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Abstract

Quantum channels, also called quantum operations, are linear, trace preserv-
ing and completely positive transformations in the space of quantum states.
Such operations describe discrete time evolution of an open quantum system
interacting with an environment. The thesis contains an analysis of properties
of quantum channels and di�erent entropies used to quantify the decoherence
introduced into the system by a given operation.

Part I of the thesis provides a general introduction to the subject. In Part
II, the action of a quantum channel is treated as a process of preparation of a
quantum ensemble. The Holevo information associated with this ensemble is
shown to be bounded by the entropy exchanged during the preparation process
between the initial state and the environment. A relation between the Holevo
information and the entropy of an auxiliary matrix consisting of square root
�delities between the elements of the ensemble is proved in some special cases.
Weaker bounds on the Holevo information are also established.

The entropy of a channel, also called the map entropy, is de�ned as the
entropy of the state corresponding to the channel by the Jamioªkowski isomor-
phism. In Part III of the thesis, the additivity of the entropy of a channel is
proved. The minimal output entropy, which is di�cult to compute, is estimated
by an entropy of a channel which is much easier to obtain. A class of quantum
channels is speci�ed, for which additivity of channel capacity is conjectured.

The last part of the thesis contains characterization of Davies channels, which
correspond to an interaction of a state with a thermal reservoir in the week cou-
pling limit, under the condition of quantum detailed balance and independence
of rotational and dissipative evolutions. The Davies channels are characterized
for one�qubit and one�qutrit systems.
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Chapter 1

Preliminary information

1.1 Preface

It is not easy to give a satisfactory de�nition of information in sense in which
this word is used in everyday life. For instance one could ask, how much in-
formation is contained in an allegorical baroque painting of Vermeer. There
exist, of course, many interpretations and therefore, many kinds of information
concerning this picture. However, nowadays we are willing to distinguish some
sort of information necessary to communicate a message independently on the
interpretation. Due to our experience with computers we are used to problems
how to encode the information into a string of digital symbols, transmit it and
decode it in order to obtain the original message in another place. Imagine that
we need to send the information contained in the Vermeer's picture. We have
to encode it into digital data, transmit it to the other place and recover the
picture on the screen of the receiver's computer. In a sense we send almost all
the information without knowing what interpretations it may carry.

The problem rises what is the minimal amount of information measured in
binary digits that enable the receiver to reliably recover the original message.
In considered example we can divide the image of the Vermeer's picture into
small pieces, decode colours of each piece into digital strings and transmit the
description of colours one after another. However, we can also save some amount
of digits when we menage to describe shapes of regions of the same colours in the
picture and send only information about colours, shapes and patterns. How to
do that in the most e�cient way? This is a major problem for experts working
on the information theory and computer graphics. Some rules of the optimal
coding were used intuitively during construction of the Morse alphabet. The
letters which occur in the English language more frequently are encoded by a
smaller amount of symbols.

In communication and computer sciences the problem of data compression
is a subject of a great importance. To what extend the data can be compressed
to still remain useful? Claude Shannon worked on the problem of transmission
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of messages through telecommunication channels. In 1958 he published his
famous paper [1] opening the new branch of knowledge known as the theory
of information. In this theory a message is composed of letters occurring with
speci�ed frequencies related to probabilities. Every letter of a message can be
encoded as a string of digital units. Every digital unit can appear in one of r
possible con�gurations. Shannon found what is the minimal average amount of
digital units per symbol which encodes a given message. This smallest average
number of digital units is related to the information contained in the message
and is characterized by a function of the probability distribution P = {p1, ..., pn}
of letters, now called the Shannon entropy,

H(P ) = −
n∑
i=1

pi logr pi, (1.1)

where 0 logr 0 ≡ 0, n is a number of letters and the base of the logarithm
r characterizing the amount of con�gurations of a chosen digital unit can be
chosen arbitrary. If the base is equal to 2, the unit of entropy is called binary
unit or bit.

The idea of e�cient coding concerns in replacing more frequent letters by
means of a smaller amount of bits. Shannon treated the message as a sequence
of letters generated independently according to the probability distribution P
speci�ed for a given language. The original reasoning of Shannon proceeds as
follows. There are so many possible messages as the amount of typical sequences
of letters with a given probability distribution in the string of length k → ∞.
Atypical sequences such as strings of letters a repeated k times are unlikely
and are not taken into account. The amount of possible messages is given by
the amount of typical sequences, which is of order of 2kH(P ) if the base of the
logarithm is equal to 2. This number is justi�ed by methods of combinatorics.
Hence, every typical message of length k can be represented by a string of bits
of size kH(P ). Therefore, the entropy H(P ) can be interpreted as the smallest
average amount of bits per letter needed to reliably encode each typical message.

The information theory treats, as well, the information as a measure of
uncertainty about the outcome of a random experiment. Looking for a function
which is suitable as a measure of the uncertainty about the concrete result of
experiment, provided the probabilities of all experimental outcomes are given,
Shannon formulated a few postulates for the information measure [1]:

• It is a continues function of the probability distribution.

• If all events are equally likely the function of uncertainty is an increasing
function of their number.

• If one of the events is split into two, the new function of uncertainty is
equal to the sum of the original uncertainty and the uncertainty of the
new division weighted by the probability of the divided event.

The only function which satis�es these postulates is the Shannon entropy H(P ).
Therefore, the uncertainty or lack of information on the outcome of an experi-
ment is the second interpretation of the entropy H(P ).
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Taking a weaker set of axioms allows one to generalize the de�nition of
the measure of uncertainty and to �nd other functions of probability vector P ,
which in special case converge to the Shannon entropy (1.1). For instance, Rényi
introduced one parameter family of generalized entropy functions. Since, the
information of an experiment consisting of two independent experiments should
be given by the sum of the information gained in both experiments, the measure
of information should be additive. The Shannon entropy of the joint probability
distribution of two independent variables is additive. Rényi noticed [2] that the
additivity of information is not equivalent to the third postulate of Shannon.
However, if one replaces the third postulate by additivity of information of
independent events, yet another axiom should be postulated to obtain back
the Shannon's formula (1.1). This additional postulate speci�es the way of
calculating the mean values. If one considers the linear mean, the Shannon
entropy is singled out by this set of postulates. However, other de�nition of the
mean value also can be taken. In consequence, the new set of postulates implies
an one parameter family of generalized entropy functions known as the Rényi
entropy of order q:

Hq(P ) =
1

1− q
log

n∑
i=1

pqi . (1.2)

Here, q denotes the free parameter depending on the de�nition of the average.
Another generalization of entropy function was analysed by Tsallis [3, 4]. The
Tsallis entropy of order q is de�ned as follows,

Tq =
1

q − 1
(1−

n∑
i

pqi ). (1.3)

Hence the information theory concerns entropies, however, it also investi-
gates communication sources and communication channels which can introduce
some errors to messages. Information theory de�nes such quantities as the rel-
ative entropy and the mutual information [1]. Using these concepts the channel
capacity is de�ned. It is the maximal rate of information which can be reliably
decoded after passing through the channel. The channel capacity is measured
in bits per a unit of time.

The theory of quantum information, which considers quantum systems as
carriers of information, should enable one to generalize the notions of classical
information theory such as the channel capacity. To formulate a quantum coun-
terpart of the Shannon concepts such as the relative entropy or channel capacity
the theory of open quantum systems, quantum statistical processes, statistical
operators, density matrices, partial traces and generalized measurements should
be applied. In the early stage of the stochastic theory of open quantum systems,
it was developed by Davies [5], and Kossakowski [6]. Moreover, other important
results on accessible information transmitted through a noisy quantum channel
were obtained by Holevo [7].

There are many advantages of using quantum resources to transform and
transmit the information [8]. In particular, there exist a famous protocols of
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superdense coding [9] of information into a quantum carrier. Furthermore, some
computational problems can be solved in framework of the quantum informa-
tion processing faster than classically [10�12]. Quantum world gives also new
communication protocols like quantum teleportation [9, 13] which is possible
due to quantum entanglement [14, 15]. In quantum case, entangled states can
increase the joint capacity of two channels with respect to the sum of the two
capacities [16�18]. Also a new branch of cryptography was developed due to the
quantum theory [19]. Although, these new possibilities are promising, manipu-
lation of quantum resources is di�cult in practice. In particular, the quantum
states carrying the information are very sensible to noise, which can completely
destroy quantum information. Moreover, probabilistic nature of quantum theory
does not allow us to extract uniquely the information from quantum sources.
Many restrictions and laws of quantum information theory are formulated in
terms of inequalities of quantum entropies. The most signi�cant quantum en-
tropy is the one de�ned by von Neumann [20,21], which is a counterpart of the
Shannon entropy. However, the other quantum entropies such like the Rényi
entropy [2] or Tsallis entropy are also considered [3, 4, 22].

The issue of transmitting a classical information through a noisy channel is
an important issue in the information theory [1, 23, 24]. Among problems con-
cerning the information channels one can specify the following questions: How
to encode the information in order to transmit it reliably through the channel
in the most e�cient way [1, 25]? What is the maximal rate of the information
transmission? What is the capacity of a given communication channel [26�29]?
Which states are the most resistant to errors occurring in the a channel [30,31]?
What are the e�cient strategies of the error correction [32]?

Similar questions can also be formulated in the framework of quantum in-
formation theory. The quantum channels, also called quantum operations, are
transformations in the set of states [33�36]. They describe evolution of an open
quantum system interacting with an environment in discrete time.

The set of all quantum channels is still not completely understood. Merely
the set of one�qubit channels is satisfactory explored [37, 38]. However, even
in this simplest case some interesting problems are open. For instance, it is
not clear, whether the capacity of one�qubit channels is additive [18]. Another
approach to quantum channels suggests to analyse only certain special classes
of them, motivated by some physical models [39�43].

Quantum channels are also formally related to measurement processes in
quantum theory [35,45]. As a measurement process changes the quantum state
and in general cannot perfectly distinguish measured states, there is a funda-
mental restriction on the information which can be obtained from the message
encoded into quantum states [7]. These restrictions are also formulated in terms
of entropies.

The di�erent aspects of quantum channels mentioned above suggest that
entropies which characterize the channels play an important role in the infor-
mation theory. This thesis is devoted to investigation of quantum channels and
some entropies used to characterize them: the minimal output entropy [18,39],
the map entropy [46�48] and the exchange entropy [29].

11



1.2 Structure of the thesis

The thesis is partially based on results already published in articles [46,49�53],
which are enclosed at the end of the thesis. In a few cases some issues from
these papers are discussed here in a more detailed manner. The thesis contains
also some new, unpublished results and technical considerations not included in
the published articles.

The structure of the thesis is the following. The thesis is divided into three
parts. The �rst part is mostly introductory and contains a short review of the
literature. This part provides basic information useful in the other parts of the
thesis and �xes notation used in the entire work. In part I only the result from
Section 1.6.1 concerning the Kraus representation of a complementary channels
and Section 1.9 on the Kraus operators constructed for an ensemble of states
are obtained by the author.

Part II contains results based on papers [46,49,52], not known before in the
literature. However, some results not published previously are also analysed
there.

Chapter 2 contains the most important result of the thesis � the inequal-
ity between the Holevo information related to an ensemble of quantum states
and the entropy of the state of environment taking part in preparation of the
ensemble. As the entropy of the environment can be treated equivalently as
the entropy of an output of the complementary channel, or the entropy of a
correlation matrix, or the entropy of a Gram matrix of puri�cations of mixed
states, or as the entropy exchange, this relation might be considered as a new
and universal result in the theory of quantum information. Consequences of this
inequality have not been analysed so far. Chapter 2 contains also the discussion
of the particular cases for which the inequality is saturated. This result has not
been published before. Section 2.1 describes proofs of known entropic inequal-
ities which are related to the bound on the Holevo quantity. Some new and
unpublished consequences of these inequalities are presented in Section 2.1.1.
Original, new results are also contained in Sections 2.2 and 2.3.

Part II contains, moreover, the conjecture on the inequality between the
Holevo information of a quantum ensemble and the entropy of the matrix of
square root of �delities. Several weaker inequalities are analysed here in a
greater detail than it was done in [52]. Section 3.2 presents a con�rmation of
the conjecture for a special class of ensembles of quantum states.

Part III of the thesis is based on the results presented in [50,51]. Article [51]
described partially in Chapter 4 considers the relation between minimal output
entropy and the map entropy. Section 4.2 contains a proof of additivity of the
map entropy with respect to the tensor product of two maps, already published
in our work [51]. These results allow us to specify a class of quantum channels
for which additivity of the minimal output entropy is conjectured.

The Davies maps acting on one�qubit and one�qutrit quantum systems are
analysed in Chapter 5. Conditions for the matrix entries of a quantum operation
representing a Davies map are given along the lines formulated in our work
[50]. Multiplicativity of the maximal output norm of one�qubit Davies maps,
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entirely based on the analogical proof for bistochastic maps [54], is presented
in Section 5.6. However, this result cannot be treated as a new one, since
multiplicativity of the maximal output two norm was proved earlier for all one�
qubit quantum channels [18]. Section 5.7 contains graphical representations of
stochastic matrices of order three which correspond to quantum Davies maps,
which has not been published yet.

1.3 A short introduction to quantum mechanics

The formalism of quantum mechanics can be derived from a few postulates
(axioms) which are justi�ed by experiments. The set of axioms de�ning the
quantum theory di�ers depending on the author [55]. However, some features
occur common in every formulation, either as axioms or as their consequences.
One of such key features is the superposition principle. It is justi�ed by several
experimental data as interference pattern in double slit experiment with elec-
trons or interference of a single photon in the Mach�Zender interferometer [56].
The superposition principle states that the state of a quantum system, which is
denoted in Dirac notation by |ψ〉, can be represented by a coherent combination
of several states |ψi〉 with complex coe�cients ai,

|ψ〉 =
∑
i

ai|ψi〉. (1.4)

The quantum state |ψ〉 of an N level system is represented by a vector from the
complex Hilbert space HN . The inner product 〈ψi|ψ〉 de�nes the coe�cients ai
in (1.4). The square norm of ai is interpreted as the probability that the system
described by |ψ〉 is in the state |ψi〉. To provide a proper probabilistic inter-
pretation a vector used in quantum mechanics is normalized by the condition
〈ψ|ψ〉 = ||ψ||2 =

∑
i |ai|2 = 1.

Quantum mechanics is a probabilistic theory. One single measurement does
not provide much information on the prepared system. However, several mea-
surements on identically prepared quantum systems allow one to characterize
the quantum state.

A physical quantity is represented by a linear operator called an observable.
An observable A is a Hermitian operator, A = A†, which can be constructed by
a set of real numbers λi (allowed values of the physical quantity) and a set of
states |ϕi〉 determined by the measurement, A =

∑
i λi|ϕi〉〈ϕi|. The physical

value corresponds to the average of the observable in the state |ψ〉,

〈A〉ψ =
∑
i

λi|〈ψ|ϕi〉|2 = 〈ψ|A|ψ〉. (1.5)

One can consider the situation in which a state |ψ〉 is not known exactly. Only a
statistical mixture of several quantum states |φi〉 which occur with probabilities
pi is given. In this case the average value of an observable has the form

〈A〉{pi,φi} =
∑
i

pi〈φi|A|φi〉, (1.6)
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which can be written in terms of an operator on HN called a density matrix
ρ =

∑
i pi|φi〉〈φi| as

〈A〉{pi,φi} = Tr ρA. (1.7)

A density matrix describes a so called mixed state. In a speci�c basis the density
matrices characterizing an N level quantum system are represented by N ×N
matrices ρ which are Hermitian, have trace equal to unity and are positive. Let
us denote the set of all such matrices byMN ,

MN = {ρ : dimρ = N, ρ = ρ†, ρ ≥ 0,Tr ρ = 1}. (1.8)

This set is convex. Extremal points of this set are formed by projectors of the
form |ψ〉〈ψ| called pure states, which correspond to vectors |ψ〉 of the Hilbert
space.

The state of composed quantum system which consists of one N1�level sys-
tem and one N2�level system is represented by a vector of size N1N2 from
the Hilbert space which has a tensor product structure, HN1N2

= HN1
⊗HN2

.
Such a space contains also states which cannot be written as tensor products of
vectors from separate spaces,

|ψ12〉 6= |ψ1〉 ⊗ |ψ2〉. (1.9)

and are called entangled states. States with a tensor product structure are called
product states. If the state of only one subsystem is considered one has to take an
average over the second subsystem. Such an operation is realized by taking the
partial trace over the second subsystem and leads to a reduced density matrix,

ρ1 = Tr2ρ12. (1.10)

A density matrix describes therefore the state of an open quantum system.
The evolution of a normalized vector in the Hilbert space is determined by a

unitary operator |ψ′〉 = U |ψ〉. The transformation U is related to Hamiltonian
evolution due to the Schrödinger equation,

i~
d

dt
|ψ〉 = H|ψ〉, (1.11)

whereH denotes the Hamiltonian operator of the system, while t represents time
and 2π~ is the Planck constant. A discrete time evolution of an open quantum
system characterized by a density operator ρ is described by a quantum operation
which will be considered in Chapter 1.6.

According to a general approach to quantum measurement [35, 57], it can
be de�ned by a set of k operators {Ei}ki=1 forming a positive operator valued
measure (POVM). The index i is related to a possible measurement result, for
instance the value of the measured quantity. The operators Ei are positive and
satisfy the identity resolution,

k∑
i=1

Ei = 1. (1.12)
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The quantum state is changing during the measurement process. After the
measurement process that gives the outcome i as a result, the quantum state ρ
is transformed into

ρ′i = KiρKi†/Tr(KiρKi†), (1.13)

where Ki†Ki = Ei ≥ 0. The probability pi of the outcome i is given by
pi = Tr(KiρKi†). Due to relation (1.12), the probabilities of all outcomes sum
up to unity.

A quantum state characterizing a 2�level system is called qubit and its prop-
erties are discussed in more detail in Section 1.7.

1.4 Schmidt decomposition

The theorem known as Schmidt decomposition [58] provides a useful represen-
tation of a pure state of a bi�partite quantum system.

Theorem 1 (Schmidt). Any quantum state |ψ12〉 from the Hilbert space com-
posed of the tensor product of two Hilbert spaces H1⊗H2 of dimensions d1 and
d2, respectively, can be represented as

|ψ12〉 =

d∑
i=1

λi|i1〉 ⊗ |i2〉, (1.14)

where {|i1〉}d1i=1 and {|i2〉}d2i=1 are orthogonal basis of the Hilbert spaces H1 and
H2 respectively, and d = min{d1, d2}.

Proof. Choose any orthogonal basis {|φk1〉}
d1
k=1 of H1 and any orthogonal basis

{|φj2〉}
d2
j=1 of H2. In this product basis, the bi�partite state |ψ12〉 reads

|ψ12〉 =
∑

0≤k≤d1, 0≤j≤d2

akj |φk1〉 ⊗ |φ
j
2〉. (1.15)

Singular value decomposition of a matrix A of size d1×d2 with entries akj gives
akj =

∑
i ukiλivij . Here uki and vij are entries of two unitary matrices, while

λi are singular values of A. Summation over indexes k and j cause changes of
two orthogonal bases into

|i1〉 =
∑
k

uki|φk1〉, (1.16)

|i2〉 =
∑
j

vij |φj2〉. (1.17)

The number o nonzero singular values is not larger than the smaller one of the
numbers (d1, d2).
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The Schmidt decomposition implies that both partial traces of any bi�partite
pure state have the same nonzero part of the spectrum:

Tr1|ψ12〉〈ψ12| =
d∑
i=1

λ2
i |i2〉〈i2|, (1.18)

Tr2|ψ12〉〈ψ12| =
d∑
i=1

λ2
i |i1〉〈i1|. (1.19)

The Schmidt coe�cients λi are invariant under local unitary transformations
U1 ⊗ U2 applied to |ψ12〉. The number of non�zero coe�cients λi is called the
Schmidt number. Any pure state which has the Schmidt number greater than 1
is called entangled state. A pure state for which all Schmidt coe�cients λi are
equal to 1/

√
d is called a maximally entangled state.

Another important consequence of the Schmidt decomposition is that for
any mixed state ρ there is a pure state |ψ〉 of a higher dimensional Hilbert space
such that ρ can be obtained by taking the partial trace,

ρ = Tr1|ψ〉〈ψ|. (1.20)

Such a state |ψ〉 is called a puri�cation of ρ. The Schmidt decomposition gives
the recipe for the puri�cation procedure. It is enough to take square roots
of eigenvalues of ρ in place of λi and its eigenvectors in place of |i1〉. Any
orthogonal basis in H2 provides a puri�cation of ρ, which can be written as

|ψ〉 =
∑
i

(U1 ⊗
√
ρ)|i1〉 ⊗ |i2〉, (1.21)

where U1 is an arbitrary unitary transformation and
√
ρ|i2〉 = λi|i2〉.

1.5 Von Neumann entropy and its properties

Many theorems concerning the theory of quantum information can be formu-
lated in terms of the von Neumann entropy [59] of a quantum state,

S(ρ) = −Tr ρ log ρ, (1.22)

which is equivalent to the Shannon entropy (1.1) of the spectrum of ρ. The
entropy characterizes the degree of mixing of a quantum state. Assume that ρ
is a density matrix of size N . The value of S(ρ) is equal to zero if and only if
the state ρ is pure. It gains its maximal value logN for the maximally mixed
state ρ∗ = 1

N 1 only.
Von Neumann entropy has also an important interpretation in quantum

information theory, as it plays the role similar to the Shannon entropy in the
classical theory of optimal compression of a message [25]. Let the letters i of the
message, which occur with probabilities pi, be encoded into pure quantum states
|ψi〉 from the Hilbert spaceHN . Sequences of k letters are encoded into a Hilbert
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space of dimensionNk. A long message can be divided into sequences of size k →
∞. Among them one can distinguish sequences in typical subspaces and such
which occur with negligible probability. A unitary transformation applied to
the sequence of quantum systems can transmit almost all the information into a
typical subspace. The space of a typical sequence has the smallest dimensionality
required to encode the message reliably with negligible probability of an error.
This smallest dimensionality per symbol is shown [25] to be equal to the von
Neumann entropy of the state ρ =

∑
i pi|ψi〉〈ψi|. Therefore, quantum coding

consists in taking states from the smaller subspace of dimension 2kS(ρ) instead
of a space of dimension Nk to encode the same message. If the state ρ represents
completely random set of states there is no possibility to compress the message,
since S(ρ) = S(ρ∗) = log2N , where logarithm is of base 2. The entropy,
therefore, describes the capability of compression of the message encoded in a
given set of states, or the smallest amount of qubits needed to transmit a given
message.

The von Neumann entropy, as the entropy of eigenvalues of a density matrix,
describes also the uncertainty of measuring a speci�c state from the set of the
eigenvectors. The most important properties of the von Neumann entropy are
[20]:

• The von Neumann entropy is a non negative function of any ρ.

• It is invariant under unitary transformations, S(ρ) = S(UρU†).

• It is a concave function of its argument,
∑k
i=1 piS(ρi) ≤ S(

∑k
i=1 piρi),

where pi ≥ 0 for any i and
∑k
i pi = 1.

• It is subadditive
S(ρ12) ≤ S(ρ1) + S(ρ2), (1.23)

where ρ12 is a bi�partite state of a composite system and the partial traces
read ρ1 = Tr2 ρ12 and ρ2 = Tr1 ρ12.

• The von Neumann entropy satis�es the relation of strong subadditivity
[60],

S(ρ123) + S(ρ2) ≤ S(ρ12) + S(ρ23), (1.24)

where the state ρ123 is a composite state of three subsystems (1, 2, 3) and
the other states are obtained by its partial traces.

1.6 Quantum channels and their representations

One distinguishes two approaches to describe time evolution of an open quantum
system. One of them starts from a concrete physical model de�ned by a given
Hamiltonian which determines the Shrödinger equation (1.11) or the master
equation, [45]. Solving them one may �nd the state of the quantum system
at any moment at time. An alternative approach to the dynamics of an open
quantum system relies on a stroboscopic picture and a discrete time evolution. It
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starts from a mathematical construction of a quantum map, ρ′ = Φ(ρ), allowed
by the general laws of quantum mechanics. This approach is often used in
cases in which the physical model of the time evolution is unknown. This fact
justi�es the name "black box" model to describe the evolution characterized by a
quantum map Φ. Such a model is also considered if one wants to investigate the
set of all possible operations independently on whether the physical context is
speci�ed. Main features and some representations of the map Φ, which describes
a "black box" model of non�unitary quantum evolution, are given below.

The quantum map Φ describes the dynamics of a quantum system ρ which
interacts with an environment. It is given by a nonunitary quantum map Φ :
ρ → ρ′. Any such map is completely positive, and trace preserving [33�36].
"Complete positivity" means that an extended map Φ ⊗ 1M , which is a trivial
extension of Φ on the space of any dimension M , transforms the set of positive
operators into itself. A completely positive and trace preserving quantum map
is called quantum operation or quantum channel.

Due to the theorem of Jamioªkowski [34] and Choi [33] the complete positiv-
ity of a map is equivalent to positivity of a state corresponding to the map by the
Jamioªkowski isomorphism. This isomorphism determines the correspondence
between a quantum operation Φ acting on N dimensional matrices and density
matrix DΦ/N of dimension N2 which is called Choi matrix or the Jamioªkowski
state

1

N
DΦ = [idN ⊗Φ]

(
|φ+ 〉 〈 φ+|

)
, (1.25)

where |φ+ 〉 = 1√
N

∑N
i=1 |i 〉⊗|i 〉 is a maximally entangled state. The dynamical

matrix DΦ corresponding to a trace preserving operation satis�es the partial
trace condition

Tr2DΦ = 1. (1.26)

The quantum operation Φ can be represented as superoperator matrix. It
is a matrix which acts on the vector of length N2, which contains the entries
ρij of the density matrix ordered lexicographically. Thus the superoperator
Φ is represented by a square matrix of size N2. The superoperator in some
orthogonal product basis {|i〉 ⊗ |j〉} is represented by a matrix indexed by four
indexes,

Φi j
k l

= 〈i| ⊗ 〈j|Φ|k〉 ⊗ |l〉. (1.27)

The matrix representation of the dynamical matrix is related to the superoper-
ator matrix by the reshu�ing formula [15] as follows

〈i| ⊗ 〈j|DΦ|k〉 ⊗ |l〉 = 〈i| ⊗ 〈k|Φ|j〉 ⊗ |l〉. (1.28)

To describe a quantum operation, one may use the Stinespring's dilation
theorem [61]. Consider a quantum system, described by the state ρ on HN ,
interacting with its environment characterized by a state on HM . The joint
evolution of the two states is described by a unitary operation U . Usually it is
assumed that the joint state of the system and the environment is initially not
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entangled. Moreover, due to the possibility to puri�cation the environment, its
initial state is given by a pure one. The evolving joint state is therefore:

ω = U
(
|1〉 〈1| ⊗ ρ

)
U†, (1.29)

where |1〉 ∈ HM and U is a unitary matrix of size NM . The state of the system
after the operation is obtained by tracing out the environment,

ρ′ = Φ(ρ) = TrM

[
U
(
|1〉 〈1| ⊗ ρ

)
U†
]

=

M∑
i=1

KiρKi†, (1.30)

where the Kraus operators read, Ki = 〈i|U |1〉. In matrix representation the
Kraus operators are formed by successive blocks of the �rst block�column of the
unitary evolution matrix U . Here the state ω can be equivalently given as

ω =

M∑
i,j=1

KiρKj† ⊗ |i〉 〈j| . (1.31)

A transformation ρ→ ω is obtained by an isometry F : HN → HNM , where

F |φ〉 =
∑
i

(Ki |φ〉)⊗ |i〉 . (1.32)

Due to the Kraus theorem [35] any completely positive map Φ can be written
in the Kraus form,

ρ′ = Φ(ρ) =

M∑
i=1

KiρKi†. (1.33)

The opposite relation is also true, any map of the Kraus form (1.33) is completely
positive.

1.6.1 Representation of a complementary channel

Consider a quantum channel Φ described by the Kraus operators Ki,

Φ(ρ) = TrMω =

M∑
i=1

KiρKi†, (1.34)

where notation from Section 1.6 is used. The channel Φ̃ complementary to Φ is
de�ned by

Φ̃(ρ) = TrNω =

N∑
i=1

K̃iρK̃i† (1.35)

and it describes the state of the M�dimensional environment after the interac-
tion with the principal system ρ. One can derive the relation between operators
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{K̃j}Nj=1 and {Ki}Mi=1 from the last equation by substituting ω as in (1.31).
This relation can be rewritten as

M∑
i,j=1

(TrKiρKj†) |i〉 〈j| =
N∑
i=1

K̃iρK̃i†. (1.36)

Comparison of the matrix elements of both sides gives

N∑
α=1

K̃α
imρmnK̃

α†
nj =

N∑
α=1

Ki
αmρmnK

j†
nα, (1.37)

where matrix elements are indicated by lower indexes and the Einstein summa-
tion convention is applied. Hence, for any quantum channel Φ given by a set of
Kraus operators Ki, one can de�ne the Kraus operators K̃α representing the
complementary channel Φ̃ as

K̃α
ij = Ki

αj , i = 1, ...,M, j, α = 1, ..., N. (1.38)

1.7 One�qubit channels

One�qubit channels acting on density matrices of size 2 have many special fea-
tures which cause that the set of these channels is well understood [37, 38, 54].
However, many properties of one�qubit maps are not shared with the quantum
maps acting on higher dimensional systems. Since one�qubit quantum channels
are often considered in this thesis, the following section presents a brief review
of their basic properties.

A quantum two level state is called quantum bit or qubit. It is represented
by a 2×2 density matrix. Any Hermitian matrix of size two can be represented
in the basis of identity matrix and the three Pauli matrices ~σ = {σ1, σ2, σ3},

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.39)

One qubit state ρ decomposed in the mentioned basis is given by the formula

ρ =
1

2
(id +~r · ~σ), ~r ∈ R3. (1.40)

Positivity condition, ρ ≥ 0, implies that |~r| ≤ 1. The vector ~r is called the Bloch
vector. All possible Bloch vectors representing quantum states form the Bloch
ball. Pure one�qubit states form a sphere of radius |~r| = 1.

Any linear one�qubit quantum operation Φ transforms the Bloch ball into
the ball or into an ellipsoid inside the ball. The channel Φ transforms the
Bloch vector ~r representing the state ρ into ~r ′ which corresponds to ρ′. This
transformation is described by

~r ′ = W~r + ~κ. (1.41)
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Here the matrix W is a square real matrix of size 3. A procedure analogous to
the singular value decomposition of the matrix W gives W = O1DO2, where
Oi represents an orthogonal rotation and D is diagonal. Up to two orthogonal
rotations, one before the transformation Φ and one after it, the one�qubit map
Φ can be represented by the following matrix

Φ =


1 0 0 0
κ1 η1 0 0
κ2 0 η2 0
κ3 0 0 η3

. (1.42)

The absolute values of the parameters ηi are interpreted as the lengths of the
axes of the ellipsoid which is the image of the Bloch ball transformed by the
map. The parameters κi form the vector ~κ of translation of the center of the
ellipsoid with respect to the center of the Bloch ball.

Due to complete positivity of the map Φ and the trace preserving property,
the vectors ~η and ~κ are subjected to several constraints. They can be derived
from the positivity condition of a dynamical matrix given by [15,37]:

DΦ =
1

2


1 + η3 + κ3 0 κ1 + i ∗ κ2 η1 + η2

0 1− η3 + κ3 η1 − η2 κ1 + i ∗ κ2

κ1 − i ∗ κ2 η1 − η2 1− η3 − κ3 0
η1 + η2 t1 − i ∗ κ2 0 1 + η3 − κ3

. (1.43)

The channels which preserve the maximally mixed state are called bistochas-
tic channels. The structure of one�qubit bistochastic channels is discussed in
more detail in Section 4.1.

1.8 Correlation matrices

A general measurement process is described in quantum mechanics by opera-
tors forming a positive operator valued measure (POVM). Products of matrices
Ki†Ki representing the POVM are positive and determine the identity reso-
lution, 1 =

∑k
i=1K

i†Ki. During the measurement of a quantum state ρ the

output ρi = KiρKi†

TrKiρKi† occurs with probabilities pi = TrKiρKi†. The identity

resolution guarantees that
∑k
i=1 p1 = 1.

The outcomes of a quantum measurement are not perfectly distinguishable,
unless di�erent POVM operators project on orthogonal subspaces,Ki†KiKj†Kj =
δijK

i†Ki. Probability distribution of the outcome states does not contain any
information on indistinguishability of outcomes. Therefore, a better character-
ization of the measurement process is given by the following correlation matrix
σ with entries

σij = TrKiρKj†, i, j = 1, ..., k. (1.44)
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Its diagonal contains the probabilities of measurement outputs, while the o��
diagonal entries are related to probabilities that the state i has been determined
by the measurement as the state j. The correlation matrix depends on both,
the measured state and the measurement process.

The operators Ki, satisfying
∑k
i=1K

i†Ki = 1, can also be treated as Kraus
operators (1.30) characterizing the quantum channel, Φ(ρ) =

∑k
i=1K

iρKi†. In
such an interpretation of operators Ki, the correlation matrix (1.44) is equiv-
alent to the state of environment given by the output of the complementary
channel Φ̃(ρ) speci�ed in Eq. (1.36).

The entropy of the state σ produced by a complementary channel Φ̃ is called
the exchange entropy, since, if the initial states of the system and the envi-
ronment are pure, then S(σ) is equal to the entropy which is gained by both
the state and the environment [29]. If the initial state is maximally mixed,
ρ = ρ∗ = 1

N 1, where N is the dimensionality of ρ, the entropy of the output of
the complementary channel is equal to the map entropy Smap(Φ) [46] (see also
discussion in Section 2.1.1),

Smap(Φ) = − 1

N
DΦ log

( 1

N
DΦ

)
, (1.45)

where the dynamical matrix DΦ is given by Eq. (1.25). This entropy is equal
to zero if Φ represents any unitary transformation. It attains the largest value
log 2N for completely depolarizing channel which transform any state into the
maximally mixed state. Therefore the map entropy can characterize the deco-
herence caused by the channel.

Due to the polar decomposition of an arbitrary non normal operator X =
HU , we can write Kiρ1/2 = hiUi, where hi is a Hermitian matrix and Ui is
unitary. One can observe that h2

i = KiρKi† = piρi. Therefore the entries of
the correlation matrix (1.44) can be written as:

σij = TrKiρKj† = p
1
2
i p

1
2
j Tr ρ

1
2
i UiU

†
j ρ

1
2
j . (1.46)

As noticed above, the correlation matrix characterizing the quantum mea-
surement can be equivalently treated as the state of an environment after evo-
lution given by a quantum channel. The following section indicates a third
possible interpretation of the correlation matrix σ. It can be formally treated
as a Gram matrix of puri�cations of mixed states ρi.

Puri�cation of a given state ρi ∈MN is given by a pure state |Ψi〉 (see Eq.
(1.21)),

Tr1 |Ψi〉 〈Ψi| = ρi. (1.47)

The puri�cation |Ψi〉 of given state ρi can be written explicitly,

|Ψi〉 =

N∑
r=1

(
Ui ⊗

√
ρi

)
|r〉 ⊗

∣∣φir〉 , (1.48)

where {
∣∣φir〉}Nr=1 are eigenvectors of ρi. Notice that a puri�cation of a given

state ρi is not unique. The degree of freedom is introduced by the unitary
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transformation Ui. Moreover, any puri�cation of given state ρi can be given
by such a form. Since eigenvectors of ρi denoted by

∣∣φir〉 form an orthonormal
basis in the Hilbert space, a unitary transformation Vi can transform it into the
canonical basis {|r〉}Ni=1. The puri�cation (1.48) can be described as

|Ψi〉 =

N∑
r=1

(
Ui ⊗

√
ρiVi

)
|r〉 ⊗ |r〉 . (1.49)

The overlap between two puri�cations of states ρi and ρj emerging from a
POVM measurement is given by

| 〈Ψj | Ψi〉 |2 = | 〈m| (U†jUi ⊗ V
†
j

√
ρj
√
ρiVi) |m〉 |2, (1.50)

where |m〉 =
∑
r |r〉⊗ |r〉. For any two operators A and B the following relation

holds, 〈m|A⊗B |m〉 = TrA†B [62]. Hence the overlap (1.50) reads

| 〈Ψj | Ψi〉 |2 = |TrW
√
ρj
√
ρi|2, (1.51)

where the unitary matrix W = ViU
†
i UjV

†
j . Therefore the matrix elements of σ

(1.46) are equal to the scalar product of puri�cations of respective mixed states
ρi and ρj as follows σij =

√
pipj〈Ψj |Ψi〉.

1.8.1 Gram matrices and correlation matrices

In previous chapter it was shown that the correlation matrix can by de�ned
by the set of puri�cations of states emerging from the quantum measurement.
Therefore, the correlation matrix can be identi�ed with the normalized Gram
matrix of the puri�cations.

The Gram matrix is an useful tool in many �elds. It can receive a geometri-
cal interpretation, as it consists of the overlaps of normalized vectors. If vectors
are real the determinant of their Gram matrix de�nes the volume of the paral-
lelogram spanned by the vectors [63,64]. The Gram matrix of the evolving pure
state is analyzed in [65]. The spectrum of this matrix can determine whether
the evolution is regular or chaotic.

The Gram matrix σ,
σij =

√
pipj〈ψi|ψj〉 (1.52)

has the same eigenvalues as

ρ =
∑
i

pi|ψi〉〈ψi|. (1.53)

The proof of this fact [66] uses the pure state,

|φ〉 =
∑
i

√
pi|ψi〉 ⊗ |ei〉, (1.54)
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where states |ei〉 form the set of orthogonal vectors. Since the state (1.54) is
pure, its complementary partial traces equal to (1.52) and (1.53) have the same
entropy

S
(
[
√
pipj〈ψi|ψj〉]ij

)
= S

(∑
i

pi|ψi〉〈ψi|

)
. (1.55)

The entropy of the Gram matrix (1.52) can be used in quantum information
theory to describe the ability of compression of quantum information [67]. The
authors of [67] describe the fact that it is possible to enlarge the information
transmitted by means of set of states which are pairwise less orthogonal and thus
more indistinguishable. This fact encourages us to consider global properties
of quantum ensemble which, sometimes, are not reduced to joint e�ects of each
pair considered separately. In Chapter 3 some e�orts will be made to de�ne the
quantity characterizing �delity between three states.

1.9 Kraus operators constructed for an ensemble

of states

The previous section concerns the ensembles E = {pi, ρi}ki=1 formed by the
outputs of a given quantum channel and a given input state. In the following
section it will be shown that for any ensemble E the suitable Kraus operators
Ki can be constructed and the corresponding initial state ρ can be found.

Initial state is constructed from the states of the ensemble by taking

ρ =

k∑
i=1

piU
†
i ρiUi, (1.56)

where the unitary matrices Ui are arbitrary. The Kraus operators constructed
for ensemble E and unitaries Ui are de�ned by

Ki =
√
piρiUi

1
√
ρ
. (1.57)

Notice that KiρKi† = piρi and the Hermitian conjugation, Ki† = 1√
ρU
†
i

√
piρi.

Due to the choice of ρ in (1.56) the identity resolution holds,

k∑
i=1

Ki†Ki =

k∑
i=1

pi
1
√
ρ
U†i ρiUi

1
√
ρ

= 1. (1.58)

In the special case of k = 2 states in an ensemble, by choosing

U2 = U1
1√√

ρ1ρ2
√
ρ1

√
ρ1
√
ρ2, (1.59)

one obtains σ12 equal to square root �delity between states ρ1 and ρ2, as follows√
F (ρ1, ρ2) = Tr

√√
ρ1ρ2
√
ρ1.
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In consequence of the above considerations one can say that the ensemble
emerging from POVM measurement can be arbitrary and for any ensemble E
we can construct the set of operators Ki and the corresponding initial state ρ.

1.10 Quantum �delity

An important problem in the theory of probability is how to distinguish between
two probability distributions. The so called �delity is a quantity used for this
purpose. Assume that P = (p1, p2, ..., pN ) and Q = (q1, q2, ..., qN ) are two
probability distributions. The �delity between p and q is de�ned as,

F (P,Q) =

(
N∑
i=1

√
piqi

)2

. (1.60)

This function has several properties:

• it is real,

• positive, F (P,Q) ≥ 0,

• symmetric, F (P,Q) = F (Q,P ),

• smaller or equal to unity, F (P,Q) ≤ 1.

• equal to one if and only if two distributions are the same,
(F (P,Q) = 1)⇔ (P = Q).

These properties are shared by �delities de�ned for quantum states given below.
Quantum counterpart of the �delity for the pure states |φ1〉 ∈ HN and

|φ2〉 ∈ HN is given by the overlap

F (|φ1〉 , |φ2〉) = |〈φ1 | φ2〉|2 . (1.61)

A probability distribution can be considered as a diagonal density matrix. Gen-
eralization of two formulas (1.60) and (1.61) for arbitrary mixed states ρ1 ∈MN

and ρ2 ∈MN is given by

F (ρ1, ρ2) =
(

Tr
√√

ρ1ρ2
√
ρ1

)2

. (1.62)

To show a relation to previous de�nitions of �delity consider two commuting
quantum states. They can be given, in the same basis, as ρ1 =

∑N
i ri |i〉 〈i|,

and ρ1 =
∑N
i si |i〉 〈i|. Hence the �delity between them reads

(
Tr
√√

ρ1ρ2
√
ρ1

)2

=

Tr

√√√√ N∑
i=1

risi |i〉 〈i|

2

=

(
N∑
i=1

√
risi

)2

. (1.63)
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This gives a relation between �delity between mixed quantum states (1.62) and
�delity of probability distributions which are composed by the eigenvalues of
the states (1.60). Consider now pure states, |Ψ1〉 , |Ψ2〉 ∈ HN ⊗ HN such that
the partial trace over the �rst subspace reads, Tr1 |Ψi〉 〈Ψi| = ρi. There exists
a relation between formula (1.62) for �delity between two mixed states and
overlaps of their puri�cations.

Theorem 2 (Uhlmann [62]). Consider two quantum states ρ1 and ρ2 and their
puri�cations |Ψ1〉 and |Ψ2〉. Then(

Tr
√√

ρ1ρ2
√
ρ1

)2

= max
|Ψ1〉
|〈Ψ1 | Ψ2〉|2 , (1.64)

where the maximization is taken over all puri�cations |Ψ1〉 of the state ρ1.

Proof. The proof starts from puri�cation formula (1.49),

|Ψi〉 = (Ui ⊗
√
ρiVi) |m〉 , (1.65)

where |m〉 is an unnormalized vector, |m〉 =
∑N
i=1 |r〉 ⊗ |r〉. The overlap of two

puri�cations (1.50) is given by

| 〈Ψj | Ψi〉 |2 = |TrW
√
ρj
√
ρi|2, (1.66)

where the unitary matrix W = ViU
†
i UjV

†
j . The maximization over puri�ca-

tions is equivalent to maximization over the unitary matrix W . An inequality
|TrAB| ≤ ‖A‖ Tr |B| provides the required lower bound

|TrW
√
ρj
√
ρi|2 ≤

(
Tr |√ρj

√
ρi|
)2
. (1.67)

The upper bound is attained by the unitary matrix W † equal to the unitary
part of the polar decomposition of

√
ρj
√
ρi. This �nishes the proof.

1.10.1 Geometrical interpretation of �delity

Consider two one�qubit states in the Bloch representation (1.40),

ρx =
1

2
(id +~x · ~σ), (1.68)

ρy =
1

2
(id +~y · ~σ), (1.69)

where ~σ is the vector of Pauli matrices (1.39). Fidelity of the pair of states ρx
and ρy reads

F (ρx, ρy) =
1

2
(1 + ~x · ~y +

√
1− ‖~x‖2

√
1− ‖~y‖2). (1.70)

If the states ρx and ρy are both pure then ‖~x‖ = ‖~y‖ = 1 and the �delity can
be given by

F (ρx, ρy) = cos2 α

2
, (1.71)
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where the angle α is formed by two Bloch vectors which represent the pure
states ρx and ρy at the Bloch sphere. One can use this statement to de�ne the
angle between two states as a function of the �delity. The generalization of such
an angle for arbitrary two mixed states is given by

A(ρ1, ρ2) := arccos
√
F (ρ1, ρ2). (1.72)

It was proved [68] that such an angle satis�es the axioms of a distance and leads
to a metric.

1.11 Mutual information

The goal of quantum information is to e�ciently apply quantum resources for
information processing. Consider the following situation. A sender transmits
the letters of the message from the set X = {a1, a2, ..., ak}. The letters occur
with probabilities pi, where i = 1, ..., k. The message is transmitted by a com-
munication channel, which can be noisy and can change some of the letters.
The receiver performs a measurement and obtains outputs Y with a possibly
di�erent probability distribution. According to the Shannon information the-
ory [1] the amount of information contained in the message characterized by
probability distribution pi is given by the entropy H(X) = −

∑
i pi log pi. En-

tropy describes the average amount of digits per letter necessary to transmit the
message characterized by this probability distribution in an optimal encoding
scheme.

The receiver knowing the letters Y has only a part of information contained
in the original message X. The information which Y and X have in common is
characterized by the mutual information H(X : Y ) de�ned by

H(X : Y ) = H(X) +H(Y )−H(X,Y ), (1.73)

where H(X,Y ) is the Shannon entropy of the joint probability distribution of
the pairs of letters, one from X and one from Y .

The errors caused by a channel can be perfectly corrected if the mutual infor-
mation is equal to the entropy of the initial probability distribution. Otherwise
the mutual information is bounded by the entropy of an initial distribution [8],

H(X : Y ) ≤ H(X). (1.74)

Following properties of the mutual information hold [8]:

• Mutual information does not change H(X : Y, Z) = H(X : Y ) if the
system Z is uncorrelated with Y .

• Mutual information does not increase if any process is made on each part,
H(X : Y ) ≥ H(X ′ : Y ′), where prime denotes the states after the trans-
formation.
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• If part of a system is discarded the mutual information decreases
H(X : Y, Z) ≥ H(X : Z).

Mutual information can also be de�ned for quantum composite systems in
terms of the von Neumann entropy . The de�nition is analogous to (1.73):

S(ρP : ρQ) = S(ρP ) + S(ρQ)− S(ρPQ), (1.75)

where states of subsystems are given by partial traces, for example, ρP =
TrQρPQ. Mutual information S(ρP : ρQ) for quantum states satis�es properties
analogous to these listed above for the classical mutual information H(X,Y ).

1.12 Holevo quantity

Holevo χ quantity (Holevo information) of the ensemble E = {qi, ρi}ki=1 is de-
�ned by the formula

χ({qi, ρi}) ≡ S

(
k∑
i=1

qiρi

)
−

k∑
i=1

qiS(ρi). (1.76)

It plays an important role in quantum information theory. As the bound on the
mutual information [7], Holevo quantity is related to fundamental restriction on
the information achievable from measurement allowed by quantum mechanics.
It directly re�exes these features of quantum mechanics which distinguishes
this theory from classical physics. In classical information theory the mutual
information between the sender and the receiver is bounded only by the Shannon
entropy of the probability distribution describing the original message. In the
case of an ideal channel between two parts the mutual information is equal
to the upper bound. In quantum case, even without any noise present during
the transmission process, the mutual information is restricted by the Holevo
quantity which is smaller than the entropy associated with the original message,
unless the states used to encode the message are orthogonal.

The theorem of Holevo [7] is presented below together with its proof.

Theorem 3 (Holevo). Let {ρi}ki=1 be a set of quantum states produced with
probabilities pi from the distribution P . Outcomes of a POVM measurement
performed on these states are encoded into symbols with probabilities qj from
probability distribution Q. Whichever measurement is done, the accessible mu-
tual information is bounded from above,

H(P : Q) ≤ S

(
k∑
i=1

piρi

)
−

k∑
i=1

piS(ρi). (1.77)

Proof. Consider a three partite state, where its parts are denoted by the letters
P,Q and M

ωPQM =
∑
i

pi |i〉 〈i| ⊗ ρi ⊗ |0〉 〈0| . (1.78)
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Three parts of the system P , Q and M can be associated with the preparation
state, quantum systems, and the measurement apparatus respectively. The state
ωPQM describes the quantum system before the measurement, since the state
of the apparatus is independent on the quantum states.

Assume that the state ωPQM is subjected to the quantum operation acting
on the subsystem QM as follows, Φ(ρ ⊗ |0〉 〈0|) =

∑
j K

jρKj† ⊗ |j〉 〈j|. The
Kraus operators of this quantum operation form a POVM measurement since∑
j K

j†Kj = 1. The state after this measurement is given by

ωP ′Q′M ′ =
∑
ij

pi |i〉 〈i| ⊗KjρiK
j† ⊗ |j〉 〈j| . (1.79)

Properties of the mutual information listed in section 1.11 imply the key
inequality of the proof:

S(ωP : ωQ) ≥ S(ωP ′ : ωM ′). (1.80)

To prove inequality (1.77) it is enough to calculate the quantities occurring in
(1.80) for the state (1.78) and (1.79) respectively. Since ωPQ = TrMωPQM =∑
i pi |i〉 〈i| ⊗ ρi, the left hand side of (1.80) is given by

S(ωP : ωQ) = S(ωP ) + S(ωQ)− S(ωPQ) = S(ρ′)−
k∑
i=1

piS(ρi), (1.81)

where ρ′ =
∑
i piρi. This is the Holevo quantity which does not depend on

the measurement operators Ki. To compute the right hand side of (1.80),
S(ωP ′ : ωM ′), consider a state (1.79). The observation that p(x, y) = pxp(y|x) =
px TrKy†Kyρx leads to

S(ωP ′ : ωM ′) = H(P : Q), (1.82)

where Q = {qy}y and qy = TrKyρ′Ky†. This is the mutual information between
the probability distributions describing the outcomes of the measurement and
the original message. That �nishes the proof of the Holevo bound on the mutual
information of message encoded into quantum systems.

Above theorem is one of the most important applications of the Holevo
quantity. Quantum information theory uses also the Holevo quantity χ to de-
�ne channel capacity. There exist several de�nitions of quantum capacity of
a channel depending on whether the entanglement between the input states is
allowed or not. In the case that quantum states in a message are not entangled
the Holevo capacity of channel Φ is de�ned by

CH(Φ) = max
E={pi,ρi}ki=1

[
S

(
k∑
i=1

piΦ(ρi)

)
−

k∑
i=1

piS (Φ(ρi))

]
. (1.83)

The Holevo quantity χ(E), which can be interpreted as the Holevo capacity of
the identity channel, bounds the capacity CH for any channel [8]:

CH ≤ χ(E). (1.84)
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Yet another application of the Holevo quantity concerns the ensembles of
quantum states. Formula (1.76) can be given by the average relative entropy

k∑
i=1

piD

ρi, k∑
j=1

pjρj

 = S

(
k∑
i=1

piρi

)
−

k∑
i=1

piS(ρi), (1.85)

where the relative entropy is de�ned as D(ρ1, ρ2) ≡ Tr ρ1(log ρ1 − log ρ2). It
de�nes an average divergence of every state from the average state. Average
(1.85) is known as the quantum Jensen Shannon divergence [69]. Its classical
version, for probability measures, is considered in [70]. From mathematical point
of view, the Holevo quantity can be treated as a quantity which characterizes
the concavity of the entropy function.

The Holevo information will be the main object considered in Part II of this
thesis.

30



Part II

Bounds on the Holevo

quantity
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Chapter 2

Holevo quantity and the

correlation matrix

In the following chapters several inequalities for the Holevo information (Holevo
quantity) will be given. It is well-known [8] that the Shannon entropy of the
probability vector P = {p1, ..., pk} is an upper bound for the Holevo quantity
of an ensemble E = {pi, ρi}ki=1:

χ
(
E
)
≤ H(P ).

Since the Holevo quantity forms a bound on accessible mutual information, the
di�erence between entropy of probability vector H(P ) and the Holevo quantity
speci�es how the chosen set of density matrices di�ers from the ideal code,
which can be decoded perfectly by the receiver. The upper bound on the Holevo
quantity can be used for estimating this di�erence. One of the estimation for
the Holevo quantity is presented in the following section.

As discussed in Section 1.8 the correlation matrix σ can be equivalently
interpreted in several ways. If the set of the Kraus operators Ki de�nes a
quantum channel, Φ(ρ) =

∑k
i=1K

iρKi†, the correlation matrix σ characterizes
the output state of the complementary channel, σ = Φ̃(ρ), or the state of the
environment after the quantum operation. As mentioned in Section 1.8.1, σ
de�nes also the Gram matrix of puri�cations of the states {ρi}ki=1. The entropy
S(σ) is related to the exchange entropy or the entropy which the environment
gains during a quantum operation provided the initial state of the environment
is pure. In the following analysis a quantum channel Φ(ρ) =

∑
iK

iρKi† is
treated as a device preparing an ensemble of quantum states E = {pi, ρi}ki=1,
where

pi = TrKiρKi†, and ρi =
KiρKi†

TrKiρKi† . (2.1)

The described situation is illustrated in Fig. 2.1.
Independently of the interpretation of the Kraus operators Ki the following

theorem proved in [49] holds.
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Figure 2.1: A quantum channel Φ represents a device preparing the ensemble
of quantum states E = {pi, ρi}2i=1. The average of this ensemble is denoted as
ρ′ = Φ(ρ) =

∑2
i=1K

iρKi†. The complementary channel Φ̃ transforms an initial
state ρ into the state σ of the environment.

Theorem 4. Let
∑k
i=1K

i†Ki = 1 be the identity decomposition and ρ an
arbitrary quantum state. De�ne the probability distribution pi = TrKiρKi† and

a set of density matrices ρi = KiρKi†

TrKiρKi† . The Holevo quantity χ({ρi, pi}) is

bounded by the entropy of the correlation matrix, σ =
∑k
i,j=1 TrKiρKj†|i〉〈j|:

χ({ρi, pi}) = S
( k∑
i=1

piρi
)
−

k∑
i=1

piS(ρi) ≤ S(σ) ≤ H(P ), (2.2)

where H(P ) is the Shannon entropy of the probability distribution P = {p1, ..., pk}.

Proof. The right hand side of the inequality: S(σ) ≤ H(P ), is a consequence of
the majorization theorem, see e.g. [15]. Since the probability vector P forms a
diagonal of a correlation matrix, we have S(σ) ≤ S(diag(σ)) = H(P ). The left
hand side of the inequality (2.2) is proved due to the strong subadditivity of the
von Neumann entropy [60]. The multipartite state ω123 is constructed in such
a way that entropies of its partial traces are related to speci�c terms of (2.2).

The multipartite state ω123 is constructed by using an isometry F |φ〉 =∑k
i=1 |i〉⊗ |i〉⊗Ki|φ〉. The state ω123 = FρF † is given explicitly by the formula

ω123 = FρF † =

k∑
i,j=1

|i〉〈j| ⊗ |i〉〈j| ⊗KiρKj†. (2.3)

States of the subsystems ωi are given by partial traces over the remaining sub-
systems, for example, ω1 = Tr23ω123 and so on.

Let us introduce the following notation Aij = KiρKj†. In this notation
the quantities from the Theorem 4 take the form pi = TrAii and ρi = Aii/pi.
Notice that

S(ω12) = S(σ), (2.4)

S(ω3) = S
( k∑
i=1

piρi
)
. (2.5)
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Moreover

−
k∑
i=1

piS(ρi) =

k∑
i=1

TrAii logAii −
k∑
i=1

Tr(Aii) log Tr(Aii)

= S(ω1)− S(ω23). (2.6)

The strong subadditivity relation in the form which is used most frequently

S(ω123) + S(ω2) ≤ S(ω12) + S(ω23) (2.7)

does not lead to the desired form (2.2). However, due to the puri�cation proce-
dure and the fact that a partial trace of a pure state has the same entropy as the
complementary partial trace, inequality (2.7) can be rewritten in an alternative
form [21]:

S(ω3) + S(ω1) ≤ S(ω12) + S(ω23). (2.8)

This inequality applied to the partial traces of the state (2.3) proves Theorem 4.

For an ensemble of pure states ρi = |ψi〉〈ψi|, the left hand side of (2.2)
consists of the term S(

∑
i pi|ψi〉〈ψi|) only. The correlation matrix σ in the case

of pure states is given by the Gram matrix. Due to the simple observation
(1.55), the left inequality (2.2) is saturated in case of any ensemble E consisting
of pure states only.

Using a di�erent method an inequality analogous to Theorem 4 has been
recently proved in [71] for the case of in�nite dimension. It can be also found in
[72] in context of quantum cryptography. The authors analyse there the security
of a cryptographic key created by using so called 'private qubits'. In such a setup
an inequality analogous to (2.2) appears as a bound on the information of the
eavesdropper.

2.1 Other inequalities for the Holevo quantity

Methods similar to that used to prove Theorem 4 can be applied to prove other
useful bounds.

Proposition 1. Consider a POVM measurement characterized by operators∑k
i=1K

i†Ki = 1 which de�ne the outcome states, ρi = KiρKi†

TrKiρKi† and their prob-

abilities, pi = TrKiρKi†. The average entropy of the output states is smaller
than entropy of the initial state,

k∑
i=1

piS(ρi) ≤ S(ρ). (2.9)
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Proof. Due to the fact that the transformation F in Eq. (2.3) is an isometry,
the three-partite state ω123 has the same nonzero spectrum as the initial state
ρ. Hence ω123 and ρ have the same entropy. Due to equality (2.6) and the
Araki�Lieb inequality [76]:

S(ω1)− S(ω23) ≤ S(ω123), (2.10)

one completes the proof of Proposition 1.

Note that concavity of entropy implies also another inequality
∑k
i=1 piS(ρi) ≤

S(ρ′) = S(
∑k
i=1 piρi). Proposition 1 has been known before [77] as the quantum

information gain.
De�nition of the channel capacity (1.83) encourages one to consider bounds

on the Holevo quantity for the concatenation of two quantum operations. Treat-
ing the probabilities pi and states ρi as the outputs from the �rst channel one
can replace maximization over E = {ρi, pi}ki=1 in (1.83) by maximization over
the initial state ρ and the quantum operation Φ1. The strategy similar to that
used in Theorem 4 allows us to prove the following relations.

Proposition 2. Consider two quantum operations: Φ1(ρ) =
∑k1
i=1K

i
1ρK

i†
1 and

Φ2(ρ) =
∑k2
i=1K

i
2ρK

i†
2 . De�ne pi = TrKi

1ρK
i†
1 and ρi =

Ki
1ρK

i†
1

TrKi
1ρK

i†
1

. The

following inequality holds:

S
(
Φ2 ◦ Φ1(ρ)

)
−

k1∑
i=1

piS
(
Φ2(ρi)

)
≤ S(Φ1(ρ))−

k1∑
i=1

piS(ρi). (2.11)

Proof. Let us consider the four�partite state:

ω′1234 =

k1∑
n,l=1

k2∑
i,j=1

|i〉〈j| ⊗ |nn〉〈ll| ⊗Ki
2K

n
1 ρK

l†
1 K

j†
2 , (2.12)

where |nn〉 ≡ |n〉 ⊗ |n〉, and the strong subadditivity relation in the form

S(ω′124) + S(ω′4) ≤ S(ω′14) + S(ω′24). (2.13)

Notice that

S(ω′4) = S(Φ2 ◦ Φ1(ρ)),

S(ω′3)− S(ω′24) = −
∑
i piS

(
Φ2(ρi)

)
,

S(ω′14) = S(
∑k2
i,j=1 |i〉〈j| ⊗Ki

2Φ1(ρ)Kj†
2 ) = S(Φ1(ρ)).

The third equality is due to the fact that an isometry, F2|φ〉 =
∑k2
i=1 |i〉⊗Ki

2|φ〉,
does not change the nonzero part of spectrum. This property is also used to
justify the following equation

S(ω′3)− S(ω′124) = −
k1∑
i=1

piS(ρi). (2.14)
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Substituting these quantities to the strong subadditivity relation (2.13) we �nish
the proof.

Inequality 2.11 is known [8] as the property that the Holevo quantity de-
creases under a quantum operation χ(pi, ρi) ≥ χ(pi,Φ(ρi)).

Consider notation used in the proof of Proposition 2. Concavity of the
entropy gives

k1∑
i=1

piS
(

Φ2(ρi)
)

=

k1∑
i=1

piS
( k2∑
j=1

qjρij

)
≥

k1∑
i=1

k2∑
j=1

piqjS(ρij). (2.15)

where ρij =
Kj

2K
i
1ρK

i†
1 K

j†
2

TrKj
2K

i
1ρK

i†
1 K

j†
2

and probabilities piqj = TrKj
2K

i
1ρK

i†
1 K

j†
2 . Using

Theorem 4 and concavity of entropy (2.15) one proves:

Proposition 3. Consider two quantum operations: Φ1(ρ) =
∑k1
i=1K

i
1ρK

i†
1 and

Φ2(ρ) =
∑k2
i=1K

i
2ρK

i†
2 . De�ne pi = TrKi

1ρK
i†
1 and ρi =

Ki
1ρK

i†
1

TrKi
1ρK

i†
1

. The

following inequality holds:

S
(

Φ2 ◦ Φ1(ρ)
)
−

k1∑
i=1

piS
(

Φ2(ρi)
)
≤ S(σII), (2.16)

where the output of the complementary channel to Φ2 ⊗Φ1 is denoted as σII =

Φ̃2 ◦ Φ1(ρ).

2.1.1 Some consequences

This section provides three applications of theorems proved in Sections 2 and
2.1. One of them concerns the coherent information. This quantity is de�ned
for a given quantum operation Φ and an initial state ρ as follows [73]

Icoh(Φ, ρ) = S
(
Φ(ρ)

)
− S

(
Φ̃(ρ)

)
, (2.17)

where Φ̃(ρ) is the output state of the channel complementary to Φ. To some
extent, coherent information in quantum information theory plays a similar
role to mutual information in classical information theory. It is known [8] that
Icoh(Φ, ρ) ≤ S(ρ). That is a relation similar to (1.74). Moreover, it has been
shown that only if Icoh(Φ, ρ) = S(ρ) the process Φ can be perfectly reversed.
In this case the perfect quantum error correction is possible [73]. The coherent
information is also used to de�ne the quantum capacity of a quantum channel [74]

CQ(Φ) = max
ρ

Icoh(Φ, ρ). (2.18)

The de�nition of the coherent information (2.17) can be formulated alter-
natively [73] by means of an extended quantum operation Φ ⊗ id acting on a
puri�cation |ψ〉 ∈ H2 ⊗ H3 of an initial state, ρ = Tr3|ψ〉〈ψ|. This fact is

36



justi�ed as follows. The puri�cation of ρ determines as well the puri�cation
Ω123 ∈ H1 ⊗H2 ⊗H3 of the state ω ∈ H1 ⊗H2 in (1.29),

Ω123 = U12 ⊗ id3

(
|1〉〈1|1 ⊗ |ψ〉〈ψ|23

)
U†12 ⊗ id3 . (2.19)

The partial trace over the environment (subspace H1) reads

Ω23 = [Φ⊗ id] (|ψ〉〈ψ|) . (2.20)

It has the same entropy as the partial trace over the second and third subspace,
Ω1 = σ, which is a state of environment after evolution,

S(σ) = S([Φ⊗ id] (|ψ〉〈ψ|)), (2.21)

and S(σ) = S(Φ̃(ρ)).
Coherent information (2.17) can be written as

Icoh(Φ, ρ) = S(Tr3Ω23)− S(Ω23). (2.22)

The classical counterpart of the coherent information can be de�ned by using the
Shannon entropy instead of the von Neumann entropy and probability vectors
instead of density matrices in Eq. (2.22). The classical coherent information is
always negative, since the entropy of a joint probability distribution cannot be
smaller than its marginal distribution.

Inequalities proved in Theorem 4 and Proposition 1 together provide the
following bound on the coherent information,

Icoh(Φ, ρ) ≤
k∑
i=1

piS(ρi) ≤ S(ρ), (2.23)

where pi = TrKiρKi† and ρi = KiρKi†/pi are de�ned by Kraus represen-
tations of the channel, Φ(ρ) =

∑k
i=1K

iρKi†. The equality between coherent
information and the entropy of initial state S(ρ) guarantees that Φ is reversible.
Inequality (2.23) implies a similar, weaker statement: only if the following equal-
ity holds

∑k
i=1 piS(ρi) = S(ρ), the quantum operation Φ can be reversed.

Another consequence of inequalities proved in Section 2.1 concerns the so
called degradable channels. These channels are considered in quantum infor-
mation theory in the context of their capacity [42]. A channel Φdeg is called
degradable if there exists a channel Ψ such that Ψ ◦ Φdeg = Φ̃deg. Substituting
the degradable channel Φ1 = Φdeg and the additional channel Φ2 = Ψ to in-
equality in Proposition 2 one obtains a lower bound for the average entropy of
Ψ(ρi), where ρi are output states from the channel Φdeg,

0 ≤
k∑
i=1

piS(ρi)− Icoh(Φdeg, ρ) ≤
k∑
i=1

piS
(
Ψ(ρi)

)
, (2.24)
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where Icoh(Φ, ρ) = S
(
Φdeg(ρ)

)
− S

(
Φ̃deg(ρ)

)
. The left inequality is due to

inequality (2.23). Therefore Proposition 2 provides some characterization of the
channel Ψ which is associated with a degradable channel.

The third application of propositions from Section 2.1 is given as follows.
The Jamioªkowski isomorphism [34] gives a representation of a quantum map Φ
which acts on N dimensional system by a density matrix on the extended space
of size N2. This state can be written as:

σΦ = [id⊗Φ]
( ∣∣φ+

〉 〈
φ+
∣∣ ), (2.25)

where |φ+〉 = 1√
N

∑N
i=1 |i〉 ⊗ |i〉 is the maximally entangled state. A rescaled

state DΦ = NσΦ is called the dynamical matrix. In the special case, if the
initial state is maximally mixed, ρ = 1

N 1, the entropy of the correlation matrix
σ written in (2.21) is equal to the entropy of the dynamical matrix.

A quantum map Φ can by de�ned using its Kraus representation (1.30).
Since the Kraus representation is not unique [15], one can associate many di�er-
ent correlation matrices with a given quantum operation Φ depending on both,
the initial state and the set of Kraus operators. However the entropy of the
dynamical matrix DΦ is invariant under di�erent decompositions. This entropy
characterizes the quantum operation and is called the entropy of a map [49],
denoted by Smap(Φ) as de�ned in Eq. (1.45).

Due to Theorem 4 the entropy of a map has the following interpretation. It
determines an upper bound on the Holevo quantity (1.76) for a POVM mea-
surement de�ned by the Kraus operators of Φ if the initial state is maximally
mixed ρ = ρ∗ = 1

N 1. Moreover, the entropy of a map is an upper bound for the
Holevo quantity for POVM given by any set of Kraus operators {Ki†Ki} which
realize the same quantum operation Φ,

max
{Ki}

χ
(
{pi = TrKiρ∗K

i†, ρi =
Kiρ∗K

i†

TrKiρ∗Ki† }
)
≤ S(Φ), (2.26)

where ρ′ = Φ(ρ) =
∑k
i=1K

iρKi†.
Proposition 3 provides also an alternative lower bound for the entropy of

composition of two quantum maps given by Theorem 3 in [46]. The inequality
for the entropy of composition of two maps can be now stated as

0 ≤ MAX
{
S(Φ2 ◦Φ1(ρ∗))−

k∑
i=1

piS(Φ2(ρi)), S(Φ1)+∆
}
≤ S(Φ2 ◦Φ1), (2.27)

where ∆ = S
(
Φ2◦Φ1(ρ∗)

)
−S
(
Φ1(ρ∗)

)
and Φ(ρ) =

∑k
i=1 piρi. The lower bound

proved in our earlier paper [46] could be smaller than 0. The improved bound
is always greater than 0 due to concavity of entropy.

2.2 Discussion on the Lindblad inequality

Lindblad [75] proved an inequality which relates the von Neumann entropy of
a state ρ, its image ρ′ = Φ(ρ) =

∑k
i=1 piρi and the entropy of the correlation
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matrix σ equal to the output state of the complementary channel σ = Φ̃(ρ),

|S(ρ′)− S(ρ)| ≤ S(σ) ≤ S(ρ′) + S(ρ). (2.28)

Another two Lindblad inequalities are obtained by permuting the states ρ, ρ′ and
σ in this formula. The proof of Lindblad proceeds in a similar way to the proof of
Theorem 4. It involves a bi�partite auxiliary state ω′′ =

∑k
i,j=1 |i〉〈j| ⊗KiρK

†
j ,

where the identity S(ρ) = S(ω′′) is due to an isometry similar to F in (2.3).
The Araki�Lieb inequality [76], |S(ρ1) − S(ρ2)| ≤ S(ρ12) applied to ω′′ proves
the left hand side inequality of (2.28), while the subadditivity relation S(ρ12) ≤
S(ρ1) + S(ρ2) applied to ω′′ proves the right hand side inequality of (2.28).

Inequalities from Theorem 4 and Proposition 1

S(ρ′)−
k∑
i=1

piS(ρi) ≤ S(σ), (2.29)

k∑
i=1

piS(ρi) ≤ S(ρ) (2.30)

use a three�partite auxiliary state ω =
∑k
i,j=1 |ii〉〈jj|⊗KiρK

†
j . As in the case of

the Lindblad inequality (2.28), the identity S(ρ) = S(ω) holds due to isometry.
The strong subadditivity relation applied to ω proves inequality (2.29), while
the Araki�Lieb inequality applied for ω proves inequality (2.30). Notice that
an extension of the auxiliary state and application of the strong subadditivity
relation allows one to use the average entropy to new inequalities for interesting
quantities: the entropy of the initial state, the entropy of the output state
of a quantum channel ρ′ = Φ(ρ) and the entropy of the output state of the
complementary channel Φ̃(ρ).

In the case S(ρ′) ≥ S(ρ) (e.g. for any bistochastic operations) the result
(2.29) gives a better lower constraints for S(σ) than the Lindblad bound (2.28).
In this case

S(ρ′)− S(ρ) ≤ S(ρ′)−
k∑
i=1

piS(ρi) ≤ S(σ), (2.31)

due to Prop. 1. However, if S(ρ′) ≤ S(ρ) the result of Lindblad can be
more precise depending on the values of S(ρ), S(ρ′) and the average entropy∑k
i=1 piS(ρi). In consequence, due to Lindblad inequality (2.28) and the in-

equality (2.26) one obtains another lower bound for the entropy of a map:

MAX
{

log(N)−S(Φ(ρ∗)), max
{Ki}

χ
(
pi = TrKiρ∗K

i†, ρi =
Kiρ∗K

i†

TrKiρ∗Ki†

)}
≤ Smap(Φ),

(2.32)

where ρ′ = Φ(ρ) =
∑k
i=1K

iρKi† =
∑k
i=1 piρi.

2.3 Inequalities for other entropies

Inequality (2.2) uses the strong subadditivity relation in the form (2.8) which is a
speci�c feature of the von Neumann entropy. Relation (2.8) can be equivalently
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formulated in terms of relative von Neumann entropies.
The relative von Neumann entropy D(ρ1, ρ2) is de�ned as follows

D(ρ1, ρ2) = Tr ρ1

[
log ρ1 − log(ρ2)

]
(2.33)

and is �nite for ρ2 ∈ supp(ρ1), otherwise it becomes in�nite.
Monotonicity of relative entropy states that for any three�partite quantum

state ω123 and its partial traces the following inequality holds:

D(ω23, ω2 ⊗ ω3) ≤ D(ω123, ω12 ⊗ ω3). (2.34)

It is an important and nontrivial property of the von Neumann entropy [60], [78].
Monotonicity of the von Neumann entropy (2.34) rewritten using the de�nition
(2.33) leads to the strong subadditivity relation:

S(ω123) + S(ω3) ≤ S(ω13) + S(ω23). (2.35)

Complementary partial traces of any multipartite pure state have the same
entropy. This fact can be applied to puri�cations of ω123. Therefore, relation
(2.35) is equivalent to (2.8) which can be applied to the speci�c three�partite
state (2.3)

ω123 =

k∑
i,j=1

|i〉〈j| ⊗ |i〉〈j| ⊗KiρK
†
j (2.36)

and used to prove the upper bound on the Holevo quantity in terms of a cor-
relation matrix χ ≤ S(σ). Hence, inequality (2.2) is a consequence of the
monotonicity of the relative von Neumann entropy.

Monotonicity of entropy holds also for some generalized entropies e.g. Tsallis
entropies of order 0 ≤ α < 1 [79] or Rényi entropies of order 0 ≤ q ≤ 2 [80].
Direct generalization of χ ≤ S(σ) is not so easy, since the key step in the proof
was the strong subadditivity form (2.8). In case of generalized entropies such a
form cannot be obtained from the monotonicity of relative entropy.

The Holevo quantity can be expressed by the relative entropy. Consider the
state (2.36) and the notation: KiρKi† = piρi, and

∑k
i=1 piρi = ρ′. The relative

entropy reads:

D(ω23, ω2 ⊗ ω3) = (2.37)

= Trω23 logω23 − Trω23 logω2 − Trω23 logω3 (2.38)

=

k∑
i=1

Tr piρi log piρi −
k∑
i=1

pi log pi − Tr ρ′ log ρ′ (2.39)

=

k∑
i=1

pi Tr ρi log ρi − Tr ρ′ log ρ′ (2.40)

= S(ρ′)−
k∑
i=1

piS(ρi) =

k∑
i=1

piD(ρi, ρ
′) = χ. (2.41)
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The equality between the Holevo quantity and relative entropy holds also for
the Tsallis entropies of any order q

Tα(ρ) =
1

1− α

[
1− Tr ρα

]
, (2.42)

where the relative Tsallis entropy DT
α of order α is de�ned as [79]

DT
α (ρ1, ρ2) =

1

α− 1

[
1− Tr ρα1 ρ

1−α
2

]
. (2.43)

It is now possible to compute the Tsallis�like generalized relative entropy DT
α

between a bipartite state ω23 and the product of its partial traces which leads
to the generalized Holevo quantity χTα . If one considers the state (2.36)

DT
α (ω23, ω2 ⊗ ω3) =

1

α− 1

[
1− Trωα23(ω2 ⊗ ω3)1−α

]
(2.44)

=
1

α− 1

[
1−

k∑
i=1

Tr(piρi)
αp1−α

i ρ′1−α
]

(2.45)

=

k∑
i=1

pi
1

α− 1
(1− Tr ραi ρ

′1−α) (2.46)

=

k∑
i=1

piD
T
α (ρi, ρ

′) ≡ χTα . (2.47)

In a similar way we can work with the Rényi entropy SRq (ρ) = 1
1−α log[Tr ρα].

The corresponding relative Rényi entropy reads [81]

DR
q (ρ1, ρ2) =

1

q − 1
log Tr[ρq1ρ

1−q
2 ] (2.48)

and the Rényi�Holevo quantity is given by

χRq =
1

q − 1
log Tr(

∑
i

piρ
q
i )

1/q. (2.49)

Equality between the generalized Rényi�Holevo quantity (2.49) and the Rényi
relative entropy (2.48) holds if relative entropy concerns partial traces of (2.36)
and the state ρ′′ = (

∑
i piρ

q
i )

1/q as follows

χRq = DR
q (ω23, ω2 ⊗ ρ′′). (2.50)

The Holevo quantity (2.50) is smaller than DR
q (ω23, ω2 ⊗ ω3) [81].

The monotonicity of relative entropy for three considered types of generalized
entropies: von Neumann entropy, Tsallis entropy of order 0 ≤ α < 1 and Rényi
entropy of order 0 ≤ q ≤ 2 gives

χ ≤ D(ω123, σ ⊗ ρ′), (2.51)

χTα ≤ DT
α (ω123, σ ⊗ ρ′), (2.52)

χRq ≤ DR
q (ω123, σ ⊗ ρ′). (2.53)
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These relations state that the Holevo quantity is bounded by the relative entropy
between the joint state of the quantum system and its environment and the
states of these subsystems taken separately.

In case of von Neumann entropy, inequality (2.51) can be written explicitly
as

χ ≤ S(σ) + S(ρ′)− S(ρ). (2.54)

Notice that ρ is an initial state and S(ρ) = S(ω123) due to isometry transforma-
tion, F : ρ→ ω123. Relation (2.54) joints entropies of the initial state, the �nal
state, the state of the environment and the Holevo quantity in a single formula.
Inequality (2.54) which can be rewritten as

S(ρ) ≤ S(σ) +
k∑
i=1

piS(ρi) (2.55)

gives a �ner bound than that provided by the Lindblad inequality: S(ρ) ≤
S(σ) + S(ρ′). Inequality (2.54) can be written as χ ≤ S(σ) + Y , where |Y | =
|S(ρ′) − S(ρ)| ≤ S(σ), due to one of the Lindblad inequalities. In some cases
this inequality con�nes the relation (2.2).

2.4 Searching for the optimal bound

The state σ can be de�ned for a triple consisting of a probability distribution,
set of k density matrices of size N and a set of k unitary matrices, {pi, ρi, Ui}ki=1.
Every triple (pi, ρi, Ui) de�nes uniquely the pure state |ψi〉 which is the puri�-
cation of state ρi as follows

|ψi〉 =

N∑
r=1

(Ui ⊗
√
ρiVi)|er〉 ⊗ |er〉 (2.56)

as shown in (1.49). The Holevo quantity depends only on E = {pi, ρi}ki=1.
Therefore, Theorem 4 can be reformulated as follows:

Theorem 5. For any ensemble {pi, ρi, Ui}ki=1 the Holevo quantity is bounded
by the entropy of the correlation matrix σ minimized over all unitary matrices
Ui

χ({pi, ρi}) = S(

k∑
i=1

piρi)−
k∑
i=1

piS(ρi) ≤ min
{Ui}

S(σ) = min
{Ui}

S(

k∑
i=1

pi|ψi〉〈ψi|),

(2.57)
where |ψi〉 =

∑N
r=1(Ui ⊗

√
ρiVi)|er〉 ⊗ |er〉 and σij =

√
pipj Tr

√
ρi
√
ρjU

†
jUi.

The last equality of (2.57) holds since the correlation matrix σ can be repre-
sented as the Gram matrix of puri�cations of ρi. It is known that for any Gram
matrix equality (1.55) holds.
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Finding minimization of S(σ) over unitaries is not an easy problem in gen-
eral. In the following chapter the problem will be solved for the ensemble of
k = 2 states, and the solution is written in terms of square root of the �delity
between both states. A conjecture that the matrix of the square roots of �-
delities also bounds the Holevo quantity for ensembles of k = 3 states will be
formulated and some weaker bounds will be proved in the next section.

2.4.1 Optimal bound for two matrices

The tightest upper bound on the Holevo quantity occurring in Theorem 5 is
obtained by taking minimum of S(σ) over the set of unitaries. This is equivalent
to the POVM which minimizes the correlation matrix among all POVM which
give the same output states. For two output states ρ1 and ρ2 occurring with
probabilities (λ, 1− λ) the correlation matrix is given by

σ =

(
λ

√
λ(1− λ) Tr

√
ρ1
√
ρ2U

†
2U1√

λ(1− λ) Tr
√
ρ2
√
ρ1U

†
1U2 1− λ

)
. (2.58)

Its entropy is the lowest, if the absolute values of the o��diagonal elements are
the largest. As has been shown in Eq. (1.67) the expression Tr

√
ρ1
√
ρ2U

†
2U1

attains its maximum over unitary matrices at the value√
F12 = Tr

√√
ρ1ρ2
√
ρ1, (2.59)

where for brevity we use F12 instead of F (ρ1, ρ2). This quantity is equal to
the square root �delity (1.62). Therefore the correlation matrix of the smallest
entropy can be rewritten in terms of the square root �delity,

σmin =

(
λ

√
λ(1− λ)

√
F12√

λ(1− λ)
√
F12 1− λ

)
. (2.60)

2.5 Jensen Shannon Divergence

Minimal entropy of the correlation matrix characterizing an ensemble of two
density matrices is related to the distance between them in the set of density
matrices. If the probability distribution in (2.60) is uniform, λ = 1/2, the square
root of the von Neumann entropy of σmin forms a metric [53]. It is called the
entropic distance DE(ρ1, ρ2)

DE(ρ1, ρ2) =
√
S(σmin), σmin =

1

2

[
1

√
F (ρ1, ρ2)√

F (ρ1, ρ2) 1

]
. (2.61)

Inequality (2.57) provides the relation between this metric and another one
de�ned by means of the Jensen�Shannon Divergence. The Jensen�Shannon
Divergence JSD({ανPν}) has been initially de�ned [69], [82] as the divergence
of classical probability distributions Pν occurring with probabilities αν

JSD({ανPν}) = H
(∑

ν

ανPν

)
−
∑
ν

ανH(Pν) =
∑
ν

ανH(Pν ||P̄ ) (2.62)
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where H(P ) denotes the Shannon entropy of the probability distribution P ,
H(Pν ||P̄ ) is the relative entropy between Pν and P̄ , while the average probability
distribution reads P̄ =

∑
ν ανPν .

Figure 2.2: a) The entropic distance DE (2.61) for two 2�point probability
distributions P = (p, 1 − p) and Q = (q, 1 − q). b) The di�erence between the
entropic distance DE and the transmission distance DT (2.64).

The square root of the Jensen-Shannon divergence between two probability
distributions P and Q,

JSD(P ||Q) =
1

2
H(P ||M) +

1

2
H(P ||M), (2.63)

where M = 1
2 (P + Q), forms a metric in the set of classical probability distri-

butions [82], [83] called the transmission distance DT (P,Q),

DT (P,Q) =
√
JSD(P ||Q). (2.64)

A probability distribution can be considered as a diagonal density matrix.
Therefore, Eq. (2.57) in Theorem 5 demonstrates a relation between functions
of two distances in the set of diagonal density matrices. Fig. 2.2 and Fig. 2.3
shows the comparison between these two distances for exemplary probability
distributions.

A quantum counterpart of the Jensen�Shannon divergence, in fact coincid-
ing with the Holevo quantity, was also considered [69], [82]. Inequality (2.57)
provides thus an upper bound on the quantum Jensen�Shannon divergence.
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Figure 2.3: a) The entropic distance DE (2.61) and the transmission distance
DT (2.64) for two probability distributions, P = ( 1

3 ,
1
3 ,

1
3 ) and Q = (q1, q2, q3)

which is arbitrary distribution of dimension 3 represented by a point in the
simplex � the base of the �gure. b) The di�erence between the entropic distance
DE and the transition distance DT for the same distributions P and Q.
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Chapter 3

Conjecture on three��delity

matrix

The minimization problem for the entropy of the correlation matrix (2.58) has
been solved for an ensemble consisting of k = 2 quantum states. In this case
the solution is given by the square root �delity matrix. In the case of k = 3
states in the ensemble the optimization over the set of three unitary matrices is
more di�cult. Our numerical tests support the following conjecture, which is a
generalization of the bound found for the case of k = 2.

Conjecture 1. For an ensemble of k = 3 quantum states, {pi, ρi}3i=1 the en-
tropy of the square root �delity matrix Gij =

√
pipj

√
F (ρi, ρj) gives the upper

bound on the Holevo quantity,

χ({pi, ρi}) ≤ S

 p1
√
p1p2

√
F12

√
p1p3

√
F13√

p2p1

√
F21 p2

√
p2p3

√
F23√

p3p1

√
F31

√
p3p2

√
F32 p3

 , (3.1)

where �delity between two quantum states reads Fij = F (ρi, ρj) =
(
Tr
√√

ρiρj
√
ρi
)2
.

It has been shown [84], [52] that the matrix G containing square root �-
delities is positively semi�de�ned for k = 3. However, the square root �delity
matrix is in general not positive for k > 3. Numerical tests provide several
counterexamples for positivity of G for k > 3, even in case of an ensemble of
pure states. Note that the matrix G is not a special case of the correlation
matrix σ, which is positive by construction.

Theorem 4 implies that Conjecture 1 holds for ensembles containing three
pure states. Inequality (2.2) is in this case saturated as discussed in section 2.
Square root �delity matrix G is obtained from the Gram matrix of given pure
states by taking modulus of its matrix entries. Taking modulus of entries of a
positive 3×3 matrix does not change neither the trace nor the determinant of the
matrix. Only the second symmetric polynomial of the eigenvalues is growing.
Since the entropy is a monotonic increasing function of the second symmetric
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polynomial [67], the entropy of the square root �delity matrix G is larger than
the entropy of the Gram matrix and therefore it is also larger than the Holevo
quantity.

3.1 A strategy of searching for a proof of the con-

jecture

The proof of Theorem 4 consist of two steps. In the �rst step one has to �nd
suitable multipartite state. In the second step the strong subadditivity relation
of entropy has to be applied for the constructed multipartite state. The same
strategy will be used searching for the proof of Conjecture 1 or for proving other
weaker inequalities.

For the purpose of obtaining the Holevo quantity from suitable terms of
the strong subadditivity relation, the multipartite state ω should have a few
features:

• it is a block matrix which is positive,

• blocks on the diagonal should contain states ρi multiplied by probabilities
pi,

• traces of o�-diagonal blocks should give square root �delities, or some
smaller numbers if one aims to obtain a weaker bound.

The following matrix satis�es above conditions,

X =



p1ρ1 0 0 | 0 ∗ 0 | 0 0 ∗
0 0 0 | 0 0 0 | 0 0 0
0 0 0 | 0 0 0 | 0 0 0
0 0 0 | 0 0 0 | 0 0 0
∗ 0 0 | 0 p2ρ2 0 | 0 0 ∗
0 0 0 | 0 0 0 | 0 0 0
0 0 0 | 0 0 0 | 0 0 0
0 0 0 | 0 0 0 | 0 0 0
∗ 0 0 | 0 ∗ 0 | 0 0 p3ρ3


, (3.2)

where in place of ∗ one can put any matrix, provided the matrix X remains
positive. If in place of ∗ one substitutes zeros, the strong subadditivity relation
implies the known formula that χ({pi, ρi}) ≤ S({pi}). Examples presented in
the next section use described strategy to prove some entropic inequalities for
the Holevo quantity.

The main problem is to �nd a suitable positive block matrix. In order to
check positivity the Schur complement method [85] is very useful.

Lemma 1 (Schur). Assume that A is invertible and positive matrix, then

X =

[
A B
B† C

]
(3.3)
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is positive if and only if S = C −B†A−1B is positive semi�de�nite:

A > 0 => (X > 0 <=> S ≥ 0). (3.4)

The matrix S is called the Schur complement.

3.1.1 Three density matrices of an arbitrary dimension

The strategy mentioned in the previous section will be used to prove the follow-
ing

Proposition 4. For a three states ensemble {pi, ρi}i=1,2,3 the following bound
for the Holevo quantity χ holds

χ(pi, ρi) ≤ S

 p1
√
p1p2

√
F12/b

√
p1p3

√
F13/b√

p2p1

√
F21/b p2

√
p2p3

√
F23/b√

p3p2

√
F31/b

√
p3p2

√
F32/b p3

 , (3.5)

where b ≥ 2.

Proof. It will be assumed that considered density matrices {ρi}3i=1 are invertible.
After [106] the square root of the product of two density matrices

√
ρσ will be

de�ned as follows:

√
ρσ ≡ ρ1/2

√
ρ1/2σρ1/2ρ−1/2 = σ−1/2

√
σ1/2ρσ1/2σ1/2. (3.6)

In this notation the �delity between two states ρi and ρj can be written as:

Fij = F (ρi, ρj) =

(
Tr

√
ρ

1/2
i ρjρ

1/2
i

)2

= (Tr
√
ρiρj)

2. (3.7)

Formula (3.7) can be generalized for non-invertible matrices [52].
One can use the Schur complement Lemma 1 to prove positivity of the block

matrix:

X =

[
ρ1

√
ρ1ρ2√

ρ2ρ1 ρ2

]
. (3.8)

In this case the matrices A and S, which enter the Lemma 1, take the form:
A = ρ1, assume that it is invertible, and S = ρ2−

√
ρ2ρ1ρ

−1
1

√
ρ1ρ2. Notice that

ρ2 − S =
√
ρ2ρ1ρ

−1
1

√
ρ1ρ2ρ1ρ

−1
1 (3.9)

=
√
ρ2ρ1
√
ρ2ρ1ρ

−1
1 = ρ2, (3.10)

therefore in the case of matrix (3.8), S = 0 and X > 0. Hence the following
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matrix Y is also positive:

Y =



1
2ρ1 0 0 1

2

√
ρ1ρ2 0 0 0 0

0 1
2ρ1 0 0 0 0 0 1

2

√
ρ1ρ3 0

0 0 0 0 0 0 0 0 0
1
2

√
ρ2ρ1 0 0 1

2ρ2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1

2ρ2 0 0 1
2

√
ρ2ρ3

0 0 0 0 0 0 0 0 0
0 1

2

√
ρ3ρ1 0 0 0 0 0 1

2ρ3 0
0 0 0 0 0 1

2

√
ρ3ρ2 0 0 1

2ρ3


.

(3.11)
Using strong subadditivity as described in section 3.1 to the multipartite state
Tr2Y extended by some rows and columns of zeros, one proves inequality (3.5)
for b = 2. To prove relation (3.5) for b ≥ 2 a small modi�cation of matrix (3.11)
is needed. The o��diagonal elements can be multiplied by the number 0 ≤ r ≤ 1
without changing the positivity of the block matrix.

3.1.2 Three density matrices of dimension 2

Proposition 4 can be amended for the case of 2× 2 by decreasing the parameter
b to the value at least

√
3.

Proposition 5. For an ensemble of three states of size two, {pi, ρi}3i=1 one has

χ(pi, ρi) ≤ S

 p1
√
p1p2

√
F12/b

√
p1p3

√
F13/b√

p2p1

√
F21/b p2

√
p2p3

√
F23/b√

p3p2

√
F31/b

√
p3p2

√
F32/b p3

 (3.12)

with b ≥
√

3.

Proof. The main task in the proof is to show that the block matrix

Y =

 p1ρ1
√
p1p2
√
ρ1ρ2/b

√
p1p3
√
ρ1ρ3/b√

p2p1
√
ρ2ρ1/b p2ρ2

√
p2p3
√
ρ2ρ3/b√

p3p2
√
ρ3ρ1/b

√
p3p2
√
ρ3ρ2/b p3ρ3

 (3.13)

is positive for b ≥
√

3 as well as the analogous matrix enlarged by adding rows
and columns of zeros in order to have a matrix of the form (3.2). The Schur
complement method described in section 3.1 will be used, where:

A =

[
1 0
0 p1ρ1

]
, C =

[
p2ρ2

√
p2p3
√
ρ2ρ3/b√

p2p3
√
ρ3ρ2/b p3ρ3

]
, (3.14)

B =

[
0 0√

p1p2
√
ρ1ρ2/b

√
p1p3
√
ρ1ρ3/b

]
, B† =

[
0
√
p1p2
√
ρ2ρ1/b

0
√
p1p3
√
ρ3ρ1/b

]
.

(3.15)
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Due to the fact that A is positive one needs to prove the positivity of S =
C −B†A−1B:

S =

[
p2ρ2(1− 1

b2
)

√
p2p3(

√
ρ2ρ3/b−

√
ρ2ρ1ρ

−1
1

√
ρ1ρ3/b2)

√
p2p3(

√
ρ3ρ2/b−

√
ρ3ρ1ρ

−1
1

√
ρ1ρ2/b2) p3ρ3(1− 1

b2
)

]
.

(3.16)
To prove positivity of (3.13) the Schur complement S should be positive. One
can apply the Schur complement Lemma second time to the matrix S. Positivity
condition required by Lemma 1 enforces that

b2(b2 − 3)ρ1 + by ≥ 0, (3.17)

where y =
√
ρ1ρ2ρ

−1
2

√
ρ2ρ3ρ

−1
3

√
ρ3ρ1 + h.c. For 2 × 2 matrices one can as-

sume without lost of generality that 1√
ρ1
y 1√

ρ1
≥ 0. It is so because the matrix

√
ρ1
−1√ρ1ρ2ρ

−1
2

√
ρ2ρ3ρ

−1
3

√
ρ3ρ1
√
ρ1
−1 is a unitary matrix and its determinant

is equal to 1, therefore its eigenvalues are two conjugate numbers. The matrix
1√
ρ1
y 1√

ρ1
, which consists of sum of the unitary matrix and its conjugation, is

proportional to identity. If it is negative one can change
√
ρ1ρ2 into −√ρ1ρ2

and
√
ρ2ρ1 into −√ρ2ρ1 in (3.13). Transformation changing the sign does not

act on the �nal result because o�-diagonal blocks do not take part in forming
the Holevo quantity and in the case of 3 × 3 matrices we can take modulus of
each element of the matrix without changing its positivity.

Let us take y = 0 in the positivity condition (3.17). This condition implies
b ≥
√

3. Knowing that (3.13) is a positive matrix, the rest of the proof of (3.12)
goes like in section 3.1.

3.1.3 Fidelity matrix for one�qubit states

In previous section some bounds on the Holevo quantity were established. These
bounds are weaker than the bound postulated by Conjecture 1, since decreasing
the o��diagonal elements of a matrix one increases its entropy. In previous
proposition the square root �delities were divided by numbers greater than 1.
In the following section the squares of the o��diagonal elements of the matrix
G in (3.1) will be taken. For such modi�ed matrices the following proposition
holds for an arbitrary number of k states in the ensemble.

Proposition 6. Consider the ensemble {ρi, pi}ki=1 of arbitrary number k of
one-qubit states and their probabilities. The Holevo information χ({pi, ρi}) is
bounded by the entropy of the auxiliary state ς which acts in the k - dimensional
Hilbert space,

χ({pi, ρi}) ≤ S(ς), (3.18)

where ςij =
√
pipj (Tr

√
ρiρj)

2 =
√
pipj F (ρi, ρj).

Proof. A positive block matrix W is constructed in the following way:

W =

M1 0 ... 0
... ... ... ...
MK 0 ... 0



M†1 ... M†K
0 ... 0
... ... ...
0 ... 0

 , (3.19)
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where Mi =
√
pi(Ai, Bi) are block vectors of size 2 × 4 and Ai = ρi and Bi =√

detρi1 are sub�blocks of size 2× 2. The blocks of the block matrix W read

Wij =
√
pipj(ρiρj +

√
detρiρj1). (3.20)

This formula can be compared with an expression for the square root of any
2× 2 positive matrix X

√
X =

(X +
√

detX1)

Tr
√
X

. (3.21)

Therefore the block matrix (3.19) is given by

Wij =
√
pipj
√
ρiρj Tr

√
ρiρj . (3.22)

The matrix W is positive by construction. Partial trace of this matrix gives
matrix of �delities (without square root). The rest of the proof of Proposition
6 goes in analogy to proofs analysed in Section 3.1.

This proposition holds for one-qubit states only since we applied relation
(3.21), which holds for matrices of dimension d = 2.

The �delity matrix ςij =
√
pipj (Tr

√
ρiρj)

2 =
√
pipj Fij is not positive for

a general k and general dimensionality of ρi. However the �delity matrix is
positive and bounds the Holevo quantity in the case of an ensemble containing
an arbitrary number of pure quantum states of an arbitrary dimension. This is
shown in the following proposition.

Proposition 7. Let {|ϕj〉} be a set of vectors, then

χ({pi, ρi}) ≤ S(F), (3.23)

where Fij =
√
pipj |〈ϕi|ϕj〉|2.

Proof. Introduce a complex conjugation ϕ 7→ ϕ by taking complex conjugations
of all coordinates of the state in a given basis. Hence for any choice of ϕ, ψ one
has

〈ϕ|ψ〉 = 〈ψ|ϕ〉. (3.24)

The matrix F2 := [F (ρi, ρj)
2]ij can be rewritten as

[|〈ϕi|ϕj〉|2]ij = [〈ϕi|ϕj〉〈ϕj |ϕi〉]ij
= [〈ϕi|ϕj〉〈ϕi|ϕj〉]ij
= [(〈ϕi| ⊗ 〈ϕi|)(|ϕj〉 ⊗ |ϕj〉)]ij .

(3.25)

This last matrix is the Gram matrix of the set of product states {|ϕj〉⊗|ϕj〉}kj=1

and therefore is positively de�ned.
The next part of the proof continues according to the scheme presented in

Section 3.1. We use the multipartite state

ω =
∑
ij

√
pipj〈ϕi|ϕj〉|ii〉〈jj| ⊗ |ϕi〉〈ϕj |. (3.26)
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Its positivity is shown by taking the partial trace of the Gram matrix

ω̃ =
∑
ij

|ii〉〈jj| ⊗ |ϕi〉 ⊗ |ϕ̄i〉〈ϕj | ⊗ 〈ϕ̄j |. (3.27)

The proof is completed by considering partial traces of the state ω and using
the strong subadditivity relation.

3.1.4 Special case of the correlation matrix

The previous propositions use the strategy from the proof of Theorem 4 and
apply it to positive block matrices which are not necessary related to the cor-
relation matrices. Construction of multipartite states allows one to obtain the
matrices containing �delities after a partial trace. The following section deals
again with the correlation matrices σij =

√
pipj Tr

√
ρi
√
ρjU

†
jUi. Since the

Holevo quantity does not depend on unitaries Ui, these matrices can be chosen
in such a way that the three�diagonal of σ consists of the square �delity ma-
trices, σij =

√
F (ρi, ρj), where |i − j| ≤ 1. This construction is used in the

following proposition.

Proposition 8. Consider an ensemble {ρi, pi}ki=1 consisting of arbitrary num-
ber k of invertible states of an arbitrary dimension. The Holevo information
χ({pi, ρi}) is bounded by the exchange entropy S(σ),

χ({pi, ρi}) ≤ S(σ), (3.28)

where the correlation matrix σ is given by:

σii = pi, (3.29)

σij =
√
pipj(Tr

√
ρiρj), iff |i− j| = 1, (3.30)

and the upper o�-diagonal matrix elements, where (j − i) > 1, read:

σij =
√
pipj Tr

√
ρjρj−1

1

ρj−1

√
ρj−1ρj−2

1

ρj−2
...

1

ρi+1

√
ρi+1ρi, (3.31)

while lower o� diagonal satisfy σij = σ̄ji.

The matrix σ has a layered structure presented here for k = 4,

σ =


p1 0 0 0
0 p2 0 0
0 0 p3 0
0 0 0 p4

+


0 f12 0 0
f21 0 f23 0
0 f32 0 f34

0 0 f43 0

+


0 0 f

(2)
13 f

(3)
14

0 0 0 f
(2)
24

f
(2)
31 0 0 0

f
(3)
41 f

(2)
42 0 0


(3.32)

with entries of this matrix equal to σij speci�ed in Proposition 8.

Proof. Consider a correlation matrix:

σij =
√
p1p3 Tr

√
ρi
√
ρjU

†
jUi (3.33)
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where unitaries Ui are chosen in such a way that elements σi i±1 are square root
�delities:

√
Fi i±1 = Tr

√
ρi ρi±1. Hence

U†j = V †j−1,j U
†
j−1, (3.34)

where V †j−1,j is the unitary matrix from the polar decomposition,

√
ρi
√
ρj = |√ρi

√
ρj |Vi,j =

√
ρ

1/2
i ρjρ

1/2
i Vi,j . (3.35)

Here the Hermitian conjugated unitary matrix V †i,j reads:

V †i,j =
1
√
ρj

1
√
ρi

√
ρ

1/2
i ρjρ

1/2
i . (3.36)

The �rst unitary U1 can be chosen arbitrarily. The recurrence relation (3.34)
allows one to obtain formula (3.31).

To analyse properties of the matrix σ consider, for example, the matrix
element σ13.

σ13 =
√
p1p3 Tr

√
ρ1
√
ρ3 U

†
3U1

=
√
p1p3 Tr

√
ρ1
√
ρ3 V

†
2,3U

†
2U1

=
√
p1p3 Tr

√
ρ1
√
ρ3 V

†
2,3V

†
1,2. (3.37)

Using Eq. (3.36) one obtains

σ13 =
√
p1p3 Tr

√
ρ1
√
ρ3

1
√
ρ3

1
√
ρ2

√
ρ

1/2
2 ρ3ρ

1/2
2

1
√
ρ2

1
√
ρ1

√
ρ

1/2
1 ρ2ρ

1/2
1

=
√
p1p3 Tr

1
√
ρ2

√
ρ

1/2
2 ρ3ρ

1/2
2

√
ρ2

1

ρ2

1
√
ρ1

√
ρ

1/2
1 ρ2ρ

1/2
1

√
ρ1

=
√
p1p3 Tr

√
ρ3ρ2

1

ρ2

√
ρ2ρ1, (3.38)

that gives the matrix element σ13 of (3.31). The assumption that the matrices
are invertible is used in (3.36) where the unitary matrix of the polar decomposi-
tion of

√
ρi
√
ρj is given explicitly. However, the same strategy of the proof leads

to analogous proposition involving non�invertible matrices. Only the equations
(3.36) and (3.31) are changed in this case.

3.1.5 Hierarchy of estimations

One can compare average values of entropies from Conjecture 1 and Propositions
4, 6 and 8. The average values are situated on the scale in which the Holevo
quantity is set to 0 and the entropy S(P ) of probability distribution is set
to unity. The variable x−χ

S(P )−χ is used, where x is replaced by the entropy of
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respective state. The standard deviations are also computed. The probability
distributions are generated according to the Dirichlet measure, while the set of
k = 3 density matrices is chosen randomly according to the Hilbert�Schmidt
measure [86] on the set of density matrices of size 2.

• < χ >= 0

• < Sfid >= 0.176 ± 0.065, where Sfid corresponds to the entropy from
Conjecture 1.

• < Slayered >= 0.193 ± 0.087, where Slayered corresponds to the entropy
from Proposition 8 for k = 3 states in the ensemble.

• < Sfid2 >= 0.37 ± 0.13, where Sfid2 corresponds to the entropy from
Proposition 6 for k = 3 states in the ensemble.

• < Sfid/b >= 0.750± 0.015, where Sfid/b corresponds to the entropy from
Proposition 4.

• < S(P ) >= 1.

For an ensemble of k = 3 one�qubit states Conjecture 1 is the strongest, as it
gives on average the lowest bound, while among the statements proved in Propo-
sitions 4, 6 and 8 the tightest bound (on average) is provided by Proposition 8.

3.2 Fidelity bound on the Holevo quantity for a

special class of states

Although, Conjecture 1 has been con�rmed in several numerical tests, it has
been proved so far for the set of pure states (Section 3) only. The aim of the
following section is to prove that the square root �delity matrix bounds the
Holevo quantity for a restricted set of states. It will be shown that for one�
qubit states among which two are pure and one is mixed and for the uniform
probability distribution, { 1

3 ,
1
3 ,

1
3}, Conjecture 1 holds.

Proposition 9. Consider k = 3 one�qubit states ρi among which two are pure
ρ1 = |φ1〉〈φ1|, ρ2 = |φ2〉〈φ2|, and the state ρ3 is mixed. The square root �delity
matrix G for these states and the uniform distribution P = { 1

3 ,
1
3 ,

1
3} bounds the

Holevo quantity,

χ({ρi, pi}) ≤ S

1

3

 1
√
F12

√
F13√

F21 1
√
F23√

F31

√
F32 1

 , (3.39)

where Fij = (Tr
√√

ρiρj
√
ρi)

2.

The proof goes as follows. First proper parameters characterizing three
states will be chosen. After that the formulas for the left and right side of

54



inequality (3.39), which are functions of two variables only, will be given. The
fact that one of these functions is greater than the other is shown graphically.

Notice that the left hand side of Eq. (3.39) depends only on the lengths
of the Bloch vectors which represent the mixed state ρ3 and the average state
ρ̄ = 1

3 (ρ1 +ρ2 +ρ3) inside the Bloch ball. The same average ρ̄ can be realized by
many triples {ρ1, ρ2, ρ3} where ρ1, ρ2 are pure and ρ3 is mixed of given length
of the Bloch vector. The family of such triples is parametrized by two numbers
α and β as shown in Fig. 3.1. The points B,D,E denote the following states:
B → ρ3 which is mixed, D → ρ1 = |φ1〉〈φ1| and E → ρ2 = |φ2〉〈φ2|, while A→ ρ̄

represents the average state. The vector ~OA of length a denotes the Bloch vector
of the average state ρ̄, the vector ~OB of length b characterizes the mixed state
ρ3. The position of the vector ~OB with respect to ~OA can be parametrized by
an angle α. These two vectors, ~OB and ~OA, determine, but not uniquely, two
pure states from the same triple characterized by ~OD and ~OE. Equivalently one
can rotate the vectors ~OD and ~OE by an angle β around the axis ~OC and obtain
pure states denoted by F and G. The ratio |AB| : |AC| is equal to 2 : 1 because
in this case the average A is the barycenter of three points B, D and E or a
triple B, F and G. The method of obtaining the points C,D,E, F and G, when
a, b and α are given, is presented in Appendix 1. Given a pair of parameters
(a, b) distinguishes the family of triples {|φ1〉〈φ1|, |φ2〉〈φ2|, ρ3} characterized by
two angles α and β. The range of α is given by condition |OC| ≤ 1, it is{

1
2

√
9a2 − 6b cos(α)a+ b2 ≤ 1

0 ≤ α ≤ π,
(3.40)

while the range of β is (0, π). Left hand side of Eq. (3.39) depends only on

Figure 3.1: The Bloch representation of the three states {ρ1 = |φ1〉〈φ1|, ρ2 =
|φ2〉〈φ2|, ρ3} and the parameters used in the proof of Proposition 9 are presented
schematically in the Bloch ball. Two angles (α, β) characterize all possible triples
{ρ1, ρ2, ρ3} if parameters (a, b) are �xed.

the lengths a and b, and is independent of the concrete realization of the triple.
Therefore to prove (3.39) for given a and b one has to �nd minimum of the
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entropy of the square root �delity matrix over all triples parametrized by the
angles α and β.

The entropy of the square�root �delity matrix de�ned Gij =
√
pipj

√
Fij in

Eq. (3.39) is a function of roots of the characteristic polynomial:

(
1

3
− λ)3 + p(

1

3
− λ) + q = 0, (3.41)

where

p = −(F12 + F13 + F23)/9 (3.42)

q = 2
√
F12F13F23/27. (3.43)

The parameter p determines the second symmetric polynomial s2 of eigenvalues
of the square root �delity matrix G

s2 =
1

9

∑
i<j

(1− Fij). (3.44)

The roots of equation (3.41) are equal to:

λk =
1

3
+ 2

√
−p
3

cos
[(1

3
arccos (

3q

2p

√
3

−p
) + k

2π

3

)]
, (3.45)

where k = 1, ..., 3.
The entropy of the square root �delity matrix is a function of p and q, which

determine the second symmetric polynomial of eigenvalues (3.44) and the third
symmetric polynomial is in this case equal to the determinant of the 3×3 matrix
Gij =

√
pipj

√
Fij . The von Neumann entropy is a monotonically increasing

function of all symmetric polynomials of eigenvalues [67]. The parameter q is
a function of (a, b, α, β), while parameter p depends only on a and b which is
shown in following lemma:

Lemma 2. For any triple of two pure and one mixed state of an arbitrary
dimension the sum of �delities depends only on the purity of the mixed state
and the barycenter of the ensemble.

Proof. Denote by ρ̄ the barycenter of a mixed state ρ and two pure states, |φ1〉,
|φ2〉,

ρ̄ =
1

3
ρ+

1

3
|φ1〉 〈φ1|+

1

3
|φ2〉 〈φ2| . (3.46)

The purity of ρ̄ is given by

Tr ρ̄2 =
1

9

(
Tr ρ2 + 2 + 2 〈φ1| ρ |φ1〉+ 2 〈φ2| ρ |φ2〉+ 2 |〈φ1| φ2〉|2

)
. (3.47)

After reordering the terms one gets

F12 + F13 + F23 =
1

2
(9 Tr ρ̄2 − Tr ρ2 − 2), (3.48)
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where

F12 = |〈φ1| φ2〉|2 , (3.49)

F23 = 〈φ2| ρ |φ2〉 , (3.50)

F13 = 〈φ1| ρ |φ1〉 . (3.51)

Since Tr ρ̄2 = 1
2 (1 + a2) and Tr ρ2 = 1

2 (1 + b2), the parameter p de�ned in
(3.42) does not depend on the angles α and β. This completes the proof of
Lemma 2.

The parameter p and the second symmetric polynomial (3.44) does not de-
pend on the angles α and β. Therefore, for given a and b, the entropy of the
square root �delity matrix attains its minimum over α and β for minimal value
of the determinant of G, since the entropy is an increasing function of the de-
terminant. The determinant is given by

det

1

3

 1
√
F12

√
F13√

F21 1
√
F23√

F31

√
F32 1

 =
1

27

(
1 + 2

√
F12F13F23 − (F12 + F13 + F23)

)
.

(3.52)
It is the smallest for the smallest value of the parameter q which is the function
(3.43) of the o��diagonal elements of the matrix. During computations of the
minimal value of q another lemma will be useful:

Lemma 3. Among triples of one�qubit states which realize the same barycenter,
where one state is mixed of a given purity and two others are pure, the product
of three pairwise �delities is the smallest if three states and the average lie on
the plane containing the great circle of the Bloch ball, i.e. β = 0.

Proof. The function f(a, b, α, β) = F12F13F31 is given explicitly in Appendix 2
based on Appendix 1. For given a, b and α this function has minimum only at
β = 0 and equivalently for β = π.

In consequence, searching for the minimum of the entropy of the square root
�delity matrix we can restrict our attention to the case β = 0. In fact, for our
purpose it su�ces to take the speci�c value of α which is shown in the following
lemma.

Lemma 4. Among triples of one�qubit states which realize the same barycenter,
in which one state is mixed of given purity and two others are pure, the product
of three pairwise �delities is the smallest when two pure states are symmetric
with respect to the mixed state i.e. β = 0 and α = 0 or α = π.

Proof. The function f0(a, b, α, β = 0) = F12F13F31 is given directly in Appendix
1. It has only one minimum at α = 0 but in certain cases, depending on a and
b, the value on the edge of variable range, i.e. at α = 0 or α = π is smaller.
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3.2.1 Proof of the �delity bound

To prove inequality (3.39) the smallest entropy of the square root �delity matrix
for three states consistent with the left hand side of this inequality should be
found. Entropy is a function of four parameters, (a, b, α, β). The left hand side
of (3.39), which is the Holevo quantity depends on two parameters (a, b) as
follows

χ = S

(
1

2

[
1 + a 0

0 1− a

])
− 1

3
S

(
1

2

[
1 + b 0

0 1− b

])
. (3.53)

For given parameters a and b lemmas 1, 2 and 3 allows us to �nd speci�c α and
β for which minimization of right hand side of (3.39) is obtained. One can �x
α = 0 or α = π and β = 0. That means, that minimal entropy of the square
root �delity G over the angles is obtained if the three states {ρ1 = |φ1〉〈φ1|, ρ2 =
|φ2〉〈φ2|, ρ3} are lying on the great circle and the two pure states are symmetric
with respect to the mixed state. In this case the matrix G is characterized by
two parameters, F = F12 = F23 and b. Here F is the �delity between the pure
state ρ1 and the mixed state ρ3 whereas b characterize the length of the Bloch
vector of the mixed state ρ3. The matrix G reads

G =
1

3

 1
√
F | 2F−1

b |√
F 1

√
F

| 2F−1
b |

√
F 1

 , (3.54)

where F is a function of b, such that F (b) = 1
2 (1 − bc), and c is the length

of the Bloch vector representing the barycenter of two pure states ρ1 and ρ2.
The �delity F is equal to 1/2 if b tends to 0. The parameter c determines also
the projection of the Bloch vector of the pure state ρ1 on the Bloch vector of
the mixed state ρ3. The absolute value |c| is equal to the square root �delity
between the two pure states. The range of variables are 0 ≤ b ≤ 1 and 1

2 (1−b) ≤
F ≤ 1

2 (1 + b).
Considered case is shown in Fig. 3.2. There are two surfaces � functions

of two parameters F and b. The lower surface represents the Holevo quantity
χ, and the upper surface denotes the entropy of the square root �delity matrix
(3.54). The surface S(G) lies always above χ and is composed of two smooth
functions characterizing cases in which all vectors lay on the same semicircle or
pure states and the mixed state belong to the opposite semicircles.

Fig. 3.2 suggests that in the case of three pure states, b = 1, laying on the
same semicircle the inequality is saturated, χ = S(G). In this case, F ≥ 1/2, the
rank of the square root �delity matrix is equal to 2, and the nonzero eigenvalues
are (1 ± a)/2, where a = (4F − 1)/3 is the length of the Bloch vector of the
average state ρ̄. In general we have a = 1

3 (b+ 2 2F−1
b ). In case of χ = S(G) the

Holevo quantity is equal to the entropy of the average state ρ̄. This �nishes the
proof of Proposition 9.
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Figure 3.2: Evidence in favour of Proposition 9. The Holevo quantity as func-
tion of two variables: �delity F between the pure state ρ1 and the mixed state
ρ3, and the length b of the Bloch vector characterizing the state ρ3. The up-
per surface representing the square root �delity matrix G is composed of two
smooths parts. Every circle represents schematically the Bloch ball with exem-
plary positions of Bloch vectors characterizing three states {ρ1 = |φ1〉〈φ1|, ρ2 =
|φ2〉〈φ2|, ρ3} of the ensemble.
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Part III

Minimal output entropy and

map entropy

60



Chapter 4

Entropies for one-qubit

channels

The question on additivity of the channel capacity is one of the most interest-
ing problems in quantum information theory [40]. Shor showed [39] that this
problem has several equivalent formulations. One of them concerns the minimal
output entropy,

Smin(Φ) = min
ρ
S(Φ(ρ)). (4.1)

In the case of one�qubit channel the minimal output entropy is the entropy of
a state characterized by point on the ellipsoid, which is the image of the Bloch
sphere, the closest to this sphere. The pure state which is transformed into a
state of the minimal entropy is called minimizer.

For any setup in which minimal output entropy is additive the quantum
channel capacity is additive as well. Additivity implies that an entangled state
cannot increase capacity of two channels with respect to the sum of their ca-
pacities taken separately. The additivity conjecture can also be formulated as a
statement that capacity of two channels is minimized for a product state.

The conjecture was con�rmed in many special cases. For instance, additivity
holds, if one of the channels is arbitrary and the second one is: bistochastic one�
qubit map [87], a unitary transformation [40], generalized depolarizing channel
[41], entanglement breaking channel [88], very noisy map [89] and others. A
useful review on this subject was written by Holevo [90]. Di�erent strategies of
proving the additivity conjecture are analyzed there. For a recent relation on
the additivity conjecture see also [18].

Also counterexamples to the additivity conjecture have been found. One of
them was presented by Hastings [16]. He found the lower bound for the output
entropy of some channels when the input was a product state. Next he estimated
the output entropy for a maximally entangled input. Due to such estimations it
was shown that the entangled state decreases channel capacity below the value
achievable for product states.
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The proof of Hastings used pairs of complementary channels. His argument
was not constructive and works in high dimensional spaces. Further counterex-
amples for the additivity hypothesis presented in [17] are constructive.

It is still an open question, whether the additivity holds for an arbitrary
one�qubit channel. Originally, the hypothesis on additivity of minimal output
entropy was formulated for the von Neumann entropy. One of the approaches
to the problem uses a one�parameter family of entropies, called Rényi entropies
characterized by a parameter q,

Sq(ρ) :=
1

1− q
log Tr ρq. (4.2)

Calculations are sometimes easier when the Rényi entropies are considered. The
quantity Sq tends to the von Neumann entropy in the limit q → 1. Additivity
of the minimal output Rényi entropy has been proved only in some range of the
parameter q depending on the channels considered [18,41,87].

Although the Rényi entropy is sometimes computationally more feasible,
�nding minimum over entire set of quantum states is still a hard problem. One
of the ideas how to omit this di�culty tries to use some relations between
minimal output entropy and other quantities which are easier to calculate. In
the following chapter the Rényi entropy of a map (the map entropy) will be
used to estimate the minimal output entropy. Map entropy (entropy of a map)
is de�ned by the entropy of the Choi-Jamioªkowski state (1.28) corresponding
to the map. This quantity is easy to obtain. Numerical tests presented in
Fig. 4.2, 4.4, 4.5 show that there is no simple functional relation between the
map entropy and the minimal output entropy. Nevertheless being aware of the
structure of the set of quantum maps projected on the plane (Smap

q , Smin
q ) can

be useful. Knowledge of entropies of maps at the boundaries of the allowed set
can be used to estimate the minimal output entropy by the entropy of the map.

4.1 Structure of the set of Pauli channels

Quantum channels which preserve the maximally mixed state are called bis-
tochastic. All bistochastic one�qubit channels can be represented as a convex
combination of the identity matrix σ0 = 1 and three Pauli matrices σi=1,2,3

(1.39)

Φ~p(ρ) =

3∑
i=0

piσiρσi,

3∑
i=0

pi = 1, ∀ipi ≥ 0. (4.3)

Bistochastic one�qubit quantum operations are thus called Pauli channels. The
structure of the set of all Pauli channels forms a regular tetrahedron ∆3 as
shown in Fig. 4.1a. There are many channels characterized by the points
of tetrahedron which can be obtained from other channels following a uni-
tary transformation. Our considerations are often restricted to the asymmetric
tetrahedron K (see Fig. 4.1b) which is a subset of ∆3. All maps in ∆3 can
be obtained from channels of K by concatenation these channels with unitary
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transformations. The set K is formed by the convex combination of four vec-
tors ~p from (4.3), A = (0, 0, 0, 0), B = (1/2, 1/2, 0, 0), C = (1/3, 1/3, 1/3, 0),
and D = (1/4, 1/4, 1/4, 1/4). Extremal lines of the asymmetric tetrahedron

Figure 4.1: The structure of one�qubit bistochastic quantum operations corre-
sponds to the regular tetrahedron ∆3. This �gure is spanned by four extremal
vectors ~p from formula (4.3). Symmetries of the tetrahedron allow us to dis-
tinguish the asymmetric set K inside ∆3. Any vector ~p characterizing a Pauli
channel can be obtained by permutation of elements of vectors from K.

Figure 4.2: Lines AB, BD and AD, which correspond to the edges of asym-
metric tetrahedron K form the boundaries of the entire set of Pauli matrices
projected on the plane (Smap

2 , Smin
2 ).

correspond to the following families of maps: AB - dephasing channels, BD -
classical bistochastic maps, AD and CD - depolarizing channels. The families
mentioned above are also shown in Fig. 4.2 which presents boundaries of the
set of all one�qubit bistochastic channels projected onto the plane (Smap

2 , Smin
2 ).

A following proposition proved in [51] characterizes this projection.

Proposition 10. Extremal lines of asymmetric tetrahedron correspond to bound-
aries of the set of all bistochastic one�qubit maps on the plot (Smap

2 , Smin
2 ).
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4.2 Depolarizing channels

Fig. 4.4 and Fig. 4.5 show the projection of the Pauli channels on the plane
(Smap
q , Smin

q ) with parameter q di�erent than 2. Comparison of these �gures
with Fig. 4.2 shows that the structure of the set of channels on the plane
(Smap
q , Smin

q ) is the simplest in case of the Rényi entropy of order q = 2. In this
case, the depolarizing channels form one of the edges of the set of all quantum
one�qubit maps projected onto the plane. Indeed the following theorem proved
in [51] con�rms the special role of depolarizing channels in the set of all quantum
channels acting on states of arbitrary dimension N .

Theorem 6. Depolarizing channels have the smallest map Rényi entropy Smap
2

among all channels with the same minimal output Rényi entropy Smin
2 .

The family of depolarizing channels is represented in the plane (Smap
2 , Smin

2 )
by the continuous line on the entire range of Smap

2 . The minimal output entropy
of a depolarizing channel ΛN acting onMN is the following function of the map
entropy

Smin
2

(
Smap

2 (ΛN )
)

= − log
(1 +Ne−S

map
2 (ΛN )

N + 1

)
. (4.4)

This is a monotonously increasing function from 0 to logN . Therefore the
following theorem holds.

Theorem 7. Depolarizing channels have the greatest minimal output Rényi
entropy Smin

2 among all maps of the same Rényi entropy of a map Smap
2 .

One can try to use the extremal position of depolarizing channels to esti-
mate the minimal output entropy of some channels. In the case of Hastings'
counterexample for the additivity conjecture the author showed that due to a
maximally entangled input state one can obtain smaller output entropy of the
product of two channels than in the case of any product state taken as an input.
Let us estimate the Rényi q = 2 output entropy for a product channel when the
input is maximally entangled. Following proposition proved in [51] presents one
of estimations.

Proposition 11. For any entropy S which is subadditive the following inequal-
ity holds

|Smap(Φ1)− Smap(Φ2)| ≤ S
(

[Φ1 ⊗ Φ2](|φ+〉〈φ+|)
)
≤ Smap(Φ1) + Smap(Φ2),

(4.5)
where |φ+〉〈φ+| is a maximally entangled state.

Proof. The proof starts form the Lindblad inequality [75], which is based on the
subadditivity of the von Neumann entropy,∣∣S(ρ)− S

(
ς(Φ, ρ)

)∣∣ ≤ S(Φ(ρ)) ≤ S(ρ) + S
(
ς(Φ, ρ)

)
, (4.6)

where ς(Φ, ρ) = [id⊗Φ]
(
|φ〉〈φ|

)
and |φ〉 is a puri�cation of ρ as in (2.21). The

entropy of this state, S(ς(Φ, ρ)), is the exchange entropy which does not depend
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on the choice of puri�cation [29]. The state ς de�ned for a channel Φ and the
maximally mixed state ρ∗ = 1/N is equal to the normalized dynamical matrix
of Φ (1.25),

ς(Φ, ρ∗) = σΦ =
1

N
DΦ, (4.7)

The entropy of this state de�nes Smap(Φ). Since the map Φ is trace preserving,
the condition Tr2σΦ = 1

N 1 holds, see (1.26). Apply Lindblad formula (4.6) to
the state

[Φ1 ⊗ Φ2](|ψ+〉〈ψ+|) = [Φ1 ⊗ id] ([id⊗Φ2](|ψ+〉〈ψ+|)) , (4.8)

where |ψ+〉 = 1√
N

∑N
i=1 |i〉 ⊗ |i〉 is the maximally mixed state which is a puri�-

cation of ρ∗. Expression (4.6) applied to this state gives∣∣Smap(Φ2)− S
(
ς(Φ1 ⊗ id, σΦ2)

)∣∣ ≤ S
(
(Φ1 ⊗ Φ2)(|ψ+〉〈ψ+|)

)
(4.9)

≤ Smap(Φ2) + S
(
ς(Φ1 ⊗ id, σΦ2

)
)
.

The exchange entropy S
(
ς(Φ1⊗ id, σΦ2)

)
is the same as S

(
ς(Φ1, Tr2 σΦ2)

)
since

a puri�cation of σΦ2 is as well the puri�cation of Tr2 σΦ2 and the exchange en-
tropy does not depend on a puri�cation. Due to the trace preservation formula,
Tr2 σΦ2

= ρ∗, the state ς(Φ1, Tr2 σΦ2
) = ς(Φ1, ρ∗) = σΦ1

which completes the
proof.

Proposition 11 is applicable for any entropy which is subadditive. The Rényi
entropy of order q = 2 is not subadditive, however, it is a function of the Tsallis
entropy of order 2 for which the subadditivity holds. Therefore Proposition 11
can be used to estimate the output Rényi q = 2 entropy of a product channel
if the input state is maximally entangled. The following inequality corresponds
to Rényi q = 2 version of the lower bound in (4.5),

− log
(

1− |e−S
map
2 (Φ1) − e−S

map
2 (Φ2)|

)
≤ S2

(
(Φ1 ⊗ Φ2)(|ψ+〉〈ψ+|)

)
. (4.10)

It is possible to �nd channels Φ1 and Φ2 such that the left hand side of (4.10)
is greater than Smin

2 of depolarizing channel Λ, which has the same map entropy
as Smap

2 (Φ1 ⊗ Φ2). Notice that for any two channels the map entropy of their
tensor product is characterized by the following result.

Proposition 12. The Rényi map entropy Smap
q is additive with respect to tensor

product of quantum maps for any parameter q ≥ 0:

Smap
q (Φ1 ⊗ Φ2) = Smap

q (Φ1) + Smap
q (Φ2). (4.11)

Proof. The map entropy Smap
q (Φ) is de�ned as the entropy of normalized dy-

namical matrix DΦ. The matrix representation of DΦ1⊗Φ2
is related to superop-

erator matrix of the quantum operation Φ1 ⊗ Φ2, due to formula (1.28). Using
explicit calculations on matrix elements one can show that DΦ1⊗Φ2

is unitarily
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equivalent with DΦ1 ⊗DΦ2 . That implies the additivity of the map entropies,
since the quantum Rényi entropy of any order of a given state is a function of
its spectrum.

Consider a set of N -dimensional matrices equipped with the Hilbert-Schmidt
inner product

〈A|B〉h := TrA†B. (4.12)

In this space the matrix units
{
|i〉〈j|

∣∣ i, j = 1, 2, . . . , N
}
form an orthonormal

basis. The elements of this basis are denoted by |i〉〈j| := |ij〉h. A quantum
operation Φ is represented by a matrix Φ̂:

〈ij|Φ̂|k`〉h = Tr
(
|j〉〈i|Φ(|k〉〈`|)

)
, (4.13)

hence
Φ(|k〉〈`|) =

∑
i,j

〈ij|Φ̂|k`〉h |i〉〈j|. (4.14)

Due to the reshu�ing procedure (1.28), the entries of the dynamical matrix DΦ

read
〈ab|DΦ|cd〉h = 〈ac|Φ̂|bd〉h. (4.15)

The entries of DΦ1⊗Φ2
are obtained by using unnormalized maximally entangled

state |Ψ+〉 :=
∑
i,` |i`〉 ⊗ |i`〉 according to de�nition (1.25) as follows

〈abcd|DΦ1⊗Φ2
|efgh〉 = 〈abcd|

[
(Φ1 ⊗ Φ2)⊗ id

](
|Ψ+〉〈Ψ+|

)
|efgh〉

=
∑
i,`,j,m

〈abcd|
[
(Φ1 ⊗ Φ2)(|i`〉〈jm|)⊗ |i`〉〈jm|

]
|efgh〉.

(4.16)

Now expression (4.14) is used and the matrix elements of DΦ1⊗Φ2
read

〈abcd|DΦ1⊗Φ2 |efgh〉 =
∑

α,β,γ,δ

〈αβ|Φ̂1|ij〉h 〈γδ|Φ̂2|ij〉h 〈abcd|αγi`〉 〈βδjm|efgh〉.

(4.17)
Since 〈abcd|αγi`〉 is expressed in terms of Kronecker deltas δaαδbγδciδd` and
〈βδjm|efgh〉 analogously, the summation over the Greek indexes gives,

〈abcd|DΦ1⊗Φ2 |efgh〉 = 〈ac|DΦ1 |eg〉 〈bd|DΦ2 |fh〉
= 〈acbd|DΦ1 ⊗DΦ2 |egfh〉. (4.18)

The matrix DΦ1⊗Φ2
is related to DΦ1

⊗DΦ2
by a unitary matrix

U =
∑
a,b,c,d |abcd〉〈acbd|. Therefore both matrices have the same eigenvalues

and the same entropies.

Since minimal output entropy of a depolarizing channel Λ is a function of its
map entropy (4.4), the estimation on the left hand side of (4.10) can be made in
terms of such Λ for which Smap

2 (Λ) = Smap
2 (Φ1) + Smap

2 (Φ2). As a result of this
estimation one obtains condition on the pair of channels, for which a maximally
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mixed input state does not decrease the output entropy below the smallest value
obtained by the product input state,

1−MN + 1

MN
|e−S

map
2 (Φ1)−e−S

map
2 (Φ2)| ≤ e−S

map
2 (Φ1⊗Φ2) = e−

[
Smap
2 (Φ1)+Smap

2 (Φ2)
]
,

(4.19)
where Φ1 acts on MN and Φ1 on MM . Fig. 4.3 presents the region de�ned

Figure 4.3: Colored parts of the �gure denote the region described by inequality
(4.19). This region contains pairs of maps characterized by their map entropy
for which the additivity is conjectured. The dotted line contains the pairs of
complementary channels. The region is enlarged if a larger dimensions are
considered.

by (4.19). Such a set is not empty and contains maps, for which Smap
2 (Φ1) <<

Smap
2 (Φ2) or Smap

2 (Φ2) << Smap
2 (Φ1). The dotted line represents the set of com-

plementary channels for which both map entropies are equal. This set contains
the channels breaking the conjecture of additivity of minimal output entropy
according to the proof of Hastings. The region de�ned by (4.19) does not in-
tersect the set. It was also shown [40], [89] that additivity holds if one of the
channels is unitary or if one of the channels is very noisy. These both cases are
covered by condition (4.19). These examples support formulation of

Conjecture 2 ( [51]). The additivity of minimal output Rényi q = 2 entropy
holds for pair of channels satisfying inequality (4.19).

Recent literature does not answer the question, whether the additivity con-
jecture is broken for low dimensional channels and the Rényi entropy of order
q = 2. Our Conjecture 2 suggests for which pairs of channels �nding a coun-
terexample of additivity is unlikely. Conjecture 2 uses the map entropy and
is formulated for the Rényi entropy of order 2, for which the theorem about
extremal position of the depolarizing channels was proved. This is the key the-
orem which allows us to derive estimations (4.10) and (4.19). Numerical tests
(Fig. 4.4 and 4.5) suggest that the depolarizing channels are not situated at
the boundary of the set of all channels in the plane (Smap

q , Smin
q ) for q ≤ 2,

67



Figure 4.4: The set of the Pauli channels projected on the plane spanned by the
map entropy Smap and the minimal output entropy Smin. The von Neumann
entropies are considered. Solid curves correspond to the edges of the asymmetric
tetrahedron K. The curve AD characterizing the family of depolarizing channels
does not belong to the boundary of the set.

Figure 4.5: As in Fig. 4.4a: projection of the set of Pauli channels onto the
plane spanned by the Rényi entropy of a map Smap

q and the minimal Rényi
output entropy Smin

q obtained for a) q = 1/2 and b) q = 5.
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while their extremal position could be con�rmed in case q ≥ 2. Nevertheless,
the Rényi entropy is a smooth function of q. Therefore, a conjecture similar to
Conjecture 2 may hold also for other values of the Rényi parameter q.

4.3 Transformations preserving minimal output

entropy

In previous chapter the set of one�qubit quantum operations was considered in
context of the plot (Smap

q , Smin
q ). One could ask, whether the family of maps

lying at the same vertical or horizontal line can be characterized. The following
section gives a partial answer to this question. Transformations of one qubit
maps which preserve the minimal output entropy will be considered. Such
a transformation changes the quantum channel and moves the corresponding
point in the plane (Smap

q , Smin
q ) along a given horizontal line. In the following

section we consider the geometrical picture of one�qubit maps acting on the
set of pure states. One�qubit quantum operation transforms the Bloch ball
into an ellipsoid inside the ball. A transformation of quantum operation which
changes the lengths of the axes of the ellipsoid and their orientation and leaves
the minimal output entropy unchanged will be studied.

Consider the superoperator matrix of a one�qubit quantum operation:

Φ =


Φ11 Φ12 Φ12 Φ14

Φ21 Φ22 Φ32 Φ24

Φ21 Φ32 Φ22 Φ34

1− Φ11 −Φ12 −Φ12 1− Φ14

 . (4.20)

Parameters Φ11 and Φ14 are real, the complex conjugation of Φij is denoted by
Φij . The form (4.20) guarantees that the dynamical matrix of Φ is Hermitian
and the trace preserving condition (1.26) is satis�ed.

Assume that the quantum operation Φ1 has the output entropy minimizer
at the point

ρp =

(
p

√
p(1− p)√

p(1− p) 1− p

)
. (4.21)

Such an assumption is not restrictive since one can always treat the operation
Φ1 as a concatenation of a given operation with a unitary rotation which does
not change the minimal output entropy. The quantum operation (4.20) acting
on a pure state

ρin =

(
a

√
a(1− a)√

a(1− a) 1− a

)
(4.22)

gives an output state

ρout = a

(
Φ11 Φ21

Φ21 1− Φ11

)
+ (1− a)

(
Φ14 Φ24

Φ24 1− Φ14

)
+

+
√
a(1− a)

(
2<(Φ12e

iφ) Φ22e
iφ + Φ32e

−iφ

Φ22e
−iφ + Φ32e

iφ −2<(Φ12e
iφ)

)
,

(4.23)

69



which attains the minimum entropy if a = p.

• Transformation changing the lengths of the axes of the ellipsoid.

Consider a quantum operation Φellipsoid, which transforms the Bloch ball
into such an ellipsoid that the end of its longest axis touches the Bloch
sphere in the "North Pole",

Φellipsoid =


1 0 0 1− η3
0 η1+η2

2
η1−η2

2 0
0 η1−η2

2
η1+η2

2 0
0 0 0 η3

 . (4.24)

Suitable rotations of the Bloch ball before and after the action of Φellipsoid
guarantees that the point of contact with the Bloch sphere is the minimizer
of Φ1. Therefore the concatenation of Φ1 · Φrotation · Φellipsoid · Φrotation
has the same minimal output entropy and the same minimizer that Φ1.
The rotation operation is given by

Φrotation =


p −

√
(1− p)p −

√
(1− p)p 1− p√

(1− p)p p p− 1 −
√

(1− p)p√
(1− p)p p− 1 p −

√
(1− p)p

1− p
√

(1− p)p
√

(1− p)p p

 ,

(4.25)
where p is de�ned by the minimizer of output entropy for Φ1. This trans-
formation changes the lengths of axes of the ellipsoid but it does not
change the point at the ellipsoid which is the closest to the Bloch sphere.
In other words, this transformation does not change the directions of the
axes of the image of Φ1 into the Bloch ball, but only their lengths.

• Transformation changing directions of the axis.

The next transformation changes directions of axes of an ellipsoid but pre-
serves the entropy minimizer. In particular, if the image of the minimizer
is on the longest axis of an ellipsoid, after the transformation the point
which is the closest to the Bloch sphere is no longer on the main axis of
the ellipsoid.

Entropy of an output state (4.23) is a function of its determinant. The
minimum of the determinant determines the minimum of the entropy.
Consider a transformation which preserves the value of the determinant
and compute its derivative in a minimizer. It is useful to introduce the
compact notation of Eq. (4.23):

ρout = aA+ (1− a)B +
√
a(1− a)C, (4.26)

where matrices A,B and C correspond to the matrices (4.23). Consider
a transformation Φ1 → Φ1 + Φdirection. The output of Φ1 + Φdirection is
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given by

ρ′ = a(A+
1

2

√
1− p
√
p

X) + (1− a)(B +
1

2

√
p

√
1− p

X) +
√
a(1− a)(C −X),

(4.27)
where X is a matrix, which is hermitian and has trace equal to zero.
Moreover, the matrix X satis�es the condition guaranteeing that Φ1 +
Φdirection is completely positive. The state ρ′ coincides with (4.26) if
a = p. Moreover, the derivative of formula (4.26) with respect to a is the
same as the derivative of Eq. (4.27) at the point a = p. Therefore, the
determinants of (4.26) and (4.27) are the same and the derivative at a = p
is equal to zero. A proper choice of parameters in X guarantees that there
is a minimum at point a = p. Hence both maps, Φ1 and Φ1 + Φdirection
have the same minimal output entropy.

The part Φdirection can be characterized by two parameters (t, n),

Φdirection =
1

2



√
1−p
p t −t −t

√
p

1−p t

i
√

1−p
p n −i n −i n i

√
p

1−p n

−i
√

1−p
p n i n i n −i

√
p

1−p n

−
√

1−p
p t t t −

√
p

1−p t

 . (4.28)

Such a form guarantees that the output state of Φ1 + Φdirection is given by Eq.
(4.27).

The map Φ2 of the same minimal output entropy as Φ1 obtained by joint
action of three transformations, Φrotation, Φellipsoid and Φdirection, on Φ1 can
be given by:

Φ2 = Φ1Φrotation · Φellipsoid · ΦTrotation + Φdirection. (4.29)

We are not able to prove that this transformation contains all possibilities of
obtaining maps with the same minimal output entropy as a given one, however,
the transformation is characterized by 5 parameters and also 5 parameters are
needed to have all di�erent (up to one rotation) ellipsoids tangent to the sphere
on its inner side in a given point. Three parameters are associated with the
lengths of axes |η1|, |η2|, |η3|, while two parameters de�ne the direction of the
longest axis n, t.

Above considerations introduce a 5-parameter transformation of a quantum
map Φ1 → Φ2. The transformation preserves the minimal output entropy.
Therefore, it determines the family of maps which are situated at the same
horizontal line of the plot (Smap, Smin). Characterization of the family of quan-
tum maps parametrized by the minimal output entropy can be useful to further
investigations of relations between Smin and Smap and their consequences.
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Chapter 5

Davies maps for qubits and

qutrits

Explicit description of general continuous dynamics of an open quantum system
is di�cult in practice. Exact formulas describing the time evolution are known
in some special cases only. One of the cases in which the problem can be solved
uses the assumption of a week coupling [91] of a low dimensional quantum
system interacting with much bigger reservoir in the thermal equilibrium. Such
an interaction changes only the state of the system whereas the state of the
environment remains unchanged. By analogy to the classical process, in which
the evolution of a state does not depend on the history, such an evolution is
called a Markov process.

However, while analysing the continuous evolution of the input state, some-
times there is no need to know the entire time evolution since only the output
state is relevant. The "black box" description is useful in such cases. A "black
box" acts like an evolution discrete in time and can be described using com-
pletely positive maps, represented as matrices of superoperators.

Figure 5.1: Model of a quantum N�level system characterized by Hamilto-
nian H interacting with a much larger environment in a thermal equilibrium at
temperature T .

The following chapter distinguishes a concrete class of physical processes de-
scribed by a Davies map [92]. Such a process is compatible with the interaction
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of a quantum state with an environment in a given temperature, see Fig. 5.1.
Due to a suitable choice of the entries of a superoperator matrix Φ and relations
between them one can say whether some continuous time evolution is described
by a given discrete quantum map. The solution concerns the maps acting on
one�qubit, N = 2, and one�qutrit, N = 3. In the case of one-qubit maps we
determine the state which is the most resistant on Davies channels. It will be
shown that the maximal output 2�norm of Davies maps is additive with respect
to the tensor product of two such maps.

5.1 Quantum Markov process

The quantum Markov process is characterized by quantum maps belonging to
the one-parameter completely positive semigroup, Φt = expGt, where G denotes
a generator and positive parameter t is associated with time.

The most general form of the generator of a completely positive semigroup
was given by Gorini, Kossakowski, Sudarshan [93] and Lindblad [43]. It can be
written as

G = iδ + L, (5.1)

where δ, given by the commutator with the e�ective Hamiltonian of the system
δ : ρ→ [ρ,H], describes the unitary part of the evolution. The dissipative part
L has the Lindblad form

L : ρ→
∑
α

(
KαρKα† − 1

2
{Kα†Kα, ρ}

)
, (5.2)

where {A,B} = AB +BA is anticommutator, while operators Kα can be asso-
ciated with the Kraus representation of the quantum operation.

Deciding whether a given superoperator matrix belongs to the completely
positive semigroup was shown [94] to be a problem 'NP' hard with respect
to the dimension N . Nevertheless, some additional assumptions allow one to
characterize matrices from completely positive semigroups at least for a few low
dimensions. In following chapter, such a solution will be given for N = 2, and
N = 3, under additional conditions: independence of unitary and dissipative
parts of the evolution and the detailed balance condition. These three conditions
de�ne the so�called Davies maps [92]. Sometimes the uniqueness of the invariant
state is also added to the de�nition.

5.2 Characterization of the model

Consider a quantum N - level system characterized by the Hamiltonian in its
eigenbasis,

H =

N∑
i=1

εi|i〉〈i|. (5.3)
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Assume that such a system is weekly coupled to the environment of a given
temperature T , see Fig. 5.1. An interaction with the environment preserves one
invariant state, which is the Gibbs state

ρβ =
1

Z
exp(−βH), (5.4)

where Z =
∑N
i=1 exp(−βεi) is a partition function and β = 1

kT . Here k repre-
sents the Boltzmann constant. A quantum map Φ satis�es the detailed balance
condition if it is Hermitian with respect to the scalar product de�ned by the
Gibbs state

Tr ρβAΦ∗(B) = Tr ρβΦ∗(A)B, (5.5)

where A and B are arbitrary observables and Φ∗ the quantum operation in the
Heisenberg picture. Detailed description of this condition can be found in [96].

The name "detailed balance" was taken from the theory of stochastic pro-
cesses. Detailed balance means that in an equilibrium state any two levels of
the evolving system remain in an equilibrium: the rate of transition from the
level i to j and the transition rate from j to i are equal. Mathematical formula
describing this fact reads

Fijpi = Fjipj , (5.6)

where Fij are entries of a stochastic transition matrix and pi represent the
components of the invariant probability vector.

5.3 Matrix representation of Davies maps

One qubit map in the "black box" description is represented by a superoperator
matrix. It is a matrix acting on the vector formed by the entries of a density
matrix ordered in a single column. A superoperator Φ represents a Davies map,
if the following conditions are satis�ed.

• The map Φ is completely positive.

This condition is guaranteed if the Choi�Jamioªkowski matrix DΦ (1.25)
of the map is positive. One has to reshu�e the elements of the matrix Φ
according to (1.28) and check positivity of the resulting dynamical matrix
DΦ = ΦR.

• Superoperator Φ belongs to the semigroup of completely positive maps.

This is equivalent to existence of a generator G of the Lindblad form (5.2)
and the parameter t ≥ 0 such that Gt = log Φ. Knowing the logarithm
of Φ one has to determine whether it is of the Lindblad form. It was
shown in [95] that if the Choi-Jamioªkowski matrix of a given generator
is positive in the subspace orthogonal to the maximally entangled state,
then the generator can be written in the Lindblad form.

It is not a trivial task to write an analytical expression for the logarithm
of a given matrix if its dimension is greater than two. Such a problem for
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3 × 3 stochastic matrices is discussed in the last section of the following
chapter.

• Since the rotational part of the evolution is independent of the dissipative
(contractive) part, the structure of the superoperator is restricted to the
block diagonal form. O��diagonal elements of the density matrix are just
multiplied by numbers, while the diagonal elements can be mixed between
themselves. More detailed discussion on this property is given in Section
5.7.

• The detailed balance condition introduces further restrictions on the ele-
ments of the block acting on the diagonal part of the density matrix. This
block is a stochastic matrix, the entries of which satisfy Eq. (5.6).

Since now, only the dissipative part of the evolution will be considered. Due
to the above conditions the dissipative part of the generator of the one�qubit
Davies maps can be written as

Lα,λ,p =


−α 0 0 α p

1−p
0 λ 0 0
0 0 λ 0
α 0 0 −α p

1−p

 , (5.7)

while the corresponding superoperator acting on two-dimensional states (in the
Hamiltonian basis) has the form

Φa,c,p =


1− a 0 0 a p

1−p
0 c 0 0
0 0 c 0
a 0 0 1− a p

1−p

 . (5.8)

Here, p is a function of temperature, p =
(
1 + exp (− ε

(kT )
)−1

, which determines
the invariant state

Φa,c,p(ρ∗) = ρ∗ =

(
p 0
0 1− p

)
. (5.9)

Notice that (5.8) has a block diagonal form which is a consequence of inde-
pendence of rotational and contractive evolution. This is also equivalent to
independence of changes in diagonal and o��diagonal entries of a density ma-
trix. The detailed balance condition (5.6) implies the form of the outer block in
Eq. (5.8). One�qubit Davies maps form a three-parameter family characterized
by (a, c, p), where p is a function of the temperature. Conditions that such a
matrix is an element of the semigroup of completely positive maps introduce
the following restrictions on the parameters (a, c, p):

a+ p < 1, 0 < c <

√
1− a

1− p
. (5.10)
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Equality Φ = expLt allows one to write explicit formulas for time depen-
dence of parameters a and c,

a = (1− p)
(

1− exp(−At)
)
, c = exp(−Γt), (5.11)

where A and Γ are parameters such that A ≥ 1
2Γ ≥ 0. The entire paths of the

semigroup are showed in Fig. 5.2

Figure 5.2: Panel a) contains the region of parameters (a, c) allowed by rela-
tion (5.10) and describing the one�qubit Davies maps. The upper border lines
are also drawn for di�erent temperature T . Panel b) shows the region allowed
for a given temperature T . The lines describe two semigroup corresponding to
two di�erent randomly chosen generators L1 and L2. The extremal lines corre-
sponding to the solid line on panel a describe the semigroup with the smallest
ratio of decoherence to the damping rate. Maps id,Φ0,ΦCG are the identity
channel, completely depolarizing and coarse graining channel respectively.

One�qubit Davies map can be written using the Bloch parametrization (1.42)

Φ =


1 0 0 0
0 η1 0 0
0 0 η1 0
κ3 0 0 η3

. (5.12)

where |ηi| denote the lengths of axes of the ellipsoid and ~κ is the translation
vector. These parameters are related to the parameters (a, c, p)

η1 = c ≥ 0, η3 = 1− a

1− p
≥ 0,

κ1 = κ2 = 0, κ3 = a
2p− 1

1− p
≥ 0. (5.13)

The image of the set of pure states under an action of one�qubit Davies map is
shown in Fig. 5.3. The image of the Bloch ball forms an ellipsoid with rotational
symmetry. Fig. 5.3 presents the image of an exemplary one�qubit Davies map
for which η1 ≥ η3, however conditions (5.10) admits also the case η3 ≥ η1.
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Figure 5.3: Ellipsoid obtained by an action of a one�qubit Davies channel on the
Bloch sphere. The channel is characterized by parameters (η1, η3, κ3) de�ned in
(5.13).

5.4 Physical examples

Qubit maps of the structure similar to (5.12) were analysed before in context
of quantum optics. The unitary evolution is induced by the laser �eld, while
the dissipative dynamics is caused by an interaction with the environment. The
state of a two level atom is characterized by the Bloch vector (x, y, z), where
z represents the di�erence between the diagonal entries of a density matrix
equal to the inversion of populations of the atomic levels. Variables x and
y are associated with the atomic dipole operators. The evolution in this set
has been de�ned by means of variables describing the decay rate τ1 of the
coherences and the rate τ2 of attaining the equilibrium state. These parameters
correspond to the variables considered in the Section 5.3, η1 = exp (−t/τ1) and
η3 = exp (−t/τ3) which are related to squeezing of the axes of the ellipsoid.
Formula (5.10) corresponds to the relation between the decay rates:

τ1 ≤ 2τ3. (5.14)

This relation was obtained by analysing a concrete physical model of the evo-
lution of the two level system by means of Bloch equations [97]. The one�qubit
operations (5.12) were also studied by [98].

5.5 Minimal output entropy of Davies maps

In context of transmission of quantum information, it is natural to ask, which
pure states are the most resistant with respect to the changes caused by the
Davies maps. The answer depends on the selected measure of decoherence. Such
a measure can be described, for example, by means of some matrix norm of the
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output state maximized over the input states. Among quantities measuring the
decoherence, the minimal output entropy is of special importance because some
questions concerning the channel capacity, such as additivity problem, can be
related with similar problem written in terms of minimal output entropy. The
minimal output entropy is related to the maximal norm of the output state if
the input is pure.

Since a Davies map has rotational symmetry, the minimizer can be chosen
to be a real state:

ρ =

(
µ ν
ν 1− µ

)
, (5.15)

where ν2 = (1 − µ)µ since the state is pure. After an action of the operation
(5.8) this state is transformed into

ρ′ =

(
(1− a)µ+ b(1− µ) cν

cν aµ+ (1− b)(1− µ)

)
, (5.16)

where b = ap/(1 − p). Computing the eigenvalues and minimizing the entropy
over µ one can characterize the minimizer in two cases:

• If c2 ≤ (1− a− b)(1− 2b) the minimizer is characterized by µ = 0 and it
forms an eigenstate of the Hamiltonian H.

• If c2 ≥ (1− a− b)(1− 2b) the minimizer is characterized by

µ =
(a+ b− 1)(2b− 1)− c2

2(a+ b− 1)2 − 2c2
. (5.17)

It is no longer the eigenvalue of the Hamiltonian, however, after some time
of the evolution t � 0 the second case changes into the �rst one and the
minimizer is a state diag(0, 1). This is an eigenstate of the Hamiltonian.
The situation that the minimizer is in the vector diag(0, 1) reminds the
classical evolution of two�dimensional vector governed by the stochastic
matrix. In this case the extremal vector like (0, 1) is the minimizer of the
Shannon entropy of the output.

5.6 Multiplicativity of maximal output norm of

one�qubit Davies maps

As discussed in the introduction to Chapter 4, the question of additivity of mini-
mal output von Neumann entropy with respect to the tensor product of quantum
operations is one of the most interesting problem in quantum information the-
ory. This problem can be equivalently stated in terms of channel capacity. In
general, the conjecture on additivity of channel capacity is false, however, there
is still an interesting problem, for which class of maps the conjecture can be
con�rmed.
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Recent studies of the problem use the notion of the Rényi entropy of order q.
This entropy tends to the von Neumann version as q → 1. The problem of ad-
ditivity of minimal output Rényi q entropy is directly related to multiplicativity
of the maximal output Schatten q�norm. This norm is de�ned as

‖X‖Sq = (Tr |X|q)1/q, (5.18)

where |X| =
√
X†X. Maximal Schatten q norm of a quantum map Φ is:

‖Φ‖Sq := max
ρ

(Tr |Φ(ρ)|q)1/q, (5.19)

where maximization is taken over the entire set of density matrices ρ. The Rényi
entropy of order q of a state ρ can be de�ned as follows [107]

Sq(ρ) =
q

1− q
log ‖ρ‖Sq . (5.20)

Due to logarithm in this formula the multiplicativity of maximal q�norm is
equivalent to the additivity of minimal output entropy Smin

q .
In this section, multiplicativity of operator 2�norm induced by the Euclidean

vector norm will be proved for the quantum one�qubit Davies maps. This vector
induced norm is not related to the Rényi entropy by such an elegant formula
like it is in the case for Schatten norm, however, it is a bit easier to calculate
than the Schatten counterpart. These particular results support the general
solution for multiplicativity problem for Schatten 2�norm which implies the
additivity property for minimal output Rényi entropy of order 2 and which
has been already proved for general one�qubit quantum operations [99] (see
also [18]).

5.6.1 Outline of the proof of multiplicativity

The Euclidean norm (2�norm) of a vector x = (x1, ..., xn) is de�ned as:

‖x‖2 =

√√√√ n∑
i=1

|xi|2. (5.21)

This vector norm induces the 2�norm of an operator A:

‖A‖2 = maxx 6=0
‖Ax‖2
‖x‖2

. (5.22)

One of the property of this norm (see [100]) is that ‖A‖2 is equal to square root
of the spectral radius of A†A or equivalently to the greatest singular value of
the matrix A,

‖A‖2 =
[
r(A†A)

]1/2
, (5.23)
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where a spectral radius r(A†A) = maxi |ξi| and ξi are eigenvalues of A†A. In this
section the maximal two norm of the output of a quantum map Φ :MN →MN

will be considered

MΦ = max
ρ∈MN

‖Φ(ρ)‖2 = max
A≥0

‖Φ(A)‖2
TrA

. (5.24)

One can ask, whether the maximal two�norm is multiplicative in a sense:

MΦ⊗Ω = MΦMΩ. (5.25)

It will be shown that if Φ is one�qubit Davies map and Ω is an arbitrary quantum
map acting on N�dimensional state the multiplicativity holds.

The idea of the proof of the theorem given below is borrowed from the paper
of King and Ruskai [54]. These authors prove an analogical theorem about a
bistochastic quantum map Φ. They noted that the same proof holds as well for
stochastic one�qubit maps. Here we will present an explicit calculations for the
case of Davies maps with |η3| ≤ |η1|.

Theorem 8. Let Φ :M2 →M2 be an one�qubit Davies map and Ω :MN →
MN be an arbitrary quantum map. The maximal two norm of the output is
multiplicative:

MΦ⊗Ω = MΦMΩ. (5.26)

In this section the sketch of the proof will be given, while some details of
the calculation will be presented in the next section. In order to present the
proof we need to introduce the following set. An arbitrary density matrix on
H2 ⊗HN can be written as a block matrix

ρ =

(
ρ1 γ
γ† ρ2

)
, (5.27)

where ρ1, ρ2, γ are N × N matrices and the trace condition Tr(ρ1 + ρ2) = 1
is satis�ed. The output state of the product of two quantum operations Φ⊗Ω,
can be described by:

(
Φ⊗ Ω

)
(ρ) =

(
P L
L† Q

)
. (5.28)

Here Φ denotes an one�qubit operation, while the map Ω acts on MN . Also
other block matrices will occur and their positivity will play an important role
during the proof. The Schur complement lemma [101] ensures positivity of block
matrices, see Lemma 1, Section 3.1.

To demonstrate additivity (5.26) we shall analyse the inequality MΦ⊗Ω ≥
MΦMΩ which is almost immediate since the equality is attained by a product of
states which maximize output norm of each map. Because the entire set of states
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is larger, it contains product and entangled states, the result of maximizing over
the entire set can give only a better result. Therefore to prove multiplicativity
of maximal output 2�norm with respect to the tensor product of two maps it is
enough to show that

z ≥MΦMΩ ⇒ z1−
(
Φ⊗ Ω

)
(ρ) ≥ 0. (5.29)

Insert the block matrix form (5.28) to (5.29). Due to the Schur complement
lemma the right hand side of (5.29) is positive if and only if

L(z1− P )−1L† ≤ z1−Q. (5.30)

Notice that this inequality holds if∥∥LL†∥∥
2
≤ (z − ‖P‖2)(z − ‖Q‖2), (5.31)

since using the general property P ≤ ‖P‖ one gets:

L(z1− P )−1L† ≤ L(z − ‖P‖2)−1L† ≤
∥∥LL†∥∥

2
(z − ‖P‖2)−1 (5.32)

≤ (z − ‖Q‖2) ≤ z1−Q. (5.33)

Therefore the positivity of (z − ‖P‖2) and (z − ‖Q‖2) and inequality (5.31) are
the only relations needed to prove Theorem 8. These relations will be proved
in the next section for the case of Φ being an arbitrary one�qubit Davies map
with |η3| ≤ |η1|.

5.6.2 Details of the proof of multiplicativity

Proof. of Theorem 8. It is necessary to �nd the speci�c form of MΦ, P an Q in
(5.28), then to check positivity of (MΦMΩ − ‖P‖2) and (MΦMΩ − ‖Q‖2), and
�nally to prove (5.31). Let us restrict our considerations to the case of Davies
maps Φ, for which η2

3 ≤ η2
1 in (5.12) as discussed in Section 5.6.1.

• Maximal 2�norm of the output, MΦ.

Use the Bloch parametrization of Φ as in (5.12), let it act on the Bloch
vector (1, x, y, z)†, where x, y, z are real. Moreover x2 + y2 + z2 = 1
guarantees restriction to pure states. It is enough to take pure input state
because the 2�norm is convex on the set of density matrices and it attains
maximum at the boundary of the set. The spectral radius of the square
of the output state reads according to (5.23):√

[r(Φ(ρ)†Φ(ρ))] =
1

2

(
1 +

√
(κ3 + zη3)2 + (1− z2)η2

1

)
. (5.34)

Since the image of the Davies map has rotational symmetry, there are
no parameters x and y in this formula. Second derivative of the func-
tion (5.34) with respect to z is negative under the condition: η2

3 ≤ η2
1 .

Therefore function (5.34) has a maximum:

MΦ =
1

2

(
1 +

√
η2

1 +
κ2

3η
2
1

η2
1 − η2

3

)
. (5.35)
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• Output of a product map.

Now the explicit form of matrices P, Q and L of the output state (5.28)
will be given. Consider an one�qubit input state. A vector (1, x, y, z)†

corresponds to the density matrix:

ρ =
1

2

(
1 + z x+ iy
x− iy 1− z

)
. (5.36)

Its image with respect to a Davies map (5.12) reads:

Φ(ρ) =
1

2

(
1 + zη3 + κ3 η1(x+ iy)
η1(x− iy) 1− zη3 − κ3

)
. (5.37)

In the analogous way the initial state in a space M2N can be given by
(5.27)

ρ =
1

2

(
ρ1 + ρ2 + ẑ x̂+ iŷ
x̂− iŷ ρ1 + ρ2 − ẑ

)
, (5.38)

where ẑ = ρ1− ρ2 and x̂− iŷ = 2γ are N ×N matrices. The output state
of a map Φ⊗ 1 is:(

Φ⊗ id
)
(ρ) = (5.39)

(
1
2

(
ρ1 + ρ2 + η3(ρ1 − ρ2) + κ1(ρ1 + ρ2)

)
η1γ

η1γ†
1
2

(
ρ1 + ρ2 − η3(ρ1 − ρ2)− κ3(ρ1 + ρ2)

)).
Finally the matrices P,Q and L are de�ned by comparison of suitable
blocks of two block matrices:

(
Φ⊗ Ω

)
(ρ) =

(
P L
L† Q

)
(5.40)

=

(
1
2

Ω
(
ρ1 + ρ2 + η3(ρ1 − ρ2) + κ3(ρ1 + ρ2)

)
η1Ω

(
γ
)

η1Ω
(
γ
)† 1

2
Ω
(
ρ1 + ρ2 − η3(ρ1 − ρ2)− κ3(ρ1 + ρ2)

)).

• Multiplicativity.

One can use the property ‖Ω(ρ)‖2 ≤ Tr(ρ)MΩ (5.24) to show that (MΦMΩ−
‖P‖2) is positive. It is so if

1

2
MΩ

(
1+

√
η2

1 +
κ2

3η
2
1

η2
1 − η2

3

)
>

1

2
MΩ

(
Tr(ρ1+ρ2)+η3(ρ1−ρ2)+κ3(ρ1+ρ2)

)
.

(5.41)
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Notice that Tr(ρ1 + ρ2) = 1. To show that the above inequality is true, it
is su�cient to prove: √

η2
1 +

t2η2
1

η2
1 − η2

3

> η3 + κ3. (5.42)

Taking the square of both sides one gets the expression:(
κ3η3 − (η2

1 − η2
3)
)2
> 0. (5.43)

This implies that (MΦMΩ − ‖P‖2) > 0. In a similar way we prove the
positivity of (MΦMΩ − ‖Q‖2). The last step is to prove inequality (5.31).

Consider a positive block matrix
(
1⊗Ω

)
(ρ) =

(
Ω(ρ1) Ω(γ)
Ω(γ†) Ω(ρ2)

)
. Assume

that Ω(ρ1) > 0 (if Ω(ρ1) ≥ 0 one can add ε1 to ρ1 and eventually take the
limit ε→ 0). Due to the inequality Ω(ρ1) ≤ ‖Ω(ρ1)‖2 one can write

〈v|Ω(γ)Ω(γ)†|v〉 ≤ ‖Ω(ρ1)‖2〈v|Ω(γ)Ω(ρ1)−1Ω(γ)†|v〉. (5.44)

Due to the Schur complement lemma we have Ω(ρ2) ≥ Ω(γ)Ω(ρ1)−1Ω(γ)†

and therefore,

‖Ω(ρ1)‖2〈v|Ω(γ)Ω(ρ1)−1Ω(γ)†|v〉 ≤ ‖Ω(ρ1)‖2〈v|Ω(ρ2)|v〉 ≤ ‖Ω(ρ1)‖2‖Ω(ρ2)‖2.
(5.45)

Hence the inequality ‖Ω(γ)Ω(γ)†‖2 ≤ ‖Ω(ρ1)‖2‖Ω(ρ2)‖2 holds. This in-
equality together with de�nition (5.24) implies

‖Ω(γ)Ω(γ)†‖2 ≤M2
Ω Tr ρ1 Tr ρ2. (5.46)

Denote Tr(ρ1) by x. To prove inequality (5.31) it is enough to show that
the second inequality holds in the expression below∥∥LL†∥∥

2
= η2

1 ‖Ω(γ)‖22 ≤ η
2
1x(1−x)M2

Ω ≤ (MΦMΩ−‖P‖2)(MΦMΩ−‖Q‖2),
(5.47)

and this is true if

η2
1x(1− x)M2

Ω ≤
1

4
M2

Ω

[
η2

1 +
κ2

3η
2
1

η2
1 − η2

3

− (η3(2x− 1) + κ3)2
]
. (5.48)

This inequality can be shown by taking the function which is the di�erence
between the right hand side and the left hand side. The second derivative
of this function is equal to 2(η2

1 − η2
3). Therefore whenever (η2

1 > η2
3) the

di�erence is a convex function which has minimum at 0. That �nishes
the proof of the last inequality. Therefore inequality (5.31) holds and it
proves Theorem 8.
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In the case |η1| ≤ |η3| the proof goes analogously. The maximal output
norm (5.35) has in this case a simpler form, since the maximizer is a pure state
described by the Bloch vector (x = 0, y = 0, z = 1). The speci�c form of the
Davies map was used in this proof in (5.35) when the formula of the maximal
output norm was computed and in formula (5.39). Moreover, positivity of κ3 is
used in (5.42).

5.7 Davies maps acting on qutrits

In this chapter a characterization of the Davies maps for qutrits, N = 3, will
be given. Going to higher dimensions demands more abstract and systematic
approach than in the case of one�qubit maps. The entire evolution consists of the
unitary part and the dissipative part and such is the structure of the generator
G = iδ + L. The unitary evolution δ is governed by the Hamiltonian which in
its eigenbasis has a form H =

∑3
i=1 εi|i〉〈i|, where ε1 > ε2 > ε3. Di�erences of

energies {ωij = εi − εj} are called Bohr frequencies. They are eigenvalues of
the unitary part of the evolution, δ given by ρ→ [H, ρ], while the eigenvectors
of δ are |i〉〈j| for i, j = 1, 2, 3. Assume that the set of Bohr frequencies is not
degenerated beside the zero frequency case, ωii. The subspace related to the
zero frequency is 3�dimensional. Since the dissipative part L of the evolution
commutes with the unitary part, it has the same eigenvectors and therefore it
does not couple the non-degenerated subspaces. Thus the o� diagonal entries of
a density matrix are not mixed with the diagonal ones, if the matrix is written
in the eigenbasis of the Hamiltonian.

Like in the case of one�qubit maps only the dissipative part of the evolution
will be analysed. An one�qutrit Davies map has a structure

Φ =



1−F21 −F31 0 0 0 F12 0 0 0 F13

0 µ1 0 0 0 0 0 0 0
0 0 µ2 0 0 0 0 0 0
0 0 0 µ1 0 0 0 0 0
F21 0 0 0 1−F12 −F32 0 0 0 F23

0 0 0 0 0 µ3 0 0 0
0 0 0 0 0 0 µ2 0 0
0 0 0 0 0 0 0 µ3 0
F31 0 0 0 F32 0 0 0 1−F13 −F23


,

(5.49)

where F21,F31,F32 and µ1, µ2, µ3 parametrize the map. The o��diagonal ele-
ments are related by the detailed balance formula

Fijpj = Fjipi. (5.50)

Here pi determine the invariant Gibbs state (5.4). The Choi-Jamioªkowski ma-

84



trix of (5.49) preserves the same structure:

DΦ =
1

3



1−F31 −F21 0 0 0 µ1 0 0 0 µ2

0 F12 0 0 0 0 0 0 0
0 0 F13 0 0 0 0 0 0
0 0 0 F21 0 0 0 0 0
µ1 0 0 0 1−F32 −F21 0 0 0 µ3

0 0 0 0 0 F23 0 0 0
0 0 0 0 0 0 F31 0 0
0 0 0 0 0 0 0 F32 0
µ2 0 0 0 µ3 0 0 0 1−F32 −F31


.

(5.51)

The generator and its Choi-Jamioªkowski matrix have also the same structure.
Block of the superoperator Φ of the Davies quantum operation which is

related to zero frequency space is a 3× 3 stochastic matrix

F =

 1−F31 −F21 F12 F13

F21 1−F21 −F32 F23

F31 F32 1−F13 −F23

, (5.52)

where F32,F31,F21 ≥ 0. Due to the de�nition of the quantum detailed balance
condition (5.5) the Davies map is Hermitian with respect to scalar product
〈X,Y 〉β := Tr ρ−1

β X†Y and therefore it has a real spectrum. Moreover, the
spectrum is positive, since there is real logarithm of the matrix Φ represented
the Davies map. The positivity of the zero frequency block implies that

F32 + F31 + F21 ≤ 1,
3− 4(F32 + F31 + F21) + 3(F32F31 + F31F21 + F21F32) ≥ 0.

(5.53)

The question considered in this chapter concerns explicit analytical relations for
entries of the superoperator (5.49), which imply that the superoperator repre-
sents a Davies map. One of the condition for Φ is that there exists an exponential
form

F = eLt. (5.54)

Operator L is the zero frequency part of the contractive part of the generator
of completely positive Davis semigroup. It is parameterized as follows:

L =

−L21 − L31 L12 L13

L21 −L12 − L32 L23

L31 L32 −L13 − L23

. (5.55)

This is only the zero frequency block which satis�es the detailed balance con-
dition. The entire dissipative part of the generator is represented by a 9 × 9
matrix. Its Choi matrix has on diagonal elements L32, L31, L21. Since the Choi
state of the generator has to be positive on the subspace perpendicular to the
maximally entangled state we need to require that L32, L31, L21 ≥ 0.

In the next section an explicit calculation of the logarithm of a stochastic
matrix of order three (5.52) is presented.
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5.7.1 Logarithm of a stochastic matrix of size three

To compute analytically the logarithm of a positive matrix (5.52) one may relay
on the following construction. As matrix F has the eigenvalues {1, x+ y, x− y},
where

x = 1
2 (TrF − 1),

y = 1
2

√
2 TrF2 − (TrF)2 + 2 TrF − 3,

(5.56)

the logarithm has the form

log(F) = log
[
U

 1 0 0
0 x+ y 0
0 0 x− y

U−1
]
, (5.57)

where U is a unitary matrix which transforms F into its diagonal form. Let us
evaluate log(F) without computing the matrix U explicitly. One can write that

log(F) =
1

2

[
log(x2 − y2)Z2 + log(

x+ y

x− y
)Z
]
, (5.58)

where

Z = U

 0 0 0
0 1 0
0 0 −1

U−1. (5.59)

The matrix F can be given in terms of Z:

F = 1− Z2 + xZ2 + yZ. (5.60)

This relation allows one to compute yZ = (F − 1)− (x− 1)Z2. Formula for Z2

can be calculated by taking the square of this equation and using the fact that
Z4 = Z2 and that Z2(F − 1) = (F − 1)Z2 = (F − 1). The last formula holds
since operator (F − 1) is de�ned in the subspace for which Z2 is the identity,

Z2 =
(F − 1) [(F − 1)− 2(x− 1)]

y2 − (x− 1)2
. (5.61)

Therefore the logarithm of the matrix F can be expressed according to Eq.
(5.58). By comparing a suitable entries of log(F) with the parameters of L, one
gets the parameter L21 as a function of (F32,F31,F21),

L21 = y2(1− x− y) log(x− y)− (y1(1− x+ y) log(x+ y)), (5.62)

where x and y are given by Eq. (5.56) and

y1 := 2y −F12 −F21 + F13 −F31 + F23 −F32 + 2
F23F31

F21
, (5.63)

y2 := 4− 2y −F12 −F21 + F13 −F31 + F23 −F32 + 2
F23F31

F21
. (5.64)
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The set of points {F23,F13,F12}, which de�nes the set of symmetric bis-
tochastic matrices from the dynamical semigroup, is shown in Fig. 5.4 and Fig.
5.5 denoted by E. This set is inside the set of all bistochastic 3 × 3 matrices
which is denoted by D. The boundaries of the set are stated by the constraints
L21, L31, L32 ≥ 0.

Figure 5.4: The set E of 3 × 3 bistochastic matrices F (5.52), which form the
zero frequency block of the Davies channel Φ (5.49) under condition T →∞, is
represented by the vector of the o��diagonal elements ~f = {F12,F13,F23}. The
set E is inside the set of all bistochastic 3 × 3 matrices D. The characteristic
points are denoted by ~f and the corresponding matrix F .

Expression (5.62) allows one to check that the set of stochastic matrices
belonging to the semigroup of completely positive maps with the detailed bal-
ance condition is not convex. Consider two exemplary points which lie near
the border of the cross-section and belong to the set (L21 ≥ 0): {0.5, 0, 0} and
{0.22744, 0.22744, 0.04512}. Their convex combination does not belong to the
set. Therefore the set of Davies map is not convex. Fig. 5.5 presents the cross-
section of the set of bistochastic matrices which form the zero frequency part of
the Davies map represented in the space of parameters F21,F31,F32. Fig. 5.5b
plots a non�convex cross�section of the set E by the plane M.

In order to obtain a full characterization of the Davies map for qutrits,
not only its zero frequency par have to be analysed. One needs to take into
consideration also the complete positivity condition and the condition on the
semigroup related to the Choi�Jamioªkowski matrices of the superoperator and
its generator. These conditions allow us to specify the matrix entries µi from
Eq. (5.49).

In this way the full characterization of the Davies channels for one�qubit
and one�qutrits is provided.
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Figure 5.5: a) The set E of 3×3 bistochastic matrices F (5.52), which form the
zero frequency block of the Davies channel Φ (5.49) under condition T →∞, is
represented by the vector of the o��diagonal elements {F12,F13,F23}. The set
E is cut by the plane M : F12 + F13 + F23 = 1

2 . The cross�section is presented
in Panel b) and shows that the set M is not convex.
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Chapter 6

Concluding remarks and open

problems

The aim of this thesis was to investigate quantum channels on di�erent levels
of generality and using di�erent approaches. For instance, general properties of
quantum channels were considered in Chapter 2, while some particular classes of
one�qubit and one�qutrit quantum channels were analysed in Part III of these
thesis. The Davies maps motivated by a speci�c physical model were studied in
Chapter 5. Some useful characteristics of a quantum channel are provided by
di�erent kinds of entropies. Among them we used the minimal output entropy,
the entropy of a map, the entropy of an environment which takes part in an
evolution described by a channel. Apart of the standard von Neumann entropy
which is the quantum counterpart of the Shannon entropy, the quantum Rényi
and Tsallis entropies were also applied.

In Part II the universal entropic inequality for an arbitrary ensemble of
quantum states is proved for the von Neumann entropy. This part of the thesis
treats a quantum channel as a device preparing a quantum ensemble. The
Holevo quantity of this ensemble is shown to be bounded by the entropy of an
environment, used in the preparation process. The state of the environment
after a quantum operation Φ is equivalent to the output of the complementary
channel Φ̃.

One can de�ne selfcomplementary channels for which Φ(ρ) = Φ̃(ρ) for any ρ.
Relation (1.38) between the Kraus operators of Φ and the Kraus operators of Φ̃
is useful to specify selfcomplementary channels. Since the coherent information
(2.17) of such channels is equal to 0, the same holds also for the quantum
channel capacity (2.18). Identi�cation of selfcomplementary channels, as well
as investigation of their properties are worth to be studied in future.

Chapter 3 contains the conjecture which establishes a relation between the
Holevo quantity, and the matrix of �delities. This leads to a geometric char-
acterization of the states in the ensemble. The bound on the Holevo quantity
proved in Chapter 2 can be also related to other notions of quantum information
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theory, such as the quantum discord [102], [103] which measures the quantum
correlations in a two�partite system.

The study of quantum channels is an important task of the modern theory
of quantum information. For example, the problem of additivity of the channel
capacity, or equivalently, additivity of the minimal output entropy remains open
even for channels acting on a single qubit. Results presented in this thesis could
be further developed to investigate the additivity conjecture for di�erent classes
of quantum channels.

Some results of Chapter 4 concern general properties of quantum channels.
For instance we proved the additivity of the map entropy (4.11), and Theorem
6 establishing the extremal position of depolarizing channels in the set of all
channels characterized by the Rényi entropies Smin

2 (Φ) and Smap
2 (Φ). These

results allow us to pose Conjecture 2 specifying pairs of maps for which the
additivity of channel capacity may hold.

In Part III, some speci�c types of channels are investigated. Properties
of one�qubit channels are analysed in Chapter 4. Some transformations on
one�qubit quantum channels de�ned in Section 4.3 lead to new results on the
characterization of the set of quantum channels in the plane (Smin(Φ), Smap(Φ)).
The aim of this analysis is to �nd some conditions that enable one to estimate
the minimal output entropy, which is di�cult to compute, by the entropy of the
map easy to calculate.

The Davies channels, which correspond to a concrete physical model, are
studied in Chapter 5. Superoperators of the Davies maps are speci�ed in the
case of one�qubit maps and one�qutrit maps. The question whether the channel
capacity of the Davies maps is additive is still open, although, Davies maps
acting on N�level system compose the set of only d = N2− 1 dimensions, while
the set of all quantum operations acting on system of the sameN hasN2(N2−1)
dimensions.

The quantum information theory is a modern �eld of science which creates
an environment for new future applications and opens new paths for develop-
ment of technology. Quantum channels, which describe any possible evolution
of a quantum state, play an important role in possible applications. Quantum
channels describe decoherence caused by the interaction with an environment.
Knowledge of their properties allows one to choose the most e�cient quantum
protocols for a given purpose. Theoretical investigations uncover new possibili-
ties, new laws and fundamental restrictions on processing of quantum informa-
tion.

The classical theory of information began with investigations on communica-
tion in a given language through given technological tools. However, very fast,
the laws of information became treated as fundamental properties of nature.
Therefore, studies in the �eld of quantum information are so exciting.
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Appendix 1

In Appendix we analyze ensembles of three one�qubit states {ρ1 = |φ1〉〈φ1|, ρ2 =
|φ2〉〈φ2|, ρ3} and provide calculations related to Fig. 3.1 necessary to prove
Lemma 4 in Section 3.2.

The Bloch vector characterizing the average states can be given by

~OA = a(0, 0, 1). (6.1)

The Bloch vector representing the mixed state ρ3 is parameterized by an angle
α

~OB = b(0, sinα, cosα). (6.2)

The vector ~OC is chosen in such a way that the ratio |CA| : |AB| is 1 : 2.
Therefore one has

~OC =
1

2
(3 ~OA− ~OB). (6.3)

The point C is in the center of the interval DE, between two pure states |φ1〉
and |φ2〉 characterized by the points D and E. Both vectors ~OD and ~OE form
with vector ~OC the angle γ so that

cos γ = |OC|. (6.4)

This is in turn the square root of the �delity |〈φ1|φ2〉|2, because the angle γ is
half of the angle between two pure states,

F23 = cos2 γ. (6.5)

The �delity between two one�qubit states represented by Bloch vectors ~x and
~y reads

F =
1

2
(1 + ~x · ~y). (6.6)

The scalar product of ~OB and ~OD is equal to:

~OB · ~OD = b cos (µ+ γ − γ) = b
[

cos (µ+ γ) cos γ + sin (µ+ γ) sin γ
]
. (6.7)

Hence

F12 =
1

2
(1 + ~OC · ~OB + b

√
1− ( ~OC · ~OB)2

b2 ~OC · ~OC

√
1− ~OC · ~OC). (6.8)

The third �delity F13 can by obtained using Lemma 2. For β = 0 the product
of three �delities used in Lemma 4 is a function f0(a, b, α, β = 0) given by

f0(a, b, α, β = 0) = F12F13F23 = (6.9)
1
64

(
9a2 − 6b cosαa+ b2

) (
b2 − 3a cosαb− 2

)2
(6.10)

+ 1
64

(
9a2b2

(
9a2 − 6b cosαa+ b2 − 4

)
sin2 α

)
. (6.11)
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Appendix 2

In this appendix we present computations necessary to prove Lemma 3. It
is convenient to change the basis such that the vector ~OB (see Fig. 3.1) is
transformed into

~OB
′

= b(0, 0, 1). (6.12)

Denote the angle ν := µ + γ, where µ is the angle between ~OB and ~OD. The
vectors ~OD and ~OE in the new basis can be obtained by rotating the state
(0, 0, 1) around the axis x by angles:

~OD
′

= Ux(µ)(0, 0, 1), (6.13)

~OE
′

= Ux(µ+ 2γ)(0, 0, 1). (6.14)

The vectors ~OG
′
and ~OF

′
are obtained by rotating the above vectors around

the axis Ux(ν)(0, 0, 1) by angle β. Such a rotation can be de�ned as an action
of a unitary matrix U on vectors (6.13). The unitary matrix is given by

U = Uz(−
π

2
)Uy(ν)Uz(β)U†y (ν)U†z (−π

2
), (6.15)

where the rotation matrices read

Ux(α) =

1 0 0
0 cosα − sinα
0 sinα cosα

 , Uy(α) =

 cosα 0 sinα
0 1 0

− sinα 0 cosα

 ,

Uz(α) =

cosα − sinα 0
sinα cosα 0

0 0 1

 .

One can use formula (6.6) to calculate the product of three �delities for three

considered states, ~OB
′
, ~OG

′
and ~OF

′
as a function of the angle β.

f = F12F13F23 (6.16)

=
1

16
cos2 γ

(
(cosµ+ cos(2γ + µ) + 2)2 − cos2 β(cosµ− cos(2γ + µ))2

)
.

The product of three pairwise �delities attains its minimum at β = 0 as stated
in Lemma 3.

92



Bibliography

[1] C. Shannon, A Mathematical Theory of Communication, The Bell System
Technical Journal, 27 379�423, 623�656 (1948).

[2] A. Rényi, On measures of information and entropy, Proceedings of the 4th
Berkeley Symposium on Mathematics, Statistics and Probability, 547�561
(1960).

[3] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat.
Phys., 52 479-487 (1988).

[4] A. Plastino, A. R. Plastino, Tsallis Entropy and Jaynes' Information The-
ory Formalism, Brazilian Journal of Physics, 29 50-60 (1999).

[5] E. Davies, Quantum stochastic processes, Commun. Math. Phys., 15 277�
306 (1970).

[6] A. Kossakowski, On quantum statistical mechanics of non-Hamiltonian sys-
tems, Rep. Math. Phys., 3 247�274 (1972).

[7] A. Holevo, Bounds for the quantity of information transmitted by a quantum
communication channel, Prob. Inf. Transm. 9 177�83 (1973).

[8] M. Nielsen, I. Chuang, Quantum Computation and Quantum Information,
Cambridge University Press, Cambridge (2000).

[9] C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.K.
Wootters, Teleporting an unknown quantum state via dual classical and
Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 70 1895�1899 (1993).

[10] D. Deutsch, R. Jozsa, Rapid solutions of problems by quantum computation,
Proceedings of the Royal Society of London A, 439 553�558 (1992).

[11] Grover L.K. A fast quantum mechanical algorithm for database search, Pro-
ceedings, 28th Annual ACM Symposium on the Theory of Computing,
212�219 (1996).

[12] P. Shor, Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer, SIAM J.Sci.Statist.Comput.,
26 1484�1509 (1997).

93



[13] M. Horodecki, P. Horodecki, and R. Horodecki, General teleportation chan-
nel, singlet fraction, and quasidistillation, Phys. Rev. A, 60 1888�1898
(1999).

[14] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entan-
glement, Rev. Mod. Phys., 81 865�942 (2009).

[15] I. Bengtsson and K. �yczkowski, Geometry of Quantum States: An In-
troduction to Quantum Entanglement, Cambridge University Press, Cam-
bridge (2006)

[16] M. Hastings, Superadditivity of communication capacity using entangled
inputs, Nature Physics, 5 255�257 (2009).

[17] M. Horodecki, On Hastingsâ counterexamples to the minimum output en-
tropy additivity conjecture, Open Systems & Information Dynamics, 17
31�52 (2010) .

[18] C. King, Remarks on the Additivity Conjectures for Quantum Channels,
in: Entropy and the Quantum, eds. R. Sims, D. Ueltschi, Contemporary
Mathematics, 529 177�188, University of Arizona (2010).

[19] C. Bennett, G. Brassard, Quantum Cryptography: Public Key Distribution
and Coin Tossing, Proceedings of IEEE International Conference on Com-
puters Systems and Signal Processing, Bangalore India, 175�179 (1984).

[20] A. Wehrl, General properties of entropy, Rev. Mod. Phys., 50 221�260
(1978).

[21] M. B. Ruskai, Inequalities for Quantum Entropy: A Review with Conditions
for Equality, J. Math. Phys., 43 4358�4375 (2002).

[22] F. Nielsen, R. Nock, On Rényi and Tsallis entropies and divergences for
exponential families, arXiv:1105.3259, (2011).

[23] C. Shannon, Communication in the presence of noise, Proc. Institute of
Radio Engineers, 37 10�21. (1949).

[24] R. Hartley, Transmission of Information, Bell System Technical Journal, 7
535�563 (1928).

[25] B. Schumacher, Quantum coding, Phys. Rev. A, 51 2738�2747 (1995).

[26] E. Desurvire, Classical and Quantum Information Theory. An Introduction
for the Telecommunication Scientists, Cambridge University Press, Cam-
bridge (2009).

[27] A. Holevo, The capacity of quantum channel with general signal states,
IEEE Trans. Info. Theory, 44 269�273 (1998).

94



[28] B. W. Schumacher and M. Westmoreland, Sending classical information
via noisy quantum channels, Physical Review A, 56 131�138 (1997).

[29] B. Schumacher, Sending entanglement through noisy quantum channels,
Phys. Rev. A, 54 2614�2628 (1996).

[30] C. Fuchs, Nonorthogonal quantum states maximize classical information
capacity, Phys. Rev. Lett., 79 1162�1165 (1997).

[31] M. Hayashi, H. Imai, K. Matsumoto, M. B. Ruskai, T. Shimono, Qubit
channels which require four inputs to achieve capacity: Implication for ad-
ditivity conjectures, Quantum Inf. Comput., 5 13�31 (2005).

[32] E. Knill, R. La�amme, A. Ashikhmin, H. Barnum, L. Viola and
W. H. Zurek, Introduction to Quantum Error Correction, arXiv:quant-
ph/0207170 (2002).

[33] M.-D. Choi. Completely positive linear maps on complex matrices, Linear
Algebra and Its Applications, 10 285â-290 (1975).

[34] A. Jamioªkowski, Linear transformations which preserve trace and positive
semide�niteness of operators, Rep. Math. Phys. 3 275 (1972).

[35] K. Kraus. States, E�ects and Operations: Fundamental Notions of Quan-
tum Theory, Springer-Verlag, Berlin (1983).

[36] J. De Pillis, Linear transformations which preserve hermitian and positive
semide�nite operators, Paci�c J. Math., 23 129�137 (1967).

[37] A. Fujiwara and P. Algoet, A�ne parametrization of quantum channels.
Phys. Rev. A, 59 3290�3294 (1999).

[38] M. B. Ruskai, S. Szarek, E. Werner, An analysis of completely-positive
trace-preserving maps on M2, Linear Algebra and its Applications, 347
159�187 (2002).

[39] P. Shor, Equivalence of additivity questions in quantum information theory,
Commun. Math. Phys., 246 453�472 (2004).

[40] G. Amosov, A. Holevo, and R. Werner, Additivity/multiplicativity problems
for quantum communication channels, Quantum Communication, Comput-
ing, and Measurement, 3 3�10 (2001).

[41] C. King, The capacity of the quantum depolarizing channel, IEEE Trans-
actions on Information Theory, 49 221�229 (2003).

[42] T. S. Cubitt, M B. Ruskai, G. Smith, The structure of degradable quantum
channels, J. Math. Phys. 49 102104 (27 pp) (2008).

[43] G. Lindblad, On the generators of quantum dynamical semigroups, Com-
mun. Math. Phys., 48 119�130 (1976).

95



[44] K. Kraus, General state changes in quantum theory, Ann. Phys. , 64 311�35
(1971).

[45] H.-P. Breuer, F. Petruccione, The theory of open quantum systems, Claren-
don Press, Oxford (2006).

[46] W. Roga, M. Fannes, K. �yczkowski, Composition of quantum states and
dynamical subadditivity, J. Phys. A. Math. Theor., 41 035305 (15 pp)
(2008).

[47] F. Verstraete, H. Verschelde, On quantum channels, arXiv:quant-
ph/0202124 (2002).

[48] M. Ziman, Incomplete quantum process tomography and principle of maxi-
mal entropy, Phys. Rev. A, 78 032118 (8 pp) (2008)

[49] W. Roga, M. Fannes, K. �yczkowski, Universal Bounds for the Holevo
Quantity, Coherent Information, and the Jensen-Shannon Divergence,
Phys. Rev. Lett., 105 040505 (4 pp) (2010).

[50] W. Roga, M. Fannes, K. �yczkowski, Davies maps for qubit and qutrits,
Rep. Math. Phys., 66 311�329 (2010).

[51] W. Roga, M. Fannes, K. �yczkowski, Entropic characterization of quantum
operations, International Journal of Quantum Information, 9 1031�1045
(2011).

[52] M. Fannes, F. de Melo, W. Roga, K. �yczkowski Matrices of �delities
for ensembles of quantum states and the Holevo quantity, arXiv/quant-
ph:1104.2271 (2011).

[53] W. Roga, M. Smaczy«ski, K. �yczkowski, Composition of Quantum Op-
erations and Products of Random Matrices, Acta Physica Polonica B, 42
1123 (18 pp) (2011).

[54] C. King and M. B. Ruskai,Minimal Entropy of States Emerging from Noisy
Quantum Channels, IEEE Trans. Info. Theory., 47 192�209 (2001).

[55] M. Agrawal, Axiomatic / Postulatory Quantum Mechanics, in Fundamental
Physics in Nano-Structured, Stanford University (2008).

[56] C. Hong, Z. Ou, L. Mandel, Measurement of subpicosecond time intervals
between 2 photons by interference, Phys. Rev. Lett., 59 2044�2046 (1987).

[57] E. B. Davies, Quantum Theory of Open Systems, Academic Press, London
(1976).

[58] E. Schmidt, Zur Theorie der linearen und nicht linearen Integralgleichun-
gen, Math. Ann, 63 433�466 (1907).

96



[59] J. von Neumann,Mathematische Grundlagen der Quantenmechanik (Math-
ematical Foundations of Quantum Mechanics), Springer, Berlin (1955).

[60] E. H. Lieb and M.B. Ruskai, Proof of the strong subadditivity of quantum
mechanical entropy, J. Math. Phys., 14 1938�1941 (1973).

[61] W. Stinespring, Positive Functions on C*-algebras, Proc. Amer. Math.
Soc., 6 211�216, (1955).

[62] A. Uhlmann, The �transition probability� in the state space of a *-algebra,
Rep. Math. Phys., 9 273�279 (1976).

[63] S. Kokkendorf, Gram matrix analysis of �nite distance spaces in constant
curvature, Discrete Comput. Geom., 31 515�543 (2004).

[64] B. Bahr, B. Dittrich, Regge calculus from a new angle, New Journal of
Physics, 12 033010, (10 pp) (2010).

[65] R. Alicki, M. Fannes, Quantum dynamical systems, Oxford University Press
(2001).

[66] R. Jozsa, J. Schlienz, Distinguishability of states and von Neumann entropy,
Phys. Rev. A, 62 012301 (11 pp) (2000).

[67] G. Mitchison, R. Jozsa, Towards a geometrical interpretation of quantum�
information compression, Phys. Rev. A, 69 032304 (6 pp) (2004).

[68] W. Wootters, Statistical distance and Hilbert space, Phys. Rev. D., 23 357�
362 (1981).

[69] B. Fuglede, F. Topsøe, Jensen-Shannon divergence and Hilbert space embed-
ding, IEEE International Symposium on Iinformation Theory, Proceedings,
31�31 (2004).

[70] F. Topsøe, Some inequalities for information divergence and related mea-
sures of discrimination, IEEE Trans. Inform. Theory, 46 1602�1609 (2000).

[71] A. Holevo, M. Sirokov, Mutual and coherent information for in�nite-
dimensional quantum channels, Problems of information transmission, 46
201�218 (2010).

[72] K. Horodecki, M. Horodecki, P. Horodecki, J. Oppenheim, General
paradigm for distilling classical key from quantum states, IEEE Transac-
tions on Information Theory, 55 1898�1929 (2009).

[73] B. W. Schumacher, M. A. Nielsen, Quantum data processing and error
correction, Phys. Rev. A, 54 2629�2635 (1996).

[74] S. Lloyd, Capacity of the noisy quantum channel, Phys. Rev. A, 55 1613�
1622 (1997).

97



[75] G. Lindblad, Quantum entropy and quantum measurements, in Quantum
Aspects of Optical Communication, eds. C. Bendjaballah et al., Lecture
Notes in Physics, 378 71�80, Springer-Verlag, Berlin (1991).

[76] H. Araki, E. Lieb, Entropy inequalities, Comm. Math. Phys. 18 160�170
(1970).

[77] G. Lindblad, An entropy inequality for quantum measurements, Commun.
Math. Phys., 28 245�249 (1972).

[78] A. Uhlmann, Relative entropy and the Wigner-Yanase-Dyson-Lieb concav-
ity in an interpolation theory, Commun. Math. Phys., 54 21�32 (1977).

[79] S. Furuichi, K. Yanagi, and K. Kuriyama Fundamental properties of Tsallis
relative entropy, J. Math. Phys., 45 4868 (10 pp) (2004).

[80] F. Hiai, M. Mosonyi, D. Petz, Monotonicity of f-divergences: A review with
new results, arXiv/math-phys: 1008.2529 (2008).

[81] R. Konig, S. Wehner, A Strong Converse for Classical Channel Coding
Using Entangled Inputs, Phys. Rev. Lett., 103 070504 (4 pp) (2009).

[82] J. Briët, P. Herremoës Properties of classical and quantum Jensen-Shannon
divergence, Phys. Rev. A, 79 052311 (11 pp) (2009).

[83] D. M Endres, J. E. Schindelin, A new metric for probability distributions,
IEEE Trans. Inf. Theory, 49 1858�1860 (2003).

[84] M. Fannes and D. Vanpeteghem, A three state invariant, arXiv:quant-
ph/0402045 (2002).

[85] R. Bhatia, Positive De�nite Matrices, Princeton University Press, Prince-
ton (2007).

[86] K. �yczkowski, H.-J. Sommers, Hilbert�Schmidt volume of the set of mixed
quantum states, J. Phys. A, 36 10115�10130 (2003).

[87] C. King, Additivity for unital qubit channels, J. Math. Phys., 43 4641 (13
pages) (2002).

[88] P. Shor, Additivity of the classical capacity of entanglement-breaking quan-
tum channels, J. Math. Phys., 43 4334�4340, (2003).

[89] D. DiVincenzo, P. Shor, J. Smolin, Quantum-channel capacity of very noisy
channels, Phys. Rev. A, 57 830�839 (1998).

[90] A. Holevo, The additivity problem in quantum information theory, Russian
Mathematical Surveys, 61 301�339 (2006).

[91] R. Alicki, K. Lendi, Quantum dynamical semigroups and applications,
Springer-Verlag, Berlin (1987).

98



[92] E. B. Davies, Markovian master equations, Commun. Math. Phys., 39 91�
110 (1974).

[93] V. Gorrini, A. Kossakowski and E. Sudarshan, Completely positive dynam-
ical semigroups of n-level systems, J. Math. Phys., 17 821�825 (1976).

[94] T. Cubitt, J. Eisert, M. Wolf, Deciding whether a Quantum Channel is
Markovian is NP-hard, arXiv/math-phys:0908.2128v1 (2009).

[95] M. Wolf, J. Eisert, T. S. Cubitt and J. I. Cirac, Assessing non-Markovian
dynamics, Phys. Rev. Lett., 101 150402 (4 pp) (2008).

[96] G. S. Agarwal, Open quantum Markovian systems and the microreversibil-
ity, Z. Phys., 258 409�422 (1973).

[97] G. Kimura, Restriction on relaxation times derived from the Lindblad-type
master equations for two-level systems, Phys. Rev. A, 66 062113 (4 pp)
(2002).

[98] S. Da�er, K. Wódkiewicz and J. K. McIver: Quantum Markov channels for
qubits, Phys. Rev. A, 67 062312 (13 pp) (2003).

[99] C. King, N. Koldan New multiplicativity results for qubit maps, J. Math.
Phys., 47 042106 (9 pp) (2006).

[100] J. M. Ortega,Matrix Theory, A Second Course, Plenum Press, New Yourk
(1987).

[101] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press,
Cambridge (1985).

[102] P. Coles, Non-negative discord strengthens the subadditivity of quantum
entropy functions, arXiv:1101.1717 (2011).

[103] H. Ollivier, W. Zurek, Quantum Discord: A Measure of the Quantumness
of Correlations, Phys. Rev. Lett., 88 017901 (4 pp) (2002).

[104] P. Coles, L. Yu, V. Gheorghiu, R. Gri�ths, Information-theoretic treat-
ment of tripartite systems and quantum channels, Phys. Rev. A, 83 062338
(2011).

[105] P. W. Lamberti, M. Portesi, J. Sparacino, Natural metric for quantum
information theory, International Journal of Quantum Information, 7 1009�
1019 (2009).

[106] V. Belavkin, Contravariant densities, complete distances and relative �-
delities for quantum channels, Rep. Math. Phys., 55 61�77 (2005).

[107] R. Alicki, M. Fannes, Note on Multiple Additivity of Minimal Rényi En-
tropy Output of the Werner-Holevo Channels, Open Sys. & Information
Dyn., 11 339�342 (2004).

99


	Abstract
	List of publications
	Acknowledgements
	I Introduction
	Preliminary information
	Preface
	Structure of the thesis
	A short introduction to quantum mechanics
	Schmidt decomposition
	Von Neumann entropy and its properties
	Quantum channels and their representations
	Representation of a complementary channel

	One–qubit channels
	Correlation matrices
	Gram matrices and correlation matrices

	Kraus operators constructed for an ensemble of states
	 Quantum fidelity 
	Geometrical interpretation of fidelity

	Mutual information
	Holevo quantity


	II Bounds on the Holevo quantity
	Holevo quantity and the correlation matrix
	Other inequalities for the Holevo quantity
	Some consequences

	Discussion on the Lindblad inequality
	Inequalities for other entropies
	Searching for the optimal bound
	Optimal bound for two matrices

	Jensen Shannon Divergence

	Conjecture on three–fidelity matrix
	A strategy of searching for a proof of the conjecture
	Three density matrices of an arbitrary dimension
	Three density matrices of dimension 2
	Fidelity matrix for one–qubit states
	Special case of the correlation matrix
	Hierarchy of estimations

	Fidelity bound on the Holevo quantity for a special class of states
	Proof of the fidelity bound



	III Minimal output entropy and map entropy
	Entropies for one-qubit channels
	Structure of the set of Pauli channels
	Depolarizing channels
	Transformations preserving minimal output entropy

	Davies maps for qubits and qutrits
	Quantum Markov process
	Characterization of the model
	Matrix representation of Davies maps
	Physical examples
	Minimal output entropy of Davies maps
	Multiplicativity of maximal output norm of one–qubit Davies maps
	Outline of the proof of multiplicativity
	Details of the proof of multiplicativity

	Davies maps acting on qutrits
	Logarithm of a stochastic matrix of size three


	Concluding remarks and open problems
	Appendix 1
	Appendix 2
	Bibliography


