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Introduction

Two dimensional superconformal field theories with one supersymmetry (N = 1 SCFT) are
supersymmetric generalizations of conformally invariant field theories (CFT). The intense
activity in the subject of theories with conformal symmetry began with the work by Polyakov
[1]. It was pointed out there that the conformal theories describe statistical systems at
critical points. In order to calculate the critical exponents the non-Hamiltonian approach to
conformal theories, the so called-bootstrap program, was proposed in [2]. The realization of
this program in two dimensional CFT was presented in the work by Belavin, Polyakov and
Zamolodchikov (BPZ) [3]. The BPZ work introduced the method of constructing minimal
models i.e. the special examples of completely solvable conformal field theories. Soon the
realization of superconformal invariance in quantum field theory and the superconformal
minimal models were analyzed in [4], [5], [6].

Since another two papers by Polyakov [7], [8] the role of CFT in string theory was widely
recognized [9], [10]. The string scattering amplitudes can be expressed in terms of correlation
functions of (super)conformal field theories. An additional motivation for studies on confor-
mal field theories comes from the AdS/CFT correspondence that has been rapidly developing
field of research in the last years [11], [12], [13].

In CFT any n-point correlation function can be expressed by 3-point structure constants
and conformal blocks [3]. The conformal blocks are universal functions completely determined
by conformal symmetry. The 4-point conformal block is defined as a power series in projective
invariant z. It is a function of central charge c, intermediate weight ∆ and four external
conformal weights ∆i. Coefficients of the z-expansion are defined by the Gram matrices in
Verma modules and the 3-point conformal block. The properties of these objects are well
studied, nevertheless, the calculation of the block from definition is not effective and its
general form is not known. There are however recursive methods of determination of the
4-point conformal block developed by Al. Zamolodchikov [14, 15, 16]. They are based on
the fact that 4-point block can be expressed as a sum over poles in the central charge (or
intermediate weight) and a term non singular in c (or in ∆, respectively) [14]. The residues
are proportional to the block itself, which leads to recursion relations.

The first recursion relation, i.e. the z-recurrence, is related to the block’s expansion as
the sum over the poles in the central charge. In order to close the recurrence the term regular
in c is necessary. It is given by the c→∞ limit of the 4-point block [14].
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The second, more efficient method of determining 4-point block, i.e. the elliptic recur-
rence, can be derived by analyzing large ∆ asymptotic of the block. According to Zamolod-
chikov’s works [16], the first two terms in the large ∆ expansion of the 4-point block can be
read off from its classical asymptotic. A multiplicative factor related to these two terms can
be separated from the 4-point block, which leads to a definition of the so-called elliptic block.
The regular in ∆ term of the elliptic block does not depend on external weights and central
charge. Thus it can be determined from an explicit analytic formula of the block derived in a
certain model [15], [17]. Since each elliptic block’s residue in ∆ is proportional to the elliptic
block itself, knowing the regular term, one gets the second closed recursion relation for the
coefficients.

The recursive methods of determination of a general 4-point conformal block allowed, for
instance, for numerical consistency check of Liouville theory with 3-point structure constants
proposed by Otto and Dorn [18] and by A. and Al. Zamolodchikov [19]. The methods were
also used in the study of the c→ 1 limit of minimal models [20] or in obtaining new results in
the classical geometry of hyperbolic surfaces [21, 22]. In a more general context of arbitrary
CFT model, with the help of the recursive methods one can numerically calculate any 4-point
function once the structure constants of the model are known.

The present thesis is devoted to the problem of definition and calculation of 4-point
superconformal blocks in N = 1 SCFT. It is based on the results published in [23], [24],
[25], [26]. In the first chapter we recall the derivation of the two recursive methods of
determination of the 4-point conformal block [14, 15, 16] in detail. The ideas presented
in this chapter are a basis for supersymmetric generalization. Let us note that we formulate
the original Zamolodchikov’s results in the language of chiral 3-forms. It turns out that the
technique of identifying 3-point blocks as suitably normalized chiral 3-forms can be effectively
extended to the supersymmetric case. It leads to a successful definition of all types of 4-point
superconformal blocks.

In N = 1 superconformal field theories there exist two types of fields: the Neveu-Schwarz
(NS) fields local with respect to fermionic current S(z) and the Ramond fields “half-local”
with respect to S(z). We discuss in the first place the superconformal blocks corresponding
to correlation functions of NS fields [23].

The superconformal Ward identities determine correlation functions up to two indepen-
dent types of structure constants. In NS sector of SCFT there is however an important
simplification: each given 3-point function of arbitrary NS fields is proportional to just one
out of two structure constants. This implies similar as in non supersymmetric case definition
and properties of 3-point NS blocks. Since the algebra in supersymmetric case is more general
than in CFT, there are 2 types of 3-point NS blocks and 4 types of 4-point NS blocks. For
each type of the superconformal blocks there is one even and one odd supersymmetric block.
All the 3-point and the 4-point NS blocks are defined in the second chapter. Analyzing their
properties one can check that it is possible to derive the recursive relations for 4-point NS
blocks. As in the bosonic case, the 4-point superconformal blocks can be represented as a
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sum over poles in the central charge (or intermediate weight) and a term nonsingular in c (or
in ∆, respectively). The residues of a given type of block are proportional to even and odd
blocks of the same type. The term regular in c can be calculated as the c → ∞ limit of the
block. With the NS superconformal blocks correctly defined it is not difficult to obtain the
generalization of the first recursive method for determining the 4-point blocks.

The derivation of the elliptic recursion is more complicated [24]. Analyzing supersym-
metric Liouville theory one has to investigate the classical limit of the superconformal blocks.
It turns out that the asymptotical behavior of all types of 4-point NS blocks is given by
one universal block. It is the same classical block which is present in the limit of 4-point
conformal block. In the classical limit the contribution from fermions is noticeable just in
coefficients proportional to exponent of the classical block. Using the relation between large
∆ asymptotic and the classical block one can calculate the first two terms in large ∆ expan-
sions of the NS blocks. The multiplicative factors related with these two terms describe the c
and ∆i dependence of the non singular in ∆ parts of the superconformal blocks. Dividing the
blocks by the multiplicative factors one can define superconformal elliptic blocks with terms
regular in ∆ which are independent of central charge and external weights. In order to com-
pute the regular terms and complete the elliptic recursion one needs an explicit example of
superconformal blocks with an arbitrary intermediate weight. In the last chapter we propose
a model where such blocks can be calculated.

Before that, in the third chapter, the problem of 4-point superconformal blocks in Ramond
sector is discussed [26]. We restrict our interest to the class of SCFT models where the
Ramond fields have a common parity (for the left and the right sector) [4], [6]. We present in
detail the case of the 4-point blocks corresponding to correlation functions of Ramond fields
factorized on NS states. The other types of Ramond blocks are briefly discussed in the end
of this chapter.

As in the NS sector, the supersymmetric Ward identities allow to reduce any correlator
containing Ramond fields up to two independent structure constants. In this case, however,
an arbitrary 3-point function is always given by a sum of two terms, each proportional to
a different structure constant. The Ward identities have a more complex form because the
correlation functions of the fermionic current S(z), two Ramond fields and one NS field is
double valued. Additional complication comes from the fact that the Ramond field operators
correspond to states from irreducible representation of the tensor product R⊗ R̄ of the left
R and the right R̄ Ramond algebras extended by the common parity operator. Thus it is
not obvious how one should express the 3-point correlation functions of Ramond fields by
the 3-point blocks which are chiral objects with definite left (or right) parity. Nevertheless,
using the technique of identifying the 3-point blocks as suitably normalized chiral 3-forms,
it is possible to define 4-point Ramond blocks and to analyze their properties. As in the NS
sector, there are four even and four odd 4-point Ramond blocks. The elliptic recurrence for
the Ramond blocks can be investigated by the same method as in the case of NS blocks.

In the last chapter we recall Zamolodchikovs’ calculation of a 4-point block in the c = 1
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scalar theory extended by Ramond states of the free scalar current [15], [17]. Then, by
adding free fermion current we obtain the supersymmetric generalization of this model [25].
The explicit formulae for the c = 3

2 blocks are necessary in order to find the closed elliptic
recursion relations for the general 4-point superconformal blocks. Additionally, we can use
these formulae to check if our constructions of the 4-point blocks and the recursion relations
are correct.

The recursive representations of the 4-point superconformal blocks in the N = 1 SCFT
discussed in the present thesis yield approximate (with arbitrary accuracy), analytic expres-
sions for general 4-point superconformal blocks. Some of the results were already used for
numerical verification of the consistency of the N = 1 supersymmetric Liouville theory in
the NS sector [27], [28]. A consistency check of the Ramond sector of N = 1 supersymmetric
Liouville theory is not yet done.



Chapter 1

Conformal block in CFT

1.1 Basic definitions and notation

1.1.1 Operator Product Expansion

We shall consider two dimensional conformal field theories (CFT) defined on a complex plane.
Within the BPZ formulation [3] the basic dynamical assumption comes under the name of
operator product expansion. It can be formulated as follows

In an arbitrary correlation function the product of any two local operators can be expressed
as a series of local operators

ϕi(z2, z̄2)ϕj(z1, z̄1) =
∑
k

Ckij(z2 − z1, z̄2 − z̄1)ϕk(z1, z̄1), (1.1)

where the coefficients Ckij(z2 − z1, z̄2 − z̄1) are c-number functions.

This is a strong version of the Wilson operator product expansion. It allows to express
any correlator in terms of Ckij(z2− z1, z̄2− z̄1) functions. There are two kinds of restrictions
imposed on these functions. The first group follows form the conformal symmetry. It de-
termines for instance the z and the z̄ dependence of Ckij(z2 − z1, z̄2 − z̄1). The second is a
consequence of the operator product expansion. Since the left hand side of (1.1) is associative,
the OPE coefficients should respect associativity as well. This leads to non linear equations
imposing strong constraints on Ckij(z2− z1, z̄2− z̄1). The idea to construct a CFT model by
solving the symmetry and the associativity requirements is called the conformal bootstrap
program. It was proposed by Polyakov [2] and to large extend realized by BPZ [3].

1.1.2 Conformal symmetry and Ward identities

In two dimensions there exists an infinite parameter family of local conformal transformations

C ⊃ U 3 z → f(z) ∈ C
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leaving the standard metric ds2 = dzdz̄ unchanged up to a scale factor. Such maps are
analytic functions w = f(z) so that

dwdw̄ = |f ′(z)|2dzdz̄.

The conformal transformations that map the compactified complex plane C∗ ≡ C∪{∞} onto
itself are called global conformal transformations or projective transformations and form a
group isomorphic to PSL(2,C). Projective transformations can be parameterized as

f(z) =
az + b

cz + d
, ad− bc = 1

where a, b, c, d are complex numbers. In CFT one implements both global and local conformal
symmetries 1.

In the Lagrangian formulation the scaling invariance of a theory leads to a traceless
energy-momentum tensor. This condition together with the standard continuity equation
imply that the non vanishing components of energy-momentum tensor on the complex plane
are holomorphic and antiholomorphic functions:

T zz ≡ T = T (z), T̄ z̄z̄ ≡ T̄ = T̄ (z̄).

Since the energy momentum tensor is a generator of local coordinate transformation, one can
assume that in a general CFT model:

There exist an holomorphic T (z) and an antiholomorphic T̄ (z̄) fields which are generators
of conformal symmetry:

δε,ε̄ϕ(w, w̄) =
1

2πi

∮
w

dz ε(z)T (z)ϕ(w, w̄) +
1

2πi

∮
w̄

dz̄ ε̄(z̄)T̄ (z̄)ϕ(w, w̄). (1.2)

where δε,ε̄ϕ(w, w̄) is the variation of a local field ϕ(w, w̄) with respect to infinitesimal confor-
mal transformation z → z + ε(z), z̄ → z̄ + ε̄(z̄).

We assume that the algebra of local fields contains primary fields which under conformal
transformation z → w(z) change in a particularly simple way:

φ′∆,∆̄(w, w̄) =
(

dw
dz

)−∆(dw̄
dz̄

)−∆̄

φ∆,∆̄(z, z̄), (1.3)

where the parameters ∆, ∆̄ are called the holomorphic (left) and the antiholomorphic (right)
conformal weight. From this definition it follows that the variation of the primary field with
respect to the infinitesimal transformations has the form:

δε,ε̄φ∆,∆̄(w, w̄) =
(
∆∂ε(w) + ∆̄∂̄ε̄(w̄) + ε(w)∂ + ε̄(w̄)∂̄

)
φ∆,∆̄(w, w̄).

The equation (1.2) implies:

T (z)φ∆,∆̄(w, w̄) =
∆

(z − w)2
φ∆,∆̄(w, w̄) +

1
z − w

∂wφ∆,∆̄(w, w̄) + reg. (1.4)

T (z̄)φ∆,∆̄(w, w̄) =
∆̄

(z̄ − w̄)2
φ∆,∆̄(w, w̄) +

1
z̄ − w̄

∂w̄φ∆,∆̄(w, w̄) + reg.

1For an extensive introduction to CFT one can consult for example [29], [30], [31], [10]
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These are the local Ward identities for the primary field with the conformal weights ∆, ∆̄.
In the known Lagrangian models the transformation law for generator T (z) takes the

form:

T ′(w) =
(

dw
dz

)−2 [
T (z)− c

12
{w; z}

]
,

where {w; z} is the Schwarz derivative:

{w; z} =
(d3w/dz3)
(dw/dz)

− 3
2

(
d2w/dz2

dw/dz

)2

.

The second term is proportional to the central charge c which is the parameter of the theory.
Note that for global conformal transformations the Schwarz derivative is zero.

The transformation law and the equation (1.2) for generators T (z), T (z̄) lead to the local
conformal Ward identities for the generator T (z):

T (z)T (0) =
c

2z4
+

2
z2
T (0) +

1
z
∂T (0) + reg.

T̄ (z)T̄ (0) =
c

2z̄4
+

2
z̄2
T̄ (0) +

1
z̄
∂̄T̄ (0) + reg. (1.5)

T (z)T (0) = reg.

We assume this form of the local conformal Ward identities in a general CFT.
The operators

Ln =
1

2πi

∮
0

dz zn+1T (z), L̄n =
1

2πi

∮
0

dz̄ z̄n+1T̄ (z̄) (1.6)

form two copies of the Virasoro algebra:

[Ln, Lm] = (n−m) Ln+m +
c

12
n(n2 − 1) δn+m,0

[Ln, L̄m] = 0 (1.7)

[L̄n, L̄m] = (n−m) L̄n+m +
c

12
n(n2 − 1) δn+m,0

We will call Ln and L̄n as the left and the right Virasoro generators, respectively.

1.1.3 Verma module

The state |ν∆〉 is called the highest weight state with weight ∆ if it satisfies the following
conditions:

Lm |ν∆〉 = 0, L0 |ν∆〉 = ∆ |ν∆〉 , m > 0. (1.8)

A descendant state is defined as a state created by an action of operators L−M on the highest
weight state. The descendant states form vector space Vn∆,c with the basis:

|ν∆,M 〉 = L−M |ν∆〉 ≡ L−mj . . . L−m1 |ν∆〉 , (1.9)



16 Conformal block in CFT

where M = {m1,m2, . . . ,mj} ⊂ N is arbitrary ordered set of indices mj ≤ . . . ≤ m2 ≤ m1,

such that |M | = m1 + . . . + mj = n. Each Vn∆,c is an eigenspace of L0 with the eigenvalue
∆ +n. The direct sum of such spaces over all levels of excitations n composes Verma module
V∆,c i.e. the highest weight representation of the Virasoro algebra:

V∆,c =
⊕

n∈N∪{0}

Vn∆,c V0
∆,c = C ν∆ ,

As a scalar product on V∆,c we can choose a symmetric bilinear form 〈. |.〉c,∆ on V∆,c such
that

〈ν∆ |ν∆〉 = 1, L†n = L−n.

The operator L0 is hermitean with respect to 〈. |.〉c,∆ what ensures reality of conformal
weights.

1.1.4 Gram matrix

The Gram matrix is a matrix of 〈. , .〉c,∆ for each subspace Vn∆,c calculated in the basis (1.9):[
B n
c,∆

]
M,N

= 〈ν∆,M , ν∆,N 〉c,∆. (1.10)

It has the following properties [32], [33]:

1. The determinant of Gram matrix matrix is given by Kac theorem

detB n
c,∆ = C

∏
16rs6n

(∆−∆rs)p(n−rs) (1.11)

where C does not depend of ∆, c and ∆rs weight has the following form:

∆rs(c) = −rs− 1
2

+
r2 − 1

4
β2 +

s2 − 1
4

1
β2

, (1.12)

β =
1√
24

(√
1− c+

√
25− c

)
,

As a function of c Kac determinant vanishes at

c = crs(∆) ≡ 1− 6
(
βrs(∆)− 1

βrs(∆)

)2

, (1.13)

where r, s ∈ Z, r ≥ 2, s ≥ 1, 1 ≤ rs ≤ n, and

β2
rs(∆) =

1
r2 − 1

(
rs− 1 + 2 ∆ +

√
(r − s)2 + 4 (r s− 1) ∆ + 4 ∆2

)
The multiplicity of each zero in (1.11) is given by: p(n− rs) = dimVn−rsc,∆ .

2. The Gram matrix is nonsingular if and only if Vn∆,c does not contain singular vectors
of degrees rs ≤ n.

The singular vector χrs is a descendant state from Vrsc,∆rs
which is in the same time the

highest weight state satisfying condition (1.8) with L0χrs = (∆rs+ rs)χrs. It generates
a singular subspace Vn−rsc,∆rs+rs

⊂ Vnc,∆rs
, which consists of vectors ξ orthogonal to any

vector ζ ∈ Vnc,∆rs
: 〈ξ , ζ〉c,∆rs = 0.
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3. The only singularities of inverse Gram matrix
[
B n
c,∆

]M,N
are poles of first order at

∆ = ∆rs.

If the Verma module Vc,∆rs+rs is not reducible for all rs ≤ n, then the multiplicity of
each zero of the Kac determinant coincides with the dimension of the singular subspace
Vn−rsc,∆rs+rs

and the following lemma applies:

Let A(δ) be a family of linear operators acting in n-dimensional space V and let A(δ)
be a polynomial function of δ. If the order of the zero of detA(δ) at δ = 0 equals the
dimension of the null space of A(0), then in an arbitrary basis each matrix elements of
A(δ)−1 has at most a simple pole at δ = 0.

The same pole structure is true for the inverse Gram matrix as a function of the central
charge c.

1.1.5 The space of states

We assume that there exist a unique vacuum state |0〉 i.e. the highest weight state invariant
with respect to the global conformal transformations generated by L−1, L0, L1.

Let us consider a state generated by the primary field φ∆,∆̄ acting on the vacuum:

lim
z,z̄→0

φ∆,∆̄(z, z̄) |0〉 =
∣∣∆, ∆̄〉 . (1.14)

The bra state
〈
∆, ∆̄

∣∣ is defined as〈
∆, ∆̄

∣∣ = lim
z,z̄→0

[
φ∆,∆̄(z, z̄)|0〉

]† ≡ 〈0|φ∆,∆̄ (∞,∞) , (1.15)

where the hermitean conjugated primary field is defined as follows

[
φ∆,∆̄(z, z̄)

]† = z̄−2∆z−2∆̄φ∆,∆̄

(
1
z̄
,

1
z

)
.

Such a definition of the conjugated field can be justified by considering the continuation to
the Minkowski space cylinder [30]. The time reversal σ0 → −σ0 on the cylinder by the map
z = eσ

0+iσ1
, z̄ = eσ

0−iσ1
becames z → 1

z̄ . The additional z, z̄ dependent factors are necessary
to ensure the proper transformation properties of the conjugated field with respect to the
conformal group.

Any two point correlation function of primary fields is determined by the global conformal
transformations up to a constant:

〈0|φ∆2,∆̄2
(z2, z̄2)φ∆1,∆̄1

(z1, z̄1) |0〉 = D21δ∆1,∆2δ∆̄1,∆̄2
(z2 − z1)−2∆1(z̄2 − z̄1)−2∆̄1 .

We impose normalization of primary fields, what leads to the condition for the 2-point cor-
relators: D21 ≡ 1. Thus the states defined by (1.14),(1.15) are normalized:〈

∆, ∆̄
∣∣∆, ∆̄〉 = 1.
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From the definition of the Virasoro generators (1.6) and OPE of T (z) and T (z̄) with the
primary field φ∆,∆̄ (1.4), it follows that the state

∣∣∆, ∆̄〉 is a highest weight state with
respect to the left and to the right Virasoro algebras:∣∣∆, ∆̄〉 = |ν∆ ⊗ ν̄∆̄〉 ,

what implies for the bra state:
〈
∆, ∆̄

∣∣ = |ν∆ ⊗ ν̄∆̄〉
†.

The states created by the action of the Virasoro generators on
∣∣∆, ∆̄〉 form the tensor

product of Verma modules Vc,∆ and V∆̄,c. We assume that all the states in CFT are of this
type. The space of states in a conformal field theory is a sum of the tensor products of the
left and the right Verma modules:

Hc =
⊕

(∆,∆̄)

V∆,c ⊗ V̄∆̄,c.

(∆, ∆̄) are the pairs of conformal weights of the corresponding primary fields present in the
theory. The set of conformal weights (∆, ∆̄) is called the spectrum of primary fields.

1.1.6 Field operators

The last assumption that will be made concerns the states-fields correspondence and can be
formulated in the following way:

In CFT there is one to one correspondence between the states from the space of states Hc
and the field operators from the space of fields.

Each primary field φ∆,∆̄ is related to the state
∣∣∆, ∆̄〉 (1.14). The fields corresponding to

the states ξ∆ ⊗ ξ̄∆̄ ∈ V∆,c ⊗ V̄∆̄,c are called descendant fields:

lim
z,z̄→0

ϕ∆,∆̄(ξ, ξ̄|z, z̄) |0〉 =
∣∣ξ∆ ⊗ ξ̄∆̄

〉
.

The action of the Virasoro generators L−m on states extends by the correspondence to the
action on the fields and has the form:

L−mϕ∆,∆̄(ξ, ξ̄|z, z̄) ≡ ϕ∆,∆̄(L−mξ, ξ̄|z, z̄) =
∮
z

dw
T (w)

(w − z)m−1
ϕ∆,∆̄(ξ, ξ̄|z, z̄). (1.16)

This relation is the definition of the descendant field. The descendant fields together with
appropriate primary field φ∆,∆̄ = ϕ∆,∆̄(ν, ν̄|z, z̄) constitute a conformal family [φ∆,∆̄]. Any
field in the space of fields belongs to some conformal family [φ∆,∆̄] with (∆, ∆̄) from the
spectrum of primary fields. For example, the identity operator is the primary field with
both left and right conformal weights equal zero. T (z), T (z̄) are descendants of the identity
operator, with weights (2, 0) and (0,2) respectively.

1.1.7 Correlation functions

Let us consider arbitrary correlation function containing a descendant field corresponding to
a state L−M

∣∣∆, ∆̄〉. Using the definition (1.16) one can write the descendant as a multiple
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integral of the form:

L−mn . . .L−m1φ∆,∆̄(ν, ν̄|z, z̄)

=
∮
{wi,z}

. . .

∮
z

dwn
2πi

. . .
dw1

2πi
T (wn)

(wn − z)mn−1
. . .

T (w1)
(w1 − z)m1−1

φ∆,∆̄(ν, ν̄|z, z̄)

The integral around location of this field can be written as a sum of integrals with contours
around locations of the other fields in the correlator. By such a contour deformation one can
express the action of L−m on one field by a linear combination of Ln with n ≥ −1 acting on
the other fields. Using this method one can derive the relations between correlation functions
i.e. the conformal Ward identities. The commutator of the operators acting on a field is
given by the formula following from (1.16) and OPE (1.5):

[Ln,L−m]ϕ∆,∆̄(ξ, ξ̄|z, z̄) = (n+m)Ln−mϕ∆,∆̄(ξ, ξ̄|z, z̄) +
c

12
n(n2 − 1)δn,m ϕ∆,∆̄(ξ, ξ̄|z, z̄).

(1.17)
One can see that due to the contour deformation procedure it is possible to obtain the
correlator of fields from lower levels of excitation. Using Ward identities one can express any
correlation function of descendants as a linear differential operator acting on the correlator
of primary field.

Moreover, thanks to the basic dynamical assumption of CFT (1.1), the n-point correla-
tors can be reduced to 3-point correlation functions. The global conformal transformations
SL(2,C) determine the zi, z̄i dependence of the 3-point functions [30]:

〈0|φ3(z3, z̄3)φ2(z2, z̄2)φ1(z1, z̄1) |0〉 = C321

∏
p>q

(zp − zq)−∆pq(z̄p − z̄q)−∆̄pq (1.18)

where ∆32 = ∆3+∆2−∆1, ect. The structure constants C321 are 3-point correlation functions
of primary fields in the standard locations 0, 1,∞:

C321 ≡ 〈0|φ3(∞,∞)φ2(1, 1)φ1(0, 0) |0〉 =
〈
ν∆3 ⊗ ν̄∆̄3

∣∣φ2(1, 1)
∣∣ν∆1 ⊗ ν̄∆̄1

〉
.

Notice that thanks to the correspondence between fields and states (1.14), (1.15), the corre-
lation function can be written as a matrix element between two primary states.

In general one can say that when the structure constants C321 in a given theory are
known then due to conformal symmetry it is possible to calculate any correlation function in
this theory. In practice however it is very non-trivial problem to determine the correlation
functions even in the case of four primary fields.

The global conformal transformations enable to fix three locations of the fields in a cor-
relator [30]:

〈0|φ4(z4, z̄4)φ3(z3, z̄3)φ2(z2, z̄2)φ1(z1, z̄1) |0〉

=
∏
i>j

(zi − zj)−(∆i+∆j)+
∆
3 (z̄i − z̄j)−(∆̄i+∆̄j)+

∆̄
3 〈0|φ4(∞,∞)φ3(1, 1)φ2(z, z̄)φ1(0, 0) |0〉
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where ∆ =
∑4

i=1 ∆i, ∆̄ =
∑4

i=1 ∆̄i and z, z̄ are the projective invariants

z =
z21z43

z31z42
, z̄ =

z̄21z̄43

z̄31z̄42
, where zij = zi − zj , z̄ij = z̄i − z̄j . (1.19)

Such a 4-point function reduces to the structure constants and functions completely deter-
mined by the symmetry, which are called 4-point conformal blocks:

〈0|φ4(∞,∞)φ3(1, 1)φ2(z, z̄)φ1(0, 0) |0〉 =
∑
p

C43pCp21

∣∣∣Fc,∆p

[
∆3 ∆2
∆4 ∆1

]
(z)
∣∣∣2 .

In order to present exact definition of 4-point conformal block and Zamolodchikov’s recursive
methods of determining these objects we have to analyze properties of 3-point correlation
functions in more detail.

1.2 The 3-point block

1.2.1 Ward identities for the 3-point correlation function

We shall apply the contour deformation procedure discussed in the previous section to the
3-point correlation function of descendant fields. For m > 1 we have:〈
ξ3, ξ̄3

∣∣ϕ2(L−mξ2, ξ̄2|z, z̄)
∣∣ξ1, ξ̄1

〉
=

∮
z

dw

2πi
(w − z)1−m〈ϕ3(ξ3, ξ̄3|∞,∞)T (w)ϕ2(ξ2, ξ̄2|z, z̄)ϕ1(ξ1, ξ̄1|0, 0) 〉 (1.20)

=
∮
∞

dw

2πi

∞∑
n=0

(
1−m
n

)
(−z)nw1−m−n 〈ϕ3(ξ3, ξ̄3|∞,∞)T (w)ϕ2(ξ2, ξ̄2|z, z̄)ϕ1(ξ1, ξ̄1|0, 0) 〉

−
∮

0

dw

2πi

∞∑
n=0

(
1−m
n

)
(−z)1−m−nwn 〈ϕ3(ξ3, ξ̄3|∞,∞)ϕ2(ξ2, ξ̄2|z, z̄)T (w)ϕ1(ξ1, ξ̄1|0, 0) 〉

Using definition (1.16) we can write:

T (w)ϕ(ξ, ξ̄|0, 0) =
∑
n∈Z

wn−2ϕ(L−nξ, ξ̄|0, 0).

Inserting this OPE into integrals above one gets the Ward identity:

〈
ξ3, ξ̄3

∣∣ϕ2(L−mξ2, ξ̄2|z, z̄)
∣∣ξ1, ξ̄1

〉
=

∞∑
n=0

(
m−2+n
n

)
zn
〈
Lm+nξ3, ξ̄3

∣∣ϕ2(ξ2, ξ̄2|z, z̄)
∣∣ξ1, ξ̄1

〉
+ (−1)m

∞∑
n=0

(
m−2+n
n

)
z−m+1−n 〈ξ3, ξ̄3

∣∣ϕ2(ξ2, ξ̄2|z, z̄)
∣∣Ln−1ξ1, ξ̄1

〉
In the same way one can derive the other Ward identities for 3-point correlation functions:

〈
ξ3, ξ̄3

∣∣ϕ2(Lmξ2, ξ̄2|z, z̄)
∣∣ξ1, ξ̄1

〉
=

m+1∑
n=0

(
m+1
n

)
(−z)n

( 〈
Ln−mξ3, ξ̄3

∣∣ϕ2(ξ2, ξ̄2|z, z̄)
∣∣ξ1, ξ̄1

〉
−
〈
ξ3, ξ̄3

∣∣ϕ2(ξ2, ξ̄2|z, z̄)
∣∣Lm−nξ1, ξ̄1

〉
m > −1,
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and

〈L−nξ3, ξ̄3 |ϕ∆2,∆̄2
(ξ2, ξ̄2|z, z̄)| ξ1, ξ̄1 〉 = 〈 ξ3, ξ̄3 |ϕ∆2,∆̄2

(ξ2, ξ̄2|z, z̄)|Lnξ1, ξ̄1 〉

+
l(n)∑
m=−1

(
n+1

m+1

)
zn−m〈 ξ3, ξ̄3 |ϕ∆2,∆̄2

(Lmξ2, ξ̄2|z, z̄)| ξ1, ξ̄1 〉

where l(n) = n for n + 1 > 0, and l(n) = ∞ for n + 1 < 0. Additionally, since the L−1

operator is the generator of translations we have:〈
ξ3, ξ̄3

∣∣ϕ2(L−1ξ2, ξ̄2|z, z̄)
∣∣ξ1, ξ̄1

〉
= ∂z

〈
ξ3, ξ̄3

∣∣ϕ2(ξ2, ξ̄2|z, z̄)
∣∣ξ1, ξ̄1

〉
Using these relations it is possible to take off a creation operator (L−n) from one field

and change it to some combination of anihilation operators (Ln) and L0,L−1 acting on the
other fields. With the help of commutation relations (1.7) or (1.17), step by step one can get
rid of all the left Virasoro creation operators.

The analogous Ward identities containing right Virasoro generators can be derived as well.
Since L−m, L̄−m commute (1.7), one can take off left and right operators independently. Thus
the Ward identities allow to reduce the 3-point function of descendant fields to the structure
constant and the functions determined by the symmetry. The latter functions factorize into
holomorphic and antiholomorphic part.

1.2.2 Definition of the 3-point block

We shell define the chiral trilinear map on Verma modules:

%(ξ3, ξ2, ξ1|z) : V∆3 × V∆2 × V∆1 7→ C , (1.21)

such that 3-point function could be written in terms of it:

〈 ξ3, ξ̄3 |ϕ∆2,∆̄2
(ξ2, ξ̄2|z, z̄)| ξ1, ξ̄1 〉 = %(ξ3, ξ2, ξ1|z)%(ξ̄3, ξ̄2, ξ̄1|z̄).

From the Ward identities for 3-point correlation function we can derive conditions that
the form (1.21) has to obey [34]:

%(ξ3, L−1ξ2, ξ1|z) = ∂z%(ξ3, ξ2, ξ1|z), (1.22)

%(ξ3, Lnξ2, ξ1|z) =
n+1∑
m=0

(
n+1
m

)
(−z)m

(
%(Lm−nξ3, ξ2, ξ1|z) (1.23)

− %(ξ3, ξ2, Ln−mξ1|z)
)
, n > −1,

%(ξ3, L−nξ2, ξ1|z) =
∞∑
m=0

(
n−2+m
n−2

)
zm%(Ln+mξ3, ξ2, ξ1|z) (1.24)

+ (−1)n
∞∑
m=0

(
n−2+m
n−2

)
z−n+1−m%(ξ3, ξ2, Lm−1ξ1|z), n > 1,
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%(L−nξ3, ξ2, ξ1|z) = %(ξ3, ξ2, Lnξ1|z) (1.25)

+
l(n)∑
m=−1

(
n+1

m+1

)
zn−m%(ξ3, Lmξ2, ξ1|z),

where l(m) = m for m+ 1 > 0, and l(m) =∞ for m+ 1 < 0.
The form %(ξ3, ξ2, ξ1|z) is almost completely determined by the constraints above. In

particular, for L0-eingenstates, L0 ξi = ∆i(ξi)ξi, i = 1, 2, 3, the z dependence is fixed:

%(ξ3, ξ2, ξ1|z) = z∆3(ξ3)−∆2(ξ2)−∆1(ξ1) %(ξ3, ξ2, ξ1|1). (1.26)

For any descendants states ξi one can use formulae (1.22)-(1.25) to express %(ξ3, ξ2, ξ1|z) in
terms of one constant %(ν3, ν2, ν1|1), where ν3, ν2, ν1 are primary states in modules V∆3 ,V∆2 ,V∆1

respectively.
The 3-point block is defined as normalized 3-form ρ(ξ3, ξ2, ξ1|z):

%(ξ3, ξ2, ξ1|z) ≡ ρ(ξ3, ξ2, ξ1|z)%(ν3, ν2, ν1|1). (1.27)

The normalization condition simply means:

ρ(ν3, ν2, ν1|1) = 1.

The 3-point correlation function can thus be written in terms of the 3-point blocks:

〈 ξ3, ξ̄3 |ϕ∆2,∆̄2
(ξ2, ξ̄2|z, z̄)| ξ1, ξ̄1 〉 = ρ(ξ3, ξ2, ξ1|z) ρ(ξ̄3, ξ̄2, ξ̄1|z̄)C321 (1.28)

where the structure constant:

C321 = %(ν3, ν2, ν1|1) %(ν̄3, ν̄2, ν̄1|1).

1.2.3 Chiral vertex operator

The 3-point block is a chiral object in terms of which the correlation function of three fields
can be expressed. Let us define now a chiral object that corresponds to individual field.

For any state ξ2 ∈ V∆2 we define the chiral vertex operator 2

V (ξ2|z) : V∆1 → V∆3

through its matrix elements:

〈ξ3|V (ξ2|z) |ξ1〉 ≡ ρ(ξ3, ξ2, ξ1|z).

The relation between a field and the vertex operators has the form:

ϕ∆2,∆̄2
(ξ2, ξ̄2|z, z̄) =

⊕
∆3,∆1

C321V (ξ2|z)⊗ V (ξ̄2|z̄).

2The basic facts on the vertex operators can be found in [35], [36], [37] [38]
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In what follows we will focus on 3-point correlation functions with two primary fields and
one descendant located either at zero or at infinity. Thus it is sufficient to consider vertex
operator corresponding to highest weight state V (ν2|z), for which commutation relations with
Virasoro generators are given by (cf. (1.4), (1.25)):

[Lm, V (ν2|z)] = zm (z∂z + (m+ 1)∆2)V (ν2|z). (1.29)

The relations above determine completely the form of the 3-point block with one descendant
state from level f = |M | = |m1 + . . .+mj |:

ρ(L−Mν3, ν2, ν1|z) = 〈L−Mν3|V (ν2|z) |ν1〉 = z∆3+|M |−∆2−∆1γ∆3

[
∆2
∆1

]
M

where

γ∆

[
∆2
∆1

]
M

def= (∆−∆1 +m1∆2) (∆−∆1 +m2∆2 +m1) · · ·

(
∆−∆1 +mj∆2 +

j−1∑
l=1

ml

)
. (1.30)

Similarly, the commutation relations (1.29) allow to find the 3-point block with descendant
state |L−Mν1〉:

ρ(ν3, ν2, L−Mν1|z) = z∆3−∆2−∆1−|M |γ∆1

[
∆2
∆3

]
M
,

what gives

ρ(ν3, ν2, L−Mν1|1) = ρ(L−Mν1, ν2, ν3|1).

As a function of each conformal weight the 3-point block ρ(L−Mν3, ν2, ν1|1) is thus a poly-
nomial of maximal degree equal to the number of creation operators j.

Let us stress one more important property of the 3-point block i.e. the factorization.
From the commutation relation (1.29) one can see that shifting each creation operator L−m
from left side of the vertex to the right gives one multiplicative factor. This factor does not
depend on the action of the other operators on the state ν3, it depends just on the level
of descendant state. Therefore we can stop process of removing creation operators from
descendant state in any moment ξ3 ∈ Vn∆3

and as a result we will obtain the same polynomial
as if the initial state on right was primary one with shifted weight ∆3 + n:

%(L−Mξ3, ν2, ν1|z) = ρ(L−Mν∆3+n, ν2, ν1|z) %(ξ3, ν2, ν1|1). (1.31)

1.2.4 Fusion rules and fusion polynomials

The null vector χrs appears in Verma module V∆rs for degenerate weight ∆rs given by a
location of a zero of Kac determinant (1.11). Such a vector is orthogonal to any state, in
particular it has zero norm. The field which corresponds to the null state is called the zero
field. Any correlation function which includes this field vanishes.

Let us consider the 3-point function with a zero field ϕ(χrs, ξ̄|z, z̄). Since the zero field is
a descendant of degenerate primary field φ(νrs, ν̄|z, z̄), the 3-point function can be expressed
by the following 3-point blocks:

〈ϕ(χrs, ξ̄3|∞,∞)φ(ν2, ν̄2|1, 1)φ(ν1, ν̄1|0, 0) 〉 = ρ(ξrs, ν2, ν1|1)ρ(ξ̄3, ν̄2, ν̄1|1)C(rs)21,
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where the structure constant

C(rs)21 = 〈φ(νrs, ν̄3|∞,∞)φ(ν2, ν̄2|1, 1)φ(ν1, ν̄1|0, 0) 〉.

Vanishing of the correlator with zero field implies that for a given set of weights either the
3-point block or the structure constant has to be zero.

The Null Vector Decoupling Theorem [39] states that the 3-point block with degenerate
field has zero only when the weights

∆i = −1
4

(
β − 1

β

)2

+
α2
i

4

satisfy the fusion rule:

α2 ± α1 = (1− r + 2k)β − (1− s+ 2l)
1
β
, (1.32)

with integers from the set 0 ≤ k ≤ r − 1, 0 ≤ l ≤ s− 1.
The theorem above can be justified with the help of Feigin-Fuchs construction [39], [29].

It shows that the structure constants C(rs)21 in a free scalar theory with a background charge
Q = (b + 1

b ) are indeed non-zero each time the fusion rules (1.32) are fulfilled. Within
this approach primary fields are represented by exponential operators φa(z) = e2aϕ(z) with
conformal weights ∆a = a(Q− a). The n-point correlators of the exponential operators gain
the factor e2λ(a1+...an) under the transformation ϕ(z)→ ϕ(z) + λ. Variation of the action in
the free scalar theory with a background charge upon the shift of ϕ(z) is δS = λQ. This
implies the constraint on the correlation function called the charge conservation condition:

n∑
i=1

2ai = Q.

One can modify a correlation function by changing its total charge without changing its
conformal properties. It can be done by inserting into the correlator the so called screening
operators with zero conformal weight:

Qb =
∮
dz e2bϕ(z), Q 1

b
=
∮
dz e

2
b
ϕ(z).

Consider the 3-point function with degenerate field φrs = e2arsϕ(z) and screening operators:

C(rs)21 =
〈

e2arsϕ(z)e2a2ϕ(z)e2a1ϕ(z)Qkb Q
l
1
b

〉
, k, l ∈ N . (1.33)

The correlator does not vanish if the charge conservation rule is satisfied. This condition is in
agreement with the fusion rule (1.32), where ars = − b

2r −
1
2bs, ai = Q+iαi

2 and b = iβ. Since
the block is a model independent function, it should vanish each time the structure constant
(1.33) is non zero.

The Null Vector Decoupling Theorem leads to the definition of the fusion polynomial:

P rsc

[
∆2
∆1

]
=

r−1∏
p=1−r

s−1∏
q=1−s

(
α2 + α1 + pβ − qβ−1

2

)(
α2 − α1 + pβ − qβ−1

2

)
(1.34)
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where p = r − 1 − 2k, q = s − 1 − 2l. P rsc
[

∆2
∆1

]
is a polynomial of degree rs in the variable

∆2 −∆1 and of degree [ rs2 ] in ∆2 + ∆1. Coefficient of highest power of ∆2 −∆1 is equal 1.
The function ρ(ξrs, ν2, ν1|1) has the same properties (1.30) thus the 3-point block with null
vector is equal to fusion polynomial:

ρ(χrs, ν2, ν1|1) = P rsc

[
∆2
∆1

]
. (1.35)

1.3 The 4-point block

1.3.1 Definition

The 4-point functions reduce to structure constants and 4-point conformal blocks - chiral
objects completely determined by the Ward identities. We will define the 4-point conformal
blocks in terms of the 3-point blocks introduced in the last section.

Let us consider the 4-point correlation function with identity operator inserted between
two fields:

〈0|φ4(∞,∞)φ3(1, 1)φ2(z, z̄)φ1(0, 0) |0〉 = 〈ν4 ⊗ ν̄4|φ3(1, 1) 1φ2(z, z̄) |ν1 ⊗ ν̄1〉 =∑
p

∑
n=|M |=|N |

〈ν4 ⊗ ν̄4|φ3(1, 1)|νp,M ⊗ ν̄p,M̄ 〉
[
Bn

c,∆p

]MN [
B̄n

c,∆̄p

]M̄N̄

〈νp,N ⊗ ν̄p,N̄ |φ2(z, z̄) |ν1 ⊗ ν̄1〉

where the form of 1 follows from definition of Gram matrix (1.10):

1 =
∑
p

∑
n=|M |=|N |

|νp,M 〉
[
Bn
c,∆p

]MN
〈νp,N |

and p numbers conformal weights in the spectrum of primary fields. Expressing 3-point
correlation functions by 3-point blocks (1.28) one gets:

〈ν4 ⊗ ν̄4|φ3(1, 1)φ2(z, z̄) |ν1 ⊗ ν̄1〉 =
∑

p

∑
n=|M |=|N |

C43p Cp21 ρ(ν4, ν3, νp,M |1)
[
Bn

c,∆p

]MN

ρ(νp,N , ν2, ν1|z)

× ρ(ν̄4, ν̄3, ν̄p,M̄ |1)
[
B̄n

c,∆̄p

]M̄N̄

ρ(ν̄p,N̄ , ν̄2, ν̄1|z̄)

=
∑

p

C43p Cp21

∣∣∣Fc,∆p

[
∆3 ∆2
∆4 ∆1

]
(z)
∣∣∣2

The 4-point conformal block is defined as the following series:

Fc,∆
[

∆3 ∆2
∆4 ∆1

]
(z) = z∆−∆2−∆1

(
1 +

∑
n∈N

znFnc,∆

[
∆3 ∆2
∆4 ∆1

])
. (1.36)

with the coefficients:

Fnc,∆

[
∆3 ∆2
∆4 ∆1

]
=

∑
n=|M |=|N |

ρ(ν4, ν3, νp,M |1)
[
Bn
c,∆p

]MN
ρ(νp,N , ν2, ν1|1) (1.37)
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There are two important assumptions concerning analytical properties of the conformal block.
First, it is believed that the radius of convergence of the series in z is equal 1. The exact proof
does not exist, but all known examples of blocks calculated in some special cases confirm this
hypothesis. The second assumption, also supported by some explicit formulae for analytical
continuations, is that the only singularities of block as a function of z are the branching
points at 0, 1,∞.

This means that conformal block is a single-valued analytical function on the universal
covering of the sphere with 3 punctures at 0, 1,∞. Let us remind the definition of elliptic
nome:

q(z) = eiπτ , τ(z) = i
K(1− z)
K(z)

,

where K(z) is complete elliptic integral of the first kind. The inverse of elliptic nome

z(q) =
θ4

2(q)
θ4

3(q)

is a universal covering of 3-punctured sphere by the Poincare disc D. Thus the conformal
block is a single-valued analytic function of q. The elliptic nome will naturally appear in the
context of the so called elliptic block, which as power series in q is supposed to converge for
|q| < 1.

The conformal block is also an analytical function of four external weights ∆i, internal
weight ∆ and central charge c. Its coefficients depend on external weights entirely through
the 3-point blocks which are polynomials in all weights (1.30). Due to inverse Gram matrix
contribution, as functions of the intermediate weight ∆ and the central charge c the 4-point
blocks’ coefficients are rational functions.

Even though the block is completely determined by the conformal symmetry, its exact
form is in general not known. There exist a set of the so called minimal models for which
the block was computed. These models are parameterized by c = 1 − 6

(n+2)(n+3) and have
discreet and finite spectrum consisting of degenerate primary fields exclusively [3].

In general, one could try to compute the block from the definition, but the computation of
the inverse Gram matrix is problematical. Thus a method of an approximate determination
of conformal block is needed. The problem was solved by Zamolodchkov [14] who presented
at first a recursion relation for block’s coefficients of the expansion in z (1.37). His next two
works [15], [16] were devoted to the second, more effective method based on recursion relation
for coefficients of the block expanded in terms of elliptic nome q.

1.3.2 Residua

In derivation of the recursion relations for the 4-point conformal block the properties of the
3-point blocks and inverse Gram matrix play crucial role. From the third property of Gram
matrix and Mittag-Leffler theorem it follows that blocks’ coefficients can be expressed as a
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sum over simple poles in ∆ and a term non-singular in ∆ :

Fnc,∆

[
∆3 ∆2
∆4 ∆1

]
= hnc,∆

[
∆3 ∆2
∆4 ∆1

]
+

∑
1≤rs≤n

Rnc, rs
[

∆3 ∆2
∆4 ∆1

]
∆−∆rs(c)

, (1.38)

The same is true for the central charge dependence:

Fnc,∆

[
∆3 ∆2
∆4 ∆1

]
= fn∆

[
∆3 ∆2
∆4 ∆1

]
+

∑
1<rs≤n

R̃n∆, rs
[

∆3 ∆2
∆4 ∆1

]
c− crs(∆)

. (1.39)

The residues in both cases ∆rs(c) and crs(∆) are related (1.12),(1.13):

R̃n∆, rs
[

∆3 ∆2
∆4 ∆1

]
= −∂crs(∆)

∂∆
Rncrs(∆), rs

[
∆3 ∆2
∆4 ∆1

]
, (1.40)

∂crs(∆)
∂∆

= 4
crs(∆)− 1

(r2 − 1)β4
rs(∆)− (s2 − 1)

.

The structure of the residues is essential for the recurrence relations for the blocks’ coef-
ficients. We shall present now the basic steps of calculation of the residuum at ∆rs.

First let us notice that a pole in degenerate weight ∆rs is connected with the presence
of a null vector χrs ∈ Vrs∆rs

generating the submodule V∆rs+rs ⊂ V∆rs . Hence, among the
states from Vn∆rs

(n > rs), there are null vector descendants belonging to Vn−rs∆rs+rs
. This fact

motivates the specific choice of the basis for states at level n > rs in Verma module with
arbitrary weight ∆.

Let χMrs be the coefficients of the null vector χrs in the basis L−Mν∆rs :

χrs =
∑
M

χMrsL−Mν∆rs .

Consider the states at level n > rs which can be written in terms of χMrs coefficients::

L−Nχ
∆
rs ∈ Vn∆, where χ∆

rs =
∑
M

χMrsL−Mν∆, |N | = n− rs,

so that the null vector appears in the limit: χrs = lim∆→∆rs χ
∆
rs. The set of these states can

be always extended to a full basis in Vn∆.
Working in that basis one gets the following result for the residue:

Rnc, rs
[

∆3 ∆2
∆4 ∆1

]
= lim

∆→∆rs

(∆−∆rs(c))Fnc,∆
[

∆3 ∆2
∆4 ∆1

]
= Ars(c)

∑
n=|M |=|N |

ρ(ν4, ν3, L−Mχrs|1)
[
Bn−rs
c,∆rs+rs

]M,N
ρ(L−Nχrs, ν2, ν1|1),

with

Ars(c) = lim
∆→∆rs

( 〈
χ∆
rs|χ∆

rs

〉
∆−∆rs(c)

)−1

.
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The factorization property of 3-point block (1.31) gives:

ρ(L−Nχrs, ν2, ν1|1) = ρ(L−Mν∆rs+rs, ν2, ν1|1) ρ(χrs, ν2, ν1|1).

One can notice that the block ρ(L−Mν∆rs+rs, ν2, ν1|1), analogical one ρ(ν4, ν3, L−Nν∆rs+rs|1)
and inverse Gram matrix corresponding to weight ∆rs + rs together give the 4-point block
coefficient:∑
n=|M |=|N |

ρ(L−Mν∆rs+rs, ν2, ν1|1)
[
Bn−rs
c,∆rs+rs

]M,N
ρ(ν4, ν3, L−Nν∆rs+rs|1) = Fn−rsc,∆rs+rs

[
∆3 ∆2
∆4 ∆1

]
The remaining two 3-point blocks, with the singular vector χrs as one of the arguments,
are given by the fusion polynomials (1.34), (1.35). Thus the final result for residuum is the
following:

Rnc, rs
[

∆3 ∆2
∆4 ∆1

]
= Ars(c)P rsc

[
∆3
∆4

]
P rsc

[
∆2
∆1

]
Fn−rsc,∆rs+rs

[
∆3 ∆2
∆4 ∆1

]
(1.41)

The exact form of the coefficient Ars(c) was proposed in [14] and derived afterwards in [40]
by Al. Zamolodchikov:

Ars(c) =
1
2

r∏
m=1−r

s∏
n=1−s

(
pβ − q

β

)−1

, (m,n) 6= (0, 0), (r, s).

The formula for residuum (1.41) inserted into equation (1.38) gives the recursion relation
for block’s coefficients:

Fnc,∆

[
∆3 ∆2
∆4 ∆1

]
= hnc,∆

[
∆3 ∆2
∆4 ∆1

]
+

∑
1≤rs≤n

Ars(c)P rsc
[

∆3
∆4

]
P rsc

[
∆2
∆1

]
∆−∆rs(c)

Fn−rsc,∆rs+rs

[
∆3 ∆2
∆4 ∆1

]
. (1.42)

One can sum up all the block’s coefficients to obtain the relation for the 4-point block (1.36):

Fc,∆
[

∆3 ∆2
∆4 ∆1

]
(z) = hc,∆

[
∆3 ∆2
∆4 ∆1

]
(z) +

∑
1≤rs≤n

Ars(c)P rsc
[

∆3
∆4

]
P rsc

[
∆2
∆1

]
∆−∆rs(c)

Fc,∆rs+rs

[
∆3 ∆2
∆4 ∆1

]
(z)

(1.43)
Analogical relations hold for sum over the poles in c (1.39) with residua given by (1.40) and
(1.41).

1.3.3 Term regular in c

In order to complete the recursion relations for block’s coefficients it is necessary to derive
an exact form of the regular terms in (1.38), (1.39). Since these functions do not have poles
in intermediate weight (or central charge) they can be determined from the behavior of the
4-point blocks for large ∆ or c respectively.

In the case of c-dependence, nonsingular term is simply a limit of the block for c → ∞.

The block’s coefficients depend on c only through inverse Gram matrix
[
Bn
c,∆

]M,N
. The Kac
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determinant is a polynomial of the order dimVn−rsc,∆ in c. A minor of the Gram matrix can
be a polynomial in c of the order not greater than the order of Kac determinant. Hence the
elements of inverse Gram matrix are given by non positive power of c. In fact there is only
one matrix element that does not vanish in limit the c→∞.

From the Virasoro algebra (1.7) it follows that the central charge appears in Gram matrix
due to commutators of the type [Ln, L−n] for n 6= 1. Hence the diagonal elements are
polynomials of maximal degree in c. For n = 1 the diagonal element does not depend on c,
the same is true for all elements from the row and column that include this element. Thus
the only element in inverse Gram matrix which does not depend on c and hence does not
vanish in the limit c→∞ is the diagonal one:

lim
c→∞

[
Bn
c,∆

]1I 1I
=

1
〈ν∆|Ln1Ln−1 |ν∆〉

=
1

n!(2∆)n
,

where (a)n = Γ(a+n)
Γ(a) is the Pochhammer symbol.

The 3-point block in that case is given by (1.30) with all mi = 1:

ρ
(
Ln−1ν, ν2, ν1|1

)
= (∆ + ∆2 −∆1)n.

The regular term in block’s coefficient expansion (1.39), given by the c→∞ limit of (1.37),
has thus the following form:

fn∆
[

∆3 ∆2
∆4 ∆1

]
=

1
n!

(∆ + ∆3 −∆4)n(∆ + ∆2 −∆1)n
(2∆)n

.

Since all the functions defining coefficients of the 4-point block depend on the intermediate
weight, the derivation of the term regular in ∆ is more complicated. The large ∆ behavior
of the 4-point block was worked out by Al. Zamolodchikov [14, 15, 16]. We shall present the
basic steps of this derivation in the next section.

1.4 Elliptic recurrence for 4-point block

The essential observation for deriving the large ∆ asymptotic of 4-point block made by
Al. Zamolodchikov [14, 15, 16] is the following: to write down the block’s asymptotic it is
necessary to study the classical limit of the block. The first two terms of the expansion of
classical block in terms of large classical intermediate weight δ fully determine the dependence
on external weights and central charge of the first two terms in the 1

∆ expansion of conformal
quantum block. It was also stressed that the classical limit of the block can be investigated
by analyzing the Liouville theory.

1.4.1 Classical block

The main assumption concerning classical limit of quantum 4-point conformal block reads
that the limit exist. By analyzing the asymptotical behavior of correlation functions in the
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Liouville theory it was possible to find heuristic arguments indicating that the classical limit
of conformal block has a form of exponential function of the classical block [16]. We will
present here the basic points of reasoning leading to the exact definition of the classical
block.

First, let us remind the action in the Liouville theory [34]:

SLFT =
1

2π

∫ (
|∂φ|2 + 4π2b2µ2e2bφ

)
d2z,

where the scale parameter µ is called the cosmological constant and b is the dimensionless
coupling constant. This definition assumes a trivial background metric gab = δab. The
Liouville theory on a sphere can be given in terms of the flat action above, but the additional
special boundary condition has to be satisfied by the Liouville field :

φ(z, z̄) = −Q log(zz̄) +O(1) at |z| → ∞.

This constraint is equivalent to taking away all the curvature to the infinity. The background
charge

Q = b+
1
b

determines the central charge of the theory

c = 1 + 6Q2. (1.44)

Modes of the energy-momentum tensor

T (z) = −(∂φ)2 +Q∂2φ, T̄ (z̄) = −(∂̄φ)2 +Q∂̄2φ

satisfy the Virasoro algebra with the cental charge given by (1.44).
Spectrum of the Liouville theory consists of an infinite family of Verma modules [41]

H =
∫ ⊕

S
da Va ⊗ V̄a, S =

Q

2
+ iR+.

The primary fields are represented as exponents Va = e2aφ with conformal dimensions ∆a =
∆̄a = a(Q− a).

Within the path-integral approach the n-point correlation function of the exponential
fields is defined as the functional integral:

〈Vn(zn) . . . V1(z1)〉 =
∫
Dφ Van(zn) . . . Va1(x1) e−SLFT [φ]. (1.45)

Depending on the value of conformal weight there are two types of operators: “light” fields
with a ∼ b and fields with “heavy” weights:

a = Q
2 (1− λ) , ba→ 1−λ

2 , b2∆→ δ = 1−λ2

4 .
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where δ is called classical weight. In the classical limit i.e. b→ 0, 2πµb2 → m = const, only
the presence of the heavy fields in the correlator has influence on the classical solution of the
field equations.

In the case of 4-point correlation function of “heavy” fields the classical limit

〈Va4Va3Va2Va1〉 ∼ e−
1
b2
Scl[δ4,δ3,δ2,δ1]

is determined by the action Scl[δ4, δ3, δ2, δ1] given by

S[φ] =
1

2π

∫ (
|∂φ|2 +m2e2φ

)
d2z, (1.46)

calculated on the classical configuration ϕ satisfying the Liouville equation

∂∂̄ϕ−m2e2φ =
4∑
1

1− λi
4

δ(z − zi).

On the other hand, before taking the classical limit, we can express 4-point function in
terms of 4-point blocks and structure constants:

〈Va4Va3Va2Va1〉 =
∫

Q
2

+iR+

da

2πi
C43aCa21

∣∣∣F∆a

[
∆3 ∆2
∆4 ∆1

]
(z)
∣∣∣2 . (1.47)

The asymptotic behavior of structure constants also follows from (1.45):

Ca21 ∼ e−
1
b2
Scl[δ,δ2,δ1]

with Scl[δ, δ2, δ1] as the 3-point classical Liouville action.
Now compare the classical limit of 4-point function projected on one conformal family

∆a:
〈Va4Va3 |∆a Va2Va1〉 ∼ e−

1
b2
Scl[δ4,δ3,δ2,δ1|δa]

with the limit of (1.47) for the same weight. The Q →∞ asymptotic of the quantum block
is thus given by:

F1+6Q2,∆

[
∆3 ∆2
∆4 ∆1

]
(z) ∼ eQ

2 fδ

[
δ3 δ2
δ4 δ1

]
(z) (1.48)

where fδ
[
δ3 δ2
δ4 δ1

]
(z) is the classical block [19], [16] satisfying the relation:

Scl[δ4, δ3, δ2, δ1|δ] = Scl[δ4, δ3, δ] + Scl[δ, δ2, δ1]− fδ
[
δ3 δ2
δ4 δ1

]
(z)− f̄δ

[
δ3 δ2
δ4 δ1

]
(z̄).

1.4.2 1
δ

expansion of classical block

It would be extremely hard problem to calculate the classical block in general. Fortunately,
as it will be discussed in the next subsection, in order to find the recursive relation for block’s
coefficient (1.38) only the first two terms of 1

δ expansion of the classical block are needed.
The solution of this problem was presented by Zamolodchikov in the work [16]. It is based
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on a Fuchsian equation in which the classical block is present as an accessory parameter.
Knowing a condition for monodromy properties of the Fuchsian equation’s solutions one can
find appropriate value of the accessory parameter i.e. to calculate the classical block. We
will remind below all the basic steps of this calculation.

Consider 5-point correlation function of primary fields with one degenerate field V5 = V− b
2
:

〈V4V3V5V2V1〉 ≡
〈
V4 (∞)V3 (1, 1)V− b

2
(z, z̄)V2 (x, x̄)V1 (0, 0)

〉
(1.49)

In the degenerate family [V ]− b
2

there is a zero field of the form:(
L−2 −

3
2(2∆− b

2
+ 1)
L2
−1

)
V− b

2
= 0, ∆− b

2
= ∆2,1 = −1

2
− 3

4
b2.

On the one hand the correlation function which includes the zero field has to vanish. On the
other hand one can use the fact that zero field is a descendant. The contour deformation
calculations applied to the definition of descendant field (1.16) together with Ward identities
(1.4) lead to the differential equation for the correlator (1.49):{

∂2
z + b2

[
∆4 −∆3 −∆2 −∆1

z(z − 1)
+

∆3

(z − 1)2
+

∆2

(z − x)2
+

∆1

z2

]}
〈V4V3V5V2V1〉

+ b2
x(x− 1)

z(z − 1)(z − x)
∂

∂x
〈V4V3V5V2V1〉 = 0. (1.50)

In the classical limit operator V− b
2

is a light field and it does not contribute to classical
dynamics. Thus for a given intermediate conformal family ∆a the projected 5-point function
behave as:〈

V4 (∞)V3 (1, 1)V− b
2

(z, z̄) |∆a V2 (x, x̄)V1 (0, 0)
〉
∼ ψ(z) e

1
b2
fδa

[
δ3 δ2
δ4 δ1

]
(x)
, (1.51)

where fδ
[
δ3 δ2
δ4 δ1

]
(x) is the classical conformal block (1.48). Substituting this limit into differ-

ential equation (1.50) one gets the Fuchsian equation [16]:

d2ψ(z)
dz2

+
(
δ4 − δ3 − δ2 − δ1

z(z − 1)
+
δ1

z2
+

δ2

(z − x)2
+

δ3

(z − 1)2

)
ψ(z) (1.52)

+
x(x− 1)C(x)
z(z − x)(z − 1)

ψ(z) = 0,

with the accessory parameter C(x) :

C(x) =
∂

∂x
fδ

[
δ3 δ2
δ4 δ1

]
(x). (1.53)

The functions on either side of (1.51) should have the same monodromy properties along
the contour encircling the points 0 and x. First, let us notice that the monodromy proper-
ties of the 5-point correlator (1.51) along a curve encircling both 0 and x are the same as
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the monodromy properties of the 4-point function
〈
V4 (∞)V3 (1, 1)V− b

2
(z, z̄)Va (0, 0)

〉
for a

curve encircling 0. The z dependence of this correlator for z → 0 can be read off from the
OPE of degenerate field with primary operator Va:

V− b
2
(z, z̄)Va(0, 0) = C(a+,− b2 ,a)(zz̄)

bQ
2

(1+λ) Va+(0, 0)

+ C(a−,− b2 ,a)(zz̄)
bQ
2

(1−λ) Va−(0, 0) + descendants,

The families a± = a ± − b
2 appearing in the OPE are determined by the fusion rules (1.32),

where a = Q(1−λ)
2 .

Hence, in the space of solutions of (1.52) there exist a basis ψ±(z) such that functions
analytically continued in z along the path encircling the points 0 and x satisfy the condition:

ψ±
(
e2πiz

)
= −e±iπλ ψ± (z) . (1.54)

This corresponds to the monodromy matrix with trace equal −2cos(πλ) which is invariant
with respect to the choice of the basis of solutions.

The idea which allow to determine the classical block is the following: adjust C in such a
way that the equation (1.50) admits solutions with the monodromy around 0 and x given by
(1.54).

The technical details of the calculation leading to the result for the first two terms of 1
δ

expansion of classical block are given in Appendix A. The classical block has the following
form (A.10):

fδ

[
δ3 δ2
δ4 δ1

]
(x) = iπτ

(
δ − 1

4

)
+

1
2

(
3
4
− δ1 − δ2 − δ3 − δ4

)
lnK4(x) (1.55)

+
(

1
4
− δ2 − δ3

)
ln(1− x) +

(
1
4
− δ1 − δ2

)
ln(x) +O

(
1
δ

)
.

1.4.3 Large ∆ asymptotic of conformal block from the classical block

In this subsection we will present Zamolodchikov’s reasoning leading to statement that the
first two terms of the 1

δ expansion of classical block fully determine the dependence on external
weights and central charge of the first two terms in the 1

∆ expansion of conformal quantum
block.

Let us denote:
G∆

[
∆3 ∆2
∆4 ∆1

]
(z) = lnF∆

[
∆3 ∆2
∆4 ∆1

]
(z).

Since the conformal block (1.36) can be written as a series in z, the function G∆ also admit
an expansion of the form:

G∆

[
∆3 ∆2
∆4 ∆1

]
(z) = (∆−∆2 −∆1) ln z +

∞∑
i=0

Gnz
n,

where Gn, as the blocks coefficients (1.37), are rational functions of ∆, c,∆i:

Gn =
Pn(∆,∆i, c)
Qn(∆, c)

.
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The functions Pn(∆,∆i, c), Qn(∆, c) are polynomials in their arguments. The assumption
concerning existence of the classical block as the classical limit of conformal block implies
that the maximal homogeneous power of Pn(∆,∆i, c) is greater by 1 than the maximal
homogeneous power of Qn(∆, c).

The 1
∆ expansion of Gn can be easily computed if one write the first terms of polynomials

explicitly:

Gn =
Pn(∆,∆i, c)
Qn(∆, c)

=
An∆Nn+1 + ∆Nn

(
4∑
i=1

Bi
n∆i + Cnc+Dn

)
+ . . .

an∆Nn + ∆Nn−1 (bnc+ dn) + . . .

=

[
An∆ +

(
4∑
i=1

Bi
n∆i + Cnc+Dn

)
+ . . .

][
1
an
− 1
a2
n

(
1
∆

(bnc+ dn) +
1

∆2
. . .

)
+ . . .

]

=
An
an

∆ +
4∑
i=1

Bi
n

an
∆i +

(Cnan −Anbn)
a2
n

c+
Dn

an
− Andn

a2
n

+O
(

1
∆

)
. (1.56)

The coefficient an is non-zero due to the properties of Kac determinant (1.11) and inverse
Gram matrix. We want to compare this formula with 1

δ expansion of classical block.
Let us write the classical block also as a power series in z:

fδ

[
δ3 δ2
δ4 δ1

]
(z) = (δ − δ2 − δ1) ln z +

∞∑
n=1

z n fnδ

[
δ3 δ2
δ4 δ1

]
; where lim

b→0

Pn(∆,∆i, c)
Qn(∆, c)

= 1
b2
fnδ

[
δ3 δ2
δ4 δ1

]
.

Next define the polynomials of maximal homogeneous degree:

PNn+1
n (∆,∆i, c) = ∆Nn

(
An∆ +

4∑
i=1

Bi
n∆i + Cnc

)

+ ∆Nn−1

 4∑
i,j=1

Xij
n ∆i∆j +

4∑
i=1

Y i
n∆ic+ Znc

2

+ ∆Nn−2
(
. . .

and
QNnn (∆, c) = an∆Nn + bn∆Nn−1c+ cn∆Nn−2c2 + . . .

Notice that PNn+1
n and QNnn do not include the coefficients Dn and dn from (1.56) since the

latter are proportional to ∆Nn or ∆Nn−1, respectively.
The classical limit of Gn is determined by the polynomials above:

lim
b→0

b2
Pn(∆,∆i, c)
Qn(∆, c)

= lim
b→0

b2
(
PNn+1
n (∆,∆i, c) + PNnn (∆,∆i, c) + . . .

)(
QNnn (∆, c) +QNn−1

n (∆, c) + . . .
)

= lim
b→0

b2
(

1
b2
PNn+1
n (δ, δi, b2c) + PNnn (δ, δi, b2c) + . . .

)(
QNnn (δ, b2c) + b2QNn−1

n (δ, b2c) + . . .
)

= lim
b→0

1
QNnn (δ, c

b2
)

(
PNn+1
n (δ, δi, b2c) + b2 PNnn (δ, δi, b2c) + . . .

)(
1− b2 Q

Nn−1
n (δ, b2c)
QNnn (δ, b2c)

+ . . .

)

=
PNn+1
n (δ, δi, b2c)
QNnn (δ, b2c)
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Thus coefficients of classical block take the form:

fnδ

[
δ3 δ2
δ4 δ1

]
=
PNn+1
n (δ, δi, b2c)
QNnn (δ, b2c)

=
δNn

(
Anδ +

4∑
i=1

Bi
nδi + 6Cn

)
+ δNn−1

(
. . .

anδNn + 6bnδNn−1 + 36cnδNn−2 + . . .
,

where b2c = b2(1 + 6Q2) → 6 while b → 0. Expanding this function in powers of 1
δ in the

same way as Gn in powers of 1
∆ in (1.56) one gets:

fnδ

[
δ3 δ2
δ4 δ1

]
=
An
an
δ +

4∑
i=1

Bi
n

an
δi +

6 (Cnan −Anbn)
a2
n

+O
(

1
δ

)
.

Comparing expression above with (1.56) we can see that the first two terms in the expan-
sion of classical block determine the coefficients proportional to ∆,∆i and c in 1

∆ expansion
of the function Gn.

Using formula (1.55) for classical block we can finally identify the function G as:

G∆

[
∆3 ∆2
∆4 ∆1

]
(z) = iπτ

(
∆− c

24

)
+
( c

8
−∆1 −∆2 −∆3 −∆4

)
lnK2(z) (1.57)

+
( c

24
−∆2 −∆3

)
ln(1− z) +

( c
24
−∆1 − ∆2

)
ln(z) + f(z) +O

(
1
∆

)
,

where f(z) corresponds to parameters Dn, dn from (1.56) and cannot be determined from the
classical block. On the other hand, this function is independent from ∆i and c and thus it
can be derived from analytical expression for block calculated in some specific model. The
model which was considered by Zamolodchikov is the so-called Ashkin-Teller model, the c = 1
scalar free theory extended by the Ramond sector [15], [17]. The conformal block calculated
for external weights ∆0 = 1

16 has the following form:

F∆

[
∆0 ∆0
∆0 ∆0

]
(z) = (16q)∆ [z (1− z)]−

1
8 θ−1

3 (q), (1.58)

We will show how to compute this block in the chapter 4.1. Notice, that the asymptotic of
the explicit block is in agreement with (1.57).

1.4.4 Elliptic block

The aim of the last two subsections was to derive large ∆ asymptotic of conformal block so
that the regular term in recursion relation (1.43) could be determined. From the large ∆
asymptotic (1.57) we can read off the ∆i and c dependence of the term non-singular in ∆.
Excluding from the conformal block the multiplicative factor which takes over all the ∆i and
c dependence of the non-singular term, we define the elliptic block:

F∆

[
∆3 ∆2
∆4 ∆1

]
(z) = (16q)∆− c−1

24 z
c−1
24
−∆1−∆2 (1− z)

c−1
24
−∆2−∆3 (1.59)

× θ
c−1

2
−4(∆1+∆2+∆3+∆4)

3 H∆

[
∆3 ∆2
∆4 ∆1

]
(q),
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It has the same analytic structure as the conformal block

H∆

[
∆3 ∆2
∆4 ∆1

]
(q) = g(q) +

∑
m,n

hmn

[
∆3 ∆2
∆4 ∆1

]
(q)

∆−∆mn
, (1.60)

but the regular in ∆ term g(q) does not depend on external weights ∆i and central charge c
any more. It is related to f(z) in (1.57):

ef(z) = (16q)
1
24 [z(1− z)]−

1
24 θ

− 1
2

3 (q) g(q).

Hence g(q) can be identified with a help of the explicit formula for the block calculated in
Ashkin-Teller model with c = 1 (1.58). By comparison with definition (1.59) one can notice
that the elliptic block in this case is simply equal to regular term H∆

[
∆0 ∆0
∆0 ∆0

]
(q) = 1, what

gives g(q) = 1.
The residua of elliptic block (1.60) can be easily derived by inserting the definition of the

elliptic block (1.59) into relation for the conformal block (1.43):

Hc,∆
[

∆3 ∆2
∆4 ∆1

]
(q) = 1 +

∑
1≤rs≤n

Ars(c)P rsc
[

∆3
∆4

]
P rsc

[
∆2
∆1

]
∆−∆rs(c)

Hc,∆rs+rs

[
∆3 ∆2
∆4 ∆1

]
(q).

Finally, let us write elliptic block as a power series in the nome:

Hc,∆
[

∆3 ∆2
∆4 ∆1

]
(q) =

∞∑
n=0

(16q)nHn
c,∆

[
∆3 ∆2
∆4 ∆1

]
The elliptic block’s coefficients satisfy the elliptic recursion relation:

Hn
c,∆

[
∆3 ∆2
∆4 ∆1

]
= gn +

∑
r,s>0

Ars(c)P rsc
[

∆3
∆4

]
P rsc

[
∆2
∆1

]
∆−∆rs

Hn−rs
c,∆rs+rs

[
∆3 ∆2
∆4 ∆1

]
(1.61)

where gn = δn,0 due to nonsingular term g(q) =
∑∞

n=0(16q)ngn = 1.
This recursion relation in practice is more useful than the z-recurrence (1.42). The inverse

of elliptic nome z(q) is a universal covering of 3-punctured sphere by the Poincare disc D. If
the q-series defining elliptic block converges for |q| < 1 it converges on the whole covering
and thus it gives there a uniform approximation.

The elliptic recurrence (1.61) allows for approximate, analytic determination of the general
4-point conformal block. It was applied to numerical consistency check of Liouville theory
with 3-point functions proposed by by Otto and Dorn [18] and by A. and Al. Zamolodchikov
[19]. It was also used in study of the c→ 1 limit of minimal models [20] or in obtaining new
results in the classical geometry of hyperbolic surfaces [21, 22].



Chapter 2

Conformal blocks in NS sector of

N = 1 SCFT

2.1 Definitions

2.1.1 N = 1 superconformal symmetry

We shall analyze now two dimensional conformal field theories with N = 1 supersymmetry
(SCFT). Our aim is to define the 4-point superconformal blocks and to find their recursive
representations. It can be done by a proper extension of the Zamolodchikov’s reasonings
reminded in the previous chapter.

First we will suitably generalize the main assumptions and definitions concerning CFT.
The basic dynamical assumption i.e. the operator product expansion remains the same (1.1)
and reads:

In an arbitrary correlation function the product of any two local operators can be expressed
as a series of local operators

ϕi(z2, z̄2)ϕj(z1, z̄1) =
∑
k

Ckij(z2 − z1, z̄2 − z̄1)ϕk(z1, z̄1), (2.1)

where the coefficients Ckij(z2 − z1, z̄2 − z̄1) are c-number functions.
Additionally, we assume that in a general SCFT model:

There exist an holomorphic field S(z) and an antiholomorphic counterpart S̄(z̄), which
together with fields T (z), T̄ (z̄) (1.2) generate superconformal symmetry. S(z), S̄(z̄) have con-
formal weights (∆, ∆̄) equal to (3

2 , 0) and (0, 3
2), respectively.

The local Ward identities for the holomorphic (left) generators have the form:

T (z)T (0) =
c

2z4
+

2
z2
T (0) +

1
z
∂T (0) + reg.

T (z)S(0) =
3

2z2
S(0) +

1
z
∂S(0) + reg. (2.2)

S(z)S(0) =
2c
3z3

+
2
z
T (0) + reg.
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The local Ward identities for the antiholomorphic (right) generators are given by analogous
formulae. Additionally:

T (z̄)T (0) = reg. , T (z̄)S(0) = reg. , S̄(z̄)S(0) = reg.

Since the conformal weight of fermionic operators S(z) and S̄(z̄) is half-integer, the correlation
functions containing each of them can be double-valued. Thus the space of fields splits into
two parts: the Neveu-Schwarz subspace of fields ϕNS(zi, z̄i) local with respect to S(z) and
the Ramond subspace of fields R(zi, z̄i) ’half-local’ with respect to S(z). The ’half-locality’ of
Ramond fields means that any correlation function

〈S(z)R(zi, z̄i) . . .〉

changes the sing upon analytic continuation in z around the point z = zi.

The locality properties of NS fields and Ramond fields imply that their OPEs with S(z)
can be written in terms of integer or half-integer powers of z respectively:

S(z)ϕNS(0, 0) =
∑

k∈Z+ 1
2

zk−
3
2S−kϕNS(0, 0), (2.3)

S(z)R(0, 0) =
∑
m∈Z

zm−
3
2S−mR(0, 0). (2.4)

It follows from the local Ward identities (2.2) that the operators

S−kϕNS(0, 0) =
∮

0

dz
2πi

z−k+ 1
2S(z)ϕNS(0, 0), S̄−kϕNS(0, 0) =

∮
0

dz̄
2πi

z̄−k+ 1
2 S̄(z̄)ϕNS(0, 0),

S−mR(0, 0) =
∮

0

dz
2πi

z−m+ 1
2S(z)R(0, 0), S̄−mR(0, 0) =

∮
0

dz̄
2πi

z̄−m+ 1
2 S̄(z̄)R(0, 0),

together with the Virasoro generators (1.7):

Ln =
1

2πi

∮
0

dz zn+1T (z), L̄n =
1

2πi

∮
0

dz̄ z̄n+1T (z̄)

form two copies of the Neveu-Schwarz-Ramond algebra:

[Lm, Ln] = (m− n)Lm+n +
c

12
m
(
m2 − 1

)
δm+n,

[Lm, Sp] =
m− 2p

2
Sm+p, (2.5)

{Sp, Sq} = 2Lp+q +
c

3

(
p2 − 1

4

)
δp+q,

[Ln, L̄m] = 0 , [Ln, S̄p] = 0 ,
{
Sp, S̄q

}
= 0,

where p, q are integer or half-integer when Sp, Sq act on NS field or Ramond field, respectively.
In the current chapter we will discuss only Neveu-Schwarz fields, thus for clarity we will

skip the fields’ indices NS. The analysis of the Ramond sector of SCFT will be presented in
the next chapter.
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2.1.2 Primary fields in the NS sector

As in the CFT case, we assume that the algebra of local fields contain primary fields which
under conformal transformation change in a particularly simple way (1.3). Additionally, we
assume that there exist superprimary fields φ∆,∆̄ defined as such primary fields that satisfy

Lnφ∆,∆̄(0, 0) = Skφ∆,∆̄(0, 0) = 0, n, k > 0, (2.6)

L0φ∆,∆̄(0, 0) = ∆φ∆,∆̄(0, 0)

and similarly for the “right” generators L̄n and S̄k.

There are three other primary fields related to the superprimary field:

ψ∆,∆̄ =
[
S−1/2, ϕ∆,∆̄

]
, ψ̄∆,∆̄ =

[
S̄−1/2, ϕ∆,∆̄

]
, φ̃∆,∆̄ =

{
S−1/2,

[
S̄−1/2, φ∆,∆̄

]}
(2.7)

The values of primary fields’ conformal weights follows from the algebra (2.5):

ψ∆,∆̄ :
(

∆ +
1
2
, ∆̄
)

; ψ̄∆,∆̄ :
(

∆, ∆̄ +
1
2

)
; φ̃∆,∆̄ :

(
∆ +

1
2
, ∆̄ +

1
2

)
.

The local Ward identities for all four types of primary fields containing generator T (z)
are given by (1.4) with appropriate conformal weights. The local Ward identities containing
generator S(z) follow from (2.3), (2.5) and read:

S(z)φ(w, w̄) =
1

z − w
ψ∆(w, w̄) + reg. (2.8)

S(z)ψ(w, w̄) =
2∆

(z − w)2
φ(w, w̄) +

1
z − w

∂wφ∆(w, w̄) + reg.

S(z)ψ̄(w, w̄) =
1

z − w
φ̃∆(w, w̄) + reg. (2.9)

S(z)φ̃(w, w̄) =
2∆

(z − w)2
ψ̄(w, w̄) +

1
z − w

∂wψ̄∆(w, w̄) + reg.

2.1.3 NS supermodule

The highest weight state with respect to the NS algebra (2.5) is defined by the following
conditions:

Lm |ν∆〉 = Sk |ν∆〉 = 0, L0 |ν∆〉 = ∆ |ν∆〉 , m ∈ N, k ∈ N− 1
2
. (2.10)

We will denote

|∗ν〉 ≡ S− 1
2
|ν∆〉 . (2.11)

It is not the highest weight state with respect to NS algebra, but it is still the highest weight
state with respect to the Virasoro algebra (1.8):

Lm |∗ν∆〉 = 0, L0 |∗ν∆〉 =
(

∆ +
1
2

)
|∗ν∆〉 , m ∈ N.
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The descendant states are the states created by an action of generators L−m and S−k on
the highest weight state |ν∆〉. They form the vector space Vfc,∆ with the basis:

|ν∆,KM 〉 = S−K L−M |ν∆〉 ≡ S−ki . . . S−k1L−mj . . . L−m1 |ν∆〉 . (2.12)

K = {k1, k2, . . . , ki} ⊂ N − 1
2 and M = {m1,m2, . . . ,mj} ⊂ N are arbitrary ordered sets of

indices ki < . . . < k2 < k1, mj ≤ . . . ≤ m2 ≤ m1, such that |K|+ |M | = k1 + . . .+ ki +m1 +
. . .+mj = f . Each Vfc,∆ is an eigenspace of L0 with the eigenvalue ∆ + f .

The direct sum of the spaces Vfc,∆ composes superconformal NS module of the highest
weight ∆ and central charge c:

Vc,∆ =
⊕

f∈ 1
2

N∪{0}

Vfc,∆ , V0
c,∆ = C ν∆ .

The parity operator is defined as follows:

(−1)F = (−1)2(L0−∆).

Any state ξ∆ ∈ Vfc,∆ as an eigenstate of L0 has definite parity: (−1)2f . Thus the NS module
has a natural Z2 grading:

Vc,∆ = V+
c,∆ ⊕ V

−
c,∆ , V+

c,∆ =
⊕

m∈N∪{0}

Vmc,∆ , V−c,∆ =
⊕

k∈N− 1
2

Vkc,∆ .

The scalar product is defined as a symmetric bilinear form 〈. , .〉c,∆ on NS module V∆,c

such that
〈ν∆ , ν∆〉 = 1, L†n = L−n, S†k = S−k.

The supersymmetric equivalent of Gram matrix is the matrix calculated in basis (2.12):[
B n
c,∆

]
KM,LN

= 〈ν∆,KM , ν∆,LN 〉c,∆.

The Kac determinant has the form [32]:

detB f
c,∆ = C

∏
16rs62f

(∆−∆rs)PNS(f− rs
2

) (2.13)

where C depends only on the level f, the sum r + s must be even and

∆rs(c) = −rs− 1
4

+
r2 − 1

8
β2 +

s2 − 1
8

1
β2

, (2.14)

β =
1

2
√

2

(√
1− ĉ+

√
9− ĉ

)
, ĉ =

2
3
c.

As a function of central charge c the Kac determinant has zero at

c = crs(∆) ≡ 3
2
− 3

(
βrs(∆)− 1

βrs(∆)

)2

, (2.15)
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where 1 < rs ≤ 2n, 1 < r, r + s ∈ 2N, and

β2
rs(∆) =

1
r2 − 1

(
4∆ + rs− 1 +

√
16∆2 + 8(rs− 1)∆ + (r − s)2

)
.

The multiplicity of each zero is given by PNS(f) = dimVfc,∆. It can be read from the formula:

∞∑
f=0

PNS(f)qf =
∞∏
n=1

1 + qn−
1
2

1− qn
.

The Gram matrix B f
c,∆ is nonsingular if and only if the supermodule Vc,∆ does not contain

singular vectors of degree 1
2 , 1, . . . , f . Let us remind that singular vector is a descendant state

which is at the same time the highest weight state. The singular vectors appear in degenerate
NS modules Vc,∆rs at the level rs

2 : L0χrs = (∆rs + rs
2 )χrs.

All the main properties of B f
c,∆ matrix and Kac determinant are similar to the non-

supersymmetric case. In particular, the inverse Gram matrix as a function of weight ∆ (or
central charge c) has simple poles at degenerate weights ∆rs (or crs, respectively).

2.1.4 The space of states

We will assume that there exist a unique NS vacuum state |0〉 i.e. the highest weight state in-
variant with respect to the global superconformal transformations generated by L±1, L0, S± 1

2

and their right counterparts.
Consider the state created by the superprimary field acting on the vacuum:

lim
z,z̄→0

φ∆,∆̄(z, z̄) |0〉 =
∣∣∆, ∆̄〉 .

One can show, by similar reasoning as in the bosonic case (1.14), that
∣∣∆, ∆̄〉 can be nor-

malized to one. From the definition of superprimary field (2.6) it is clear that this state is a
highest weight state with respect to the left and to the right NS algebras, so that∣∣∆, ∆̄〉 = |ν∆ ⊗ ν̄∆̄〉 .

The states created by the action of the NS generators on
∣∣∆, ∆̄〉 form the tensor product of

NS supermodules Vc,∆ and V̄∆̄,c. We assume the following:
The space of states in the NS sector of superconformal field theory is a sum of the tensor
products of the left and the right NS supermodules over the spectrum of NS superprimary
fields:

HNS =
⊕

(∆,∆̄)

V∆,c ⊗ V̄∆̄,c.

2.1.5 Field operators

In the SCFT case the assumption concerning the CFT states-fields correspondence is gener-
alized in the following way:
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In the NS sector of SCFT there is one to one correspondence between the states from the
space of states HNS and the NS field operators from the space of local operators.

Each superprimary field corresponds to a highest weight state with respect to left and
right NS algebra:

lim
z,z̄→0

φ∆,∆̄(z, z̄) |0〉 = |ν∆ ⊗ ν̄∆̄〉

The action of the NS generators on the states ξ∆ ⊗ ξ̄∆̄ ∈ V∆,c ⊗ V̄∆̄,c extends by the corre-
spondence to the action on the fields. The descendant fields are defined by the relations:

L−mϕ∆,∆̄(ξ, ξ̄|z, z̄) ≡ ϕ∆,∆̄(L−mξ, ξ̄|z, z̄) =
∮

dw

2πi
(w − z)1−mT (w)ϕ∆,∆̄(ξ, ξ̄|z, z̄), m ∈ N,

(2.16)
S−kϕ∆,∆̄(ξ, ξ̄|z, z̄) ≡ ϕ∆,∆̄(S−kξ, ξ̄|z, z̄) =

∮
dw

2πi
(w − z) 1

2−kS(w)ϕ∆,∆̄(ξ, ξ̄|z, z̄), k ∈ N− 1
2 .

so that

lim
z,z̄→0

ϕ∆,∆̄(ξ, ξ̄|z, z̄) |0〉 =
∣∣ξ∆ ⊗ ξ̄∆̄

〉
.

The parity of a field ϕ∆,∆̄(ξ, ξ̄|z, z̄) is given by the product of chiral parities of the corre-

sponding states ξ ∈ Vfc,∆, ξ̄ ∈ V̄
f̄
c,∆̄

: (−1)2f+2f̄ .
The superprimary field together with the descendant fields constitute a superconformal

family. Any NS field belongs to some superconformal family with conformal weights from the
spectrum of superprimary fields. In particular, the fields T (z), T (z̄), S(z), S̄(z̄) belong to the
superconformal family with identity operator as a superprimary field.

The three types of primary fields introduced before (2.7) are the ”lowest” descendants of
the superprimary field. They correspond to the highest weight states with respect to the left
and right Virasoro algebras (2.11):

ψ∆,∆̄(z, z̄) = ϕ∆,∆̄(∗ν, ν̄|z, z̄),

ψ̄∆,∆̄(z, z̄) = ϕ∆,∆̄(ν, ∗ν̄|z, z̄), (2.17)

φ̃∆,∆̄(z, z̄) = ϕ∆,∆̄(∗ν, ∗ν̄|z, z̄).

2.1.6 Ward identities for correlation functions

First, let us impose the positive parity condition for correlation functions in the following
form:

The correlation function can be non zero only if the total parity of all fields in the correlator
is positive.

Consider now the n-point correlator of descendant fields defined by integrals of the form
(2.16). Using the contour deformation method described in the first chapter, one can derive
the Ward identities for correlation functions. The superconformal Ward identities allow to
write any correlator of descendants in terms of functions of superprimary fields and primary
fields (2.7).



2.1 Definitions 43

In the case of a 3-point function of descendant fields the Ward identities containing
Virasoro generators Lm have the same form as in the bosonic case (1.20). The relations
containing generators Sk are given by:

〈
ξ3, ξ̄3

∣∣ϕ2(S−kξ2, ξ̄2|z, z̄)
∣∣ξ1, ξ̄1

〉
=

∞∑
n=0

(
k− 3

2
+n

n

)
zn
〈
Sk+nξ3, ξ̄3

∣∣ϕ2(ξ2, ξ̄2|z, z̄)
∣∣ξ1, ξ̄1

〉
+ε (−1)k+ 1

2

∞∑
n=0

(
k− 3

2
+n

n

)
z−k+ 1

2
−n 〈ξ3, ξ̄3

∣∣ϕ2(ξ2, ξ̄2|z, z̄)
∣∣∣Sn− 1

2
ξ1, ξ̄1

〉
, k >

1
2
,

〈
ξ3, ξ̄3

∣∣ϕ2(Skξ2, ξ̄2|z, z̄)
∣∣ξ1, ξ̄1

〉
=

k+ 1
2∑

n=0

(
k+ 1

2
n

)
(−z)n

( 〈
Sn−kξ3, ξ̄3

∣∣ϕ2(ξ2, ξ̄2|z, z̄)
∣∣ξ1, ξ̄1

〉
− ε

〈
ξ3, ξ̄3

∣∣ϕ2(ξ2, ξ̄2|z, z̄)
∣∣Sk−nξ1, ξ̄1

〉 )
, k ≥ 1

2
,〈

S−kξ3, ξ̄3

∣∣ϕ2(ξ2, ξ̄2|z, z̄)
∣∣ξ1, ξ̄1

〉
= ε 〈 ξ3, ξ̄3 |ϕ∆2,∆̄2

(ξ2, ξ̄2|z, z̄)|Skξ1, ξ̄1 〉 (2.18)

+
l(k− 1

2
)∑

m=−1

(
k+ 1

2
m+1

)
zk−

1
2
−m〈 ξ3, ξ̄3 |ϕ∆2,∆̄2

(Sm+ 1
2
ξ2, ξ̄2|z, z̄)| ξ1, ξ̄1 〉.

Here ε denotes parity of the field ϕ2(ξ2, ξ̄2|z, z̄), l(n) = n for n + 1 > 0, and l(n) = ∞ for
n+ 1 < 0. Analogous identities hold for the antiholomorphic current S̄(z̄).

Let us notice that above relations, in contrast to the Ward identities in non supersym-
metric CFT, do not allow to reduce a 3-point correlation function to one structure constant.
There are two independent structure constants, appearing in two different cases. The first
case occurs when the total number of operators Sk acting on the fields is even. Then the
correlator is proportional to structure constant C321:

C321 = 〈0|φ3(∞,∞)φ2(1, 1)φ1(0, 0) |0〉 =
〈
ν∆3 ⊗ ν̄∆̄3

∣∣φ2(1, 1)
∣∣ν∆1 ⊗ ν̄∆̄1

〉
. (2.19)

Otherwise, if the total number of operators Sk is odd, the function will reduce to a correlator
with one operator S− 1

2
acting on one of the fields (see the last identity in (2.18)). In order to

ensure positive parity of the initial correlator, the number of operators S̄k has to be odd as
well. Thus in this case the initial function will be proportional to the structure C̃321 defined
in terms of the primary field φ̃(z, z̄) = ϕ(S− 1

2
ν, S̄− 1

2
ν̄|z, z̄):

C̃321 = 〈0|φ3(∞,∞)φ̃2(1, 1)φ1(0, 0) |0〉 =
〈
ν∆3 ⊗ ν̄∆̄3

∣∣ φ̃2(1, 1)
∣∣ν∆1 ⊗ ν̄∆̄1

〉
. (2.20)

The fact that in SCFT there exist two independent structure constants can be seen also from
the local Ward identities (2.8), (2.9). Take one of the primary fields. The action of S(z)
on this field is given in terms of a different primary field. The double action of S(z) on the
primary field can be expressed in terms of the same primary field.

In the case of an arbitrary 4-point function, the Ward identities allow to write the corre-
lator in terms of eight independent correlators of primary fields:〈

ν∆4 ⊗ ν̄∆̄4

∣∣φ3(z, z̄)φ2(1, 1)
∣∣ν∆1 ⊗ ν̄∆̄1

〉
,

〈
ν∆4 ⊗ ν̄∆̄4

∣∣ψ3(z, z̄)ψ2(1, 1)
∣∣ν∆1 ⊗ ν̄∆̄1

〉
,
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〈
ν∆4 ⊗ ν̄∆̄4

∣∣ φ̃3(z, z̄)φ2(1, 1)
∣∣ν∆1 ⊗ ν̄∆̄1

〉
,

〈
ν∆4 ⊗ ν̄∆̄4

∣∣ ψ̄3(z, z̄)ψ2(1, 1)
∣∣ν∆1 ⊗ ν̄∆̄1

〉
, (2.21)〈

ν∆4 ⊗ ν̄∆̄4

∣∣φ3(z, z̄)φ̃2(1, 1)
∣∣ν∆1 ⊗ ν̄∆̄1

〉
,

〈
ν∆4 ⊗ ν̄∆̄4

∣∣ψ3(z, z̄)ψ̄2(1, 1)
∣∣ν∆1 ⊗ ν̄∆̄1

〉
,〈

ν∆4 ⊗ ν̄∆̄4

∣∣ φ̃3(z, z̄)φ̃2(1, 1)
∣∣ν∆1 ⊗ ν̄∆̄1

〉
,

〈
ν∆4 ⊗ ν̄∆̄4

∣∣ ψ̄3(z, z̄)ψ̄2(1, 1)
∣∣ν∆1 ⊗ ν̄∆̄1

〉
.

The global superconformal transformations (generated by L0, S± 1
2
, L±1) allow to choose

two fields as superprimary ones and to fix the locations of the fields in the standard way
(0, 0), (1, 1), (∞,∞) with (z, z̄) given by (1.19).

2.2 The 3-point block

2.2.1 Definition of the 3-point block

Let us define on NS modules a chiral trilinear map:

%(ξ3, ξ2, ξ1|z) : V∆3 × V∆2 × V∆1 7→ C .

In order to ensure that an arbitrary 3-point function could be written in terms of it:

〈 ξ3, ξ̄3 |ϕ∆2,∆̄2
(ξ2, ξ̄2|z, z̄)| ξ1, ξ̄1 〉 = %(ξ3, ξ2, ξ1|z)%(ξ̄3, ξ̄2, ξ̄1|z̄), (2.22)

we impose the the following conditions:

%(ξ3, Skξ2, ξ1|z) =
k+ 1

2∑
m=0

(
k+ 1

2
m

)
(−z)m (%(Sm−kξ3, ξ2, ξ1|z) (2.23)

− (−1)2(N(ξ1)+N(ξ3)) %(ξ3, ξ2, Sk−mξ1|z)) , k > − 1
2
,

%(ξ3, S−kξ2, ξ1|z) =
∞∑
m=0

(
k− 3

2
+m

m

)
zm%(Sk+mξ3, ξ2, ξ1|z) (2.24)

− (−1)2(N(ξ1)+N(ξ3))+k+ 1
2

∞∑
m=0

(
k− 3

2
+m

m

)
z−k−m+ 1

2 %(ξ3, ξ2, Sm− 1
2
ξ1|z), k > 1

2
.

%(S−kξ3, ξ2, ξ1|z) = (−1)2(N(ξ1)+N(ξ3))+1%(ξ3, ξ2, Skξ1|z) (2.25)

+
l(k− 1

2
)∑

m=−1

(
k+ 1

2
m+1

)
zk−

1
2
−m%(ξ3, Sm+ 1

2
ξ2, ξ1|z)

and corresponding relations with Virasoro generators of the form (1.22)-(1.25), which we will
repeat for completeness:

%(ξ3, L−1ξ2, ξ1|z) = ∂z%(ξ3, ξ2, ξ1|z), (2.26)

%(ξ3, Lnξ2, ξ1|z) =
n+1∑
m=0

(
n+1
m

)
(−z)m

(
%(Lm−nξ3, ξ2, ξ1|z) (2.27)

− %(ξ3, ξ2, Ln−mξ1|z)
)
, n > −1,
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%(ξ3, L−nξ2, ξ1|z) =
∞∑
m=0

(
n−2+m
n−2

)
zm%(Ln+mξ3, ξ2, ξ1|z) (2.28)

+ (−1)n
∞∑
m=0

(
n−2+m
n−2

)
z−n+1−m%(ξ3, ξ2, Lm−1ξ1|z), n > 1,

%(L−nξ3, ξ2, ξ1|z) = %(ξ3, ξ2, Lnξ1|z) (2.29)

+
l(n)∑
m=−1

(
n+1

m+1

)
zn−m%(ξ3, Lmξ2, ξ1|z).

In the formulae (2.23)-(2.25) the symbol N(ξi) denotes a level of excitation of the state ξi.
The 3-form %(ξ3, ξ2, ξ1|z) is determined by the conditions above up to two independent

constants:

%(ν3, ν2, ν1|1), (2.30)

%(ν3, ∗ν2, ν1|1) = %(∗ν3, ν2, ν1|1) = %(ν3, ν2, ∗ν1|1).

More precisely, if the total parity of all the states ξi is positive, then the 3-form is proportional
to %(ν3, ν2, ν1|1). Otherwise, the 3-form is proportional to the second constant %(ν3, ∗ν2, ν1|1).

The 3-point block ρ(ξ3, ξ2, ξ1|z) is defined as a normalized 3-form, i.e. a function propor-
tional to one of the constants:

%(ξ3, ξ2, ξ1|z) = ρ(ξ3, ξ2, ξ1|z)×

 %(ν3, ν2, ν1|1)

%(ν3, ∗ν2, ν1|1)
(2.31)

The upper line corresponds to the case of positive total parity of all states ξi, while the lower
line corresponds to the case of negative total parity. The normalization condition for the
block gives:

ρ(ν3, ν2, ν1|1) = ρ(ν3, ∗ν2, ν1|1) = 1.

The z dependence of the block is determined by the Ward identities containing Virasoro
generators and has the same form as the 3-point block in CFT (1.26):

ρ(ξ3, ξ2, ξ1|z) = z∆3(ξ3)−∆2(ξ2)−∆1(ξ1) ρ(ξ3, ξ2, ξ1),

where

ρ(ξ3, ξ2, ξ1) ≡ ρ(ξ3, ξ2, ξ1|1).

Any 3-point correlation function can be written in terms of the 3-point blocks and structure
constants. Inserting equation (2.31) into (2.22) one gets the following formula:

〈 ξ3, ξ̄3 |ϕ∆2,∆̄2
(ξ2, ξ̄2|z, z̄)| ξ1, ξ̄1 〉 = z∆3(ξ3)−∆2(ξ2)−∆1(ξ1)z̄∆̄3(ξ̄3)−∆̄2(ξ̄2)−∆̄1(ξ̄1)

× ρ(ξ3, ξ2, ξ1|1)ρ(ξ̄3, ξ̄2, ξ̄1|1) ×

 C321

C̃321

(2.32)
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The structure constants are specific combinations of the constants (2.30):

C321 =
〈
ν∆3 ⊗ ν̄∆̄3

∣∣φ2(1, 1)
∣∣ν∆1 ⊗ ν̄∆̄1

〉
= %(ν3, ν2, ν1|1) %(ν̄3, ν̄2, ν̄1|1) , (2.33)

C̃321 =
〈
ν∆3 ⊗ ν̄∆̄3

∣∣ φ̃2(1, 1)
∣∣ν∆1 ⊗ ν̄∆̄1

〉
= %(ν3, ∗ν2, ν1|1) %(ν̄3, ∗ν̄2, ν̄1|1) .

Other combinations of constants (2.30) do not occur because of the positive parity condition
imposed on the correlation functions.

2.2.2 Chiral vertex operator

Let us define a generalized chiral vertex operator. For a given state ξ2 it is a linear map

V (ξ2|z) : V∆1 7→ V∆3 ,

such that its matrix element between arbitrary states ξ3 ∈ V∆3 , ξ1 ∈ V∆1 is given by the
3-point block:

〈 ξ3 |V (ξ2|z)| ξ1 〉 = ρ(ξ3, ξ2, ξ1|z).

The chiral vertex does not have definite parity and can be decomposed into even (parity
preserving) and odd (parity reversing) part:

V (ξ2|z) = V even(ξ2|z) + V odd(ξ2|z).

We would like to find the relations between primary fields (2.17) and chiral vertex oper-
ators. The Ward identities for 3-point function imply decomposition of the correlator onto
3-point blocks and structure constants (2.32). When the second field is a primary one, the
decomposition takes the form:

〈 ξ3, ξ̄3 |ϕ∆2,∆̄2
( ν2, ν̄2|z, z̄)| ξ1, ξ̄1 〉 = ρ(ξ3, ν2, ξ1|z)ρ(ξ̄3, ν̄2, ξ̄1|z̄) ×

 C321

C̃321

,

where the upper (lower) line corresponds to the case of positive (negative) total parity of
all states. The notation νi stands for νi or ∗νi. Knowing that 3-point blocks are matrix
elements of chiral vertex operator it is straightforward to find the relations:

φ2(z, z̄) =
⊕

∆3,∆1

(
C321V

even(ν2|z)⊗ V even(ν̄2|z̄)− C̃321V
odd(ν2|z)⊗ V odd(ν̄2|z̄)

)
, (2.34)

ψ2(z, z̄) =
⊕

∆3,∆1

(
C321V

odd(∗ν2|z)⊗ V even(ν̄2|z̄)− C̃321V
even(∗ν2|z)⊗ V odd(ν̄2|z̄)

)
,

ψ̄2(z, z̄) =
⊕

∆3,∆1

(
C321V

even(ν2|z)⊗ V odd(∗ν̄2|z̄) + C̃321V
odd(ν2|z)⊗ V even(∗ν̄2|z̄)

)
,

φ̃2(z, z̄) =
⊕

∆3,∆1

(
C321V

odd(∗ν2|z)⊗ V odd(∗ν̄2|z̄) + C̃321V
even(∗ν2|z)⊗ V even(∗ν̄2|z̄)

)
.
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The sign in front of each term is determined by the law of composition of tensor products of
homogeneous elements:

(A⊗ Ā)(B ⊗ B̄) = (−1)deg(Ā)·deg(B)AB ⊗ ĀB̄ .

The commutation relations of V (ν|z), V (∗ν|z) with superconformal generators can be
read off from the Ward identities for chiral 3-form (2.25), (2.26) and (2.29):

[Lm, V (ν2|z)] = zm (z∂z + (m+ 1)∆2)V (ν2|z),

[Lm, V (∗ν2|z)] = zm
(
z∂z + (m+ 1)

(
∆2 + 1

2

))
V (∗ν2|z), (2.35)

[Sk, V even(ν2|z)] = zk+ 1
2 V odd(∗ν2|z),

{Sk, V odd(ν2|z)} = zk+ 1
2 V even(∗ν2|z), (2.36)

[Sk, V even(∗ν2|z)] = zk−
1
2 (z∂z + ∆2(2k + 1)) V odd(ν2|z),

{Sk, V odd(∗ν2|z)} = zk−
1
2 (z∂z + ∆2(2k + 1)) V even(ν2|z). (2.37)

2.2.3 Properties of the 3-point block

We are interested in the properties of the 3-point block for which one of the external states is
a descendant state. These objects will appear in the decomposition of the 4-point correlation
functions (2.21) into chiral blocks and structure constants.

The matrix elements of a chiral vertex operators between one descendant and one highest
weight state can be calculated with the help of the commutators (2.35) - (2.37):

ρ(ν3,KM , ν2, ν1|z) = z∆3+|K|+|M |−∆2−∆1


ηo

∆3+|M |

[
∆2
∆1

]
K
γ∆3

[
∆2
∆1

]
M
,

ηe
∆3+|M |

[
∆2
∆1

]
K
γ∆3

[
∆2+ 1

2
∆1

]
M
,

(2.38)

ρ(ν3,KM , ∗ν2, ν1|z) = z∆3+|K|+|M |−∆2−∆1− 1
2


ηe

∆3+|M |

[
∆2
∆1

]
K
γ∆3

[
∆2+ 1

2
∆1

]
M
,

ηo
∆3+|M |

[
∆2
∆1

]
K
γ∆3

[
∆2
∆1

]
M
,

(2.39)

with the upper lines corresponding to |K| ∈ N, the lower lines to |K| ∈ N− 1
2 and

γ∆

[
∆2
∆1

]
M

def= (∆−∆1 +m1∆2) (∆−∆1 +m2∆2 +m1) · · ·

(
∆−∆1 +mj∆2 +

j−1∑
l=1

ml

)
,

ηo
∆

[
∆2
∆1

]
K

def= (∆−∆1 + 2k1∆2) (∆−∆1 + 2k3∆2 + k1 + k2) . . .

(
∆−∆1 + 2kp∆2 +

p−1∑
l=1

kl

)
,

ηe
∆

[
∆2
∆1

]
K

def= (∆−∆1 + 2k2∆2 + k1)

(
∆−∆1 + 2k4∆2 +

3∑
l=1

kl

)
..

∆−∆1 + 2kp′∆2 +
p′−1∑
l=1

kl

.
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Denote the number of operators Sk acting on the state ν3 by i. Then p is the largest odd
integer not grater than i, and p′ is the largest even integer not grater than i. Notice that
the function γ∆

[
∆2
∆1

]
M

obtained from the action of Virasoro generators is the same as in the
bosonic case (1.30). Thus as a function of conformal weights ∆,∆i the 3-point block is a
polynomial of maximal degree j + p or j + p′, depending on the case (2.38),(2.39).

Applying the commutation rules (2.35) - (2.37) to the matrix elements of chiral vertex
operators ρ(ν3, ν2, ν1,KM ) one can derive the relations:

ρ(ν3, ν2, ν1,KM ) = ρ(ν1,KM , ν2, ν3),

ρ(ν3, ∗ν2, ν1,KM ) = ρ(ν1,KM , ∗ν2, ν3),
(2.40)

for |K| ∈ N ∪ {0}, and

ρ(ν3, ν2, ν1,KM ) = ρ(ν1,KM , ν2, ν3),

ρ(ν3, ∗ν2, ν1,KM ) = − ρ(ν1,KM , ∗ν2, ν3),
(2.41)

for |K| ∈ N− 1
2 .

Another important feature of the 3-point block is the factorization property. It follows
from the commutation relations (2.35) - (2.37) that for an arbitrary state ξ3 ∈ Vf∆3

one has:

%(S−KL−M ξ3, ν2, ν1|z) = z∆3+f+|K|+|M |−∆2−∆1 ×

ρ(S−KL−Mν∆3+f , ν2, ν1) ×

 %(ξ3, ν2, ν1|1),

%(ξ3, ∗ν2, ν1|1),

%(S−KL−M ξ3, ∗ν2, ν1|z) = z∆3+f+|K|+|M |−∆2−∆1− 1
2 × (2.42)

ρ(S−KL−Mν∆3+f , ∗ν2, ν1) ×

 %(ξ3, ∗ν2, ν1|1),

%(ξ3, ν2, ν1|1),

where upper lines correspond to |K| ∈ N ∪ {0}, and the lower lines to |K| ∈ N − 1
2 . The

explicit dependence of constants %(ξ3, ν2, ν1|1) will be helpful in analyzing the fusion rules.

2.2.4 Fusion rules and fusion polynomials

Fusion rules specify when the 3-point structure constants with one degenerate field φrs can be
non-zero. Each time the values of conformal weights ∆1,∆2 fulfill a fusion rule, the 3-point
block ρ(χrs, ν2, ν1) vanishes. This mechanism ensures that 3-point correlation function with
zero field is always zero: for a given set of weights either the structure constant or the 3-point
block has to vanish.

In the case of superconformal theory there are two kinds of structure constants C(rs)21, C̃(rs)21.
To write down fusion rules for them, one can use the Feigin-Fuchs construction [5]. In this
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special formulation of a free superscalar theory the screening charges are given by:

Qb =
∮
dz ψ(z)ebφ(z), Q 1

b
=
∮
dz ψ(z)e

1
b
φ(z),

where ψ(z) is the free fermionic current. The screening charges in the right sector are con-
structed in the same way in terms of antiholomorphic ferminionic current ψ̄(z̄). The screening
charges, once inserted into a correlation function, modify its total charge and parity, leaving
other properties unchanged. Because positive total parity of the structure constants has to
be preserved, only even number of screening charges can be added into the correlators. Thus
there are two possible choices: one can add either even number of left screening charges or
odd number of left and odd number of right screening charges.

In free superscalar theory there is additional condition concerning parity. Not only total
parity of the correlation function should be positive, the left and the right chiral parities
have to be positive as well. Thus the structure constant C(rs)21 composed from superprimary
fields, which are even in both holomorphic and antiholomorphic sector, is represented by
correlator with even number of left screening charges:

C(αrs,δ),(α2,0),(α1,0) =
〈
φrsφ2φ1Q

k
b Q

l
1
b

〉
, k + l ∈ 2N , δ = − 1

2
√

2
(1
b + b) ;

It does not vanish if and only if charge conservation condition is satisfied. For even number
of screening charges this condition (with b = iβ) is equivalent to the even fusion rule:

α2 ± α1 = (1− r + 2k)β − (1− s+ 2l)
1
β
, k + l ∈ 2N ∪ {0}, (2.43)

which has to be fulfilled by weights ∆i = −1
8

(
β − 1

β

)2
+ α2

i
8 . The parameters k, l are integers

in the range 0 ≤ k ≤ r − 1, 0 ≤ l ≤ s− 1.
The constant C̃(rs)21 including one field φ̃, which has negative both left and right chiral

parities, is represented by the correlator with an odd number of insertions of left screening
charges:

C̃(αrs,δ),(α2,0),(α1,0) =
〈
φrsφ̃2φ1Q

k
b Q

l
1
b

Q̄b

〉
, k + l ∈ 2N + 1 , δ = 1

2
√

2
(1
b − b).

Charge conservation implies that this structure constant does not vanish if and only if the
odd fusion rule:

α2 ± α1 = (1− r + 2k)β − (1− s+ 2l)
1
β
, k + l ∈ 2N− 1, (2.44)

is satisfied.
Discussed conditions for structure constants together with the definition of the 3-form as

chiral part of correlation function:

C(rs)21 = %(νrs, ν2, ν1|1) %(ν̄3, ν̄2, ν̄1|1) ,

C̃(rs)21 = %(νrs, ∗ν2, ν1|1) %(ν̄3, ∗ν̄2, ν̄1|1) .

lead to the following conclusions:
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1. %(νrs, ν2, ν1|1) 6= 0 if and only if even fusion rule is satisfied,

2. %(νrs, ∗ν2, ν1|1) 6= 0 if and only if odd fusion rule is satisfied.

Consider now the 3-point function with a zero field corresponding to the null vector χrs:

〈χrs, ξ̄3 |ϕ∆2,∆̄2
( ν2, ν̄2|z, z̄)| ν1, ν̄1 〉 = %(χrs, ν2, ν1|1)%(ξ̄3, ν̄2, ν̄1|1).

Vanishing of this function implies that the 3-form depending of χrs has to be zero:

%(χrs, ν2, ν1|1) = 0,

From factorization property (2.42), which in this case takes the form:

%(χrs, ν2, ν1|1) = ρ(χrs, ν2, ν1)×

 %(νrs, ν2, ν1|1), for rs
2 ∈ N,

%(νrs, ∗ν2, ν1|1), for rs
2 ∈ N− 1

2 ,

%(χrs, ∗ν2, ν1|1) = ρ(χrs, ∗ν2, ν1)×

 %(νrs, ∗ν2, ν1|1), for rs
2 ∈ N,

%(νrs, ν2, ν1|1), for rs
2 ∈ N− 1

2 ,

one can see that the 3-point block has to vanish

ρ(χrs, ν2, ν1) = 0

each time the appropriate fusion rule is fulfilled and the corresponding constant is non-zero.

Let us now define the fusion polynomials. The first one is a function which vanishes if
one of even fusion rules is satisfied:

P rsc

[
∆2
∆1

]
=

r−1∏
p=1−r

s−1∏
q=1−s

(
α2 − α1 + pβ − qβ−1

2
√

2

)(
α2 + α1 + pβ − qβ−1

2
√

2

)
(2.45)

where p, q are related to previously used variables: p = r− 1− 2k, q = s− 1− 2l; k+ l ∈ 2N
and thus p+ q − (r + s) ∈ 4Z + 2. The second fusion polynomial has zero each time the odd
fusion rule holds:

P rsc

[
∗∆2
∆1

]
=

r−1∏
p=1−r

s−1∏
q=1−s

(
α2 − α1 + pβ − qβ−1

2
√

2

)(
α2 + α1 + pβ − qβ−1

2
√

2

)
(2.46)

with p+ q − (r + s) ∈ 4Z (corresponding to k + l ∈ 2N− 1).

One can check that P rsc
[

∆2
∆1

]
is a polynomial of degree

[
rs+1

2

]
in the variable ∆2 − ∆1

and of degree
[
rs+1

4

]
in ∆2 + ∆1. P rsc

[
∗∆2
∆1

]
is a polynomial of degree

[
rs
2

]
in the variable

∆2−∆1 and of degree
[
rs
4

]
in ∆2 +∆1. The coefficients of highest powers of ∆2−∆1 in both

polynomials are equal 1. All these properties uniquely determine the polynomials P rsc . They
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are also common for the 3-point blocks (2.38), (2.39) with appropriate choice of arguments
ρ (χrs, ν2, ν1). Thus we have the following equalities:

ρ (χrs, ν2, ν1) =


P rsc

[
∆2
∆1

]
for rs

2 ∈ N,

P rsc

[
∗∆2
∆1

]
for rs

2 ∈ N− 1
2 ,

(2.47)

ρ (χrs, ∗ν2, ν1) =


P rsc

[
∗∆2
∆1

]
for rs

2 ∈ N,

P rsc

[
∆2
∆1

]
for rs

2 ∈ N− 1
2 ,

which will be helpful in deriving recursive methods of determining of 4-point superconformal
blocks.

2.3 4-point NS superconformal blocks

2.3.1 Definition

Let us consider a correlation function of four superprimary fields:

〈0|φ4(∞,∞)φ3(1, 1)φ2(z, z̄)φ1(0, 0) |0〉 = 〈ν4 ⊗ ν̄4|φ3(1, 1) 1φ2(z, z̄) |ν1 ⊗ ν̄1〉

=
∑
p

∑
f=|K|+|M |=|L|+|N |

〈ν4 ⊗ ν̄4|φ3(1, 1)|νp,KM ⊗ ν̄p,K̄M̄ 〉
[
Bf
c,∆p

]KM,LN

×
[
B̄f
c,∆̄p

]K̄M̄,L̄N̄
〈νp,LN ⊗ ν̄p,L̄N̄ |φ2(z, z̄) |ν1 ⊗ ν̄1〉

Using relation (2.32) following from Ward identities, we can write the 3-point functions in
terms of 3-point blocks with one descendant state from level f . Notice that the sum over
f decompose into two parts: a sum over even states (f ∈ N) and a sum over odd states
(f ∈ N− 1

2 ).

〈ν4 ⊗ ν̄4|φ3(1, 1)φ2(z, z̄) |ν1 ⊗ ν̄1〉

=
∑
p

∑
f∈N

C43p Cp21 ρ(ν4, ν3, νp,KM )
[
Bf
c,∆p

]KM,LN
ρ(νp,LN , ν2, ν1|z)

× ρ(ν̄4, ν̄3, ν̄p,K̄M̄ )
[
B̄f
c,∆̄p

]K̄M̄,L̄N̄
ρ(ν̄p,L̄N̄ , ν̄2, ν̄1|z̄)

+
∑
p

∑
f∈N− 1

2

C̃43p C̃p21 ρ(ν4, ν3, νp,KM )
[
Bf
c,∆p

]KM,LN
ρ(νp,LN , ν2, ν1|z)

× ρ(ν̄4, ν̄3, ν̄p,K̄M̄ )
[
B̄f
c,∆̄p

]K̄M̄,L̄N̄
ρ(ν̄p,L̄N̄ , ν̄2, ν̄1|z̄)

=
∑
p

C43p Cp21

∣∣∣F1
c,∆p

[
∆3 ∆2
∆4 ∆1

]
(z)
∣∣∣2 − C̃43p C̃p21

∣∣∣∣F 1
2
c,∆p

[
∆3 ∆2
∆4 ∆1

]
(z)
∣∣∣∣2 .
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The example above illustrates how the 4-point superconformal blocks should be defined.
There are four types of NS superconformal blocks corresponding to correlation functions of
different primary fields (2.17), (2.21). For each type there is one even block:

F1
∆

[
∆3 ∆2

∆4 ∆1

]
(z) = z∆− ∆2−∆1

(
1 +

∑
m∈N

zmFmc,∆

[
∆3 ∆2

∆4 ∆1

])
,

and one odd block:

F
1
2
∆

[
∆3 ∆2

∆4 ∆1

]
(z) = z∆− ∆2−∆1

∑
k∈N− 1

2

zkF kc,∆

[
∆3 ∆2

∆4 ∆1

]
,

where ∆i stands for ∆i or ∗∆i, and z∆−∗∆2−∆1 = z∆−∆2−∆1− 1
2 . The coefficients are defined

by 3-point blocks and inverse Gram matrix:

F fc,∆

[
∆3 ∆2

∆4 ∆1

]
=

∑
|K|+|M |=|L|+|N |=f

ρ(ν4, ν3, ν∆,KM )
[
Bf
c,∆

]KM,LN
ρ(ν∆,LN , ν2, ν1), (2.48)

For example:

F1
∆

[
∆3 ∗∆2
∆4 ∆1

]
(z) = z∆−∆2−∆1− 1

2

(
1 +

∑
m∈N

zmFmc,∆

[
∆3 ∗∆2
∆4 ∆1

])
,

Fmc,∆

[
∆3 ∗∆2
∆4 ∆1

]
=

∑
ρ∆4 ∆3 ∆
∞ 1 0 (ν4, ν3, ν∆,KM )

[
B m
c,∆

]KM,LN
ρ∆ ∆2 ∆1
∞ 1 0 (ν∆,LN , ∗ν2, ν1).

The formulae (2.40), (2.41) imply simple relations:

F1
∆

[
∆3 ∗∆2
∆4 ∆1

]
(z) = z−∆2−∆1− 1

2
+∆4+∆3 F1

∆

[
∗∆2 ∆3
∆1 ∆4

]
(z),

F
1
2
∆

[
∆3 ∗∆2
∆4 ∆1

]
(z) = −z−∆2−∆1− 1

2
+∆4+∆3 F

1
2
∆

[
∗∆2 ∆3
∆1 ∆4

]
(z),

reducing the number of blocks to 6 independent functions.
Since the 3-point blocks are matrix elements of the chiral vertex operators, one can say

that the even (odd) blocks are defined in terms of matrix elements of even (odd) parts of
the vertex operators V ( ν3), V ( ν2). Using the formula expressing primary fields in terms
of vertex operators (2.34) one can easily write the decomposition of any 4-point function of
primaries (for simplicity we write the expressions in the diagonal case ∆i = ∆̄i):

〈ν4 ⊗ ν̄4|φ3(1, 1)φ̃2(z, z̄) |ν1 ⊗ ν̄1〉 =∑
p

(
C43pC̃p21

∣∣∣F1
∆p

[
∆3 ∗∆2
∆4 ∆1

]
(z)
∣∣∣2 + C̃43pCp21

∣∣∣∣F 1
2
∆p

[
∆3 ∗∆2
∆4 ∆1

]
(z)
∣∣∣∣2 ),

〈ν4 ⊗ ν̄4| φ̃3(1, 1)φ2(z, z̄) |ν1 ⊗ ν̄1〉 =∑
p

(
C̃43pCp21

∣∣∣F1
∆p

[
∗∆3 ∆2
∆4 ∆1

]
(z)
∣∣∣2 + C43pC̃p21

∣∣∣∣F 1
2
∆p

[
∗∆3 ∆2
∆4 ∆1

]
(z)
∣∣∣∣2 ),
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〈ν4 ⊗ ν̄4| φ̃3(1, 1)φ̃2(z, z̄) |ν1 ⊗ ν̄1〉 =∑
p

(
C̃43pC̃p21

∣∣∣F1
∆p

[
∗∆3 ∗∆2
∆4 ∆1

]
(z)
∣∣∣2 − C43pCp21

∣∣∣∣F 1
2
∆p

[
∗∆3 ∗∆2
∆4 ∆1

]
(z)
∣∣∣∣2 ),

〈ν4 ⊗ ν̄4|ψ3(1, 1)ψ2(z, z̄) |ν1 ⊗ ν̄1〉 =∑
p

(
C̃43pC̃p21F1

∆p

[
∗∆3 ∗∆2
∆4 ∆1

]
(z)F

1
2
∆p

[
∆3 ∆2
∆4 ∆1

]
(z̄)

+ C43pCp21F
1
2
∆p

[
∗∆3 ∗∆2
∆4 ∆1

]
(z)F1

∆p

[
∆3 ∆2
∆4 ∆1

]
(z̄)
)
,

〈ν4 ⊗ ν̄4| ψ̄3(1, 1)ψ̄2(z, z̄) |ν1 ⊗ ν̄1〉 =∑
p

(
C43pCp21F1

∆p

[
∆3 ∆2
∆4 ∆1

]
(z)F

1
2
∆p

[
∗∆3 ∗∆2
∆4 ∆1

]
(z̄)

+ C̃43pC̃p21F
1
2
∆p

[
∆3 ∆2
∆4 ∆1

]
(z)F1

∆p

[
∗∆3 ∗∆2
∆4 ∆1

]
(z̄)
)
,

〈ν4 ⊗ ν̄4|ψ3(1, 1)ψ̄2(z, z̄) |ν1 ⊗ ν̄1〉 =∑
p

(
−C̃43pCp21F1

∆p

[
∗∆3 ∆2
∆4 ∆1

]
(z)F

1
2
∆p

[
∆3 ∗∆2
∆4 ∆1

]
(z̄)

+ C43pC̃p21F
1
2
∆p

[
∗∆3 ∆2
∆4 ∆1

]
(z)F1

∆p

[
∆3 ∗∆2
∆4 ∆1

]
(z̄)
)
,

〈ν4 ⊗ ν̄4| ψ̄3(1, 1)ψ2(z, z̄) |ν1 ⊗ ν̄1〉 =∑
p

(
−C43pC̃p21F1

∆p

[
∆3 ∗∆2
∆4 ∆1

]
(z)F

1
2
∆p

[
∗∆3 ∆2
∆4 ∆1

]
(z̄)

+ C̃43pCp21F
1
2
∆p

[
∆3 ∗∆2
∆4 ∆1

]
(z)F1

∆p

[
∗∆3 ∆2
∆4 ∆1

]
(z̄)
)
.

2.3.2 Recurrence relations for the NS blocks

Practically, it is not possible to calculate the 4-point blocks’ coefficients from the definition.
But, as in the non-supersymmetric case, due to properties of the 3-point blocks and inverse
Gram matrix, one can derive the recurrence relations for the coefficients. As we demonstrated,
the 3-point blocks are polynomial functions of the weights ∆,∆i (2.38), (2.39) and the inverse
Gram matrix is a rational function of intermediate weight ∆ and central charge c. More
precisely, the inverse Gram matrix has poles of first order at degenerate weights ∆rs (2.14)
(or at degenerate crs ). Therefore the blocks’ coefficients can be expressed as a sum over
simple poles and a regular term:

F fc,∆

[
∆3 ∆2

∆4 ∆1

]
= hfc,∆

[
∆3 ∆2

∆4 ∆1

]
+

∑
1<rs≤2f

r+s∈2N

Rfc, rs
[

∆3 ∆2

∆4 ∆1

]
∆−∆rs(c)

, (2.49)
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or as a sum over the poles in c :

F fc,∆

[
∆3 ∆2

∆4 ∆1

]
= ff∆

[
∆3 ∆2

∆4 ∆1

]
+

∑
1<rs≤2f, r>1

r+s∈2N

Rf∆, rs
[

∆3 ∆2

∆4 ∆1

]
c− crs(∆)

, (2.50)

where crs(∆) is given by (2.15). The residues in both cases are related by:

Rf∆, rs
[

∆3 ∆2

∆4 ∆1

]
= −∂crs(∆)

∂∆
Rfcrs(∆), rs

[
∆3 ∆2

∆4 ∆1

]
, (2.51)

∂crs(∆)
∂∆

=
8crs(∆)− 12

(r2 − 1)β4
rs(∆)− (s2 − 1)

.

We expect that each residuum is proportional to other block’s coefficient. In order to
check our guess it is convenient to choose a specific basis in Vf∆ (for f > rs

2 ). We can do this
because the definition of 4-point block is independent of the choice of basis. Let χKMrs be the
coefficients of the null vector χrs in the basis S−KL−Mν∆rs ,

χrs =
∑
K,M

χKMrs S−KL−M ν∆rs .

We normalize χrs in such a way that for rs ∈ 2N the coefficient at (L−1)
rs
2 ν∆rs is equal 1,

and for rs ∈ 2N− 1 the coefficient at S− 1
2
(L−1)

rs−1
2 ν∆rs is equal 1. To check that these two

coefficients can not vanish one can compare powers of ∆2 −∆1 in 3-point blocks depending
on χrs and fusion polynomials (2.47).

Consider the states

S−IL−N χ
∆
rs ∈ V

f
∆ , (2.52)

where

χ∆
rs =

∑
K,M

χKMrs S−KL−M ν∆ , |I|+ |N | = f − rs
2 ,

so that χrs = lim∆→∆rs χ
∆
rs. The set of these states can be always completed to a full basis

in Vf∆. Working in such a basis and using the properties of the Gram matrix Bf
c,∆ and its

inverse one obtains

Rfc, rs
[

∆3 ∆2

∆4 ∆1

]
= lim

∆→∆rs

(∆−∆rs(c)) F
f
c,∆

[
∆3 ∆2

∆4 ∆1

]
= Ars(c)

∑
|K|+|M |=|L|+|N |=f− rs

2

ρ(ν4, ν3, S−KL−Mχrs)
[
B
f− rs

2

c,∆rs+
rs
2

]KM,LN
ρ(S−LL−Nχrs, ν2, ν1),

with

Ars(c) = lim
∆→∆rs

( 〈
χ∆
rs|χ∆

rs

〉
∆−∆rs(c)

)−1

. (2.53)
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The exact form of the coefficient above was proposed by A. Belavin and Al. Zamolodchikov
[42]:

Ars(c) =
1
2

(−1)rs−1
r∏

m=1−r

s∏
n=1−s

(
1√
2

(
pβ − q

β

))−1

, m+ n ∈ 2Z, (m,n) 6= (0, 0), (r, s).

The block’s coefficient appears in the residuum due to the factorization property of 3-point
blocks (2.42), which in that case have the form:

ρ(S−LL−Nχrs, ν2, ν1) = ρ(S−LL−Nν∆rs+
rs
2
, ν2, ν1) ×

 ρ(χrs, ν2, ν1),

ρ(χrs, ∗ν2, ν1),

ρ(S−LL−Nχrs, ∗ν2, ν1) = ρ(S−LL−Nν∆rs+
rs
2
, ∗ν2, ν1) ×

 ρ(χrs, ∗ν2, ν1),

ρ(χrs, ν2, ν1),

where upper lines correspond to f− rs
2 ∈ N∪{0}, and the lower lines to f− rs

2 ∈ N− 1
2 . Using

the reflection properties (2.40), (2.41) one can write analogical formulae for 3-point block
ρ(ν4, ν3, S−KL−Mχrs). The 3-point blocks depending of descendants of ν∆rs+

rs
2

together
with inverse Gram matrix give the block’s coefficient:∑
|K|+|M |=|L|+|N |=f− rs

2

ρ(S−KL−Mν∆rs+
rs
2
, ν2, ν1)

[
Bn−rs
c,∆rs+rs

]KM,LN
ρ(ν4, ν3, S−LL−Nν∆rs+

rs
2

)

= F
f− rs

2

c,∆rs+
rs
2

[
∆3 ∆2

∆4 ∆1

]
.

The remaining 3-point blocks ρ(χrs, ν2, ν1) (2.47) are given by the fusion polynomials P rsc
[

∆2
∆1

]
or P rsc

[
∗∆2
∆1

]
, depending on a type of block and the case of rs

2 being integer or half integer.
Thus the final result for the residue has the form:

Rmc, rs
[

∆3 ∆2

∆4 ∆1

]
= Ars(c)Srs( ∆3)P rsc

[
∆3

∆4

]
P rsc

[
∆2

∆1

]
F
m− rs

2

c,∆rs+
rs
2

[
∆3 ∆2

∆4 ∆1

]
(2.54)

for m ∈ N ∪ {0} and

Rkc, rs
[

∆3 ∆2

∆4 ∆1

]
= Ars(c)Srs( ∆3)P rsc

[
∆̃3

∆4

]
P rsc

[
∆̃2

∆1

]
F
k− rs

2

c,∆rs+
rs
2

[
∆3 ∆2

∆4 ∆1

]
(2.55)

for k ∈ N− 1
2 , where ∆̃ = ∗∆, ∗̃∆ = ∆, and due to minus sign in reflection relation (2.41):

Srs(∆) = 1 , Srs(∗∆) = (−1)rs.

The residue at crs in (2.50) is given by the formulae above and relation (2.51).
In order to complete the recursion relations for blocks’ coefficients (2.49),(2.50) we need

an exact form of the regular terms. In the case of c-dependence, the regular terms can be
calculated from the c → ∞ limit of the blocks’ coefficients. The coefficients depend on c

only through inverse Gram matrix, which elements are given by a non positive power of c.
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By means of NS algebra one can check that Gram matrix depends on central charge due to
commutators of type [Ln, L−n] for n 6= 1 and [Sk, S−k] for k 6= 1

2 . Elements of Gram matrix
which correspond to the states

|ν01I〉 = Ln−1 |ν∆〉 ∈ Vfc,∆ if f = n,

|ν11I〉 = S− 1
2
Ln−1 |ν∆〉 ∈ Vfc,∆ if f = n+

1
2

are independent of central charge. The minor for the diagonal element 〈ν01I |ν01I〉 or 〈ν11I |ν11I〉
is thus a polynomial in c of the same order as the Kac determinant. Therefore, for c → ∞,
the only non vanishing element of inverse Gram matrix is:

lim
c→∞

[
Bf
c,∆

]01I 01I
=

1
〈ν∆|Ln1Ln−1 |ν∆〉

=
1

n!(2∆)n
if f = n,

or lim
c→∞

[
Bf
c,∆

]11I 11I
=

1
〈ν∆|Ln1Ln−1 |ν∆〉

=
1

n!(2∆)n
if f = n+

1
2
,

where (a)n = Γ(a+n)
Γ(a) is the Pochhammer symbol. In the c → ∞ limit the 4-point blocks’

coefficients are given by the formulae above and the 3-point blocks calculated with help of
equations (2.38),(2.39):

ρ
(
Ln−1ν, ν2, ν1

)
= (∆ + ∆2 −∆1)n,

ρ
(
S− 1

2
Ln−1ν, ν2, ν1

)
=

(
∆ + ∆2 −∆1 +

1
2

)
n

,

ρ
(
Ln−1ν, ∗ν2, ν1

)
=

(
∆ + ∆2 −∆1 +

1
2

)
n

,

ρ
(
S− 1

2
Ln−1ν, ∗ν2, ν1

)
= −ρ

(
ν1, ∗ν2, S− 1

2
Ln−1ν

)
= (∆ + ∆2 −∆1)n+1.

Thus the terms regular in c have the following form:

fn∆
[

∆3 ∆2
∆4 ∆1

]
=

1
n!

(∆ + ∆3 −∆4)n(∆ + ∆2 −∆1)n
(2∆)n

,

f
n+ 1

2
∆

[
∆3 ∆2
∆4 ∆1

]
=

1
n!

(
∆ + ∆3 −∆4 + 1

2

)
n

(
∆ + ∆2 −∆1 + 1

2

)
n

(2∆)n+1

,

fn∆
[
∗∆3 ∗∆2
∆4 ∆1

]
=

1
n!

(
∆ + ∆3 −∆4 + 1

2

)
n

(
∆ + ∆2 −∆1 + 1

2

)
n

(2∆)n
, (2.56)

f
n+ 1

2
∆

[
∗∆3 ∗∆2
∆4 ∆1

]
= − 1

n!
(∆ + ∆3 −∆4)n+1 (∆ + ∆2 −∆1)n+1

(2∆)n+1

,

and so on.
Having calculated the regular terms we can finally write the close recursion relations for

the coefficients in the z-expansion of the NS 4-point superconformal blocks. Remembering
that the residuum Rf∆, rs at crs is given by (2.51) and (2.54), (2.55) it is convenient to
introduce simplified notation:

Ars(∆) = −∂crs(∆)
∂∆

Ars

(
crs(∆)

)
, P rs∆

[
∆a

∆b

]
= P rscrs(∆)

[
∆a

∆b

]
.
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Then, the recursion relations take the form:

Fmc,∆

[
∆3 ∆2

∆4 ∆1

]
= fm∆

[
∆3 ∆2

∆4 ∆1

]
(2.57)

+
∑

1<rs≤2m, r>1

r+s∈2N

Ars(∆)
c− crs(∆)

P rs∆

[
∆3

∆4

]
P rs∆

[
∆2

∆1

]
F
m− rs

2

crs,∆+ rs
2

[
∆3 ∆2

∆4 ∆1

]
,

where m ∈ N and

F kc,∆

[
∆3 ∆2

∆4 ∆1

]
= fk∆

[
∆3 ∆2

∆4 ∆1

]
(2.58)

+
∑

1<rs≤2k, r>1

r+s∈2N

Srs( ∆3)Ars(∆)
c− crs(∆)

P rs∆

[
∆̃3

∆4

]
P rs∆

[
∆̃2

∆1

]
F
k− rs

2

crs,∆+ rs
2

[
∆3 ∆2

∆4 ∆1

]
,

where k ∈ N − 1
2 . Let us note that for each type of the 4-point block one gets independent

recursion formulae mixing coefficients of the even and the odd blocks of the same type.

2.4 Elliptic recurrence for NS 4-point blocks

In the last subsection we have presented a derivation of closed recursion relations for the
coefficients in the z-expansion of the NS 4-point superconformal blocks. These formulae are
based on the fact that blocks’ coefficients can be expressed as a sum over the simple poles
in central charge c (2.50) with regular term which is given by the c → ∞ limit of blocks’
coefficients.

One can investigate another set of recursion relations for the coefficients of 4-point blocks,
namely the elliptic recurrence. The blocks’ coefficients can be written in terms of a sum over
the simple poles in intermediate weight ∆ (2.49), with residues given by equations (2.54),
(2.55). To complete the recursion relations one needs to know the terms regular in ∆. These
functions can be determined from large ∆ behavior of the blocks’ coefficients but, as in the
bosonic case, it will be more complicate than the calculation of the terms regular in c.

We will start from checking if one can repeat Al. Zamolodchikov’s reasoning concerning
conformal block. In the bosonic case the first two terms of the expansion of classical block in
terms of large classical intermediate weight δ fully determine the ∆i and c dependence of the
first two terms in the 1

∆ expansion of conformal quantum block. Analyzing supersymmetric
Liouville theory we will investigate the classical limit of the supersymmetric blocks.

2.4.1 Classical limit of the superconformal blocks

The N = 1 supersymmetric Liouville theory is defined by the action [43]:

SSLFT

∫
d2z

(
1

2π
|∂φ|2 +

1
2π
(
ψ∂̄ψ + ψ̄∂ψ̄

)
+ 2iµb2ψ̄ψebφ + 2πb2µ2e2bφ

)
(2.59)

with b a dimensionless coupling constant and µ the scale parameter. The background charge
Q = b + 1

b determines the central charge of the theory c = 3
2 + 3Q2. Let us notice that
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parameterizations of the central charge is different from the one in the non supersymmetric
Liouville theory (1.44).

The super-primary field Va and all its descendant Virasoro primaries are represented by
exponentials:

Va = eaφ,

Λa =
[
S−1/2, Va

]
− iaψeaφ

Λ̄a =
[
S̄−1/2, Va

]
− iaψ̄eaφ,

Ṽa =
{
S−1/2,

[
S̄−1/2, Va

]}
a2ψψ̄eaφ − 2iπµbae(a+b)φ

The exponent Va has conformal dimension ∆a = ∆̄a = a(Q−a)
2 .

Within the path-integral approach the correlation functions are represented by functional
integrals, for example:

〈Va4Va3 Ṽa2Va1〉 =
∫
DφDψDψ̄ e−SSLFT[φ,ψ]ea4φea3φ

(
a2

2ψψ̄ea2φ − 2iπµba2e(a2+b)φ
)

ea1φ.

(2.60)
In order to analyze the classical limit (b→ 0, 2πµb2 → m = const) of this correlator one can
integrate fermions out. The integration is gaussian and the operator ebφ is light, thus one
may expect that in the case of heavy weights

a = Q
2 (1− λ) , ba→ 1−λ

2 , 2b2∆→ δ = 1−λ2

4 ,

the 4-point function (2.60) has the following asymptotical behavior:

〈Va4Va3 Ṽa2Va1〉 ∼ 1
b2

e−
1

2b2
Scl[δ4,δ3,δ2,δ1],

where Scl[δ4, δ3, δ2, δ1] is the bosonic Liouville action (1.46). On the other hand, before taking
the classical limit one can express the 4-point function (2.60) by superconformal blocks:

〈Va4Va3 Ṽa2Va1〉 =
∫

Q
2

+iR+

da

2πi

(
C43aC̃a21

∣∣∣F1
∆

[
∆3 ∗∆2
∆4 ∆1

]
(z)
∣∣∣2 + C̃43aCa21

∣∣∣∣F 1
2
∆

[
∆3 ∗∆2
∆4 ∆1

]
(z)
∣∣∣∣2
)

(2.61)

where C and C̃ are the Liouville structure constants :

Ca21 = 〈Va(∞,∞)Va2(1, 1)Va1(0, 0)〉 , C̃a21 = 〈Va(∞,∞)Ṽa2(1, 1)Va1(0, 0)〉

The asymptotic behavior of the 3-point functions, as in the case of 4-point functions, can be
read from the path integral representation:

Ca21 ∼ e−
1

2b2
Scl[δ,δ2,δ1]

C̃a21 ∼ 1
b2

e−
1

2b2
Scl[δ,δ2,δ1]

(2.62)

where Scl[δ, δ2, δ1] is the 3-point classical bosonic Liouville action.
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To find out what is the behavior of the 4-point blocks one should compare asymptotics
of functions on both sides of (2.61) for a fixed intermediate weight ∆. The classical limit of
the correlator projected on the even (or odd) subspace V∆ ⊗ V∆̄ reads:

〈Va4Va3 |even
∆ Ṽa2Va1〉 ∼ 1

b2
e−

1
2b2

Scl[δ4,δ3,δ2,δ1|δ],

〈Va4Va3 |odd
∆ Ṽa2Va1〉 ∼ 1

b2
e−

1
2b2

Scl[δ4,δ3,δ2,δ1|δ]
(2.63)

where the ”∆-projected” classical action is given by

Scl[δ4, δ3, δ2, δ1|δ] = Scl[δ4, δ3, δ] + Scl[δ, δ2, δ1]− fδ
[
δ3 δ2
δ4 δ1

]
(z)− f̄δ

[
δ3 δ2
δ4 δ1

]
(z̄).

The classical block fδ

[
δ3 δ2
δ4 δ1

]
(x) is defined in terms of the Q̃ → ∞ limit of the quantum

conformal block in the Virasoro c = 1 + 6Q̃2 CFT (1.48):

F1+6Q̃2,∆

[
∆3 ∆2
∆4 ∆1

]
(z) ∼ exp

(
Q̃2 fδ

[
δ3 δ2
δ4 δ1

]
(z)
)
.

The right hand side of (2.61) for a fixed subspace of intermediate ∆ states gives the blocks
and structure constants. The classical limit of structure constants (2.62) and the projected
correlators (2.63) imply the behavior of the blocks:

F1
∆

[
∆3 ∗∆2
∆4 ∆1

]
(z) ∼ e

1
2b2

fδ

[
δ3 δ2
δ4 δ1

]
(z)

, F
1
2
∆

[
∆3 ∗∆2
∆4 ∆1

]
(z) ∼ e

1
2b2

fδ

[
δ3 δ2
δ4 δ1

]
(z)

Using representations analogous to (2.61) and the same reasoning for other 4-point correlators
of primary fields Va,Λa, Λ̄a, Ṽa, one gets

F1
∆

[
∆3 ∆2
∆4 ∆1

]
(z) ∼ e

1
2b2

fδ

[
δ3 δ2
δ4 δ1

]
(z)

, F
1
2
∆

[
∆3 ∆2
∆4 ∆1

]
(z) ∼ b2e

1
2b2

fδ

[
δ3 δ2
δ4 δ1

]
(z)

F1
∆

[
∗∆3 ∗∆2
∆4 ∆1

]
(z) ∼ e

1
2b2

fδ

[
δ3 δ2
δ4 δ1

]
(z)

, F
1
2
∆

[
∗∆3 ∗∆2
∆4 ∆1

]
(z) ∼ 1

b2
e

1
2b2

fδ

[
δ3 δ2
δ4 δ1

]
(z)

(2.64)

2.4.2 Classical block

The path-integral arguments lead to the conclusion that the asymptotical behavior of all
types of 4-point superconformal blocks is given by one universal block. Moreover, this block
is the classical block defined in CFT as the classical limit of quantum 4-point conformal block
(1.48).

In the following subsection we would like to carry out a check confirming that the function
appearing in the classical limit of superconformal blocks is indeed equal to the classical block
defined in the bosonic case. In the CFT the classical block can be investigated with the help
of a null vector decoupling equation (1.50). In the classical limit the equation becomes a Fuch
type equation with the classical block present as an accessory parameter. In order to calculate
the classical block the following problem can be formulated: adjust the accessory parameter
in such a way that the equation has solutions with given monodromy around 0 and x. We will
show that in the supersymmetric case it is possible to find a null vector decoupling equation,
which in the classical limit turns out to be the same Fuchs type equation with identical
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monodromy properties as the one in the conformal case. This will be an additional argument
supporting the correctness of the path integral reasoning presented in the last subsection.

Let us start by introducing the zero field V0 corresponding to a null vector χ3,1:

V0(z5, z̄5) ≡
(
L−1S− 1

2
+ b2S− 3

2

)
V−b (z5, z̄5) .

Any correlation function containing the zero field vanishes, what implies that a correlator
including degenerate field V−b (z5, z̄5) satisfies some differential equation.

Consider four 5-point correlators of primary fields Vi = Vai(zi, z̄i) or Λi = Λai(zi, z̄i)
and the zero field V0: 〈V4Λ3V0V2V1〉, 〈V4V3V0Λ2V1〉, 〈V4V3V0V2Λ1〉, 〈V4Λ3V0Λ2Λ1〉. Since V0

has negative parity, in order to ensure positive total parity of the correlation function, odd
number out of the remaining fields has to have negative parity as well. One can apply to
these correlators the local superconformal Ward identities (2.8). As a result, in the limit
z4 →∞, the following set of equation for 5-point functions of primary fields and degenerate
field Va5 = V−b arises:[

∂2
5 + b2

(
1
z53

∂3 +
1
z52

∂2 +
1
z51

∂1 +
2∆1

z2
51

)]
〈V4V3V5V2V1〉

=
(
∂z5 −

b2

z52

)
〈V4V3V5Λ2V1〉 −

(
∂z5 −

b2

z53

)
〈V4Λ3V5V2V1〉

+ b2
(

1
z53
− 1
z52

)
〈V4Λ3V5Λ2V1〉,

b2
[(

1
z15

+
1
z52

)
∂2 +

2∆2

z2
52

]
〈V4V3V5V2V1〉 (2.65)

= b2
(

1
z35

+
1
z51

)
〈V4Λ3V5Λ2V1〉 −

(
∂z5 +

b2

z15

)
〈V4V3V5Λ2V1〉,

b2
[(

1
z15

+
1
z53

)
∂3 +

2∆3

z2
53

]
〈V4V3V5V2V1〉

= −b2
(

1
z25

+
1
z51

)
〈V4Λ3V5Λ2V1〉+

(
∂z5 +

b2

z15

)
〈V4Λ3V5V2V1〉.

This is a system of three equations for four independent functions and it is impossible to
write a closed relation for any correlator. Fortunately, such a relation can be derived in the
classical limit. Adding the second equation to the first one and subtracting from the result
the third equation we obtain:[
∂2
z5 + b2

(
1
z51

∂1 +
(

1
z15

+
2
z52

)
∂2 +

(
1
z15

+
2
z53

)
∂3 +

2∆1

z2
51

+
2∆2

z2
52

+
2∆3

z2
53

)]
〈V4V3V5V2V1〉

= b2
(

1
z51
− 1
z52

)
〈V4V3V5Λ2V1〉 − b2

(
1
z51
− 1
z53

)
〈V4Λ3V5V2V1〉 (2.66)

The operator V−b is a “light” field, thus the correlation function 〈V4V3V5V2V1〉 in the classical
limit has the form:

χ(z5) e−
1

2b2
Scl[δ4,δ3,δ2,δ1] .
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The other two correlators have similar behavior because each one includes the “light” field
Λ−b ∼ be−bφ and a “heavy” field Λi ∼ 1

b e
aiφ. Now we can take the limit b → 0 of relation

(2.66), noticing that for ∆1,∆2,∆3,∆4 of order b−2:

∂1, ∂2, ∂3 = O
(
b−2
)
, ∆5, ∂z5 = O (1) .

Keeping only the leading terms we get the closed equation for the classical limit of 〈V4V3V5V2V1〉.
In the standard locations z1 = 0, z3 = 1, z5 = z, z2 = x, it takes the form:{

∂2
z + 2b2

[
∆4 −∆3 −∆2 −∆1

z(z − 1)
+

∆3

(z − 1)2
+

∆2

(z − x)2
+

∆1

z2

]}
〈V4V3V5V2V1〉

+ 2b2
x(x− 1)

z(z − 1)(z − x)
∂

∂x
〈V4V3V5V2V1〉 = 0. (2.67)

The classical limit of the 5-point correlation function (containing one “light” field) projected
on even subspace V∆⊗ V∆ is given by:〈

V4 (∞)V3 (1, 1)V−b (z, z̄) |even
∆ V2 (x, x̄)V1 (0, 0)

〉
∼ χ∆(z) e

1
2b2

fδ

[
δ3 δ2
δ4 δ1

]
(x)
, (2.68)

where according to path integral arguments fδ
[
δ3 δ2
δ4 δ1

]
(x) is the classical conformal block.

Defining an accessory parameter C(x) :

C(x) =
∂

∂x
fδ

[
δ3 δ2
δ4 δ1

]
(x) (2.69)

we get from (2.67) a Fuchsian equation:

d2χ∆(z)
dz2

+
(
δ4 − δ3 − δ2 − δ1

z(z − 1)
+
δ1

z2
+

δ2

(z − x)2
+

δ3

(z − 1)2

)
χ∆(z) (2.70)

+
x(x− 1)C(x)
z(z − x)(z − 1)

χ∆(z) = 0.

This is the same equation as the one obtained in the bosonic case (1.52). Now let us check
what are the monodromy properties of the solutions χ∆(z) along the path encircling the
points 0 and x. Similarly as in the conformal case, the monodromy properties of the 5-point
correlator (2.68) along a curve encircling both 0 and x are the same as the monodromy prop-
erties of the 4-point function of superprimary fields

〈
V4 (∞)V3 (1, 1)V−b (z, z̄)Va (0, 0)

〉
for

a curve encircling 0. The OPE of degenerate field with operator Va contains the information
about z-dependence of the function:

V−b(z, z̄)Va(0, 0) = C(a+,−b,a)(zz̄)
bQ
2

(1+λ) Va+(0, 0) + C(a−,−b,a)(zz̄)
bQ
2

(1−λ) Va−(0, 0)

+ C̃(a,−b,a)(zz̄)
1+b2 1

(2∆as)2
Ṽa(0, 0) + descendants,

where a± = a ± b and a = Q
2 (1 − λ). The conformal families present in the OPE above are

dictated by the fusion rules (2.43), (2.44). In the limit b → 0 the third term is sub-leading
with respect to the first two.
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Thus the monodromy condition for the function χ(z) reads:

χ±∆
(
e2πiz

)
= −e±iπλ χ±∆ (z) , (2.71)

where χ±∆ is a basis in the space of solutions of (2.70). This constraint for χ±∆ analytically
continued in z along the contour encircling the points 0 and x has the same form as the
corresponding monodromy condition (1.54) in the bosonic case.

We have shown that the equation (2.70) together with the monodromy condition (2.71)
are the same as in the non supersymmetric theory. Therefore the block which is given by the
accessory parameter (2.69) has to be equal to the classical block which was calculated from
the accessory parameter (1.53).

2.4.3 Large ∆ asymptotic of superconformal blocks from the classical block

In non supersymmetric CFT, according to Zamolodchikov reasoning [15] reminded in the
chapter (1.4.3), the first two terms in the δ-expansion of the classical block determine the
first two terms of large ∆-expansion of quantum 4-point conformal block.

The conclusion which follows from the path integral arguments is that the asymptotical
behavior of 4-point superconformal blocks is given by the same classical block. Moreover,
each type of even superconformal block in the limit b → 0 behaves in analogous way as a
conformal block:

F1
c,∆

[
∆3 ∆2

∆4 ∆1

]
(z) ∼ e

1
2b2

fδ

[
δ3 δ2
δ4 δ1

]
(z)
, (2.72)

Thus the reasoning leading to the relation between the ∆-expansion of even NS blocks and
δ-expansion of the classical block is the same as in the CFT case. The same arguments are
true also in the case of one type of odd superconformal block:

F
1
2
c,∆

[
∆3 ∗∆2
∆4 ∆1

]
(z) ∼ e

1
2b2

fδ

[
δ3 δ2
δ4 δ1

]
(z)
.

The other two types of odd blocks have slightly modified asymptotics:

F
1
2
c,∆

[
∆3 ∆2
∆4 ∆1

]
(z) ∼ b2e

1
2b2

fδ

[
δ3 δ2
δ4 δ1

]
(z)
, F

1
2
c,∆

[
∗∆3 ∗∆2
∆4 ∆1

]
(z) ∼ 1

b2
e

1
2b2

fδ

[
δ3 δ2
δ4 δ1

]
(z)
. (2.73)

The differences in the asymptotical behavior of odd 4-point blocks are caused by the certain
property of 3-point superconformal block. Consider a 3-point block with given external state
ν∆,KM from non integer level f ∈ N− 1

2 :

• ρ(ν4, ν3, ν∆,KM ) is a polynomial in ∆ of maximal order f − 1
2 ,

• ρ(ν4, ∗ν3, ν∆,KM ) is a polynomial in ∆ of maximal order greater by 1: f + 1
2 .

From definition (2.48), it is thus clear that different types of odd 4-point blocks’ coefficients
(without star, with one or two stars) are proportional to polynomials with various value of
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maximal order (2f − 1, 2f or 2f + 1 respectively). Notice, that inverse Gram matrix is the
same in each case.

From path integral arguments it follows that the coefficients of the block with one star
F

1
2
c,∆

[
∆3 ∗∆2
∆4 ∆1

]
(z) have in numerator such a power of ∆ which ensure existence of the classical

block as a proper classical limit of the block. Therefore:

• the leading power in the denominator of each coefficient of F
1
2
c,∆

[
∆3 ∆2
∆4 ∆1

]
(z) is greater

by 1 than it should be to give a classical block in the classical limit,

• the leading power in the numerator of each coefficient of F
1
2
c,∆

[
∗∆3 ∗∆2
∆4 ∆1

]
(z) is greater

by 1 than it should be to give a classical block in the classical limit.

Notice, that the power series defining odd blocks, unlike in the case of even blocks, do not
contain zeroth order term. Hence, one can collect common for each term factor and put it in
front of the series.

Consider first the block without stars. Since Kac determinant contains factor ∆ connected
with degenerate weight ∆11 = 0, each element of inverse Gram matrix is proportional to ∆−1.
Thus each block’s coefficient is proportional to ∆−1 and one can put this factor in front of
the series. Consequently, the function defined as a logarithm of a block

G
1
2
∆

[
∆3 ∆2

∆4 ∆1

]
(z) = lnF

1
2
∆

[
∆3 ∆2

∆4 ∆1

]
(z)

in the current case admits the following power series expansion:

G
1
2
∆

[
∆3 ∆2
∆4 ∆1

]
(z) = (∆−∆2 −∆1) ln z − ln ∆ +

∞∑
i=0

Gnz
n.

For the block with one star there is no need to change the maximal power of ∆ in denominator:

G
1
2
∆

[
∆3 ∗∆2
∆4 ∆1

]
(z) = (∆−∆2 −∆1) ln z +

∞∑
i=0

G∗nz
n.

The coefficients of the block F
1
2
c,∆

[
∗∆3 ∗∆2
∆4 ∆1

]
(z) have maximal power of ∆ in numerator

greater by 1 than it should be to give simply a classical block as a classical limit. One can
multiply each term of coefficients by ∆−1, leaving ∆ in front of the series. It will ensure
existence of the proper classical limit (2.73) of the block and give:

G
1
2
∆

[
∗∆3 ∗∆2
∆4 ∆1

]
(z) = (∆−∆2 −∆1) ln z + ln ∆ +

∞∑
i=0

G∗∗n z
n

Now all coefficients Gn, G∗n, G
∗∗
n are rational functions of ∆,∆i, c having polynomials of

correct order in numerator and denominator. Using Zamolodchikov’s technique one can find
the relation between the 1

∆ expansion of Gn, G∗n, G
∗∗
n and the 1

δ expansion of the classical
block.



64 Conformal blocks in NS sector of N = 1 SCFT

Finally, the analogous relation as in the CFT case (1.57) can be obtained:

G
1
2
∆

[
∆3 ∆2

∆4 ∆1

]
(z) = P (∆) + iπτ

(
∆− c

24

)
+
( c

8
−∆1 −∆2 −∆3 −∆4

)
lnK2(z)

+
( c

24
−∆2 −∆3

)
ln(1− z) +

( c
24
−∆1 − ∆2

)
ln(z) + f

1
2 (z) +O

(
1
∆

)
, (2.74)

where

P (∆) = − ln ∆, P∗(∆) = 0, P∗ ∗(∆) = ln ∆,

and f
1
2 (z) are functions of z specific for each type of block and independent of ∆i and c. The

exact form of these functions can be derived from analytic expressions for NS superconformal
blocks in a specific model. In the chapter (4.2) we will present the method of computing NS
blocks with external weights ∆i = 1

8 in the c = 3
2 superscalar free theory extended by the

Ramond states both in the bosonic and fermionic sector.

2.4.4 Elliptic blocks

The main difficulty concerning derivation of the recursion relation for blocks’ coefficients
expressed as a sum over the poles in ∆ (2.49) is the problem of calculation of the term
regular in ∆. The large ∆ asymptotic (2.74) (and corresponding one for even blocks given
by (1.57)) show how the first two terms in 1

∆ expansion of the superconformal blocks depend
on the external weights ∆i and central charge c. This information is sufficient to define
elliptic blocks in such a way that, for each type of the block, the term regular in ∆ will be
independent of ∆i and c. To this end we will write explicitly the multiplicative factor which
takes over all the ∆i and c dependence of the term non-singular in ∆:

F1, 1
2

∆

[
∆3 ∆2

∆4 ∆1

]
(z) = (16q)∆− c−3/2

24 z
c−3/2

24
−∆1− ∆2 (1− z)

c−3/2
24
− ∆2− ∆3 (2.75)

× θ
c−3/2

2
−4(∆1+ ∆2+ ∆3+∆4)

3 H1, 1
2

∆

[
∆3 ∆2

∆4 ∆1

]
(q),

where q = eiπτ is the elliptic nome. The additional in comparison with asymptotics terms are
independent of the external weights and central charge. Their forms, different for different
types of blocks, are suggested by the explicit expressions of superconformal blocks in c = 3

2

model (4.51) – (4.57).

The elliptic blocks H1, 1
2

∆

[
∆3 ∆2

∆4 ∆1

]
(q) have the same analytic structure as the superconfor-

mal ones:

H1, 1
2

∆

[
∆3 ∆2

∆4 ∆1

]
(q) = g1, 1

2 (q) +
∑
m,n

h
1, 1

2
mn

[
∆3 ∆2

∆4 ∆1

]
(q)

∆−∆mn
.

The regular in ∆ functions g1, 1
2 (q) are related to the functions f1, 1

2 (z) in (2.74):

ef
1, 12 (z) = (16q)

1
16 (1− z)−

1
16 θ3(q)−

3
4 g1, 1

2 (q).
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They do not depend on the external weights ∆i and central charge c any more. Thus their
analytical form can be extracted with the help of c = 3

2 elliptic blocks (4.58), (4.59) with
external weights ∆i = ∆0 = 1

8 :

H1
∆

[
∆0 ∆0
∆0 ∆0

]
(q) = θ3(q2), H

1
2
∆

[
∆0 ∆0
∆0 ∆0

]
(q) = 1

∆θ2(q2),

H1
∆

[
∆0 ∗∆0
∆0 ∆0

]
(q) = θ3(q2), H

1
2
∆

[
∆0 ∗∆0
∆0 ∆0

]
(q) = θ2(q2),

H1
∆

[
∗∆0 ∗∆0
∆0 ∆0

]
(q) = θ3(q2)

(
1− q

∆θ
−1
3

∂
∂qθ3(q) + θ4

2(q)
4∆

)
,

H
1
2
∆

[
∗∆0 ∗∆0
∆0 ∆0

]
(q) = −θ2(q2)∆

(
1− q

∆θ
−1
3

∂
∂qθ3(q) + θ4

2(q)
4∆

)
.

The regular in ∆ parts determine the g1, 1
2 functions:

g1(q) = θ3(q2), g
1
2 (q) = 0,

g1
∗(q) = θ3(q2), g

1
2
∗ (q) = θ2(q2), (2.76)

g1
∗∗(q) = θ3(q2), g

1
2
∗∗(q) = −θ2(q2)∆

(
1− q

∆
θ−1

3

∂

∂q
θ3(q) +

θ4
2(q)
4∆

)
The residua of elliptic blocks h

1, 1
2

mn

[
∆3 ∆2

∆4 ∆1

]
(q) are given by the corresponding residua of

superconformal blocks (2.49), (2.54), (2.55):

H1, 1
2

∆

[
∆3 ∆2

∆4 ∆1

]
(q) = g1, 1

2 (q)

+
∑
m,n>0

m,n∈2N

(16q)
mn
2

Ars(c)P rsc
[

∆3

∆4

]
P rsc

[
∆2

∆1

]
∆−∆mn

H1, 1
2

∆mn+mn
2

[
∆3 ∆2

∆4 ∆1

]
(q) (2.77)

+
∑
m,n>0

m,n∈2N+1

(16q)
mn
2

Srs( ∆3)Ars(c)P rsc
[

∆̃3

∆4

]
P rsc

[
∆̃2

∆1

]
∆−∆mn

H
1
2
,1

∆mn+mn
2

[
∆3 ∆2

∆4 ∆1

]
(q).

The coefficients of elliptic blocks written as series in nome are defined as follows:

H1, 1
2

∆

[
∆3 ∆2

∆4 ∆1

]
(q) =

∑
f

(16q)fHf
c,∆

[
∆3 ∆2

∆4 ∆1

]
where for even blocks f ∈ N ∪ 0 and for odd blocks f ∈ N − 1

2 . The coefficients satisfy the
elliptic recursion relations:

Hf
c,∆

[
∆3 ∆2

∆4 ∆1

]
= gf +

∑
r,s>0

r,s∈2N

Ars(c)P rsc
[

∆3

∆4

]
P rsc

[
∆2

∆1

]
∆−∆rs

H
f− rs

2

∆rs+
rs
2

[
∆3 ∆2

∆4 ∆1

]
(2.78)

+
∑
r,s>0

r,s∈2N+1

Srs( ∆3)Ars(c)P rsc
[

∆̃3

∆4

]
P rsc

[
∆̃2

∆1

]
∆−∆rs

H
f− rs

2

∆rs+
rs
2

[
∆3 ∆2

∆4 ∆1

]
.
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with nonsingular terms

g1 (q) =
∑
m∈N

(16q)mgm, g
1
2 (q) =

∑
k∈N− 1

2

(16q)kgk ,

given by (2.76).

2.5 Conclusions on the recursive representations of the NS

blocks

In the current chapter we have presented the results concerning 4-point superconformal blocks
corresponding to correlation function of NS fields [23], [24]. The 4-point blocks are defined as
z-power series with coefficients given in terms of 3-point superconformal blocks and inverse
NS Gram matrix. Analyzing properties of these objects one can derive the recursion relations
for the block coefficients. It is also possible to work out the elliptic recurrence representation
of the NS superconformal blocks. First, investigating classical limit of correlators in N = 1
supersymmetric Liouville theory one finds out that the exponential part of the classical limit
of all 4-point superconformal blocks is given by the classical conformal block. Next, analysis
of large ∆ asymptotic of the superconformal blocks leads to the relations between first two
terms of 1

∆ expansions of the superconformal blocks and known first two terms of 1
δ expansion

of the classical block. These relations suggest a definition of NS elliptic blocks ensuring that
the (additive) term regular in ∆ for each elliptic block is independent of external weights
∆i and central charge c. In order to compute these terms and close the elliptic recursion
relations one thus needs to calculate explicit formula for each type of superconformal block
with arbitrary fixed external weights in some specific model. We use the c = 3

2 superconformal
blocks with ∆i = 1

8 . As a result we obtain the elliptic recursion relations for all types of the
NS superconformal blocks.

One should note, that the definition and z-recurrence representation of 4-point blocks
related to correlator of NS superprimary fields were worked out independently by V.A. Belavin
[44]. For this type of block (i.e. block without stars) the elliptic recursion relations were
conjectured in [27] and applied to numerical consistency check of N = 1 supersymmetric
Liouville theory. Further numerical verification of N = 1 supersymmetric Liouville theory
was given in [28] where the elliptic recurrence representation of the block with one star was
proposed. The complete derivation of the elliptic recursion relations however was missing
until [24]. Our results (2.76), (2.77) confirm the relations previously conjectured in [27], [28]
and provide new recurrence representation of the blocks with two stars. One can notice that
the regular in ∆ part of the odd elliptic block with two stars g

1
2
∗∗(q) (2.76) is much more

complicated that the corresponding functions in the other cases and it would be difficult to
guess its form numerically.



Chapter 3

Conformal blocks in the Ramond

sector of N = 1 SCFT

3.1 Definitions

3.1.1 NS and Ramond sectors in N=1 SCFT

In the section 2.1.1 we have presented the main assumptions concerning N = 1 SCFT. Let us
remind that the space of fields in SCFT decomposes onto two parts: Neveu-Schwarz sector
with ϕNS(zi, z̄i) local with respect to S(z) and Ramond sector with R(zi, z̄i) defined as ’half-
local’ with respect to S(z). The locality properties of the fields, together with the basic
dynamical assumption (2.1), impose some constraints on OPEs of the fields. Namely, OPE
of two Ramond fields should be expressed as a series of NS operators, while OPE of one
Ramond field and one NS field should be given in terms of Ramond operators. This means
that the NS operators ϕ and the Ramond operators R have the following block structure:

ϕ =

[
ϕNN 0

0 ϕRR

]
, R =

[
0 RNR

RRN 0

]
(3.1)

with respect to the direct sum decomposition H = HNS ⊕HR of the space of states.
In the previous chapter the matrix elements of operators ϕNN acting between NS states

were considered. In the current chapter we will analyze matrix elements of Ramond operators
between Neveu-Schwarz and Ramond states. The case of NS fields ϕRR acting between
Ramond states will be briefly discussed in the end of this chapter.

We assume that in the set of Ramond fields there exist Ramond primary fields R±
∆,∆̄

(w, w̄)1

with conformal weights ∆, ∆̄ and parity ±. It is defined by the following local Ward identities
(1.4):

T (z)R±
∆,∆̄

(w, w̄) ∼ ∆
(z − w)2

R±
∆,∆̄

(w, w̄) +
1

z − w
∂R±

∆,∆̄
(w, w̄) + reg.

1Following [6] we chose the “symmetric” convention for ± components of the Ramond fields.
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T̄ (z̄)R±
∆,∆̄

(w, w̄) ∼ ∆̄
(z̄ − w̄)2

R±
∆,∆̄

(w, w̄) +
1

z̄ − w̄
∂R±

∆,∆̄
(w, w̄) + reg. (3.2)

and

S(z)R±
∆,∆̄

(w, w̄) ∼ iβe∓i
π
4

(z − w)
3
2

R∓
∆,∆̄

(w, w̄),

S̄(z̄)R±
∆,∆̄

(w, w̄) ∼ −iβ̄e±i
π
4

(z̄ − w̄)
3
2

R∓
∆,∆̄

(w, w̄), (3.3)

where β, β̄ are related to the conformal weights by

∆ =
c

24
− β2 , ∆̄ =

c

24
− β̄2.

3.1.2 R supermodule

We shall consider the left Ramond algebra (2.5) extended by the fermion parity operator
(−1)FL :

[(−1)FL , Lm] = {(−1)FL , Sn} = 0 , m, n ∈ Z. (3.4)

The highest weight state w+
∆ with respect to the extended Ramond algebra is defined by the

following conditions:

L0w
+
∆ = ∆w+

∆ , (−1)FLw+
∆ = w+

∆ , Lmw
+
∆ = Snw

+
∆ = 0, m, n ∈ N, (3.5)

where N is the set of positive integers. The state generated by S0 acting on w+
∆ has the same

conformal weight as the highest weight state and it is anihilated by Lm, Sn with m,n > 0
as well. But due to the condition (3.4) such a state is an eigenvector of the parity operator
(−1)FL to eigenvalue −1.

The descendant states are defined as states created by an action of generators L−m and
S−n on the highest weight state w+

∆. They form the vector space Wf
∆ with the basis:

w∆,KM = S−KL−Mw
+
∆ ≡ S−ki . . . S−k1L−mj . . . L−m1w

+
∆ , (3.6)

where K = {k1, k2, . . . , ki} ⊂ N ∪ {0} and M = {m1,m2, . . . ,mj} ⊂ N are arbitrary ordered
sets of indices

ki < . . . < k2 < k1, mj ≤ . . . ≤ m2 ≤ m1,

such that |K|+ |M | = k1 + . . .+ki+m1 + . . .+mj = f . Let us denote the number of operators
in the set S−K by ]K. The parity of the state is given by: (−1)FLw∆,KM = (−1)]Kw∆,KM .

The R supermodule of the highest weight ∆ and the central charge c is defined as the
Z-graded representation of the extended Ramond algebra determined on the space

W∆ =
⊕

f∈N∪{0}

Wf
∆ ,
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by the relations (2.5) and (3.5). In order to simplify the notation we omit the subscript c at
W. Each Wf

∆ is an eigenspace of L0 with the eigenvalue ∆ + f . The space W∆ has a natural
Z2-grading:

W∆ = W+
∆ ⊕W

−
∆ , W+

∆ =
⊕

f∈N∪{0}

Wf+
∆ , W−∆ =

⊕
f∈N∪{0}

Wf−
∆ ,

whereWf±
∆ are common eigenspaces of the operators (−1)FL and L0. Note that the subspaces

W0+
∆ ,W0−

∆ are 1-dimensional except the case ∆ = c
24 where W0−

∆ = {0}.
As a scalar product we introduce a symmetric bilinear form 〈. , .〉c,∆ on W∆ such that

〈w∆, w∆〉 = 1, 〈w∆, S0w∆〉 = 0, (Lm)† = L−m, (Sn)† = S−n.

It is block-diagonal with respect to the L0- and (−1)FL-grading.

The Ramond equivalent of Gram matrix is the matrix of 〈. , .〉c,∆ on W f±
∆ calculated in

the basis (3.6): [
B f±
c,∆

]
KM,LN

= 〈w±∆,KM , w
±
∆,LN 〉c,∆.

It is nonsingular if and only if the R supermodule W∆ does not contain singular vectors of
degrees 0, 1, 2, . . . , f . A singular vector in Ramond sector is defined as a state χ ∈ Wf

∆ of
degree f satisfying the highest weight conditions (3.5) with L0χ = (∆ + f)χ. It generates its
own R supermodule W∆+f which is a submodule of W∆.

The determinant of B f±
c,∆ is given by the formula conjectured by Friedan,Qiu, Shenker [4]

and proven by Meurman and Rocha-Caridi [45]. For level zero it reads

detB 0+
c,∆ = 1 , detB 0−

c,∆ = ∆− c

24
,

and for higher levels

detB f±
c,∆ =

(
∆− c

24

)PR(f)

2
∏

16rs62f

(∆−∆rs)PR(f− rs
2

), (3.7)

where r, s ∈ N, the sum r + s must be odd and

∆rs(c) =
1
16
− rs− 1

4
+

1− r2

8
b2 +

1− s2

8
1
b2
, c =

3
2

+ 3
(
b+

1
b

)2

. (3.8)

The multiplicity of each zero is given by PR(f) = dimWf
∆ and can be read off from the

relation
∞∑
f=0

PR(f)qf =
∞∏
n=1

1 + qn

1− qn
.
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3.1.3 The space of states

Let us consider a Ramond state generated by a Ramond primary field acting on the NS
vacuum introduced in (2.1.4):

lim
z,z̄→0

R±
∆,∆̄

(z, z̄) |0〉 =
∣∣∣w±

∆,∆̄

〉
.

Due to the local Ward identities (3.2),(3.3) imposed on R±
∆,∆̄

, the state w±
∆,∆̄

is anihilated
by the left and the right generators with positive indices. Thus it can be expressed in terms
of the highest weight states with respect to left and right extended Ramond algebras (3.4).

The tensor product W∆ ⊗ W̄∆̄ of the left and the right R supermodules is defined as a
graded tensor product of representations of Z2-graded algebras. This provides a representa-
tion of the direct sum R⊕ R̄ of left and right Ramond algebras extended by the left (−1)FL

and the right (−1)FR parity operators. Since the Ramond fields have definite one total parity
instead of two chiral parities, we are interested in the extension of R ⊗ R̄ by the common
parity operator

(−1)F = (−1)FL(−1)FR

and the corresponding Z2-grading. For ∆, ∆̄ 6= c
24 an appropriate representation can be

obtained restricting the action of R⊗ R̄ and (−1)F to the invariant subspace W∆,∆̄ ⊂ W∆⊗
W̄∆̄ generated by the vectors

w+
∆,∆̄

= 1√
2

(
w+

∆ ⊗ w
+
∆̄
− i w−∆ ⊗ w

−
∆̄

)
,

w−
∆,∆̄

= 1√
2

(
w+

∆ ⊗ w
−
∆̄

+ w−∆ ⊗ w
+
∆̄

)
.

(3.9)

where w−∆ = ei
π
4

iβ S0w
+
∆ , w−

∆̄
= e−i

π
4

iβ̄
S̄0w

+
∆̄
. We shall call it the ”small representation”.

The choice of basis (3.9) in the zero level subspace W0
∆,∆̄

is consistent with the definition
of the corresponding Ramond primary fields (3.2):

S0w
±
∆,∆̄

= iβe∓i
π
4w∓

∆,∆̄
, S̄0w

±
∆,∆̄

= −iβ̄e±i
π
4w∓

∆,∆̄
. (3.10)

The descendant states in the “small representation” have the form:

S−LL−N S̄−KL̄−Mw+
∆,∆̄

=
1√
2

(
S−LL−Nw

+
∆ ⊗ S̄−KL̄−Mw+

∆̄
− (−1)]Ki S−LL−Nw

−
∆ ⊗ S̄−KL̄−Mw−

∆̄

)
We assume that the space of Ramond states HR is a sum of the “small representations” over

the weights from the spectrum of Ramond primary fields.

3.1.4 Field operators

We assume that the correspondence between states and field operators in SCFT is true in
the Ramond sector as well: There is one to one correspondence between the states from the
space of Ramond states and the field operators from the space of Ramond fields.
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The primary fields R±
∆,∆̄

create from the vacuum w±
∆,∆̄

states. We expect that descendant
fields generate the descendant states:

lim
z,z̄→0

R∆,∆̄(η, η̄|z, z̄) |0〉 ≡ S−KL−M S̄−LL̄−Nw+
∆,∆̄

, (3.11)

where η, η̄ denote the states from chiral R supermodules W∆, W̄∆̄:

η = S−KL−Mw
+
∆, η̄ = S̄−LL̄−Nw

+
∆̄
.

Let us define the descendant fields as operators satisfying the following relations

L−mR∆,∆̄(η, η̄|z, z̄) ≡ R∆,∆̄(L−mη, η̄|z, z̄) =
∮

dw

2πi
(w − z)1−mT (w)R∆,∆̄(η, η̄|z, z̄), m ∈ N,

(3.12)
S−kR∆,∆̄(η, η̄|z, z̄) ≡ R∆,∆̄(S−kη, η̄|z, z̄) =

∮
dw

2πi
(w − z) 1

2−kS(w)R∆,∆̄(η, η̄|z, z̄), k ∈ N,

together with the condition (3.11). It follows from (3.11) that the parity of the descendant
is given by (]K + ]L̄), which is the number of S−ki and S̄−li operators acting on the even
primary field R+

∆,∆̄
(z, z̄). Due to the action of S0, S̄0, each Ramond field with a given parity

has its counterpart with the same conformal weights but the opposite parity. The primary
field R+

∆,∆̄
(z, z̄) with β = β̄ = 0 is the only exception and does not have corresponding field

with negative parity (3.3).
All primary fields with their descendants R∆,∆̄(η, η̄|z, z̄) form the space of Ramond fields.
Let us note one more important feature of Ramond primary fields. We assume that

R+
∆,∆̄

(z, z̄) is hermitian. Then the hermicity of R−
∆,∆̄

(z, z̄) follows from the definition of
S0R

+ (3.12) and we have:

R±
∆,∆̄

(z, z̄)† = z̄−2∆z−2∆̄R±
∆,∆̄

(
1
z̄ ,

1
z

)
,

Thus the off-diagonal blocks of the primary Ramond field (3.1) are related to each other:

〈R(∞)R±RN(z, z̄)ϕ(0)〉 = z̄−2∆z−2∆̄〈ϕ(∞)R±NR(1
z̄ ,

1
z )R(0)〉 (3.13)

and it is sufficient to analyze the matrix elements of the operators R±NR.

3.1.5 Ward identities for 3-point correlation functions

Let us consider a correlation function〈
ϕ3(∞,∞)S(w)Rε2(z, z̄)Rε

′
1 (0, 0)

〉
,

where Rεii (z, z̄) = Ri(η, η̄|z, z̄) are two arbitrary excited Ramond fields of definite parities ε, ε′

and ϕ3(∞,∞) = ϕ3(ξ, ξ̄|∞,∞) is an arbitrary NS excited field. Due to the locality properties
of Ramond fields such a correlator is a double valued function of w. Thus in order to derive
Ward identities for 3-point correlators one cannot use the the standard contour deformation
method. Another approach based on considering a single valued function√

w(w − z)
〈
ϕ3(∞,∞)S(w)Rε2(z, z̄)Rε

′
1 (0, 0)

〉
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was proposed by [4] (see also [46] for more detailed analysis). Contour integrals of this
function around a location of each field can be expressed in terms of fields excitations. For
example, the integral around the second Ramond field location is given by:∮

z

dw

2πi
(w − z)−n+ 1

2w
1
2

〈
ϕ3(∞,∞)S(w)Rε2(z, z̄)Rε

′
1 (0, 0)

〉
=
∮
z

dw

2πi

∑
p

(
1
2
p

)
z

1
2
−p(w − z)p−n+ 1

2

〈
ϕ3(∞,∞)S(w)Rε2(z, z̄)Rε

′
1 (0, 0)

〉
=

=
∞∑
p=0

(
1
2
p

)
z

1
2
−p
〈
ϕ3(∞,∞)Sp−nRε2(z, z̄)Rε

′
1 (0, 0)

〉
The deformation of the contour of integral above leads to the formula:
∞∑
p=0

(
1
2
p

)
z

1
2
−p
〈
ϕ3(∞,∞)Sp−nRε2(z, z̄)Rε

′
1 (0, 0)

〉
=

∮
|w|>|z|

dw

2πi
(w − z)−n+ 1

2w
1
2

〈
ϕ3(∞,∞)S(w)Rε2(z, z̄)Rε

′
1 (0, 0)

〉

− ε
∮

|w|<|z|

dw

2πi
(w − z)−n+ 1

2w
1
2

〈
ϕ3(∞,∞)Rε2(z, z̄)S(w)Rε

′
1 (0, 0)

〉

=
∞∑
p=0

(
−n+ 1

2
p

)
(−z)p

〈
Sp+n− 1

2
ϕ3(∞,∞)Rε2(z, z̄)Rε

′
1 (0, 0)

〉
(3.14)

−iε
∞∑
p=0

(
−n+ 1

2
p

)
(−1)n+pz−n+ 1

2
−p
〈
ϕ3(∞,∞)Rε2(z, z̄)SpRε

′
1 (0, 0)

〉
,

where the relation S(w)Rε(z, z̄) = εRε(z, z̄)S(w) was used.
Similarly, considering an integral of the function

wn
√
w(w − z)

〈
ϕ3(∞,∞)S(w)Rε2(z, z̄)Rε

′
1 (0, 0)

〉
one can derive the second Ward identity:∑

p

(
1
2
p

)
(−z)p

〈
Sp−n− 1

2
ϕ3(∞,∞)Rε2(z, z̄)Rε

′
1 (0, 0)

〉
(3.15)

=
∞∑
p=0

(
n+ 1

2
p

)
zn+ 1

2
−p
〈
ϕ3(∞,∞)SpRε2(z, z̄)Rε

′
1 (0, 0)

〉
=

+iε
∑
p

(
1
2
p

)
(−1)p z

1
2
−p
〈
ϕ3(∞,∞)Rε2(z, z̄)Sn+pR

ε′
1 (0, 0)

〉
Corresponding relations hold also in the anti-holomorphic sector. The Ward identities with
Virasoro generators have the same form as in (1.20).

Notice that there are some features of the Ward identities (3.14),(3.15) which make them
more complicated than the corresponding relations in NS sector.
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Firstly the action of a creation operator S−k on a field is given not only by the S0 or S− 1
2

and anihilation operators acting on the other fields, but also by the lower creation operators
S−k+p acting on the same field.

Secondly, any 3-point correlation function can be reduced to a combination of two out of
eight correlators of primary fields:

C±321 =
〈
φ3(∞,∞)R±2 (1, 1)R±1 (0, 0)

〉
, (3.16)

C̃±321 =
〈
φ̃3(∞,∞)R±2 (1, 1)R±1 (0, 0)

〉
,

D±321 =
〈
ψ3(∞,∞)R±2 (1, 1)R∓1 (0, 0)

〉
,

D̄±321 =
〈
ψ̄3(∞,∞)R±2 (1, 1)R∓1 (0, 0)

〉
.

With the help of formula (3.15) for n = 0 and the corresponding antiholomorphic one:〈
S− 1

2
ϕ3(∞,∞)Rε2(1, 1)Rε

′
1 (0, 0)

〉
=
〈
φ3(∞,∞)S0R

ε
2(1, 1)Rε

′
1 (0, 0)

〉
+ iε

〈
φ3(∞,∞)Rε2(1, 1)S0R

ε′
1 (0, 0)

〉
〈
S̄− 1

2
ϕ3(∞,∞)Rε2(1, 1)Rε

′
1 (0, 0)

〉
=
〈
ϕ3(∞,∞)S̄0R

ε
2(1, 1)Rε

′
1 (0, 0)

〉
− iε

〈
ϕ3(∞,∞)Rε2(1, 1)S̄0R

ε′
1 (0, 0)

〉
we can find the relations expressing all structure constants in terms of two independent
constants:

C̃±321 = ∓i
[
(β̄1β1 + β̄2β2)C±321 − (β̄1β2 + β̄2β1)C∓321

]
D±321 = ie±i

π
4
[
β2C

∓
321 + β1C

±
321

]
(3.17)

D̄±321 = −ie∓i
π
4
[
β̄2C

∓
321 + β̄1C

±
321

]

3.2 The 3-point Ramond block

3.2.1 Ramond field vs. chiral vertex operators

We would like to define a chiral 3-form in such a way that any 3-point function with Ramond
field R±NR could be written in terms of it. Since the Ramond fields correspond to states from
”small representation”W∆,∆̄ ⊂ W∆⊗W̄∆̄ (3.9), the relation between a correlator of Ramond
fields and the chiral form defined on W∆ and NS module is not straightforward.

Let us start by defining the form which is anti-linear in the left argument and linear in
the central and the right ones:

%NR(ξ3, η2, η1) : V∆3 ×W∆2 ×W∆1 7→ C
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and satisfies the following relations:
∞∑
p=0

(
1
2
p

)
z

1
2
−p %NR(ξ3, Sp−nη2, η1|z)

=
∞∑
p=0

(
−n+ 1

2
p

)
(−z)p %NR(Sp+n− 1

2
ξ3, η2, η1|z)

−i(−1)|ξ3|+|η1|+1
∞∑
p=0

(
−n+ 1

2
p

)
(−1)n+pz

1
2
−n−p%NR(ξ3, η2, Spη1|z)

∞∑
p=0

(
n+ 1

2
p

)
zn+ 1

2
−p %NR(ξ3, Spη2, η1|z) (3.18)

=
∞∑
p=0

(
1
2
p

)
(−z)p %NR(Sp−n− 1

2
ξ3, η2, η1|z)

−i(−1)|ξ3|+|η1|+1
∞∑
p=0

(
1
2
p

)
(−1)p z

1
2
−p%NR(ξ3, η2, Sn+pη1|z),

and the relations with Virasoro generators of the form (2.26)-(2.29). An even or an odd
number |ξ3|, |η1| denote even or odd parities of ξ3 ∈ V∆3 , η1 ∈ W∆1 , respectively. We will
call these formulae Ward identities for the non normalized form %NR.

The form is determined by these relations up to four independent constants. We define
the forms ρijNR ; i, j = ± as coefficients in front of these constants:

%NR(ξ3, η2, η1|z) = ρ++
NR (ξ3, η2, η1|z)%NR(ν3, w

+
2 , w

+
1 |1)

+ ρ+−
NR (ξ3, η2, η1|z)%NR(ν3, w

+
2 , w

−
1 |1) (3.19)

+ ρ−+
NR (ξ3, η2, η1|z)%NR(ν3, w

−
2 , w

+
1 |1)

+ ρ−−NR (ξ3, η2, η1|z)%NR(ν3, w
−
2 , w

−
1 |1) .

The Ward identities for %NR containing the Virasoro generators determine the z dependence
of all the coefficients:

ρijNR(ξ3, η2, η1|z) = z∆3(ξ3)−∆2(η2)−∆1(η1)ρijNR(ξ3, η2, η1)

where
ρijNR(ξ3, η2, η1) ≡ ρijNR(ξ3, η2, η1|1).

Our aim is to express any 3-point function containing primary R±NR fields and satisfying
Ward identities (3.14),(3.15) in terms of the 3-form defined by the formulae (3.18). In the
first step we shall find a relation between two independent structure constants C± (3.17)
and eight chiral constants %NR, %̄NR. The correlators C± are matrix elements of Ramond
primary fields between states |ν ⊗ ν̄〉 and w±

∆,∆̄
. The constants %NR are matrix elements of

non normalized chiral vertex operators. These operators are defined in the following way:

〈ξ3|V ±NRe(z)|η1〉 = %NR(ξ3, w
±, η1|z) , |ξ3|, |η1| equal parities

〈ξ3|V ±NRo(z)|η1〉 = %NR(ξ3, w
±, η1|z) , |ξ3|, |η1| theopposite parities
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Thus, in order to find the relation between C± and constants %NR, %̄NR one should express the
fields R±NR by non normalized chiral vertex operators. The construction of the states w±

∆,∆̄
in

the “small representation” (3.9) suggest the following form of the Ramond fields

R+
NR = AV +

NRe ⊗ V̄ +
NRe +BV +

NRo ⊗ V̄ +
NRo + iBV −NRe ⊗ V̄ −NRe − iAV −NRo ⊗ V̄ −NRo (3.20)

R−NR = AV +
NRe ⊗ V̄ −NRo −BV +

NRo ⊗ V̄ −NRe +BV −NRe ⊗ V̄ +
NRo +AV −NRo ⊗ V̄ +

NRe.

The coefficients are fixed up to A and B by Ward identities for matrix elements of the fields
R±NR (3.17). The relations above imply that the structure constants are given by the following
formulae:

C+ = A%NR(ν, w+, w+; 1) %̄NR(ν, w+, w+; 1) + iB %NR(ν, w−, w+; 1) %̄NR(ν, w̄−, w+; 1)

+ iB %NR(ν, w+, w−; 1) %̄NR(ν, w+, w̄−; 1) +A%NR(ν, w−, w−; 1) %̄NR(ν, w−, w−; 1)
(3.21)

C− = A%NR(ν, w+, w+; 1) %̄NR(ν, w−, w−; 1) +B %NR(ν, w−, w+) %̄NR(ν, w+, w−; 1)

− B %NR(ν, w+, w−; 1) %̄NR(ν, w−, w+; 1) +A%NR(ν, w−, w−; 1) %̄NR(ν, w+, w+; 1) .

Knowing formulae (3.20) one can consider arbitrary matrix elements of primary Ramond
fields. In order to compute how the 3-point correlators reduce to the structure constants
given by (3.21), some properties of the forms ρijNR ; i, j = ± will be useful. One can derive
these properties by analyzing Ward identities for non normalized 3-form (3.18). Since the
Ward identities are complicated, the derivations are laborious even in the case of relations
concerning basic features of the 3-forms.

First, one can check that for a given S−Iν, S−Jw
+
1 the 3-form %NR is proportional to two

out of four constants:

ρ±±NR (S−Iν, w+
2 , S−Jw

+
1 ) = 0, if (2|I|+ ]J) ∈ 2N + 1

ρ±∓NR (S−Iν, w+
2 , S−Jw

+
1 ) = 0, if (2|I|+ ]J) ∈ 2N

Secondly, the formulae (3.18) hardly depend on the parity of the second state w±2 . More
precisely, only the action of the last S0 on w±2 is relevant:

%NR(S−Iν, w+
2 , S−Jw

+
1 |1) = f1 %NR(ν3, w

+
2 , w

+
1 |1) + f2 %NR(ν3, S0w

+
2 , S0w

+
1 |1) (3.22)

%NR(S−Iν, w−2 , S−Jw
+
1 |1) = f1 %NR(ν3, w

−
2 , w

+
1 |1) + f2 %NR(ν3, S0w

−
2 , S0w

+
1 |1),

where (2|I| + ]J) ∈ 2N. Since f1, f2 are results of the action of S2
0 , L−1, L0, they are

functions of conformal weights or β2
i , independent of the parity of w±2 or the sign of βi. Using

the definition (3.19) one can read off the relations:

ρ++
NR (S−Iν, w+

2 , S−Jw
+
1 ) = f1 = ρ−+

NR (S−Iν, w−2 , S−Jw
+
1 ) (3.23)

ρ−−NR (S−Iν, w+
2 , S−Jw

+
1 ) = −iβ1β2f2 = −i ρ+−

NR (S−Iν, w−2 , S−Jw
+
1 )



76 Conformal blocks in the Ramond sector of N = 1 SCFT

and

ρ++
NR (S−Iν, w+

−β2
, S−Jw

+
1 ) = ρ++

NR (S−Iν, w+
β2
, S−Jw

+
1 ) (3.24)

ρ−−NR (S−Iν, w+
−β2

, S−Jw
+
1 ) = −ρ−−NR (S−Iν, w+

β2
, S−Jw

+
1 )

Similarly, for (2|I|+ ]J) ∈ 2N + 1 one gets:

ρ−+
NR (S−Iν, w+

2 , S−Jw
+
1 ) = −i ρ++

NR (S−Iν, w−2 , S−Jw
+
1 ) (3.25)

ρ+−
NR (S−Iν, w+

2 , S−Jw
+
1 ) = ρ−−NR (S−Iν, w−2 , S−Jw

+
1 )

and

ρ+−
NR (S−Iν, w+

−β2
, S−Jw

+
1 ) = ρ+−

NR (S−Iν, w+
β2
, S−Jw

+
1 ) (3.26)

ρ−+
NR (S−Iν, w+

−β2
, S−Jw

+
1 ) = −ρ−+

NR (S−Iν, w+
β2
, S−Jw

+
1 )

Moreover, analyzing the Ward identities (3.18) one can investigate how the 3-form depends
on the parity of w±1 :

ρ+−
NR (S−Iν, w+

2 , S−Jw
−
1 ) = (−1)|J | ρ++

NR (S−Iν, w+
2 , S−Jw

+
1 )

ρ−+
NR (S−Iν, w+

2 , S−Jw
−
1 ) = −i (−1)|J | ρ−−NR (S−Iν, w+

2 , S−Jw
+
1 ) (3.27)

ρ++
NR (S−Iν, w+

2 , S−Jw
−
1 ) = −i (−1)|J | ρ+−

NR (S−Iν, w+
2 , S−Jw

+
1 )

ρ−−NR (S−Iν, w+
2 , S−Jw

−
1 ) = (−1)|J | ρ−+

NR (S−Iν, w+
2 , S−Jw

+
1 ).

Using the definition (3.19) and relations (3.23), (3.25), (3.27) one can check that all matrix
elements of the Ramond field R±NR depend on the arbitrary constants only via combinations
(3.21). The 3-point functions reduce to the structure constants in the following way:〈
S−I S̄−Ī ν ⊗ ν̄

∣∣ R+
2

∣∣∣S−J S̄−J̄ w+
∆1,∆̄1

〉
= C(+)ρ

(+)
NRe(S−I ν, w

+
2 , S−J w

+
1 ) ρ̄(+)

NRe(S̄−Ī ν, w
+
2 , S̄−J̄ w

+
1 )

+ C(−)ρ
(−)
NRe(S−I ν, w

+
2 , S−J w

+
1 ) ρ̄(−)

NRe(S̄−Ī ν, w
+
2 , S̄−J̄ w

+
1 )〈

S−I S̄−Ī ν ⊗ ν̄
∣∣ R−2 ∣∣∣S−J S̄−J̄ w+

∆1,∆̄1

〉
(3.28)

= (−1)|J |C(+)ρ
(+)
NRe(S−I ν, w

+
2 , S−J w

+
1 ) ρ̄(+)

NRo(S̄−Ī ν, w
+
2 , S̄−J̄ w

+
1 )

− (−1)|J |C(−)ρ
(−)
NRe(S−I ν, w

+
2 , S−J w

+
1 ) ρ̄(−)

NRo(S̄−Ī ν, w
+
2 , S̄−J̄ w

+
1 )

for S−I ν, S−J̄ w
+
1 of the same parity, and〈

S−I S̄−Ī ν ⊗ ν̄
∣∣ R+

2

∣∣∣S−J S̄−J̄ w+
∆1,∆̄1

〉
= −i(−1)|J |C(+)ρ

(+)
NRo(S−I ν, w

+
2 , S−J w

+
1 ) ρ̄(+)

NRo(S̄−Īν, w
+
2 , S̄−J̄ w

+
1 )

−i (−1)|J |C(−)ρ
(−)
NRo(S−I ν, w

+
2 , S−J w

+
1 ) ρ̄(−)

NRo(S̄−Ī ν, w
+
2 , S̄−J̄ w

+
1 )〈

S−I S̄−Ī ν ⊗ ν̄
∣∣ R−2 ∣∣∣S−J S̄−J̄ w+

∆1,∆̄1

〉
(3.29)

= C(+)ρ
(+)
NRo(S−I ν, w

+
2 , S−J w

+
1 ) ρ̄(+)

NRe(S̄−Īν, w
+
2 , S̄−J̄ w

+
1 )

− C(−)ρ
(−)
NRo(S−I ν, w

+
2 , S−J w

+
1 ) ρ̄(−)

NRe(S̄−Ī ν, w
+
2 , S̄−J̄ w

+
1 )
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for S−I ν, S−J̄ w
+
1 of the opposite parity. The functions proportional to the constants

C(±) =
C+ ± C−

2

have the form:

ρ
(±)
NRe = ρ++

NR ± ρ−−NR , ρ̄
(±)
NRe = ρ̄++

NR ± ρ̄−−NR (3.30)

ρ
(±)
NRo = ρ+−

NR ± iρ−+
NR , ρ̄

(±)
NRo = ρ̄+−

NR ∓ iρ̄−+
NR

We will call them normalized 3-point Ramond blocks. Introducing normalized chiral vertex
operators,

〈ξ3|V (±)
NRe (w±|z)|η1〉 = ρ

(±)
NRe(ξ3, w

±, η1|z) , |ξ3|, |η1| equal parities
〈ξ3|V (±)

NRo (w±|z)|η1〉 = ρ
(±)
NRo(ξ3, w

±, η1|z) , |ξ3|, |η1| theopposite parities
(3.31)

one gets from the calculations of 3-point functions

R+
NR(w+, w̄+|z, z̄) = C(+)

(
V

(+)
NRe (w+|z)⊗ V̄ (+)

NRe (w̄+|z̄) − i V
(+)

NRo (w+|z)⊗ V̄ (+)
NRo (w̄+|z̄)

)
+ C(−)

(
V

(−)
NRe (w+|z)⊗ V̄ (−)

NRe (w̄+|z̄) − i V
(−)

NRo (w+|z)⊗ V̄ (−)
NRo (w̄+|z̄)

)
(3.32)

R−NR(w+, w̄+|z, z̄) = C(+)
(
V

(+)
NRe (w+|z)⊗ V̄ (+)

NRo (w̄+|z̄) + V
(+)

NRo (w+|z)⊗ V̄ (+)
NRe (w̄+|z̄)

)
− C(−)

(
V

(−)
NRe (w+|z)⊗ V̄ (−)

NRo (w̄+|z̄) + V
(−)

NRo (w+|z)⊗ V̄ (−)
NRe (w̄+|z̄)

)
.

The Ramond fields in the R-NS sector can be directly obtained from the hermicity condition(
R±NR

)† = R±RN (3.13).
Let us observe that

w+
∆ ⊗ w

+
∆̄

+ i w−∆ ⊗ w
−
∆̄
, w+

∆ ⊗ w
−
∆̄
− w−∆ ⊗ w

+
∆̄
∈ kerR±NR

hence the states from “small representation” form an invariant subspace of the full Ramond
fields R±.

The matrix elements of the normalized vertex operators i.e. the 3-point blocks are the
proper objects in terms of which the 4-point Ramond blocks should be defined. Let us
emphasize the basic fact concerning the Ramond 3-point blocks. The definition (3.30) implies
that all properties of the blocks are given by the corresponding properties of the 3-forms and
can be derived solely from the Ward identities (3.18). In particular, relations (3.23), (3.25)
lead to:

ρ
(±)
NRe(S−Iν, w

−
2 , SJw

+
1 ) = ±ρ(±)

NRo(S−Iν, w
+
2 , SJw

+
1 )

ρ
(±)
NRo(S−Iν, w

−
2 , SJw

+
1 ) = ±iρ(±)

NRe(S−Iν, w
+
2 , SJw

+
1 ) .

These imply for chiral vertex operators (3.31):

V
(±)

NRe (w−|z) = ±V (±)
NRo (w+|z) V

(±)
NRo (w−|z) = ±i V (±)

NRe (w+|z).
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Taking into account the graded tensor product structure:

〈ξ3 ⊗ ξ̄3|V (±)
NRp (w±2 )⊗ V̄ (±)

NRp̄ (w̄±2 )|η1 ⊗ η̄1〉 = (−1)|p||w̄
±
2 |+|p̄||η1|%

(±)
NRp(ξ3, w

±
2 , η1)%̄(±)

NRp̄(ξ̄3, w̄
±
2 , η̄1)

where p, p̄ = e, o and |e| = 0, |o| = 1, one gets

−iR+
NS(w−, w̄−|z, z̄) = R+

NS(w+, w̄+|z, z̄)

R+
NS(w+, w̄−|z, z̄) = R+

NS(w−, w̄+|z, z̄) = R−NS(w+, w̄+|z, z̄) .

Moreover, due to relations (3.24), (3.26) the 3-point blocks depend on the sign of β2 in a
very simple way:

ρ
(±)
NRe(S−Iν, w

+
−β2

, SJw
+
1 ) = ±ρ(∓)

NRe(S−Iν, w
+
β2
, SJw

+
1 ) (3.33)

ρ
(±)
NRo(S−Iν, w

+
−β2

, SJw
+
1 ) = ±ρ(∓)

NRo(S−Iν, w
+
β2
, SJw

+
1 ) .

This leads to the following relation for the Ramond primary fields with the same conformal
weights ∆β but opposite sign in front of β:

Rε−β = εRεβ . (3.34)

3.2.2 Fusion rules and fusion polynomials

Consider the three point correlation functions with degenerate NS field φrs within the Feigin-
Fuchs construction [5]. In this approach the Ramond fields are represented by vertex operators
in the free superscalar Hilbert space

R+
β,β̄

(z, z̄) = eaφ(z)+āφ̄(z̄)+iπ
4 σ+(z, z̄) , R−

β,β̄
(z, z̄) = eaφ(z)+āφ̄(z̄)−iπ

4 σ−(z, z̄) (3.35)

where a = Q
2 −
√

2β and σ± are the twist operators of the fermionic sector:

ψ(z)σ±(z, z̄) ∼ 1√
2(z − w)

σ∓(z, z̄) . (3.36)

The left chiral screening charges are given by:

Qb =
∮
dz ψ(z)ebφ(z), Q 1

b
=
∮
dz ψ(z)e

1
b
φ(z),

and the same construction holds in the right sector. The Feigin-Fuchs representation of three
point functions with various number of left screening charges has the form:

Cε(αrs,δ),(β2,0),(β1,0) =
〈
φrsR

ε
β2
Rεβ1

Qkb Q
l
1
b

〉
, k + l ∈ 2N , δ = − 1

2
√

2
(1
b + b) ;

Cε(αrs,δ),(β2,0),(β1,0) =
〈
φrsR

ε
β2
Rεβ1

Qkb Q
l
1
b

Q̄b

〉
, k + l ∈ 2N + 1 , δ = 1

2
√

2
(1
b − b).

The charge conservation implies that the structure constants above are non-zero if and only
if the even fusion rules ( for k + l ∈ 2N ∪ {0}):

β1 + β2 =
1

2
√

2
(1− r + 2k)b+

1
2
√

2
(1− s+ 2l)

1
b
, (3.37)
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or the odd fusion rules ( for k + l ∈ 2N− 1):

β1 + β2 =
1

2
√

2
(1− r + 2k)b+

1
2
√

2
(1− s+ 2l)

1
b

(3.38)

are satisfied (k, l are integers in the range 0 ≤ k ≤ r − 1, 0 ≤ l ≤ s− 1).

Moreover, additional relations between structure constants can be obtained. In the Feigin-
Fuchs representation one can show that for any even integer n ∈ 2N:〈

ψ(w1) . . . ψ(wn)σ−(1, 1)σ−(0, 0)
〉

= −
〈
ψ(w1) . . . ψ(wn))σ+(1, 1)σ+(0, 0)

〉〈
ψ(w1) . . . ψ(wn−1) ψ̄(w̄)σ−(1, 1)σ−(0, 0)

〉
=

〈
ψ(w1) . . . ψ(wn−1) ψ̄(w̄)σ+(1, 1)σ+(0, 0)

〉
If the even fusion rules (3.37) are satisfied this implies

C+
(αrs,δ),(β2,0),(β1,0) = −C−(αrs,δ),(β2,0),(β1,0).

what gives C(+)
(αrs,δ),(β2,0),(β1,0) = 0 and C

(−)
(αrs,δ),(β2,0),(β1,0) 6= 0.

Consider now a 3-point function with zero field corresponding to the null vector χrs.
It follows from equations (3.28),(3.29) that, if the even fusion rules (3.37) are satisfied and
C

(−)
(αrs,δ),(β2,0),(β1,0) 6= 0, then:

ρ
(−)
NRe,o(χrs, w

+
2 , w

+
1 ) = 0

Similarly, for the odd fusion rules (3.38) one gets C(+)
(αrs,δ),(β2,0),(β1,0) 6= 0 and

ρ
(+)
NRe,o(χrs, w

+
2 , w

+
1 ) = 0 .

An additional information on zeros of the forms in question can be derived from the formula

C
(±)
(αrs,δ),(−β2,0),(β1,0) = C

(∓)
(αrs,δ),(β2,0),(β1,0)

which is a simple consequence of (3.34). The form ρ
(+)
NRe,o(χrs, w

+
2 , w

+
1 ) has to vanish for

the even fusion rules (3.37) and ρ
(+)
NRe,o(χrs, w

+
2 , w

+
1 ) for the odd fusion rules (3.38) with the

opposite sign in front of β2 in both cases.

The discussion above suggests the following definition of the fusion polynomials in the
Ramond sector:

P rsc

[
±β2

β1

]
=

r−1∏
p=1−r

s−1∏
q=1−s

(
β1 ∓ β2 +

pb+ qb−1

2
√

2

) r−1∏
p′=1−r

s−1∏
q′=1−s

(
β1 ± β2 +

p′b+ q′b−1

2
√

2

)
(3.39)

where p, q, p′, q′ run with the step 2 and satisfy the conditions: p + q − (r + s) ∈ 4Z + 2
and p′ + q′ − (r + s) ∈ 4Z, corresponding to even and odd fusion rules, respectively. One
easily checks that for rs ∈ 2N, P rsc

[
±β2

β1

]
are polynomials of degree rs

2 in (∆2 −∆1), and for

rs ∈ 2N− 1 – of degree rs−1
2 in (∆2−∆1) with the additional factor (β1∓ β2). On the other
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hand using the definition of the 3-point block (3.30) together with the Ward identities for
non normalized 3-form one can calculate:

ρ
(±)
NRe(Ln−1ν, w

+
2 , w

+
1 ) = (∆ + ∆2 −∆1)n

ρ
(±)
NRo(S− 1

2
Ln−1ν, w

+
2 , w

+
1 ) = e−i

π
4 (β1 ∓ β2)(∆ + ∆2 −∆1)n

where (a)n = Γ(a+n)
Γ(a) is the Pochhammer symbol. Taking into account the normalization

condition for χrs one thus finally obtains:

ρ
(±)
NRe(χrs, w

+
2 , w

+
1 ) = P rsc

[
±β2

β1

]
for rs ∈ 2N ,

ρ
(±)
NRo(χrs, w

+
2 , w

+
1 ) = e−i

π
4 P rsc

[
±β2

β1

]
for rs ∈ 2N− 1 .

(3.40)

3.3 Ramond 4-point blocks

3.3.1 Definition

We shall restrict ourselves to 4-point blocks corresponding to correlation functions of four
Ramond fields factorized on NS states. The formulae (3.32) expressing Ramond primary
fields R±NR, R

±
RN in terms of normalized chiral vertex operators together with the properties

of 3-point blocks (3.33) suggests the following definition of Ramond 4-point blocks:

F fc,∆

[
±β3 ±β2

β4 β1

]
=

∑
|K|+|M |=|L|+|N |=f

ρ
(±)
|f | (ν∆,KM , w

+
β3
, w+

4 )
[
Bf
c,∆

]KM,LN
ρ

(±)
|f | (ν∆,LN , w

+
β2
, w+

1 ).

(3.41)
where |f | = e for f ∈ N, |f | = o for f ∈ N− 1

2 , ν∆,KM is the standard basis in the NS Verma

module Vc,∆ (2.12), and
[
Bf
c,∆

]KM,LN
denotes the inverse NS Gram matrix. One has four

even:

F1
∆

[
±β3 ±β2

β4 β1

]
(z) = z∆−∆2−∆1

(
1 +

∑
m∈N

zmFmc,∆

[
±β3 ±β2

β4 β1

])
, (3.42)

and four odd,

F
1
2
∆

[
±β3 ±β2

β4 β1

]
(z) = z∆+ 1

2
−∆2−∆1

∑
k∈N− 1

2

zk−
1
2F kc,∆

[
±β3 ±β2

β4 β1

]
, (3.43)

conformal blocks.
It follows from the definition of the blocks’ coefficients F fc,∆

[
±β3 ±β2

β4 β1

]
that they are poly-

nomials in βi, and rational functions of the intermediate weight ∆ and the central charge c.
Due to the properties of inverse NS Gram matrix (2.1.3), the coefficients can be expressed as
a sum over the poles in ∆ :

F fc,∆

[
±β3 ±β2

β4 β1

]
= hfc,∆

[
±β3 ±β2

β4 β1

]
+

∑
1<rs≤2f

r+s∈2N

Rfc, rs
[
±β3 ±β2

β4 β1

]
∆−∆rs(c)

, (3.44)
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with ∆rs(c) given by Kac determinant formula (2.13).
The calculation of the residue at ∆rs is essentially the same as in the NS case. With a

suitable choice of basis in Vc,∆ (2.52) one gets

Rfc, rs
[
±β3 ±β2

β4 β1

]
= Ars(c) × (3.45)∑

ρ
(±)
|f | (S−KL−Mχrs, w+

3 , w
+
4 )
[
B
f− rs

2

c,∆rs+
rs
2

]KM,LN
ρ

(±)
|f | (S−LL−Nχrs, w+

2 , w
+
1 ),

with coefficients Ars(c) given by (2.53).
Analyzing Ward identities for the 3-form (3.15) one can check that the factorization

property of the forms ρ(±)
NR holds on singular vectors. In the case rs

2 ∈ N one gets

ρ
(±)
NRe(S−Iχrs, w

+
2 , w

+
1 ) = ρ

(±)
NRe(S−Iν∆rs+

rs
2
, w+

2 , w
+
1 ) ρ(±)

NRe(χrs, w
+
2 , w

+
1 ) , |I| ∈ N ,

ρ
(±)
NRo(S−Kχrs, w

+
2 , w

+
1 ) = ρ

(±)
NRo(S−Kν∆rs+

rs
2
, w+

2 , w
+
1 ) ρ(±)

NRe(χrs, w
+
2 , w

+
1 ) , |K| ∈ N + 1

2 ,

while in the case rs
2 ∈ N + 1

2

ρ
(±)
NRo(S−Iχrs, w

+
2 , w

+
1 ) = ρ

(∓)
NRe(S−Iν∆rs+

rs
2
, w+

2 , w
+
1 ) ρ(±)

NRo(χrs, w
+
2 , w

+
1 ) , |I| ∈ N ,

ρ
(±)
NRe(S−Kχrs, w

+
2 , w

+
1 ) = i ρ

(∓)
NRo(S−Iν∆rs+

rs
2
, w+

2 , w
+
1 ) ρ(±)

NRo(χrs, w
+
2 , w

+
1 ) , |K| ∈ N + 1

2 .

Using the factorization properties one can obtain formulae for the residue:

Rfc, rs
[
±β3 ±β2

β4 β1

]
= Ars(c) ρ

(±)
RNe(χrs, w

+
3 , w

+
4 )ρ(±)

NRe(χrs, w
+
2 , w

+
1 )F

f− rs
2

c,∆rs+
rs
2

[
±β3 ±β2

β4 β1

]
(3.46)

for rs
2 ∈ N ∪ {0}, and

Rfc, rs
[
±β3 ±β2

β4 β1

]
= Ars(c) ρ

(±)
RNo(χrs, w

+
3 , w

+
4 )ρ(±)

NRo(χrs, w
+
2 , w

+
1 )F

f− rs
2

c,∆rs+
rs
2

[
∓β3 ∓β2

β4 β1

]
(3.47)

for rs
2 ∈ N − 1

2 . The 3-point blocks ρ(±)
NRp(χrs, w+

2 , w
+
1 ) are given by the fusion polynomials

(3.40).
In order to derive the recursion relation for blocks’ coefficients one has to calculate the

regular in ∆ term in (3.44). As in the case of NS sector, it can be achieved following
Zamolodchikov’s derivation [16].

Notice that the coefficients of Ramond 4-point blocks can be expressed as a sum over
simple poles in crs as well. For these coefficients however, the regular terms in c are not given
by the limit of the blocks in c → ∞. The 3-point blocks are polynomials in βi rather than
in conformal weights. This implies that, unlike NS 3-point blocks, Ramond 3-point blocks
depend of conformal weights and central charge. Thus the reasoning leading to determination
of the terms regular in c (2.56) does not work in case of Ramond 4-point blocks.

3.3.2 Large ∆ asymptotic of Ramond blocks

The first step in the derivation of the elliptic recurrence is to find the large ∆ asymptotic of 4-
point block. As it was reminded in the section 1.4, Zamolodchkov’s reasoning is based on the
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observation that the full ∆i, c dependence of the first two terms in the large ∆ expansion of
the conformal block can be read off from the first two terms of the 1

δ expansion of the classical
block. The basic assumption of this approach concerns the existence of the classical limit
of conformal blocks. Analyzing the N = 1 super-Liouville correlation functions represented
by functional integrals one can justify the the existence of the classical limit of Ramond
blocks. The action in the N = 1 super-Liouville is defined as in (2.59). Within the functional
approach the Ramond fields are represented by vertex operators (3.35). Since the twist fields
are light the fermionic sector does not contribute to the classical limit at all.

The path integral arguments allow to investigate the asymptotical behavior of 4-point
and 3-point correlation functions. Considering the 4-point correlators projected on the even
or the odd subspace of intermediate NS states one may get information concerning individual
blocks. This leads to the assumption that in the limit

b→ 0 , i bβi → pi , b2∆i → δi = p2
i

the asymptotic behavior of Ramond blocks reads

F1
∆

[
±β3 ±β2

β4 β1

]
(z) ∼ r1e

1
2b2

fδ

[
δ3 δ2
δ4 δ1

]
(z)
, F

1
2
∆

[
±β3 ±β2

β4 β1

]
(z) ∼ r 1

2
e

1
2b2

fδ

[
δ3 δ2
δ4 δ1

]
(z)
, (3.48)

where fδ
[
δ3 δ2
δ4 δ1

]
(x) is the classical conformal block and coefficients r1, r 1

2
are independent of

b. In order to determine the δ dependence of r1, r 1
2

one has to check the leading powers
of ∆ in the 3-point blocks defining coefficients of 4-point blocks. Analyzing Ward identities
(3.18) and using reasoning similar as the one leading to relation (3.22), one finds the maximal
powers of ∆ in the forms ρ±±NR , ρ

±∓
NR :

ρ+−
NR (S−Kν, w+

2 , w
+
1 ) ∝ β1∆|K|−

1
2 + . . . , ρ++

NR (S−Kν, w+
2 , w

+
1 ) ∝ ∆|K| + . . . ,

ρ−+
NR (S−Kν, w+

2 , w
+
1 ) ∝ β2∆|K|−

1
2 + . . . , ρ−−NR (S−Kν, w+

2 , w
+
1 ) ∝ β1β2∆|K|−1 + . . . .

This implies for the 3-point blocks:

ρ
(±)
NRe(S−Kν, w

+
2 , w

+
1 ) ∝ ∆|K| + . . . , ρ

(±)
NRo(S−Kν, w

+
2 , w

+
1 ) ∝ (β1 ∓ β2)∆|K|−

1
2 + . . . .

It follows from the ∆ dependence of the inverse NS Gram matrix and from the relations above
that the coefficients r1, r 1

2
are indeed independent of b. Moreover, even 4-point Ramond blocks

have the same asymptotical behavior as even NS blocks (2.72):

r1 ∼ const

as functions of δ. The coefficients of odd Ramond blocks, as in the case of odd NS block
without stars (2.73), have the leading power of ∆ in the numerator smaller by 1 in comparison
to the coefficients of even blocks. Since the power series defining odd blocks do not contain
zeroth order term, one can put the factor (β1∓β2)

∆ in front of these series. This implies that

r 1
2
∼ 1
δ
.
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Once the classical limits of the blocks are known one can again follow Zamolodchikov’s
derivation in order to find large ∆ behavior of the blocks. The even blocks have the same
asymptotics as non supersymmetric and even NS blocks (1.57), while the odd blocks behave
similarly as odd NS block without stars (2.74):

lnF1
∆

[
±β3 ±β2

β4 β1

]
(z) = πτ

(
∆− c

24

)
+
( c

8
−∆1 −∆2 −∆3 −∆4

)
lnK2(z)

+
( c

24
−∆2 −∆3

)
ln(1− z) +

( c
24
−∆1 − ∆2

)
ln(z) + f±±(z) +O

(
1
∆

)
,

lnF
1
2
∆

[
±β3 ±β2

β4 β1

]
(z) = − ln ∆ + πτ

(
∆− c

24

)
+
( c

8
−∆1 −∆2 −∆3 −∆4

)
lnK2(z)

+
( c

24
−∆2 −∆3

)
ln(1− z) +

( c
24
−∆1 − ∆2

)
ln(z) +O

(
1
∆

)
,

where f±±(z) are functions of z specific for each type of block and independent of ∆i and c.

3.3.3 Elliptic recurrence

The large ∆ asymptotic suggests the following form of superconformal blocks:

F1, 1
2

∆

[
±β3 ±β2

β4 β1

]
(z) = (16q)∆− c−3/2

24 z
c−3/2

24
−∆1−∆2 (1− z)

c−3/2
24
−∆2−∆3 (3.49)

× θ
c−3/2

2
−4(∆1+∆2+∆3+∆4)

3 H1, 1
2

∆

[
±β3 ±β2

β4 β1

]
(q).

The elliptic blocks H1, 1
2

∆

[
±β3 ±β2

β4 β1

]
(z) have the same analytic structure as superconformal ones:

H1
∆

[
±β3 ±β2

β4 β1

]
(q) = g±±(q) +

∑
m,n

h1
mn

[
±β3 ±β2

β4 β1

]
(q)

∆−∆mn
,

H
1
2
∆

[
±β3 ±β2

β4 β1

]
(q) =

∑
m,n

h
1
2
mn

[
±β3 ±β2

β4 β1

]
(q)

∆−∆mn
.

In the case of odd elliptic blocks the regular in ∆ terms are zero due to (− ln ∆) in large
asymptotics. The functions g±±(q), non singular in ∆, depend on the block type and are
independent of βi and the central charge c. Thus they can be determined from the analytical
formula of the ĉ = 1 4-point block with ∆i = ∆0 = 1

16 , β0 = 0. This block can be calculated
using the techniques of the chiral superscalar model, which will be discussed in the next
chapter (4.69):

F1
∆

[
β0 β0

β0 β0

]
(q) = (16q)∆ [z(1− z)]−

1
8 θ3(q)−1 (3.50)

The b→ i, βi → β0 limit of each type of general even block is regular for generic values of ∆
and yields

lim
β→0

lim
b→i
F1

∆

[
±β ±β
β β

]
(q) = (16q)∆ [z(1− z)]−

1
8 θ3(q)−1g±±(q) .
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Comparing this with (3.50) one gets

g±±(q) = 1 .

The residua of elliptic blocks h1
mn

[
±β3 ±β2

β4 β1

]
(q) are given by the corresponding residua of

superconformal blocks (3.46),(3.47). The final form of the elliptic recurrence in the Ramond
sector thus reads:

H1, 1
2

∆

[
±β3 ±β2

β4 β1

]
(q) = g1, 1

2 +
∑
m,n>0

m,n∈2N

(16q)
mn
2

Amn(c)Pmnc

[
±β3

β4

]
Pmnc

[
±β2

β1

]
∆−∆mn

H1, 1
2

∆mn+mn
2

[
±β3 ±β2

β4 β1

]
(q)

+
∑
m,n>0

m,n∈2N+1

(16q)
mn
2

Amn(c)Pmnc

[
±β3

β4

]
Pmnc

[
±β2

β1

]
∆−∆mn

H
1
2
,1

∆mn+mn
2

[
∓β3 ∓β2

β4 β1

]
(q), (3.51)

where g1 = 1, g
1
2 = 0.

3.4 Remarks concerning other types of 4-point blocks

In the current chapter the matrix elements of Ramond primary fields between arbitrary
Ramond and NS states have been considered. We have expressed the 3-point functions by
3-point blocks ρ(±)

NRe,o(S−Iν, w
+
2 , SJw

+
1 ) (3.30) and structure constants C(±) (3.28),(3.29). This

allowed to write Ramond primary fields in terms of normalized chiral vertex operators (3.32).
The matrix elements of the vertex operators i.e. the 3-point blocks are basic objects needed
for the definition of 4-point blocks. We have defined the 4-point blocks corresponding to
correlation functions of four primary Ramond fields factorized on NS states. The coefficients
of these blocks are given by 3-point blocks ρ(±)

NRe,o(νKM , w
+
2 , w

+
1 ) and inverse NS Gram matrix.

Due to properties of the inverse NS Gram matrix and factorization property of the 3-point
blocks it was possible to derive the recursive relations for the 4-point blocks.

Let us note, that one can define three more types of 4-point blocks. They appear in the
following types of correlation functions of two Ramond fields and two NS fields:

〈φ4φ3R2R1〉 , 〈R4φ3φ2R1〉 , 〈φ4R3φ2R1〉 . (3.52)

The first correlator factorized on NS states corresponds to a 4-point block which should be de-
fined by NS 3-point blocks ρ(ν4, ν3, ν∆,KM ) (2.32), Ramond 3-point blocks ρ(±)

NRe,o(νKM , w
+
2 , w

+
1 )

and inverse NS Gram matrix. The properties of all these objects have been already discussed
in this dissertation. The recurrence relations for the coefficients of 4-point blocks of this type
can be derived by repeating the steps presented in subsection 3.3.

The other types of 4-point blocks correspond to the second and the third correlator
in (3.52) factorized on Ramond states. These blocks can be defined in terms of Ramond
equivalent of inverse Gram matrix, 3-point blocks ρ(±)

NRe,o(ν4, w
+
3 , w

+
LM ) and one more type of
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3-point blocks corresponding to matrix elements of NS field φRR between Ramond states. The
latter type of 3-point block can be constructed in a similar way as the two discussed already
types of 3-point blocks. The starting point would be the following definition of 3-form:

%∆3∆2∆1
RR ( . . . ; z) : W∆3 × V∆2 ×W∆1 7→ C

satisfying the relations

%∆3∆2∆1
RR (S−nη3, ξ2, η1; z) = (−1)|η1|+|η3|+1%∆3∆2∆1

RR (η3, ξ2, Snη1; z)

+
∞∑

k=− 1
2

(
n+ 1

2
k+ 1

2

)
zn−k%∆3∆2∆1

RR (η3, Skξ2, η1; z),

∞∑
p=0

(
1
2
p

)
z

1
2
−p %∆3∆2∆1

RR (η3, Sp−kξ2, η1; z) =

∞∑
p=0

(
1
2
−k
p

)
(−z)p %∆3∆2∆1

RR (Sp+k− 1
2
η3, ξ2, η1; z)

−(−1)|η3|+|η1|+1
∞∑
p=0

(
1
2
−k
p

)
(−z)

1
2
−k−p%∆3∆2∆1

RR (η3, ξ2, Spη1; z).

In the case of one excited external state (if S−K does not contain operator S0) the 3-form is
determined up to one of 8 constants:

%(S−Kw±3 , ν2, w
±
1 |z) = ρ(S−Kw3, ν2, w1|z)×

 %(w±3 , ν2, w
±
1 |1)

%(w±3 , ν̃2, w
±
1 |1)

where ν̃ = ∗ν, ∗̃ν = ν. The upper (lower) line corresponds to even (odd) number of operators
S−ki . The 8 constants are related with each other in such a way that 4 of them are inde-
pendent. The coefficient of proportionality ρ(S−Kw3, ν2, w1|z) is the proper 3-point block.
Using the relations defining 3-form one can derive the basic properties of the 3-point block,
in particular the factorization property. One should also find the fusion polynomials corre-
sponding to 3-point blocks with a null vector. Afterwards, the definition of 4-point blocks
will be straightforward.

Let us note that the 4-point correlators factorize on Ramond states from the space W∆⊗
W̄∆̄. This should not cause a problem since it is possible to write primary fields φRR, similar
as R±NR, in terms of chiral vertex operators for which the ”small representation” W∆,∆̄ is an
invariant subspace.

The elliptic recurrence representation of the 4-point blocks corresponding to the factor-
ization on Ramond states can be derived by using the techniques presented in this thesis.
The residua of the blocks’ coefficients will be proportional to other blocks’ coefficient, new
fusion polynomials corresponding to a null Ramond vector ωrs and the following factor

ARrs(c) = lim
∆→∆rs

( 〈
ω∆
rs|ω∆

rs

〉
∆−∆rs(c)

)−1

,
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where ω∆
rs ∈ W∆,c. The form of this factor has been already proposed on the basis of higher

equations of motion in the Ramond sector of N = 1 supersymmetric Liouville theory by
A. Belavin and Al. Zamolodchikov [42]. The terms regular in ∆ can be investigated from
the large ∆ asymptotic of the 4-point blocks by analogous reasoning as the one presented in
section (3.3).

Concluding, it seems that by applying the methods presented in the current chapter it
should be possible to derive the recursive methods of determining all types of 4-point block
appearing in N = 1 SCFT.



Chapter 4

Superconformal blocks in c = 3
2

SCFT

In order to derive the elliptic recursive method of determining 4-point block we need an
explicit formula for the block with an arbitrary intermediate weight and any, specific c and
∆i. In [15], [17] Zamolodchikov and Apikyan worked out an exact formula for the 4-point
conformal block corresponding to correlation function of fields with ∆0 = 1

16 , associated with
the continuous limit of spin operators in the Ashkin-Teller model. They considered the c = 1
scalar theory extended by Ramond states of the free scalar current. In such a theory two types
of field operators are present. The fields corresponding to NS states of free scalar current are
given by the exponential operators Vp(z, z̄) = e2ipϕ(z)−2ip̄ϕ̄(z̄), where ϕ(z, z̄) = ϕ(z) + ϕ̄(z̄)
is the free scalar field. Because of the charge conservation condition, only one conformal
family appears in the OPE of two exponential operators. Thus by considering the correlation
functions of these fields it is impossible to derive a formula for the 4-point block with arbitrary
intermediate weight.

The second type of field operators present in the theory are fields corresponding to Ra-
mond states of the free scalar current. Any 4-point correlation function of these fields fac-
torizes on NS current states with arbitrary conformal weight. Using additional to conformal
Ward identities relations following from current algebra one can find a differential equation
for the 4-point function of fields corresponding to so-called Ramond vacuum state. As a
result an explicit analytic formula for the 4-point block can be derived.

In the first section we recall the original derivation presented in [15], [47] in detail. In
the second section we generalize the model by adding free fermion current. We consider
the correlation functions of the NS superconformal fields corresponding to Ramond-Ramond
states of scalar and fermion currents respectively. The 4-point correlation function of these
fields factorize on NS-NS states with arbitrary conformal weight. Applying similar reasoning
as the one proposed by Zamolodchikovs it is possible to derive the explicit formulae for each
type of NS 4-point superconformal blocks in the c = 3

2 model.

In order to calculate Ramond 4-point superconformal blocks one should consider correla-
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tion functions of fields corresponding to Ramond-NS states of scalar and fermion currents re-
spectively. These correlators also factorize on NS-NS states with arbitrary conformal weight.
Examples of exact analytic formulae of the Ramond superconformal blocks are presented in
the third section.

4.1 The 4-point conformal block in c = 1 CFT

4.1.1 NS and Ramond states of scalar current

The chiral scalar (bosonic) current j(z) is defined by the following OPE:

j(z)j(z′) ∼ 1
2(z − z′)2

(4.1)

and is related with free scalar field j(z) = i∂zϕ(z, z̄). We shall consider two types of states:
the Neveu-Schwarz (NS) states for which modes of the bosonic current obey the following
algebra:

j(z) |ξ〉NS =
∑
n∈N

z−n−1jn |ξ〉NS , [jn, jm] =
m

2
δn+m, (4.2)

and the Ramond (R) states defined by:

j(z) |ξ〉R =
∑

k∈N+ 1
2

z−k−1jk |ξ〉R , [jk, jl] =
k

2
δk+l. (4.3)

The highest weight representation of the algebra (4.2) with the highest weight state

j0 |p〉NS = p |p〉NS , jn |p〉NS = 0, n ∈ N,

constitute the NS current module BNSp . The highest weights representation of the algebra
(4.3) with the highest weight state

jk |σ0〉 = 0, k ∈ N− 1
2

form the R current module BR. The space of states is a direct sum of the current modules:

B =

(⊕
p

BNSp

)
⊕ BR,

where p runs through the spectrum of NS highest weight states.
The holomorphic component of energy-momentum tensor of the theory is constructed

from the bosonic current in accordance with the Sugawara-Sommerfeld formula ([47] and
included references):

T (z) =:j(z)j(z) :

One can check that T (z) satisfies the local Ward identities (1.5) with central charge c = 1.
The OPE of T (z) and scalar current implies that j(z) has conformal weight ∆ = 1.
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The Virasoro generators Ln (1.7) are related to the current modes. In NS sector:

L0 = j2
0 + 2

∑
n∈N

j−njn, Lm =
∑
n∈Z

jm−njn, m 6= 0 (4.4)

and in R sector:

L0 =
1
16

+ 2
∑

k∈N− 1
2

j−kjk, Lm =
∑

k∈Z+
1
2

jm−kjk, m 6= 0. (4.5)

It follows from (4.4) that the NS current module BNSp is a Verma module V∆p with conformal
weight ∆p = p2. The conformal vacuum is the highest weight state from NS current module
with p = 0.

Let us consider now the R current sector. The highest weight state, the so called Ramond
vacuum state |σ0〉, is also the highest weight state with respect to Virasoro algebra. Its
conformal weight is equal ∆0 = 1

16 (4.5). The current module builded on this state is a
direct sum of irreducible Verma modules with conformal weights ∆n = (2n+1)2

16 . On each
level n(n+ 1)/4 in R current module the new Virasoro highest weight state with weight ∆n

appears. In particulary, for n = 1 one has:

|σ1〉 = 2 j− 1
2
|σ0〉 .

Using the states-operators correspondence in CFT one can define the primary fields as-
sociated with the Virasoro highest weight states:

lim
z,z̄→0

σ0(z, z̄) |0〉 = |σ0 ⊗ σ̄0〉 , lim
z,z̄→0

σ1(z, z̄) |0〉 = |σ1 ⊗ σ̄0〉 , lim
z,z̄→0

φp(z, z̄) |0〉 = |p⊗ 0〉 .

Since we are interested in z dependence of fields and correlation functions, we will always
choose the corresponding states in the right sector as the Ramond vacuum or the NS vacuum.
For the sake of brevity we will ignore the z̄ dependence and write simply σ0(z), σ1(z) and
φp(z).

The OPEs of current j(z) with the first two primary fields can be read off from the
Ramond algebra (4.3):

j(ξ)σ0(z) ∼ 1
2

(ξ − z)−
1
2σ1(z) (4.6)

j(ξ)σ1(z) ∼ 1
2

(ξ − z)−
3
2σ0(z) + 2(ξ − z)−

1
2∂zσ0(z),

while the OPE with NS field is follows from (4.2):

j(ξ)φp(z) ∼
p

(ξ − z)
φp(z). (4.7)

In the second relation in (4.6) the following Knizhnik-Zamolodchikov (KZ) equation implied
by (4.5) was used:

L−1σ0(z)− j2
− 1

2

σ0(z) = 0, L−1σ0(z) = ∂zσ0(z)
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4.1.2 Relations for the correlation functions

With the help of the OPEs of bosonic current with primary fields (4.6), (4.7) it is possible to
derive the set of relations for 4-point correlation functions of σ0(z), σ1(z).

First, let us consider the following correlation function containing scalar current:

〈j(ξ)σ0(z4)σ0(z3)σ0(z2)σ0(z1)〉.

Because of the square root-like singularities in OPE of j(ξ) with Ramond fields, the correlator
multiplied by the coefficient:

〈j(ξ)σ0(z4)σ0(z3)σ0(z2)σ0(z1)〉
√

(ξ − z4)(ξ − z3)(ξ − z2)(ξ − z1)

is a single valued, holomorphic function of ξ. Since any correlator of j(ξ) without operator
insertions at infinity falls like ξ−2 for large ξ, the function above has to be a constant. Thus
the correlator is given by:

〈j(ξ)σ0(z4)σ0(z3)σ0(z2)σ0(z1)〉 =
A(z4, z3, z2, z1)√

(ξ − z4)(ξ − z3)(ξ − z2)(ξ − z1)
.

I order to determine the ξ-independent function one can expand the r.h.s of this relation
around ξ = z2. Comparing the result with the OPE 〈j(ξ)σ0(z2) (4.6) one gets:

A(z4, z3, z2, z1) =
1
2
√
z21z23z24 〈σ0(z4)σ0(z3)σ1(z2)σ0(z1)〉.

Consider now the correlators projected on NS states:

〈j(ξ)σ0(z4)σ0(z3) |p σ0(z2)σ0(z1)〉 =
1
2
√
z21z23z24

〈σ0(z4)σ0(z3) |p σ1(z2)σ0(z1)〉√
(ξ − z4)(ξ − z3)(ξ − z2)(ξ − z1)

.

Integrating the l.h.s of this equation along contour C[z2,z1] enclosing points z1 and z2 one gets:∮
C[z2,z1]

dξ

2πi
〈j(ξ)σ0(z4)σ0(z3) |p σ0(z2)σ0(z1)〉 = 〈σ0(z4)σ0(z3) |p j0 σ0(z2)σ0(z1)〉

= p 〈σ0(z4)σ0(z3) |p σ0(z2)σ0(z1)〉

The left hand site is given by:

K(zi) =
∮

C[z2,z1]

dξ

2πi
1√

(ξ − z1)(ξ − z2)(ξ − z3)(ξ − z4)
=

2K(z)
π
√
z31z42

, (4.8)

where K(z) is the complete elliptic integral of the first kind:

K(z) =

1∫
0

dt√
(1− t2) (1− t2z)

, z =
z21z43

z31z42
.

Thus the first relation for the 4-point correlation functions reads:

p 〈σ0(z4)σ0(z3) |p σ0(z2)σ0(z1)〉 =
1
2
K(zi)

√
z21z23z24 〈σ0(z4)σ0(z3) |p σ1(z2)σ0(z1)〉 (4.9)
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It also follows from the OPEs (4.6) that the correlator multiplied by the square root
factor:

〈j(ξ)σ0(z4)σ0(z3)σ1(z2)σ0(z1)〉
√

(ξ − z4)(ξ − z3)(ξ − z2)(ξ − z1),

as a function of ξ, is holomorphic on C \ {z2} and has a simple pole at ξ = z2. The correlator
thus reads:

〈j(ξ)σ0(z4)σ0(z3) |p σ1(z2)σ0(z1)〉 =
1√

(ξ − z4)(ξ − z3)(ξ − z2)(ξ − z1)

(
B(zi)
ξ − z2

+ C(zi)
)
.(4.10)

Comparing the expansion of the r.h.s of (4.10) around ξ = z2 with the OPE (4.6) one can
determine the coefficients:

B(zi) =
1
2
√
z21z23z24 〈σ0(z4)σ0(z3) |p σ0(z2)σ0(z1)〉,

C(zi) = 2
√
z21z23z24

[
∂z2 +

1
8

(
1
z21

+
1
z23

+
1
z24

)]
〈σ0(z4)σ0(z3) |p σ0(z2)σ0(z1)〉.

Inserting these functions into (4.10) and integrating along contour C[z2,z1] the second equation
for correlation functions is obtained:

p 〈σ0(z4)σ0(z3) |p σ1(z2)σ0(z1)〉 = 2B(zi) ∂z2K(zi) + C(zi)K(zi) (4.11)

= 2
(
z21z32z42

) 3
8 K

1
2 (zi) ∂z2

[(
z21z32z42

) 1
8 K

1
2 (zi) 〈σ0(z4)σ0(z3) |p σ0(z2)σ0(z1)〉

]
For the 4-point functions of fields in standard locations the equations (4.9) and (4.11)

read:

〈σ0(∞)σ0(1) |p σ0(z)σ0(0)〉 =
1
2

(
2K(z)
π

) 3
2 √

z(1− z) 〈σ0(∞)σ0(1) |p σ1(z)σ0(0)〉,

〈σ0(∞)σ0(1) |p σ1(z)σ0(0)〉 =
2

∆p

(
2K(z)
π

) 1
2

[z(1− z)]
7
8

× ∂z

[(
2K(z)
π

) 1
2

[z(1− z)]
1
8 〈σ0(∞)σ0(1) |p σ0(z)σ0(0)〉

]
.

In order to find an equation for the 4-point block one should write the 4-point correlation
function in terms of conformal blocks:

〈σ0(∞)σ0(1) |p σ0(z)σ0(0)〉 =
∑

|N |=|M |=n

ρ(σ0, σ0, L−Mp|1)
[
Bn
c,∆p

]MN
ρ(L−Np, σ0, σ0|z)× Cp

= Cp Fc,∆p

[
∆0 ∆0
∆0 ∆0

]
(z), (4.12)

where Cp is a z-independent constant. Then, the set of equations for correlators is equivalent
to the following relation:

∆pGp(z) =
(

2K(z)
π

)2

[z(1− z)] ∂zGp(z),
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where

Gp(z) =
(

2K(z)
π

) 1
2

[z(1− z)]
1
8 Fc,∆p

[
∆0 ∆0
∆0 ∆0

]
(z)

Using the relations for elliptic theta function:

θ2
3(q) =

(
2K(z)
π

)
, θ4

3(q) [z(1− z)] ∂z = q∂q

one finds: Gp(z) = D q∆p . The q-independent constant D can be fixed using normalization
condition for the 4-point block (1.36). Finally, one gets the following expression for the
4-point block:

Fc,∆p

[
∆0 ∆0
∆0 ∆0

]
(z) = (16q)∆p [z(1− z)]−

1
8 θ−1

3 (q).

4.2 NS superconformal blocks related to the R-R states in the

c = 3
2 SCFT

4.2.1 Holomorphic currents

We shall consider the supersymmetric generalization of the model presented in the previous
section. In addition to the free bosonic current we will introduce the free fermionic current.

First, let us rewrite the definition of the bosonic current j(z) (with conformal weights
∆ = 1, ∆̄ = 0):

j(z)j(z′) ∼ 1
(z − z′)2

.

In comparison to definition (4.1) the normalization of the current has changed. This implies
also a different normalization of modes of the currents:

j(z) |ξ〉NS =
∑
n∈N

z−n−1jn |ξ〉NS , [jn, jm] = mδn+m, (4.13)

j(z) |ξ〉R =
∑

k∈N+ 1
2

z−k−1jk |ξ〉R , [jk, jl] = kδk+l. (4.14)

As before, the space of states B is a direct sum

B =

(⊕
p

BNSp

)
⊕ BR

where BNSp are the NS current modules defined as a highest weight representations of the
algebra (4.13) with the highest weight state

j0 |p〉NS = p |p〉NS , jn |p〉NS = 0, n ∈ N, (4.15)

and BR is the R current module defined as a highest weight representation of the algebra
(4.14) with the highest weight state

jk |0〉R = 0, k ∈ N− 1
2 . (4.16)
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The fermionic current (with conformal weights ∆ = 1
2 , ∆̄ = 0) is defined by the OPE

ψ(z)ψ(z′) ∼ 1
z − z′

. (4.17)

We will consider the fermionic NS states and fermionic Ramond states:

ψ(z) |ζ〉NS =
∑

k∈N+ 1
2

z−k−
1
2ψk |ζ〉NS , {ψk, ψl} = δk+l, (4.18)

ψ(z) |ζ〉R =
∑
n∈N

z−n−
1
2ψn |ζ〉R , {ψn, ψm} = δn+m. (4.19)

The highest weight representation of the algebra (4.18) with the highest weight state

ψk |0〉NS = 0, k ∈ N− 1
2

constitute the fermionic NS current module FNS . The fermionic R current module FR is
built on the highest weight state |+〉 with respect to algebra (4.19) defined by the relations:

ψ0 |+〉R = 1√
2
|−〉R , ψn |+〉R = 0, n ∈ N.

The space of states F is a direct sum of the fermionic NS current module FNS and the
fermionic R current module FR. The tensor product B ⊗ F decomposes into the direct sum

B ⊗ F =

[(⊕
p

BNSp ⊗FNS
)
⊕ BR ⊗FR

]
⊕

[(⊕
p

BNSp ⊗FR
)
⊕ BR ⊗FNS

]
(4.20)

of highest weight supercurrent modules. The Sugawara construction

T (z) =
1
2

:j(z)j(z) : −1
2

:ψ(z)∂ψ(z) : ,

S(z) = j(z)ψ(z),

defines on the first summand a free field representation of the NS superconformal algebra
with the central charge c = 3

2 . In this sector

T (z) =
∑
n∈Z

z−n−2Ln, S(z) =
∑

k∈Z+ 1
2

z−k−
3
2Sk,

where

L0 =
1
2
j2
0 +

∑
n∈N

j−njn +
∑

k∈N− 1
2

(k + 1
2)ψ−kψk,

Lm =
1
2

∑
n∈Z

:jm−njn : +
1
4

∑
k∈Z+ 1

2

(2k −m) :ψm−kψk : ,

Sk =
∑
n∈Z

jnψk−n,
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on the subspace
⊕
p
BNSp ⊗FNS and

L0 =
∑

k∈N− 1
2

j−kjk +
∑
n∈N

(n+
1
2

)ψ−nψn +
1
8
,

Lm =
1
2

∑
k∈Z+

1
2

:jm−kjk : +
1
4

∑
n∈Z

(2n−m) :ψm−nψn : , (4.21)

Sk =
∑
n∈Z

ψnjk−n

on BR ⊗FR.
Let us note, that the states from the second term in the direct sum (4.20) correspond to

superconformal Ramond fields. In the next section we shall analyze correlation functions of
fields associated with the states from BR ⊗FNS .

The NS-NS supercurrent module BNSp ⊗ FNS is a superconformal NS module V∆p with
the conformal weight ∆p = p2

2 . The highest weight state with respect to NS superconformal
algebra is given by:

νp ≡ |p〉NS ⊗ |0〉NS .

By the one to one state-operator correspondence in SCFT the state νp is associated with the
superprimary field φp(z):

lim
z→0

φp(z) |0〉 = |p〉NS ⊗ |0〉NS ,

where |0〉 = |0〉NS ⊗ |0〉NS ∈ BNS0 ⊗ FNS is the “true” vacuum invariant with respect to
superconformal transformations. As in the first section, for the sake of brevity, we will ignore
the z̄ dependence of the fields keeping in mind that as the corresponding state in right sector
one can choose the vacuum.

In the R-R supercurrent module BR ⊗ FR there exists the highest weight state which
corresponds to superprimary field with conformal weight ∆0 = 1

8 :

χ+
0 (0) |0〉 = |0〉R ⊗ |+〉R ≡ χ

+
0 .

There is one more superprimary field with the same conformal weight ∆0 = 1
8 but with

opposite parity. It corresponds to the state:

χ−0 (0) |0〉 =
√

2ψ0χ
+
0 (0) |0〉 = |0〉R ⊗ |−〉R ≡ χ

−
0 .

In supercurrent modules the parity of the fields is defined by the number of fermionic exci-
tations. One can check that on each n(n+1)

2 level, among descendants of χ+
0 , there are two

states corresponding to superprimary fields with equal weights and opposite parity. Since all
c = 3

2 , ∆n = 1
2

(
n+ 1

2

)2 superconformal NS modules are not degenerate the superconformal
content of the R-R module can be read off from the ratio

χRR(t)
χc(t)

= 2
∞∑
n=0

t
n(n+1)

2
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where χRR(t) is the character of BR ⊗FR

χRR(t) = 2t
1
8

∞∏
k=1

1 + tk

1− t
2k−1

2

and

χc(t) = t
1
8

∞∏
k=1

1 + t
2k−1

2

1− tk

is the character of the superconformal NS module.
The R-R module is hence a direct sum of irreducible NS superconformal Verma modules

with conformal weights

∆n =
1
2

(
n+

1
2

)2

, n = 0, 1, . . . ,

each weight appearing twice in the sum. We shall denote the corresponding superprimary
fields by χ±n (z), in particular χ±0 (z) and

χ±1 (z) =
1
2

(
j2
− 1

2

− ψ−1ψ0

)
χ±0 (z). (4.22)

We define these fields in such a way that in each case |0〉R ⊗ |+〉R is the corresponding state
in the right sector.

4.2.2 Relations for the correlation functions

Using the technique presented in the first section (4.1.2) of this chapter one can derive the
set of equations for the 4-point correlation functions of R-R fields.

First, consider the correlator with arbitrary pattern of upper signs ensuring positive total
parity of the function: 〈

j(ξ)χ±0 (z4)χ±0 (z3)χ±0 (z2)χ±0 (z1)
〉
.

The OPEs of the bosonic current and the superprimary field χ±0 can be derived from the
algebra (4.14) and (4.16):

j(ξ)χ±0 (z) ∼ 1√
ξ − z

j− 1
2
χ±0 (z). (4.23)

Repeating the steps leading to the equation (4.9) one gets:〈
χ±0 (z4)χ±0 (z3) j0 χ±0 (z2)χ±0 (z1)

〉
=
√
z21z23z24K(zi)

〈
χ±0 (z4)χ±0 (z3)j− 1

2
χ±0 (z2)χ±0 (z1)

〉
,

(4.24)
where K(zi) is related with the elliptic integral of the first kind (4.8).

Next, in order to derive a relation for the correlator containing j− 1
2
χ±0 (z), the OPE of

bosonic current and the field j− 1
2
χ±0 (z) is necessary. It follows from the algebra of modes jk

and ψm and relations (4.21), (4.22) that the OPE reads:

j(ξ) j− 1
2
χ±0 (z) ∼ 1

2(ξ − z)
3
2

χ±0 (z) +
1√
ξ − z

L−1χ
±
0 (z) +

1√
ξ − z

χ±1 (z), (4.25)
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where the KZ equation was used:

L−1χ
±
0 (z) =

1
2

(
j2
− 1

2

+ ψ−1ψ0

)
χ±0 (z). (4.26)

With the help of analogous reasoning as the one leading to (4.11), using the OPE above
instead of (4.6), one can derive the second relation for the 4-point functions:〈

χ±0 (z4)χ±0 (z3) j0 j− 1
2
χ±0 (z2)χ±0 (z1)

〉
=

(
z21z32z42

) 1
4 ∂

∂z2

[(
z21z32z42

) 1
4 K(zi)

〈
χ±0 (z4)χ±0 (z3)χ±0 (z2)χ±0 (z1)

〉]
(4.27)

+
(
z21z32z42

) 1
2 K(zi)

〈
χ±0 (z4)χ±0 (z3)χ±1 (z2)χ±0 (z1)

〉
.

Since the relations (4.24) and (4.27) do not form a closed set of equations we need to find
some formulae relating the correlator containing one field χ±1 with the correlation function
of four χ±0 . This can be done with the help of the OPEs of the fermionic current with
superprimary fields:

√
2ψ(ξ)χ±0 (z) ∼ 1√

ξ − z
χ∓0 (z),

(4.28)√
2ψ(ξ)χ±1 (z) ∼ − 1

2(ξ − z)
3
2

χ∓0 (z) +
1√
ξ − z

L−1χ
∓
0 (z).

These OPEs can be derived from the algebra of modes ψm together with the relations (4.21)
and (4.22). It follows from (4.28) that〈√

2ψ(ξ)χ±0 (z4)χ±0 (z3)χ±m(z2)χ∓0 (z1)
〉√

(ξ − z1)(ξ − z2)(ξ − z3)(ξ − z4)

is an analytic function of ξ. It has poles at the locations zi, but at infinity it vanish faster
than ξ−1. Thus the sum of its residues must vanish. This and (4.28) imply:

0 =

〈
χ−0 (z4)χ+

0 (z3)χ+
0 (z2)χ−0 (z1)

〉
√
z41z42z43

+

〈
χ+

0 (z4)χ−0 (z3)χ+
0 (z2)χ−0 (z1)

〉
√
z31z32z34

+

〈
χ+

0 (z4)χ+
0 (z3)χ−0 (z2)χ−0 (z1)

〉
√
z21z23z24

+

〈
χ+

0 (z4)χ+
0 (z3)χ+

0 (z2)χ+
0 (z1)

〉
√
z12z13z14

(4.29)

for m = 0 and

− (z21z23z24)−
3
4
∂

∂z2

[
(z21z23z24)

1
4
〈
χ+

0 (z4)χ+
0 (z3)χ−0 (z2)χ−0 (z1)

〉]
=

= (z41z42z43)−
1
2
〈
χ−0 (z4)χ+

0 (z3)χ+
1 (z2)χ−0 (z1)

〉
(4.30)

+ (z31z32z34)−
1
2
〈
χ+

0 (z4)χ−0 (z3)χ+
1 (z2)χ−0 (z1)

〉
+ (z12z13z14)−

1
2
〈
χ+

0 (z4)χ+
0 (z3)χ+

1 (z2)χ+
0 (z1)

〉
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for m = 1.

One more set of relations for the correlator with two j− 1
2
χ±0 fields will be needed. It can

be derived using OPEs (4.23), (4.25):〈
χ±0 (z4) j− 1

2
χ±0 (z3) j− 1

2
χ±0 (z2)χ±0 (z1)

〉
(4.31)

=
∮
z3

dξ

2πi
1√
ξ − z3

〈
j(ξ)χ±0 (z4)χ±0 (z3) j− 1

2
χ±0 (z2)χ±0 (z1)

〉

=
√
z21z23z24

z31z32z34

[
∂

∂z2

〈
χ±0 (z4)χ±0 (z3)χ±0 (z2)χ±0 (z1)

〉
+
〈
χ±0 (z4)χ±0 (z3)χ±1 (z2)χ±0 (z1)

〉
+

1
4

(
1
z21

+
1
z32

+
1
z24

)〈
χ±0 (z4)χ±0 (z3)χ±0 (z2)χ±0 (z1)

〉 ]

The relations (4.24), (4.27), (4.29) and (4.30) form the closed set of equations for the
three types of 4-point correlation functions. In the next step one should write the corre-
lators in terms of 4-point blocks and structure constants so that a set of equations for the
blocks could be obtained. Before that, however, we shall derive relations for the 3-point
functions which allow to express the structure constants through one independent constant〈
φp(∞)χ+

0 (1)χ+
0 (0)

〉
.

4.2.3 3-point blocks

The 3-point correlation functions of fields corresponding to states from supercurrent modules
can be written in terms of a 3-form:

〈φ3(ξ3, ξ̄3|∞,∞)φ2(ξ2, ξ̄2|z, z̄)φ1(ξ1, ξ̄1|0, 0) 〉 = η(ξ3, ξ2, ξ1|z) η(ξ̄3, ξ̄2, ξ̄1|z̄). (4.32)

The 3-form, defined on the one NS-NS and two R-R supercurrent modules:

η(ξ, ζ, ζ ′|z) ξ ∈ BNSp ⊗FNS , ζ, ζ ′ ∈ BR ⊗FR,

is a nontrivial extension of the NS superconformal 3-form (2.22). It is determined by Ward
identities for currents j(z), ψ(z) up to one constant

η(νp, χ+
0 , χ

+
0 ) ≡ η(νp, χ+

0 , χ
+
0 |1).

Since in the free superscalar theory the left and the right fermionic parities are independently
preserved, the 3-form identically vanishes if total parity of all arguments is odd.

If the states ζ, ζ ′ belong to definite superconformal Verma modules the form η satisfies
Ward identities for the non-normalized superconformal 3-form (2.23)- (2.29). For instance,
for even vectors

νp,KM = S−KL−Mνp ≡ S−ki . . . S−k1L−mj . . . L−m1νp , |K| ∈ N ∪ {0},
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one has:

η(νp,KM , χ±m, χ
±
n |z) = ρ(νp,KM , χm, χn|z) η(νp, χ±m, χ

±
n ),

(4.33)
η(νp,KM , S− 1

2
χ∓m, χ

±
n |z) = ρ(νp,KM , ∗χm, χn|z) η(νp, S− 1

2
χ∓m, χ

±
n ),

and for odd ones (|K| ∈ N− 1
2):

η(νp,KM , χ∓m, χ
±
n |z) = ρ(νp,KM , χm, χn|z) η(νp, S− 1

2
χ∓m, χ

±
n ),

(4.34)
η(νp,KM , S− 1

2
χ±m, χ

±
n |z) = ρ(νp,KM , ∗χm, χn|z) η(νp, χ±m, χ

±
n ).

The form ρ in the formulae above is the normalized 3-point superconformal block (1.27) and
χm stands for the highest weight state in the superconformal Verma module with the central
charge c = 3

2 and the conformal weight ∆m = 1
2

(
m+ 1

2

)2.
In what follows we shall derive the formulae expressing 3-forms

η(νp, χ±m, χ
±
0 ), η(νp, S− 1

2
χ∓m, χ

±
0 ), m = 0, 1

by the one independent constant η(νp, χ+
0 , χ

+
0 ). We will consider the correlation functions of

the corresponding fields and the bosonic or fermionic current.
First, take the function

f(ξ) =
1√

(ξ − z2)(ξ − z1)

〈
ψ(ξ)φp(z3)χ−0 (z2)χ+

0 (z1)
〉
.

It follows from the OPE-s:

ψ(ξ)χ±0 (z) ∼ 1√
ξ − z

ψ0χ
±
0 (z) =

1√
2(ξ − z)

χ∓0 (z),

ψ(ξ)φp(z) ∼ 1,

that f(ξ) is analytic in the complex ξ plane, have simple poles at ξ = z2, ξ = z1, and falls
off at infinity faster than ξ−1. We thus have

0 =
∮
z3

dξ

2πi
f(ξ) = −

∮
z2

dξ

2πi
f(ξ) +

∮
z1

dξ

2πi
f(ξ)

= − 1√
2z21

〈
φp(z3)χ+

0 (z2)χ+
0 (z1)

〉
+

1√
2z12

〈
φp(z3)χ−0 (z2)χ−0 (z1)

〉
,

so that〈
φp(z3)χ−0 (z2)χ−0 (z1)

〉
=
√
z12√
z21

〈
φp(z3)χ+

0 (z2)χ+
0 (z1)

〉
= i

〈
φp(z3)χ+

0 (z2)χ+
0 (z1)

〉
.

Since the antiholomorphic 3-form present in the decomposition of the 3-point functions〈
φp(∞)χ±m(1)χ±n (0)

〉
= η(νp, χ±m, χ

±
n )η̄(0, χ̄+

0 , χ̄
+
0 )
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is always the same, equations for the 3-point functions imply relations for the 3-forms. In
particular,

η(νp, χ−0 , χ
−
0 ) = i η(νp, χ+

0 , χ
+
0 ). (4.35)

Here and below we adopt the convention that for j < l :

zjl = eiπzlj .

Next, integrating around ξ = z3 the identity〈
j(ξ)φp(z3)χ±0 (z2)χ±0 (z1)

〉
=

z23
√
z21

(ξ − z3)
√

(ξ − z2)(ξ − z1)

〈
φp(z3)j− 1

2
χ±0 (z2)χ±0 (z1)

〉
we get

p
〈
φp(z3)χ±0 (z2)χ±0 (z1)

〉
=
√
z21z32

z31

〈
φp(z3)j− 1

2
χ±0 (z2)χ±0 (z1)

〉
,

what gives
η(νp, j− 1

2
χ±0 , χ

±
0 ) = p η(νp, χ±0 , χ

±
0 ). (4.36)

Analogous computation gives

η(χ±0 , j− 1
2
χ±0 , νp) = −ip η(χ±0 χ

±
0 , νp).

In the case of correlation function containing the field χ1 or S− 1
2
χ1 the calculations are

similar but involve more steps. Using the OPE (4.25) in the form

j(ξ)j− 1
2
χ±0 (z) ∼ 1

2(ξ − z)
3
2

χ±0 (z) +
1√
ξ − z

j2
− 1

2

χ±0 (z)

we get〈
j(ξ)φp(z3)j− 1

2
χ±0 (z2)χ±0 (z1)

〉
=

(
a

ξ − z2
+ b

)
1

(ξ − z3)
√

(ξ − z1)(ξ − z2)
, (4.37)

with

a =
1
2
z23
√
z21

〈
φp(z3)χ±0 (z2)χ±0 (z1)

〉
,

b = z23
√
z21

[〈
φp(z3)j2

− 1
2

χ±0 (z2)χ±0 (z1)
〉

+
1
4

(
1
z21

+
2
z23

)〈
φp(z3)χ±0 (z2)χ±0 (z1)

〉]
.

Integrating (4.37) around ξ = z3 we derive a relation

〈
φp(z3)j2

− 1
2

χ±0 (z2)χ±0 (z1)
〉

=

(
2∆p − 1

4

z21
+

2∆p

z32

)〈
φp(z3)χ±0 (z2)χ±0 (z1)

〉
(4.38)

From the definition of χ1(z) (4.22) and the KZ equation (4.26) we get〈
φp(z3)χ±1 (z2)χ±0 (z1)

〉
=

〈
φp(z3)j2

− 1
2

χ±0 (z2)χ±0 (z1)
〉
− 1

2
∂z2

〈
φp(z3)χ±0 (z2)χ±0 (z1)

〉
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The z-dependence of the 3-point function is given by (1.18):〈
φp(z3)χ±0 (z2)χ±0 (z1)

〉
= z

−∆p

32 z
−∆p

31 z
∆p− 1

4
21

〈
φp(∞)χ±0 (1)χ±0 (0)

〉
,

thus

η(νp, χ±1 , χ
±
0 ) = ∆p η(νp, χ±0 , χ

±
0 ). (4.39)

Finally, similar calculation with the help of the relation

S− 1
2
χ±1 =

(
3j3
− 1

2

ψ0 + 2S− 3
2
− 5L−1S− 1

2

)
χ±0 ,

gives

η(νp, S− 1
2
χ+

1 , χ
−
0 ) =

ip√
2

(
∆p −

1
2

)
η(νp, χ+

0 , χ
+
0 ). (4.40)

4.2.4 4-point NS superconformal blocks

We shall express the 4-point correlation functions in terms of 4-point superconformal blocks
and one independent structure constants. Then, on the basis of relations (4.24)-(4.30), one
can derive a set of equations for the blocks. Any 4-point function of R-R fields factorizes on
NS-NS states, for example:〈

χ+
0 (∞)χ+

0 (1) j0 χ+
0 (z)χ+

0 (0)
〉

=
∑
p

∑
K,M,L,N

η(χ+
0 , χ

+
0 , νp,KM )BKM,LNη(j0νp,LN , χ+

0 , χ
+
0 |z) D̄

where due to the left parity conservation the sum runs over even states |K|, |L| ∈ N ∪ {0}.
D̄ denotes some z̄-dependent function which is the same in the case of each discussed 4-
point correlator. Taking into account properties of the 3-form (4.33) and definitions of the
superconformal blocks ( 2.48) one gets〈
χ+

0 (∞)χ+
0 (1) j0 χ+

0 (z)χ+
0 (0)

〉
(4.41)

=
∑
p

∑
K,M,L,N

p η(χ+
0 , χ

+
0 , νp) η(νp, χ+

0 , χ
+
0 ) ρ(χ0, χ0, νp,KM )BKM,LN ρ(j0νp,LN , χ0, χ0|z) D̄

=
∑
p

pCpF
1
∆p

[
∆0 ∆0
∆0 ∆0

]
(z)

where Cp ≡ η(χ+
0 , χ

+
0 , νp)η(νp, χ+

0 , χ
+
0 ) D̄. The correlation function of fields with different

parities
〈
χ+

0 (∞)χ−0 (1) j0 χ+
0 (z)χ−0 (0)

〉
factorizes on odd states. Using formulae (4.34), the

following relation

S− 1
2
χ∓0 = j− 1

2
χ±0
√

2 (4.42)
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and (4.35), (4.36) one has in this case〈
χ+

0 (∞)χ−0 (1) j0 χ+
0 (z)χ−0 (0)

〉
=
∑
p

p η(χ+
0 , S− 1

2
χ−0 , νp)η(νp, S− 1

2
χ+

0 , χ
−
0 )

×
∑

K,M,L,N

ρ(χ0, χ0, νp,KM )BKM,LNρ(j0νp,LN , χ0, χ0|z) D̄

=
∑
p

p∆pCp F
1
2

∆p

[
∆0 ∆0
∆0 ∆0

]
(z)

It follows from the relation (4.42) that the correlators with j− 1
2
χ±0 decompose onto su-

perconformal blocks with one star:〈
χ+

0 (∞)χ+
0 (1) j− 1

2
χ+

0 (z)χ+
0 (0)

〉
=

∑
p

pCp F
1
∆p

[
∆0 ∗∆0
∆0 ∆0

]
(z) (4.43)

and 〈
χ+

0 (∞)χ−0 (1) j− 1
2
χ+

0 (z)χ−0 (0)
〉

=
∑
p

pCp F
1
2

∆p

[
∆0 ∗∆0
∆0 ∆0

]
(z)

Analogously, using properties of the 3-form η (4.33), (4.34) and relations (4.35) - (4.40)
one can write all the 4-point functions discussed in section (4.2.2) in terms of the 4-point
superconformal blocks and one constant Cp.

Inserting the relations expressing correlators in terms of 4-point blocks (4.41), (4.43) into
equation (4.24) one gets the following equation for superconformal blocks:

F 1
∆p

[
∆0 ∆0
∆0 ∆0

]
(z) =

2K(z)
π

√
z(1− z)F 1

∆p

[
∆0 ∗∆0
∆0 ∆0

]
(z). (4.44)

For the odd blocks corresponding to the correlators of fields with different parities the equation
(4.24) implies:

∆p F
1
2

∆p

[
∆0 ∆0
∆0 ∆0

]
(z) =

2K(z)
π

√
z(1− z)F

1
2

∆p

[
∆0 ∗∆0
∆0 ∆0

]
(z). (4.45)

Similarly, the relation (4.27) leads to the equations:

2∆p F
1
∆p

[
∆0 ∗∆0
∆0 ∆0

]
(z) = [z(1− z)]

1
4
∂

∂z

[
2K(z)
π

[z(1− z)]
1
4F 1

∆p

[
∆0 ∆0
∆0 ∆0

]
(z)
]

(4.46)

+ ∆p
2K(z)
π

[z(1− z)]
1
2F 1

∆p

[
∆0 ∆1
∆0 ∆0

]
(z),

2F
1
2

∆p

[
∆0 ∗∆0
∆0 ∆0

]
(z) = [z(1− z)]

1
4
∂

∂z

[
2K(z)
π

[z(1− z)]
1
4F

1
2

∆p

[
∆0 ∆0
∆0 ∆0

]
(z)
]

(4.47)

+
(
∆p − 1

2

) 2K(z)
π

[z(1− z)]
1
2F

1
2

∆p

[
∆0 ∆1
∆0 ∆0

]
(z).

The next two equations can be obtained from (4.29) and (4.30), respectively:

∆p F
1
2

∆p

[
∆0 ∆0
∆0 ∆0

]
(z) = (1−

√
1− z) z−

1
2F 1

∆p

[
∆0 ∆0
∆0 ∆0

]
(z) (4.48)

[z(1− z)]−
1
4
∂

∂z

[
[z(1− z)]

1
4F 1

∆p

[
∆0 ∆0
∆0 ∆0

]
(z)
]

= (4.49)

= ∆p(∆p − 1
2)
√
z F

1
2

∆p

[
∆0 ∆1
∆0 ∆0

]
(z) + ∆p

2K(z)
π

√
1− z F 1

∆p

[
∆0 ∆1
∆0 ∆0

]
(z).
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Formulae (4.44) – (4.48) allow to express the functions F f∆p

[
∆0 ∆1
∆0 ∆0

]
(z), F f∆p

[
∆0 ∗∆0
∆0 ∆0

]
(z) and

F
1
2

∆p

[
∆0 ∆0
∆0 ∆0

]
(z) in terms of F 1

∆p

[
∆0 ∆0
∆0 ∆0

]
(z). Using (4.49) we then arrive at the equation

dGp(z)
dz

=

[
∆p

z(1− z)

(
2K(z)
π

)−2

− 1−
√

1− z
4z
√

1− z

]
Gp(z), (4.50)

where

Gp(z) = [z(1− z)]
1
4

(
2K(z)
π

) 1
2

F 1
∆p

[
∆0 ∆0
∆0 ∆0

]
(z).

Integrating (4.50) we get

F 1
∆p

[
∆0 ∆0
∆0 ∆0

]
(z) = (16q)∆p

(
1 +
√

1− z
2

) 1
2

[z(1− z)]−
1
4

(
2K(z)
π

)− 1
2

.

Using relations:

2K(z)
π

= θ2
3(q),

(
1 +
√

1− z
2

) 1
2

θ3(q) = θ3(q2),
(

1−
√

1− z
2

) 1
2

θ3(q) = θ2(q2)

where theta functions are defined in the standard way:

θ3(q) =
∞∑

n=−∞
qn

2
, θ2(q) =

∞∑
n=−∞

q(n+ 1
2

)2

one finally obtains:

F 1
∆p

[
∆0 ∆0
∆0 ∆0

]
(z) = [z(1− z)]−

1
4 (16q)∆p θ−2

3 (q) θ3(q2), (4.51)

F
1
2

∆p

[
∆0 ∆0
∆0 ∆0

]
(z) = [z(1− z)]−

1
4

(16q)∆p

∆p
θ−2

3 (q) θ2(q2), (4.52)

F 1
∆p

[
∆0 ∗∆0
∆0 ∆0

]
(z) = [z(1− z)]−

3
4 (16q)∆p θ−4

3 (q) θ3(q2), (4.53)

F
1
2

∆p

[
∆0 ∗∆0
∆0 ∆0

]
(z) = [z(1− z)]−

3
4 (16q)∆p θ−4

3 (q) θ2(q2), (4.54)

F 1
∆p

[
∆0 ∆1
∆0 ∆0

]
(z) = [z(1− z)]−

5
4 (16q)∆p θ−6

3 (q)
(
θ3(q2)− q

∆p

∂

∂q
θ3(q2)

)
, (4.55)

F
1
2

∆p

[
∆0 ∆1
∆0 ∆0

]
(z) = [z(1− z)]−

5
4

(16q)∆p

∆p − 1
2

θ−6
3 (q)

(
θ2(q2)− q

∆p

∂

∂q
θ2(q2)

)
. (4.56)

Equations for functions F f∆p

[
∗∆0 ∗∆0
∆0 ∆0

]
(z) can be obtained from (4.31) using the relations

(4.36), (4.39), (4.40):

2∆p F
1
∆p

[
∗∆0 ∗∆0
∆0 ∆0

]
(z) =

√
z

(
∂

∂z
+

1
4z(1− z)

)
F 1

∆p

[
∆0 ∆0
∆0 ∆0

]
(z) +

√
z∆p F

1
∆p

[
∆0 ∆1
∆0 ∆0

]
(z),

2
∆p

F
1
2

∆p

[
∗∆0 ∗∆0
∆0 ∆0

]
(z) =

√
z

(
∂

∂z
+

1
4z(1− z)

)
F

1
2

∆p

[
∆0 ∆0
∆0 ∆0

]
(z) +

√
z (∆p −

1
2

)F
1
2

∆p

[
∆0 ∆1
∆0 ∆0

]
(z).
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From results (4.51), (4.55) and (4.52), (4.56) one gets, respectively:

F 1
∆p

[
∗∆0 ∗∆0
∆0 ∆0

]
(z) = z−

3
4 (1− z)−

5
4 (16q)∆p

θ3(q2)
θ6

3(q)

(
1− q

∆p
θ−1

3 (q)
∂θ3(q)
∂q

+
θ4

2(q)
4∆p

)
,

(4.57)

F
1
2

∆p

[
∗∆0 ∗∆0
∆0 ∆0

]
(z) = −z−

3
4 (1− z)−

5
4 (16q)∆p

θ2(q2)
θ6

3(q)
∆p

(
1− q

∆p
θ−1

3 (q)
∂θ3(q)
∂q

+
θ4

2(q)
4∆p

)
.

Explicit expressions for the conformal blocks (4.51) – (4.57) were used in the derivation of
the elliptic recurrence representation of the NS blocks (2.4.4).

Using the definition of NS elliptic 4-point blocks (2.75) one can read from the formulae
(4.51) – (4.57) the form of c = 3

2 elliptic blocks with weights ∆0 = 1
8 :

H1
∆

[
∆0 ∆0
∆0 ∆0

]
(q) = θ3(q2), H

1
2
∆

[
∆0 ∆0
∆0 ∆0

]
(q) = 1

∆θ2(q2),

H1
∆

[
∆0 ∗∆0
∆0 ∆0

]
(q) = θ3(q2), H

1
2
∆

[
∆0 ∗∆0
∆0 ∆0

]
(q) = θ2(q2),

(4.58)

H1
∆

[
∗∆0 ∗∆0
∆0 ∆0

]
(q) = θ3(q2)

(
1− q

∆θ
−1
3

∂
∂qθ3(q) + θ4

2(q)
4∆

)
,

H
1
2
∆

[
∗∆0 ∗∆0
∆0 ∆0

]
(q) = −θ2(q2)∆

(
1− q

∆θ
−1
3

∂
∂qθ3(q) + θ4

2(q)
4∆

)
.

(4.59)

4.3 Ramond superconformal blocks related to the R-NS states

in the c = 3
2 SCFT

We shall present the derivation of explicit formulae for several examples of Ramond elliptic
blocks in c = 3

2 SCFT model introduced in the previous section.
The generators of superconformal symmetry are defined in terms of scalar and fermion

currents:

T (z) =
1
2

:j(z)j(z) : −1
2

:ψ(z)∂ψ(z) : ,

S(z) = j(z)ψ(z).

This relation defines on the subspace BR ⊗ FNS (4.20) a free field representation of the
Ramond superconformal algebra. In this sector

T (z) =
∑
n∈Z

z−n−2Ln, S(z) =
∑
m∈Z

z−m−
3
2Sm,

where

L0 =
∑

k∈N− 1
2

j−kjk +
∑
l∈N− 1

2

(l +
1
2

)ψ−lψl +
1
16
,

Lm =
1
2

∑
k∈Z+

1
2

:jm−kjk : +
1
4

∑
l∈Z+

1
2

(2l −m) :ψm−lψl : , (4.60)

Sn =
∑

n∈Z+
1
2

ψkjn−k.
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We are interested in the R-NS states because the 4-point correlation functions of correspond-
ing Ramond fields factorizes on NS-NS states with arbitrary conformal weight. This allows
to calculate 4-point superconformal blocks as functions of intermediate weight.

The highest weight state with respect to supercurrent algebra in this sector is given by:

σ0 ≡ |0〉R ⊗ |0〉NS .

This is at the same time the highest weight state with respect to Ramond superconformal
algebra. Since it is anihilated by the S0 operator, σ0 does not have the counterpart with
negative parity. Its conformal weight is equal ∆0 = 1

16 , β = 0 and it is the so called
superconformal Ramond vacuum. Its first descendants in the supercurrent module are also
superconformal highest weight states:

σ+
1 = j− 1

2
σ0 σ−1 =

1√
2

ei
π
4 ψ− 1

2
σ0 (4.61)

with ∆1 = 9
16 and β1 = 1√

2
. We will denote the corresponding Ramond primary fields by

σ0(z), σ±1 (z). We ignore the z̄ dependence of these fields, in all cases choosing the σ̄0 as the
corresponding state in the right sector.

From the current algebras (4.14), (4.18) and relation (4.60) it follows that the OPEs of
j(z) with fields σ0, σ1 have the same form as (4.6):

j(ξ)σ0(z) ∼ 1
2

(ξ − z)−
1
2σ1(z) (4.62)

j(ξ)σ1(z) ∼ 1
2

(ξ − z)−
3
2σ0(z) + 2(ξ − z)−

1
2∂zσ0(z),

Thus the 4-point function of σ0 superconformal fields is given by the same formula as the
one derived by Zamolodchikovs:

〈σ0(∞)σ0(1) |p σ0(z)σ0(0)〉 = (16)∆p [z(1− z)]−
1
8 θ−1

3 (q)Cp ≡ G0(z), (4.63)

where Cp is a z independent constant.
Using the technique presented in the previous sections one can derive the following rela-

tions between 4-point correlation functions:

〈
σ+

1 (∞)σ0(1) |p σ0(z)σ+
1 (0)

〉
= 2i z

3
8 (1− z)

9
8∂z

[(
z

1− z

) 1
8

G0(z)

]
, (4.64)

〈
σ−1 (∞)σ0(1) |p σ0(z)σ−1 (0)

〉
=

i

2
G0(z), (4.65)

〈
σ0(∞)σ0(1) |p σ+

1 (z)σ+
1 (0)

〉
= −2iz

1
8 (1− z)

3
8∂z

[(
1− z
z

) 1
8

G0(z)

]
, (4.66)

〈
σ0(∞)σ0(1) |p σ−1 (z)σ−1 (0)

〉
=

i

2z
G0(z). (4.67)

Notice that the formulae (4.65) and (4.67) follow directly from the definition of the fermionic
current (4.17).
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Let us note that the fields σ±n (z) corresponds to the states σ±n ⊗ σ̄0 from W∆n ⊗ W̄∆̄0
.

They are not the same type of Ramond fields R±NR corresponding to the states from the
“small representation” W∆,∆̄ which were discussed in the third chapter. Thus the relations
expressing R±NR in terms of normalized chiral vertex operators (3.32) do not apply to σ±n (z)
fields. In consequence one can not write straightforwardly the decomposition of the 4-point
correlators in (4.63)-(4.67) onto the 4-point Ramond blocks defined by (3.42),(3.43).

In order to compute the 4-point Ramond blocks we have to find a way to express all
the 4-point correlators in terms of chiral 3-point blocks (3.30). To this end we introduce an
extension of superconformal 3-form (anti-linear in left argument and linear in the central and
rights ones):

η(ξ, ς, ς ′|z) ξ ∈ BNSp ⊗FNS , ς, ς ′ ∈ BR ⊗FNS ,

It is determined by the Ward identities for currents j(z), ψ(z) up to one constant

η(νp, σ0, σ0|1) ≡ η(νp, σ0, σ0).

In the case of states belonging to superconformal modules V∆p ,W∆i , the 3-form satisfies
the superconformal Ward identities (3.18). It can thus be written in terms of the forms
ρijNR; i, j = ± (3.19). In particular:

η(νp,KM , σ±m, σ
±
n |z) = ρ++

NR (νp,KM , σ±m, σ
±
n |z)η(νp, σ+

m, σ
+
n )

+ ρ−−NR (νp,KM , σ±m, σ
±
n |z)η(νp, σ−m, σ

−
n ).

Notice, that forms η(νp, σ+
m, σ

−
n ) and η(νp, σ−m, σ

+
n ) vanish because the fermionic total parity

of all arguments has to be even.
Using the properties of ρijNR (3.23),(3.25), (3.27) and the definition of 3-point block (3.30)

one can derive some relations for η:

η(νp,KM , σ0, σ0|z) = ρ++
NR (νp,KM , σ0, σ0|z) η(νp, σ0, σ0)

= ρ
(±)
NRe(νp,KM , σ0, σ0|z) η(νp, σ0, σ0),

η(νp,KM , σ0, σ
+
1 |z) = ρ++

NR (νp,KM , σ0, σ
+
1 |z) η(νp, σ0, σ

+
1 ) (4.68)

= ρ
(±)
NRe(νp,KM , σ0, σ

+
1 |z) η(νp, σ0, σ

+
1 ),

η(νp,KM , σ0, σ
−
1 |z) = −iρ+−

NR (νp,KM , σ0, σ
+
1 |z) η(νp, σ0, σ

+
1 )

= −iρ(±)
NRo(νp,KM , σ0, σ

+
1 |z) η(νp, σ0, σ

+
1 ).

With the help of these relations one can write the following correlators in terms of 4-point
blocks:

〈σ0(∞)σ0(1) |p σ0(z)σ0(0)〉 =
∑

K,M,L,N

η(σ0, σ0, νp,KM )BKM,LNη(νp,LN , σ0, σ0|z) D̄p

= F1
∆p

[
β0 β0

β0 β0

]
(z)Cp,〈

σ+
1 (∞)σ0(1) |p σ0(z)σ+

1 (0)
〉

=
∑

K,M,L,N

η(σ+
1 , σ0, νp,KM )BKM,LNη(νp,LN , σ0, σ

+
1 |z) D̄p
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= F1
∆p

[
β0 β0

β1 β1

]
(z) (−ip2)Cp,〈

σ−1 (∞)σ0(1) |p σ0(z)σ−1 (0)
〉

=
∑

K,M,L,N

η(σ−1 , σ0, νp,KM )BKM,LNη(νp,LN , σ0, σ
−
1 |z) D̄p

= F
1
2
∆p

[
β0 β0

β1 β1

]
(z) (−ip2)Cp,

where Cp =
(
η(σ0, σ0, νp)η(νp, σ0, σ0)D̄p

)
is a z-independent constant. The relations

η(σ+
1 , σ0, νp) = −p η(σ0, σ0, νp), η(νp, σ0, σ

+
1 ) = ip η(νp, σ0, σ0)

follow from OPEs of bosonic current j(z) with fields φp, σ0,1 and can be derived in the similar
way as (4.36).

Inserting the correlators above into the equations (4.63)-(4.65) one can compute the 4-
point blocks:

F1
∆p

[
β0 β0

β0 β0

]
(z) = (16)∆p [z(1− z)]−

1
8 θ−1

3 (q), (4.69)

F1
∆p

[
β0 β0

β1 β1

]
(z) =

1
∆p

z
3
8 (1− z)

9
8∂z

[(
z

1− z

) 1
8

F1
∆p

[
β0 β0

β0 β0

]
(z)

]
,

F
1
2
∆p

[
β0 β0

β1 β1

]
(z) =

1
4∆p

F1
∆p

[
β0 β0

β0 β0

]
(z).

These are examples of the simplest 4-point Ramond blocks in c = 3
2 model. The supercon-

formal Ramond vacuum σ0 does not have an odd counterpart (β0 = 0), thus the two types
of 3-point blocks are equal ρ(+)

NRe(νp,KM , σ0, σ
±
n |z) = ρ

(−)
NRe(νp,KM , σ0, σ

±
n |z) and there exist only

one out of four types of even (or odd) 4-point block. In order to derive formulae for the blocks

F1, 1
2

∆p

[
β0 ±β1

β0 β1

]
(z) with different sign in front of non zero β1 one can use equations (4.66), (4.67).

The correlation functions written in terms of the 3-form η read:〈
σ0(∞)σ0(1) |p σ+

1 (z)σ+
1 (0)

〉
=

∑
K,M,L,N

ρ++(σ0, σ0, νp,KM ) η(σ0, σ0, νp)BKM,LN

×
(
ρ++(νp,KM , σ+

1 , σ
+
1 |z)η(νp, σ+

1 , σ
+
1 ) + ρ−−(νp,KM , σ+

1 , σ
+
1 |z) η(νp, σ−1 , σ

−
1 )
)

= −2i(∆− 1
4

)Cp F++
∆p

[
β0 β1

β0 β1

]
(z) +

i

2
Cp F

+−
∆p

[
β0 β1

β0 β1

]
(z) ≡ f1Cp,

〈
σ0(∞)σ0(1) |p σ−1 (z)σ−1 (0)

〉
=

∑
K,M,L,N

ρ++(σ0, σ0, νp,KM ) η(σ0, σ0, νp)BKM,LN (4.70)

×
(
ρ−−(νp,KM , σ+

1 , σ
+
1 |z)η(νp, σ+

1 , σ
+
1 ) + ρ++(νp,KM , σ+

1 , σ
+
1 |z) η(νp, σ−1 , σ

−
1 )
)

= −2i(∆− 1
4

)Cp F+−
∆p

[
β0 β1

β0 β1

]
(z) +

i

2
Cp F

++
∆p

[
β0 β1

β0 β1

]
(z) ≡ f2Cp,

where the following relations between constants in the supercurrent module were used:

η(σ+
1 , σ

+
1 , νp) = −2i(∆− 1

4
) η(σ0, σ0, νp), η(νp, σ−1 , σ

−
1 ) =

i

2
η(νp, σ0, σ0).
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The functions

F+±
∆p

[
β0 β1

β0 β1

]
(z) =

∑
K,M,L,N

ρ++(σ0, σ0, νp,KM )BKM,LNρ±±(νp,KM , σ+
1 , σ

+
1 |z)

are related to the 4-point superconformal blocks (3.30), (3.41):

F1
∆p

[
β0 β1

β0 β1

]
(z) = F++

∆p

[
β0 β1

β0 β1

]
(z) + F+−

∆p

[
β0 β1

β0 β1

]
(z)

F1
∆p

[
β0 −β1

β0 β1

]
(z) = F++

∆p

[
β0 β1

β0 β1

]
(z)− F+−

∆p

[
β0 β1

β0 β1

]
(z).

Solving the set of equations for the blocks (4.70) one obtains:

F1
∆p

[
β0 β1

β0 β1

]
(z) =

1
∆− 1

2

i

2
(f1 + f2), F1

∆p

[
β0 −β1

β0 β1

]
(z) =

1
∆
i

2
(f1 − f2), (4.71)

where the functions f1, f2 are given by the relations (4.66), (4.67).
Applying the definition of elliptic blocks in Ramond sector of N = 1 SCFT (3.49):

F1, 1
2

∆

[
±β3 ±β2

β4 β1

]
(z) = (16q)∆− c−3/2

24 z
c−3/2

24
−∆1−∆2 (1− z)

c−3/2
24
−∆2−∆3

× θ
c−3/2

2
−4(∆1+∆2+∆3+∆4)

3 H1, 1
2

∆

[
±β3 ±β2

β4 β1

]
(q)

to the blocks (4.69), (4.71) one can calculate the following formulae for the elliptic blocks:

H1
∆

[
±β0 ±β0

β0 β0

]
(q) = 1, H

1
2
∆

[
±β0 ±β0

β0 β0

]
(q) = 0, (4.72)

H1
∆

[
±β0 ±β0

β1 β1

]
(q) = 1 +

1
∆

(
θ4

2(q)
4
− θ−1

3 (q) q
∂

∂q
θ3(q)

)
, (4.73)

H
1
2
∆

[
±β0 ±β0

β1 β1

]
(q) =

1
4∆

θ2
2(q) θ2

3(q), (4.74)

H1
∆

[
β0 β1

β0 β1

]
(q) = 1 +

1
∆− 1

2

{
1
2

+
θ4

2(q)
4
− 1

2
θ2

3(q2)θ2
3(q)− θ−1

3 (q) q
∂

∂q
θ3(q)

}
,(4.75)

H1
∆

[
β0 −β1

β0 β1

]
(q) = 1 +

1
∆

{
θ4

2(q)
4
− 1

2
θ2

2(q2)θ2
3(q)− θ−1

3 (q) q
∂

∂q
θ3(q)

}
, (4.76)

H
1
2
∆

[
β0 β1

β0 β1

]
(q) = H

1
2
∆

[
β0 −β1

β0 β1

]
(q) = 0. (4.77)

These formulae can be seen as a consistency check of the construction of Ramond 4-point
blocks presented in the third chapter. As it was suggested by the path-integral arguments
(3.48), all the odd blocks do not have the regular in ∆ term. The block H1

∆

[
±β0 ±β0

β0 β0

]
(q) was

used to fix the regular in ∆ term in the even blocks. One can notice that all the even blocks
indeed have the regular terms equal to 1.

4.4 Elliptic blocks in c = 3
2 model vs. elliptic recursive rela-

tions

One can ask if it is possible to make a consistency check of the elliptic recursion relations
using the elliptic blocks calculated in c = 3

2 model. In principle, inserting some explicit
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analytical formulae for elliptic blocks into the recursion relations one should be able to check
if the residua in (2.77), (3.51) are correct i.e. do not lead to contradictions. However, in the
case of the 4-point blocks in c = 3

2 model, the derived recursion relations can be incorrect.
They are valid for the theories with c such that NS supermodules V∆rs(c)+

rs
2

are not reducible
(cf. the third property of Gram matrix (1.1.4) ).

In the c = 3
2 model the NS supermodules V∆rs+

rs
2

are reducible. It follows from Kac
theorem (2.14) that weights ∆rs + rs

2 are degenerate:

∆r,s(c = 3/2) =
(r − s)2

8
, ∆r,s +

rs

2
= ∆r+2s,s.

One can notice that all calculated c = 3
2 NS and Ramond blocks, as any other blocks for

generic c, have simple poles in ∆, but the residua can be given by different formulae than
the ones derived in the previous chapters: (2.54), (2.55), (3.46), (3.47). Let us consider the
following coefficients in the residues:

Rr,sNS

[
∆3 ∆2

∆4 ∆1

]
= Ars(c)P rsc

[
∆3

∆4

]
P rsc

[
∆2

∆1

]
Rr,rR

[
±β3 ±β2

β4 β1

]
= Ars(c)P rsc

[
±β3

β4

]
P rsc

[
±β2

β1

]
where Ars(c) is given by (2.53):

Ars(c) =
1
2

r∏
m=1−r

s∏
n=1−s

(
1√
2

(
pb− q

b

))−1

, m+ n ∈ 2Z, (m,n) 6= (0, 0), (r, s)

and the fusion polynomials (2.45),(2.46) (with ∆a = a(Q−a)
2 ) or (3.39):

P rsc

[
∆2
∆1

]
=

r−1∏
p=1−r

s−1∏
q=1−s

(
2a1 − 2a2 − pb− qb−1

2
√

2

)(
2a1 + 2a2 + pb+ qb−1

2
√

2

)
,

P rsc

[
∗∆2
∆1

]
=

r−1∏
p′=1−r

s−1∏
q′=1−s

(
2a1 − 2a2 − p′b− q′b−1

2
√

2

)(
2a1 + 2a2 + p′b+ q′b−1

2
√

2

)
,

P rsc

[
±β2

β1

]
=

r−1∏
p=1−r

s−1∏
q=1−s

(
β1 ∓ β2 +

pb+ qb−1

2
√

2

) r−1∏
p′=1−r

s−1∏
q′=1−s

(
β1 ± β2 +

p′b+ q′b−1

2
√

2

)
,

where p, q, p′, q′ run with the step 2 and satisfy the conditions: p + q − (r + s) ∈ 4Z + 2
and p′ + q′ − (r + s) ∈ 4Z. Analyzing the c → 1, (b → i) limit of these coefficients for
ai = i

2 ,β0 = 0, β1 = 1√
2
, one can calculate that almost all the residues vanish. In the case of

the limit of NS residues with ∆0 = 1
8 , (a = i

2), the non zero terms occur for r = s and they
read:

(16)
r2

2 Rr,rNS

[
∗∆0 ∗∆0
∆0 ∆0

]
=


−r2

[
(r−3)!!
(r−2)!!

]2
if r ∈ 2N,

2
[

(r−1)!!
(r−2)!!

]2
if r ∈ 2N + 1.

(4.78)
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In the Ramond case the non vanishing limits of residues corresponding to calculated blocks
with β0 = 0, β1 = 1√

2
are given by:

(16)
r2

2 Rr,rR

[
β0 β0

β1 β1

]
= (−1)r+1 r2

[
(r−3)!!
(r−2)!!

]2

(16)
r2

2 Rr,rR

[
β0 −β1

β0 β1

]
= −r2

[
(r−3)!!
(r−2)!!

]2
if r ∈ 2N, (4.79)

(16)
r(r+2)

2 Rr,r+2
R

[
β0 β1

β0 β1

]
= − r(r+2)

2

[
(r−3)!!(r−1)!!

(r−2)!!r!!

]
if r ∈ 2N + 1.

The non vanishing residues correspond to poles in degenerate weights:

∆r,r = 0, ∆r,r+2 =
1
2
.

It is clear that the structure of poles suggested by the limits of residues is in complete
agrement with the form of calculated elliptic NS and Ramond blocks:

• both even and odd NS blocks with two stars have non zero terms proportional to 1
∆ ,

• Ramond blocks H1, 1
2

∆

[
±β0 ±β0

β1 β1

]
(q) and H1

∆

[
β0 −β1

β0 β1

]
(q) have poles in ∆r,r = 0,

• the block H1
∆

[
β0 β1

β0 β1

]
(q) has pole in ∆r,r+2 = 1

2 .

Moreover, we have checked that the all calculated elliptic blocks do satisfy the recursion
relations (2.77), (3.51) , but with the residues (4.78),(4.79) modified in such a way that all
the square brackets [. . .] are equal 1 (see Appendix B). Since the unwanted coefficients [. . .]
are similar in both NS and Ramond cases, one can guess that the residues in the case of c = 3

2

blocks should be given by some modification of the coefficient

Ars(c) = lim
∆→∆rs

( 〈
χ∆
rs|χ∆

rs

〉
∆−∆rs(c)

)−1

.

It is still open question how to derive the exact formulae for an arbitrary residue of NS or
Ramond 4-point blocks in the special case c = 3

2 .
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Conclusion

The present thesis is aimed as a comprehensive view of the problem of definition and deter-
mination of the 4-point superconformal blocks in N = 1 superconformal field theories. We
have presented a detailed discussion of the superconformal blocks corresponding to 4-point
correlation functions factorized on NS fields in both Neveu-Schwarz and Ramond sectors of
N = 1 SCFT.

The superconformal blocks are nontrivial generalizations of the conformal block. The
problem of construction and determination of the superconformal blocks is very interest-
ing since its solution needs new ideas and suitable extensions of the methods applicable to
ordinary CFT.

The most efficient way of introducing the 4-point superconformal blocks is to define them
in terms of 3-point superconformal blocks. Properties of the 4-point blocks, then, can be
analyzed through the symmetry constraints imposed on the 3-point blocks. The problem of
determination of 3-point blocks, however, easier than in the case of 4-point blocks, is not
straightforward either. We have acted in the following scheme. The first step is to derive
the Ward identities for 3-point correlation functions of arbitrary fields. On the basis of these
identities one can postulate a set of relations defining chiral 3-form. Next, one should find a
relation between structure constants and the chiral 3-forms. This allows for a definition of
3-point superconformal blocks as suitably normalized chiral 3-forms.

In the NS sector, with the help of Ward identities, one can reduce any 3-point correlator
to one out of two independent structure constants. The relation between structure constants
and normalization constants for the 3-form is clear. Thus, the definition of 3-point NS blocks
as normalized 3-form is not troublesome.

The definition of Ramond 3-point blocks is more problematic. Due to “half-locality” of
Ramond fields the Ward identities in Ramond sector have a complicated form. An arbitrary
correlator of one NS and two Ramond fields can be reduced to a sum of two terms, each term
proportional to one out of eight different structure constants. Even though only two structure
constants are independent, the choice of a correct basis of the constants is not obvious. The
second complication arises from the fact that Ramond field operators correspond to states
from the “small representation”, i.e. irreducible representation of the tensor product of
the chiral Ramond algebras extended by the common parity operator. It is thus difficult
to find a relation between the structure constants and the chiral 3-forms. The solution
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of these problems is to write the Ramond primary field in terms of non normalized chiral
vertex operators. Considering its matrix elements one can find how the eight independent 3-
form normalization constants reduce to two independent combinations of structure constants.
Then the the definition of the 3-point block as normalized 3-form is possible.

The way of defining the 3-point superconformal blocks as normalized 3-form may seem
unnecessarily complicated. It occurred, however, that it is just the most efficient and uni-
versal method of identifying all types of 3-point superconformal blocks in N = 1 SCFT,
including the problematic 3-point Ramond blocks. Moreover, it allows to investigate the ba-
sic properties (e.g. factorization, c and ∆ dependence) of the 3-point superconformal blocks
from the relations defining the 3-forms. These properties and the features of inverse (NS
or Ramond) Gram matrix are crucial in derivation of the recursive representations for the
4-point superconformal blocks.

Generalizing the reasonings known from the ordinary CFT, we have derived the z-recurrence
for 4-point NS blocks (2.57), (2.58) and the elliptic recurrence for the NS and Ramond blocks
(2.78), (3.51). In order to close the elliptic recursion relations the explicit formulae for each
type of 4-point NS blocks and one type of 4-point Ramond block with arbitrary intermediate
weight were necessary. We have calculated such blocks in the c = 3

2 model, the supersym-
metric generalization of the c = 1 scalar theory extended by Ramond states of the free scalar
current [15]. The superconformal blocks in the c = 3

2 model can be seen as a confirmation
that the general constructions of the 4-point superconformal blocks and reasonings leading
to the recursion relations are correct.

The recursive methods for the 4-point superconformal blocks in N = 1 SCFT presented
in the thesis yield approximate (with arbitrary accuracy), analytic expressions for general 4-
point superconformal blocks. Using these methods one can numerically calculate any 4-point
function once the structure constants of the model are known. The methods can be used,
for instance, for the consistency check of the N = 1 super Liouville theory with structure
constants calculated by Poghosian [43]. The verification of consistency of the NS sector
of N = 1 super Liouville theory was already done by A.Belavin, V.Belavin, A.Neveu and
Al.Zamolodchikov [27, 28]. The check of Ramond sector of N = 1 super Liouville theory
is still an open question. Moreover, the presented results can be helpful in the analysis of
a common c → 3

2 limit of super Liouville theory and superconformal minimal models [48].
Finally, we believe that it possible to extend the developed techniques of constructing 4-
point superconformal blocks and determining their recursive representations to the case of
superconformal field theories with N = 2 supersymmetry.



Appendix A

1
δ expansion of classical block

We shall present some technical details of the elliptic Ansatz used in [15, 16] in order to
calculate the first two terms of the 1

δ expansion of classical block.
Consider the equation

d2ψ(z)
dz2

+ U(z)ψ(z) +
x(x− 1)C(x)
z(z − x)(z − 1)

ψ(z) = 0 (A.1)

with potential

U(z)
1
4

(
λ2

1 + λ2
2 + λ2

3 − λ2
4 − 2

z(z − 1)
+

1− λ2
1

z2
+

1− λ2
2

(z − x)2
+

1− λ2
3

(z − 1)2

)
.

We want to find C(x) such that equation (A.1) admits a pair of solutions ψ±(z) satisfying
the monodromy condition:

ψ±
(
e2πiz

)
= −e±iπλψ±(z), (A.2)

where ψ±
(
e2πiz

)
denotes a function analytically continued in z along the contour encircling

the points 0 and x.
Following [16] we perform an elliptic change of variables:

ξ(z) =
1
2

z
x∫

dt√
t(1− t)(1− xt)

, ψ(ξ) =
(
dz(ξ)
dξ

)− 1
2

ψ
(
z(ξ)

)
. (A.3)

This gives

d

dz
ψ(z) = −1

2
ξ′′
(
ξ′
)− 3

2 ψ(ξ) +
(
ξ′
)+ 1

2
dψ(ξ)
dξ

∣∣∣∣
ξ=ξ(z)

,

d2

dz2
ψ(z) = −1

2
(
ξ′
)− 1

2 {ξ(z), z}ψ(ξ) +
(
ξ′
)+ 3

2
d2ψ(ξ)
dξ2

∣∣∣∣
ξ=ξ(z)

, (A.4)

where {ξ(z), z} is the Schwarzian derivative of the map (A.3):

{ξ(z), z} =
3
8

[
1
z2

+
1

(z − x)2
+

1
(z − 1)2

]
− 1

4

[
1

z(z − x)
+

1
z(z − 1)

+
1

(z − x)(z − 1)

]
.
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Using (A.3) and (A.4) we can rewrite equation (A.1) in the form of a Schroedinger equation:

d2ψ(ξ)
dξ2

+ U(ξ)ψ(ξ) + 4x(x− 1)C(x)ψ(ξ) = 0, (A.5)

with the double periodic in ξ potential

U(ξ) =
(
ξ′(z)

)−2
[
U(z)− 1

2
{ξ(z), z}

]∣∣∣∣
z=z(ξ)

=
(

1
4
− λ2

1

)(
x

z(ξ)
− 1
)

+
(

1
4
− λ2

2

)[
x(x− 1)
z(ξ)− x

+ 2x− 1
]

(A.6)

+
(

1
4
− λ2

3

)(
1− 1− x

1− z(ξ)

)
+
(

1
4
− λ2

4

)
(z(ξ)− x) + x− 1

2
.

After analytical continuation of the function ξ(z) along the contour encircling the points
0 and x one gets:

ξ
(
e2πiz

)
= ξ(z) +

1
2

∮
[0,1]

dt√
t(1− t)(1− xt)

= ξ(z) +

1∫
0

dt√
t(1− t)(1− xt)

= ξ(z) + 2K(x).

where K(x) is the complete elliptic integral of the first kind:

K(x) ≡
1∫

0

dt√
(1− t2)(1− xt2)

=
1
2

1∫
0

dt√
t(1− t)(1− xt)

.

The monodromy condition (A.2) for ψ(ξ) as a function of ξ thus takes the form

ψ±

(
ξ + 2K(x)

)
= e±iπλψ±(ξ). (A.7)

We will solve the equation (A.5) in the limit λ� 1 using a standard perturbative method.
Assuming

U(ξ) = o(C(x)), (A.8)

the solutions in the leading order are in the form of plane waves:

ψ
(0)
± (ξ) = e±ipξ, p2 = 4x(x− 1)C(x).

On the other hand the monodromy condition (A.7) implies:

e±2ipK(x) = e±iπλ ⇒ p = − πλ

2K(x)
,

what also proves the consistency of our assumption (A.8). Hence, in the leading order one
gets:

C(0)(x) =
π2λ2

16x(x− 1)K2(x)
.
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In order to find the first correction let us define:

ψ±(ξ) = ψ
(0)
± (ξ) + ψ

(1)
± (ξ), C(x) = C(0)(x) + C(1)(x).

Inserting the expansions above to (A.5) we obtain:

d2ψ
(1)
+ (ξ)
dξ2

+ U(ξ)ψ(0)
+ (ξ) + 4x(x− 1)C(0)(x)ψ(1)

+ (ξ) + 4x(x− 1)C(1)(x)ψ(0)
+ (ξ) = 0. (A.9)

One can multiply both sides by ψ(0)
− (ξ) and integrate over ξ in [ξ0, ξ0 + 2K]. Since

ψ
(0)
− (ξ)

dψ
(1)
+ (ξ)
dξ

∣∣∣∣∣
ξ0+2K(x)

ξ0

=
dψ

(0)
− (ξ)
dξ

ψ
(1)
+ (ξ)

∣∣∣∣∣
ξ0+2K(x)

ξ0

= 0,

and
d2ψ

(0)
− (ξ)
dξ2

+ 4x(x− 1)C(0)(x)ψ(0)
− (ξ) = 0,

it follows from (A.9) that the first correction has the form:

C(1)(x) =
−1

8x(x− 1)K(x)

ξ0+2K(x)∫
ξ0

dξ U(ξ) =
−1

16x(x− 1)K(x)

∫
[0,x]

U(ξ(z))dz√
z(1− z)(x− z)

.

Using (A.6) one can rewrite the integral (A.9) in the following way:∫
[0,x]

U(ξ(z)) dz√
z(1− z)(x− z)

=

{(
1− 4λ2

1

)
(I1 −K(x)) +

(
1− 4λ2

2

)
(I2 + (2x− 1)K(x))

+
(
1− 4λ2

3

)
(K(x)− I3) +

(
1− 4λ2

4

)
(I4 − xK(x)) + 4

(
x− 1

2

)
K(x)

}

Integrating, one gets:

I1 =
1
4

∫
[0,x]

xdz

z
√
z(1− z)(x− z)

= K(x)− E(x),

I2 =
1
4

∫
[0,x]

x(1− x)dz
(z − x)

√
z(1− z)(x− z)

= (1− x)K(x)− E(x),

I3 =
1
4

∫
[0,x]

(1− x)dz
(1− z)

√
z(1− z)(x− z)

= E(x),

I4 =
1
4

∫
[0,x]

zdz

z
√

(1− z)(x− z)
= K(x)− E(x),

where E(x) is the complete elliptic integral of the second kind:

E(x) ≡
∫ 1

0

(1− xt2) dt√
(1− t2)(1− xt2)

=
1
2

∫ 1

0

(1− xt) dt√
t(1− t)(1− xt)

.
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This leads to the formula for the correction to the accessory parameter:

C(1)(x) =
−1

16x(x− 1)K(x)

∫
[0,x]

U(ξ(z)) dz√
z(1− z)(x− z)

=
−1

4x(x− 1)

{
E(x)
K(x)

(
−1 + λ2

1 + λ2
2 + λ2

3 + λ2
4

)
+ x

(
1− λ2

2 + λ2
4

)
−
(
λ2

3 + λ2
4

)}
Since C = ∂xfδ

[
δ3 δ2
δ4 δ1

]
(x) one can calculate the classical block:

fδ

[
δ3 δ2
δ4 δ1

]
(x) =

∫
dx

4x(x− 1)

{
(πλ)2

4K2(x)
+
E(x)
K(x)

(
1− λ2

1 − λ2
2 − λ2

3 − λ2
4

)
−x

(
1− λ2

2 + λ2
4

)
+ λ2

3 + λ2
4

}
+O

(
1
λ2

)
Using properties of elliptic integrals:∫

dx

x(x− 1)
1

4K2(x)
=

1
π

K(1− x)
K(x)

=
τ

iπ∫
dx

x(x− 1)
E(x)
K(x)

= −1
2

lnK4(x)− lnx

we get

fδ

[
δ3 δ2
δ4 δ1

]
(x) =

1
4

{
− iπτλ2 − 1

2
(
1− λ2

1 − λ2
2 − λ2

3 − λ2
4

)
lnK4(x)

−(1− λ2
2 − λ2

3) ln(1− x)− (1− λ2
1 − λ2

2) ln(x)

}
+O

(
1
λ2

)

In terms of δ = 1−λ2

4 , δi = 1−λ2
i

4 the classical block reads:

fδ

[
δ3 δ2
δ4 δ1

]
(x) = iπτ

(
δ − 1

4

)
+

1
2

(
3
4
− δ1 − δ2 − δ3 − δ4

)
lnK4(x) (A.10)

+
(

1
4
− δ2 − δ3

)
ln(1− x) +

(
1
4
− δ1 − δ2

)
ln(x) +O

(
1
δ

)
.

Let us note, that the classical block is given by this formula up to x-independent integration
constant which can be fixed by the normalization condition of the 4-point conformal block
Fc,∆

[
∆3 ∆2
∆4 ∆1

]
(x) (1.36).



Appendix B

Check of recursion relations for

calculated c = 3
2 elliptic blocks

In this appendix we will show that NS and Ramond elliptic blocks in c = 3
2 model calculated

in the forth chapter satisfy recursion relations (2.77), (3.51) with modified residues. The
modified non vanishing residua of NS blocks with ∆0 = 1

8 are given by:

(16)
r2

2 Rr,rNS

[
∗∆0 ∗∆0
∆0 ∆0

]
=

 −r
2 if r ∈ 2N,

2 if r ∈ 2N + 1.
(A.1)

and in the case of Ramond blocks with β0 = 0, β1 = 1√
2
:

(16)
r2

2 Rr,rR

[
β0 β0

β1 β1

]
= (−1)r+1 r2

(16)
r2

2 Rr,rR

[
β0 −β1

β0 β1

]
= −r2 if r ∈ 2N, (A.2)

(16)
r(r+2)

2 Rr,r+2
R

[
β0 β1

β0 β1

]
= − r(r+2)

2 if r ∈ 2N + 1.

The non vanishing residues correspond to poles in degenerate weights:

∆r,r = 0, ∆r,r+2 =
1
2
.

First let us consider NS elliptic blocks (4.58), (4.59). Four of them trivially satisfy the
recursion relations (2.77) because they are equal to the regular in ∆ terms:

H1
∆

[
∆0 ∆0
∆0 ∆0

]
(q) = g1

∆

[
∆3 ∆2
∆4 ∆1

]
(q), H1

∆

[
∆0 ∗∆0
∆0 ∆0

]
(q) = g1

∆

[
∆3 ∗∆2
∆4 ∆1

]
(q),

H
1
2
∆

[
∆0 ∗∆0
∆0 ∆0

]
(q) = g

1
2
∆

[
∆3 ∗∆2
∆4 ∆1

]
(q), H

1
2
∆

[
∗∆0 ∗∆0
∆0 ∆0

]
(z) = g

1
2
∆

[
∗∆3 ∗∆2
∆4 ∆1

]
(q),

In the other cases the formula (A.1) becomes helpful:

H
1
2
∆

[
∆0 ∆0
∆0 ∆0

]
(q) =

∑
r∈2N

(16q)
r2

2

R
1
2
c,mm

[
∆3 ∆2
∆4 ∆1

]
∆

H
1
2
m2

2

[
∆0 ∆0
∆0 ∆0

]
(q)
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+
∑

r∈2N+1

(16q)
r2

2

R
1
2
c,mm

[
∆0 ∆0
∆0 ∆0

]
∆

H1
r2

2

[
∆0 ∆0
∆0 ∆0

]
(q)

=
1
∆

∑
r∈2N

q
r2

2 (−m2) H
1
2
m2

2

[
∆0 ∆0
∆0 ∆0

]
(q) +

2
∆

∑
r∈2N+1

q
r2

2 θ3(q2)

The definitions the theta functions

θ2(q2) =
∞∑

n=−∞
q

(2n+1)2

2 = 2
∞∑
n=0

q
(2n+1)2

2 , θ3(q2) =
∞∑

n=−∞
q2n2

= 1 + 2
∞∑
n=1

q2n2

imply: ∑
r∈2N

q
r2

2 =
1
2
(
θ3(q2)− 1

)
,

∑
r∈2N+1

q
r2

2 =
1
2
(
θ2(q2)

)
. (A.3)

Substituting H
1
2
r2

2

[
∆0 ∆0
∆0 ∆0

]
(z) = 2

r2 θ2(q2) one thus gets:

H
1
2
∆

[
∆0 ∆0
∆0 ∆0

]
(z) =

−2
∆

∑
r∈2N

q
r2

2 θ2(q2) +
2
∆

∑
r∈2N+1

q
r2

2 θ3(q2)

=
−1
∆

(θ3(q2)− 1) θ2(q2) +
1
∆
θ2(q2) θ3(q2) =

1
∆
θ2(q2).

The last block H1
∆

[
∗∆0 ∗∆0
∆0 ∆0

]
(q) in (4.59) also satisfies the recursion relation:

H1
∆

[
∗∆0 ∗∆0
∆0 ∆0

]
(q) = θ3(q2) +

∑
r∈2N

(
−r2

∆

)
q
r2

2 H1
r2

2

[
∗∆0 ∗∆0
∆0 ∆0

]
(q)

+
∑

r∈2N+1

(
−2
∆

)
q
r2

2 H
1
2
r2

2

[
∗∆0 ∗∆0
∆0 ∆0

]
(q)

= θ3(q2)− 2
∆

(∑
r∈2N

q
r2

2 θ3(q2)−
∑

r∈2N+1

q
r2

2 θ2(q2)

)(
−q θ−1

3

∂

∂q
θ3(q) +

θ4
2(q)
4

)

− 2
∆

∑
r∈2N

r2

2
q
r2

2 θ3(q2) +
2
∆

∑
r∈2N+1

r2

2
q
r2

2 θ2(q2)

= θ3(q2)
(

1− q

∆
θ−1

3

∂

∂q
θ3(q) +

θ4
2(q)
4

)
(A.4)

+
1
∆

(
qθ−1

3

∂

∂q
θ3(q)− θ4

2(q)
4

+
q

2
∂

∂q

)(
θ2

3(q2)− θ2
2(q2)

)
From the identities

θ3(q2) = θ3(q)
(

1 +
√

1− z
2

) 1
2

, θ2(q2) = θ3(q)
(

1−
√

1− z
2

) 1
2

(A.5)

it follows that
θ3(q2)− θ2(q2) =

√
1− zθ3(q).
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Since

q
∂

∂q
= z(1− z) θ4

3(q)
∂

∂q
, and z =

θ4
2(q)
θ4

3(q)
(A.6)

we have
q

2
∂

∂q

(√
1− zθ3(q)

)
=
(
qθ−1

3

∂

∂q
θ3(q)− θ4

2(q)
4

)
,

what implies that the last line in (A.4) is zero.
Four of the Ramond elliptic blocks (4.73) - (4.76) nontrivially satisfy recursion relations

with residues of the form (A.2). For example, the block in (4.73):

H1
∆

[
±β0 ±β0

β1 β1

]
(q) = 1 +

∑
r∈2N

(
−r2

∆

)
q
r2

2 H1
r2

2

[
±β0 ±β0

β1 β1

]
(q) +

∑
r∈2N+1

(
r2

∆

)
q
r2

2 H
1
2
r2

2

[
±β0 ±β0

β1 β1

]
(q)

= 1− 1
∆

(
q
∂

∂q
θ3(q2) +

(
θ3(q2)− 1

)(1
4
θ4

2(q)− θ−1
3 (q)q

∂

∂q
θ3(q)

))
+

1
4∆
√
zθ2(q2)θ4

3(q)

= H1
∆

[
±β0 ±β0

β1 β1

]
(q)− 1

∆
θ4

3(q)
{
−1

8
z(1− z)

1
2 θ2

3(q)θ−1
3 (q2) +

1
4
θ2(q2)(z −

√
z)
}
, (A.7)

where (A.3), (A.5), (A.6) and relation

q
∂

∂q
θ3(q2) = θ−1

3 (q)q
∂

∂q
θ3(q)− 1

8
z(1− z)

1
2 θ6

3(q)θ−1
3 (q2)

were used. One can check, once more applying (A.5), that the bracket in the last line in (A.7)
vanishes.

The block H1
∆

[
β0 β1

β0 β1

]
(q) (4.75) with poles at ∆ = 1

2 , satisfies the recursion relation with
residues from the last line in (A.2):

H1
∆

[
β0 β1

β0 β1

]
(q) = 1 +

1
∆− 1

2

∑
r∈2N

(
−r(r + 2)

2

)
q
r2

2 H1
r(r+2)

2

[
β0 β1

β0 β1

]
(q).

The series in nome can be written in terms of theta function:∑
r∈2N

q
r(r+2)

2 =
1
2
q−

1
2 θ2(q2)− 1,

∑
r∈2N

r(r + 2)
2

q
r(r+2)

2 =
q

2
∂

∂q

(
q−

1
2 θ2(q2)

)
,

what implies

H1
∆

[
β0 β1

β0 β1

]
(q) = 1− 1

∆− 1
2

{
q

2
∂

∂q

(
q−

1
2 θ2(q2)

)

+
(

1
2
q−

1
2 θ2(q2)− 1

)(
1
2

+
1
4
θ4

2(q)− 1
2
θ2

3(q2)θ2
3(q)− θ−1

3 (q)q
∂

∂q
θ3(q)

)}
(A.8)

= H1
∆

[
β0 β1

β0 β1

]
(q)− 1

∆− 1
2

θ4
3(q)

{
1
8
z(1− z)

1
2 θ2

3(q)θ−1
2 (q2)− 1

4
θ2(q2)(1− z −

√
1− z)

}
,
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where we used the relations (A.5), (A.6) and

q
∂

∂q

(
q−

1
2 θ2(q2)

)
= −1

2
q−

1
2 θ2(q2) + q−

1
2

(
θ2(q2)θ−1

3 (q)q
∂

∂q
θ3(q) +

1
8
z(1− z)

1
2 θ6

3(q)θ−1
2 (q2)

)
.

With the help of (A.5), similar like in (A.7), one can calculate that the bracket in the last line
in (A.8) vanishes. By analogous calculations one can check that the other Ramond elliptic
blocks (4.74) and (4.76) also satisfy recursive relations (3.51) with residues given by (A.2).
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