and F0 can be different.

There is also another reason, for which we are not using ensemble-averaged
velocity. For systems exhibiting multimodal distributions of velocities, ensamble
average would hide characteristic features of motion (i.e. switching of the direction
of direction of motion from left to right).

Because we draw independently all 6 parameters and then plot it as 3D plots of
mean velocity as a function of 3 pairs of 2 parameters, one can see general trends
of how single parameter influence on the overall efficiency. For the sake of clarity,
only values of positive mean velocity were taken into account. Further in Figs. 2.10,
2.11, 2.12 we only keep points where the efficiency ηC = |F0⟨v0⟩|

q
is higher than 1%2.

2.3.3 Mean velocity distribution as the function of Γ.

Contrary to the statements about calculation ensemble-averaged velocity draw-
backs, here we have calculated mean velocity distribution as the function of Γ pa-
rameter. The reason for that, is that we wanted to get clear view of the Γ value
dependency, even at the cost of potential loss of subtle phenomena occurring in
the model. Results are presented in Fig. 2.13. As we have chosen safe value of
force F0 = −0.1, for all interesting cases (Γ >> γ0, that is for Γ > 0.1), mean
velocity is positive and decreases slowly with the increase of Γ.

2.3.4 Mean velocity distribution as a function of the ratchet am-
plitude h

The last thing that has been checked for the second model is that we have changed
the core ratchet parameter h — potential height. Using the same approach as in

2”thermodynamical efficiency”, detailed discussion about estimating molecular motor perfor-
mance can be found in the following Chapter
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ηC

Figure 2.10: Efficiency ηC = |F0⟨v0⟩|
q

as a function of initial velocity and initial
relative position of heads. Note that the plot exhibits flat structure after reaching
certain values of v0(0) > 2 and x0(0) > 0.8.
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CHAPTER 2. MODELS OF THE KINESIN MOTORS

ηC

Γ

Figure 2.11: Efficiency ηC = |F0⟨v0⟩|
q

as a function of force F0 and Γ. There exists
a range of F0 which ”provides” high efficiency. The lower Γ, the higher efficiency.
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ηC

Figure 2.12: Efficiency ηC = |F0⟨v0⟩|
q

as a function of parameter d and initial value

of e(0). Initial value of e(0) seems not to be important, while one can see that for
d > 0.4 there is much more often occurrence of efficiency over the cut-off point.
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CHAPTER 2. MODELS OF THE KINESIN MOTORS

Figure 2.13: Time- and ensemble-averaged velocity distribution after t = 50 as the
function of Γ. Results obtained for F0 = −0.10 and 100 simulation steps for each
point.
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Figure 2.14: Time- and ensamble-averaged velocity distribution after t = 50 as the
function of h - ratchet amplitude. Results obtained for Γ = 0.101790, F0 = −0.10,
number of simulation steps for each point is 100.

previous section, plot that can be found in Fig. 2.14 has been made.
Nevertheless, what can be observed, is that a change of h has no impact on the

mean velocity of the motor. The presence of the ratchet effect itself is limited for
values grater than h > 0.05. Only in this regime the positive, upward movement
appears.

For values below critical value one can find fast negative velocity, far from ab-
solute values characteristic for the model (|⟨v⟩| < 0.5).
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Chapter 3

Performance of models

3.1 The concept of the efficiency: Addressing per-
formance of the motor models

In the formal terms, thermodynamic energy conversion efficiency is the ”rate of
free energy output divided by the rate of chemical free-energy consumption by
the motor” [36]. In less formal language, efficiency gives the information about
how much work done one can get for a given amount of resources. An information
about an average MPG (miles per gallon) is used by consumers for some kind of
estimation about the efficiency of the car. Of course, to get a proper efficiency,
chemical energy released in combustion of fuel should by calculated - as well as a
mechanical work performed by the engine. Especially the latter is not an easy task,
due to environmental conditions (terrain, weather, driver skills etc). At the end of
the day, a driver asks a question - how much fuel I have used to carry my family
for a distance of those 1000 miles. He or she does not think about all other factors
that a physicist should take into account for calculating a proper, thermodynamical
efficiency.

The previous paragraph in some way explained the need for understanding that
”efficiency” might be a complex issue to study. In a way, it is a question about
how far the term ”efficiency” stands from the term ”usefulness”. Even with a strict
physical definition, in the back of the head one thinks about the benefit behind the
whole thing.

This Chapter is dedicated to exploration of the efficiency (in a multiple mean-
ing) of both molecular motor models presented in the previous Chapter. The open-
ing sections explain different ways of defining efficiency for molecular motors and
the closing ones present those efficiency values calculated using computer simu-
lations.
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3.1.1 Efficiency in classical thermodynamics

In this simple approach work done by a motor, working against force F0 is divided
by the chemical energy provided from the ATP hydrolysis:

ηC ≡ f⟨v⟩
A⟨r⟩

, (3.1)

where f is an external force, A is the chemical free energy consumed by the
time of one motor cycle, ⟨r⟩ stands for rate of the chemical reaction cycle and ⟨v⟩
is an average motor velocity.

According to the definition for both presented models (Model 1 & 2) this can be
rewritten as:

ηC ≡ |F0⟨v0⟩|
q

, (3.2)

where q = A(r)

The problem is, that in an absence of external force, the efficiency is by defi-
nition zero. This classical equation evaluates more what is rather considered as a
motor usefulness in an imaginative tug-of-war with some other motor. In the case
of dense environment in which molecular motors operate, it does not mean taking
into account a friction force coming from thermal fluctuations [37].

3.1.2 Generalized efficiency

In the paper of Derényi et al. [37], authors introduce the concept of generalized
efficiency. It is defined as a ratio of minimal energy needed for the task to be
accomplished (Emin) and the actual energy used to accomplish certain task (Ein):

ηG ≡ Emin

Ein

. (3.3)

For molecular motors the minimal energy is used when molecular motor is mov-
ing uniformly with an average velocity ⟨v⟩ along the track (i.e. microtubule) and in
this case:

Pmin =
dEmin

dt
= F0⟨v⟩+ γ⟨v⟩2. (3.4)

The problem of a generalized efficiency in the context of presented model is
that, it is hard to evaluate minimal energy used in a hand-over-hand mechanism.
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CHAPTER 3. PERFORMANCE OF MODELS

Intuitively, the minimum is achieved when motor heads are not moving when ob-
served in the center of mass point of view. In consequence, generalized efficiency
for both presented models can be defined as:

ηG ≡ |F0⟨v0⟩|+ ΓM⟨v0⟩2

q
. (3.5)

3.1.3 Stokes efficiency

In the paper of Wang et al. [36] Stokes efficiency is defined as:

ηS ≡ ζ⟨v⟩2

A⟨r⟩+ f⟨v⟩
, (3.6)

where f is an external force, ζ is a drag coefficient, A is the chemical free en-
ergy consumed by the time of one motor cycle, ⟨r⟩ stands for rate of the chemical
reaction cycle and ⟨v⟩ is an average motor velocity. As the Authors of the concept
summarize [36]:

”The Stokes efficiency can be viewed as a measure of how efficiently
the motor can utilize the free energy to drive a load through a viscous
medium.”

In terms of models presented in the previous Chapter, Stokes efficiency can be
defined as:

ηS,1 ≡
mγ0(⟨v1⟩2 + ⟨v2⟩2) +MΓ⟨v0⟩2

q + F0⟨v0⟩
(3.7)

for the first model and:

ηS,2 ≡
Γ⟨vc⟩2

q + Fc⟨vc⟩
(3.8)

for the second model.

3.2 Comparison of efficiency

3.2.1 Velocity distribution

Looking at all the definitions of the efficiency presented in the previous Section it is
possible to separate important variables playing role in the efficiency calculations.
In fact, there is only one variable — mean velocity ⟨vc⟩, the other parameters in the
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context of studied models are the set simulation parameters - as energy input rate
q, friction Γ or γ and, finally, opposing force F0.

Because of randomness of the noise part, every simulation of motor trajectory is
different. For certain critical values of parameters it may produce false impression
of wether one is upward or downward regime. To study this further, we have made
series of simulations and their outcome - mean motor velocity distributions for
different external forces is presented in Fig. 3.1 and 3.2 for the first and second
model, respectively.

For the first model for all the presented opposing forces, distribution has asym-
metric and bimodal character. In all the cases there is one dominant value of the
mean velocity, the most probable one. Especially for the force value F0 = −0.04
bimodality has crucial implications. For the same set of parameters, depending on
realization (e.g. noise) motor can operate in the upward motor regime or can not
overcome the force and is dragged by the force.

Because of that bimodal character, it is hard to precisely define stall force. If
one define it as the maximum value of the force for which the most probable mean
velocity is positive, then it can be assigned to a value F0 = 0.045.

In the case of the second model for the force F0 value of −0.2 one can speak
about downward regime - in most cases motor will be dragged by the force, effec-
tively moving in opposite direction that one would call the right one.

The middle plots, for the medium force ofF0 = −0.1, represent upward regime,
where motor goes in almost 100% cases in the right direction.

In the bottom plots average velocity is even higher than 0.2, but one has to
remember that for no-force environment this movement is far from one that we call
effective.1 On the right, for all the distributions one can find example trajectories.

Comparing both models in the terms of mean velocity against the opposing
force (and taking into the account that initial and running parameters are not ex-
actly the same) key difference can be formulated as follows:

1. Model 1 can operate much faster (about one order of magnitude) than Model
2;

2. Model 2 still operates for the forces over four times higher comparing to the
first model;

3. Model 1 produces bimodality in the mean velocity distribution — this is not
the case for the second model.

Summarizing those findings, both models can be compared to car and the trac-
tor. The first can be driven very fast, but more than bunch of fellow passengers

1With the respect to efficiency ”kinds” presented before, for the classical formula for efficiency
it is by definition zero. That is contrary to the other formulations of efficiency.
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CHAPTER 3. PERFORMANCE OF MODELS

(a) F0 = −0.1

(b) F0 = −0.04

(c) F0 = 0

Figure 3.1: The original Model 1: Time- and ensemble-averaged mean velocity
distribution as a function of force F0 with example trajectory for x1 = 0.1, x2 =
1.0, v2 = 0.2, v1 = 0.1, e = 0.1. Every point has been calculated 100 times. The
details of the original model can be found in Chapter 2.
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(a) F0 = −0.2

(b) F0 = −0.1

(c) F0 = 0

Figure 3.2: The separation-of-mass Model 2: Ensemble average of the time-
averaged velocity distribution as a function of force F0 with example trajectories.
For the calculations for the Model 2, we have used fixed parameters as follows:
γ0 = 0.02, Γ = 0.101790, m = 1, Dx0 = 1.0, Dv = 0.1, time step dt = 10−3, final
time tfin = 50.0, q = 1, c = 0.1. We also have kept a = 0.5, b = 1.0, v = 0.745513,
x = 0.771748, e = 0.023095 and d = 0.960061. Every point has been calculated
100 times. The details of the separation-off-mass model can be found in Chapter
2
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Figure 3.3: Model 1 efficiency according to different definitions presented in Sec-
tion 3.1.1–3.1.3 as a function of force F0. Each refers to the ensemble-avaraged
(100 independent trajectories). Friction parameter has been set to Γ = 0.101790

would impact on its performance. On the other hand, while capable of caring heavy
trailer, it is not wise (and against the law) to drive a tractor on an expressway.

3.2.2 Efficiency definitions in use

Efficiency plots according to presented definitions for the first and second model
can be found in Fig. 3.3 and Fig. 3.4, respectively.

For the first model in all the calculated definitions efficiency is almost constant
(very subtle increase) until reaching stall point. In the case of general and classical
themodynamical definitions that also manifest in the drop of the efficiency under
the physical value of zero. On the other hand, for the Stokes efficiency because
nominator is always positive and denominator changes just a little even with the
change of mean velocity sign, the resultant efficiency is almost the same for all the
values of opposing force.

In the second model, as it can be thought reading previous section, with the
decrease of the opposing force, mean velocity increases. There should be a certain
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Figure 3.4: Model 2 efficiency according to different definitions presented in Sec-
tion 3.1.1–3.1.3as a function of force F0. Every point is ensemble-average calcu-
lated 100 times, crucial friction parameter in this case is Γ = 0.101790.
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force for which velocity is still high, while relatively strong opposing force still
exists. In the case of presented simulations for classical definition of efficiency,
this point is for F0 ≈ −0.18. For higher force values efficiency rapidly drops
to zero (just before reaching force of F0 = −0.2) and for lower values decreases
gently until reaching zero when opposing force equals that.

In the experimental work of Nishiyama et al. [38] very similar behavior of the
efficiency as a function of load force has been observed. Critical force value has
been measured as 8 pN, which is in agreement with other works.

Situation is slightly different for the remaining two efficiency definitions. As
generalized efficiency is the sum of thermodynamical efficiency and the against-
friction term it has similar shape for higher force values, while for low force, be-
cause of the relatively high velocity it reaches the maximum value. Stokes effi-
ciency for most of the checked force values remain on the low level - that is also
the result of the form of definition with the given value of absorbed chemical en-
ergy.

3.3 Remarks on Model 2 efficiency

In this short section, we present two results obtained for Model 2 as a result of an
inspiration coming from the article of Bormuth et al. [39].

3.3.1 Generalized efficiency without external force as the func-
tion of friction

As demonstrated in the previous sections, efficiency can be considered as a differ-
ent thing, depending on the situation in which one asks about it. Here, we present
generalized efficiency for the second model without the opposing force. As a result,

efficiency now reads Γ⟨v0⟩2
q

. Like before, because of noise randomness, instead of
just one simulation for every point, we have made a lot of program runs for dif-
ferent (random) Γ within certain range 0 < Γ < 1. What one can see, is a clear
”optimal” value, much easier to accurately ”measure”. Fig. 3.5 shows the plot for
that, as in caption it’s for absent force F0.

3.3.2 Friction force as a function of mean velocity

Mean velocity has been calculated as a simple division of distance by time (t = 50).
What we have observed (and what could be found in Fig. 3.6) is a kind of branching
- some of the points follow linear F = Γ × v formula, while the others follow the
as presented in the aforementioned paper [39].
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Figure 3.5: Generalized efficiency ηG = Γ⟨v0⟩2
q

as a function of Γ,F0 = 0. The
parameters of the Model 2 are γ0 = 0.02, m = 1, Dx0 = 1.0, Dv = 0.1, time step
dt = 10−3, final time tfin = 50.0, q = 1, c = 0.1. We also have kept a = 0.5,
b = 1.0, v = 0.745513, x = 0.771748, e = 0.023095 and d = 0.960061.
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Figure 3.6: Friction force as a function of ⟨v⟩ for absent external force (F0 = 0).
This figure corresponds to Fig. 2 in [39]. Ratchet nature of the model mimics
energy barrier needed to overcome to break molecular bonds.
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While some portion of points follow the classical, linear dependence, for the
higher velocities, dependency becomes nonlinear. In the article of Bormuth it is
proposed that asymmetric energy barrier exists, that needs to be overcame to break
the molecular bonds. As a result, using Arrhenius theory exponential dependency
has been derived. The striking similarity of the second model with those experi-
mental results is becoming understandable if one recalls ratchet nature of model
presented here, being the theoretical equivalent of the energy barrier of protein’s
molecule.
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Chapter 4

Summary and Conclusions

In this thesis I have presented a two-version model of an entropic forces driven
molecular motor. In both cases, two motor heads are connected by a contracting
and expanding elastomer. On the other hand, track of molecular motor is modeled
by ratchet asymmetric potential. Both models are tuned in a way that they perform
hand-over-hand motion, in that way they support hand-over-hand hypothesis of
kinesin molecular motor movement.

First model, presented along broad discussion of working parameters, consists
of inertial motion equations for both heads and the energy depot derivative for-
mula. The measured thermodynamical efficiency, caching up to 30%, has been one
of the key model characteristics. Despite that, deeper analyzes revealed that ra-
tio of inertial and friction terms is definitely to large to exist in overcrowded cell
environment.

The second model separates relative motion of heads from the center of mass
motion. Therefore, while still keeping acceleration terms in the relative motion
equations, center of mass motion expression has been formulated in the language
of the overdamped Langevin equation. This reasoning allowed the previously pro-
posed two-head mechanism, while keeping the generally accepted assumption of
the dense environment. The second model is suffering thermodynamical efficiency
loss, comparing to the preceding idea.

Performance issues has been discussed in the context of different efficiency
formulations. The most broadly accepted thermodynamical efficiency of the sec-
ond model is in agreement with the experimental works. As for the other formula-
tions it was not possible to compare them directly with experimental works, general
discussion has been enclosed.

Models similar to presented here, containing nonlinear velocity dependent dis-
sipation terms have also been broadly used to describe active motion of cells [40],
collective swarm dynamics [20, 41] and coherent changes in direction of moving
groups of animals [42].
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More recently, the interest in using the active Brownian particle models (ABP)
has been boosted [43] by noticing apparent connection between ABP models and
dynamics of coupled molecular motors (CMM). This opens a new field of important
applications of the ABP methodology in investigations of e.g. bidirectionality of
motion and velocity reversals evidenced in experimental motility essays on groups
of biological molecular motors [44].

In my opinion, the future of molecular motor modeling lies in the interdisci-
plinary approach, where presented here Brownian dynamics meets molecular dy-
namics modeling and chemomechanical technique. Even more insight to the prop-
erties of the system could be found by careful studying constantly appearing new
experimental works. More than a few groups nowadays are concentrating their ef-
forts on studying the collective behavior of molecular motors. On the other hand,
very basic and general terms as friction, while under constant investigation [39],
still lack deeper understanding of their molecular origin.
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Appendix A

Comparison with experimental data

In this Appendix I present comparison of my model with experimental data enclosed
in article of Bormuth et al. [39]. As the units used in that work are different, in the
beginning I will show conversion of the diffusion equations used there to the ones
in this work. Here the equations with dimension (2.4)-(2.6) diffusion coefficient is
defined as follows:

Dv =
γ

m
kBT. (A.1)

On the other hand, in aforementioned work it is defined as:

DTIRF =
kBT

γTIRF

, (A.2)

where TIRF stands for ”total internal reflection fluorescence” experimental method
used by the Authors.

Those diffusion constants can be related as:

DTIRF × γTIRF =
Dvm

γ
(A.3)

Dv =
DTIRF × γ × γTIRF

m
. (A.4)

As γTIRF has a dimension of force, contrary to γ (used in this work, which has
a dimension of frequency), both friction coefficients can be related by:

γ =
γTIRF

m
. (A.5)

Applying this to (A.4), one obtains a final relation:

Dv = DTIRF
γ2
TIRF

m2
. (A.6)
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From Bormuth et al. paper [39] I have used data for type kip3p kineisn:

• DTIRF = 0.0043µm2/s = 0.0043× 10−12m2/s = 4.3× 10−15m2/s

• γTIRF = 0.95µNs/m = 0.95× 10−6Ns/m

• whole kip3p weight is 91kDa = 1.51× 10−22kg

The remaining missing value I have obtained from Peters et al. paper [45]:

• kinesin motor domain (head) weight is aprox m = 39kDa = 0.65×10−22kg

Applying above values to (A.6) one gets:

Dv =
4.3× 10−15m2/s× (0.95× 10−6Ns/m)2

(0.65× 10−22kg)2
(A.7)

It is more convenient for the model to use following formula:

m
√

2Dv =
√
2DTIRFγ2

TIRF =
√

2× 4.3× 10−15m2/s× (0.95× 10−6Ns/m)2

=
√
7.76× 10−27 = 8.8× 10−14N

√
s

= 0.088pN
√
s(A.8)

Now lets evaluate the entropic force associated with linker stretching. Data
read from Greater et al. article [31], indicate that following nonlinear force-length
dependency:

2TS ′(∆x = 5.5nm) = 50pN

2TS ′(∆x = 6nm) = 100pN, (A.9)

where ∆x = |x1 − x2| is the relative distance between the motor heads1.
To keep those values consistent with the proposed elastomer function (2.8) fol-

lowing parameters for my model should be set as follows:

a = 7.69× 10−3pN/nm

b = 1.647× 1014pN/nm3 (A.10)

1It is crucial to note that from some distance of kinesin heads, force of elastomer rises very high.
It is similar situation with our model, where stochastic force part dominates over all the other ones
(see Tab. A.1).
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APPENDIX A. COMPARISON WITH EXPERIMENTAL DATA

With those assumptions the ratio of the entropic force and stochastic force can
be approximated as follows from the aforementioned works:

2TS ′(∆x = 6nm)

m
√
2Dv

≈ 103 (A.11)

As one can notice, comparing this ratio with the one from the presented Model
1 (see Tab. A.1), the experimental data suggest even stronger influence of entropic
forces in the Models’ Langevin equations. Yet, the ratio is similar in the orders of
magnitude.

Table A.1: Comparison of numerical values of the forces present in Langevin equa-
tions for the Model 1, for the F = −0.2

U ′(x) ratchet potential part with the load force |0.6|
FS(x1 − x2) entropic force of an elastomer |35|
m
√

2Dviξi(t) Stochastic force |0.15|
mde(t)vi Mechanical energy from the depot |1|
mγ0v1(t) Dissipative forces |0.1|

On the other hand, in my simulations stall force was about F = −0.2 and that
value should be compared with aboutFstall = 8 pN read from the experiments [46].
Force value is incorporated into the U ′(x) term in model equation so it is possible
to directly compare e.g. force to entropic force ratio in the model with similar ratio
obtained from the experiment:

Fstall

2TS ′(∆x = 6nm)
≈ 12.5, (A.12)

while for the model this value is approximately 130. Difference here appears
to be huge, although the choice of comparison elements is arbitrary and entropic
force component can vary significantly even with small change of motor head dis-
tance (cf. twofold change of it when distance has been altered by only 0.5 nm).

Summarizing this appendix, while the actual values used in the model simula-
tions cannot be compared 1:1, the general trends and domination of some terms
remain similar to the ones observed in the experiment. It might be possible to as-
sociate most of the model coefficients with certain laboratory measurements, the
problem is however that not all of needed values has been obtained by one group
and experiment. Even in this short and simple comparison, the data about elas-
tomer stretching behavior had been gained from alternative source.
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Appendix B

Backsteps problem

The molecular motor kinesin has a directed motion along the microtubule. It means
that in general steps are taken only in one direction. Occasional steps to the other,
”negative” direction are called backstepping. In the recent work of Bier and Cao ??,
it has been proposed that occasional backstepping is actually not a disadvantage,
but rather a mechanism that by increasing the entropy of the moleculer motor sys-
tem, increases the free entropy-associated energy and as a consequence speeds up
the motor.

Here, in this short appendix I would like to explore some details of my models
in the context of aforementioned work. Backstepping of course can be accounted
in the easiest way by simple summing all the negative iterations of the simulations.
In that way it is possible to distinguish between same average velocity values with
a different trajectory ”history”.

The major disadvantage of this approach I find in counting all the small ”fluc-
tuation backsteps” that constantly appear in all crowded, Brownian environments.
To address this problem, I have created a simple algorithm that finds and counts
only the ”real” steps, that means the ones exceeding some given value.

For the backstopping accounting I have taken twenty as much time as in other
calculations (t = 1000) and on purpose I have chosen critical area of parameters
(for friction Γ = 0.1 and external force F = −0.18)).

The result of the first simulation can be found in Fig. B.1. It has been made by
100 simulations for each value of force in the range−0.17 < F0 < −0.21, with the
increments of ∆F0 = 0.001. For initial values of F0 (still in forward regime) there
are no backsteps, at certain point from time to time there are some backsteps. One
can see that until mean velocity is positive, number and percent of backsteps are a
linear function of mean velocity. Situation changes with negative mean velocities
— distribution of points is much broader and it doesn’t look linear anymore.

On the other hand, in the second Fig. B.2 external force is kept fixed at F0 =
−0.19, while now friction Γ is changing from 0 to 0.2 with ∆Γ = 0.01 increments
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Figure B.1: % of backsteps as a function of< v > for fixedΓ and variable−0.17 <
F0 < −0.21.
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Figure B.2: % of backsteps as a function of < v > for fixed F0 = −0.19 Γ and
variable 0 < Γ < 0.2.

and the number of simulations is still 100. Here it can be observed a linear behavior
up to critical value of Γ = 0.05, and there are no backsteps for higher Γ.
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Appendix C

Active Brownian Motion Simulation
on Graphic Cards

This appendix is a result of my work on exploring possibilities of a faster method
to study molecular motors Brownian dynamics. It has not been published yet, al-
though a modified version of this text can be found on ArXiv repository [47].

C.1 Introduction

Over the last few years General Programming on Graphical Processing Units (GPGPU)
has started to spread in all the areas where time consumption and performance of
calculations is crucial. Scientific simulation is a perfect example [48–50].

Motion of molecular motors has been simulated using different approaches
and models [22, 51–54]. Inherent in the modeling of stochastic processes is to
model the noise i.e. non-systematic, fluctuating increments to the process, un-
der the study. To obtain the most probable behavior of the system, it is neces-
sary to repeatedly perform calculations and then calculate their mean values based
on stochastic properties of the ensamble. On the other hand, chaotic behavior of
models with respect to initial parameters requires simulation for different sets of
both starting and constant conditions. All of those tasks can be easily divided into
separate threads — problem is highly parallel.

Most of high performance computing (HPC) in science is performed on clusters
— sets of single or multiple-core processing units connected by network. Workflow
consists of preparation of source code, its transmission over the network using
cluster controller, putting job to queue, some waiting time, execution of the parallel
program and finally acquisition of results over the network.

While fast, that approach has several drawbacks. First of all, for many simula-
tions the benefit of faster calculations, if one includes time for ”sending”, ”waiting”
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and ”acquisition”, might be rather insignificant. Secondly, the cost of every com-
puter forming a cluster is much higher than the cost of even high-end graphical
processing unit (GPU). Every GPU itself is a multiprocessing unit - even the low-
end Nvidia GeForce 320M GPU found on 11” Apple MacBook Air laptop has 48
cores, while SU9400 Intel processor (CPU) found on the same device offers only 2
cores [55].

The most popular technique for performing GPGPU nowadays is NVidia’s pro-
prietary technology CUDA. While very efficient, it’s vendor agnostic - it runs only
on certain Nvidia graphical cards. In 2008 Khronos Group consortium created
first specification of OpenCL which has been declared as an ”open standard for
programming heterogeneous data and task parallel computing across GPUs and
CPUs” [56].

Heterogeneous approach allows researchers to write programs managed by
hosts that can be run on different OpenCL devices, even the one where GPUs can-
not be used for OpenCL calculations. On that occasion, simulations are performed
on all of the CPU cores. Performance is worse, yet calculation can be done without
a single change of source code. OpenCL parallel nature also allows using all the
CPU processing power without any special multithreading programming — task are
dispatched by OpenCL into different threads to all available processor cores.

One of downsides of GPGPU is that both writing data to GPU and reading data
back to CPU is carried over a relatively slow system bus. It takes the same time to
transfer data from CPU to GPU and to carry a more than a few operations on the
GPU on the same set of data. This will be evaluated later in the text. That said, crucial
for good overall simulations performance is to carry GPU - CPU data transfer only
when it is really necessary.

At this point there is OpenGL, a technology developed over 20 years ago by Sil-
icon Graphics and now maintained by the Khronos Group, which as already men-
tioned, is responsible for developing OpenCL. OpenGL is a standard specification
for writing programs that produces computer graphics. Creating an image on a
monitor consists of setting environment, sending instructions to GPU to execute
them and finally show the result on the screen. For example, rotation of an ob-
ject is performed by sending a simple command to rotate by some angle and over
some axis, while the calculations of all coordinates are made by GPU, without CPU
burden.

OpenCL even in its initial specification mentions the possibility of integration
with OpenGL. Sending the results, which are already in the GPU memory, to the CPU
and re-sending them back to the GPU to visualize them, seems as an obvious waste
of both time and device processing resources.

In this appendix, I present an approach which integrates simulation and presen-
tation of the results on the same processing unit, GPU. If for some reason OpenCL
cannot be run on GPU, it still can work on CPU — much more efficiently than by
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simple execution of single thread simulation. Because of the little performance im-
pact, results can be presented after trajectories for a given sets of parameters are
calculated. Over time, results are averaged and a researcher can terminate compu-
tation when he finds results sufficient to prove or invalidate his thesis.

Specific problems of active Brownian motion (ABM) simulations using OpenCL
are explained in a subsequent section. Comparison of performance on different
hardware and software systems is also provided.

In this thesis I have extensively used plots of average velocity as a function of
force F0. In this appendix this relation is used to demonstrate GPGPU approach
and to compare the performance for various software and hardware setups.

Previous approaches used to check similar relations were based on serial mul-
tiple program executions, with parameters governed by Perl script. In the OpenCL
method, several instances of the same program, different only by force parameter
F0 are run simultaneously. Every instance of that program is called a work item
in OpenCL. Over the time results for given parameters are averaged to maintain
reliable result, independent of a given set of random numbers.

For every set of parameters OpenCL kernel as in Algorithm (1) is executed.

Algorithm 1 Pseudo kernel

read input parameters from global memory
fill local memory with parameters
for i = 0 to T do

do Marsaglia xorshift
do Box-Muller transformation
calculate new velocity and energy (as in eqs. 2.11,2.12,2.13)

end for
assign local parameters to global memory

After kernel finishes calculations, different techniques are used to visualize the
results. Their differences and performance are discussed in Sec. C.2.2.

Solving stochastic differential equations requires generating noise (in eq. ξ(t)
is understood as a source of a Gaussian white noise), which computer equivalent is
a set of pseudo-random numbers. The programmer can either fill OpenCL buffers
with random numbers provided by host RNG or write OpenCL implementation of
existent RNG algorithms. Downside of a first approach is the time it takes to pass
numbers to GPU — in case of OpenCL/OpenGL it is almost always more efficient
to send initial number and set of routines which would be executed on the GPU.
In this work, I have chosen the second way of generating random numbers, as in
[57]. Marsaglia xor-shift algorithm [58] has been used and because white Gaussian
noise needs normal number distribution instead of unitary, Box-Muller transfor-
mation has been also applied.
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The other problem that arises, when one writes a program running on the GPU,
is the precision issue. Using double precision (DP) variable types (like double) is a
standard for most scientific calculations. While the newest graphic cards available
on the market allow DP usage, for the sake of compatibility with the ones that does
not have this possibility, kernels should use single precision (SP) variable types
like float. SP programs can be as precise as the DP ones, as long as the technology
drawbacks are overcome in a correct manner [59]. This includes avoiding adding
very small numbers to very big ones.

While offering less flexibility in setting high precision data types, OpenCL spec-
ification encourages programmers to use vector data types. On certain graphic
cards, float4 (consisting of four float numbers) is the ”natural” data type and keep-
ing the same structure of data may increase performance. It should be also noted,
that if executed on modern CPUs, using vector data types can be also beneficial in
shortening calculation time [60].

Figure C.1: Example plot of tested program. Mean velocity < v > is plotted against
opposing force F0 (see details in the text).

C.2 Performance issues

A test program has been compiled and run on various Mac OS X 10.6 capable com-
puters. Through the test run all the other user visible applications have been shut
down. Every test sequence consisted of running program for 20 steps for every
power of 2 from 20 to 216 starting parameters, i.e. work items. Then, the last fifteen
steps have been taken into account and the average has been plotted (Fig. C.2).
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Figure C.2: Comparison of calculation time, depending on used hardware and num-
ber of simulation points. The lower, the better performance is.

Depending on a chosen hardware, time used for calculations varies substan-
tially.

While having multiple cores (from few up to thousands), graphic cards suffer
delays in every situation which requires transferring data to and from it to the CPU.
GPUs usually work on lower frequency clocks. On the other hand, easy memory
access and high frequency clocks would not overcome the main CPU drawback -
low number of processing cores (from one to six in most cases).

C.2.1 Performance on various simulation setups

Preliminary tests of my program show that, depending on the number of parallel
tasks to compute, GPU can be slower or faster, comparing to CPU. In the case of
traditional central processor calculation, on 4-core Q6600 it always takes twice
the time to compute twice larger set of simulation points.

On the other hand, it does not take significantly longer to compute more sim-
ulation points until certain threshold number is reached. The latter is a generic
characteristic of a given graphic card. Most obvious threshold should be GPU’s
core count. As the test results show, it is not always true.

Nvidia GeForce 9400M is a popular graphic card used in laptops until last year.
It has 16 processing cores and uses up to 512 MB of system memory (in case of
this test - DDR3). While one can expect no difference in time of calculations until
number of simulation point reaches number of cores and increase from thereon,
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actually this threshold occurs at number of 128. That is 8 times more than core
count.

Introduced in 2008, Nvidia GeForce 9800 GT is a PCI-Express standalone card.
In this test, version with 512 MB GDDR3 internal memory has been used. It has
112 cores working at 1500 MHz processor clock. Here, there is clear threshold
corresponding with the number of cores, when the time of single simulation starts
to increase. However, unless the number of simulation points exceeds 2048 every
doubling of required simulation points (say, an increase from 28 to 29) does not
result in doubling of the run time.

In other words, it means that there is no difference in simulation time whether
or not researcher calculates result for one or thousand parameters — as long as
the upper limit is under the threshold, which is dependent on a used graphic card.

To further study OpenCL GPU performance, I have carried out more detailed
calculations. Between 50 and 3500 work items, with the increment of 50, I have
measured the time of one calculation step. Because for every work item number
calculations have been performed at least 20 times, the average with standard de-
viation has been carried out. The procedure has been done for 104 and 103 itera-
tions steps and for zero steps. The latter helped to measure offset time for initial
variables transfer from global to local memory as well as final transfers from local
to global memory and visualization (which performance is discussed in the sec-
ond part of the article). Subtracting offset time from ”regular” calculations time
provided a more detailed view of the matter — result can be found in Fig. C.3.

Figure C.3: Time of OpenCL calculations carried on GeForce 9800 GT GPU against
number of work items. Band-like structure could be notice instead of linear rise of
calculation time.
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Most prominent, when one observes plot in Fig. C.3, is the band structure of
performance. There is almost no rise in time of calculation until number of work
items slightly passes 2000. This is similar observation like in the previous plot.
What distinguishes it, is the situation repeats for what is happening over 2000 work
items. It can be said that, GPU operates in some certain regimes of performance, and
crossing the thresholds results in non-linear rise of calculation times, i.e. while on
CPU time of calculation is a linear function of work items (work to be done), on the
GPU time of calculation rather can be explained as floor- or ceiling-like functions.

Closer look at the plot in Fig. C.3 can reveal that regardless of number of it-
erations, bands occur in similar places — for same number of work items. In the
authors opinion, for a given graphic card there exists a maximum number of work
items that can be done at the same time without any significant performance impact.
9800 GT GPU consists of 14 cores for each 8 streaming processors are provides.
That makes 112 processors to operate at the same time. Every core operates in 32
warps that help hide latencies of the memory. It appears that this about-2000 is
the threshold after reaching it GPU has to employ extra cycle to utilize all the work
items. That situation seams to reappear for the aforementioned threshold multi-
ples.

For some near-the-threshold regions one can see that time of calculation is
sometimes on the longer time band. One of the explanations could be that GPU has
been used at the moment of simulation for some other, most probably, system task.

C.2.2 OpenCL/OpenGL interoperation performance

In this part, I will analize the impact on a performance, when intermediate simu-
lation steps are shown to the user. In all tests the time for one cycle (gathering
initial parameters from memory, actual calculations and on-screen presentation of
results) has been counted in microseconds.

Three different approaches will be presented and compared.

Presenting results with external software

In the traditional approach calculations are carried out on a fast device (CPU, GPU),
final results are saved into files and finally data are plotted with external software
(e.g. gnuplot). This procedure may be adequate if one carries long calculations
with a single final plot. Impact of memory transfer issues, time of external plotting
software to initialize, read data from a file and plot is irrelevant comparing to the
time of calculations.
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Figure C.4: Different approaches to OpenCL calculation visualization. From left:
OpenCL/OpenGL interoperation with shared buffers (a), OpenGL is used to visual-
ize results, but buffers are not shared with OpenCL (b), almost traditional approach
where results are send to standard output, captured by gnuplot and visualize there
(c).

Intermediate steps with OpenGL

In this strategy, both calculations and visualization of the results are done by the
same program. OpenCL device runs the kernel, in which calculations are done.
Results are saved into the host memory and then they are plotted onto the screen,
using OpenGL. OpenGL is initialized only once at the beginning of a program run.
After receiving new data the screen is only updated.

Intermediate steps with OpenGL/OpenCL shared buffers

In the proposed method, there is no transfer of calculation results from OpenCL
device to host memory. Both computation and visualization operate on the same
buffers.

OpenCL and OpenGL specification requires that if one wants to use shared
memory buffer in-between those two frameworks, first OpenGL buffer should be
created. Secondly, instead of creating plain OpenCL buffer (clCreateBuffer), it has
to be created from the OpenGL one (clCreateFromGLBuffer). In OpenGL world,
buffers hold mostly either information about position or color. For example, color
buffer can hold a chain of float numbers representing colors in RGBA scheme. The
four numbers (a1...a4) stand for three color intensities (red, green, and blue with
ai ∈ [0, 1]) and a4 stands for the alpha opacity controller. Similarly, vertex buffer
holds a chain of float numbers that every four represent position in homogeneous
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coordinates (x,y,z,w).

Comparison of performance

The time of one step has been calculated for every method for three different num-
bers of simulation iterations and for three different numbers of work itmes (starting
parameter of the force F0). Resultant time has been averaged over 15 consecutive
steps and plotted in Fig. C.5.
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Figure C.5: Time in µs of one calculation cycle for shared buffers method, non-
shared buffers method and a reference gnuplot technique

For longer runs (with high number of iterations) the performance of all three
methods seems to be comparable. On the other hand, the lower number of itera-
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tions, the more striking is the difference between different approaches. It can be
found that for given numbers of calculated parameters the time difference between
methods is more or less constant.

Using linear regression one can estimate the average time for one iteration
for different methods and number of parameters with an offset being time of data
preparation, result acquisition and visualization. Results of the latter operation can
be found in Fig. C.6.
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Figure C.6: Time in µs consumed by every calculation step for data preparation,
result acquisition and visualization. Notice log scale for time.

It appears that for gnuplot reference technique, time dedicated to visualization
can be longer by even two orders of magnitude comparing to the fastest shared
buffers method. On the other hand, non shared buffers method can be a few times
longer than shared buffers approach. For all tested methods of transferring data
to the screen it has always taken more time to show plots of larger data. However,
that impact was much more evident for gnuplot approach than for other, OpenGL
techniques.

One of the ways to present comparison between different visualization methods
is to show the number of possible calculation steps that could have been done in
time spent on a visualization step. Data visible in Fig. C.6 has been divided by
time of one iteration (that has been calculated from the same linear regression as
mentioned before). Results can be found in the Tab. C.1.

For a longer calculation the number of possible iterations that could be taken
in the time of visualization even for the slowest gnuplot reference method is ne-
glectable comparing to number of iterations done. On the other hand, for rela-
tively short runs (e.g. screening of data every 1000− 2000 steps) for larger sets of
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Table C.1: Number of possible iterations that could be taken in time lost on visual-
ization

method 26 parameters 213 parameters
share buffers 80 steps 20 steps

non-share buffers 283 steps 69 steps
gnuplot 768 steps 1734 steps

parameters visualization can take more time than calculation itself.

C.3 Conclusions

In this appendix I have shown the approach to visualize OpenCL calculation of
stochastic differential equations using co-existing OpenGL framework. That tech-
nique simplifies the workflow of SDE calculations, without loosing performance
boost from graphic card use. Presented OpenGL approach, especially with shared
buffers, can help to gain better insight to calculation in real time.

Vendor agnostic OpenCL can be run on different devices, even rewriting naive C
code and running on same CPU can give outstanding improvement of a calculation
time.

71



72



Bibliography

1. Perlson, E., Maday, S., Fu, M.-m., Moughamian, A. J. & Holzbaur, E. L. Retro-
grade axonal transport: pathways to cell death? Trends Neurosci. 33, 335–
344 (2010).

2. Saha, A. R. et al. Parkinson’s disease alpha-synuclein mutations exhibit de-
fective axonal transport in cultured neurons. J. Cell. Sci. 117, 1017–1024
(2004).

3. Stokin, G. B. et al. Axonopathy and transport deficits early in the pathogenesis
of Alzheimer’s disease. Science 307, 1282–1288 (2005).

4. Her, L.-S. & Goldstein, L. S. B. Enhanced Sensitivity of Striatal Neurons to Ax-
onal Transport Defects Induced by Mutant Huntingtin. J. Neurosci. 28, 13662–
13672 (2008).

5. Hirokawa, N. & Takemura, R. Biochemical and molecular characterization of
diseases linked to motor proteins. Trends Biochem. Sci. 28, 558–565 (2003).

6. Seidman, C. Genetic causes of inherited cardiac hypertrophy: Robert L. Frye
lecture. Mayo Clin. Proc. 77, 1315–1319 (2002).

7. Petit, C. Usher syndrome: From genetics to pathogenesis. Annu. Rev. Genomics
Hum. Genet. 2, 271–297 (2001).

8. Seabra, M. C., Mules, E. H. & Hume, A. N. Rab GTPases, intracellular traffic and
disease. Trends Mol. Med. 8, 23–30 (2002).

9. Block, S. M. Kinesin: what gives? Cell 93, 5–8 (1998).

10. Cai, D., Verhey, K. J. & Meyhofer, E. Tracking single kinesin molecules in the
cytoplasm of mammalian cells. Biophys. J. 92, 4137–4144 (2007).

11. Purcell, E. M. Life at Low Reynolds Number. Am. J. Phys. 45, 3–11 (1977).

12. Langevin, P. Sur la théorie du mouvement brownien. C. R. Math. Acad. Sci.
Paris 146, 530–533 (1908).

13. Smoluchowski, M. Experimentell nachweisbare, der übliehen Thermodynamik
widersprechende Molekularphänomene. Physik. Z. XIII, 1069–1080 (1912).

73



14. Feynman, R. P., Leighton, R. B. & Sands, M. L. The Feynman lectures on physics
(Addison-Wesley, 1963).

15. Astumian, R. D. Thermodynamics and Kinetics of a Brownian Motor. Science
276, 917–922 (1997).

16. Magnasco, M. O. Forced Thermal Ratchets. Phys. Rev. Lett. 71, 1477–1481
(1993).

17. Eshuis, P., Van Der Weele, K., Lohse, D. & Van Der Meer, D. Experimental Real-
ization of a Rotational Ratchet in a Granular Gas. Phys. Rev. Lett. 104, 248001
(2010).

18. Reimann, P. Brownian motors: noisy transport far from equilibrium. Phys.
Rep. 361, 57–265 (2002).

19. Lindner, B. & Nicola, E. M. Diffusion in different models of active Brownian
motion. Eur. Phys. J. Special Topics 157, 43–52 (2008).

20. Schweitzer, F., Ebeling, W. & Tilch, B. Complex motion of Brownian particles
with energy depots. Phys. Rev. Lett. 80, 5044–5047 (1998).

21. Klimontovich, Y. L. Statistical theory of open systems (Springer, Nov. 1994).

22. Derényi, I. & Vicsek, T. The kinesin walk: A dynamic model with elastically
coupled heads. Proc. Natl. Acad. Sci. USA 93, 6775–6779 (1996).

23. Mateos, J. L. Chaotic transport and current reversal in deterministic ratchets.
Phys. Rev. Lett. 84, 258–261 (2000).

24. Linke, H., Downton, M. T. & Zuckermann, M. J. Performance characteristics of
Brownian motors. Chaos 15, 026111 (2005).

25. Casdagli, M. Chaos and Deterministic versus Stochastic Non-Linear Mod-
elling. J. R. Statist. Soc. B 54, 303–328 (1992).

26. Chang, C.-H. Ratchet models using driving forces generated by deterministic
chaotic maps. Phys. Rev. E 66, 015203 (2002).

27. Strogatz, S. H. Nonlinear dynamics and Chaos: with applications to physics,
biology, chemistry, and engineering (Westview Press, Jan. 1994).

28. Astumian, R. D. & Bier, M. Fluctuation driven ratchets: Molecular motors. Phys.
Rev. Lett. 72, 1766–1769 (1994).

29. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of
kinesin stepping by optical trapping. Nature 365, 721–727 (1993).

30. Żabicki, M., Ebeling, W. & Gudowska-Nowak, E. The thermodynamic cycle of
an entropy-driven stepper motor walking hand-over-hand. Chemical Physics
375, 472–478 (2010).

74



BIBLIOGRAPHY

31. Graeter, F., Heider, P., Zangi, R. & Berne, B. J. Dissecting entropic coiling and
poor solvent effects in protein collapse. J. Am. Chem. Soc. 130, 11578–11579
(2008).

32. Mateos, J. L. Current reversals in chaotic ratchets. Acta Phys. Pol. B 32, 307–
320 (2001).

33. Machura, L., Kostur, M. & Luczka, J. Transport characteristics of molecular
motors. Biosystems 94, 253–257 (2008).

34. Yildiz, A., Tomishige, M., Vale, R. D. & Selvin, P. R. Kinesin walks hand-over-
hand. Science 303, 676–678 (2004).

35. Lauga, E. & Powers, T. R. The hydrodynamics of swimming microorganisms.
Reports on Progress in Physics 72, 096601 (2009).

36. Wang, H. & Oster, G. The Stokes efficiency for molecular motors and its appli-
cations. Europhys. Lett. 57, 134–140 (2002).

37. Derényi, I., Bier, M. & Astumian, R. D. Generalized efficiency and its application
to microscopic engines. Phys. Rev. Lett. 83, 903 (1999).

38. Nishiyama, M., Higuchi, H. & Yanagida, T. Chemomechanical coupling of the
forward and backward steps of single kinesin molecules. Nat. Cell Biol. 4,
790–797 (2002).

39. Bormuth, V., Varga, V., Howard, J. & Schaeffer, E. Protein Friction Limits Dif-
fusive and Directed Movements of Kinesin Motors on Microtubules. Science
325, 870–873 (2009).

40. Selmeczi, D., Mosler, S., Hagedorn, P. H., Larsen, N. B. & Flyvbjerg, H. Cell Motil-
ity as Persistent Random Motion: Theories from Experiments. Biophys. J. 89,
912–931 (2008).

41. Strefler, J., Ebeling, W., Gudowska-Nowak, E. & Schimansky-Geier, L. Dynamics
of individuals and swarms with shot noise induced by stochastic food supply.
Eur. Phys. J. B 72, 597–606 (2009).

42. Yates, C. A. et al. Inherent noise can facilitate coherence in collective swarm
motion. Proc. Natl. Acad. Sci. USA 106, 5464–5469 (2009).

43. Touya, C., Schwalger, T. & Lindner, B. Relation between cooperative molecular
motors and active Brownian particles. Phys. Rev. E 83, 051913 (2011).

44. Endow, S. A. & Higuchi, H. A mutant of the motor protein kinesin that moves
in both directions on microtubules. Nature 406, 913–916 (2000).

45. Peters, C. et al. Insight into the molecular mechanism of the multitasking
kinesin-8 motor. EMBO J. 29, 3437–3447 (2010).

75



46. Svoboda, K. & Block, S. M. Force and Velocity Measured for Single Kinesin
Molecules. Cell 77, 773–784 (1994).

47. Żabicki, M. OpenCL/OpenGL aproach for studying active Brownian motion.
arXiv physics.comp-ph (2011).

48. Rossinelli, D, Bergdorf, M, Cottet, G. & Koumoutsakos, P. GPU accelerated sim-
ulations of bluff body flows using vortex particle methods. J. Comput. Phys.
229, 3316–3333 (2010).

49. Stone, J. E., Gohara, D. & Shi, G. OpenCL: A parallel programming standard for
heterogeneous computing systems. Comput. Sci. Eng. 12, 66 (2010).

50. Sundholm, E. Distance Fields Accelerated with OpenCL PhD thesis (Umeå
University, 2010).

51. Zhang, Y. Three phase model of the processive motor protein kinesin. Bio-
phys. Chem. 136, 19–22 (2009).

52. Parker, D., Bryant, Z. & Delp, S. L. Coarse-Grained Structural Modeling of Molec-
ular Motors Using Multibody Dynamics. Cel. Mol. Bioeng. 2, 366–374 (2009).

53. Bowling, A. P., Palmer, A. F. & Wilhelm, L. Contact and Impact in the Multibody
Dynamics of Motor Protein Locomotion. Langmuir 25, 12974–12981 (2009).

54. Bier, M. & Cao, F. J. How occasional backstepping can speed up a processive
motor protein. Biosystems 103, 355–359 (2011).

55. Apple. MacBook Air performance information Apple. 2010.

56. Munshi, A. The OpenCL Specification Khronos OpenCL Working Group. 2011.

57. Januszewski, M. & Kostur, M. Accelerating numerical solution of stochastic
differential equations with CUDA. Comput. Phys. Commun. 181, 183–188
(2010).

58. Marsaglia, G. Xorshift RNGs. J. Stat. Soft. 8, 1–6 (2003).

59. Langou, J. et al. in SC 2006 Conference (2007).

60. Optimizing OpenCL on CPUs Intel Corporation (2010).

76


	Introduction
	Reynolds number
	Langevin equation for a Brownian Motion
	Smoluchowski experiment and the ratchet potential
	Active Brownian motion or Brownian Motors
	Fluctuation driven ratchets
	From Rayleigh friction function to depot models

	Chaotic behavior
	Outline

	Models of the kinesin motors
	Origin
	Energy depots models
	Coupled Brownian heads

	A dynamic model of the kinesin motor with two heads elastically coupled by a rubber band — Model 1
	Dimension equations
	Dimensionless equations
	Working regime
	Further analysis of the working regime
	Criticism

	Separation of mass model — Model 2
	From the first to the second model
	Initial parameters test for the model
	Mean velocity distribution as the function of .
	Mean velocity distribution as a function of the ratchet amplitude h


	Performance of models
	The concept of the efficiency: Addressing performance of the motor models
	Efficiency in classical thermodynamics
	Generalized efficiency
	Stokes efficiency

	Comparison of efficiency
	Velocity distribution
	Efficiency definitions in use

	Remarks on Model 2 efficiency
	Generalized efficiency without external force as the function of friction
	Friction force as a function of mean velocity


	Summary and Conclusions
	Comparison with experimental data
	Backsteps problem
	Active Brownian Motion Simulation on Graphic Cards
	Introduction
	Performance issues
	Performance on various simulation setups
	OpenCL/OpenGL interoperation performance

	Conclusions


