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Abstract

The search for the quantum theory of gravity is one of the main goals of theoretical
physics. This goal will be never achieved unless a method of empirical verification of
physics at the Planck scale is found. The aim of this dissertation is to construct such
method, using observations of the cosmic microwave background radiation.

The main theoretical challenge of this dissertation is to construct theory of cosmolog-
ical perturbations, taking into account modifications due to the holonomies of Ashtekar
connection. These effects are expected due to discrete nature of space, resulting from loop
quantum gravity (LQG). The discreteness is parametrized by a single quantity ∆, which
can be related with the area gap of the area operator in LQG. As we show, this parameter
may be the subject of observational constraints.

In the canonical formulation of general relativity, the Hamiltonian is a sum of con-
straints. The main obstacle in formulating theory of cosmological perturbations, in pres-
ence of the holonomy corrections, is the problem of anomalies. Because effective con-
straints are quantum-modified, the corresponding Poisson algebra might not be closed,
leading to anomalies. In order to remove these anomalies we have introduced counter-
terms into the Hamiltonian constraint. The counter-terms are vanishing in the classical
limit while regularize anomalies in the quantum domain. We find a way to explicitly ful-
fill the conditions for anomaly freedom and we give explicit expressions for the counter-
terms. The analysis is performed for all types of cosmological perturbations: scalar, vector
and tensor (gravitational waves) modes. As we show, the requirement of anomaly free-
dom for the scalar perturbations naturally leads to the so-called µ̄−scheme (“new quan-
tization scheme”). It was also shown that obtained algebra of constraints is deformed
due to the effects of holonomies. The obtained deformation indicates that signature in
changing from Lorentzian to Euclidean one while passing to the region of high energy
densities. This unexpected result opens new possible directions for theoretical studies.

Gauge invariant variables were found for all types of perturbations. In case of the
scalar perturbations they are holonomy-corrected analogues of the classical Bardeen po-
tentials. Equations of motions for all the types or perturbations were derived. In case of
the scalar perturbations, an analogue of the Mukhanov equation was also found. This
new equation can be directly applied to study generation of scalar perturbations in the
very early universe.

Based on the obtained equations, we have studied quantum generation of gravita-
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tional waves during the Planck epoch described by loop quantum cosmology. We have
studied realization of the phase of cosmic inflation in loop quantum cosmology. The
phase of slow-roll inflation was shown to appear generically due to cosmic bounce, which
is a consequence of quantum gravity effects in the Planck epoch. The spectrum of pri-
mordial gravitational waves was computed for this model and predictions regarding the
B-type polarization of the cosmic microwave background radiation were performed. This
allowed to put observational constraints on physical conditions in the Planck epoch. A
possibility of testing the quantum gravity effects with use of cosmological observations
was shown to be available.
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Streszczenie

W pracy podjęto się skonstruowania teorii zaburzeń kosmologicznych w ramach pęt-
lowej kosmologii kwantowej. Kluczowym zadaniem było wprowadzenie poprawek od
holomomii, tak aby nie prowadziły one do anomalii w algebrze więzów. W celu rozwiąza-
nia problemu anomalii, zastosowano metodę bazującą na wprowadzeniu tak zwanych
kontr-członów. Wymaganie zamykania się algebry więzów pozwoliło na wyznaczenie
postaci kontr-członów oraz na usunięcie niejednoznaczności związanych z wprowadzaniem
poprawek od holonomii.

Rozważania przeprowadzono dla zaburzeń skalarnych, wektorowych oraz tensorowych,
na płaskiej przestrzeni Friedmana-Robertsona-Walkera (FRW). Jako materię wprowad-
zono pole skalarne. Dla wszystkich typów zaburzeń wyprowadzono równania ruchu
oraz znaleziono zmienne niezależne od wyboru cechowania. W przypadku zaburzeń
skalarnych, zmienne te są odpowiednikami potencjałów Bardeena. Wyprowadzono również
odpowiednik równania Mukhanova, uwzględniający poprawki od holonomii. W przy-
padku zaburzeń skalarnych, analiza otrzymanej algebry więzów wykazała zmianę sygrantury
metryki, z lorentzowskiej na euklidesową, w obszarze gęstości energii porównywalnych
z gęstością energii Plancka.

W oparciu o otrzymane równania dla zaburzeń tensorowych, przeanalizowano gener-
ację pierwotnych fal grawitacyjnych podczas fazy tak zwanego odbicia, przewidywanego
w ramach pętlowej kosmologii kwantowej. Pozwoliło to na wyprowadzenie widma pier-
wotnych fal grawitacyjnych i porównanie otrzymanych wyników z ograniczeniami pochodzą-
cymi z obserwacji mikrofalowego promieniowania tła. Na tej podstawie, nałożono ob-
serwacyjne ograniczenie na warunki fizyczne panujące podczas fazy odbicia. Przeprowad-
zono również analizę wpływu efektów holonomii na widmo zaburzeń skalarnych. Na tej
podstawie, wyznaczono ograniczenia odnośnie możliwości testowania efektów kwan-
towej grawitacji z wykorzystaniem obserwacji mikrofalowego promieniowania tła. Otrzy-
mane wyniki pokazują, że możliwość badania fizyki na skali Plancka staje się realna dz-
ięki wykorzystaniu najnowszych obserwacji astronomicznych.
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Chapter 1

Introduction

Modern physics has its roots in three traditions originating from the ancient Greece [1].
The first is the Platonic world view in which understanding of the Universe is built a priori
with use of mathematics. In this approach, distinguishing the most symmetric structures
leads to proper understanding of a given aspect of reality. Another tradition comes from
Plato’s student Aristotle. Aristotle world view was opposite to the Plato’s one. In partic-
ular, he argued that the understanding of the Universe should be constructed a posteriori
with respect to experiments and observations. The mathematical method played a sec-
ondary role here, and qualitative understanding of phenomenons was emphasized. The
third tradition comes from Archimedes, which, in some sense, combines the both previ-
ous viewpoints. According to Archimedes, mathematics should be used a posteriori with
respect to experiments and observations, in contrast to the Plato’s view. The method aims
to catch some aspects of reality by the mathematical model, allowing for its quantitative
understanding.

Following only one of the discussed traditions would surely have not guided physics
to its present position. Only skillful combination of the three ones may lead to deep and
firm understanding of laws governing the Universe. However, it is not always possible
to draw inspiration from the three traditions at the same time. Some ways, outlined by
the ancient philosophers, may turn out to be unaccessible.

Such a situation takes place in search for the quantum theory of gravity, which aims
to quantize gravitational degrees of freedom [2]. Present attempts to find such a theory
follow mainly the Plato’s approach. The theory is constructed a priori, guided by the
concept of mathematical beauty and self-consistency. The situation looks like this not be-
cause scientists involved in the research are pure Platonists, but because there is a very
limited possibility of a posteriori inferring here. In such a case, only very rigorous math-
ematical constructions may lead to some insight into the nature of quantum gravity. The
reason why a posteriori inferring cannot be applied yet, is the lack of any observed effects
of quantum gravity1. This comes from the fact that the quantum gravity effects are pre-
dicted to become significant at the so-called Planck scale. In particular, the quantum nature

1Or, we do not know whether they are due to the quantum gravity, e.g. cosmic acceleration.
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of spacetime is expected to be manifested at distances of the order of the Planck length,

lPl ≡
√

 hG
c3 ≈ 1.62 · 10−35 m 2. This is incredibly small quantity, even if compared with

sub-nuclear scales, currently under examination by particle accelerator experiments.
Despite this huge chasm in scales, there are some attempts to search for quantum

gravity effects indirectly (see [3] for the recent discussion). One of the most extensively
investigated approaches is based on a possible relation between the quantum gravity ef-
fects and violation of the Lorentz invariance [4]. Such an effect may lead to additional
energy dependence in the dispersion relation of a photon. As a result of this, group ve-
locity of high energy photons is a bit smaller than of low energy ones. Despite of the
fact that this effect is very small, it may accumulate on cosmological distances leading to
significant time lags of high energy photons. This effect is presently constrained with use
of the Gamma Ray Bursts (GRB). In particular, the recent results from the FERMI satellite
[5] indicate that, for the first order effects 3, the constraint on the energy scale of Lorentz

symmetry violation is EQG > 1.2 EPl. Here, EPl ≡
√

 hc5

G
≈ 1.22 · 1019GeV is the Planck

energy. Therefore, indeed the Planck scale is approached with this method. However, if
the second order effects are considered, the constraint is much weaker. Nevertheless, the
method can be used to rule out (or confirm) some models of the Planck scale physics in
the near future. This will require more statistics as well as better understanding of the
GRB emission processes.

Another possible method of gaining empirical insight into the Planck scale physics is
based on observations of the very early universe. In particular, observations of anisotropy
and polarization of the Cosmic Microwave Background (CMB) radiation are employed.
The CMB radiation is a rich source of information about high energy density state of the
Universe. One of the greatest indications resulting from the CMB observations is the
phase of cosmic inflation [6, 7]. This phase of nearly exponential expansion in the early
universe is crucial for the explanation of the spectrum of primordial cosmological pertur-
bations, determined from the CMB data. The CMB observations give us certain indica-
tions regarding the form of the primordial perturbations. One could naively suspect that
the primordial perturbations have thermal origin, because the Universe was in thermal
equilibrium at some early stages. However, this possibility is completely rejected by cur-
rent observations. While thermal fluctuations lead to the spectrum of perturbations in
the form P ∼ 1/k (white-noise spectrum), the observations of the CMB indicate that the
spectrum has a nearly scale-invariant4 form P ∼ knS−1, where nS ≈ 1 [8]. This is quite a
problematic issue since it is not so easy to find a mechanism which produces spectrum
in this form. But, there is also a good side. Namely, when we find a simple mechanism
which leads to the observed spectrum, then we are more certain about its authenticity.

2Here  h is reduced Planck constant, G is Newton’s constant and c is a speed of light in vacuum.
3In this case, group velocity of photons is given by vg ≃ c (1 − E/EQG), where EQG is the energy scale of

quantum gravity.
4In cosmology, the “scale-invariance” means simply “constant”. This definition is different from the

standard mathematical notion where the scale-invariance is a scaling property of any power-law function.
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The phase of cosmic inflation gives a simple mechanism generating primordial perturba-
tions in agreement with the CMB data.

The phase of inflation is expected to proceed in consequence of the Planck epoch. The
Planck epoch is a period in evolution of the Universe in which the quantum gravity ef-
fect played a significant role. In this epoch, the energy density of the matter content
approached the Planck energy density ρPl ≡ E4

Pl. Extrapolation of the classical cosmology
into this region leads to unphysical behavior in form of the so-called Big Bang singular-
ity. A proper (quantum gravitational) description of the Planck epoch should resolve this
problem as well as predict the phase of cosmic inflation. Therefore, observational studies
of inflation as well generation of the primordial perturbations may be used as an indirect
probe of the Planck scale physics. The analysis of the primordial perturbations generated
during the phase of inflation can tell us something about initial conditions fixed in the
Planck epoch. However, in order to obtain any reasonable predictions from the Planck
era and confront them with available data, a theory of quantum gravity is needed.

At present, the research on quantum gravity focus mainly on four approaches: Causal
Dynamical Triangulation (CDT) [9], Causal Set Theory (CST) [10], Loop Quantum Gravity
(LQG) [11] and String Theory [12]. All of them have advantages and disadvantages of
different nature. Therefore, it is difficult to favor any of them.

In this thesis we focus on LQG, which is a promising program to construct a quan-
tum theory of gravity a priori. A symmetry of general covariance is employed here as a
guiding principle for the applied method of quantization. A general covariance, called
also invariance with respect to local diffeomorphisms, is a symmetry behind the classical
theory of gravity, the General Relativity (GR). Predictions of GR were verified by many
observational tests and no deviation from the general covariance was noticed [13]. The
LQG program assumes that this symmetry is preserved also at the quantum level. Clas-
sically, the general covariance means background independence. No spacetime reference
frame is distinguished by the theory. At the quantum level of LQG, this relativity is em-
bedded in the mathematical structure of an abstract graph called spin network [14]. The
spin network is a collection of links labeled by half-integer spin labels and joined by ver-
tices. The vertices are additionally labeled by intertwiners. The links represent relations
between different atoms of space located at the vertices, as presented in Fig. 1.1. The area
of a given surface S can be computed, based on the spin network state, with use of the
formula [15]

Ar[S] = 8πl2Plγ
∑

i

√
ji(ji + 1), (1.1)

where γ is a free parameter of LQG, known as the Barbero-Immirzi parameter. In Eq.
1.1, the summation runs over the links crossing the surface S. It is worth stressing that
the area is a function of discrete parameters ji, which reflects grainy nature of space. The
minimal area is obtained when S is crossed by one link with the spin label j = 1/2. In that
case we get expression for the area gap: ∆ = 4

√
3πl2Plγ.

The Loop Quantum Cosmology (LQC) [16, 17, 18] is a symmetry reduced model of
LQG. In particular, by imposing symmetries of homogeneity and isotropy, the gravita-
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Figure 1.1: An abstract spin network with the corresponding atoms of space.

tional field is parametrized by a single quantity, the so-called scale factor. This, so-called
Friedmann-Robertson-Walker (FRW) model, was extensively studied in LQC, leading to
profound results. The first of them was avoidance of the cosmological singularity due to
the quantum repulsion [19, 20]. The classical Big Bang singularity was replaced by the non-
singular Big Bounce transition between contracting and expanding universe. The second
was an indication that the phase of cosmic inflation may be due to the quantum gravity
effects [21]. Both results were obtained for the model with a free scalar field.

The dynamics of LQC can be studied at the effective level by introducing quantum
gravitational corrections into the gravity and matter Hamiltonians. In general, two types
of corrections are considered: inverse volume corrections and holonomy corrections. The is-
sues of singularity resolution and inflation were addressed in case of the both types of
corrections. If was shown that, the singularity can be avoided either due to the first or the
second type of corrections. In case of the inverse volume corrections, the singularity is

avoided because the inverse volume operator 1̂/V is bounded [19]. In case of the holon-
omy corrections, the dynamics is nonsingular because the curvature operator is bounded
[22]. Both effects are results of discreteness of space at the Planck scale. For the FRW
model, this discreteness is embedded in the form of a regular cubic lattice with elemen-
tary lattice spacing λ. For such a model, energy density of matter cannot exceed the
critical value [22]

ρc =
3

8πGγ2λ2
. (1.2)

Usually, the value of λ is fixed from the value of area gap ∆ of the area operator in LQG,

then λ =
√
∆. However, in general, the parameter λ can be considered as a free parameter

of the model.
Both types of quantum corrections in LQC led to the phase of super-inflation for the

model with a free scalar field. However, the phases of super-inflation obtained are not
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long enough to explain spectrum of primordial perturbations. However, the situation
changes when potential of the scalar field is added. For a model with the holonomy cor-
rections and the massive scalar field, realization of the inflationary phase was studied in
[23]. It was shown there, that the phase of cosmic bounce leads to proper initial condi-
tions for the inflationary phase. These results were later approved by exploring the whole
parameter space and by calculating the probability of inflation [24, 25]. It was shown that
the probability of inflation, with at least N = 65 e-folds, is very close to one. Therefore,
the phase of inflation is generic in this model. It is in contrast with the classical case
where the probability of inflation is suppressed by the factor e−3N [26]. The appropriately
long inflation obtained in LQC, with a massive scalar field, gives possibility to obtain a
spectrum of primordial perturbations in agreement with the CMB data.

The generation of primordial fluctuations can be studied with use of the theory of
cosmological perturbations [27]. In the classical theory of cosmological perturbations the
spacetime metric gµν is used as a perturbative variable. The metric is decomposed for
background and perturbation parts, gµν = ḡµν + δgµν, where consistency of the per-
turbative expansion is fulfilled by the requirement: |δgµν/ḡµν| ≪ 1. In case of the flat
(k = 0) FRW background, metric perturbations can be decomposed according to their
spin as follows [28]:

gµν = a2

(
-1 0
0 δab

)

︸ ︷︷ ︸
FRW k=0 background

+a2

(
−2φ ∂aB

∂aB −2ψδab + ∂a∂bE

)

︸ ︷︷ ︸
scalar (s=0)

+ a2

(
0 Sa
Sa Fa,b + Fb,a

)

︸ ︷︷ ︸
vector (s=1)

+a2

(
0 0
0 hab

)

︸ ︷︷ ︸
tensor (s=2)

.

Here, a is the scale factor. Furthermore, perturbation variables (φ,ψ,E,B, Fa, Sa,hab)

fulfill the following conditions:

∂ahab = 0 (transverse) and δabhab = 0 (traceless),

Fa,a = 0 (divergence free) and Sa,a = 0 (divergence free).

Taking these conditions into account, there is in total 10 perturbative degrees of freedom,
as expected for a symmetric 4 × 4 matrix.

In this thesis, we address the issue of cosmological perturbations in the canonical
framework of LQC. In this approach the gravity sector is parametrized by the Ashtekar
variables (Eai ,Ai

a) [29]. Therefore, instead of perturbing metric gµν, we will perturb the
Eai and Ai

a variables as follows:

Ai
a = Āi

a + δAi
a, (1.3)

Eai = Ēai + δEai . (1.4)

Moreover, conditions |δAi
a/Ā

i
a| ≪ 1 and |δEai /Ē

a
i | ≪ 1 ensure validity of the perturbative

expansion. The theory of cosmological perturbation will be constructed at the level of
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Hamiltonian. In this procedure, the matter Hamiltonian will be also a subject of pertur-
bative expansion. In our considerations, we will focus on the model with a scalar field,
which is relevant for description of the inflationary universe.

The main difficulty in formulating theory of cosmological perturbations in LQC is the
problem of anomalies. In the canonical formulation, employed in LQC, the total Hamilto-
nian is a sum of constraints. At the classical level, these constraints form a closed algebra.
However, the algebra of the quantum-modified effective constraints Ceff

I might not be
closed, leading to anomalies:

{Ceff
I ,Ceff

J } = fKIJ(A
j
b,Eai )C

eff
K + anomalies, (1.5)

where fKIJ(A
j
b,Eai ) are some structure functions. The necessary consistency condition is a

requirement of vanishing of the anomaly terms. The possible quantum corrections must
be therefore restricted to those which close the algebra. This issue, in case of perturbations
with inverse volume corrections, was studied in numerous papers [30, 31, 32, 33, 34]. It
was shown that the requirement of anomaly freedom can be fulfilled for the first order
perturbation theory. This was derived for scalar [31, 32], vector [33] and tensor pertur-
bations [34]. It is worth mentioning that, for the tensor perturbations, the anomaly free-
dom is automatically satisfied. In case of the vector and scalar perturbations, the condi-
tions of anomaly freedom lead to certain restrictions on the form of the quantum correc-
tions. Based on the obtained anomaly-free formulation of the scalar perturbations, pre-
dictions regarding the power spectrum of the cosmological perturbations were obtained
[35]. These predictions were confronted with the CMB data, giving some constraints on
the parameters of the model [36, 37].

The aim of this dissertation is to construct an anomaly-free theory of cosmological per-
turbations with holonomy corrections. Our approach will follow the method of counter-
terms developed in case of the inverse volume corrections [31]. In case of the tensor pertur-
bations with holonomy corrections, the algebra of constraint is directly anomaly-free, as
in case with the inverse volume corrections [34]. The cases of vector and scalar perturba-
tions are however far from trivial. So far, it was shown in [33] that the holonomy-corrected
vector perturbations can be anomaly-free up to the fourth order in the canonical variable
k̄. This, however, is not sufficient to perform the analysis of propagation of vector modes
through the cosmic bounce. Vector perturbations with higher order holonomy corrections
were also recently studied [38]. It was shown there that, in this case, an anomaly-free
formulation can be found for the gravitational sector. In this thesis, we apply a differ-
ent method, which is based on the introduction of the counter-terms in the Hamiltonian
constraint. We show that conditions of anomaly freedom for the vector perturbations
with holonomy corrections can be fulfilled. The scalar perturbations with holonomy cor-
rections have been studied in [39]. However, the issue of anomaly freedom was not re-
ally addressed. Recently, a new possible way of introducing holonomy corrections to
the scalar perturbations was proposed in [40]. Although it was interestingly shown that
the formulation is anomaly-free, the approach is based on the choice of the longitudinal
gauge and the extension of the method to the gauge-invariant case is not straightforward.
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In contrast, the approach developed in this thesis does not rely on any particular choice of
gauge and the gauge-invariant cosmological perturbations are constructed. The obtained
anomaly-free theory of cosmological perturbations with holonomy corrections will allow
us to perform predictions regarding the anisotropy and polarization of the CMB radia-
tion. Based on this, observational insight into the Planck epoch will be reached.

The organization of this thesis is the following. In Chapter 2, the Hamiltonian formu-
lation of General Relativity, in language of Ashtekar variables, is introduced. Then, the
issues of holonomy corrections and the anomaly freedom are discussed. The equations of
motion for the background part are derived. In Chapter 3, we use these equations to study
dynamics of the universe in the Planck epoch. We focus on the model with a massive
scalar field. This enables to study realization of the inflationary phase in the framework
of LQC. Based on the obtained background dynamics, evolution of perturbations will be
studied in the subsequent chapters. The classical theory of cosmological perturbations, in
the Hamiltonian framework, is constructed in Chapter 4. Based on this, a theory of cos-
mological perturbations with the holonomy corrections will be constructed. In Chapter
5, quantum fluctuations of the scalar field are investigated for the background dynamics
predicted in LQC. Some methods of the quantum field theory on curved backgrounds,
used to describe quantum generation of the primordial perturbations, are introduced. In
Chapters 6, 7 and 8, theory of cosmological perturbations with the holonomy corrections
is studied in case of tensor, vector and scalar perturbations respectively. The obtained
predictions are confronted with observational data in Chapter 9. The results obtained in
this thesis are summarized in Chapter 10. Finally, Chapter 11 contains appendixes with
detailed derivations of some useful formulas.
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Chapter 2

Preliminaries

A great achievement of Einstein’s theory of gravity (General Relativity) was to merge
space and time into one dynamical object called spacetime. The concept of spacetime
turned out to be very fruitful and gripped imaginations of the twenty century physicists.
It was mainly because a geometrical picture of gravity, which emerged from the Einstein’s
theory, was very intuitive. The concept of spacetime have played invaluable role in the
development of modern physics. Despite this, there are more and more indications that
time and space are in fact quite different objects. In particular, such picture is emerging
from loop quantum gravity [2, 11, 41], which is based on the Hamiltonian formulation of
General Relativity.

In this chapter, the so-called ADM (Arnowitt-Deser-Misner) decomposition of space-
time is introduced. Based on this, the Hamiltonian formulation of the Einstein’s the-
ory of gravity, in the language of the Ashtekar variables, is constructed. The concept of
holonomies, employed in LQG, is defined. Based on this, the so-called holonomy correc-
tions are discussed. Taking into account these corrections, equations of motion for the
FRW model are derived. A problem of anomalies in the algebra of effective constraints is
formulated. The notation employed in the thesis is fixed in this chapter.

2.1 General Relativity

Classical theory of gravity, the General Relativity, describes gravitational interactions by
a symmetric tensor field gµν, the so-called metric field. The metric gµν field is defined on
the manifold M of dimension D = dimM. The manifold M is called spacetime and the
spacetime indices run over the range µ,ν = 0, 1, 2, ...,D− 1. Due to the symmetricity, the
field gµν hasD(D+1)/2 independent components. In what follows, we consider only the
four dimensional spacetime D = 4, in agreement with everyday experience. In this case,
the gravitational field gµν has 10 degrees of freedom.

Metric is used to define line element between two space-time points:

ds2 = gµνdx
µdxν. (2.1)
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In case of flat spacetime, the metric takes the following form gµν = diag(−1,+1,+1,+1),
which fixes convention employed in this thesis.

Equations of motion for the metric field, the so-called Einstein equations, can be de-
rived by varying the action

S =

∫

dtL =
1

2κ

∫

M

d4x
√

detgR+
1

κ

∫

M

d4x
√

detgΛ+ Sm (2.2)

where κ = 8πG and G = 6, 67257(85) · 10−11m3kg−1s−2 is the Newton’s constant and Λ is
the cosmological constant. The first contribution is Eq. 2.2 is the so-called Hilbert-Einstein
action, where R is the Ricci scalar. The second contribution is the cosmological constant
term and the last part is the matter action.

The symmetry underlying the action (2.2) is invariance with respect to the local diffeo-
morphisms, also called general covariance. It means that, action (2.2) remains unchanged
under the infinitesimal transformation of coordinates

xµ → xµ + ξµ. (2.3)

In order to pass from the Lagrangian formulation (2.2) to the Hamiltonian formula-
tion, decomposition of M into space and time parts is required. Such step is necessary
in order to define velocities. This can be achieved by virtue of the Arnowitt-Deser-Misner
decomposition.

2.2 Arnowitt-Deser-Misner decomposition

The Arnowitt-Deser-Misner (ADM) decomposition is a split of the hyperbolic manifold M

onto space and time parts. After decomposition, M = R× Σ, where Σ is the spatial, three
dimensional submanifold. The decomposition can be viewed as foliation of the spacetime
M for the spatial slices Σt, where t ∈ R.

In the ADM decomposition, the metric field is parametrized by three variables (N,Na,qab)

in the following way:

gµν =

(
−N2 + qabN

aNb Nb

Na qab

)
, (2.4)

therefore the line element

ds2 = gµνdx
µdxν = −(Ndt)2 + qab(N

adt+ dxa)(Nbdt+ dxb). (2.5)

The N is a scalar function called lapse function, so it has 1 degree of freedom. Th Na

is a vector called shift vector, having 3 degrees of freedom. The spatial metric qab is a
symmetric field on Σ with 6 degrees of freedom. Adding the degrees of freedom we
have 1 + 3 + 6 = 10. Therefore, the initial number of metric degrees of freedom remain
unchanged. One can also find the inverse of metric gµν

gµν =

(
−1/N2 Nb/N2

Na/N2 qab −NaNb/N2

)
, (2.6)
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such that gµαg
αν = δνµ.

In Fig. 2.1 we show graphical interpretation of the shift vector and the lapse function.
The two spatial hypersurfaces Σt and Σt+dt are presented. Let nµ be a unit vector normal

Figure 2.1: Graphical interpretation of the lapse function N and the shift vector Na.

to the hypersurface Σt, so gµνn
µnν = −1. Let us consider this vector at the spacetime

point a = (t, xa). By multiplying nµ by the factor Ndt we get the vector which intersects
Σt+dt in the point b. From this point one can move to the point c = (t + dt, xa) by
performing the space shiftNadt. Passing from c to d = (t+dt, xa+dxa) is given by dxa.

One can show that, with use of the vector nµ, the spatial metric can be induced from
gµν as follows:

qµν = gµν + nµnν. (2.7)

Based on the normal vector nµ and the induced metric qµν one can define the extrinsic
curvature as follows:

Kµν = qρµq
σ
ν∇ρnσ. (2.8)

In can be shown that, spatial part of extrinsic curvature (2.8) is expressed as follows:

Kab =
1

2N

(
∂qab

∂t
−DaNb −DbNa

)
, (2.9)

where Da is a spatial covariant derivative. The Kab will be one of the building blocks in
the construction of the Ashtekar variables.

2.3 Ashtekar variables

One of the main ideas leading to the Ashtekar variables is expressing the spatial metric
qab as follows:

qab = eiae
j
bδij, (2.10)
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where eia are so-called co-triads, which are 3 × 3 matrices. One can also define triads
eai , such that the following relations between triads and co-triads are fulfilled: eaj e

i
a = δij

and eai e
i
b = δab. An important property of expression (2.10) is the invariance under the

three dimensional rotations in the i, j, k, ... = 1, 2, 3 indices. Namely, performing rotation
eia → Ri

je
j
a, we obtain

qab → Ri
ke

k
aR

j
le

l
bδij = e

k
ae

l
b R

i
kR

j
lδij︸ ︷︷ ︸

=δkl

= qab, (2.11)

because Ri
j ∈ SO(3). This new internal symmetry, related with parametrizing a gravita-

tional field by co-triads, is crucial for the construction of loop quantum gravity. In LQG
the SU(2) group, which is the double cover of SO(3), is usually considered. This is be-
cause quantization of gauge theories with the compact Lie groups, as SU(2), was much
better understood so far. In the Hamiltonian formulation, the SU(2) symmetry will be
embedded in the Gauss constraint

Based on the co-triads field one can define the so-called densitized triad variable

Eai := sgn(det e)
1

2
ǫabcǫijke

j
be

k
c , (2.12)

where for the sake of simplicity we call det e := det(eia), which is determinant of the co-
triad field. By direct calculation (see Appendix 11.1.1) one can also show that equivalently

Eai = |det e|eai . (2.13)

It will be also useful to introduce densitized co-triad, as follows

Eia :=
1

|det e|
eia. (2.14)

Based on the properties of triads and co-triads we find Eaj E
i
a = δij and Eai E

i
b = δab. With

use of relation detE = |det e|3 det(eai ) = |det e|2sgn(det e), where detE = det(Eai ), the
triad variable can be expressed in terms of densitized triad:

eai =
Eai√
|detE|

. (2.15)

One can also prove (see Appendix 11.1.2) that

eia =
1

2

sgn(detE)ǫabcǫ
ijkEbj E

c
k√

|detE|
. (2.16)

In the previous section we introduced an extrinsic curvature Kab (2.9). Based on this
quantity we define

Ki
a :=

KabE
b
j δ

ij

√
|detE|

. (2.17)
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With use of Ki
a we define the Ashtekar connection:

Ai
a := Γ ia + γKi

a, (2.18)

where γ is the Barbero-Immirzi parameter and Γ ia is a spin connection

Γ ia = −ǫijkebj

(
∂[ee

k
b] +

1

2
ecke

l
a∂[ce

l
b]

)
. (2.19)

The connection Ai
a and densitized triad Eai are called Ashtekar variables and form a

canonically conjugated pair
{
Eaj (x),A

i
b(y)

}
= κγδabδ

i
jδ(x − y), (2.20)

where the Poisson bracket is defined as follows

{·, ·} := κγ
∫

Σ

d3z

[
δ·

δAj
b(z)

δ·
δEbj (z)

−
δ·

δEbj (z)

δ·
δAj

b(z)

]
. (2.21)

In terms of the Ashtekar variables (Ai
a,Eai ), the theory of gravity can be viewed as a

gauge theory with the SU(2) symmetry group. In particular, comparing with electromag-
netic U(1) gauge field, Ai

a is an analogue of the vector potential A and Eai is an analogue
of the electric field E. However, the Hamiltonian of the gravity is much different than in
case of the Yang-Mills theory.

2.4 Hamiltonian

In the canonical formulation of General Relativity, the Hamiltonian is a sum of con-
straints. In particular, in the framework of Ashtekar variables, the Hamiltonian is a sum
of three constraints [11, 41]:

HG[N
i,Na,N] =

1

2κ

∫

Σ

d3x
(
NiCi +N

aCa +NC
)
≈ 0, (2.22)

where (Ni,Na,N) are Lagrange multipliers, Ci is called the Gauss constraint, Ca is a
diffeomorphism constraint, and C is the Hamiltonian (scalar) constraint. The sign "≈"
means equality on the surface of constraints (i.e. weak equality). Functional expressions
for the constraints are the following

Ci =
2

γ
DaE

a
i =

2

γ

(
∂aE

a
i + ǫijkA

j
aE

a
k

)
, (2.23)

Ca =
2

γ

(
Ebi F

i
ab −Ai

aCi

)
, (2.24)

C =
Eai E

b
j√

|detE|

[
εijkF

k
ab − 2(1 + γ2)Ki

[aK
j
b]

]
, (2.25)
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where the curvature of the Ashtekar connection

Fiab = ∂aA
i
b − ∂bA

i
a + ǫijkA

j
aA

k
b. (2.26)

One can also define the corresponding smeared constraints as follows:

C1 = G[Ni] =
1

2κ

∫

Σ

d3x NiCi, (2.27)

C2 = D[Na] =
1

2κ

∫

Σ

d3x NaCa, (2.28)

C3 = S[N] =
1

2κ

∫

Σ

d3x NC, (2.29)

that is such that HG[N
i,Na,N] = G[Ni] + D[Na] + S[N]. The Hamiltonian is a total con-

straint which is vanishing for all multiplier functions (Ni,Na,N).
Because HG[N

i,Na,N] ≈ 0 at all times, the time derivative of the Hamiltonian con-
straint is also weakly vanishing, ḢG[N

i,Na,N] ≈ 0. The Hamilton equation

ḟ = {f,HG[M
i,Ma,M]} (2.30)

therefore leads to {
HG[N

i,Na,N],HG[M
i,Ma,M]

}
≈ 0, (2.31)

which, when explicitly written, means:
{
G[Ni] +D[Na] + S[N],G[Mi] +D[Ma] + S[M]

}
≈ 0.

Due to the linearity of the Poisson bracket, one can straightforwardly find that the condi-
tion (2.31) is fulfilled if the smeared constraints belong to a first class algebra

{CI,CJ} = f
K
IJ(A

j
b,Eai )CK. (2.32)

In (2.32), the fKIJ(A
j
b,Eai ) are structure functions which, in general, depend on the phase

space (Ashtekar) variables (Aj
b,Eai ). The algebra of constraints is fulfilled at the classi-

cal level due to general covariance. To prevent the system from escaping the surface of
constraints, leading to unphysical behavior, the algebra must also be closed at the quan-
tum level. In addition, it was pointed out in [42] that the algebra of quantum constraints
should be strongly closed (off shell closure). This means that the relation (2.32) should hold
in the whole kinematical phase space, and not only on the surface of constraints (on shell
closure). This should remain true after promoting the constraints to quantum operators.

2.5 Anomalies

At the effective level, the constraints CI are subject of some quantum corrections. Because
of this, the algebra of the effective constraints might not be closed

{Ceff
I ,Ceff

J } = gKIJ(A
j
b,Eai )C

eff
K +AIJ, (2.33)
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where gKIJ(A
j
b,Eai ) are structure functions, which can be different from those in the clas-

sical case (2.32). Such a difference would mean modification of the underlying general
covariance. The AIJ is the anomaly term.

In order to keep the system at the surface of constraints, the anomaly term AIJ should
vanish. The condition AIJ = 0 implies some restrictions on the form of the quantum
corrections.

2.6 Holonomies

In LQG the gravitational degrees of freedom are parametrized by holonomies and fluxes
(which are functionals of the Ashtekar variables). These are non-local functions used
to construct background independent quantum theory of gravity. The holonomies and
fluxes are non-trivial SU(2) variables satisfying the holonomy-flux algebra. For the pur-
pose of this thesis we need to focus only on holonomies of the Ashtekar connection.

The holonomy of the Ashtekar connection Ai
a along the curve e ⊂ Σ is defined as

follows

he = P exp

∫

e

Ai
aτidx

a, (2.34)

where τi = − i
2
σi (σi are the Pauli matrices) and [τi, τj] = ǫijkτ

k. The P is a path-ordering
operator.

In general, holonomies are complicated functions of the Ashtekar connections inte-
grated along the curve e. However, in the highly symmetric spaces, like the FRW model,
expression for the holonomies take a simple form.

2.7 Homogeneous cosmological model

In this section we will investigate homogenous and isotropic flat FRW model in the
Hamiltonian formulation. This model will serve as a background while considering the
perturbations. The line element for this model takes the following form

ds2 = −N2dt2 + qabdx
adxb (2.35)

where
qab = a2(t)δab = eiae

j
bδij := a

2(t)oeia
oejbδij. (2.36)

The shift vector is vanishing. Based on (2.36), we find expression on the co-triads and
triads:

eia = aδia, (2.37)

eai =
1

a
δai . (2.38)
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With use of definition of the Ashtekar variables, we find

Ai
a = γk̄δia, (2.39)

Eai = p̄δai , (2.40)

where we have defined p̄ = a2 and k̄ = ȧ.
Volume of the flat R3 space is infinite. Therefore, all the expressions proportional to

positive powers of volume diverge. In order to tackle with this problem we will restrict
spatial integration into the so-called fiducial volume V0. Physical volume of this subspace
can be expressed as follows:

V =

∫

V0

d3y
√

|detE(y)| = V0p̄
3/2. (2.41)

The Poisson bracket (2.21) for the considered FRW model simplifies to

{·, ·} = κ

3V0

(
∂·
∂k̄

∂·
∂p̄

−
∂·
∂p̄

∂·
∂k̄

)
, (2.42)

therefore {
k̄, p̄

}
=

κ

3V0

. (2.43)

2.7.1 Elementary holonomy

Let us now consider a holonomy in a direction oeak∂a and coordinate length µ̄ = µV
1/3
0 ,

where µ is a dimensionless parameter. With use of definition (2.34) and expression on the
Ashtekar connection for the FRW model, we find

hk = eµ̄γk̄τk = e−iµ̄γk̄
σk

2 =

∞∑

n=0

1

n!

(
−i
µ̄γk̄

2
σk

)n

=

∞∑

n=0

(−1)n

(2n)!

(
µ̄γk̄

2

)2n

σ2n
k − i

∞∑

n=0

(−1)n

(2n+ 1)!

(
µ̄γk̄

2

)2n+1

σ2n+1
k

= I cos

(
µ̄γk̄

2

)
− i sin

(
µ̄γk̄

2

)
σk

= I cos

(
µ̄γk̄

2

)
+ 2 sin

(
µ̄γk̄

2

)
τk. (2.44)

Inversion of the holonomy hk can be easily found

(hk)
−1 = e−µ̄γk̄τk = I cos

(
µ̄γk̄

2

)
− 2 sin

(
µ̄γk̄

2

)
τk. (2.45)
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2.7.2 A loop

The elementary holonomy we investigated in the previous subsection can be now em-
ployed to compute holonomy along the closed curve α = �ij. This curve is schematically
presented on the diagram below.

-

6

�

?

-

�

6
?

oeai ∂a

oeaj ∂a

−oeai ∂a

−oeaj ∂a

hi

hj

h−1
i

h−1
j

This holonomy can be written as

h�ij
= hihjh

−1
i h

−1
j

= eµV
1/3
0 Aa

oea
i eµV

1/3
0 Aa

oea
j e−µV

1/3
0 Aa

oea
i e−µV

1/3
0 Aa

oea
j

= exp
[
µ2V

2/3
0 Al

aA
m
b

oeai
oebj [τl, τm] + O(µ3)

]

= I+ µ2V
2/3
0 Fkabτk

oeai
oebj + O(µ3), (2.46)

where we have used Baker-Campbell-Hausdorff formula and the fact that, for the flat

FRW model, the field strength simplifies to the form Fkab = ǫkijA
i
aA

j
b. Now, the equation

(2.46) can be simply rewritten to the form

Fkab = −2 lim
µ→0

tr
[
τk
(
h�ij

− I
)]

µ2V
2/3
0

oeia
oejb. (2.47)

The trace in this equation can be calculated with use of the definition (2.44 ) and properties
of the τi matrices, one finds

tr
[
τk
(
h�ij

− I
)]

= −
ǫkij

2
sin2

(
µ̄γk̄

)
. (2.48)
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2.7.3 Hamiltonian

The LQG Hamiltonian is obtained by re-expressing Hamiltonian (2.22) in terms of fluxes
and holonomies. Our purpose is to construct a symmetry reduced model, which will
capture some features of LQG. Such treatment is phenomenological in its nature. How-
ever, this approach will enable us to study some possible consequences of LQG, which
are technically hard to investigate in the full theory. This will be achieved by introducing
the effect of holonomies.

Because for the homogeneous models Ki
a = 1

γ
Ai

a, the Hamiltonian (2.22) simplifies to

HG[N] = −
1

γ2

1

16πG

∫

Σ

d3x
N√
|detE|

Eai E
b
j ǫ

ij
k F

k
ab. (2.49)

Applying the classical identity (see Appendix 11.1.3)

1√
|detE|

Eai E
b
j ǫ

ij
k F

k
ab =

1

4πGγ
ǫabc{Ai

c,V}Fabi, (2.50)

and the trace of a product of the SU(2) variables we find

HG[N] =
1

32π2G2

1

γ3

∫

Σ

d3xNǫabctr [Fab{Ac,V}] . (2.51)

Regularization of this Hamiltonian can be performed with use of expressions

oeak{Aa,V} ≈ −
1

µV
1/3
0

hk{h
−1
k ,V} (2.52)

and (2.46):

h�ij
≈ I+ µ2V

2/3
0 Fkabτk

oeai
oebj , (2.53)

where the fiducial triad oeai is dual to the fiducial co-triadoeia. Here µV
1/3
0 is the coordinate

length of the path along which the elementary holonomy hi is calculated. The µ is a
dimensionless parameter which controls the length. In the limit µ → 0, Eqs. (2.52) and
(2.53) become equalities. Combining Eq. (2.52) and Eq. (2.53) one can write

ǫijktr
[
h�ij

hk{h
−1
k ,V}

]
= −µ3V0ǫ

ijkoeai
oebj

oecktr [Fab{Ac,V}] . (2.54)

Based on this relation with ǫijkoeai
oebj

oeck = ǫabc and restricting spatial integration to the
fiducial volume V0, one can regularize Eq. (2.51) into the form

H
(µ̄)

G = −
NV0

32π2G2γ3µ̄3

∑

ijk

ǫijktr
[
h�ij

hk{h
−1
k ,V}

]
,

(2.55)
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The classical unmodified Hamiltonian of the FRW model can be recovered from limµ̄→0H
(µ̄)

G =

HG.
Inserting the elementary holonomy and its inversion into the Hamiltonian [Eq. (2.55)].

Next, we find that

hk

{
(hk)

−1,V
}
= hk4πG

√
p̄
∂

∂k̄
(hk)

−1 = −4πGγµ̄
√
p̄τk. (2.56)

To get this relation we have used the definition of the Poisson bracket and the equality
τ2
k = −1

4
I. Then, making use of Eq. (2.56) turns the Hamiltonian, Eq. (2.55), into

H(λ)
g =

NV0

√
p̄

8πGγ2µ̄2

∑

ijk

ǫijktr
[
h�ij

τk
]

. (2.57)

At this stage, the relation

tr
[
h�ij

τk
]
= −

ǫijk

2
sin2(µ̄γk̄) (2.58)

can be applied to get

∑

ijk

ǫijktr
[
h�ij

τk
]

= −
1

2
sin2(µ̄γk̄)

∑

ijk

ǫijkǫijk

= −3 sin2(µ̄γk̄). (2.59)

Finally, inserting Eq. (2.59) into Eq. (2.57) gives

H
(µ̄)

G = −
3NV0

8πG

√
p̄

(
sin(µ̄γk̄)

µ̄γ

)2

= −
3NV0

8πG

√
p̄K[1]2, (2.60)

where, for the sake of simplicity, we introduced the notation

K[n] :=






sin(nµ̄γk̄)

nµ̄γ
for n ∈ Z/{0},

k̄ for n = 0,

(2.61)

for the holonomy correction function.
The (2.60) is holonomy-corrected gravity Hamiltonian of the FRW model. The classical

limit is recovered by shrinking the length µ̄ to zero.

2.7.4 Equations of motion

The total Hamiltonian is the sum of gravity and matter Hamiltonians:

Htot = H
(µ̄)

G +Hm. (2.62)
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The corresponding equations of motion for the conjugated p̄ and k̄ variables are

˙̄p = {p̄,Htot} = N2
√
p̄(K[2]), (2.63)

˙̄k = {p̄,Htot} = −
N√
p̄

[
1

2
(K[1])2 + p̄

∂

∂p̄
(K[1])2

]
+

κ

3V0

(
∂Hm

∂p̄

)
. (2.64)

By choosing N = 1, the dot “·” sign corresponds to the differentiation with respect to the
coordinate time t.

Energy density of the matter field is given by

ρ :=
1

V0p̄3/2

∂Hm

∂N
. (2.65)

By combining the Hamiltonian constraint Htot ≈ 0 and equation (2.63) we find the
modified Friedmann equation

H2 =
κ

3
ρ

(
1 −

ρ

ρc

)
, (2.66)

where the Hubble factor H is defined as follows

H :=
1

2p̄

dp̄

dt
=
ȧ

a
(2.67)

and

ρc =
3

κµ̄2γ2p̄
(2.68)

is the critical energy density.
As it is clear from the form of equation (2.66), there is no physical evolution for ρ > ρc,

because that would mean H2 < 0. Therefore, due to the effects of holonomies, dynamics
is non-singular. The classical Big Bang singularity is replaced by the nonsingular Big
Bounce. The maximal energy density ρc is reached at the bounce. At this point, the value
of the Hubble parameter is equal zero, H = 0. Therefore, the bounce is a transition point
between the contracting (H < 0) and expanding (H > 0) periods.

2.8 Holonomy corrections

In LQC, quantum gravity effects are introduced by the holonomies of Ashtekar connec-
tion. This replacement is necessary because connection operators do not exist in LQG.
The holonomy corrections arise while regularizing classical constraints, by expressing
the Ashtekar connection in terms of holonomies. In particular, the regularization of the

curvature of the Ashtekar connection Fiab leads to the factor
(

sin(µ̄γk̄)

µ̄γ

)2

, which simplifies

to k̄2 in the classical limit µ̄→ 0. However, the Ashtekar connection does not appear only
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because of Fiab: in the classical perturbed constraints, terms linear in k̄ are also involved.
In principle, such terms should be holonomy-corrected. However, there is no direct ex-
pression for them, analogous to the regularization of the Fiab factor. Nevertheless, one can
naturally expect that k̄ factors are corrected by the replacement

k̄→ sin(nµ̄γk̄)

nµ̄γ
, (2.69)

where n is some unknown integer. It should be an integer because, when quantizing the
theory, the eiγk̄ factor is promoted to be a shift operator acting on the lattice states. If n
was not an integer, the action of the operator corresponding to einγk̄ would be defined in a
different basis. Another issue is related with the choice of µ̄, which corresponds to the so-
called lattice refinement. Models with a power-law parametrization µ̄ ∝ p̄β were discussed
in details in the literature. While, in general, β ∈ [−1/2, 0], it was pointed out that the
choice β = −1/2 is favored [43]. This particular choice is called the µ̄−scheme (new
quantization scheme). In this thesis, we will find additional support for this quantization
scheme.

Motivation of the domain of the parameter β comes from the investigation of the lat-
tice states in LQC. A number of the lattice blocks is expressed as N = V0/l

3
0 where l0 is

the average coordinate length of the lattice edge. This value is connected to the earlier
introduced length µ̄, namely N = µ̄−3(p̄). During the evolution an increase of the total
volume is due to the increase of spin labels on the graph edges or due to the increase of
the number of vortices. In this former case the number of lattice blocks is constant during
the evolution, N = const. Otherwise, when the spin labels do not change, the number of
vortices scales with the volume, N ∝ p̄3/2. Therefore, for the physical evolution the power
index lies in the range [0, 3/2]. Applying the definition of N we see that the considered
boundary values translate to the domain of β introduced earlier, β ∈ [−1/2, 0].

A proportionality factor in the relation µ̄ ∝ p̄β is an another issue to be fixed. In
order to do so, let us consider physical area of the loop around which the holonomy was
derived. The physical area is Ar� = (µ̄a)2 = p̄µ̄2. For the µ̄−scheme µ̄ ∝ p̄−1/2, so
Ar� = const. Therefore, in the µ̄−scheme, a physical area of the elementary lattice cell
is constant. This area can be related with the physical lattice spacing λ, then µ̄ = λ/

√
p̄

and Ar� = λ2. It is expected that λ ∼ lPl, because of the quantum gravitational origin
of discretization. The lattice spacing λ can be fixed by assuming that λ2 = ∆, where ∆ is
the area gap in LQG. However, in general, the value of λ should be considered as a free
parameter to be fixed observationally.

In what follows, introduction of holonomy corrections is performed by replacing k̄→
K[n]. However, factors k̄2 are simply replaced by K[1]2, because they arise from the cur-
vature of the Ashtehar connection. For the linear terms, the integers are parameters to be
fixed.
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Chapter 3

Planck epoch and cosmic inflation

The phase of cosmic inflation was historically introduced in order to explain the horizon
of flatness problems in cosmology [6]. At present, the main motivation for the phase of
inflation comes from observations of the cosmic microwave background radiation. The
CMB data indicate that the power spectrum of primordial perturbations was nearly flat,
in agreement with what is predicted from the phase of inflation. In this chapter, we study
the realization of the phase of inflation in the framework of LQC with the holonomy
corrections.

3.1 Inflation in loop quantum cosmology

In general, many different evolutionary scenarios are possible within the framework of
LQC. However, all of them have a fundamental common feature, namely the cosmic
bounce. As we will show, the implementation of a suitable matter content also gener-
ically leads to a phase of inflation. This phase is nearly mandatory in any meaningful
cosmological scenario since our current understanding of the growth of cosmic structures
requires inflation in the early universe. It is therefore important to study the links between
the inflationary paradigm and the LQC framework, as emphasized, e.g., in [24].

The demonstration that a phase of super-inflation can occur due to quantum gravity
effects was one of the first great achievements of LQC [21]. This result was based on
the so-called inverse volume corrections. It has however been understood that such cor-
rections exhibit fiducial cell dependence, making the physical meaning of the associated
results harder to understand. As discussed earlier, other corrections also arise in LQC,
due to the so-called holonomy terms, which do not depend on the fiducial cell volume.
Those corrections lead to a dramatic modification of the Friedmann equation which be-
comes (2.66):

H2 =
κ

3
ρ

(
1 −

ρ

ρc

)
, (3.1)

where ρ is the energy density, ρc is the critical energy density, H is the Hubble parameter,
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and κ = 8πG. In principle, ρc can be viewed as a free parameter of theory. However,
its value is usually determined thanks to the results of area quantization in LQG. For the

µ̄− schemewe have µ̄ =
√
∆/p̄ and by taking ∆ = 2

√
3πγl2Pl [15] the expression (2.68) is:

ρc =

√
3

16π2γ3
m4

Pl ≃ 0.82m4
Pl, (3.2)

where value γ ≃ 0.239 has been used, as obtained from the computation of the entropy
of black holes [44]. The Planck massmPl ≈ 1.22 · 1019GeV.

As it can easily be seen from (Eq. 3.1), a general prediction associated with models in-
cluding holonomy corrections is a bounce which occurs for ρ = ρc. The appearance of this
ρ2 term with the correct negative sign is a highly non-trivial and appealing feature of this
framework which shows that repulsive quantum geometrical effects become dominant in
the Planck region. The very quantum nature of spacetime is capable of overwhelming the
huge gravitational attraction. The dynamics of models with holonomy corrections was
studied in several articles [23, 24, 45, 46].

In this thesis we further perform a detailed and consistent study of a universe filled
with a massive scalar field in this framework. In that case, potential has the following
form

V(ϕ) =
1

2
m2ϕ2, (3.3)

where m is a mass of the inflaton field. The global dynamics of such models was firstly
studied in Ref. [45]. Recently, it was pointed out in Ref. [23] that the "standard" slow-roll
inflation is triggered by the preceding phase of the quantum bounce. This general effect
is due to the fact that the universe undergoes contraction before the bounce, resulting in
a negative value of the Hubble factor H. Since the equation governing the evolution of a
massive scalar field in a FRW universe is

ϕ̈ + 3Hϕ̇+m2ϕ = 0, (3.4)

the negative value of H during the pre-bounce phase acts as an anti-friction term leading
to amplification of the oscillations of fieldϕ. In particular, when the scalar field is initially
at the bottom of the potential well with some small non-vanishing derivative ϕ̇, then it is
driven up the potential well as a result of the contraction of the universe. This situation
is presented in Fig. 3.1

To some extent, it is therefore reasonable to say that the LQC framework solves both
the main "problems" of the Big Bang theory: the singularity (which is regularized and
replaced by a bounce) and the initial conditions for inflation (which are naturally set by
the anti-friction term).

However, this shark fin evolution (see caption of Fig. 3.1) is not the only possible one.
In particular, a nearly symmetric evolution can also take place, as studied in Ref. [46].
Those different scenarios can be distinguished by the fraction of potential energy at the
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Figure 3.1: The shark fin type evolution of a scalar field for m = 10−3mPl. The (red) dot
represents the point where the initial conditions in classical cosmology are usually set.

bounce, described by the parameter

FB :=
V(ϕB)

ρc
∈ [0, 1], (3.5)

where V(ϕ) is potential of the scalar field andϕB is value of the scalar field at the bounce.
When FB = 0, the evolution of the field is symmetric. When a small fraction of potential
energy is introduced, which is the general case, the symmetry is broken and the field
behaves as in the shark fin case. It is however important to underline that we consider only
scenarios where the contribution from the potential is sub-dominant at the bounce, as it
would otherwise be necessary to include quantum backreaction effects [47, 48] expected
for FB ∼ 1. Effective dynamics would then be more complicated and could not be anymore
described by equation (3.1).

In order to perform qualitative studies of the dynamics of the model, it is useful to
introduce the variables

x :=
mϕ√

2ρc

and y :=
ϕ̇√
2ρc

. (3.6)

Since the energy density of the field is constrained (ρ 6 ρc), the inequality

x2 + y2 6 1 (3.7)

has to be fulfilled. The x2 term corresponds to the potential part while the y2 corresponds
to the kinetic term. The case x2 + y2 = 1 corresponds to the bounce, when the energy
density reaches its maximum.

In Fig. 3.2, exemplary evolutionary paths in the x − y phase plane are shown. For all
the presented cases, the evolution begins at the origin (in the limit t → −∞), and then
evolves (dashed line) to the point on the circle x2 + y2 = 1. Finally, the field moves back
to the origin for t → +∞ (solid line). However, the shapes of the intermediate paths are
different. The x = 0 case corresponds to the symmetric evolution which was studied in
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Figure 3.2: Exemplary phase trajectories of the scalar field with m = mPl.

Ref. [46] (if the bounce is set at t = 0, the scale factor is an even function of time and the
scalar field is an odd function). In this case, the field is at the bottom of the potential well
exactly at the bounce (H = 0). This is however a very special choice of initial conditions.

In the case x =
√

2/2, the potential term and kinetic term contribute equally at the bounce.
In this case, both deflation and inflation occur. However one observes differences in their
duration. The third case, x = 1, corresponds to the domination of the potential part at the
bounce. In this case, symmetric phases of deflation and inflation also occur (both the scale
factor and the field being this time even functions). However in this situation, as well as

in x =
√

2/2 case, the effect of quantum backreaction should be taken into account. The
dynamics can therefore significantly differ from the one computed with (Eq. 3.1).

In Fig. 3.3 we show some exemplary evolutions of the scalar field for different con-
tributions from the potential part at the bounce. It can be easily seen that the maximal
value of the field (ϕmax) increases with the fraction of potential energy at the bounce. This
monotonic relation can be determined based on the numerical computations. In particu-
lar, form = 10−6mPl we found the formula

ϕmax = (2.33 + 1.28 · 106
√
FB)mPl. (3.8)

This formula was plotted in Fig. 3.4 The minimal value of ϕmax is equal to 2.33mPl and
corresponds to FB = 0. Because the total energy density is constrained, ϕmax is bounded
from above by

|ϕmax| 6

√
2ρc

m
. (3.9)

The values of ϕmax associated with different evolutionary scenarios were computed
in [24, 23, 46]. The conclusion of those studies is that necessary conditions for inflation
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Figure 3.3: Time evolution of the scalar field. Different evolutionary scenarios leading to
a slow-roll inflation phase are displayed. The bottom (black) line represents the symmetric
case. The middle (blue) line represents the shark fin type evolution mostly investigated in
this thesis. The top (red) line corresponds to a larger fraction of potential energy. For all
curves m = 0.01mPl.
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Figure 3.4: Relation between ϕmax and FB for m = 10−6mPl given by equation (3.8). The
(red) dots correspond to numerically determined data points.

are generically met. Only in case of a symmetric evolution, does the value of ϕmax become
too small in some cases. In particular, for m = 10−6mPl one obtains ϕmax = 2.33mPl

for symmetric evolution. The corresponding number of e−folds can be computed with

N ≃ 2π ϕ2

m2
Pl

, which gives N ≃ 34. By introducing a small fraction of potential energy

(as in the shark fin case), the number of e−folds can be appropriately increased. Relation
between the number of e−folds and FB, obtained based on equation (3.8), was shown in
Fig. 3.5.

The argument that inflation requires sufficient number of e−folds comes from the
CMB observations. In particular, based the WMAP observations [8], the value of the
scalar spectral index was measured to be nS = 0.963 ± 0.012. As, for a massive slow-roll
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Figure 3.5: Relation between the total number of inflationary e− foldsNtot and parameter
FB for m = 10−6mPl.

inflation the relation

nS = 1 −
1

π

m2
Pl

ϕ2
(3.10)

holds, one obtains ϕobs = 2.9 ± 0.5mPl. Since the consistency relation ϕmax > ϕobs must
be fulfilled, the symmetric evolution with m = 10−6mPl (for which ϕmax = 2.33mPl < ϕobs)
is not favored by the WMAP 7-Years observations. As already mentioned, higher values
of ϕ can be easily reached if some contribution from the potential term is introduced
(this supports the shark fin scenario). The number of e−folds will therefore be naturally

increased in this way. However it remains bounded by above: since N ≃ 2π ϕ2

m2
Pl

, (Eq. 9.5)

leads to the constrain:

N 6
4πρc

m2m2
Pl

. (3.11)

The value of the parameter ρc can be fixed by (Eq. 3.2). However, this expression
is based on the computation of the area gap as performed in LQG. This, in general, can
be questioned. Moreover, a particular value of the Barbero-Immirzi parameter (imposed
by black hole entropy considerations) has been used. Therefore, the value of ρc can, in
general, differ and it is worth investigating how the variation of ρc can alter the dynamics
of the model. In particular, we have studied how the shark fin scenario can be modified by
different choices of ρc. In Fig. 3.6, the evolution of the field is displayed as a function of the
value of the critical energy density. As expected, the larger ρc, the higher the maximum
value reached by the field. It can be seen that ϕmax approaches the usually required value
∼ 3mPl for ρc ∼ m

4
Pl, making the whole scenario quite natural.
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Figure 3.6: The shark fin type evolution of the scalar field for m = 10−3mPl. Curves from
bottom to top were computed for ρc = 10−6, 10−4, 10−2, 1, 100 [m4

Pl] respectively.
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Chapter 4

Cosmological perturbations in the
Hamiltonian formulation

In the previous chapter, we studied dynamics of the flat FRW model with holonomy cor-
rections. The assumption of homogeneity made in those considerations is valid at the
large (cosmological) scales only. In that case, local inhomogeneities are averaged and
universe is modeled by homogeneous distribution of matter. The observed Universe is
however not homogeneous but contains a variety of gravitational structures at the dif-
ferent length scales. Such a system is enormously complex to describe in general, due
to its nonlinearity. However, at some early stages, inhomogeneity of the universe can be
treated at perturbative level1. This allows to linearize the equations of motion, which sim-
plifies considerations in the significant way. In particular, the three types of perturbations
(scalar, vector and tensor) are decoupled from one another in the linear regime.

In this chapter, we derive a classical theory of cosmological perturbations in the Hamil-
tonian formulation. We perform perturbative expansion of the classical constraints up to
the second order. This will lead to equations of motion in the first order in perturbations.
In the subsequent chapters, we will modify the expression derived here by introducing
the quantum holonomy corrections.

4.1 Perturbation of the canonical variables

The Ashtekar variables can be decomposed for the background and perturbation parts as
follows:

Eai = Ēai + δEai , (4.1)

Ai
a = Āi

a + δAi
a. (4.2)

1This can be seen, e.g., by considering temperature anisotropy of the CMB, which is δT/T ∼ 10−5. The
observed fluctuations of temperature are of the same order of magnitude as inhomogeneities in matter
distribution. Therefore, early universe was very homogeneous, allowing for a perturbative description of
inhomogeneities.
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Validity of the perturbative expansion based on the above decomposition requires that
|δEai /Ē

a
i | ≪ 1 as well as |δAi

a/Ā
i
a| ≪ 1. Because we consider a model with a scalar field,

we also decompose the canonical variables:

ϕ = ϕ̄+ δϕ, (4.3)

π = π̄+ δπ. (4.4)

Here also, validity of the perturbative expansion requires that |δϕ/ϕ̄| ≪ 1 and |δπ/π̄| ≪ 1
In this thesis we consider perturbations on the flat FRW cosmological background. In

this case Γ̄ ia = 0 and the background part of the Ashtekar variable is given by Āi
a = γk̄δia.

The homogeneous part of the densitized triad variable is given by Ēai = p̄δai . Therefore,
for the flat FRW background

Eai = p̄δai + δEai , (4.5)

Ai
a = γk̄δia + δAi

a. (4.6)

In the following consideration we will work mainly with perturbations of Ki
a instead of

Ai
a. The, perturbation of the Ki

a is given by

Ki
a =

1

γ

(
Ai

a − Γ ia
)
= K̄i

a + δKi
a, (4.7)

where K̄i
a = k̄δia. In such case, the background variables for the system under considera-

tion are (k̄, p̄, ϕ̄, π̄), while the perturbed variables are (δKi
a, δEai , δϕ, δπ). It can be shown

that the Poisson bracket for this system can be decomposed as follows [31, 32]:

{·, ·} = {·, ·}k̄,p̄ + {·, ·}δK,δE + {·, ·}ϕ̄,π̄ + {·, ·}δϕ,δπ (4.8)

where

{·, ·}k̄,p̄ :=
κ

3V0

[
∂·
∂k̄

∂·
∂p̄

−
∂·
∂p̄

∂·
∂k̄

]
, (4.9)

{·, ·}δK,δE := κ

∫

Σ

d3x

[
δ·
δδKi

a

δ·
δδEai

−
δ·
δδEai

δ·
δδKi

a

]
, (4.10)

{·, ·}ϕ̄,π̄ :=
1

V0

[
∂·
∂ϕ̄

∂·
∂π̄

−
∂·
∂π̄

∂·
∂ϕ̄

]
, (4.11)

{·, ·}δϕ,δπ :=

∫

Σ

d3x

[
δ·
δδϕ

δ·
δδπ

−
δ·
δδπ

δ·
δδϕ

]
. (4.12)

In the Einstein formulation of gravity the space-time metric gµν is used as a pertur-
bative variable. The metric is decomposed for the background and perturbation parts,
gµν = ḡµν + δgµν, where the consistency of the perturbative expansion is fulfilled by the
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requirement |δgµν/ḡµν| ≪ 1. In case of the flat FRW background, the metric perturbations
can be decomposed according to their spin as follows

gµν = a2

(
-1 0
0 δab

)

︸ ︷︷ ︸
FRW k=0 background

+a2

(
−2φ ∂aB

∂aB −2ψδab + ∂a∂bE

)

︸ ︷︷ ︸
scalar (s=0)

+ a2

(
0 Sa
Sa Fa,b + Fb,a

)

︸ ︷︷ ︸
vector (s=1)

+a2

(
0 0
0 hab

)

︸ ︷︷ ︸
tensor (s=2)

. (4.13)

The φ,ψ,B,E, Sa, Fa and hab are perturbative variables. Furthermore, the following con-
ditions are fulfilled:

∂ahab = 0 (transverse) and δabhab = 0 (traceless),

Fa,a = 0 (divergence free) and Sa,a = 0 (divergence free).

In this chapter, we decompose perturbations of the Ashtekar variables for the tensor,
vector and scalar parts and relate them with the functions φ,ψ,B,E, Sa, Fa and hab. This
way we will have a relation with the standard (metric) theory of cosmological perturba-
tions.

4.2 Matter field

The scalar field Hamiltonian is a sum of the scalar constraint Sϕ[N] and diffeomorphism
constraint Dϕ[N

a]:
Hϕ[N,Na] = Sϕ[N] +Dϕ[N

a], (4.14)

where

Sϕ[N] =

∫

Σ

d3xN

(
1

2

π2

√
|detE|

+
1

2

Eai E
b
i ∂aϕ∂bϕ√
|detE|

+
√
|detE|V(ϕ)

)
, (4.15)

Dϕ[N
a] =

∫

Σ

d3xNaπ(∂aϕ). (4.16)

The scalar constraint can be expanded as follows

Sϕ[N] = Sϕ[N̄] + Sϕ[δN],

where

Sϕ[N̄] =

∫

Σ

d3xN̄
[(
C(0)

π + C(0)
ϕ

)
+
(
C(2)

π + C
(2)
∇ + C(2)

ϕ

)]
,

Sϕ[δN] =

∫

Σ

d3δN
[
C(1)

π + C(1)
ϕ

]
.
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Here

C(0)
π =

π̄2

2p̄3/2
,

C(0)
ϕ = p̄3/2V(ϕ̄),

C(1)
π =

π̄δπ

p̄3/2
−

π̄2

2p̄3/2

δjcδE
c
j

2p̄
,

C(1)
ϕ = p̄3/2

[
V,ϕ(ϕ̄)δϕ+ V(ϕ̄)

δjcδE
c
j

2p̄

]
,

C(2)
π =

1

2

δπ2

p̄3/2
−
π̄δπ

p̄3/2

δjcδE
c
j

2p̄
+

1

2

π̄2

p̄3/2

[
(δjcδE

c
j )

2

8p̄2
+
δkcδ

j
dδE

c
j δE

d
k

4p̄2

]
,

C
(2)
∇ =

1

2

√
p̄δab∂aδϕ∂bδϕ,

C(2)
ϕ =

1

2
p̄3/2V,ϕϕ(ϕ̄)δϕ

2 + p̄3/2V,ϕ(ϕ̄)δϕ
δjcδE

c
j

2p̄

+ p̄3/2V(ϕ̄)

[
(δjcδE

c
j )

2

8p̄2
−
δkcδ

j
dδE

c
j δE

d
k

4p̄2

]
.

The perturbed diffeomorphism constraint is given by

Dϕ[N
a] =

∫

Σ

d3xδNaπ̄(∂aδϕ), (4.17)

where we used the fact that for the flat FRW background N̄a = 0.

4.3 Scalar constraint

We start considerations of the gravity sector we from the scalar constraint:

S[N] =
1

16πG

∫

Σ

d3xNC =
1

16πG

∫

Σ

d3xN
Eai E

b
j√

|detE|

[
εijkF

k
ab − 2(1 + γ2)Ki

[aK
j
b]

]
. (4.18)

Before we perturbatively expand this constraint, we firstly decompose C for two parts,
where one is independent on the parameter γ. For this purpose, let us express curvature
of the Ashtekar connection as follows

Fiab = ∂aA
i
b − ∂bA

i
a + εijkA

j
aA

k
b

= γ(∂aK
i
b − ∂bK

i
a) + ∂aΓ

i
b − ∂bΓ

i
a + εijk(Γ

j
a + γKj

a)(Γ
k
b + γKk

b)

= γ(∂aK
i
b − ∂bK

i
a) + (∂aΓ

i
b − ∂bΓ

i
a) + ε

i
jkΓ

j
aΓ

k
b + γ2εijkK

j
aK

k
b

+ γ
(
εijkΓ

j
aK

k
b + εijkK

j
aΓ

k
b

)
. (4.19)
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Applying this expression to (4.18) and using

Eai E
b
j ε

ij
kγ(∂aK

k
b − ∂bK

k
a) = 2γEai E

b
j ε

ij
k∂aK

k
b, (4.20)

Eai E
b
j ε

ij
k(∂aΓ

k
b − ∂bΓ

k
a) = 2Eai E

b
j ε

ij
k∂aΓ

k
b , (4.21)

Eai E
b
j ε

ij
kγ
(
εklmΓ

l
aK

m
b + εklmK

j
alΓ

m
b

)
= 2γEai E

b
j ε

ij
kε

k
lmΓ

l
aK

m
b , (4.22)

together with

2Ki
[aK

j
b] = ε

ij
kε

k
lmK

l
aK

m
b , (4.23)

we obtain

C =
Eai E

b
j√

|detE|
εijk

[
2∂aΓ

k
b + εklm

(
Γ laΓ

m
b − Kl

aK
m
b

)]
+ Cγ (4.24)

where

Cγ = 2γ
Eai E

b
j√

|detE|
εijk

(
∂aK

k
b + εklmΓ

l
aK

m
b

)
. (4.25)

We will now show that the Cγ contribution is vanishing. The covariant derivative Da is
defined as follows DaX

k
b := ∂aX

k
b + εklmΓ

l
aX

m
b . Therefore, the Sγ term can be written in

the form

Cγ = 2γ
Eai E

b
j√

|detE|
εijkDaK

k
b = 2γ

Eai√
|detE|

DaG
i, (4.26)

Gi = εijkE
b
j K

k
b ≈ 0 is the Gauss constraint. Therefore, by fulfilling the Gauss constraint

we get Cγ = 0, so only the first part of equation (4.24) remains.

4.3.1 Perturbations of C

In order to simplify the calculations, it is useful to decompose the remaining part of the
scalar constraint into three parts:

C = CA + CB + CC, (4.27)

where

CA = 2εijk
Eai E

b
j√

|detE|
∂aΓ

k
b , (4.28)

CB = εijk
Eai E

b
j√

|detE|
εklmΓ

l
aΓ

m
b , (4.29)

CC = −εijk
Eai E

b
j√

|detE|
εklmK

l
aK

m
b . (4.30)

(4.31)
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By applying results of Appendix 11.2 we have

1√
|detE|

= X(0) + X(1) + X(2) + . . . , (4.32)

where

X(0) =
1

p̄3/2
, (4.33)

X(1) = −
1

2p̄5/2
δiaδE

a
i , (4.34)

X(2) =
1

4p̄7/2
δiaδE

a
j δ

j
bδE

b
i +

1

8p̄7/2
δiaδE

a
i δ

j
bδE

b
j . (4.35)

In turn, the Eai E
b
j term can be expanded as follows

Eai E
b
j = (Ēai + δEai )(Ē

b
j + δEbj )

= Ēai Ē
b
j + Ēai δE

b
j + Ēbj δE

a
i + δEai δE

b
j

= p̄2δai δ
b
j + p̄

(
δai δE

b
j + δbj δE

a
i

)
+ δEai δE

b
j . (4.36)

Based on the above expansions, we find that:

C
(0)
A = 0, (4.37)

C
(1)
A = 2εijkX

(0)Ēai Ē
b
j ∂aδΓ

k
b = 2εijk

1

p̄3/2
p̄2δai δ

b
j ∂aδΓ

k
b

= 2
√
p̄εab

k∂aδΓ
k
b , (4.38)

C
(2)
A = 2εijkX

(1)Ēai Ē
b
j ∂aδΓ

k
b + 2εijkX

(0)(Ēai δE
b
j + Ēbj δE

a
i )∂aδΓ

k
b

= 2εijk

(
−

1

2p̄5/2
δlcδE

c
l

)
p̄2δai δ

b
j ∂aδΓ

k
b + 2εijk

1

p̄3/2
p̄(δai δE

b
j + δbj δE

a
i )∂aδΓ

k
b

= −
1√
p̄
εijkδ

l
cδE

c
lδ

a
i δ

b
j ∂aδΓ

k
b +

1√
p̄
εijk(δ

a
i δE

b
j + δbj δE

a
i )∂aδΓ

k
b . (4.39)

Analogously, for the CB term:

C
(0)
B = 0, (4.40)

C
(1)
B = 0, (4.41)

C
(2)
B = εijkX

(0)Ēai Ē
b
j ε

k
lmδΓ

l
aδΓ

m
b

= εijk
1

p̄3/2
p̄2δai δ

b
j ε

k
lmδΓ

l
aδΓ

m
b

=
√
p̄εab

kε
k
lmδΓ

l
aδΓ

m
b . (4.42)
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The CC contribution is the most complicated one. In order to simplify the calculations
we define

CC = −εijkε
k
lm

1√
|detE|

︸ ︷︷ ︸
:=X

Eai E
b
j

︸ ︷︷ ︸
:=Y

Kl
aK

m
b︸ ︷︷ ︸

:=Z

. (4.43)

The lowest order term can be therefore written as

C
(0)
C = −εijkε

k
lmX

(0)Y(0)Z(0)

= −εijkε
k
lm

1

p̄3/2
p̄2δai δ

b
j k̄

2δlaδ
m
b

= −εab
kε

k
ab

√
p̄k̄2

= −(δaaδ
b
b − δabδ

b
a)
√
p̄k̄2

= −6
√
p̄k̄2. (4.44)

The first order term is given by

C
(1)
C = −εijkε

k
lm

(
X(1)Y(0)Z(0) + X(0)Y(1)Z(0) + X(0)Y(0)Z(1)

)

= −
k̄2

√
p̄
δiaδE

a
i − 4

√
p̄k̄δai δK

i
a. (4.45)

The second order term corresponds to

C
(2)
C = −εijkε

k
lm

(
X(1)Y(1)Z(0) + X(1)Y(0)Z(1) + X(0)Y(1)Z(1)

+ X(2)Y(0)Z(0) + X(0)Y(2)Z(0) + X(0)Y(0)Z(2)
)

=
k̄2

4p̄3/2
(δiaδE

a
i )

2 −
2k̄√
p̄
δEai δK

i
a −

k̄2

2p̄3/2
δiaδE

a
j δ

j
bδE

b
i

−
√
p̄(δai δK

i
a)

2 +
√
p̄δKi

aδ
b
i δK

j
bδ

a
j . (4.46)

4.3.2 Collecting all together

Right now one can collect together all terms in the perturbative expansion

C = C(0) + C(1) + C(2), (4.47)

where

C(0) = C
(0)
A + C

(0)
B + C

(0)
C , (4.48)

C(1) = C
(1)
A + C

(1)
B + C

(1)
C , (4.49)

C(2) = C
(2)
A + C

(2)
B + C

(2)
C . (4.50)

(4.51)
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Combining all terms we find

C(0) = −6
√
p̄k̄2, (4.52)

C(1) = −4
√
p̄k̄δai δK

i
a −

k̄2

√
p̄
δiaδE

a
i + 2

√
p̄εab

k∂aδΓ
k
b , (4.53)

C(2) = −
1√
p̄
εijkδ

l
cδE

c
lδ

a
i δ

b
j ∂aδΓ

k
b +

1√
p̄
εijk(δ

a
i δE

b
j + δbj δE

a
i )∂aδΓ

k
b

+
√
p̄εab

kε
k
lmδΓ

l
aδΓ

m
b +

k̄2

4p̄3/2
(δiaδE

a
i )

2 −
2k̄√
p̄
δEai δK

i
a −

k̄2

2p̄3/2
δiaδE

a
j δ

j
bδE

b
i

−
√
p̄(δai δK

i
a)

2 +
√
p̄δKi

aδ
b
i δK

j
bδ

a
j . (4.54)

The δΓ ia can be expressed in terms of δEai based on relation [32]

Γ ia = −
1

2
ǫijkEbj

(
∂aE

k
b − ∂bE

k
a + EckE

l
a∂cE

l
b − Eka

∂b detE

detE

)
. (4.55)

However, the functional form is depended on a particular type of perturbations. There-
fore, we derive it separately for the three considered types of perturbations.

4.4 Diffeomorphism constraint

The gravitational diffeomorphism constraint is defined as follows

DG[N
a] =

1

8πGγ

∫

Σ

d3xNa
[
FiabE

b
i −Ai

aGi

]
, (4.56)

where Gi = ∂aE
a
i +ǫij

kAj
aE

a
k is a Gauss constraint. If the Gauss constraint is fulfilled, the

diffeomorphism constraint can be expanded as follows

DG[N
a] =

1

8πGγ

∫

Σ

d3xδNa
[
δFiabĒ

b
i + F̄iabδE

b
i

]
. (4.57)

4.5 Tensor perturbations

For the tensor perturbations, the ADM variables are expressed as follows:

N = a =
√
p̄, (4.58)

Na = 0, (4.59)

qab = a2(δab + hab), (4.60)

where ∂ahab = 0 = δabhab. Moreover, the perturbative expansion of the tensor modes is
valid only if |hab| ≪ 1. The hab is a symmetric tensor, where a,b = 1, 2, 3. Therefore, hab
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has 6 independent components. Furthermore, three constraints are imposed by ∂ahab = 0
and one by δabhab = 0. Taking this into account only two degrees of freedom of the
perturbation hab remain. They correspond to the two possible polarization states of the
gravitational waves. The tensor modes are vacuum perturbations of the gravitational
field.

Based on the expression (4.60), applied to the definition (2.12), one can find an expres-
sion for the perturbation of the densitized triad

δEai = −
1

2
p̄ha

i , (4.61)

where we defined ha
i := δacδbi hcb. Taking into account the fact that for the tensor pertur-

bations δiaδE = 0, one can show that [34]

δΓ ia =
1

p̄
ǫijeδac∂eδE

c
j . (4.62)

With use of this relation, the scalar constraint for the tensor modes is

S[N] =
1

2κ

∫

Σ

d3x
[
N̄(C(0) + C(2))

]
, (4.63)

where

C(0) = −6k̄2
√
p̄, (4.64)

C(2) = −
1

2p̄3/2
k̄2(δEcj δE

d
kδ

k
cδ

j
d) +

√
p̄(δKj

cδK
k
dδ

c
kδ

d
j )

−
2k̄√
p̄
(δEcj δK

j
c) +

1

p̄3/2
(δcdδ

jkδef∂eE
c
j∂fE

d
k). (4.65)

Because for the tensor modes the shift vector Na is vanishing, the diffeomorphism
constraint is identically equal zero.

4.6 Vector perturbations

For the vector perturbations the ADM variables are expressed as follows:

N = a, (4.66)

Na = Sa, (4.67)

qab = a2(δab + Fa,b + Fb,a), (4.68)

where Fa,a = 0 and Sa,a = 0. Taking into account these conditions, there are 4 degrees
of freedom for the vector perturbations. It is worth stressing that vector modes are not
vacuum perturbations of the gravitational field. They may propagate only in presence of
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vector matter. In the case where such matter is absent, the vector perturbations are pure
gauge fields.

Based on the formula (4.55) one can show that, for the vector perturbations [33]

δΓ ia =
1

p̄
ǫijeδac∂eδE

c
j . (4.69)

Taking this into account, the perturbed scalar constraint for the vector modes takes the
following form

S[N] =
1

2κ

∫

Σ

d3x
[
N̄(C(0) + C(2))

]
, (4.70)

where

C(0) = −6k̄2
√
p̄, (4.71)

C(2) = −
1

2p̄3/2
k̄2(δEcj δE

d
kδ

k
cδ

j
d) +

√
p̄(δKj

cδK
k
dδ

c
kδ

d
j ) −

2k̄√
p̄
(δEcj δK

j
c). (4.72)

Perturbed diffeomorphism constraint for the vector modes is given by

DG[N
a] =

1

8πG

∫

Σ

d3xδNc
[
−p̄(∂kδK

k
c) − k̄δ

k
c(∂dδE

d
k)
]

(4.73)

4.7 Scalar perturbations

For the tensor perturbations the ADM variables are expressed as follows:

N = a
√

1 + 2φ, (4.74)

Na = ∂aB, (4.75)

qab = a2(δab − 2ψδab + ∂a∂bE). (4.76)

So, there are four perturbative variables (φ,ψ,E,B). These variables, as in case of the
vector perturbations, are pure gauge fields in absence of matter.

For the scalar modes, the lapse function is a subject of perturbation. Performing the
perturbative expansion of (4.74) we find

N = N̄+ δN = a(1 + φ), (4.77)

where we have neglected the higher order terms in φ.
Based on the formula (4.55) one can show that, for the scalar perturbations [32]

δΓ ia =
1

2p̄
ǫija∂bδE

b
j . (4.78)
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Taking this into account, the perturbed scalar constraint for the scalar modes takes the
following form

S[N] =
1

2κ

∫

Σ

d3x
[
N̄(C(0) + C(2)) + δNC(1)

]
, (4.79)

where

C(0) = −6k̄2
√
p̄, (4.80)

C(1) = −4k̄
√
p̄δcj δK

j
c −

k̄2

√
p̄
δjcδE

c
j +
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p̄
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jδEcj , (4.81)

C(2) =
√
p̄δKj

cδK
k
dδ

c
kδ

d
j −

√
p̄(δKj

cδ
c
j )

2 −
2k̄√
p̄
δEcj δK

j
c

−
k̄2

2p̄3/2
δEcj δE

d
kδ

k
cδ

j
d +

k̄2

4p̄3/2
(δEcj δ

j
c)

2 −
1

2p̄3/2
δjk(∂cδE

c
j )(∂dδE

d
k). (4.82)

Perturbed diffeomorphism constraint for the scalar modes is given by

DG[N
a] =

1

κ

∫

Σ

d3xδNc
[
p̄∂c(δ

k
dδK

k
d) − p̄(∂kδ

k
c) − k̄δ

k
cδ

k
c(∂dδE

d
k)
]

. (4.83)
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Chapter 5

Quantum origin of cosmic structures

Gravitation and matter form a coupled system. Therefore, any change in distribution of
matter modifies gravitational field and vice versa. Under some conditions, this mutual
interaction of matter and gravity can be studied perturbatively. This interaction takes, in
general, very complex form. In particular, while the scalar perturbations are considered.

Before we face the challenge to describe this interaction in details, let us gain some
experience by considering a bit simpler case. This will also be an occasion to introduce
all necessary tools to study quantum generation of cosmic structures and understand the
idea behind this mechanism.

The simplification we assume is that the gravitational part is homogeneous. Only
perturbations of the matter sector are considered. We focus on scalar field matter. Investi-
gation of the systems of this kind (fields on the gravitational backgrounds) is a domain of
the field theory on curved spaces [49]. In this chapter, we will perform quantization of the
scalar field on the FRW background. We will introduce a concept of the power spectrum,
which is crucial from the perspective of further consideration. We will compute power
spectra of the scalar field for some cosmological evolutions appearing LQC.

5.1 The model

Hamiltonian of the model is the following sum

Htot = H̄
(µ̄)

G [N] +Hϕ[N], (5.1)

where the homogeneous gravity Hamiltonian

H̄
(µ̄)

G [N] = −
3NV0

κ

√
p̄

(
sin(µ̄γk̄)

µ̄γ

)2

, (5.2)
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and the scalar field Hamiltonian

Hϕ[N] =

∫

V0

d3xN

(
1

2

π2

√
|detE|

+
1

2

Eai E
b
i ∂aϕ∂bϕ√
|detE|

+
√
|detE|V(ϕ)

)

=

∫

V0

d3xN

(
1

2

π2

p̄3/2
+

1

2
p̄1/2δab∂aϕ∂bϕ+ p̄3/2V(ϕ)

)
. (5.3)

The scalar field can be decomposed for homogeneous and perturbation parts

ϕ = ϕ̄+ δϕ π = π̄+ δπ, (5.4)

where the homogeneous parts are

ϕ̄(t) =
1

V0

∫

V0

d3xϕ(x, t), (5.5)

π̄(t) =
1

V0

∫

V0

d3xπ(x, t). (5.6)

Equations of motion for the background and perturbation parts are given by

˙̄ϕ = {ϕ̄,Htot} = N̄p̄
−3/2π̄, (5.7)

˙̄π = {π̄,Htot} = −N̄p̄3/2dV(ϕ̄)

dϕ̄
, (5.8)

δϕ̇ = {δϕ,Htot} = N̄p̄
−3/2δπϕ, (5.9)

δπ̇ϕ = {δπϕ,Htot} = N̄

(√
p̄∇2δϕ − p̄3/2d

2V(ϕ̄)

dϕ̄2
δϕ

)
. (5.10)

It is convenient work in the conformal time η, so we set N̄ =
√
p. Combining equations

(5.7) and (5.8) we obtain equation

¨̄ϕ+
˙̄p

p̄
˙̄ϕ+ p̄

dV(ϕ̄)

dϕ̄
= 0. (5.11)

The variable δϕ can be decomposed for the Fourier modes

δϕ(η, x) ≡ u(η, x)√
p̄

=

∫
d3k

(2π)3/2

uk(η)√
p̄
eik·x. (5.12)

Based on this decomposition and on the equations (5.9) and (5.10) we obtain equation

d2

dη2
uk(η) + [k2 +m2

eff]uk(η) = 0, (5.13)

where k2 = k · k and

m2
eff = p̄

d2V(ϕ̄)

dϕ̄2
−

1√
p̄

d2
√
p̄

dη2
. (5.14)
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5.2 Quantization

In our considerations, quantization of the scalar field u(η, x) follows the canonical proce-
dure. The Fourier components uk(η) are promoted to be operators, and are decomposed
for the creation and annihilation operators as follows:

ûk(η) = fk(η)b̂k + f
∗
k(η)b̂

†
−k, (5.15)

where fk(η) is the so-called mode function which satisfies the same equation asuk(η). The

creation (b̂†k) and annihilation (b̂k) operators fulfill the commutation relations [b̂k, b̂†q] =

δ(3)(k − q) and [b̂k, b̂q] = 0 = [b̂
†
k, b̂†q].

By applying decomposition (5.15), the field operator û(η, x) takes the form

û(η, x) =

∫
d3k

(2π)3/2

[
fk(η)b̂ke

ik·x + f∗k(η)b̂
†
ke

−ik·x
]

. (5.16)

5.3 Power spectrum

Quantum fluctuations of the field û(x, η) in some state |Ψ〉 can be characterized by n-point
correlation function

〈Ψ|û(x1, η)û(x2, η) . . . û(xn, η)|Ψ〉. (5.17)

In the special case of Gaussian fields, all the statistical properties of the quantum fluctua-
tions are contained in a two-point function

〈Ψ|û(x1, η)û(x2, η)|Ψ〉, (5.18)

and the odd n-point correlation functions are vanishing. This is an analogue of the result
known from statistics where, for the Gaussian distribution, all higher moments can be
expressed in terms of variance.

The Gaussian fields are of great importance in cosmology. The Gaussianity is a feature
resulting from the lack of self-interaction of a given field. However, when different modes
of perturbations are interacting one another then the field becomes non-Gaussian. This
interaction can be produced by the potential of the scalar field, higher order corrections in
the perturbative expansion or possibly by some quantum gravitational effects. In order
to describe the non-Gaussian effects it is necessary to consider higher order correlation
functions. The first contribution of non-linearity comes in tree-point function

〈Ψ|uk1
uk2
uk3

|Ψ〉 = δ(3)(k1 + k2 + k3)P3(k1, k2, k3), (5.19)

where P3(k1, k2, k3) is called bispectrum. In case of the Gaussian field, this spectrum is
equal to zero.

The primordial non-Gaussianity, if present, could affect also the spectrum of the CMB
anisotropies leading to its non-Gaussianity. However, present observations have not in-
dicated any deviation from Gaussianity of the CMB [8]. This supports the inflationary

50



model with the massive potential studied in Chapter 3. This is the only possible potential
for which there is no self-interaction. It is worth noticing, that the current constraints on
the non-Gaussianity of the CMB may serve as a possible method of constraining some
quantum cosmological models. However, all the models considered in this thesis do not
lead to non-Gaussianity. This is because of two reasons. Firstly, we consider only models
with free or massive scalar field. Secondly, we consider theory of cosmological perturba-
tions only at the the linear level. Taking into considerations the higher order terms in the
perturbative expansion would lead to some non-Gaussian features. Investigation of this
interesting subject is behind the scope of this thesis.

According to our current understanding, the primordial seeds of all structures in the
Universe were quantum vacuum fluctuations of the inflationary scalar field. Therefore,
since we are going to study the vacuum fluctuations, we choose the sate |Ψ〉 to be a vac-
uum sate |0〉. Moreover, since our field is Gaussian at the considered perturbative level,
we will focus only at the two-point function (correlator) 〈0|û(x, η)û(y, η)|0〉. By applying
the Fourier decomposition (5.16) of the field û(x, η) we find

〈0|û(x, η)û(y, η)|0〉 = 〈0|
∫
d3kd3q

(2π)3

[
fk(η)b̂ke

ik·x + f∗k(η)b̂
†
ke

−ik·x
]
×

×
[
fq(η)b̂qe

iq·y + f∗q(η)b̂
†
qe

−iq·y
]
|0〉

=

∫
d3kd3q

(2π)3
fk(η)f

∗
q(η)e

ik·xe−iq·y 〈0|b̂kb̂
†
q|0〉

︸ ︷︷ ︸
=δ(3)(k−q)

=

∫
d3k

(2π)3
|fk(η)|

2
eik·(x−y)

=

∫∞

0

dk

k
Pu(k, η)

sinkr

kr
, (5.20)

where r = |x − y| and the power spectrum Pu(k, η) is defined as follows

Pu(k, η) ≡ k3

2π2
|fk(η)|

2 . (5.21)

The power spectrum (5.21) is the most important quantity describing primordial pertur-
bations. Much of the subsequent considerations will be focused on determination of this
function.

As an example, let us compute the power spectrum (5.21) for the case of a free field in

Minkowski space. In this case, the mode functions are fk = e−iηk/
√

2k, therefore

Pu(k) =

(
k

2π

)2

. (5.22)

This spectrum is of great importance because it serves as a reference while considering
more sophisticated examples. For any considered case, at sufficiently short distances,
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the Minkowski space should serve as a good approximation. Therefore, the spectrum
(5.22) should be, in general, recovered in the limit k → ∞. Of course, only if the Lorentz
symmetry is conserved at the very short distances.

The two-point corresponding correlation function corresponding to spectrum (5.22) is

〈0|û(x, η)û(y, η)|0〉 = 1

4π2

1

r

∫∞

0

dk sin(kr) =
1

4π2

1

|x − y|
, (5.23)

where the integration was performed by introducing regularizator e−ǫkr and performing
the limit ǫ → 0. This correlation function diverges while |x − y| → 0. It is however
expected that the correlation function is modified at the Planck scale due to the quantum
gravity effects. Such effects may remove singularity from the correlation function [50].

5.4 Bogoliubov transformation

In the Schrödinger picture of a field theory one usually consider transition between some
|in〉 and |out〉 states. In the Heisenberg picture the state remains unchanged (in our case
the vacuum state |0〉) however the field operators evolve. In particular, evolution of û(x, η)
is given by the time dependent mode functions fk(η).

Let our system evolve from the initial time ηin to the the final time ηout. At the time ηin

the field operator can be decomposed as follows

ûk(η) = gk(η)âk + g
∗
k(η)â

†
−k. (5.24)

Where gk(η) are the mode functions and the creation (â†
k) and annihilation (âk) operators

fulfill the commutation relation [âk, â†
q] = δ(3)(k − q) and [âk, âq] = 0 = [â†

k, â†
q]. The

operator âk defines our initial vacuum state |0in〉 such that âk|0in〉 = 0. This state remains
unchanged during the evolution and we call it simply |0〉 = |0in〉. At the final time ηout

one can perform mode decomposition

ûk(η) = fk(η)b̂k + f
∗
k(η)b̂

†
−k, (5.25)

where fk(η) is a new mode function. The creation (b̂†k) and annihilation (b̂k) operators

fulfill the commutation relations [b̂k, b̂†q] = δ(3)(k − q) and [b̂k, b̂q] = 0 = [b̂†k, b̂†q]. The

new annihilation operator b̂k can be used to define the final (true) vacuum state |0out〉
such that b̂k|0out〉 = 0. However, since we are working in the Heisenberg picture, the |0out〉
is not the actual state of the system which is |0in〉.

The mode functions at ηout can be related with those at ηin by the relation

fk(η) = αkgk(η) + βkg
∗
k(η). (5.26)

Because decompositions (5.25) and (5.24) are equivalent, based on (Eq. 5.26) and on the
Wronskian conditions for the mode functions fk and gk, one obtains:

[
b̂k

b̂
†
−k

]
=

[
αk β∗

k

βk α∗
k

] [
âk

â†
−k

]
, (5.27)
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which corresponds to the Bogoliubov transformation with coefficients αk and βk. Due to
the commutation relation of the creation and annihilation operators we have |αk|

2−|βk|
2 =

1. It is clear from (Eq. 5.27) that if βk 6= 0 particles are created from the vacuum, just

because b̂k|0〉 = β∗
kâ

†
−k|0〉 6= 0.

5.4.1 Symmetric bounce

As the first case we consider scalar field perturbations at the symmetric bounce. In the
considered case a field is free, V(ϕ) = 0. We set initial conditions to be the Minkowski
vacuum

uin =
e−ikη

√
2k

. (5.28)

This approximation works however only for sub-horizontal modes. With these initial
conditions we solve the equation (5.13) numerically. Based on these computations we
obtain the power spectrum of the field u in the post-bounce phase. We show the results
in Fig. 5.1. In this figure, black straight line represents analytical approximation of the

IR
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Figure 5.1: Numerical power spectrum of the field uwith π̄ = 0.1m2
Pl (green points). Black

line represents the analytical spectrum given by Eq. 5.35 with U0 = 2m2
Pl and η0 = 0.1lPl.

Dashed lines represent UV and IR limits given by Eq. 5.36 and Eq. 5.37.

spectrum. In order to derive this approximation we assume

uout =
αk√
2k
e−ikη +

βk√
2k
eikη. (5.29)

Here the relation |αk|
2 − |βk|

2 = 1 holds, as a consequence of the normalisation condition.
Now we base on integral representation

u(η, k) = uin(η, k) +
1

k

∫η

−∞

dη ′U(η ′) sink(η− η ′)u(η, k) (5.30)
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of the Eq. 5.13 where U(η) = −m2
eff(η). Solving this equation in the first order of pertur-

bative expansion we compute values of αk and βk. We approximate the U(η) function by
the step function U(η) = U0Θ(η+η0)Θ(η0 −η) of the width 2η0. The values of parameters
U0 and η0 can be fixed from the numerical computation of the full model. However we
expect that

U0 ∼ −m2
eff(t = 0) =

κ

3
(2π̄ϕρc)

2/3 (5.31)

where the equality comes from the analytical expression for the m2
eff function (See Ref.

[51]). Moreover, it was shown in Ref. [51] that η0 can be related with the value of confor-
mal time at Hmax, then

η0 = η(t0) =
2F1

[
1
2
, 1

6
, 3

2
;−1

]
√

3κρ
1/3
c (π̄2

ϕ/2)1/6
. (5.32)

The value of a parameter η0 do not have to be however precisely equal to η(t0). We expect
rather η0 ∼ η(t0). Namely, its value can not be much bigger or much lower than η(t0). In
Fig. 5.1 we showed the case π̄ϕ = 0.1m2

Pl which was approximated by the model above
with U0 = 2m2

Pl and η0 = 0.1lPl. Based on the values of η(t0) and −m2
eff(t = 0) we obtain

η0 = 0.3lPl and U0 = 2.5m2
Pl. Better fit to numerical data is obtained when a step function

is more narrow than 2η(t0) and a bit lower than −m2
eff(t = 0).

Based on the performed step function approximation, we find

αk ≈ 1 +
i

2k

∫∞

−∞

dηU(η) = 1 + i
U0η0

k
, (5.33)

βk ≈ −
i

2k

∫∞

−∞

dηU(η)e−2ikη = −i
U0

2k2
sin(2kη0). (5.34)

Now with use of definition of the power spectrum we obtain analytical expression

Pu =

(
k

2π

)2

+
U0

(
sin [2kη0]

2U0 + 4k2U0η
2
0 + 4k sin [2kη0] (k sin[2ηk] − cos[2ηk]U0η0)

)

16πk2

(5.35)
which was shown in Fig. 5.1. In the UV and IR limits, the power spectrum given by Eq.
5.35 behaves like

PUV
u →

(
k

2π

)2

, (5.36)

PIR
u →

(
k

2π

)2 (
1 + 4U0η0η+ 4U2

0η
2
0η

2
)

. (5.37)

The term in the second bracket in Eq. 5.37 is the difference between the UV and IR slopes
in Fig. 5.1.

The analytical model correctly reproduces the structure of oscillations obtained from
the numerical simulations. However, the relative amplitudes of the modes are not exactly
recovered. In particular, the analytical model predicts more power for the low values of
k.
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5.5 Bounce and inflation

Phase of symmetric bounce is a very idealized situation. More physically relevant is the
joined bounce with an inflation phase. Such model was studied in Chapter 3. In this
section, we will construct a simple analytical model of perturbations in this phase.

In the contracting phase, the sub-horizontal modes are given by Eq. 5.28, as previ-
ously. The subsequent phase of inflation can be approximated by de Sitter phase where
evolution of the scale factor is given by a = − 1

H0η
. In this phase, the fluctuation modes

are given by superposition of Bunch-Davies modes

uout =
αk√
2k
e−ikη

(
1 −

i

kη

)
+
βk√
2k
eikη

(
1 +

i

kη

)
, (5.38)

where a relation |αk|
2−|βk|

2 = 1 holds. Performing matching conditions uin(ηi) = uout(ηi)

and u ′
in(ηi) = u

′
out(ηi) we determinate coefficients

αk = −
1 − 2ikηi − 2k2η2

i

2k2η2
i

, (5.39)

βk = −
e−2ikηi

2k2η2
i

. (5.40)

Based on this, we can derive the power spectrum. At the time η→ 0−, it takes a form

Pδϕ =

(
H0

2π

)2

+

(
H0

2π

)2
k4
∗

2k4

[
1 + cos

(
2k

k∗

)(
−1 +

2k2

k2
∗

)
−

2k

k∗
sin

(
2k

k∗

)]
, (5.41)

where we have defined k∗ = −1/ηi. We show plot of this spectrum in Fig. 5.2.
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Figure 5.2: Power spectrum of the field δϕ. Here ηi = −1,−10,−100 (from right to left).

The obtained spectrum is characterized by the suppression for the low values of k.
For the large k the spectrum holds the inflationary form. Other important features are
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oscillations, which are residue of the bouncing phase. We see that damping begins when
−ηik ∼ 1. This corresponds to the k on the horizon scale at the time ηi. At the time ηi
value of the scale factor is given by ai = − 1

H0ηi
, therefore k∗ = aiH0. Defining the length

scale λ∗ = ai/k∗ we obtain λ∗ = 1
H0

. Today, the value of λ∗ is given by λ∗a0/ai where a0 is
the present value of a scale factor.
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Chapter 6

Tensor perturbations

In this chapter, we study tensor perturbations (gravitational waves) with holonomy cor-
rections. We determine power spectrum of gravitational waves for the background dy-
namics investigated in Chapter 3.

Tensor modes, are the most explored type of perturbations in LQC. The effects of quan-
tum gravitational effects on propagation of gravitational waves were studied for both in-
verse volume and holonomy corrections. In case of the inverse volume corrections the
investigations were performed in [34, 52, 53]. The case with the holonomy corrections
was studied in [34, 51, 54]. In particular, in Ref. [51], generation of the gravitational
waves in the symmetric bounce model was studied. In Ref. [54] holonomy corrections to
the inflationary spectrum of gravitational waves were derived.

Although quite a lot of work has already been devoted to gravitational waves in LQC,
this study aims at treating, for the first time, the problem in a fully self-consistent way
with explicit emphasize on the investigation of the spectrum that can be used as an input
to study possible experimental signatures.

6.1 Holonomy-corrected constraints

The holonomy-corrected scalar constraint for the tensor modes can be obtained based on
the classical expression (4.63). The corrections are introduced by replacing k̄ by the func-
tion K[n], as discussed on Chapter 2. Based on this, we define the holonomy-corrected
Hamiltonian constraint as follows [34]

SQ[N] =
1

2κ

∫

Σ

d3xN̄(C(0) + C(2)), (6.1)
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where

C(0) = −6
√
p̄ (K[1])2 (6.2)

C(2) = −
1

2p̄3/2
(K[1])2

(δEcj δE
d
kδ

k
cδ

j
d) +

√
p̄(δKj

cδK
k
dδ

c
kδ

d
j )

−
2√
p̄
(K[t1]) (δE

c
j δK

j
c) +

1

p̄3/2
(δcdδ

jkδef∂eE
c
j∂fE

d
k). (6.3)

Here, the factors k̄2 were replaced by K[1]2 as in case of the homogeneous model stud-
ied in Chapter 2. The last holonomy correction K[t1] is parametrized by some unknown
parameter t1 ∈ N. In this chapter, we assume that t1 = 2. Motivation for this particular
choice may be derived from considerations of the vector modes [34] (see also Chapter 7).
However, the value of this parameter cannot be fixed by considering the tensor modes
only. This is because the Poisson bracket

{
SQ[N1], S

Q[N2]
}
= 0 (6.4)

is anomaly-free, independently on the value of t1. Moreover, the diffeomorphism con-
straint is equal to zero, because for the tensor modes Na = 0. Therefore, other possible
Poisson brackets are vanishing.

Because the requirement of the anomaly freedom is trivially fulfilled for the tensor
modes, presence of additional holonomy corrections to equation (6.1) is not excluded.
Such corrections can originate from the counter-terms, as studied in case of the vector
and scalar modes. In particular, the most restrictive conditions were obtained for the case
of scalar perturbations in Chapter 8. If we extrapolated those results into the case of the
tensor modes, the holonomy-corrected scalar constraint would take a form different from
(6.1). While the C(0) factor would hold its form, the C(2) term, given by equation (6.3),
should be replaced by

C(2)
new = −

1

2p̄3/2

(
6k̄K[2] − 3K[1]2 − 2k̄2 cos(2µ̄γk̄)

)
(δEcj δE

d
kδ

k
cδ

j
d)

+ cos(2µ̄γk̄)
√
p̄(δKj

cδK
k
dδ

c
kδ

d
j )

−
2√
p̄

(
2K[2] − k̄ cos(2µ̄γk̄)

)
(δEcj δK

j
c) +

1

p̄3/2
(δcdδ

jkδef∂eE
c
j∂fE

d
k). (6.5)

It is clear that in the limit µ̄→ 0, the classical expression is correctly recovered. However,
quantum modifications are strictly different from those in equation (6.3).

In this Chapter we will focus on investigating the model defined by the Hamiltonian

constraint (6.1). The case with C
(2)
new will be studied elsewhere.
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6.2 Evolution of tensor modes

The equation of motion for tensor modes, resulting from the Hamiltonian constraint (6.1),
is given by [51]

d2

dη2
hi
a + 2aH

d

dη
hi
a −∇2hi

a +m2
Qh

i
a = 0, (6.6)

where hi
a are gravitational perturbations, η is the conformal time and the factor due to

the holonomy corrections is given by

m2
Q := 16πGa2 ρ

ρc

(
2

3
ρ− V

)
. (6.7)

This factor acts as an effective mass term. For convenience we introduce the variable

u =
ah⊕√
16πG

=
ah⊗√
16πG

, (6.8)

where h1
1 = −h2

2 = h⊕, h1
2 = h

2
1 = h⊗. Then, performing the Fourier transform

u(x, η) =

∫
d3k

(2π)3
uk(η)e

ik·x, (6.9)

one can rewrite the equation as

d2

dη2
uk(η) +

[
k2 +m2

eff

]
uk(η) = 0, (6.10)

where k2 = k · k and

m2
eff :=m

2
Q −

a
′′

a
= a2κ

2

[
P −

1

3
ρ

]
, (6.11)

where the P is the pressure of the scalar field. It is worth underlining that the final expres-
sion of meff has no explicit dependence upon the critical energy density ρc. In (Eq.6.1),
both m2

Q and a
′′
/a depend on ρc. However, because

a
′′

a
= a2

[
2κ

3
ρ

(
1 −

ρ

ρc

)
−
κ

2
(ρ+ P)

(
1 −

2ρ

ρc

)]
, (6.12)

factors depending on ρc cancel out precisely. This is perhaps not a coincidence and this
could exhibit the conservation of classical symmetries while introducing the quantum
corrections.

Next step consists in quantizing the Fourier modes uk(η). This follows the standard
canonical procedure. Promoting this quantity to be an operator, one performs the decom-
position

ûk(η) = fk(η)b̂k + f
∗
k(η)b̂

†
−k, (6.13)
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where fk(η) is the so-called mode function which satisfies the same equation as uk(η),

namely (Eq. 6.10). The creation (b̂†k) and annihilation (b̂k) operators fulfill the commuta-

tion relation [b̂k, b̂†q] = δ(3)(k − q).
The problem is now shifted to the resolution of a Schrödinger-like equation (6.10)

which can be used to compute observationally relevant quantities. In particular, the cor-
relation function for tensor modes is given by

〈0|ĥa
b(x, η)ĥb

a(y, η)|0〉 =
∫∞

0

dk

k
PT(k, η)

sinkr

kr
, (6.14)

where PT is the tensor power spectrum and |0〉 is the vacuum state. In our case, PT can be
written as

PT(k, η) =
64πG

a2(η)

k3

2π2
|fk(η)|

2. (6.15)

This spectrum is a fundamental observable associated with gravitational wave produc-
tion. As will be shown in the next sections, very substantial deviations from the usual
shape are to be expected within the LQC framework.

6.3 Analytical investigation of the power spectrum

In this section we perform analytical studies of gravitational wave creation in the sce-
nario previously described. In particular, we derive approximate formulas for the tensor
power spectrum at the end of inflation. In next section we will compare this result with
numerical computations.

In the considered model, the evolution is split into three parts: contraction, bounce
and slow-roll inflation. For this model, the effective mass square is defined as follows

m2
eff(η) =






0 for η < ηi − ∆η.
k2

0 for ηi − ∆η < η < ηi.
−
(
ν2 − 1

4

)
1
η2 for η > ηi.

(6.16)

Basically, the phenomenological parameters entering the model are therefore:

• ηi - the beginning of the inflation.

• ∆η - the width of the bounce.

• k0 - which is approximately equal to the value of meff at the bounce (when H = 0).
It can therefore be related to energy scale of the bounce.

• ν - which is related to slow-roll parameter

ǫ :=
1

16πG

(
V,ϕ

V

)2

(6.17)

by ν =

√
9
4
+ 3ǫ = 3

2
+ ǫ+ O(ǫ2), where ǫ≪ 1.
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For the considered model, we have k2
0 > 0. This comes from the fact that we consider a

particular shark fin type of evolution where the bounce is dominated by the kinetic energy
term.

Matching should be performed between the three considered phases. It can be done,
as displayed in Fig. 6.1, with transition matrices defined as follows:

M :=

[
fk(η) f∗k(η)

∂ηfk(η) ∂ηf
∗
k(η)

]
, (6.18)

where the Wronskian condition implies

W(fk(η), f
∗
k(η)) := det M = i. (6.19)

The inverse of the transition matrix is then given by:

M−1 := −i

[
∂ηf

∗
k(η) −f∗k(η)

−∂ηfk(η) fk(η)

]
. (6.20)

M1® ¬M2 M3® ¬M4
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- 2
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Figure 6.1: Evolution of the effective mass used in the analytical approximation (Eq. 6.16).
On this plot, ǫ is set to zero as an example. The dashed line represents the case without
a bounce. The points where the transfer matrices are computed in our model are also
indicated.

The three first transition matrices are:

M1 =




e−ik(ηi−∆η)
√

2k
eik(ηi−∆η)

√
2k

−i
√

k
2
e−ik(ηi−∆η) i

√
k
2
eik(ηi−∆η)


 , (6.21)

M2 =




e−iΩ(ηi−∆η)
√

2Ω
eiΩ(ηi−∆η)

√
2Ω

−i
√

Ω
2
e−iΩ(ηi−∆η) i

√
Ω
2
eiΩ(ηi−∆η)


 , (6.22)

M3 =

[
e−iΩηi√

2Ω
eiΩηi√

2Ω

−i
√

Ω
2
e−iΩηi i

√
Ω
2
eiΩηi

]
, (6.23)
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where

Ω =

√
k2 + k2

0. (6.24)

In the last region, mode functions can be written as

fk(η) = αkgk(η) + βkg
∗
k(η), (6.25)

where

gk(η) =
√
−η

√
π

4
eiπ(2ν+1)/4H(1)

ν (−kη), (6.26)

Hν(x) being a Hankel function of the first kind. The mode functions gk(η) correspond to
another decomposition of the field ûk(η) in the form:

ûk(η) = gk(η)âk + g
∗
k(η)â

†
−k. (6.27)

The creation (â†
k) and annihilation (âk) operators fulfill the commutation relation [âk, â†

q] =

δ(3)(k − q). Because decompositions (6.13) and (6.27) are equivalent, based on (Eq. 6.25)
and on the Wronskian conditions for the mode functions fk and gk, one obtains:

[
b̂k

b̂†−k

]
=

[
αk β∗

k

βk α∗
k

] [
âk

â†
−k

]
, (6.28)

which corresponds to the Bogoliubov transformation with coefficients αk and βk. Due to
the commutation relation of the creation and annihilation operators we have |αk|

2−|βk|
2 =

1. It is clear from (Eq. 6.28) that if βk 6= 0 particles are created from the vacuum, just

because b̂k|0〉 = β∗
kâ

†
−k|0〉. By matching the three regions, the unknown coefficients αk

and βk can be determined:

[
αk

βk

]
= M4

−1M3M2
−1M1

[
1
0

]
(6.29)

= M4
−1

[
eik(∆η−ηi)(Ω cos[∆ηΩ]−ik sin[∆ηΩ])√

2kΩ
eik(∆η−ηi)(−ik cos[∆ηΩ]−Ω sin[∆ηΩ])√

2k

]
,

where M4 is given by

M4 =

[
gk(η) g∗k(η)

∂ηgk(η) ∂ηg
∗
k(η)

]

η=ηi

, (6.30)

the mode function gk being given by (Eq. 6.26). In a special case corresponding to a de
Sitter inflation (ǫ = 0 and ν = 3

2
), the mode functions given by (Eq. 6.26) simplify to the

Bunch-Davies vacuum

gk(η)|ν= 3
2
= gB-D

k (η) =
e−ikη

√
2k

(
1 −

i

kη

)
. (6.31)
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In general, the amplitude of the mode function during inflation can be written as

|fk|
2 = |gk|

2|αk − βk|
2 + 4ℜ(α∗

kβkg
∗
k)ℜgk. (6.32)

As we are interested in the spectrum at the end of inflation (η→ 0−), the approximation

H(1)
ν (x) ≃ −

i

π
Γ(ν)

(x
2

)−ν

(6.33)

holds and, based on this, one can easily see that for a slow-roll inflation (ǫ≪ 1):

lim
η→0−

ℜgk(η)

ℑgk(η)
= O(ǫ). (6.34)

Therefore, the leading order contribution from (Eq. 6.32) becomes

lim
η→0−

|fk|
2 = |gk|

2|αk − βk|
2. (6.35)

With this approximation, the tensor power spectrum at the end of inflation takes the form

PT(k) =
16

π

(
H

mPl

)2(
k

aH

)−2ǫ

|αk − βk|
2. (6.36)

The coefficients αk and βk are computed from (Eq. 6.29). Since the resulting expression
for |αk −βk|

2 is very long, it is not explicitly given here. It exhibits the correct ultra-violet
(UV) behavior, namely limk→∞ |αk − βk|

2 = 1. Therefore, the UV spectrum simplifies to

PT(k→ ∞) =
16

π

(
H

mPl

)2(
k

aH

)−2ǫ

. (6.37)

In Fig. 6.2, spectra, as obtained from (Eq. 6.36), are displayed for different values of k0

and normalized to the usual non-LQC corrected spectrum. In Fig. 6.3, the width of the
bounce ∆η is varied. In both cases, ǫ is vanishing.

Main features that can be drawn from those plots are the following:

• Power is suppressed in the infra-red (IR) regime. This is a characteristic feature
associated with the bounce.

• UV behavior agrees with the standard general relativistic picture.

• Damped oscillations are superimposed with the spectrum around the "transition"
momentum k∗ between the suppressed regime and the standard regime.

• The first oscillation behaves like a "bump" that can substantially exceed the UV
asymptotic value.

• The parameter k0 basically controls the amplitude of the oscillations whereas ∆η
controls their frequency.
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Figure 6.2: Analytical tensor power spectra, normalized to the non-LQC-corrected spec-
trum, for three different values of k0 in the ǫ = 0 case. The parameters are: k0 = 0 (solid
line), k0 = 1.5 (dashed line), k0 = 3 (dotted line), ηi = −1, and ∆η = 1.
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Figure 6.3: Analytical tensor power spectra, normalized to the non-LQC-corrected spec-
trum, for two different values of ∆η in the ǫ = 0 case. The parameters are: ∆η = 0 (solid
line), ∆η = 10 (dashed line), k0 = 1, and ηi = −1.

6.4 Numerical investigation of the power spectrum

To perform a more detailed analysis, we have also fully numerically solved the system of
coupled differential equations which leads to both the evolution of the modes and of the
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background:

d2fk

dt2
= −H

dfk

dt
−

[
k2

a2
+
κ

6
(3P − ρ)

]
fk, (6.38)

dH

dt
=

1

2
κ(ρ+ P)

(
2
ρ

ρc
− 1

)
, (6.39)

da

dt
= Ha, (6.40)

dϕ

dt
=

π

a3
, (6.41)

dπ

dt
= −a3m2ϕ, (6.42)

where

ρ =
π2

2a6
+
m2

2
ϕ2 and P =

π2

2a6
−
m2

2
ϕ2 (6.43)

are respectively the energy density and pressure of the scalar field whereas π is the mo-
mentum.

To compute the evolution of the modes, the initial condition was assumed to be the
Minkowski vacuum

fk =
e−ikη

√
2k

. (6.44)

This approximation is valid for the sub-horizontal modes. Therefore, in the numerical
computations we have evolved only modes that were sub-horizontal at the initial time.

In Fig. 6.4, the analytical spectrum (Eq. 6.36) evaluated as explained in the previous
section is compared with the full numerical computation. The overall agreement is very
good with slight deviations due to subtle dynamical effects. The UV tilt associated with
the slow-roll parameter is perfectly recovered. The values of parameters H, k0 and ǫwere
determined from the evolution of the background. In turn, the parameters ηi and ∆η
were fixed to fit the numerical data.

The mass of the scalar field is, of course, the key physical parameter of this model. The
canonically chosen value (around 10−6mPl) may not be especially meaningful in this ap-
proach as the standard requirements of inflation are substantially modified by the specific
history of the Hubble radius. This value is nonetheless still the mostly preferred one.

In Fig. 6.5, the spectra computed for three different mass values are displayed. As
expected, the UV value of the spectrum scales asm2, since during inflation PT ∼ H2 ∼m2.
It is also clear that the region of oscillations becomes broader while lowering the value of
m.

In Fig. 6.6, we show how the spectrum is modified by different choices of ρc. It is clear
that increasing ρc leads to amplification of the spectrum. The dependence is however not
very strong. The increase of ρc leads to the increase of the field displacement ϕmax. This
dependence was shown to be rather weak. Since PT ∼ H2 ∼ m2ϕ2, the increase of ϕ due
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Figure 6.4: Comparison of numerical and analytical spectra (Eq. 6.36) for m = 10−2mPl.
In the IR region the spectra behave as PT ∝ k2 while in the UV region they behave as
PT ∝ k−2ǫ, where ǫ ≪ 1 is the slow-roll parameter. Here: H = 0.037mPl, ǫ = 0.0246, k0 =

0.037mPl, ηi = −750,∆η = 10.
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m=10-4mPl

10-4 0.001 0.01 0.1 1 10
k

10-6

10-4

0.01

PT

Figure 6.5: Numerically computed power spectra for m = 10−4, 10−3, 10−2 mPl (from bot-
tom to top in the UV range).

to the dependence upon ρc will result in amplification of the power spectrum. This is in
agreement with numerical results. From Fig. 6.6, it can also be noticed that increasing ρc

amplifies the oscillatory structure.
Numerical investigations performed for this work have shown that the quantity R

defined as

R :=
PT(k = k∗)

Pstandard
T (k = k∗)

, (6.45)

basically evolves as

R ≃
(mPl

m

)0.64

, (6.46)

where k∗ is the position of the highest peak in the power spectrum and Pstandard
T (k) is
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Figure 6.6: Numerically computed power spectra for ρc = 10−4, 10−2, 10m4
Pl (from bottom

to top in the UV range) with m = 10−3mPl.

a standard inflationary power spectrum (See e.g. Eq. 6.37) which overlaps with PT(k)

for k → ∞. The function (6.46) was obtained by fitting the numerical data in the mass
range m = 5 · 10−5mPl ... 10−1mPl. Due to numerical instabilities, it was not possible to
perform computations for lower values of the inflaton mass. The numerically obtained
values of R together with the approximation given by (Eq. 6.46) are given in Fig. 6.7. This

0.0001 0.001 0.01 0.1 m
1

10

100

1000

R

Figure 6.7: Ratio defined by (Eq. 6.45) as a function of inflaton mass in Planck units. Dots
are values obtained from the numerical computations. The straight line is the fit given by
(Eq. 6.46).

parametrization is useful for phenomenological purposes. Interestingly, R can become
very high for low values of the mass of the field. This partially compensates for the
lower overall normalization of the spectrum and can become a very specific feature of
the model. In particular, for the mass m ≈ 10−6mPl (which is the value preferred by
some estimations), extrapolating the relation (6.46) leads to R ≈ 8000. If the relation still
holds in this range, the effect is very significant, and could have important observational
consequences.
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Finally, to make basic studies easier, we performed rough parametrization of the full
spectrum:

PT =
16

π

(
H

mPl

)2
(

k
aH

)−2ǫ

1 + (k∗/k)2

[
1 +

4R− 2

1 + (k/k∗)2

]
, (6.47)

leading to

PdS
T =

16

π

(
H

mPl

)2
1

1 + (k∗/k)2

[
1 +

4R− 2

1 + (k/k∗)2

]
, (6.48)

in the specific case of de Sitter inflation. In both cases, the classical behavior is recovered in
the limit k→ ∞. The point for introducing the R factor the way it was done becomes clear
when calculating the value of the spectra at k = k∗. For a modified de Sitter spectrum
(Eq 6.48), we get

PdS
T (k = k∗) = R

16

π

(
H

mPl

)2

. (6.49)

Thanks to the relation (6.46), the number of free parameters can be decreased in a phe-
nomenological analysis.

As shown on Fig. 6.8, this formula correctly reproduces the main features, namely
the IR power suppression, the bump and the UV limit. Oscillations are missed but due
to momentum integration there is little hope that they can observationally be seen on a
cosmological microwave background (CMB) spectrum.
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1
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Figure 6.8: Comparison of the numerical spectrum for m = 10−2mPl with formulas (6.47)
and (6.48). The solid (blue) line corresponds to (6.47) while the dashed (red) line corre-
sponds to (6.48).

To conclude this section, we have schematically represented the evolution of the Hub-
ble radius (RH := 1/|H|), together with exemplary physical modes, in Fig. 6.9. This helps
to understand the shape of the obtained spectra.

We consider the modes that are initially (at time t1) shorter than the Hubble radius. For

those modes, the normalized solution is given by the Minkowski vacuum fk = e−ikη/
√

2k.
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Figure 6.9: Schematic picture of the evolution of the Hubble radius (solid line) and of the
different length scales (dashed lines) for the considered model of the universe. Different
times are distinguished: t1−time when the initial conditions are set; t2−bounce (H = 0);
t3−beginning of inflation; t4−end of inflation; t5−present epoch of dark energy domina-
tion.

Therefore, the initial power spectrum takes the form PT ∼ k3|fk|
2 ∼ k2. Starting from the

largest scales, the modes cross the Hubble radius. This is possible since the Hubble ra-
dius undergoes contraction faster than any particular length scale. While crossing the
horizon, the shape of the spectrum becomes frozen in the initial PT ∼ k2 form. Then, the
modes evolve through the bounce (at time t2) until the beginning of inflation (at time t3).
The main consequence of the transition of modes through the bounce is the appearance
of additional oscillations in the spectrum. This issue was studied in details in Ref. [51],
where the spectrum at time t3 was calculated for the symmetric bounce model. After the
bounce, modes with wavelengths shorter than λ∗ start to re-enter the Hubble radius. The
super-horizon modes λ > λ∗ (k < k∗) hold the k2 spectrum, with however some oscil-
latory features due to the bounce. Modes with λ < λ∗ (k > k∗) cross the horizon again
during the phase of inflation. For them, the spectrum agrees with the standard slow-roll
inflation spectrum PT ∼ k−2ǫ where ǫ ≪ 1. The small tilt is due to slow increase of the
Hubble radius. Contributions from different modes are then slightly different. At the end
of inflation (at time t4) the spectrum is therefore suppressed (PT ∼ k2) for k < k∗ and
exhibits an inflationary shape (PT ∼ k−2ǫ) for k > k∗. The spectrum is also modified by
oscillations due to the bounce. This corresponds to the computations of this paper. The
particular mode with wavelength λ∗ (wave number k∗) should be studied into more de-
tails. The size of this mode overlaps with the size of the Hubble radius at the beginning of
inflation: k∗ ≃ a(t3)H(t3). The physical length λ∗ at the scale factor a(t) is therefore equal
to λ∗(t) ≃ a(t)/[a(t3)H(t3)]. This scale grows with cosmic expansion and it is crucial,
from the observational point of view, to determine its present size (at time t5). The case
drawn in Fig. 6.9 corresponds to the present size of λ∗ greater than the size of the horizon
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(the Hubble radius). This is indeed rather unlikely that the present value of λ∗ is below
the size of the horizon just because the spectrum of scalar perturbations should then ex-
hibit deviations from the nearly scale invariant inflationary prediction. Up to now, there
is no observational evidence for such deviations. A remaining possibility would however
be that the (slight) observed lack of power in the CMB spectrum of anisotropies could
be due to the effects of the bounce. However, the present size of λ∗ would then be com-
parable with the size of the horizon. This leads to the question: why should those two
scales overlap right now? This is rather unnatural, and would lead to a new coincidence
problem. However, as it was estimated in Ref. [23], these two scales can indeed overlap
in the standard inflationary scenario for quite natural values of the parameters. There
is therefore a glimpse of hope that the scale λ∗ is at least not much bigger than the size
of the horizon. This could allow us to see some UV features due to the bounce as the
oscillations also affect sightly the inflationary part of the spectrum. These are however
secondary effects and it is not clear whether they were not smoothed away during the
radiation domination era. Moreover, in the region where those effects could be expected,
errors due to the cosmic variance become significant. This is an unavoidable observational
limitation which cannot be bettered, even by the improvement of resolution of the future
CMB experiments.

6.5 Conclusions

In this chapter, we have investigated into the details by both analytical and numerical
studies the primordial power spectrum of gravitational waves in LQC. It exhibits several
characteristic features, namely a PT ∝ k2 IR power suppression, oscillations, and a bump
at k∗. In the UV regime, the standard inflationary spectrum PT ∝ k−2ǫ is recovered.
Therefore, in the UV limit the LQC results overlap with those obtained in the classical
theory of gravity, as shown in Fig. 6.10.

The primordial tensor power spectrum transforms into B-type CMB polarization. The
performed investigations therefore open the window for observational tests of the model,
in particular through the amplification which occurs while approaching k → k∗. The
observed structures correspond to the UV region in the spectrum. If the present scale
λ∗ ∼ 1/k∗ is not much larger than the size of horizon, then the effects of the bounce
should be, in principle, observable. In particular, one should expect amplification, rather
than suppression of the B-type polarization spectrum at low multipoles. The suppression
for k < k∗ becomes dominant at much larger scale, probably far above the horizon. While
the B-type polarization has not been detected yet, there are huge efforts in this direction.
Experiments as PLANCK [55], BICEP [56] or QUaD [57] are (partly) devoted to the search
of the B-mode. Even with the present observational constraints, one can already exclude
some evolutionary scenarios and possible values of the parameters, in particular the in-
flaton mass m and the position of the bump k∗ in the spectrum. This will be studied in
Chapter 9.
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Figure 6.10: Comparison of the tensor power spectra from the slow-roll inflation obtained
in loop quantum cosmology (LQC) and general relativity (GR) for m = 10−2mPl. Both
spectra overlap in the UV limit while in the IR limit significant discrepancy due to the
quantum gravitational effects is observed.
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Chapter 7

Vector perturbations

In this chapter, we investigate vector perturbations with holonomy corrections. Condi-
tions to achieve anomaly freedom for these perturbations are found at all orders. This
requires an introduction of counter-terms in the Hamiltonian constraint. We also show
that anomaly freedom requires the diffeomorphism constraint to hold its classical form
when matter is added. The gauge-invariant variable and the corresponding equation of
motion are derived. The propagation of vector modes through the bounce is finally dis-
cussed.

7.1 Holonomy-corrected constraints

Vector modes within the canonical formulation were studied in [33]. It was shown there
that

δEai = −p̄(c1∂
aFi + c2∂iF

a), (7.1)

where c1 + c2 = 1 and the divergence-free condition δiaδE
a
i = 0 is fulfilled. The values

of c1 and c2 depend on the gauge choice. However, due to the Gauss constraint, only
symmetric variables are invariant under internal rotations. This is the case for δE(ai),
which is consequently independent on the specific choice of c1 and c2, and should be
preferred. Perturbation of the shift vector is parametrized as δNa = Sa.

The quantum holonomy-corrected Hamiltonian constraint, corresponding to classical
(4.70), is given by

SQ[N] =
1

2κ

∫

Σ

d3x
[
N̄(C(0) + C(2))

]
, (7.2)
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where

C(0) = −6
√
p̄ (K[1])2 , (7.3)

C(2) = −
1

2p̄3/2
(K[1])2

(1 + α1)(δE
c
j δE

d
kδ

k
cδ

j
d) +

√
p̄(δKj

cδK
k
dδ

c
kδ

d
j )

−
2√
p̄
(K[v1]) (1 + α2)(δE

c
j δK

j
c). (7.4)

Holonomy corrections were introduced by replacing k̄ → K[n]. Two counter-term func-
tions α1 and α2, whose interest will be made clear later, were also added. In the classical
limit K[n] → k̄, and αi = αi(p̄, k̄) → 0, with i = 1, 2. We have assumed here that
αi are functions of the background variables only and that v1 is an integer to be fixed.
The Hamiltonian constraint (7.2) corresponds to the one investigated in [33] while setting
αi = 0. However, as we will show, it is necessary to introduce these additional factors,
which vanish in the classical limit. These factors can, of course, also be viewed as contri-
butions from the two counter-terms

SC1 = −
α1

2κ

∫

Σ

d3x
N̄

2p̄3/2
(K[1])2

(δEcj δE
d
kδ

k
cδ

j
d), (7.5)

SC2 = −
α2

2κ

∫

Σ

d3x
2N̄√
p̄
(K[v1]) (δE

c
j δK

j
c) (7.6)

to the holonomy-corrected Hamiltonian constraint.
A similar method of counter-terms was successfully applied for perturbations with

inverse-volume corrections. In that case, it was possible to fix the counter-terms so as
to make the algebra anomaly free. In this article, we follow the same path so as to find
explicit expressions for α1 and α2.

For the sake of completeness, we also introduce holonomy corrections to the diffeo-
morphism constraint, as follows:

DQ[Na] =
1

κ

∫

Σ

d3xδNc
[
−p̄(∂kδK

k
c) − (K[v2]) δ

k
c(∂dδE

d
k)
]

, (7.7)

where v2 is an unknown integer. It is worth emphasizing here that within LQG, the dif-
feomorphism constraint is fulfilled at the classical level while constructing the diffeomor-
phism invariant spin network states. If LQC was really derived from the full LQG theory,
the classical form of the diffeomorphism constraint should therefore be used. However,
at this early stage of the understanding of LQC, it might be safe to allow for some gener-
alizations by introducing the holonomy correction also to the diffeomorphism constraint.
This hypothesis was already studied in [39] in the case of holonomy-corrected scalar per-
turbations. It was assumed there that the holonomy correction function was given by
K[2]. In this work, we prefer to keep a more general expression K[v2] with a free v2 pa-
rameter. We will investigate whether this additional modification can help to fulfill the
anomaly freedom conditions.
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7.2 Algebra of constraints

The algebra of constraints (7.2) and (7.7) shall now be investigated. Using the Poisson
bracket (4.8), we find:

{
SQ[N1], S

Q[N1]
}

= 0, (7.8)
{
DQ[Na

1 ],D
Q[Na

2 ]
}

= 0, (7.9)

{
SQ[N],DQ[Na]

}
=

N̄√
p̄
BDQ[Na]

+
N̄

κ
√
p̄

∫

Σ

d3xδNcδkc(∂dδE
d
k)δE

d
kA,

(7.10)

where B := (1+α2)K[v1]+K[v2]−2K[2], and A is an anomaly function which, for reasons
that shall be made clear later, is decomposed in two parts A = A1 +A2, where

A1 = BK[v2], (7.11)

A2 = 2K[2]p̄
∂K[v2]

∂p̄
−

1

2
(K[1])2 cos(v2µ̄γk̄)

− 2K[1]p̄
∂K[1]

∂p̄
cos(v2µ̄γk̄)

+ (1 + α2)K[v1]K[v2] −
1

2
K[1]2(1 + α1). (7.12)

This decomposition was made so that in the classical limit (µ̄→ 0), both contributions to
the anomaly vanish separately. Using the relation

p̄
∂K[n]

∂p̄
=
(
k̄ cos(nµ̄γk̄) −K[n]

)
β, (7.13)

the second contribution can be re-written as:

A2 = −2βK[2]K[v2] + (1 + α2)K[v1]K[v2]

+ (2β− 1/2)(K[1])2 cos(v2µ̄γk̄)

−
1

2
(K[1])2(1 + α1). (7.14)

The full anomaly term is given by:

A = 2(1 + α2)K[v1]K[v2] −
1

2
(K[1])2(1 + α1)

− 2(1 + β)K[2]K[v2] +K[v2]
2

+ (2β− 1/2)(K[1])2 cos(v2µ̄γk̄). (7.15)
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7.3 Anomaly freedom in the gravity sector

The requirement of the anomaly freedom for the gravity sector reads as A = 0. Under
this condition, the algebra of constraints becomes closed but deformed, in particular:

{
SQ[N],DQ[Na]

}
= DQ

[
N̄√
p̄
BNa

]
. (7.16)

The structure of space-time is therefore also modified. This is illustrated in Fig. 7.1
where one can notice that the Hamiltonian and diffeomorphism constraints generate
gauge transformations in directions respectively normal and parallel to the hypersurface.
In the classical limit, B → 0 and both the transformations commute at the perturbative

Figure 7.1: Pictorial representation of the hypersurface deformation algebra.

level.

7.3.1 The no counter-terms case

Let us start by analyzing the condition A = 0 without any counter-term (i.e. with α1 =

α2 = 0). This case corresponds to the one studied in [33] generalized by the contribution
from the corrected diffeomorphism constraint. It was shown in that work that, if v2 =

0, the anomaly-freedom condition can be satisfied up to the k̄4 order only. Here, we
investigate whether this might be improved by the additional correction made to the
diffeomorphism constraint.

By setting α1 = α2 = 0, the anomaly term given by (7.15) can be expanded in powers
of the canonical variable k̄ as follows:

A

(µ̄γ)2
=

1

12

(
20 − 4v2

1 − v
2
2 + 8β− 8v2

2β
)
x4

+
1

720

(
−224 + 12v4

1 − 220v2
2 + 40v2

1v
2
2 + 17v4

2

− 128β+ 80v2
2β+ 48v4

2β
)
x6 + O(x8), (7.17)

where we have defined x := µ̄γk̄ and x ∈ [0,π]. Clearly, in the classical limit µ̄ → 0, the
anomaly tends to zero. Requiring the anomaly cancellation up to the fourth order leads
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to the condition:
20 − 4v2

1 − v
2
2 + 8β− 8v2

2β = 0. (7.18)

It can be shown that the condition of anomaly cancellation up to orders higher than four
cannot be met. For β = −1/2 (µ̄−scheme), the above equation simplifies to the quadratic
Diophantine equation:

16 − 4v2
1 + 3v2

2 = 0. (7.19)

This equation can be reduced to a Pell-type equation and solved for an infinite number
of pairs of integers (v1, v2). The first three solutions are (2, 0), (4, 4) and (14, 16). The first
one (2, 0) corresponds to the case studied in [33], where the diffeomorphism constraint
was kept at its classical form. The value v1 = 2 obtained in this case was also used to
fix the ambiguity for the holonomy-corrected tensor perturbations [34]. If the holonomy
modified diffeomorphism constraint is used, the ambiguity cannot be fixed anymore due
to the infinite number of solutions to Eq. (7.19).

As we have shown, the modification of the diffeomorphism constraint does not help
satisfying the anomaly freedom conditions in the absence of counter-terms. In this case,
the anomaly freedom can be fulfilled up to the fourth order in x. In the semi-classical limit
x ≪ 1, the anomaly cancellation up to the fourth order might be a good approximation.
However, when approaching the bounce, where x = π

2
, contributions from higher order

terms become significant and the effects of the anomaly cannot be neglected anymore.
Studies of vector perturbations during the bounce phase cannot be performed in such a
setup. In order to study vector perturbations through the bounce, the anomaly cancel-
lation at all orders is required. This probably makes the introduction of counter-terms
mandatory.

7.3.2 The general case

Let us consider the general case with non-vanishing counter-terms. In this case, the re-
quirement A = 0 can be translated into a relation between the two counter-terms α1 and
α2:

α1 = −1 + 4(1 + α2)
K[v1]K[v2]

K[1]2
− 4(1 + β)

K[2]K[v2]

K[1]2
+ 2

K[v2]
2

K[1]2

+ (4β− 1) cos(v2µ̄γk̄). (7.20)

With this choice for the α1 function, the anomaly is removed. However a significant
ambiguity remains. Namely, the function α2 together with parameters v1 and v2 remain
undetermined. A particularly interesting case corresponds to the choice α2 = 0. This
determines α1. Of course, this also works the other way round: one can set α1 = 0 and
derive expression for α2. Therefore, two special cases, heuristically motivated, where one
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of the counter-terms is vanishing, are worth studying:

α1 = −1 + 4
K[v1]K[v2]

K[1]2
− 4(1 + β)

K[2]K[v2]

K[1]2
+ 2

K[v2]
2

K[1]2

+ (4β− 1) cos(v2µ̄γk̄), (7.21)

α2 = 0, (7.22)

and

α1 = 0, (7.23)

α2 = −1 +
1

4

(K[1])2

K[v1]K[v2]
+ (1 + β)

K[2]

K[v1]
−

1

2

K[v2]

K[v1]

− (β− 1/4)
(K[1])2 cos(v2µ̄γk̄)

K[v1]K[v2]
. (7.24)

To conclude, at least one counter-term is necessary to fulfill the anomaly freedom condi-
tions for the gravity sector.

7.3.3 The B = 0 case

Another possible way to fix the ambiguity in the choice of the α1 and α2 functions could
be to set B = 0. With this restriction, anomaly cancellation is fulfilled by imposing A2 = 0
as A1 ∝ B = 0. As mentioned earlier, both A2 and A1 separately tend to zero in the
classical limit, making this decomposition meaningful.

In this case, the Poisson bracket between the hamiltonian and diffeomorphism con-
straints is just

{
SQ[N],DQ[Na]

}
= 0. The conditions B = 0 and A2 = 0 can be translated

into expressions for the α1 and α2 functions:

α1 = −1 + 4(1 − β)
K[2]K[v2]

K[1]2
− 2

K[v2]
2

K[1]2
+ (4β− 1) cos(v2µ̄γk̄), (7.25)

α2 = −1 +
2K[2] −K[v2]

K[v1]
. (7.26)

The expressions for α1 and α2 are parametrized by the integers v1 and v2 only. However,
the dependence upon v1 vanishes when α2 is used in the hamiltonian constraint.

7.4 Introducing matter

We have shown that the gravity sector of vector perturbations with holonomy corrections
can be made anomaly free. We will now extend this result by introducing scalar mat-
ter. The matter Hamiltonian does not depend on the Ashtekar connection and therefore
should not be a subject of the holonomy corrections1. Furthermore, for vector perturba-

1However, as we will see in case of the scalar perturbations, the quantum counter-terms to the matter
Hamiltonian may be necessary to fulfill the requirement of the anomaly freedom
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tions, δN = 0. The matter Hamiltonian constraint is perturbed up to the second order as
follows:

Sϕ[N] =

∫

Σ

d3xN̄(C(0)
ϕ + C(2)

ϕ ), (7.27)

where

C(0)
ϕ = p̄3/2

[
1

2

π̄2

p̄3
+ V(ϕ̄)

]
. (7.28)

The value of C
(2)
ϕ is given by

C(2)
ϕ =

1

2

δπ2

p̄3/2
+

1

2

√
p̄δab∂aδϕ∂bδϕ+

1

2
p̄3/2V,ϕϕ(ϕ̄)δϕ

2

+

(
1

2

π̄2

p̄3/2
− p̄3/2V(ϕ̄)

)
δkcδ

j
dδE

c
j δE

d
k

4p̄2
, (7.29)

where we have used the condition δiaδE
a
i = 0. The matter diffeomorphism constraint is

given by:

Dϕ[N
a] =

∫

Σ

d3xδNaπ̄(∂aδϕ). (7.30)

The total Hamiltonian and diffeomorphism constraints are

Stot[N] = SQ[N] + Sϕ[N], (7.31)

Dtot[N
a] = DQ[Na] +Dϕ[N

a]. (7.32)

The resulting Poisson brackets are the following:

{Stot[N1], Stot[N1]} = 0, (7.33)

{Dtot[N
a
1 ],Dtot[N

a
2 ]} = 0, (7.34)

{Stot[N],Dtot[N
a]} =

N̄√
p̄
BDQ[Na] +

N̄

κ
√
p̄

∫

Σ

d3xδNcδkc(∂dδE
d
k)δE

d
kA

+[cos(v2µ̄γk̄) − 1]

√
p̄

2

(
π̄2

2p̄3
− V(ϕ̄)

) ∫

Σ

d3xN̄∂c(δN
a)δjaδE

c
j

+
π̄

p̄3/2

∫

Σ

d3xN̄(∂aδN
a)δπ− p̄3/2Vϕ(ϕ̄)

∫

Σ

d3xN̄(∂aδN
a)δϕ. (7.35)

Anomaly freedom requires B = 0, A = 0, v2 = 0 (classical diffeomorphism constraint),
and also δϕ = 0 = δπ. The latter conditions δϕ = 0 = δπ are due to the fact that
metric scalar perturbations are not considered. Consistently, scalar field perturbations
are vanishing too. In fact, one could set δϕ = 0 = δπ from the very beginning but,
without assuming this, it can be shown that the condition δϕ = 0 = δπ in fact resulting
from the anomaly freedom.

The associated counter-terms are given by (7.25) and (7.26) with v2 = 0. Two non-
vanishing counter-terms are required in contrast to the gravity sector, where only one
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counter-term was sufficient to fulfill anomaly freedom conditions. The integer v1 remains
undetermined but the dependence upon this parameter cancels out in the hamiltonian
constraint. Namely, applying the counter-terms (7.25) and (7.26) with v2 = 0, we find that
the anomaly free Hamiltonian constraint is given by:

SQfree[N] =
1

2κ

∫

Σ

d3x
[
N̄(C

(0)
free + C

(2)
free)
]

, (7.36)

where

C
(0)
free = −6

√
p̄ (K[1])2 , (7.37)

C
(2)
free = −

1

2p̄3/2

[
4(1 − β)K[2]k̄− 2k̄2 + (4β− 1)K[1]2

]
×

× (δEcj δE
d
kδ

k
cδ

j
d) +

√
p̄(δKj

cδK
k
dδ

c
kδ

d
j )

−
2√
p̄

(
2K[2] − k̄

)
(δEcj δK

j
c).) (7.38)

The gravitational diffeomorphism constraint holds its classical form(v2 = 0). This is in
agreement with LQG expectations. Interestingly, this can also be obtained here as a result
of anomaly freedom.

The obtained anomaly-free Hamiltonian (7.36) is determined up to the choice of the µ̄
functions. There are no other remaining ambiguities. The µ̄ function appears in definition
of the K[n] function. Because of this, there is also explicit appearance of the factor β in
equation (7.38). The choice β = −1/2 is preferred by various considerations [43]. For
this choice of the β parameter, the remaining freedom is a parameter of proportionality

in relation µ̄ ∝ p̄−1/2. This parameter can be written as
√
∆, so µ̄ =

√
∆/p̄. The parameter

∆ has the interpretation of a physical area, around which the elementary holonomy is de-
fined. It is expected that ∆ ∼ l2Pl, where lPl is the Planck length. However, determination
of the accurate value of ∆ is a subject to empirical verifications.

It is worth noticing about the Hamiltonian constraint (7.36) that the effective holon-
omy corrections, due to the counter-terms, are no longer almost periodic functions, defined
as follows [18]

f(k̄) =
∑

n

ξne
iµ̄γk̄n. (7.39)

In this expression, n runs over a finite number of integers and ξn ∈ C. This does not lead
to any problem at the classical level. However, difficulties may appear when going to the
quantum theory on lattice states. This is because the quantum operator corresponding to
k̄ does not exist in contrast to the K[n] functions, which are almost periodic functions. This
problem does not exist if the gravitational sector, without any matter content, is consid-
ered alone. However, the diffeomorphism constraint then has to be holonomy corrected,
as studied previously. In such a case, the background terms in the anomaly-free gravita-
tional Hamiltonian are almost periodic functions. The loop quantization can therefore be
directly performed.
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7.5 Gauge invariant variable

The coordinate transformation xµ → xµ + ξµ generates a tensor gauge transformation. In
the case of vector modes, the coordinate transformation is parametrized by the shift vector
Na = ξa, where ξa,a = 0, Therefore, the resulting gauge transformation is generated by
the diffeomorphism constraint δξf = {f,DQ[ξa]}. The corresponding transformations for
the canonical variables are:

δξ(δE
a
i ) = {δEai ,DQ[ξa]} = −p̄∂iξ

a, (7.40)

δξ(δK
i
a) = {δKi

a,DQ[ξa]} = K[v2]∂aξ
i. (7.41)

Based on the equation of motion Ėai = {Eai ,HG}, and the definition (7.1), one finds the
expression of δKi

a. The dot means differentiation with respect to the conformal time since
we have chosen N̄ =

√
p̄. Using equations (7.40) and (7.41) one finds:

δξF
a = ξa, (7.42)

δξS
a = ξ̇a + (2K[2] −K[v1](1 + α2) −K[v2])ξ

a. (7.43)

Based on this, one can define a gauge invariant variable

σa := Sa − Ḟa − (2K[2] −K[v1](1 + α2) −K[v2])︸ ︷︷ ︸
=−B

Fa, (7.44)

such that δξσ
a = 0.

7.6 Equations of motion

In this section we derive an equation of motion for the gauge-invariant variable found in
the previous section.

For the sake of completeness, we recall that equations of motion for the background
part are:

˙̄p = N̄2
√
p̄(K[2]), (7.45)

˙̄k = −
N̄√
p̄

[
1

2
(K[1])2 + p̄

∂

∂p̄
(K[1])2

]
+

κ

3V0

(
∂H̄ϕ

∂p̄

)
, (7.46)

where H̄ϕ = V0N̄C
(0)
ϕ and N̄ =

√
p̄. For a free scalar field, an analytical solution to these

equations can be found [58]:

p̄ =

(
1

6
γ2∆π2

ϕκ+
3

2
κπ2

ϕt
2

)1/3

. (7.47)

This solution represents a symmetric bounce.
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The diffeomorphism constraint δ
δδNaDtot[N

a] = 0 leads to the equation

p̄(∂kδK
k
a) + (K[v2]) δ

k
a(∂dδE

d
k) = κπ̄∂a(δϕ). (7.48)

Using the symmetrized variables

δK(i
a) =

1

2

[
(2K[2] −K[v1](1 + α2))

(
Fa,

i + Fi,a

)

+
(
Fa,

i + Fi,a

)
˙−
(
Sa,

i + Si,a

)]

= −
1

2

(
σa,

i + σi,a

)
+

1

2
K[v2]

(
Fa,

i + Fi,a

)
, (7.49)

and

δE(ia) = −p̄
1

2

(
Fa,

i + Fi,a

)
, (7.50)

equation (8.3) can be rewritten as

−
p̄

2
∇2σa = κπ̄∂a(δϕ). (7.51)

Because δϕ = 0 (from the anomaly-free condition), the symmetric diffeomorphism con-
straint simplifies to the Laplace equation ∇2σa = 0. Since, the spatial slice is flat (Σ = R

3)
there are no boundary conditions on σa. This restricts the possible solutions of the Laplace
equation to σa = ba + dcaxc, where ba and dca are sets of constants. However, because σa
is a perturbation (there is no contribution from the zero mode),

∫

Σ

d3xσa = 0, (7.52)

as required from the consistency of the perturbative expansion. Additionally, this is the
reason why the first order perturbation of the Hamiltonian is vanishing,

∫

Σ
C(1)d3x = 0.

Condition (7.52) implies ba = 0 and dca = 0, which leads to σa = 0. This shows that
our gauge invariant variable σa is identically equal to zero in absence of vector matter, in
agreement with earlier studies [59]. This can also be proved by expanding σa into Fourier
modes.

In order to have non-vanishing (physical) vector modes σa, a source term in equation
(7.51) therefore has to be present. With "vector matter", this reads as [33]:

−
1

2p̄
∇2σa = 8πG(ρ+ P)Va, (7.53)

where ρ and P are the energy density and pressure of the vector matter and Va is a mat-
ter perturbation vector. If (ρ + P)Va 6= 0 then σa 6= 0 so physical vector perturbations
are expected. However, it should be pointed out that proving that the formulation re-
mains anomaly-free in presence of the vector matter remains an open issue. This could
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be checked, e.g., by introducing an electromagnetic field in the Hamiltonian formulation
[60]. We leave this problem to be analyzed elsewhere.

Due to the Gauss constraint, we introduce the symmetrized variable

Si
a := σi ,a + σa,

i. (7.54)

The equation of motion for this variable reads as:

−
1

2

d

dη
Si

a −
1

2
(2K[2] +B)Si

a +AF(i,a) = κp̄δT
(i

a)
, (7.55)

where

δT ia =
1

p̄

[(
1

3V0

∂H̄ϕ

∂p̄

)(
δEcj δ

j
aδ

i
c

p̄

)
+
δHϕ

δδEai

]
. (7.56)

For scalar matter δT ia = 0. The same holds for tensor modes [51] (the reasons are the same
because δiaδE

a
i = 0 and δN = 0). When imposing the anomaly freedom conditions A = 0

and B = 0, equation (7.55) simplifies to

−
1

2

d

dη
Si

a −
1

2
(2K[2])
︸ ︷︷ ︸
= 1

p̄
dp̄
dη

Si
a = 0, (7.57)

with fully determined coefficients. Of course without vector matter, as discussed above,
the variable Si

a is equal to zero and the equation (7.57) is trivially satisfied. However,
the presence on a non-vanishing contribution from Va allows for non-trivial solutions of
equation (7.57). In such a case, equation (7.57) leads to:

Si
a =

const

p̄
=

const

a2
. (7.58)

For a symmetric bounce driven by a free scalar field:

Si
a ∝ 1

(
2π

3
√

3
γ3l2Pl + t

2
)1/3

. (7.59)

This evolution is smooth through the bounce. The amplitude of the perturbations grows
during the contraction and decreases in the expanding phase. The maximum amplitude
is reached at the transition point (bounce). Moreover, this evolution is independent on
the length of the considered mode, as can be seen by performing a Fourier transform of
the function σa. Because of this, there is significant difference with respect to tensor and
scalar perturbations. For the scalar and tensor perturbations, the evolution is different
depending on whether the mode length is shorter or longer that the Hubble horizon. In
particular, on super-horizon scales, the amplitude of the scalar and tensor perturbations
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is frozen. In contrast, for vector modes there is no such effect. Therefore, in an expand-
ing universe, the amplitude of vector modes decreases with respect to the super-horizon
tensor and scalar perturbations. The contribution from vector modes becomes negligible
during the expansion phase. However, the situation reverses in the contracting phase,
before the bounce. Then, the amplitude of the vector perturbations grows with respect
to the super-horizon tensor and scalar perturbations. Therefore, on very large scales vec-
tor perturbations can play an important role, e.g. leading to the generation of large scale
magnetic fields [61]. This could lead to a new tool to explore physics of the (very) early
universe.

7.7 Conclusions

In this chapter we have studied the issue of anomaly cancellation for vector modes with
holonomy corrections in LQC. Our strategy is based on the introduction of counter-terms
in the holonomy-corrected Hamiltonian constraint. In our study, we have also introduced
possible holonomy corrections to the diffeomorphism constraint. We have shown, first,
that the anomaly cancellation cannot be achieved without counter-terms. Holonomy cor-
rections to the diffeomorphism constraint do not help significantly to fulfill the anomaly
freedom conditions, that are anyway satisfied up to the fourth order in the canonical
variable k̄. Then, we have studied the anomaly issue for the gravitational sector with
two counter-terms. We have shown that the conditions of anomaly freedom can be met
with at least one non-vanishing counter-term. The resulting effective holonomy correc-
tions are almost periodic functions only if the diffeomorphism constraint is holonomy
corrected. Subsequently, we have investigated the issue of anomaly cancellation when
a matter scalar field is added. In this case, closure conditions are more restrictive and
fully determine the form of the resulting Hamiltonian constraint. Moreover, this requires
that the diffeomorphism constraint holds its classical form, in agreement with LQG ex-
pectations. Because of this, the effective holonomy corrections, which take into account
contributions from the counter-terms, are no more almost periodic functions. We have
found the gauge invariant variable and the corresponding equation of motion. The so-
lution to this equation were also given. We have analyzed this solution for the symmet-
ric bounce model to point out that the vector perturbations smoothly pass through the
bounce, where their amplitude reaches its maximum but finite value.
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Chapter 8

Scalar perturbations

Scalar perturbations are the most complicated type of cosmological perturbations. This is
because they are coupled with the perturbations of the scalar field. In this section we will
introduce anomaly free formulation of the scalar perturbations with the holonomy cor-
rections. We will determine the gauge invariant variables and derive the corresponding
equations of motion.

8.1 Scalar perturbations with holonomy corrections

For scalar perturbations, the holonomy-modified version of the Hamiltonian constraint
(4.79) can be written as:

SQ[N] =
1

2κ

∫

Σ

d3x
[
N̄(C(0) + C(2)) + δNC(1)

]
, (8.1)

where

C(0) = −6
√
p̄(K[1])2,

C(1) = −4
√
p̄ (K[s1] + α1) δ

c
j δK

j
c −

1√
p̄

(
K[1]2 + α2

)
δjcδE

c
j

+
2√
p̄
(1 + α3)∂c∂

jδEcj ,

C(2) =
√
p̄(1 + α4)δK

j
cδK

k
dδ

c
kδ

d
j −

√
p̄(1 + α5)(δK

j
cδ

c
j )

2

−
2√
p̄
(K[s2] + α6) δE

c
j δK

j
c −

1

2p̄3/2

(
K[1]2 + α7

)
δEcj δE

d
kδ

k
cδ

j
d

+
1

4p̄3/2

(
K[1]2 + α8

)
(δEcj δ

j
c)

2 −
1

2p̄3/2
(1 + α9)δ

jk(∂cδE
c
j )(∂dδE

d
k). (8.2)

The standard holonomy corrections are parametrized by two integers s1 and s2. The αi

are counter-terms, which are introduced to remove anomalies. Those factors are defined
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so that they vanish in the classical limit (µ̄ → 0). The counter-terms could be, in general,
functions of all the canonical variables. We however assume here that they are functions
of the gravitational background variables only.

In our approach, the diffeomorphism constraint holds the classical form

D[Na] =
1

κ

∫

Σ

d3xδNc
[
p̄∂c(δ

d
kδK

k
d) − p̄(∂kδK

k
c) − k̄δ

k
c(∂dδE

d
k)
]

. (8.3)

In general, the diffeomorphism constraint could also be holonomy corrected. this possi-
bility was studied, e.g., in [39]. However, in LQG the diffeomorphism constraint is sat-
isfied at the classical level. Therefore, if LQC is to be considered as a specific model of
LQG, the diffeomorphism constraint should naturally hold its classical form. Because of
this, in this paper, the diffeomorphism constraint is not modified by the holonomies. It
is worth stressing, that the classicality of the diffeomorphism constraint is also imposed
by the requirement of anomaly cancelation. Namely, if one replaces k̄ → K[n] in (8.3),
the condition n = 0 would anyway be required by the introduction of scalar matter. In
the previous chapter, the same condition was obtained for vector modes with holonomy
corrections.

Let us now calculate the possible Poisson brackets for the constraints SQ[N] andD[Na].

8.1.1 The
{
SQ,D

}
bracket

Using the definition of the Poisson bracket (4.8), we derive:

{
SQ[N],D[Na]

}
= −SQ [δNa∂aδN] +B D[Na]

+

√
p̄

κ

∫

Σ

d3xδNa(∂aδN)A1 +
N̄
√
p̄k̄

κ

∫

Σ

d3xδNa(∂iδK
i
a)A2

+
N̄

κ
√
p̄

∫

Σ

d3xδNi(∂aδE
a
i )A3 +

N̄

2κ
√
p̄

∫

Σ

d3x(∂aδN
a)(δEbi δ

i
b)A4, (8.4)

where

B =
N̄√
p̄

[
−2K[2] + k̄(1 + α5) +K[s2] + α6

]
, (8.5)

and

A1 = 2k̄(K[s1] + α1) + α2 − 2K[1]2, (8.6)

A2 = α5 − α4, (8.7)

A3 = −K[1]2 − p̄
∂

∂p̄
K[1]2 −

1

2
α7

+ k̄(−2K[2] + k̄(1 + α5) + 2K[s2] + 2α6), (8.8)

A4 = α8 − α7. (8.9)
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The functions A1, . . . ,A4 are the first anomalies coming from effective nature of the
Hamiltonian constraint. Later, we will set them to zero so as to fulfill the requirement of
anomaly freedom. This will lead to constraints on the form of the counter-terms.

Beside the anomalies, the
{
SQ,D

}
bracket contains the −SQ [δNa∂aδN] term, which

is expected classically. There is also additional contribution from the diffeomorphism
constraint B D[Na]. This term is absent in the classical theory. This is however consistent
as, for µ̄→ 0, the B function tends to zero.

8.1.2 The
{
SQ, SQ

}
bracket

The next bracket is:

{
SQ[N1], S

Q[N2]
}

= (1 + α3)(1 + α5)D

[
N̄

p̄
∂a(δN2 − δN1)

]

+
N̄

κ

∫

Σ

d3x∂a(δN2 − δN1)(∂iδK
i
a)(1 + α3)A5

+
N̄

κp̄

∫

Σ

d3x(δN2 − δN1)(∂
i∂aδE

a
i )A6

+
N̄

κ

∫

Σ

d3x(δN2 − δN1)(δ
a
i δK

i
a)A7

+
N̄

κp̄

∫

Σ

d3x(δN2 − δN1)(δ
i
aδE

a
i )A8, (8.10)

where

A5 = α5 − α4, (8.11)

A6 = (1 + α9)(K[s1] + α1) − (1 + α3)(K[s2] + α6) +K[2](1 + α3)

− 2K[2]p̄
∂α3

∂p̄
+

1

2

(
K[1]2 + 2p̄

∂

∂p̄
K[1]2

)
∂α3

∂k̄
− k̄(1 + α3)(1 + α5), (8.12)

A7 = 4K[2]p̄
∂

∂p̄
(K[s1] + α1) −

(
K[1]2 + 2p̄

∂

∂p̄
K[1]2

)
∂

∂k̄
(K[s1] + α1)

+

(
1 +

3

2
α5 −

1

2
α4

)
(K[1]2 + α2) − 2(K[s2] + α6)(K[s1] + α1)

+ 2K[2](K[s1] + α1), (8.13)

A8 =
1

2
(K[s2] + α6)(K[1]2 + α2) − (K[s1] + α1)(K[1]2 + α7)

+
3

2
(K[s1] + α1)(K[1]2 + α8) −

1

2
K[2](K[1]2 + α2)

+ K[2]p̄
∂

∂p̄
(K[1]2 + α2) −

1

4

(
K[1]2 + 2p̄

∂

∂p̄
K[1]2

)
∂

∂k̄
(K[1]2 + α2). (8.14)
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The A5, . . . ,A8 are the next four anomalies. Moreover, the diffeomorphism constraint
is multiplied by the factor (1 + α3)(1 + α5).

8.1.3 The {D,D} bracket

The Poisson bracket between the diffeomorphism constraints is:

{D[Na
1 ],D[Na

2 ]} = 0. (8.15)

8.2 Scalar matter

In this section, we introduce scalar matter. The scalar matter diffeomorphism constraint
is

Dϕ[N
a] =

∫

Σ

δNaπ̄(∂aδϕ). (8.16)

The scalar matter Hamiltonian can be expressed as:

SQϕ [N] = Sϕ[N̄] + Sϕ[δN],

where

Sϕ[N̄] =

∫

Σ

d3xN̄
[(
C(0)

π + C(0)
ϕ

)
+
(
C(2)

π + C
(2)
∇ + C(2)

ϕ

)]
, (8.17)

Sϕ[δN] =

∫

Σ

d3δN
[
C(1)

π + C(1)
ϕ

]
. (8.18)
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The factors in equations (8.17) and (8.18) are

C(0)
π =

π̄2

2p̄3/2
,

C(0)
ϕ = p̄3/2V(ϕ̄),

C(1)
π =

π̄δπ

p̄3/2
−

π̄2

2p̄3/2

δjcδE
c
j

2p̄
,

C(1)
ϕ = p̄3/2

[
V,ϕ(ϕ̄)δϕ+ V(ϕ̄)

δjcδE
c
j

2p̄

]
,

C(2)
π =

1

2

δπ2

p̄3/2
−
π̄δπ

p̄3/2

δjcδE
c
j

2p̄
+

1

2

π̄2

p̄3/2

[
(δjcδE

c
j )

2

8p̄2
+
δkcδ

j
dδE

c
j δE

d
k

4p̄2

]
, (8.19)

C
(2)
∇ =

1

2

√
p̄(1 + α10)δ

ab∂aδϕ∂bδϕ,

C(2)
ϕ =

1

2
p̄3/2V,ϕϕ(ϕ̄)δϕ

2 + p̄3/2V,ϕ(ϕ̄)δϕ
δjcδE

c
j

2p̄
(8.20)

+ p̄3/2V(ϕ̄)

[
(δjcδE

c
j )

2

8p̄2
−
δkcδ

j
dδE

c
j δE

d
k

4p̄2

]
. (8.21)

Here, we have introduced the counter-term α10 in the factor C
(2)
∇ . Thanks to this, the

Poisson bracket between two matter Hamiltonians takes the following form:

{
SQϕ [N1], S

Q
ϕ [N2]

}
= (1 + α10)Dϕ

[
N̄

p̄
∂a(δN2 − δN1)

]
. (8.22)

As will be explained later, the appearance of the front-factor (1+α10) will allow us to close
the algebra of total constraints. In principle, other prefactors could have been expected,
however they do not help removing anomalies.

8.2.1 Total constraints

Total Hamiltonian and diffeomorphism constraints are the following:

Stot[N] = SQ[N] + SQϕ [N], (8.23)

Dtot[N
a] = D[Na] +Dϕ[N

a]. (8.24)

The Poisson bracket between two total diffeomorphism constraints is vanishing:

{Dtot[N
a
1 ],Dtot[N

a
2 ]} = 0. (8.25)
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A bracket between the total Hamiltonian and diffeomorphism constraints can be decom-
posed as follows:

{Stot[N],Dtot[N
a]} =

{
SQϕ [N],Dtot[N

a]
}
+
{
SQ[N],D[Na]

}

+
{
SQ[N],Dϕ[N

a]
}

. (8.26)

The first bracket in the sum (8.26) is given by
{
SQϕ [N],Dtot[N

a]
}
= −SQϕ [δN

a∂aδN]. (8.27)

The second contribution to Eq. (8.26) is given by (8.4), while the last contribution is van-
ishing: {

SQ[N],Dϕ[N
a]
}
= 0. (8.28)

The Poisson bracket between the two total Hamiltonian constraints can be decomposed
in the following way:

{Stot[N1], Stot[N2]} =
{
SQ[N1], S

Q[N2]
}
+
{
SQϕ [N1], S

Q
ϕ[N2]

}

+
[{
SQ[N1], S

Q
ϕ[N2]

}
− (N1 ↔ N2)

]
. (8.29)

The contribution from the last brackets can be expressed as
{
SQ[N1], S

Q
ϕ[N2]

}
− (N1 ↔ N2) =

=
1

2

∫

Σ

d3xN̄(δN2 − δN1)

(
π̄2

2p̄3
− V(ϕ̄)

)
(∂c∂

jδEcj )A9

+3

∫

Σ

d3xN̄(δN2 − δN1)

(
π̄δπ

p̄2
− p̄Vϕ(ϕ̄)δϕ

)
A10

+

∫

Σ

d3xN̄(δN2 − δN1)(δ
c
j δK

c
j )

(
π̄2

2p̄3
− V(ϕ̄)

)
p̄A11

+
1

2

∫

Σ

d3xN̄(δN2 − δN1)(δ
j
cδE

c
j )

(
π̄2

2p̄3

)
A12

+
1

2

∫

Σ

d3xN̄(δN2 − δN1)(δ
j
cδE

c
j )V(ϕ̄)A13, (8.30)

where

A9 =
∂α3

∂k̄
, (8.31)

A10 = K[2] −K[s1] − α1, (8.32)

A11 = −
∂

∂k̄
(K[s1] + α1) +

3

2
(1 + α5) −

1

2
(1 + α4), (8.33)

A12 = −
1

2

∂

∂k̄
(K[1]2 + α2) + 5(K[s1] + α1) − 5K[2] +K[s2] + α6, (8.34)

A13 =
1

2

∂

∂k̄
(K[1]2 + α2) +K[s1] + α1 −K[2] −K[s2] − α6. (8.35)

The functions A9, . . . ,A13 are the last five anomalies.
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8.3 Anomaly freedom

The requirement of anomaly freedom is equivalent to the conditions Ai = 0 for i =

1, . . . , 13.
Let us start from the condition A9 = 0. Since α3 cannot be a constant, this condition

implies α3 = 0. The condition A10 = 0 gives α1 = K[2] − K[s1]. Using this, the condition
A1 = 0, can be written as α2 = 2K[1]2 − 2k̄K[2]. The conditions A2 = 0 and A5 = 0 are
equivalent and lead to α4 = α5. Based on this, the requirement A11 = 0, leads to:

1 + α4 =
∂K[2]

k̄
= cos(2µ̄γk̄) =: Ω. (8.36)

For the sake of simplicity we have defined here the Ω-function. With use of this, the
condition A6 = 0 leads to

α6 = K[2](2 + α9) −K[s2] − k̄Ω. (8.37)

So, equation (8.34) simplifies to
A12 = α9K[2]. (8.38)

Therefore, requiring A12 = 0 is equivalent to the condition α9 = 0. Furthermore, A4 = 0
gives α7 = α8. The expression for α7 can be derived from the condition A3 = 0. Namely,
using Eq. (8.48) one obtains:

α7 = 2(2β− 1)K[1]2 + 4(1 − β)k̄K[2] − 2k̄2Ω. (8.39)

The condition A13 = 0 is fulfilled by using the expressions derived for α1, α2 and α6. The
last two anomalies (8.13) and (8.14) can be simplified to:

A7 = 2(1 + 2β)(ΩK[1]2 −K[2]2), (8.40)

A8 = k̄(1 + 2β)(K[2]2 −ΩK[1]2). (8.41)

The anomaly freedom conditions for those last terms, A7 = 0 and A8 = 0, are fulfilled if
and only if β = −1/2.

It is also worth noticing that the function B given by Eq. (8.5) is equal to zero when
the expression obtained for α6 is used. There is finally no contribution from the diffeo-
morphism constraint in the

{
SQ,D

}
bracket.

Using the anomaly freedom conditions given above, the bracket between the total
Hamiltonian constraints simplifies to

{Stot[N1], Stot[N2]} = ΩDtot

[
N̄

p̄
∂a(δN2 − δN1)

]

+ (α10 − α4)Dϕ

[
N̄

p̄
∂a(δN2 − δN1)

]
. (8.42)
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The closure of the algebra of total constraints implies the last condition α10 = α4 = Ω− 1.

To summarize, the counter-terms allowing the algebra to be anomaly-free are uniquely
determined, and are given by:

α1 = K[2] −K[s1], (8.43)

α2 = 2K[1]2 − 2k̄K[2], (8.44)

α3 = 0, (8.45)

α4 = Ω− 1, (8.46)

α5 = Ω− 1, (8.47)

α6 = 2K[2] −K[s2] − k̄Ω, (8.48)

α7 = −4K[1]2 + 6k̄K[2] − 2k̄2Ω, (8.49)

α8 = −4K[1]2 + 6k̄K[2] − 2k̄2Ω, (8.50)

α9 = 0, (8.51)

α10 = Ω− 1. (8.52)

It is straightforward to check that the counter-terms α1, . . . ,α10 are vanishing in the clas-
sical limit (µ̄→ 0), as expected.

Those counter-terms are defined up to the two integers s1 and s2, which appear in
(8.43) and (8.48). However, in the Hamiltonian (8.1), the factor α1 appears with K[s1] and
the factor α6 appears with K[s2]. Namely, we have K[s1] + α1 = K[2] and K[s2] + α6 =

2K[2] − k̄Ω. Therefore, the final Hamiltonian will not depend on the parameters s1 and
s2. No ambiguity remains to be fixed.

Moreover, the anomaly cancellation requires

β = −
1

2
, (8.53)

which fixes the functional form of the µ̄ factor. The fact that anomaly freedom requires
β = −1/2 is a quite surprising result. The exact value of β is highly debated in LQC.
The only a priori obvious statement is that β ∈ [−1/2, 0]. The choice β = −1/2 is called
the µ̄−scheme (new quantization scheme) and is preferred by some authors for physical
reasons [43]. Our result seems to show that the µ̄−scheme is embedded in the structure
of the theory and this gives a new motivation for this particular choice of quantization
scheme. The quantity µ̄2p̄ can be interpreted as the physical area of an elementary loop
along which the holonomy is calculated. Because, in the µ̄−scheme, µ̄2 ∝ p̄−1, the phys-
ical area of the loop remains constant. This elementary area is usually set to be the area
gap ∆ derived in LQG. Therefore, in the µ̄−scheme,

µ̄ =

√
∆

p̄
. (8.54)
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8.3.1 Algebra of constraints

Taking into account the previous conditions of anomaly-freedom, the non-vanishing Pois-
son brackets for the gravity sector are:

{
SQ[N],D[Na]

}
= −SQ[δNa∂aδN], (8.55)

{
SQ[N1], S

Q[N2]
}

= ΩD

[
N̄

p̄
∂a(δN2 − δN1)

]
. (8.56)

This clearly shows that the gravity sector is anomaly free. The remaining non-vanishing
brackets are:

{
SQϕ [N],Dtot[N

a]
}

= −SQϕ [δN
a∂aδN], (8.57)

{
SQϕ [N1], S

Q
ϕ[N2]

}
= ΩDϕ

[
N̄

p̄
∂c(δN2 − δN1)

]
. (8.58)

The algebra of total constraints therefore takes the following form:

{Dtot[N
a
1 ],Dtot[N

a
2 ]} = 0, (8.59)

{Stot[N],Dtot[N
a]} = −Stot[δN

a∂aδN], (8.60)

{Stot[N1], Stot[N2]} = ΩDtot

[
N̄

p̄
∂a(δN2 − δN1)

]
. (8.61)

Although the algebra is closed, there are however modifications with respect to the classi-
cal case, due to the presence of the factorΩ in Eq. (8.61). Therefore, not only the dynamics,
as a result of the modification of the Hamiltonian constraint, is modified but also the very
structure of the space-time itself is deformed. This is embedded in the form of the algebra
of constraints. The hypersurface deformation algebra generated by (8.61) is pictorially
represented in Fig. 8.3.1.

Figure 8.1: Pictorial representation of the hypersurface deformation algebra (8.61).

The Ω ∈ [−1, 1], appearing in (8.61) can change its sign in time. In order to see when
this might happen let us express the parameterΩ as:

Ω = cos(2µ̄γk̄) = 1 − 2
ρ

ρc
, (8.62)
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where ρ is the energy density of the matter field and

ρc =
3

κγµ̄2p̄
=

3

κγ∆
. (8.63)

In low energy limit, ρ → 0, the classical case (Ω → 1) is correctly recovered. However,
while approaching high energy domain the situation drastically changes. Namely, for
ρ = ρc/2 the Ω = 0. At this point, the maximum value of the Hubble parameter is also
reached. At the maximum allowed energy density is ρ = ρc, corresponding to the bounce,
we haveΩ = −1.

In order to understand what can be the physical meaning of this new feature of the
sign change in the algebra of constraints, let us recall expression for the classical algebra
of constraints [41]

{S[N1], S[N2]} = sD

[
N̄

p̄
∂a(δN2 − δN1)

]
, (8.64)

derived for the general type of a metric signature s. Namely, s = 1 corresponds to the
Lorentzian signature and s = −1 to the Euclidean one. Based on this, one can interpret
the peculiar behavior of the sign change in algebra (8.61) in terms of geometry change.
Namely, the effective algebra of constraints shows that the space is Euclidian for ρ > ρc/2. At the
particular value ρ = ρc

2
, the geometry switches to the Minkowski one. This will become

more transparent while analyzing the Mukhanov equation in Sec. 8.4. Consequences
have not yet been fully understood, but it is interesting to notice that this model naturally
have properties of the Hartle-Hawking no-boundary proposal [62].

8.4 Equations of motion

Once the anomaly-free theory of scalar perturbations with holonomy corrections is con-
structed, the equations of motion for the canonical variables can be derived. This can be
achieved through the Hamilton equation

ḟ = {f,H[N,Na]}, (8.65)

where the Hamiltonian H[N,Na] is the sum of all constraints

H[N,Na] = SQ[N] + SQϕ [N] +D[Na] +Dϕ[N
a]. (8.66)
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8.4.1 Background equations

Based on the Hamilton equation (8.65), equations for the canonical background variables
are the following:

˙̄k = −
N̄

2
√
p̄
K[1]2 − N̄

√
p̄
∂

∂p̄
K[1]2 +

κ

2

√
p̄N̄

[
−
π̄2

2p̄3
+ V(ϕ̄)

]
, (8.67)

˙̄p = 2N̄
√
p̄K[2], (8.68)

˙̄ϕ = N̄
π̄

p̄3/2
, (8.69)

˙̄π = −N̄p̄3/2V,ϕ(ϕ̄). (8.70)

In the following, we choose time to be conformal by setting N̄ =
√
p̄. The “ · " then means

differentiation with respect to conformal time η.
Eqs. (8.69) and (8.70) can be now combined into the Klein-Gordon equation

¨̄ϕ+ 2K[2] ˙̄ϕ+ p̄V,ϕ(ϕ̄) = 0. (8.71)

Eq. (8.68), together with the background part of the Hamiltonian constraint

1

V0

∂H

∂N̄
=

1

2κ

[
−6

√
p̄(K[1])2

]
+ p̄3/2

[
π̄2

2p̄3
+ V(ϕ̄)

]
= 0, (8.72)

lead to the modified Friedmann equation

H2 = p̄
κ

3
ρ

(
1 −

ρ

ρc

)
. (8.73)

Another useful expression is:

3K[1]2 =
π̄2

2p̄2
+ p̄V(ϕ̄). (8.74)

Here H stands for the conformal Hubble factor

H :=
˙̄p

2p̄
= K[2]. (8.75)

The energy density and pressure of the scalar field are given by:

ρ =
π̄2

2p̄3
+ V(ϕ), (8.76)

P =
π̄2

2p̄3
− V(ϕ). (8.77)

For the purpose of further considerations, we also derive the relation

κ

(
π̄2

2p̄2

)
= k̄K[2] − ˙̄k, (8.78)

which comes from Eq. (8.67) combined with (8.72).
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8.4.2 Equations for the perturbed variables

Equations for the perturbed parts of the canonical variables are:

δĖai = −N̄

[√
p̄ΩδKj

cδ
c
iδ

a
j −

√
p̄Ω(δKj

cδ
c
j )δ

a
i −

1√
p̄
(2K[2] − k̄Ω)δEai

]
+

+ δN
(
2K[2]

√
p̄δai

)
− p̄(∂iδN

a − (∂cδN
c)δai ), (8.79)

δK̇i
a = N̄

[
−

1√
p̄
(2K[2] − k̄Ω)δKi

a

−
1

2p̄3/2
(−3K[1]2 + 6k̄K[2] − 2k̄2Ω)δEcj δ

j
aδ

i
c

+
1

4p̄
3
2

(−3K[1]2 + 6k̄K[2] − 2k̄2Ω)(δEcj δ
j
c)δ

i
a +

δik

2p̄
3
2

∂a∂dδE
d
k

]

+
1

2

[
−

1√
p̄
(3K[1]2 − 2k̄K[2])δiaδN+

2√
p̄
(∂a∂

iδN)

]

+ δic(∂aδN
c) + κδN

√
p̄

2

[
−
π̄2

2p̄3
+ V(ϕ̄)

]
δia

+ κN̄

[
−
π̄δπ

2p̄5/2
δia +

√
p̄

2
δϕ
∂V(ϕ̄)

∂ϕ̄
δia +

(
π̄2

2p̄3/2
+ p̄3/2V(ϕ̄)

)
δjcδE

c
j

4p̄2
δia

+

(
π̄2

2p̄3/2
− p̄3/2V(ϕ̄)

)
δicδ

j
aδE

c
j

2p̄2

]
, (8.80)

δϕ̇ = δN

(
π̄

p̄3/2

)
+ N̄

(
δπ

p̄3/2
−

π̄

p̄3/2

δjcδE
c
j

2p̄

)
, (8.81)

δπ̇ = −δN
(
p̄3/2V,ϕ(ϕ̄)

)
+ π̄(∂aδN

a)

− N̄

[
−
√
p̄Ωδab∂a∂bδϕ+ p̄3/2V,ϕϕ(ϕ̄)δϕ+ p̄3/2V,ϕ(ϕ̄)

δjcδE
c
j

2p̄

]
. (8.82)

8.4.3 Longitudinal gauge

As an example of application we will now derive equations in the longitudinal gauge. In
this case, the E and B perturbations are set to zero. The line element therefore simplifies
to

ds2 = a2
[
−(1 + 2φ)dη2 + (1 − 2ψ)δabdx

adxb
]

, (8.83)
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where φ and ψ are two remaining perturbation functions and a is the scale factor. From
the metric above, one can derive the lapse function, the shift vector and the spatial metric:

N = a
√

1 + 2φ, (8.84)

Na = 0, (8.85)

qab = a2(1 − 2ψ)δab. (8.86)

The lapse function can be expanded for the background and perturbation part as N =

N̄+ δN, where

N̄ =
√
p̄ = a, (8.87)

δN = N̄φ. (8.88)

Using Eq. (8.86), the perturbation of the densitized triad is expressed as:

δEai = −2p̄ψδai . (8.89)

Time derivative of this expression will also be useful and can be written as:

δĖai = −2p̄(2K[2]ψ+ ψ̇)δai . (8.90)

Let us now find the expression for the perturbation of the extrinsic curvature δKi
a in terms

of metric perturbations φ and ψ. For this purpose, one can apply the expression (8.89) to
the left hand side of (8.79). The resulting equation can be solved for δKi

a, leading to:

δKi
a = −δia

1

Ω

(
ψ̇+ k̄Ωψ+K[2]φ

)
. (8.91)

The time derivative of this variable is given by

δK̇i
a = δia

1

Ω

[
−ψ̈− ˙̄kΩψ + ψ̇

(
Ω̇

Ω
− k̄Ω

)
+ φK[2]

Ω̇

Ω

− φK̇[2] −K[2]φ̇
]

. (8.92)

Applying (8.92) to the left hand side of (8.80), the equation containing the diagonal part
as well as the off-diagonal contribution is easily obtained. The off-diagonal part leads to

∂a∂
i(φ−ψ) = 0. (8.93)

This translates into ψ = φ. In what follows, we will therefore consider φ only. The
diagonal part of the discussed equation can be expressed as:

φ̈ + φ̇

[
3K[2] −

Ω̇

Ω

]
+ φ

[
K̇[2] + 2K[2]2 −K[2]

Ω̇

Ω

]

= 4πGΩ [ ˙̄ϕδϕ̇− p̄δϕV,ϕ(ϕ̄)] . (8.94)
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One can now use the diffeomorphism constraint

κ
δH[N,Na]

δ(δNc)
= p̄∂c(δ

d
kδK

k
d) − p̄(∂kδK

k
c) − k̄δ

k
c(∂dδE

d
k) + κπ̄(∂cδϕ) = 0. (8.95)

With the expressions for δKi
a and δEai , it can be derived that

∂c
[
φ̇ + φK[2]

]
= 4πGΩ ˙̄ϕ∂cδϕ. (8.96)

Next equation comes from the perturbed part of the Hamiltonian constraint:

δH[N,Na]

δ(δN)
=

1

2κ

[
−4

√
p̄K[2]δcj δK

j
c −

1√
p̄

(
3K[1]2 − 2k̄K[2]

)
δjcδE

c
j

+
2√
p̄
∂c∂

jδEcj

]
+
π̄δπ

p̄3/2
−

π̄2

2p̄3/2

δjcδE
c
j

2p̄

+ p̄3/2

[
V,ϕ(ϕ̄)δϕ+ V(ϕ̄)

δjcδE
c
j

2p̄

]
= 0. (8.97)

Using the expressions for δKi
a and δEai , this can be rewritten as:

Ω∇2φ− 3K[2]φ̇−
[
K̇[2] + 2K[2]2

]
φ = 4πGΩ [ ˙̄ϕδϕ̇+ p̄δϕV,ϕ(ϕ̄)] . (8.98)

The last equality comes from (8.81) and (8.82):

δϕ̈+ 2K[2]δϕ̇−Ω∇2δϕ+ p̄V,ϕϕ(ϕ̄)δϕ+ 2p̄V,ϕ(ϕ̄)φ− 4 ˙̄ϕφ̇ = 0. (8.99)

Equations (8.94), (8.96) and (8.98) can be now combined into:

φ̈ + 2

[
H −

(
¨̄ϕ
˙̄ϕ
+ ε

)]
φ̇ + 2

[
Ḣ −H

(
¨̄ϕ
˙̄ϕ
+ ε

)]
φ− c2

s∇2φ = 0, (8.100)

with the quantum correction

ε =
1

2

Ω̇

Ω
= 3K[2]

(
ρ+ P

ρc − 2ρ

)
, (8.101)

and the squared velocity
c2
s = Ω. (8.102)

The squared velocity of the perturbation field φ is equal to Ω. Because −1 6 Ω 6 1, the
speed of perturbations is never super-luminal. However, forΩ < 0 perturbations become
unstable (c2

s < 0). This corresponds to the energy density regime ρ > ρc

2
, where the phase

of super-inflation is expected.
At the point ρ = ρc

2
, velocity of the perturbation field φ is equal to zero. Therefore,

perturbations don’t propagate anymore when approaching ρ = ρc

2
, where the Hubble
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factor reaches its maximal value. Moreover, at this point, the quantum correction ǫ →
∞. Because of this, Eq. (8.100) becomes divergent and cannot be used to determine the
propagation of the perturbations. However, as shown in the next section, the equation for
the gauge-invariant Mukhanov variable does not exhibit such a pathology.

It is interesting to notice that the equations of motion derived in this subsection are
the same as those found in [40]. This is quite surprising, because the same equations
were derived in two independent ways. In our approach, we introduced most general
form of the holonomy corrections to the Hamiltonian. Then, by applying the method of
counter-terms, anomalies in algebra of constraint were removed. The method proposed
in [40] utilizes diagonal form of metric in the longitudinal gauge. This enables to intro-
duce holonomy corrections almost the same way like in case of the homogeneous models.
It was shown that a system, defined this way, stays on-shell, therefore is free from anoma-
lies. The non-trivial equivalence of both approaches may suggest uniqueness in defining
theory of scalar perturbations with holonomy corrections in anomaly-free manner.

8.4.4 Gauge invariant variables and Mukhanov equation

Considering the scalar perturbations, there is only one physical degree of freedom. As
it was shown in [27], this physical variable combines both the perturbation of the metric
and the perturbation of matter. The classical expression on this gauge-invariant quantity
is:

v = a(η)

(
δϕGI +

˙̄ϕ

H
Ψ

)
, (8.103)

and its equation of motion is given by

v̈ −∇2v −
z̈

z
v = 0, (8.104)

where

z = a(η)
˙̄ϕ

H
. (8.105)

In the canonical formalism with scalar perturbations, the gauge transformation of a
variable X under a small coordinate transformation

xµ → xµ + ξµ ; ξµ = (ξ0, ∂aξ), (8.106)

is given by (see [32] for details):

δ[ξ0,ξ]X=̇{X, S(2)[N̄ξ0] +D(2)[∂aξ]}, (8.107)

and it is straightforward to see that, classically,

δ[ξ0,ξ]v = 0. (8.108)
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This means that v is diffeomorphism-invariant and can be taken as an observable.
Taking into account the holonomy corrections introduced in this paper, theΩ function

will modify the gauge transformations of the time derivative of a variable X, so that

δ[ξ0,ξ]Ẋ − (δ[ξ0,ξ]X)̇ = Ω · δ[0,ξ0]X. (8.109)

Using this relation and gauge transformations of the metric perturbations

δ[ξ0,ξ]ψ = −K[2]ξ0, (8.110)

δ[ξ0,ξ]φ = ξ̇0 +K[2]ξ0, (8.111)

δ[ξ0,ξ]E = ξ, (8.112)

δ[ξ0,ξ]B = ξ̇, (8.113)

one can define the gauge-invariant variables (Bardeen potentials) as:

Φ = φ +
1

Ω
(Ḃ − Ë) +

(
K[2]

Ω
−
Ω̇

Ω

)
(B− Ė), (8.114)

Ψ = ψ−
K[2]

Ω
(B − Ė), (8.115)

δϕGI = δϕ+
˙̄ϕ

Ω
(B− Ė). (8.116)

The normalization of these variables was set such that, in the longitudinal gauge (B =

0 = E), we have Φ = φ, Ψ = ψ and δϕGI = δϕ. It is possible to define the analogous of
the Mukhanov variable (8.103):

v :=
√
p̄

(
δϕGI +

˙̄ϕ

K[2]
Ψ

)
. (8.117)

Writing the equations for Ψ and δϕGI, which are

Ψ̈+ 2

[
H −

(
¨̄ϕ
˙̄ϕ
+ ε

)]
Ψ̇+ 2

[
Ḣ −H

(
¨̄ϕ
˙̄ϕ
+ ε

)]
Ψ− c2

s∇2Ψ = 0 (8.118)

and

δϕ̈GI + 2K[2]δϕ̇GI −Ω∇2δϕGI + p̄V,ϕϕ(ϕ̄)δϕ
GI + 2p̄V,ϕ(ϕ̄)Ψ− 4 ˙̄ϕGIΨ̇ = 0, (8.119)

one obtains equation for the variable (8.117):

v̈ −Ω∇2v−
z̈

z
v = 0, (8.120)

z =
√
p̄

˙̄ϕ

K[2]
, (8.121)
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which corresponds to the Mukhanov equation for our model. As we see, the difference
between the classical and the holonomy-corrected case is the factorΩ in front of the Lapla-
cian. This quantum contribution leads to a variation of the propagation velocity of the
perturbation v. This is similar to the case of the perturbation φ considered in the previ-
ous subsection. The main difference is that there is no divergence for ρ = ρc/2 and the
evolution of perturbations can be investigated in the regime of high energy densities. It is
worth noticing that for ρ > ρc/2, theΩ becomes negative and equation (8.120) changes its
form from the hyperbolic to elliptic-type partial differential equation. In this sense, time
part becomes indistinguishable from the spatial one. This can be interpreted in thrms of
transition between Minkowski and Euclidean geometry, as mentioned earlier.

Finally, it is also possible to define the perturbation of a curvature R such that

R =
v

z
. (8.122)

Based on this, one can now calculate the power spectrum of scalar perturbations. This
opens new possible ways to study quantum gravity effects in the very early universe.
Promising applications of the derived equations will be investigated elsewhere.

8.5 Conclusions

In this chapter, we have investigated theory of scalar perturbations in the presence of
holonomy corrections. Such corrections are expected due to the quantum gravity effects
predicted by LQG. The holonomy corrections originate from regularization of the curva-
ture of connection at the Planck scale. Because of this, the holonomy corrections become
dominant in the high curvature regime. The introduction of general type holonomy cor-
rections leads to anomalous algebra of constraint. The conditions of anomaly freedom
impose certain constraints on the form of the holonomy corrections. However, it appears
that the holonomy corrections, in the standard form, cannot fully satisfy the anomaly-free
condition. In order to solve this difficulty, the additional counter-terms were introduced.
Such counter-terms tend to zero in the classical limit, however play the role of regular-
izator of anomalies in the quantum (high curvature) regime. The method of counter-
terms was earlier successfully applied in case of the cosmological perturbations with the
inverse-triad type corrections [31].

We have shown that, thanks to the counter-terms, the theory of cosmological pertur-
bations with holonomy corrections can be formulated in the anomaly-free manner. The
anomaly freedom was shown to be fulfilled not only for the gravity sector but also by tak-
ing into account the scalar matter. The requirements of the anomaly freedom were used
to determine the form of the counter-terms. Furthermore, conditions for the anomaly
free algebra of constraints were shown to be fulfilled only for a particular choice of the
µ̄ function. Namely, for the µ̄−scheme (new quantization scheme). This quantization
scheme was shown earlier to be favored from the requirements of the consistency of the
background dynamics. Our result supports these earlier claims.
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In our formulation, the diffeomorphism constraint holds the classical form, in agree-
ment with the LQG expectations. The obtained anomaly-free gravitational Hamiltonian
contains seven holonomy modifications. It was also necessary to introduce one counter-
term into the matter Hamiltonian in order to ensure closure of the algebra of total con-
straints. There is no ambiguity, of defining the holonomy corrections, left after imposing
the anomaly-free conditions. The only remaining free parameter of the theory is the area
gap ∆ used in defining the µ̄ function. This quantity can be however possibly fixed based
on the spectrum of the area operator in LQG. Based on the equations derived in this paper
it will be also possible to put an observational constraint on the value of ∆ and hence on
the critical energy density ρc.

Based on the studied anomaly-free formulation, equations of motion were derived.
As an example of application, we applied the equations to the case of longitudinal gauge.
Thereafter, we have also found gauge invariant variables, which are the holonomy-corrected
version of the Bardeen potentials. Based on this, we have found equation on the Mukhanov
variable. This equation can be directly applied to compute power spectrum of the scalar
perturbations, in presence of the quantum gravitational holonomy corrections.
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Chapter 9

Confrontation with the astronomical data

Theoretical considerations performed so far carried us to the point where confrontation
with astronomical observations becomes possible. A variety of applications emerge from
the theory of cosmological perturbations developed in the previous chapters. In partic-
ular, based on the obtained equations of motion for the scalar and tensor perturbations,
quantum corrections to the inflationary power spectrum can be studied. Such corrections
can be then confronted with spectra of anisotropy and polarization of the CMB.

In this chapter, we will focus on two applications. Firstly, based on the obtained spec-
trum of primordial gravitational waves, we will perform predictions regarding the B-type
polarization of the CMB. We will confront the predictions with available observational
constraints. Thanks to this, we will derive observational constraint on the value of the
parameter FB. Secondly, we will investigate the possibility of testing the effect of sup-
pression of the spectrum of primordial perturbations. As it was shown, such effect is a
general feature of loop quantum cosmology. Considering some phenomenological form
of the scalar power spectrum, we will study whether it is possible to discriminate between
the Big Bounce and Big Bang scenarios. Further issues, as quantum holonomy corrections
to the inflationary phase, will be studied elsewhere.

9.1 B-type polarization of the CMB

The cosmic microwave background radiation is polarized due to the Thomson scattering
of the CMB photons. The polarization pattern of the CMB can be decomposed for two
types, depending on the symmetry. The first, E-type polarization pattern was already
observed and is due to both scalar and tensor perturbations. The second, B-type polar-
ization has not been detected yet. However, there are huge efforts in this direction. The
B-type of polarization is related to the tensor perturbations only. Therefore, detection of
this type of polarization would give us a possibility of investigating the primordial gravi-
tational waves. At present, observational constraints on the B-type polarization spectrum
CBB

l are available from the experiments as WMAP [8], BICEP [56] or QUaD [57]. These
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constraints are shown in Fig. 9.1. The data points should be understood as the lower
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Figure 9.1: The B-type polarization spectrum (continuous lines) predicted in LQC com-
pared with the available current observational constraints. The predicted spectra are
shown for the different values of the parameter k∗. It was assumed that inflation mass
m = 10−6mPl.

observational limits on the value of CBB
l . In Fig. 9.1, the observational constraints were

confronted with predictions made based on the tensor power spectrum (6.48):

PT(k) =
16

π

(
H

mPl

)2
1

1 + (k∗/k)2

[
1 +

4R− 2

1 + (k/k∗)2

]
. (9.1)

For simplicity we have neglected here the small inflationary slope k−2ǫ. The predictions
were obtained with use of publicly available CAMB code [63]. In Fig. 9.1, the value of
parameter R = 8000 was fixed by assuming that m = 10−6mPl in equation (6.46). The
employed value of the inflaton mass is predicted based on confrontation of the scalar
perturbations with the CMB data. This value of the Hubble factor H in equation (9.1) was
determined based on the Friedmann equation

H2 ≈ 8πG

3
V(ϕobs) =

8πG

3

1

2
m2ϕ2

obs. (9.2)

The value of ϕobs can be determined from the WMAP 7 observations, based on a relation

ϕobs =
mPl√

π(1 − ns)
= 2.9 ± 0.5mPl.

As we see in In Fig. 9.1, the predicted amplitude of the B-type polarization can exceed
or not the observational constraints, depending on the value of k∗. The model of stan-
dard inflation (yellow line) corresponds to the limit k∗ → 0 in spectrum (9.1). In this case,
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predicted amplitude of the B-type polarization is below the current observational con-
straint. However, if k∗ is non-vanishing, the B-type polarization is amplified by the bump
in the power spectrum (9.1). The amplification in the CBB

l spectrum is maximal at some
multipole l∗, which corresponds to the wavelength k∗. While the value of k∗ is grow-
ing, amplification of the CBB

l spectrum is shifting into the region of higher multipoles.
Power excess due to the bump in the spectrum (9.1) is so significant that the value of CBB

l

can exceed the observational limits for some value of k∗. Thanks to this, the following
observational constraint of the value of the k∗ parameter can be obtained [64]:

k∗ < 2.43 · 10−4Mpc−1. (9.3)

The value of k∗ can be related with ϕobs and ϕmax by the following formula:

k∗ ≈ k0

(
ϕmax

mPl

)(
mPl

ϕobs

)
exp

{

2π
(ϕ2

obs −ϕ
2
max)

m2
Pl

}

, (9.4)

where k0 is a pivot number, for WMAP k0 = 0.002 Mpc−1. From the constraint on k∗ (9.3)
applied to (9.4) one can find that ϕmax > 2.94mPl. In Chapter 3, we derived relation (3.8),
based on which we have

ϕmax = (2.33 + 1.28 · 106
√
FB)mPl > 2.94mPl. (9.5)

This translates into the constraint on the parameter FB, which describes contribution from
the potential energy at the bounce:

FB > 2.3 · 10−13.

This constraint means that, at least some small contribution from the potential energy is
required at the bounce. The case with FB = 0 would correspond to the perfectly symmet-
ric model of the bounce. However, the observational data support the asymmetric bounce
model! This result is of course very preliminary and is based on some particular values
of m and ρc. However, it gives general idea of constraining FB based on the astronomical
observations. More accurate analysis will be possible to perform after the spectrum of
the scalar perturbation with the holonomy corrections will be derived. This will be done
elsewhere based on the results of Chapter 8.

9.2 Modified inflationary spectrum and the CMB

A spectrum of the scalar perturbations with the holonomy corrections has not been com-
puted yet. However, this can be done by solving the modified Mukhanov equation (8.120)
numerically. Before this analysis will be done it is worth to investigate what kind of mod-
ifications of the scalar power spectrum are possible to investigate with use of the cosmic
microwave background radiation. As we have already learned, by investigating tensor
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modes and the scalar field fluctuations, the power spectrum of both exhibit two new
features. Firstly, the standard inflationary spectrum is suppressed at the large scales. Sec-
ondly, the spectrum is modified by oscillations converging in the UV limit. It is expected
that the same features will be present in the spectrum of scalar perturbations in LQC.
In order to investigate if such effects are observationally accessible we will consider the
following phenomenological form of the scalar spectrum:

PS(k) = ∆(k, k∗)As

(
k

k0

)ns−1

. (9.6)

This is, in fact, the standard inflationary spectrum modified by the additional prefactor
∆(k, k∗). The LQC factor ∆(k, k∗) is assumed to be

∆(k, k∗) = 1 −
sin
(

3k
2k∗

)

(
3k

2k∗

) , (9.7)

which is the simplified form of the expression (5.41), found for the scalar field perturba-
tions. The k∗ is a parameter of the model and its interpretation will be discussed later. The
factor ∆(k, k∗) reflects typical modifications which appear in the bouncing cosmology. In
the UV limit, limk→∞∆(k, k∗) = 1, therefore the standard inflationary spectrum

Pinf
S (k) = As

(
k

k0

)ns−1

, (9.8)

is recovered. In turn, in the IR limit, limk→0∆(k, k∗) = 0, and the spectrum is suppressed.
This behavior of the power spectrum is typical for the bouncing cosmologies. The two
effects of the bounce are transparent: suppression on the low k and additional oscillations.
In Fig. 9.2 we show function ∆(k, k∗) defined by equation (9.7). Instead of using the
wavenumber k we have translated it to the corresponding length λ = 2π

k
, respectively

λ∗ = 2π
k∗

. In Fig. 9.2 we also show the function

∆(λ, λ∗) ≈ 1 +
2

3

λ

λ∗
. (9.9)

This function measures the modification due to the oscillations for λ/λ∗ ≪ 1. At λ/λ∗ ≈ 1
the spectrum becomes suppressed. In the bouncing cosmology the length scale λ∗ can be
related with the scale of horizon at the beginning of inflation. This issue was discussed
while considering tensor modes in Chapter 6. Therefore, if the present value of the scale
factor is equal a0 = 1, we have k∗ ≃ aiHi where ai is the value of the scale factor at the
beginning of inflation andHi is the value of the Hubble factor at the same time. Therefore
if k∗ and Hi could be measured, the total increase of the scale factor, from the beginning
of inflation till present, can be found. The value of k∗ and respectively λ∗ ,which is a scale
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Figure 9.2: Plot of function ∆(k, k∗) defined by equation (9.7) (solid line). The dashed line
represents approximation (9.9).

of suppression in the spectrum is the crucial observational parameter of the bounce. In
what follows, we make an attempt of determining this value based on the observations
of the CMB.

As mentioned earlier, beside the effect of suppression, also oscillations of the spectrum
are predicted within the bouncing cosmologies. This effect is much weaker than suppres-
sion, however is present also on the much smaller scales. This is important from the
observational point of view. Namely, the length scale λ∗ = 2π

k∗
can be much larger than the

present size of the horizon (k/k∗ ≪ 1). Then, the effect of suppression would be inacces-
sible observationally. However, some oscillations are still present on the sub-horizontal
scales. Of course the amplitude of these oscillations decreases while k/k∗ ≫ 1. If the scale
λ∗ is however not much higher than the size of the horizon, the effect of sub-horizontal
oscillations could be quite significant. The oscillations in the primordial power spectrum
translate into the additional oscillation in the spectrum of the CMB anisotropies (see e.g.
[65]). For the small multipoles, this subtle effect can be dominated by the contribution
from the cosmic variance. However, for the larger multipoles this effect can dominate. At
these scales, improvement of the instrumental resolution are still possible, what gives the
chance to, at least, put a stronger constrain on these effects.

Let us now confront the spectrum (9.6) with observed anisotropies of the cosmic mi-
crowave background radiation. We use the seven years of observations made by the
WMAP satellite [8]. In the numerical calculations we use the publicly available CAMB
code [63] and Markov Chain Monte Carlo (MCMC) package CosmoMC [66] together with
the CosmoClust code [67] for computing the Bayesian evidence. The codes were suitably
modified to investigate the spectrum (9.6). In computations, we take the standard cosmo-
logical parameters as follows

(H0,Ωbh
2,Ωch

2, τ) = (70, 0.0226, 0.112, 0.09) (9.10)

and the pivot scale k0 = 0.05 Mpc−1.
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In Fig. 9.3 we show spectrum of the CMB temperature anisotropies obtained based
on power spectrum (9.6). The case ∆(k, k∗) = 1 (k → 0) corresponds to the classical case
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Figure 9.3: Spectrum of the CMB anisotropy.

with no contribution due to the bounce. The blue line corresponds to the best fit case.
In this case, the modulations on the low multipoles are well reproduced. This is due to
the oscillations in the primordial power spectrum (9.6). This suggests that the effects of
oscillations in the primordial power spectrum can be indeed studied basing on the CMB
data. Perhaps the anomalous behavior of the CMB spectrum at l ≈ 20 and l ≈ 40 could be
also explained by the oscillations within the bouncing scenario. However, not basing on
the parametrization employed here. The amplitude of oscillations on lower scales must
be higher than predicted by our model.

We also find confidence intervals for the parameters of the model, namely on As, ns

and k∗. In these computations we take into account the temperature anisotropy data (TT
spectrum) as well as the polarization data (TE and EE spectra). We neglect a contribution
from the tensor modes, putting PT = 0. We show the obtained confidence intervals in Fig.
9.4. As it can be seen from Fig. 9.4, the parameters As are ns are constrained from both
sides. Based on the fit to the WMAP data we find

ns = 0.97 ± 0.07,

As = 2.1 · 10−9 ± 0.1 · 10−9.

These results are in agreement with WMAP 7 results [8]. However, it must be pointed out
that they were computed at the different pivot scales.

The parameter k∗ has the upper constraint, however it is unbounded from below
(large scales). It could be expected, since there is no observational data on the super-
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Figure 9.4: Constraints for the parameters As, ns and k∗. 2D plots: solid lines show the
68% and 95% confidence intervals. 1D plots: dotted lines are mean likelihoods of samples,
solid lines are marginalized probabilities.

horizontal scales. Nevertheless some particular value of k∗ is privileged what leads to the
peak in the probability distribution. Based on the fit to the WMAP data we have obtained
following values of this parameter:

k∗ = 1.7 · 10−4 ± 0.8 · 10−4 [Mpc−1].

The length scale corresponding to k∗ is equal to

λ∗ =
2π

k∗
≈ 4 · 104 Mpc. (9.11)
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9.3 Big Bang vs. Big Bounce

In this section we compare the model with suppression with the standard inflationary
model. Suppression appears generically within the Big Bounce cosmology. In turn, slow-
roll inflation in the standard Big Bang scenario does not lead to any suppression. While
the suppression introduces a new length scale, the model with suppression has one more
parameter in comparison with the standard case. The considered models are:

H1 – The slow-roll inflation within the Big Bang cosmology (spectrum given by Eq.
9.8). This model has two parameters As and ns.
H2 – The slow-roll inflation within the Big Bounce cosmology (spectrum given by Eq.

9.6). This model has three parameters As, ns and k∗.

In the Bayesian approach to a model comparison the best model has the largest value
of the so-called posterior probability in the light of data, which is defined in the following
way [68]:

P(Hi|D) =
P(D|Hi)P(Hi)

P(D)
. (9.12)

TheHi stands for considered model andD denotes data used in analysis. P(Hi) is a prior
probability for the model under investigation, which should reflect all information which
we have about it before the analysis with the data D, that comes from theoretical inves-
tigations, or from analysis with other data sets. In particular, if we have no foundation
to favor one model over another one, which is usually the case, we take equal values of
P(Hi) for all considered models. P(D|Hi) is the marginalized likelihood function over the
allowed parameters range, which we called evidence and is given by

Ei ≡ P(D|Hi) =

∫

dθ̂L(θ̂)P(θ̂|Hi). (9.13)

The θ̂ denotes vector of model parameters, L(θ̂) is the likelihood function for considered
model and P(θ̂|Hi) is the prior probability distribution function for model parameters.

It is convenient to consider the ratio of posterior probabilities, which is reduced to
the evidence ratio (so called Bayes factor) when all considered models have equal prior
probabilities:

Bij =
Ei

Ej
. (9.14)

Their values give us information about the strength of evidence in favor of a better model
[69]: if 0 < lnB < 1 we could not give conclusive answer, if 1 < lnB < 2.5 there is weak
evidence, if 2.5 < lnB < 5 evidence is moderate, and for lnB > 5 evidence is strong.

Values of evidence for two alternative models of primordial perturbation spectrum
was calculated with the help of CosmoClust code, which was introduced by [67] as a part
of CosmoMC code. We have based on anisotropy (TT) and polarization (TE, EE) data from
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the WMAP satellite. In computations, the contribution from the tensor power spectrum
was neglected.

We assume that models are equally probable (P(H1) = P(H2) = 1/2). We consider flat
prior probability distribution functions for unknown parameters in the following ranges:
As ∈ [1.5 · 10−9, 5.5 · 10−9], ns ∈ [0.5, 1.5], k∗ ∈ [10−6, 10−3]. The value of logarithm of the
Bayes factor which was obtained in the analysis, i.e.

ln(E1/E2) = lnB12 = 0.2 ± 0.6, (9.15)

does not give a conclusive answer. The data was not informative enough to distinguish
these models. Therefore, in the light of the recent WMAP data the Big Bang and Big
Bounce cosmologies are indistinguishable. The Big Bounce predictions are not in conflict
with the observational data. Moreover, beside the fact that the Big Bounce model has one
more parameter k∗, the obtained evidence is comparable with the Big Bang case.

The above result was obtained with use of the CosmoClust code which bases on the
nested sampling method [70]. This method was applied also in the CosmoNest code [71].
The computations with use of CosmoNest gives lnB12 = 1.1 ± 0.2. Therefore a weak ev-
idence for Big Bang model is obtained. However, the CosmoNest was designed only for
the case of unimodal likelihood functions. In turn, the CosmoClust code extends to the
case of multi-modal likelihood functions. As it is clear from the bottom right panel in
Fig. 9.4, the considered likelihood function (dotted line) is bimodal in the subspace k∗.
The first peak is located at k∗ ∼ 1.5 · 10−4Mpc−1 while the second at k∗ ∼ 2.5 · 10−4Mpc−1.
Therefore the results from CosmoClust are more relevant for our model. The CosmoN-
est samples only around the highest peak, neglecting the contribution from the smaller
one. Because of this, the observed discrepancy between the CosmoClust and CosmoNest
results appears. It is worth to note that, a similar model with suppression on the large
scales was shown as an example of use of the CosmoClust code [67]. Bimodality of the
likelihood functions was also observed and applicability of the CosmoClust code to that
cases was emphasized.

The issue of constraining the bouncing cosmology with the observational data was
raised before in literature. In particular, studies based on SNIa data, location of acous-
tic peaks in the CMB and constraints from primordial nucleosynthesis (BBN) were per-
formed in Ref. [72, 73]. However, these cosmographic methods are inefficient in searching
for the effects of the bounce. It is due to the fact that the factor ρ

ρc
is extremely low at the

energy scales covered with this method. Even during the BBN, where TBBN ∼ 1 MeV, we
have ρBBN ≈ 10−90ρPl. Therefore, if ρc ≈ ρPl, we have ρ

ρc
≈ 10−90 and the holonomy cor-

rections in the Friedmann equation (3.1) are vanishingly small 1. Based on the method

developed in the present paper, we reach ρobs =
m2ϕ2

obs

2
≈ 10−11ρPl, what gives ρ

ρc
≈ 10−11

for ρc ≈ ρPl. Therefore, sensitivity on the holonomy corrections was increased around
1080 times with respect to the BBN constraint.

1The constraint from the BBN can be however more significant in case of the inverse volume effects in
LQC [74]
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Based on the results presented in this section one can conclude that the Big Bounce
is consistent with the observations up to energy scales ≈ 10−11ρPl. In this region the
Big Bounce and Big Bang cosmologies are indistinguishable in the light of the available
observational data. The advantage of the Big Bounce model is however that the initial
singularity problem is resolved and the initial conditions for the phase of inflation are
naturally generated.

9.4 Can we see the Big Bounce?

The present value of scale λ∗ is crucial from the point of possible observational investiga-
tions of the Big Bounce cosmology. As it was discussed before, this scale overlaps with
the size of the Hubble radius at the beginning of inflation. Therefore, it corresponds to
the point of maximal displacement of the inflaton field, namely ϕmax. In this section we
investigate how ϕmax influences the present value of λ∗. Based on this, we will formulate
conditions on the possibility of observing the Big Bounce effects.

In Fig. 9.5, schematic illustration of the scalar field evolution near the place of its
maximal displacement was shown. In this figure we have marked the discussed ϕmax

time

Figure 9.5: Schematic illustration of the scalar field evolution near the place of the max-
imal displacement. The ϕmax is the maximal displacement of the field. The ϕobs is the
value of the scalar field that corresponds to the powers spectrum measured at the pivot
scale λ0 = 3.14 Gpc.

value as well as the observed value ϕobs = 2.9mPl. While ϕ = ϕobs, the modes of the
present size λ0 = 3.14 Gpc (pivot scale) were formed. Based on this, we can determine
what is the present size of the mode, which was equal to the Hubble radius at ϕ = ϕmax.
The transition from ϕ = ϕmax to ϕ ≈ 0 corresponding to the total amount of e-folds
from inflation, which can be decomposed as follows Ntot = ∆N + Nobs. Here Nobs is the
observed value, which corresponds to the transition from ϕ = ϕobs to ϕ ≈ 0. The number
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of e-foldings during the transition from ϕmax to ϕobs can be expressed as follows

∆N = −
4π

m2
Pl

∫ϕobs

ϕmax

V

V ′dφ =
2π

m2
Pl

(
ϕ2

max −ϕ
2
obs

)
. (9.16)

Employing this expression together with the Friedmann equation, the present value of λ∗
can be expressed as follows

λ∗ ≈ λ0

(
ϕobs

mPl

)(
mPl

ϕmax

)
exp

{

2π

(
ϕmax

mPl

)2

− 2π

(
ϕobs

mPl

)2
}

, (9.17)

where λ0 = 3.14 Gpc and ϕobs = 2.9mPl. In Fig. 9.6 we plot function λ∗(ϕmax) given by
(9.17). For comparison, we also show some relevant length scales. The first one is the

CMB suppression scale

Hubble radius Hc�H0L

Distance to LSS

2.9 2.94 2.97 3
jmax@mPlD

Π
4

14

40

Λ*@GpcD

Figure 9.6: The present value of the scale λ∗ as a function of ϕmax.

Hubble radius H0/c ≈ 4 Gpc. The second is the distance to the last scattering shell (LSS),
DLSS ≈ 14 Gpc. The last scale is the scale of suppression λ∗ ≈ 40 Gpc obtained in Sec. 9.3.
If ϕmax > 2.94mPl then the scale λ∗ is placed behind the scale of LSS. In such a case there
is no chance to see the effect of suppression directly. It is because, the scale of suppres-
sion is higher than the physical horizon of photons, released during the recombination.
Therefore only if ϕmax < 2.94mPl, there is a possibility to study the effects of suppression
on the CMB. From the fit performed in Sec. 9.3 we got λ∗ ≈ 40 Gpc, which corresponds
to ϕmax ≈ 2.97mPl. Based on this, one particular evolutionary trajectory can be distin-
guished. However, one have to keep in mind that the probability distribution on the
parameter k∗ was unbounded from below. Therefore the obtained value ϕmax ≈ 2.97mPl

could be seen rather as a lower constraint on ϕmax. As mentioned, in order to make the
direct observations of the suppression possible, the value of ϕmax should be smaller than
2.94mPl. The observations suggest that this value is higher, what unfortunately exclude
this possibility. Based on this one can however exclude some models, where the predicted
value of ϕmax is not higher than 2.94mPl. This is in fact a case for the symmetric inflation
as studied in Ref. [46]. The issue of constraining this model was preliminary discussed in
Chapter 3. This also is still possible that the effect of oscillations can be observed. Perhaps

112



it is even the reason why the particular value of k∗ was distinguished from the WMAP
observations. Namely, it was possible because the structure of modulations at the low
multipoles was reconstructed, not because the scale of suppression was detected.

We finish this section with the discussion of the observational constraint on the the
parameters ρc and γ. In loop quantum cosmology, total energy density is constrained by
ρ 6 ρc. At the stage of inflation when the present pivot scale crossed the Hubble radius,
the energy density was equal to

ρobs =
m2ϕ2

obs

2
≈ 8 · 10−12m4

Pl.

Based on this, we infer that ρc > ρobs. Because ρobs ≪ ρPl, the observed constraint on the
energy scale of the bounce is very weak. However, since ρc ∼ 1/γ3, the constraint on the
parameter γ can be much stronger. Indeed, based on (3.2) we find

γ < 1100. (9.18)

The value obtained from the consideration of black hole entropy γ = 0.239 places within
this observational bound. It must be kept in mind that constraint (9.18) is based on rela-
tion (3.2), which validity can be questioned.

To conclude, some models of the bouncing cosmology can be excluded based on the
observations of CMB. It is based on the observational constraint on ϕmax. Direct observa-
tions of the bounce effects are however much harder to detect. As we have indicated, the
effect of suppression cannot be used. It is because the scale of suppression was shown to
be higher than the scale of the horizon. The effect of oscillations gives a chance of observ-
ing some footprints of the Planck epoch. However this effect is, in general, weaker than
suppression and can be undetectable due to the cosmic variance. It must be also pointed
out that the discussed effects can be also predicted from different models as some string
cosmologies. Therefore, an important task is to find some observables which enable to
distinguish between LQC and those other models of the Planck epoch. It is a challenge
for future research.
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Chapter 10

Summary

The aim of this thesis was to relate physics at the Planck epoch with observational cos-
mology. It is expected that, in the Planck epoch, dynamics of the Universe is governed by
the quantum gravity effects. In our considerations, we applied loop quantum cosmology
to describe this phase. The effects of quantum gravity were introduced through the quan-
tum holonomies. These effects may be seen as a kind of discretization of the continuous
space. Here, discretization has a form of a regular lattice with the elementary lattice spac-
ing λ. The volume of elementary cubic cell is equal to λ3. Based on various indications,
as renormalization of the perturbative quantum gravity, one may expect that λ ∼ lPl. The
quantity λ2 can be fixed also based on the area gap in LQG. In our considerations, λ was
kept as a free parameter to be determined observationally, wherever possible.

We have constructed anomaly-free theory of cosmological perturbations with the ef-
fects of quantum holonomies. This was achieved by introducing counter-terms into the
holonomy-corrected constraints. Such a method was previously successfully applied in
case of perturbations with inverse-volume corrections [31]. We investigated all three pos-
sible types of perturbations: tensor, vector and scalar modes.

For the tensor perturbations, we derived equations of motion by taking into account
the holonomy corrections. In this case, the algebra of constraints was shown to automat-
ically fulfill the conditions of anomaly freedom. Based on this, we performed canonical
quantization of these perturbations, by applying methods of the quantum field theory
on curved spacetimes. We computed power spectrum of the tensor modes for the model
with a massive scalar field. Thanks to this, we determined spectrum of gravitational
waves for the joined bounce with inflation cosmological evolution. The obtained spec-
trum converges to the classical inflationary spectrum in the UV limit. However, in the IR
limit, we observed significant modifications due to the quantum bounce. In particular,
one can distinguish suppression of power in the IR limit and a bump in the intermediate
energy range. The power excess at the bump was shown to depend mainly on the mass of
the inflaton field. The obtained tensor power spectra allowed us to perform predictions
regarding the spectrum of the B-type polarization of the CMB radiation. Based on the ob-
tained spectrum of primordial tensor modes, predictions regarding the present stochastic
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background of gravitational waves can be performed.
In case of vector perturbations, the requirement of anomaly freedom is not as triv-

ial as for the tensor perturbations. The algebra of the holonomy-corrected constraint
suffers on anomalies. However, we have shown that it is possible to introduce some
suitable counter-terms which remove the anomalies. Based on this method, we found
the anomaly-free constraints for the vector modes with the holonomy corrections. We
determined the gauge-invariant variable and the corresponding equations of motion. We
showed that evolution of the vector modes is continuous through the phase of the bounce.
We indicated some possible observational consequences.

The case of scalar perturbations is the most laborious one. However, at the same
time, it is the most interesting from the observational viewpoint. We have shown that
the anomaly-free theory of scalar perturbations with holonomy corrections can be for-
mulated. This goal was achieved by introducing counter-terms into the Hamiltonian con-
straint. The anomaly freedom was shown to be fulfilled not only for the gravity sector but
also by taking into account the scalar matter. Furthermore, conditions for the anomaly
free algebra of constraints were shown to be fulfilled only for the particular choice of the
µ̄ function. Namely, for the µ̄−scheme (“new quantization scheme”).

We have shown that not only constraints but also the algebra of constraint itself is
modified due to the holonomies. This deformation of the algebra of constraints indicates
that the structure of space-time is quantum modified. This means that initial general co-
variance is broken at the quantum level. The possible interpretation which emerges from
the performed analysis is that for the energy densities ρ > ρc/2, the space-time becomes
Euclidean. This suggests that the non-boundary proposal by Hartle and Hawking [62]
can have physical realization in loop quantum cosmology. Here transition, between the
Lorentzian and Euclidean geometries, occurs at the energy density ρ = ρc/2. Better un-
derstanding of this intriguing possibility requires further investigations.

For the scalar perturbations, we have also derived the resulting equations of motion.
Furthermore, we have found expressions for the gauge invariant variables. These vari-
ables are analogues of the classical Bardeen potentials. Finally, we have found the ana-
logue of the Mukhanov equation, which takes into account the effects of holonomies. This
equation can be directly applied to study generation of the cosmological perturbations in
the early universe. In particular, one can study generation of the scalar perturbations
during the phase of quantum bounce. Quantum gravity corrections to the inflationary
power spectrum can be also derived, based on this new equation. This opens new possi-
bilities of studying observational effects of LQC. The only new parameter which appears
in the derived equations is critical energy density ρc. Therefore, by deriving quantum-
modified versions of the inflationary scalar power-spectrum it will be possible to put a
robust constraint on the energy scale of the Big Bounce (ρc). This can be achieved by com-
parison with the current as well as with the forthcoming CMB data. This analysis will be
continued in the immediate future.

In order to verify whether the current CMB data are adequate to study the effects of
quantum holonomies we have investigated a scalar power spectrum typical for the Big
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Bounce cosmologies. We have computed the corresponding spectrum of the temperature
anisotropies in the CMB. The obtained spectrum was compared with the CMB data for
the WMAP satellite. By applying the Bayesian analysis, we compared the quantum Big
Bounce and the classical Big Bang cosmologies. We have found that, the available data
was not informative enough to distinguish these models. The Big Bounce predictions are
not in conflict with the observational data. Moreover, beside the fact that the Big Bounce
model has one more parameter, the obtained evidence is comparable with the Big Bang
case.

Furthermore, we have investigated necessary conditions allowing to detect footprints
of the Big Bounce in the spectrum of the CMB anisotropies. We have focussed here on
the effect of suppression of the power spectrum at large scales. Such effect was shown
to be generically predicted for the bouncing cosmologies. We found that only if the total
number of e−folds during inflation is sufficiently small, the effect of suppression can
be directly seen in the CMB spectrum. It means that, inflation cannot be much longer
than the observed value for the pivot scale to see those effects. Otherwise only some
small oscillations of the spectrum, due to the bounce, can be available in the observational
window. However, they are much harder to detect due to the presence of cosmic variance.

Based on the performed analysis we have found the current observational constraint
on the value of the Barbero-Immirzi parameter. In order to find this constraint we have
made the usual assumption that λ2 = ∆ is equal to area gap in LQG, A0 = 2

√
3πγ2l2Pl.

With use of the CMB data, we found that γ < 1100. The obtained bound is quite weak
if compared with the value of γ derived from considerations of the black hole entropies
(γ = 0.239). This result reflects the position we are right now in approaching the Planck
scale by observations of the early universe.

To conclude, we have developed a method of deriving observational predictions from
the Planck epoch, within the framework of loop quantum cosmology. The observational
quantities, as power spectra of primordial perturbations, can be found based on the de-
rived equations. This enables comparison with observations of the cosmic microwave
background radiation. However, as we have shown, the effects due to the quantum grav-
ity can be directly observed only if certain conditions are fulfilled. If this is the case,
physics at the Planck epoch can be directly probed. However, if not, what seems to be
suggested by the available CMB data, one can only constrain this physics. In particu-
lar, on can put constrains on the parameters as γ, ρc or FB, as discussed in this disserta-
tion. Such constraints give us certain knowledge about possible conditions at the Planck
epoch. We hope that this empirical factor will bring us closer to understanding the nature
of quantum gravity.
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Chapter 11

Appendixes

11.1 Useful formulas

In this appendix we derive some useful relations between the phase space variables.

11.1.1 Two expressions on densitized triad variable Eai

Let us show that the denistitized triad variable, defined as follows:

Eai := sgn(det e)
1

2
ǫabcǫijke

j
be

k
c , (11.1)

where det e := det(eia) can be expressed as

Eai = |det e|eai . (11.2)

For this purpose, let us prove that the following equality holds

sgn(det e)
1

2
ǫabcǫijke

j
be

k
c = |det e|eai . (11.3)

Contracting both sides of the above equality with sgn(det e)eia we obtain

1

2
ǫabcǫijke

i
ae

j
be

k
c︸ ︷︷ ︸

= 3! dete

= (det e) eai e
i
a︸ ︷︷ ︸

= 3

, (11.4)

therefore
3 det e = 3 det e, (11.5)

which completes the proof.
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11.1.2 Relating co-triad eia with densitized triad Eai

Let us prove that co-triad eia can be expressed in terms of densitized triad Eai variable as
follows:

eia =
1

2

sgn(detE)ǫabcǫ
ijkEbj E

c
k√

|detE|
. (11.6)

Applying definition of the densitized triad, we calculate

ǫabcǫ
ijkEbj E

c
k =

1

4
ǫabcǫ

ijkǫbdeǫjlme
l
de

m
e ǫ

cfgǫknse
n
f e

s
g

=
1

4
(δfaδ

g
b − δfbδ

g
a)(δ

i
nδ

j
s − δ

i
sδ

j
n)ǫ

bdeǫjlme
l
de

m
e e

n
f e

s
g

=
1

2


eai ǫbdeǫjlmejbeldeme︸ ︷︷ ︸

= 3! dete

− ǫbdeǫjlme
l
de

m
e︸ ︷︷ ︸

= 2sgn(dete)Eb
j

eibe
j
a




=
1

2


6eai det e− 2 sgn(det e)|det e|

︸ ︷︷ ︸
= dete

ebj e
i
b

︸︷︷︸
δi
j

eja




= 2(det e)eia, (11.7)

which leads to

eia =
1

2

ǫabcǫ
ijkEbj E

c
k

det e
. (11.8)

Because det e =
√
|detE|sgn(detE), the above equation can be rewritten to the form

eia =
1

2

sgn(detE)ǫabcǫ
ijkEbj E

c
k√

|detE|
, (11.9)

completing the proof.

11.1.3 Relating co-triad eia with volume V

The volume of subspace B ⊆ Σ can be expressed as follows:

V =

∫

B

d3y
√

|detE(y)|, (11.10)

where, for the later purpose, one can express

detE =
1

3!
ǫabcE

a
i E

b
j E

c
kǫ

ijk. (11.11)
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Let us vary volume V with respect to densitized triad Eai :

δV

δEai (x)
=

1

2

∫

B

d3y
1√

|detE|

δ|detE|

δEai (x)

=
1

2

∫

B

d3y
sgn(detE)√

|detE|

δdetE

δEai (x)

=
1

4
sgn(detE)

1√
detE

ǫabcǫ
ijkEbj E

c
k, (11.12)

where we have used the fact that

δEbj (y)

δEai (x)
= δbaδ

i
jδ

(3)(x − y), (11.13)

together with equation (11.11). Let us now calculate the following Poisson bracket

{Ai
a(x),V} = 8πGγ

∫

Σ

d3z

[
δAi

a(x)

δAj
b(z)

δV

δEbj (z)
− 0

]

= 8πGγ

∫

Σ

d3zδijδ
b
aδ

(3)(x − z)
δV

δEbj (z)

= 8πGγ
δV

δEai (x)
= 2πGγ

sgn(detE)√
|detE|

ǫabcǫ
ijkEbj E

c
k, (11.14)

where in the last equality we have used relation (11.12). By applying obtained relation
(11.14) to

eia =
1

2

sgn(detE)ǫabcǫ
ijkEbj E

c
k√

|detE|
, (11.15)

we find the following formula:

eia =
1

4πGγ
{Ai

a(x),V}. (11.16)

11.2 Perturbative expansion of
√

detE and 1/
√

detE

In this appendix we perform perturbative expansions of
√

detE and 1/
√

detE up to the
second order. We consider the following decompozition of the desitized triad

Eai = Ēai + δEai = p̄δai + δEai , (11.17)

which holds for the flat FRW background. Moreover, for the consistency of the perturba-
tive expansions we require that |δEai /Ē

a
i | ≪ 1.
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By applying the formula
detM = etr logM, (11.18)

where M is a matrix, one can write

(detEai )
± 1

2 = exp

{

±1

2
tr logEai

}

. (11.19)

With use of decomposition Eai = p̄
(
δai + 1

p̄
δEai

)
, we obtain

(detEai )
± 1

2 = p̄±
3
2 exp

{

±1

2
tr log

(
δai +

1

p̄
δEai

)}
. (11.20)

Based on the Taylor expansion

log(1 + x) = x −
x2

2
+
x3

3
+ . . . (11.21)

we obtain

log

(
δai +

1

p̄
δEai

)
=
δEai
p̄

−
1

2p̄2
δEaj δ

j
bδE

b
i +

1

3p̄3
δEaj δ

j
bδE

b
kδ

k
cδE

c
i + . . . , (11.22)

what leads to

±1

2
tr log

(
δai +

1

p̄
δEai

)
= ± 1

2p̄
δiaδE

a
i ∓ 1

4p̄2
δiaδE

a
j δ

j
bδE

b
i ± 1

6p̄3
δiaδE

a
j δ

j
bδE

b
kδ

k
cδE

c
i + . . . .

(11.23)
With use of the following expansion

ex =

∞∑

n=0

xn

n!
= 1 + x+

x2

2
+ . . . , (11.24)

we obtain the final expression

(detEai )
± 1

2 = p̄±
3
2

[
1 ± 1

2p̄
δiaδE

a
i ∓ 1

4p̄2
δiaδE

a
j δ

j
bδE

b
i +

1

8p̄2
δiaδE

a
i δ

j
bδE

b
j + O(E3)

]
. (11.25)
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