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Abstract

This thesis is concerned with the properties of a number of selected processes
taking place on complex networks and the way they are a�ected by structure and
evolution of the networks. What is meant here by 'complex networks' is the graph-
theoretical representations and models of various empirical networks (e.g., the
Internet network) which contain both random and deterministic structures, and
are characterised among others by the small-world phenomenon, power-law vertex
degree distributions, or modular and hierarchical structure. The mathematical
models of the processes taking place on these networks include percolation and
random walks we utilise.

The results presented in the thesis are based on �ve thematically coherent
papers. The subject of the �rst paper is calculating thresholds for epidemic
outbreaks on dynamic networks, where the disease spread is modelled by per-
colation. In the paper, known analytical solutions for the epidemic thresholds
were extended to a class of dynamically evolving networks; additionally, the
e�ects of �nite size of the network on the magnitude of the epidemic were
studied numerically. The subject of the second and third paper is the static and
dynamic properties of two diametrically opposed random walks on model highly
symmetric deterministic graphs. Speci�cally, we analytically and numerically
�nd the stationary states and relaxation times of the ordinary, di�usive random
walk and the maximal-entropy random walk. The results provide insight into
localisation of random walks or their trapping in isolated regions of networks.
Finally, in the fourth and �fth paper, we examine the utility of random walks
in detecting topological features of complex networks. In particular, we study
properties of the centrality measures (roughly speaking, the ranking of vertices)
based on random walks, as well as we conduct a systematic comparative study of
random-walk based methods of detecting modular structure of networks.

These studies thus aimed at speci�c problems in modelling and analysis of
complex networks, including theoretical examination of the ways the behaviour
of random processes intertwines with the structure of complex networks.





Streszczenie

Niniejsza praca doktorska dotyczy wªasno±ci wybranych procesów losowych
zachodz¡cych na sieciach zªo»onych oraz sposobów w jaki wpªywa na nie struktura
i zmienno±¢ w czasie tych»e sieci. Przez �sieci zªo»one� rozumiem zapo»yczone
z teorii grafów modele ró»norakich sieci rzeczywistych (np. sieci internetowej),
których struktury powstaªy w sposób cz¦±ciowo losowy, a cz¦±ciowo deterministy-
czny. Sieci takie charakteryzuj¡ si¦ m.in. tak zwanym efektem maªego ±wiata,
pot¦gowym rozkªadem krotno±ci wierzchoªków czy moduªow¡ i hierarchiczn¡
struktur¡. U»ywane przeze mnie modele matematyczne procesów zachodz¡cych
na sieciach to perkolacja i bª¡dzenia przypadkowe.

Wyniki przedstawione w niniejszej pracy doktorskiej opieraj¡ si¦ na pi¦ciu
spójnych tematycznie artykuªach naukowych. Przedmiotem pierwszego z nich jest
obliczanie progowego prawdopodobie«stwa wybuchu epidemii maj¡cej miejsce na
sieci dynamicznej, przy czym rozprzestrzenianie si¦ choroby modelowane jest
za pomoc¡ perkolacji. W artykule tym znane wyniki analityczne dot. takich
progów zostaªy rozszerzone na sieci podlegaj¡ce ewolucji czasowej. Dodatkowo,
numerycznie badano efekt sko«czonego rozmiaru sieci na wielko±¢ powstaªej
epidemii. Przedmiotem drugiego i trzeciego artykuªu s¡ statyczne i dynamiczne
wªasno±ci dwóch diametralnie ró»nych bª¡dze« losowych na deterministycznych
grafach o du»ej symetrii. Analitycznie i numerycznie wyznaczone zostaªy stany
stacjonarne i czasy relaksacji zwykªego bª¡dzenia przypadkowego odpowiada-
j¡cego dyfuzji oraz bª¡dzenia maksymalizuj¡cego entropi¦. Wyniki te pozwalaj¡
lepiej zrozumie¢ efekt lokalizacji i uwi¦zienia bª¡dzenia przypadkowego w odsepa-
rowanych cz¦±ciach sieci. Wreszcie w czwartym i pi¡tym artykule analizowana jest
u»yteczno±¢ bª¡dze« losowych w wykrywaniu pewnych topologicznych cech sieci
zªo»onych. W szczególno±ci, zbadano w nich wªasno±ci tzw. miar centralno±ci
(ogólnie rzecz ujmuj¡c odpowiadaj¡cych rankingom wierzchoªków sieci) opartych
o bª¡dzenia losowe. Przeprowadzono równie» systematyczne porównanie opartych
o bª¡dzenie przypadkowe metod wykrywania w sieciach struktur moduªowych.

Powy»sze badania miaªy wi¦c na celu podj¦cie problemów modelowania i
analizy sieci zªo»onych, a zwªaszcza teoretycznej analizy powi¡za« pomi¦dzy
budow¡ tych sieci i zachowaniem zachodz¡cych na nich procesów losowych.





Za towarzysz¡ce mi ci¡gle proste sªowa:

Znajduj w ±wiata gªo±nym szumie

to, co pi¦kne, zacny Kumie.

�miej si¦, ±miechu innych szukaj,

I przenigdy nie tra¢ ducha.

dzi¦kuj¦ Kasi Gizickiej.
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Introduction

The development of human civilisation is increasingly data-driven. Not only

the results of scienti�c experiments are stored as digital data, but also the traces

of our daily activities as phone calls, purchases, or travels. The information

which, however tritely, emerges from that data is: everything is connected [1]. It

is not only our mobiles and computers that are linked; it is people, cities, and

economies; it is organs, cells, and molecules; �nally, but not exhaustively, it is

books, words, and ideas that are related.

These networks of relationships have been a subject of intensive, systematic

studies, both theoretical and empirical, for the last �fteen years, although the

�rst attempts to model them in the present manner are probably due to social

sciences [2] in late 1940s. The models �rstly involve representing the topology

of the network mathematically in the form of a graph. The graphs, however,

turned out to be complex: they can be overwhelmingly big, they are to much

extent random, but also contain signi�cantly non-random structures, and some

of their characteristics are distributed according to power laws instead of normal

or Poisson distributions.

The second, highly nontrivial task in modelling a network involves represent-

ing the process that actually takes place on it, e.g., �ow of money or spread of

information. The range of theoretical approaches, often proposed by the physics

community, includes percolation, spin models, di�usion and random walks, �ow

of electrical currents, or synchronisation of coupled oscillators. These can mimic
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INTRODUCTION

a variety of transport processes, e.g., tra�c in urban or Internet networks,

intracellular transport, spread of diseases, opinions, or memes.

Thirdly, depending on the time scales present in a studied system, the model

graphs can either have a static, thermalised architecture or be allowed to grow

or evolve. The alteration of the network can happen simultaneously with any of

the processes listed above. Evolution of the network and the extrinsic process

can even be coupled, e.g, so as to imitate people abstaining from social contact

if they or their acquaintances have been infected.

According to the above scheme, this thesis is concerned with the properties of

model processes taking place on graphs and the way they are a�ected by structure

and evolution of complex networks. The topics explored include: modelling with

percolation disease spread on a class of dynamically evolving networks, and in

particular extending analytical solutions for the thresholds of epidemic outbreak

and numerical studies on �nite-size e�ects of outcomes of the epidemic; studying

the static and dynamic behaviours of two diametrically opposed random walks on

model deterministic graphs, speci�cally, their times of reaching stationary states

or trapping in isolated regions; �nally, applying the knowledge of their properties

to reveal the complex structures of graphs.

These studies thus aimed at speci�c problems in modelling and analysis of

complex networks, ultimately reaching the subject of community detection, which

means �nding groups of well-connected modules in the networks. This �eld of

research may be considered as a developing methodology of data analysis that

can be employed in basic research disciplines, including among others systems

biology [3], neurosciences [4], social sciences [5], or literary studies [6]. The

knowledge of a network's structure and its interaction with a given dynamical

process is crucial also in applications. Among countless examples one could

mention telecommunications (e.g., redesigning routing protocols in the Internet

[7]), policy planning (e.g., modi�cations to tra�c in urban street networks [8],

8



Thesis overview

epidemic control and prevention [9], crisis management), social analysis (crime

investigation [10], clustering of population with respect to the language spoken

[11]), or data mining (WWW search [12], analysing target groups in web busi-

ness). Although my own studies can be regarded rather as basic research, they

were conducted with some of the above applications in mind as possible future

research paths.

Thesis overview

In terms of structure and content this thesis may be regarded as merely

an introduction to the detailed calculations and results of papers I-V. It is

composed in such a way that each chapter prepares the ground to continue

smoothly to the summary of a given study and to the original paper, while at

the same time it allows to locate the study on the map of the speci�c �eld.

The chapters are arranged in order of increasing breadth of knowledge needed

to embrace the context of subsequent papers, which at the same time to much

extent reproduces my own exploration of the discipline and the progress of my

research. The increase in depth, on the other hand, takes place only within

chapters in order to lead to more speci�c �ndings. Such text structure, designed

to ultimately focus on the papers I-V, results in a constant struggle between

conciseness and completeness of the presented material. This delicate balance

can also be observed in the bibliography, where I refer to standard textbooks,

vast reviews, and groundbreaking papers, as well as to some specialist articles

that are narrower in scope, but relevant to my research; the most speci�c papers

are sometimes left out from the bibliography of the thesis, but are included in

the respective studies I-V.

The beginning chapter on random graphs is in fact extremely rudimentary,

inasmuch as its �rst two sections merely de�ne and name certain graph-theoretical

concepts, including standard graph representations as matrices or lists; neverthe-
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INTRODUCTION

less, it has its purpose, since at the interface of several disciplines terminology

is bound to blend and blur, and requires clari�cation. The chapter goes on to

introduce a small number of measurable quantities that are indicative of structural

properties of graphs, and are most frequently encountered in studies on complex

networks. Finally, the essentials of random graphs are presented.

Whereas the �rst chapter exposes the model structural backbone of complex

systems, the second chapter explains the properties and possible applications

of what can be perceived as a basic model process � percolation. In the �rst

section, this procedural perspective is used to describe the formation of giant

connected components in the random graphs introduced earlier. While this

provides some general context, the rest of the chapter is almost exclusively

developed for the sake of the Study I. Speci�cally, Section 2.3 explicates the

generating function technique used to �nd percolation thresholds in a particular

type of small-world networks, and Section 2.4 outlines the connection between

percolation and epidemic modelling. The chapter concludes with a summary of

Study I, which extends analytical solutions for percolation thresholds to a class

of small-world networks with dynamically rewired links, and provides numerical

insights into �nite-size e�ects for epidemic spread in such networks.

The subsequent chapter elaborates on another family of processes that can

model transport or transmission of information, namely random walks. It is far

beyond the scope of this humble doctoral thesis to attempt at covering a topic

whose history is more than a century old, let alone encompassing it in just one

chapter. The presented perspective is thus severely restricted to discrete time

random walks on graphs. After introducing general de�nitions and properties

of Markov chains and random walks, the scope is further narrowed down to

selected random walks utilised in the studies on complex networks. Among

other quantities characterising random walks described in the chapter, mean �rst-

passage time matrix has become of much use in my research. For this reason,
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Thesis overview

I discuss it at length, and allow myself to present some additional, unpublished

observations concerning its connection to structural properties of networks on

which a random walk takes place. The summaries of Study II and III are

appended to that chapter: the former concerns analytical solution for stationary

states and relaxation times of the selected random walks on Cayley trees; the

latter further explores numerically the dynamic behaviour of random walks on

some other highly symmetric graphs. These two studies allowed to gain some

mathematical intuition on behaviour of random walks on model graphs, and

motivated extension of my research to examine intertwining of this behaviour

with the structure of complex networks.

This is the dominant topic explored in the next two chapters. The �rst one

reviews a variety of ways the importance of a node or a link in a network can

be computed. The general term coined for this quanti�ed importance is the

measure of centrality. As discussed in the chapter, what the centrality precisely

means depends on the research problem, on what the network represents, and on

the speci�c processes inhabiting the system. Consequently, the relation between

centrality and random walks � the model processes of choice � is highlighted.

Study IV investigates this relation based on the knowledge provided in Chap.3,

which allowed to unify some of the centralities in a common framework.

Due to the very close connection of the study to community detection in

networks, however, its summary is presented only at the end of the �nal chapter.

The chapter recalls some typical attempts at de�ning what a community is, and

then describes several ways the construction of random graphs from Chap.1.4 can

be modi�ed to include the modular structures. Only then, the central subject of

how to detect such structures is summarised, with the special attention paid to

the application of random walks, but also with some classical methods outlined for

comparison. The methods are additionally linked to the concepts introduced in

the previous chapters, namely centrality measures and percolation. The chapter

11



INTRODUCTION

concludes with the summaries of Study IV and V. While the former has been

already mentioned, the latter is exclusively focused on the comparative study

of the performance of community detection methods utilising di�erent random

walks.

The entire thesis thus brie�y covers the subjects of modern mathematical

techniques for modelling networks and various stochastic processes that take place

on them, and for methods of complex networks analysis, which make use of static

and dynamic properties of these processes.

12



Chapter 1

Graphs and random graphs

This chapter serves as an introduction to the rudimentary concepts providing a

mathematical framework describing the structure of complex networks. The �rst

section aims at setting conventions regarding notation and terminology, as well

as reviewing several de�nitions concerning among others basic types of graphs,

degrees, or paths that may come in handy in the subsequent chapters. In a

similar manner, the second section brie�y describes the ways of representing

graphs as matrices, which are extensively used in analytical studies. Next, in

the third section, I present an overview of the quantities that are most often

analysed, both theoretically and experimentally, in complex network research.

These quantities, such as vertex degree distributions, average path lengths, and

clustering coe�cients, are used in the primary characterisation of networks. The

last section already provides the �rst intuitions about what complex networks

actually are, since it introduces Erd®s-Rényi ensemble of random graphs and the

con�guration model, which serve as the null models of complex networks.

The material of this chapter has been selected to recall only the concepts

needed to provide foundation for research summarised in Studies I-V. As I am

aware of how fragmentary this information is, I give references to a general

introduction to graph theory [13] and a much more comprehensive source [14]

13



GRAPHS AND RANDOM GRAPHS

(accessible online for free). A broader view on modern network science can be

found in [15�17], which present more physical approach, and thus much closer to

my understanding of complex networks.

1.1 Terminology and basics

In this section, I review some basic terminology and graph-theoretical con-

cepts. This mainly aims at establishing a common language with the readers

from di�erent disciplines. It can also serve as a very brief introduction (as far

as de�nitions are concerned) to graph theory and what is called now "network

science" to readers with no background in the disciplines.

Suppose we want to represent mathematically a set of entities (these might

be cell phones, power plants, or genes) which can be pairwise connected to each

other by another set of entities (e.g., by phone calls, power lines, or protein

interactions). Usually, the former, �nite and non-empty set is denoted by V and

called the vertices (also nodes, or sites); the latter, �nite set is denoted by E

and called the edges of a graph (also links, or bonds). While the elements of

the �rst set can be represented by labels, e.g., u, v ∈ V , the elements of the other

set are unordered pairs of labels e = {u, v} ∈ E. These two sets together are said
to represent a simple graph G(V,E), which can otherwise be represented by

drawing a diagram with dots (vertices) and lines (edges) connecting them. The

graph can be also symbolised by just its name G, while the sets of vertices and

edges of that graph can be denoted as V (G) and E(G), respectively. Two graphs

are called, G and H, isomorphic, G ∼ H, if and only if there exists a bijection

φ : V (G) −→ V (H) such that ∀u, v ∈ V (G) : ((u, v) ∈ E(G) ⇐⇒ (φ(u), φ(v)) ∈
E(H)). In other words, such a function, called isomorphism, only relabels the

graph's vertices.

One of the basic quantities characterising a vertex v in a simple graph is the

degree k(v), which is the number of the vertex's neighbours, or equivalently,

14



1.1. Terminology and basics

the number of edges the vertex is incident with. If it is meaningful for the

connections to be directed, e.g., we want to distinguish person A calling B from

person B calling A, the edges are ordered pairs of vertices e = (u, v) ∈ E, and
the corresponding graph is called a simple directed graph or a digraph. In

digraphs, the degree separates into in-degree kin(v) and out-degree kout(v),

which are the number of edges (., v) pointing to v and the edges (v, .) coming out

of v, respectively.

If it is meaningful for the connections to have a certain weight w, e.g., we want

to describe the load of a power line, the edges can be denoted by ({u, v}, wuv) :

u, v ∈ V,wuv ∈ R, and the corresponding graph is called a weighted graph. In

weighted graphs, the degree k(v) remains an integer number of neighbours, but

it can be generalised to strength, which is the sum of weights of edges incident

to the given vertex s(v) =
∑

uwu,v.

The simple, weighted, and directed graphs are thus three basic ways of select-

ing and representing the information about connections between some entities of

interest. As regards the structure of graphs, I would like to enumerate still a few

other types.

We call G such that all vertices have the same degree k(v) = K a K-

regular graph. For example, a square two-dimensional grid is a 4-regular graph,

because each of its vertices has four neighbours, or physically speaking, it has

the coordination number four. Grids, however, are only special cases of regular

graphs.

We callG such that edges between all pairs of vertices exist a complete graph

KN . As the name suggests, for the total of |V | = N vertices a complete graph

has the maximal possible number of edges N(N − 1)/2. A complete subgraph of

a graph is often called a clique.

We call G such that its vertices can be divided into two disjunctive sets V1, V2

(V = V1 ∪ V2) for which only edges u, v, u ∈ V1, v ∈ V2 exist, a bipartite graph.

15



GRAPHS AND RANDOM GRAPHS

Thus, the sets V1 and V2 are connected between each other, but neither of them

is connected internally.

If the graphs are to represent, e.g., communication systems, it is natural

to de�ne the mathematical concepts corresponding the pathways of information

transmission. On a graph these pathways are best described in terms of a sequence

of vertices and edges (v1, e1, v2, e2, . . . , vt−1, et−1, vt), in which none of the vertices

is visited more than once, and the edges ei = {vi, vi+1} connect the consecutive

vertices. We call such a sequence a path. The above path has a length t and

ends v1 and vt. If t ≥ 3 and v1 = vt, we call such a sequence a cycle.

Sometimes, if the pathways are to model, e.g., a particle wandering on some

physical structure, the assumption that no vertices nor edges are visited twice

may be rejected. In such a case, we call the sequence of vertices and edges a

walk, and if v1 = vt, the walk is closed.

Based on those concepts, one more graph type can be de�ned that will be

referred to further in the thesis: a tree, which we call a graph containing no

cycles, and which is connected (i.e., between any two vertices there exists a path

connecting them).

Whereas there is a whole taxonomy of many more di�erent graphs, I restrict

myself to only the tiny fraction of that bestiary that was used in the Studies I-V.

1.2 Graph representations

Before I go on further, a note is needed on possible representations of graphs.

The most straightforward, and the most analytically manageable representations

have a matrix form. For the number of vertices |V | = N , the adjacency matrix

A has the size N ×N and its elements take values

Auv =





1, if (u, v) ∈ E

0, if (u, v) /∈ E.
(1.1)
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1.2. Graph representations

In case of simple undirected graphs, the matrix is symmetric, since the edges are

unordered vertex pairs. If the graph is directed, A can be unsymmetric. If the

graph is weighted, it is worthwhile to distinguish between the binary adjacency

matrix A, as de�ned above, and the real matrix W, whose elements take values

given by the respective edge weights wuv. The latter is called a weight matrix.

The (in- or out-) degrees and strengths of vertices can be naturally computed

with the use of adjacency or weight matrices: kout(v) =
∑

u∈V Avu, k
in(v) =

∑
u∈V Auv, s(v) =

∑
u∈V Wvu. Similarly, the numbers of walks between any two

vertices can be easily obtained from the adjacency matrix: as Avu represents one

step along the edge {v, u}, ∑w∈V AvwAwu = (A2)vu is the number of walks of

length 2 from v to u, and generally, (At)vu is the number of walks of length t

from v to u.

For the total number of edges |E|, another approach to representing a graph

is to construct an incidence matrix B of size |V | × |E|. The rows and columns

of this matrix correspond to vertices and edges respectively, so that the elements

tell whether a given vertex and edge are incident (i.e. whether the vertex is any

of the two endpoints of the edge). In the case of directed graphs, the elements of

the oriented incidence matrix take values

Bve =





1, if e = (v, u)

−1, if e = (u, v)

0, if otherwise.

(1.2)

In the case of undirected graphs (hence, unoriented incidence matrix ) one should

take the absolute value so that only binary values are allowed.

The last matrix representation is called unnormalised Laplacian matrix

(also Kircho�'s matrix) L, and can be obtained from the incidence matrix

L = BBT , (1.3)
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though the usual equivalent de�nition is

Luv =





k(v), if u = v

−1, if ∃e = (u, v)

0, if (u, v) /∈ E,

(1.4)

or in matrix notation

L = D−A, (1.5)

whereD is a diagonal matrix withDvv = k(v). Also the normalised Laplacians

[18]

Lsym = D1/2LD−1/2, (1.6)

LRW = D−1L (1.7)

are often used, where the second one is related to the Generic Random Walk

discussed in Chap. 3.2.1. These representations allows to describe and analyse

graphs with the use of linear algebra, in particular, spectral methods (see for

instance [19]). Especially for the Laplacian matrix a number of spectral properties

have been found and applied to study, e.g., synchronisation [20, 21] di�usion [18]

or graph partitioning [22] (the last application is discussed in Chap. 5.3.1 in the

context of detection of modular structure of graphs).

As far as the data storage and computational complexity is concerned, the

matrices implemented as arrays are at a disadvantage, since, naively, they use

O(N2) memory and take O(N) time to list the neighbours of a vertex (see, e.g.,

[23]). Alternatively, a structure of a graph can be stored in the form of an

adjacency list, which loosely speaking is a collection of lists, each for one vertex,

containing the vertices' neighbours. This allows to store the data more space-

e�ciently, and list the neighbours of a vertex in time proportional to the degree

of the vertex. The disadvantage of adjacency lists is a slower time for testing if

a given edge exists, depending linearly or at best logarithmically on the degree
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of the edge's endpoints. I refer to these algorithmic details, only because they

came in handy for the computational part of my work, including comparison of

community detection methods; the issues of computational complexity, however,

are not discussed further on.

1.3 Structural quantities

In the study of complex networks, vertex degrees are can be regarded as the

most fundamental property of a graph, or at least the �rst to be measured.

For a graph of size N , we call the set {Nk}k=0,1,...,kmax corresponding to the

numbers of vertices having a given degree k the degree sequence of a graph. In

practice, we will also often call P (k) = Nk/N the degree distribution. More

formally, however, the degree distribution is a probability distribution de�ned for

an ensemble of random graphs, and a degree sequence is just one set of numbers

drawn from that distribution that describes a particular instance of a graph found

in the ensemble.

The simplest degree distribution is P (k′) = δ(k′ − k), which can describe

the degrees of any k-regular graph. Below, we will introduce random graph

ensembles having, e.g., Poisson degree distribution. Nevertheless, in reality we

often encounter what is called scale-free networks, which by de�nition have

power-law degree distributions

P (k) =
C

kγ
, γ > 0, k ∈ [0, kmax]. (1.8)

In such cases, even though the low-degree vertices are very numerous, there still

is a small chance that a vertex with a degree several orders of magnitude greater

appears in the graph. It should be stressed that these are not true power-laws in

the sense that they always have a �nite cut-o� kmax < N .
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These distributions have properties which may make them rather tricky to

measure. Firstly, their mean

〈k〉 =

∫ ∞

kmin

kP (k)dk ∝
∫ ∞

kmin

k−γ+1dk (1.9)

diverges for γ ≤ 2. Similarly, their second moment 〈k2〉 diverges for γ ≤ 3. This

might pose a problem, since most of the empirical networks have the exponent in

the range γ ∈ [2, 3] (see, e.g., Table 2.1 in [24], or Table 3.1 in [17]).

In experiments, of course, the respective moments of the degree distribution

have to be �nite, since we are able to observe only a network of a �nite size. Still,

the mean degree of a power-law does not meaningfully characterise the network in

the sense that given 〈k〉 the deviation is still very large and we are likely to observe

nodes with degrees several order of magnitude larger, the so called hubs. This

is one of the blueprints of a scale-free behaviour. Consequently, measuring the

whole distribution involves gathering data spanning several orders of magnitude

of the observed quantity. Even if this task is manageable, problems may still arise

due to large �uctuations in the tail of the distribution.

Among others for these reasons other distributions can be easily mistaken for

the power laws, e.g., log-normal distribution P (k) ∝ exp
[
− (ln k−〈k〉)2

2σ2

]
, a stretched

exponential P (k) ∝ exp
[
−( k

k0
)β
]
, or a power law with an exponential cut-o�

P (k) ∝ k−γ exp

(
− k

k0

)
, (1.10)

where k0 is a characteristic degree value above which the probability falls o� to

zero very rapidly. We mention the last distribution because it is reproduced also

in some complex networks models due to constraints on the network's growth

[25]. Estimates on natural cut-o�s found in uncorrelated networks are discussed

in [26�28].

The type of the degree distribution is also decisive in the networks robustness

to random attacks [29]. By attacks we mean randomly removing nodes from

the network: if only a small fraction of other nodes is disconnected from the
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network, the most of the system is still able to communicate; if the network splits

into several large clusters, the system fails. These ideas can be precisely de�ned

in the language of percolation (see Chap. 2.2). Su�ce to say that for Erd®s-

Rényi graphs de�ned in the next section the fraction of removed nodes needed

for the percolating cluster to be disconnected is 1− 1
〈k〉 [cf. equation (2.9)]. This

number for 〈k〉 = 2 yields 50%, while for the power-law degree distributed Internet

network with γ = 2.5 more than 90% of nodes need to be destroyed (because it

is rather improbable to randomly hit a hub). The e�ect additionally strongly

depends on the exponent γ, so clearly the degree distribution is vital.

Much more than that, it has been shown that in scale-free networks percola-

tion threshold [30] and the threshold for epidemic spreading [31] is absent, which

in the latter case means that any non-zero spreading rate (i.e., a ratio of infection

and curing rates) results in a �nite fraction of nodes invaded by an epidemic

outbreak. These results are further elaborated on in the next chapter.

Since many studies are concerned with communication and information trans-

mission, one of the key properties of a network is the distribution of distances

between pairs of locations in it. What is called the average path length (in

fact, the average intervertex distance averages only the shortest paths) can

be de�ned as

l =
1

N(N − 1)

∑

v 6=u
d(u, v), (1.11)

where d(u, v) is the distance (i.e., the length of the shortest path) between vertices

u and v.

In a square 2D lattice, which one could expect to �nd in some real networks

based on geographical locations, the quantity scales as l ∝
√
N ; analogously, in

a 3D cubic lattice it is l ∝ 3
√
N . Still, in most of the real networks, the scaling is

logarithmic with respect to the number of vertices

l ∝ ln(N), (1.12)
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which is called the small-world property [32], also referred to as six degrees

of separation. It means that information can be passed with the help of very

few middlemen; e.g., it should take only around 1.3 more intermediate persons

to deliver a message between any two people in the world than between any two

people in Poland, even though the ratio of the respective populations is around

182.

In fact, the logarithmic scaling of distances is expected in any in�nite dimen-

sional networks, such as Cayley trees and growing trees. In lattices, this can be

obtained by introducing a small number of shortcuts between random locations.

However, the e�ect of a small world can be even stronger in scale-free networks

with the degree distribution exponent in the range γ ∈ (2, 3), where the scaling

is l ∝ ln(lnN), and as a result they are called ultra-small worlds [33, 34].

Another one of the most important properties of simple random graphs, which

we take as null models for complex networks, is the fact that they are uncorrelated.

By this we mean lack of correlation between the degrees of neighbouring vertices.

In order to restate this condition more formally, it is worthwhile to �nd the

distribution of degrees of the nearest neighbours in such networks. To that end,

imagine we take at random an edge of the graph and we move along it to reach

one of its ends. The probability of thus encountering a vertex of degree k is

proportional to the number of such vertices, and so to P (k), as well as to the

number of edges we can use to arrive at them k. Together with the normalising

constant the distribution is given by

Q(k) = k
P (k)

〈k〉 , (1.13)

which leads to the mean degree of a nearest neighbour

〈k〉NN =
〈k2〉
〈k〉 . (1.14)
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Consequently, the probability of encountering at the two ends of an edge vertices

of degrees k and k′ is given by a factorised joint distribution

P (k, k′) = kP (k)k′P (k′)/〈k〉2. (1.15)

If we �x the degree distribution in a given network to have the particular form

P (k) ∼ k−γ, then some correlations actually have to appear. This is due to the

fact that hubs, i.e., the few vertices with the greatest degrees, should on average

have multiple connections between themselves. Whereas for γ > 3 the average

is smaller than 1 and no multiple edges form, for γ < 3 there have to be either

loops (i.e., edges pointing to oneself) or multiple edges. The only mechanism

for the network to remain a simple graph (with no loops or multiple edges) is to

introduce correlations (see Appendix F in [17]).

In real networks, the correlations may take the form of clustering vertices

together. Especially in social networks we expect that two friends of ours know

each other; as a result a triangle forms between us and the two friends. High

density of such triangles is one of the hallmarks of complex networks, and is

one of the �rst tests to be performed when analysing a network. This idea is

quanti�ed in several ways by what we call the clustering coe�cient.

The simplest de�nition is that of the global clustering coe�cient (GCC),

often written as

C =
3× number of triangles

number of paths of length 2
, (1.16)

so that the number of existing triangles is compared to the number of triangles

that it is possible to form in the network.

Perhaps a slightly more popular in the literature of the subject is the de�nition

of the local clustering coe�cient (LCC) [32] for a node v of degree k(v)

C(v) =
2t(v)

k(v)[k(v)− 1]
, (1.17)
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where t(v) is the number of triangles formed by the vertex v and pairs of its

neighbours. Since at maximum there may be k(v)[k(v)− 1]/2, the value of LLC

is bounded 0 ≤ C(v) ≤ 1. To obtain a quantity corresponding to the whole

network, as GCC, the local coe�cients have to be averaged

C̄ =
1

N

∑

v∈V
C(v), (1.18)

yieldingmean local clustering coe�cient (MLCC). (I use bar instead of angle

brackets to di�erentiate an average over one given network from an average over

an ensemble of networks.) In general, GCC and MLCC produce slightly di�erent

but strongly correlated results. Using one or the other depends mostly on their

analytical tractability, e.g., the numerator in (1.16) can be computed as Tr(A3).

These concepts have been also generalised to weighted and directed networks.

There is however no unique way to do that, and several de�nitions have been

proposed [35, 36]. I provide the reader only with the most widespread de�nition

for weighted graphs by Barrat et al. [37]

CW (v) =
1

s(v)[k(v)− 1]

∑

u,w

Wvu +Wvw

2
AvuAvwAuw, (1.19)

where s(v) is the strength of a vertex, A is the adjacency matrix, and W the

weight matrix.

In a similar manner to LCC, [38] have proposed the edge clustering coe�cient

C(u, v) =
t(u, v)

min [(k(u)− 1, k(v)− 1)]
, (1.20)

where t(u,v) is the number of triangles that contain the edge (u, v), and the

denominator counts the maximal possible number of triangles that edge could

have.

The idea is that edges within communities tend to share more triangles than

the edges bridging communities. In community detection algorithms the low-

clustering edges can therefore be pruned, leaving the communities � much alike

high-betweenness edges, as discussed in Chap. 5.4.
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While the triangle is only the shortest cycle, the length of the cycle can be

used as a parameter allowing to generalise the idea, and interpolate between local

and global network properties.

1.4 Random graphs

In this section, we brie�y introduce the basic random graph models: Erd®s-

Rényi random graphs (together with the binomial model) and the con�guration

model. These models often serve as null models to be compared with the empirical

data, or if needed in algorithms of network analysis. They serve as a basis for

benchmark graphs with modular structure described in Chap. 5.2.

The classic Erd®s-Rényi (ER) model takes a random graph of N labelled

nodes and m edges chosen randomly from the set of all N(N−1)/2 possible edges

[39, 40]. All the
(
N(N−1)/2

m

)
possible graphs form a probability space with each of

the graphs being equiprobable.

The ER model is closely related to the binomial model or Gilbert model [38], in

which we takeN vertices, and �x to p the probability that a given edge exists. The

expected number of edges then is E(m) = p[N(N − 1)/2]. Hence, the probability

that a given labelled graph is obtained yields pm(1 − p)(N2 )−m. It can be shown

that the degree distribution of such graphs is approximately

P (k) ≈
(
N − 1

k

)
pk(1− p)N−1−k (1.21)

and hence for large N it approaches the Poisson distribution

P (k) ' e−〈k〉
〈k〉k
k!

. (1.22)

When one recalls the results on degree distributions of empirical networks, they

are most often power laws. This already shows that ER random graphs for some

purposes may be insu�cient as null models in network analysis. The ensemble

25



GRAPHS AND RANDOM GRAPHS

has, however, the virtue that a number of properties can be exactly calculated

for it.

For instance, the clustering coe�cient of an ER graph can be obtained by a

very simple reasoning. By construction the probability that any pair of vertices is

connected is �xed and equal to p. Now, given a vertex and two of its neighbours,

the probability that the neighbours are connected is precisely the same p, since

in binomial model each edge is formed independently. Hence, the clustering

coe�cient

C̄ = C(v) = p =
〈k〉

N − 1
. (1.23)

The properties of interest include also the diameter of the graph d or the

average path length l. For the regime of connectedness that we are interested in

one can show that if 〈k〉 ' pN ≥ c ln(N) for some constant c, then almost surely

the diameter of the graph takes one of few possible values around lnN
ln(pN)

≈ lnN
ln〈k〉

[41]. It can be expected that the average path length scales similarly, and thus

the random graphs have the small-world property.

As far as the topology of the graphs appearing in the binomial model G(N, p)

is concerned, it can be shown how increasing p leads to the emergence of more

and more extended subgraphs. One of the results is that for the probability

p(N) = cN−k/l, where c is a positive number, almost every graph contains a

subgraph with k nodes and l edges [42]. In particular, for appearance trees and

cycles of all sizes the critical probability p(N) ∝ N−1. This result foreshadows

our discussion of a giant connected component appearing in percolation problems

in Chap. 2.2.

As noted above, we would like to construct random graphs closer to the real

networks in terms of their degree distributions. In fact, the ER ensemble can be

generalised into the so called con�guration model [43], so that the random

graphs reproduce almost any degree distribution we demand. Such random
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labelled graphs, as they are called in graph theory, form a statistical ensemble

whose members are equiprobable. The ensemble is comprised of all the graphs

with a given degree distribution {Nk}k=0,1,2,..., where Nk = NP (k) is the number

of vertices of degree k. This results in maximally random graphs with a given

degree distribution [44, 45].

The construction procedure for a graph from this ensemble, sometimes called

Molloy-Reed construction [46, 47], is as follows:

• �x the number of vertices N ,

• for each vertex v ∈ {1, 2, . . . , N} draw the number k(v) of half-edges

(according to the degree distribution {Nk}) and attach one of their ends to

the vertex,

• randomly, pairwise join the remaining ends of half-edges.

The half-edges are often also called stubs. Each run of the procedure results in

a possibly di�erent graph with the same degree distribution. It is noteworthy,

however, that not every run of the procedure ends up in a simple graph; it might

be the case that a loop (an edge connecting a vertex to itself) or multiple edges

between the same pair of vertices are formed.

In order to calculate certain quantities for graphs from con�guration model,

it is useful to �rst determine the probability puv of an edge existing between

a pair of vertices u, v of given degrees k(u), k(v). To estimate it, �rst note that

having chosen one of the k(v) half-edges belonging to v the probability it becomes

incident to u is k(v)/
∑

w 6=u,v k(w) ' k(v)(〈k〉N)−1. The probability of the half-

edge and u not connecting k(v) times is (1 − k(v)(〈k〉N)−1)k(v). Finally, the

probability that at least one connection takes place is

puv = 1−
(

1− k(v)

〈k〉N

)k(v)
' k(u)k(v)

〈k〉N . (1.24)

This probability is what we need to calculate the clustering coe�cient of the

network, since the LCC is equivalent to the probability that given two neighbours

of a node there exists a link between them [45]. However, the degree distribution
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P (k) is not enough to appropriately average over the neighbours' degrees. We

want to use the distribution Q(k) (1.13) describing degree of a vertex that has

been arrived at along one of its edges. Now, the mean local clustering coe�cient

can be calculated [45]

C̄ =
∑

{k}

∑

{q}

(k − 1)(q − 1)

〈k〉N Q(k)Q(q) =
1

N

(〈k2〉 − 〈k〉)2
〈k〉 , (1.25)

where the sums run over the whole degree sequence. Similar results for global

clustering coe�cient in uncorrelated networks are discussed in [48, 49].

Let us note that the clustering coe�cient can now be computed not only

for Poissonian distribution of degrees, as for ER graphs, but also for power-law

distributions. In such a case, the value of the clustering is much higher, and

the di�erence between ER model and a scale-free con�guration model can reach

several orders of magnitude (depending on the network size).

Lastly, for the sake of comparison with the graph types mentioned earlier,

one can estimate the average intervertex distance l [16]. Given the mean number

of nearest neighbours 〈k〉 and the mean number of second nearest neighbours

〈k2〉 − 〈k〉, their ratio gives the mean branching coe�cient B = 〈k2〉
〈k〉 − 1. As

a result, at the t-th step away from the starting vertex one can reach 〈k〉Bt−1

more nodes. Consequently, the average intervertex distance is approximately

l ≈ lnN/ lnB [44]. The value of l can be made even more precise and include

the additive constant [34, 50].

To conclude, in this chapter I have introduced basic graph-theoretical de�ni-

tions and terminology that will be of use in the following chapters in which certain

model networks are analysed. I have also given an overview of the primary quan-

tities, such as degree distribution, average path length, or clustering coe�cients,

which are needed to characterise and analyse complex networks. Finally, I have

brie�y described the Erd®s-Rényi and con�guration model ensembles of random
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graphs, which are fundamental to modelling networks with modular structure and

to the methods of community detection utilising the ensembles as null models.
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Chapter 2

Percolation

Percolation theory can be thought of, as the name suggests, as a mathematical

description of a liquid permeating a porous medium. The down-to-earth intuition

is that in a rock there are pores that can be �lled with the liquid, and that the

liquid can leak between the pores through tiny cracks. One of the important

questions is how porous the rock has to be for the liquid to leak from one end of

the rock to the other. Such wording might appeal to oil mining companies, but

a little change of imagery can do justice to physicists or chemists interested in

polymerisation and gelation of macromolecules [51, 52], where the �lled pores be-

come molecules and the leaky cracks become molecular bonds. When the density

of bonds increases the molecules can form larger and larger macromolecules, and

ultimately a solid-like gel. Similarly, this image can be translated to a network of

vertices and edges that can be permeated by some process. An example of such

processes to which percolation theory can be applied is disease spread on networks

that can lead to an epidemic, which is the subject of Study I summarised at the

end of this chapter.

Before the above illustrations are framed in a mathematical formalism, let me

remark that the theory of percolation has been a fruitful area of study particularly

with respect to analysis of critical phenomena. Although this will come in handy,
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the focus of this brief chapter is on issues connected to Study I as percolation of

graphs and the generating function formalism used to solve percolation problems

in a class of small-world networks. A comprehensive introduction can be found

in [53].

2.1 Basic concepts

It is conceptually easiest to de�ne percolation on a two-dimensional square

lattice of size N = L2. First, the vertices and edges of that underlying lattice are

unoccupied. Next, we allow the vertices to be occupied with a given probability

p ∈ [0, 1]; if two such occupied vertices are neighbours on the underlying lattice

they become connected; a group of thus connected vertices forms a cluster. We

call this process site percolation. If instead it is the edges of the lattice that

we allow to be occupied with probability p, and we connect the edges that are

incident (i.e., they share one of their ends), the respective process is called bond

percolation. One can also introduce directed percolation (where not only edge,

but also its direction is randomly drawn), site-bond percolation (where both

vertices and edges are occupied, in general with di�erent probabilities) and other

percolation types.

If the occupation probability p is low, the sites are either isolated or form

small connected separate clusters; although if the probability is high enough,

the vertices can build up a large cluster comparable in size to the whole lattice.

We call such a cluster, whose size S ∼ N is �nite in the thermodynamic limit

N −→∞, a percolating/percolation cluster or component. In the context

of graphs, the name giant connected component is often used. Technically,

the de�nition of a percolating cluster involves existence of a path connecting

opposite boundaries of the lattice, which however is equivalent to the one given

above in the limit of in�nite system size.
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The regimes in which percolating cluster is or is not present are separated by

a phase transition occurring for a critical value p = pc, which we call percolation

threshold. The value of pc depends on the type and dimension of the lattice,

as well as on the type of percolation, and can be found in textbooks [53]. For

reference, in connection to Study I, we only invoke the exact value pc = 1/2 for

bond percolation on a 2D square lattice. As a rule, the value is smaller the higher

the number of nearest neighbours (e.g., 6 for 2D triangular lattice as compared

with 4 for square), and the higher the dimension (pc = 1 for 1D and pc = 0 for

in�nite dimensional lattice).

The order parameter for this transition may be de�ned as the probability

P∞ = S/N that a randomly chosen vertex belongs to the giant component, which

is zero for p < pc as there is no giant component, and greater than zero for

p > pc. In particular, close to the critical point it behaves in an analogous way

to magnetization in the Ising model of ferromagnetism (e.g., see [54])

P∞ ∝ (p− pc)β, (2.1)

where β > 0 is one of the critical exponents of the phase transition. The other

exponents can be de�ned in a similar manner (cf. Chap. 1.3 in [54]) of which,

however, for the sake of brevity we report only on the following two:

ns(pc) ∝ s−τ , (2.2)

which describes the distribution of cluster sizes s (where Nns(p) is the number

of clusters of size s, excluding the percolating cluster), and

ξ ∝ |p− pc|−ν for p −→ pc, (2.3)

which describes the behaviour of correlation length near the threshold. ξ is the

characteristic length of correlation function g(~r) ∝ exp(−r/ξ) that describes the
probability of a site at position ~r from an occupied site to belong to the same

�nite cluster.
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The characteristic length is important for practical reasons, since computers

can simulate only systems having �nite linear size L. This results in any quantity

behaving in the thermodynamic limit as X ∝ |p − pc|−χ ∝ ξ−χ/ν to change its

behaviour for �nite L and exhibit �nite-size scaling

X ∝




ξχ/ν , for L� ξ

Lχ/ν , for L� ξ.

(2.4)

Since it might pose problems to �nd the value of ξ, our focus is on the second

line of the proportionality. This e�ect of dependence on lattice size can be seen

in Study I with respect to percolation thresholds for epidemic spread.

Unlike the percolation threshold, the critical exponents do not depend on the

lattice topology, but only on its dimension d (for any d ≥ 6 the behaviour of the

system is already the same as for in�nite dimension; the respective exponents are

called mean-�eld, and dc = 6 is called the critical dimension). To �nd some of the

critical exponents renormalisation techniques can be employed (see, e.g., Chap.

5.8 in [54]).

2.2 Percolation of graphs

Instead of thinking about percolation in terms of clusters forming on square,

triangular, or other d-dimensional lattices, one can take as the underlying network

a complete graph with N nodes. The result of bond percolation on such a graph

is an instance of an Erd®s-Rényi graph taken from the G(N, p) ensemble, where p

is the probability of occupying a given edge. A natural question to pose from the

percolation perspective is what is the value pc at which the connected component

of size S ∝ N appears [40, 55].

For N −→ ∞ this question can be rephrased as: what is the condition on

which we can travel across a graph, so that each time we leave a vertex via a
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di�erent edge than we have entered it. The condition states

∑

k

kQ(k) ≥ 2, (2.5)

where Q(k) has been given in (1.13), and let us recall that it describes the degree

distribution of vertices at the end of a randomly chosen edge. This is equivalent

to demanding the average number of second nearest neighbours z2 to be greater

than the number of nearest neighbours z1.

Hence, the average nearest-neighbour degree for random graphs to have a

giant connected component [56] is

〈k〉NN =
〈k2〉
〈k〉 ≥ 2. (2.6)

For the binomial model of random graphs, whose degree distribution is Poissonian

(1.22), the second moment of P (k) is 〈k2〉 = 〈k〉 + 〈k〉2, which means the

percolation transition takes place at

〈k〉 = 1, that is pc =
1

N − 1
. (2.7)

This result is identical to the classical result for Bethe lattice (i.e., in�nite Cayley

tree, as explained in Study II) which is regarded as an in�nite dimensional system

(further explanation can be found, e.g., in [53] or Chap. 4.3 in [17]). This means

that ER graphs below and around percolation threshold are tree-like (i.e., they

contain almost no loops). The emergence of the giant connected component

is accompanied by divergence of the average size of a �nite cluster to which a

randomly chosen vertex belongs [44]

〈s〉 =
〈k〉2

2〈k〉 − 〈k2〉 + 1. (2.8)

Under the assumption that the random networks are locally tree-like (i.e.,

they contain no �nite cycles) it is possible to put into work the elegant technique

of generating functions. Although for somewhat di�erent calculations, this for-

malism will be used in the next Section. Therefore, here I will focus only on some
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speci�c results that can be obtained with it. Beside the tree approximation, we

assume no degree-degree correlations, as stated in (1.13)-(1.15). Given a network

satisfying the above assumptions, the question we ask is at which point it falls

apart if a random fraction of 1− p vertices or edges is removed (note that it is a

reverse problem to formation of giant connected component).

The answer is once again given by the ratio of the numbers of �rst z1 and

second z2 nearest neighbours [30, 57]

pc =
z1
z2

=
〈k〉

〈k2〉 − 〈k〉 . (2.9)

It can be deduced from this equation that if the second moment of the degree

distribution is in�nite the percolation threshold is zero, and the giant connected

component cannot be destroyed by random vertex removal. (As a side note, it

can be easily destroyed by removal of high-degree nodes [29, 58].) As already

pointed out in Chap. 1.3, it is the case for power-law distributions with exponent

γ ≤ 3. To be more speci�c, the summary of results for scale-free network [16, 59]

is as follows:

• for 4 < γ (〈k3〉 is �nite), S ∝ p− pc
• for 3 < γ < 4 (〈k2〉 is �nite), S ∝ (p− pc)1/(γ−3)

• for γ = 3 (〈k2〉 is divergent), pc = 0 and S ∝ p exp(−2/(p〈k〉))
• for 2 < γ < 3 (〈k2〉 is divergent), pc = 0 and S ∝ p1+1/(3−γ).

These results also depend on the minimal and maximal (cut-o�) degree of the

distribution (see Chap. 4.3 in [17]), since the divergence of the second moment

is valid only in the limit N −→ ∞. For γ ≤ 3, equation (2.9) can be used with

the assumption, however, that the cut-o� of P (k) is kmax ∼ N1/2 (for derivation

of the cut-o�s for di�erent exponents see [26�28]), which yields

pc ∼ 1/ lnN for γ = 3

pc ∼ N−(3−γ)/2 for 2 < γ < 3.
(2.10)

It is important to see that the �nite size of the network considerably increases

percolation thresholds, even though in thermodynamic limit they are zero. Al-
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though in Study I the degree distributions of the model small-world networks are

approximately Poissonian, what ought to be stressed is the existence of �nite-size

dependence of percolation thresholds. As remarked in Sec. 2.4 this might be of

practical signi�cance to epidemic models.

This brief selection of results proves percolation theory useful in application

to random graphs. In Chap. 5.5, we additionally discuss how percolation has

been applied to community detection. Below we extend this overview by asking

a technically similar question but slightly di�erent in terms of interpretation: not

how the network behaves, but how a process behaves on the network.

2.3 Percolation on small-world networks

In [60] the authors study bond percolation on two-dimensional small-world

networks. These are an extension of the Watts-Strogatz model [32], which �rst

was able to account for the small-world property. They are constructed by

modifying a regular d-dimensional hypercubic lattice, so that either a number

of edges is rewired (i.e., one of their ends is randomly changed) or added to

the lattice by connecting random pairs of vertices. In such networks there are

dLd = dN bonds belonging to the underlying d-dimensional square lattice, where

L is the linear system size. Additional parameter may be introduced allowing to

connect further neighbours along the principal axes; for simplicity, however, we

consider only lattices where nodes are linked solely to their nearest neighbours

(in geometrical sense), and hence which are 2d-regular graphs. To such a system,

dNφ additional edges (called shortcuts) are added, where typically 0 < φ� 1.

The percolation problem, with p being the probability of occupying a given

edge, can then be solved with the use of generating functions technique, as

presented in [61]. The function

H(z) =
∞∑

n=1

P (n)zn (2.11)
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generates the probabilities P (n) that a randomly chosen vertex belongs to a

connected cluster of n nodes other than the percolating cluster. Since P (n)

is a probability distribution, its normalisation results in H(1) = 1 below the

percolation threshold and H(1) = 1 − S above it, where S is the size of the

percolating cluster.

The distribution P (n) corresponds to the whole small-world network; we can

similarly de�ne probabilities P0(n) for the underlying lattice (without the added

edges). Then, a cluster in the small-world network may consist of several clusters

on the underlying lattice connected by the shortcuts. If the probability that a

cluster of size n on the lattice has exactly m shortcuts emanating from it is given

by P (m|n), the generating function (2.11) satis�es

H(z) =
∞∑

n=1

P0(n)zn
∑

m

P (m|n)[H(z)]m. (2.12)

The equation holds in the thermodynamic limit or if the shortcuts do not form

loops.

The probability P (m|n) can be expressed by a simple combinatorial formula

P (m|n) =

(
2dNφp

m

)[ n
N

]m [
1− n

N

]2dNφp−m
(2.13)

given the total of 2dNφp ends of the occupied edges and the probability n/N

that an end is found in a given cluster of size n. Substituting it into (2.12) and

summing over m, in the limit N −→∞ one obtains

H(z) =
∑

n

P0(n)
[
ze2dφp(H(z)−1)]n, (2.14)

or equivalently

H(z) = H0

(
ze2dφp(H(z)−1)) , (2.15)

where H0(z) =
∑

n P0(n)zn. Remembering that H ′(1) =
∑

n nP (n) = 〈n〉 and
H ′0(1) = 〈n〉0 are the average cluster sizes on the small-world network and the

lattice, respectively, we can conclude that 〈n〉 diverges when

2dpcφ =
1

〈n〉0
, (2.16)
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which marks the percolation transition.

The authors [60] were able to calculate H ′0(1) with the use of Padé approxi-

mants and consequently �nd the relation between the density of shortcuts φ and

the percolation threshold pc.

2.4 Note on epidemic modelled by percolation

The above results are further developed in the Study I to include network

dynamics. It is important to note at this point that bond percolation can be

translated into SIR model of epidemic spread [62], in which the probability of

infection can be expressed in terms of the percolation probability p (see [63] for

di�erent models; SIR will be the focus of Study I).

The Susceptible-Infectious-Recovered (SIR) model at its simplest con-

sists in three stages of disease transmission in discrete time:

(i) a vertex is susceptible, i.e., it represents a healthy person who can be

infected by a neighbour with probability T (called transmissibility)

(ii) if the vertex has been infected, each turn for the total duration of l time

steps it can infect each of its neighbours with probability T

(iii) if l time steps of being infectious have passed, the vertex is removed and

can neither infect others nor be infected again (this can be interpreted, e.g.,

as death or immunisation).

To start a simulation one has to initially infect a random vertex while all the

other vertices are susceptible. The epidemic ends when all infectious vertices have

become removed. The total number of removed vertices is then called the size

of the outbreak. The transmissibility T can be simply related to the percolation

probability p by

T =
l∑

t=1

p(1− p)t−1 = 1− (1− p)l (2.17)
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in the discrete case. The percolation thresholds pc can therefore be understood

in terms of thresholds of infectiousness leading to epidemic outbreaks. The

equivalence between SIR and bond percolation has, however, some caveats, as

discussed in [64].

Since there is a vast body of theoretical results on percolation, it is worth

noting which quantities are more weighty than others from the standpoint of

epidemic modelling. Firstly, assuming the model of the network is appropriate,

percolation thresholds pc allow to predict whether there is a risk of epidemic

outbreak. Secondly, the size of percolating cluster P∞ corresponds to the social

or economic costs connected with the epidemic. Thirdly, since the real networks

tend to be relatively small (e.g., the patients and sta� of a hospital), the �nite-

size e�ects do play a signi�cant role. Following this train of thought, of practical

interest are the results on scaling of the maximum and mean outbreak sizes and

durations for certain degree distributions [65].

Somewhat connected to this issue is the distribution of cluster sizes in vicinity

of percolation threshold, which describes smaller outbreaks, even though the giant

component does not appear. The last issue can be observed in simulations of

epidemic models, in which at each run of the simulation only one cluster can form;

more clusters would require multiple initial infection sites. The distribution of

sizes is thus gathered by rerunning the simulation and changing the position of the

initial infection. This is technically slightly di�erent from standard percolation

simulations, in which the bonds or sites are all occupied at the same time, and

the resulting lattice contains a number of clusters.

In this chapter, after introducing the basic ideas of percolation on lattices,

I have discussed several basic results in percolation theory that had been used

in the research on complex networks. They concern the critical mean degrees

needed to form a connected random graph, but also the critical fraction of edges
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needed to destroy a random graph. These results are of importance for instance

in the context of robustness of complex networks to random attacks. They

also illustrate the ideas and problems relevant to my own research presented

in this thesis. From this standpoint, it is important to bear in mind the

dependence of percolation thresholds on the �nite size of the network. On

the other hand, the basic analytical technique implicitly used in Study I is the

generating functions formalism described in Sec. 2.3. All these tools have been

employed to mathematically describe epidemic outbreaks simulated with the use

of the SIR model of disease spread. The results of this study are summarised

below.
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Study I

The �rst study to be presented is perhaps the most focused one in terms

of applications: its general goal is to examine how epidemic spread, a dynamic

stochastic process on its own, is a�ected by the dynamics of the network. It is

on purpose that I have not included in Chap. 1 Barabási-Albert networks [66],

as their evolution involves network growth. We preferred to adopt small-world

networks of Watts-Strogatz type [32] with two-dimensional underlying lattice,

as discussed in Sec.2.3, which is justi�able for systems concerning cultivation or

farming. Such a model has a constant number of vertices and edges, but naturally

to rewire the shortcuts, i.e., the additional random edges that make the network a

small-world, without changing the overall topology of the network. Rewiring the

shortcuts during the epidemic conveniently lets us extend the existing analytical

results of Sec.2.3. As many earlier works our study draws on the equivalence

of bond percolation and SIR model of epidemic spread [62]. The problem with

analytical modelling of disease spread on a dynamic network, however, is that the

dynamic SIR process is mapped onto a conceptually static problem of percolation:

we are given a static lattice in which some edges are or are not present. Thus, it

is not entirely straightforward how to incorporate dynamics into percolation.

In the paper, we were able to predict analytically lowering of the percolation

thresholds for epidemic spread resulting from the dynamics only. Although the

dependence on dynamics was analytically tractable, mathematically simple to

derive, and stayed in good agreement with simulations, it was in a sense expected

and intuitive. What seems more surprising to us from today's perspective is the

result of the numerical studies of �nite-size e�ects. More precisely, we measured

numerically the dependence of the average size of the epidemic (that is the

percentage of population that is infected during an outbreak) on the size of the

underlying lattice. While the �nite-size e�ects on regular lattice clearly obeyed

(2.4) and were large (in terms of shifting the percolation threshold or equivalently
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raising the epidemic size for a �xed transmissibility), on small-world network (no

matter static or dynamic) the e�ects were much smaller and the transition not so

sharp (cf. Figures 6 and 7 in paper I). The di�erence is signi�cant for practical

reasons, for it is ultimately the size of the outbreak that determines the social

or economic costs of an epidemic. Though at present, the data-driven models of

dynamic networks are much richer (see [67] for a review on temporal networks),

the epidemic models remain conceptually the same, and the general observations

above might still remain valid.
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Chapter 3

Random walks

It has been more than a century since Einstein [68, 69] and Smoluchowski

[70] gave an explanation of Brownian motion and laid foundations of what is now

called the theory of stochastic processes. These advances further lead to de�ning

a model process in which a particle's movements are discretised both in time and

space, and it was Pólya who �rst considered random walk on lattices [71]. In this

thesis I restrict myself to such discrete random walks only, although it should

be noted that also continuous-time random walks exist or the Wiener process in

continuous time and space. These stochastic processes are of immense importance

in modelling such microscopic phenomena as di�usion of molecules, transport

processes in noisy media, or thermal �uctuations of polymer con�gurations. They

can also describe processes ranging from DNA transcription, to animals' foraging

strategies, and to stock price changes.

In the study complex networks random walks (RWs) are used as a proxy of

various transport processes, but can also be used in methods analysing network

topologies. In this Chapter, I introduce basic properties of RWs in the framework

of Markov chains; later, I de�ne several particular types of RWs useful in analysis

of complex networks; �nally, I discuss at length one of the quantities related

to random walks, namely mean �rst-passage times. The particular RW types
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include most notably generic random walk, corresponding to ordinary di�usion,

and maximal-entropy random walk, whose properties on graphs are compared

in Studies II-V. This is only a selection of topics concerned with random walks

on graphs that I used in the Studies; a general introduction to Markov chains

and random walks is presented, e.g., in Chap. 11-12 of [72]; more information,

especially on topics covering relaxation and mixing times that I refer to can be

found in [73].

3.1 Basics of Markov chains

Given a set of events V = {v1, v2, . . . , vN}, and for each vi given the set

of transition probabilities Pij ≥ 0 from vi to vj (including vi itself), we call

them a Markov chain. The matrix of elements Pij ∀i, j = 1, . . . , N is called the

stochastic, transition, or Markov matrix, with its rows normalised to one

∀i :
∑

j Pij = 1 (which is then called row-stochastic).

For any time t, we de�ne a probability vector ~π(t) = (π1(t), . . . , πN(t))T

describing the probability distribution over the set of events V . If the initial

distribution is ~π(0), the distribution after t steps can be obtained from ~π(t)T =

~π(0)TPt. The probability vector de�ned as the solution to the equation

~πT = ~πTP, (3.1)

which we call a stationary state or steady state vector, may be regarded

as the probability distribution after in�nite time. Let us note that by virtue

of Frobenius-Perron theorem for irreducible non-negative matrices this vector is

unique. In general, the limiting distribution may not be equal to the stationary

state ~π(t) 6−→ ~π when t → ∞. For instance, in bipartite graphs it is possible to

reach states ~π1 6= ~π2 such that ~πT2 P = ~πT1 , ~π
T
1 P = ~πT2 , which means the system

switches between one and the other, never reaching the stationary distribution.

One can de�ne, however, an e�ective stationary state by averaging the two. Such
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situations may appear depending on the choice of the initial distribution ~π(0)

and can be similarly devised, e.g., in directed networks.

If the events V are identical to the vertices of a graph G(V,E) and we assume

that the edges of the graph determine the allowed transitions, then Pij ≤ Aij,

where A is the adjacency matrix of the graph. For all practical purposes, in

this thesis we will call the sequence {~π(t)}t=0,1,...,∞ a discrete-time random walk

de�ned by the stochastic matrix P.1

In connected graphs random walks are ergodic (or irreducible) Markov chains,

i.e., it is possible to go from any vertex to any other vertex, or more formally

∀ i, j ∃ t : (Pt)ij > 0 (mark the strong inequality). Additionally, if the order of

the quanti�ers is reversed ∃ t∀ i, j : (Pt)ij > 0, the Markov chain is regular, which

means that it is possible to get from i to any j in exactly t steps. The latter is not

true for example on bipartite graphs, since then one cannot get to any vertex in

the same part of the bipartition for any odd number of steps, and to any vertex

in the other part of the graph for any even number of steps. Furthermore, we call

the chain reversible if and only if

∀i, j : πiPij = πjPji, (3.2)

where the above equation is called detailed balance condition. Such a condition

ensures that starting from stationary state one cannot distinguish the chain

moving forwards or backwards. In this thesis we will deal exclusively with

reversible Markov chains. They have a special property that will come in handy

in Study IV that their stochastic matrix can be symmetrised

S = Π1/2PΠ−1/2, (3.3)

where Π is a diagonal matrix with Πii = πi.

Such symmetry allows to construct spectral representation of P

Pij = π
−1/2
i π

1/2
j

∑

α

ΛαΨαiΨαj, (3.4)

1For a more precise and restricted de�nition, see for example [72].
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where ~Ψα are eigenvectors of S associated with the eigenvalues 1 = |Λ0| ≥
|Λ1| ≥ . . . ≥ |ΛN−1|. Remembering that upon taking increasing powers of the

stochastic matrix, we come closer and closer to the stationary state, and that

taking those powers in spectral decomposition leads to taking increasing powers

Λt
α = exp(t ln Λα), we can de�ne the asymptotic rate of convergence to stationary

state, often called relaxation time

τ = 1/ ln Λ1 (3.5)

(see Chapter 3-4 in [73] for precise de�nitions of relaxation time, mixing time,

average hitting time, and similar concepts).

A particular class of Markov chains are what we call absorbing Markov chains.

These are chains that contain an event vi for which Pii = 1, i.e., it is impossible

to leave it. Such Markov chains might be helpful in constructing mean �rst-

passage time matrices de�ned in Sec. 3.3. They are also somewhat similar to

random-walk models of trapping physical particles [74], for which the quantities

such as probability of survival S(t) or return R(t) can be de�ned, meaning the

probability that a random walker is not absorbed after time t and was able to

return to initial point after t. These concepts are of more interest to solid state

physicists.

In our considerations all random walks are discrete-time, and are de�ned on

�nite connected graphs (predominantly undirected). It is also noteworthy that

the stochastic matrix P is constant in time, which in some more general models

may not apply.
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3.2 Types of random walks

3.2.1 Generic random walk

What we call the ordinary or generic random walk (GRW) is de�ned by

the stochastic matrix

Pij =
Aij
k(i)

, (3.6)

where k(i) =
∑

j Aij denotes the node degree. It should be noted that in

the literature on complex networks the term 'random walk' in fact means this

particular de�nition. The factor 1/k(i) in the above de�nition corresponds to

the uniform probability of selecting one of k(i) neighbours of the node i. Such

a choice maximises the entropy of nearest neighbour selection. The stationary

probability distribution of GRW is given by πi = k(i)/
∑

j k(j) = k(i)/2|E|.
The choice of uniform transition probabilities corresponds to the standard

Einstein-Smoluchowski-Pólya random walk that describes ordinary di�usion. This

random walk was �rst studied on in�nite d-dimensional lattices by Pólya, who

addressed the problem of recurrence of the random process. For historical reasons

I recall his result [71] that the probability of a random walker (which we simply

call a particle moving according the random walk) returning to the place where

it started its random motion is equal to 1 only in dimensions d = 1 and d = 2,

whereas for d > 2 the return probability is smaller than one.

3.2.2 Maximal-entropy random walk

Another type of random walk that is a subject of my research is themaximal-

entropy random walk (MERW) [75, 76], also called Ruelle-Bowens random

walk [77]. Instead of maximising the entropy of nearest-neighbour selection, as

GRW does, MERW is de�ned by the condition of maximising the entropy of a

set of trajectories (or walks, in graph-theoretical terms) with a given length and

end-points; this is a global principle similar to the least action principle. Thus, for
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any given length and end-points the stochastic matrix of MERW should render

all the trajectories equiprobable. This leads to the following unique matrix

Pij =
Aij
λ0

ψ0j

ψ0i

, (3.7)

where λ0 is the largest eigenvalue of the adjacency matrix A, and ψ0i is the i-th

element of the corresponding eigenvector ~ψ0. By virtue of the Frobenius-Perron

theorem all elements of this vector are of the same sign, because the adjacency

matrix A is irreducible.

That the stochastic matrix (3.7) ensures the equiprobability of paths can be

seen by taking a walk γa0aτ = (a0, a1, . . . , aτ ) of length τ . The probability of

visiting this sequence of vertices starting at a0 and the �nishing at aτ is

P (γa0aτ ) = Pa0a1Pa1a2 · · ·Paτ−1aτ =
1

λτ0

ψ0a0

ψ0aτ

, (3.8)

which depends on the number of steps and the two end-points only. Hence, the

intermediate vertices do not play any role, and all the walks having the same

length and end-points are equally probable.

The stationary state of MERW is given by Shannon-Parry measure [78]

πi = ψ2
0i, (3.9)

which can be interpreted as the probability of �nding a particle, described

quantum-mechanically as a wave function ψ0i, in the ground state of the operator

−A [75, 76]. This analogy can be drawn further to include a particle propagator

ψiG(µ)ijψj = πi
∑∞

t=0(P
t)ij, where

G(µ) =
∞∑

t=0

e−µtAt, (3.10)

where µ is the chemical potential in a grand-canonical ensemble of trajectories

with given end-points, with G(µ)ij acting as a partition function.

In the spectral representation (3.4), the stochastic matrix of MERW takes the

form

Pij =
ψ0j

ψ0i

∑

α

λαψαiψαj
λ0

, (3.11)
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where the eigenvalues and eigenvectors of the symmetrised matrix S (3.3) have

been expressed in terms of the eigenvalues λα and eigenvectors of ~ψα of the

adjacency matrix A:

Λα =
λα
λ0
, ~Ψαi = ~ψαi, (3.12)

in particular, Λ0 = 1 and Λ1 = λ1/λ0, which leads to the relaxation time (3.5)

given by τ = 1/ ln(λ1/λ0).

It is noteworthy that the two types of random walk, GRW (3.6) and MERW

(3.7), coincide on k-regular graphs. Nevertheless, in general, their behaviour is

very disparate, including their stationary states and dynamics.

3.2.3 Other random walks on graphs

In some applications it is undesirable that a random walker becomes trapped

in an isolated part of a graph, e.g., in one of several components. To alleviate

that problem the PageRank algorithm [12] takes advantage of a random walk

with the so-called teleportation

Pij = α
Aij
k(i)

+
1− α
N

(3.13)

where α ∈ [0, 1] is the parameter responsible for the teleportation. This means

that at each step the random walker can move to any vertex in the graph with

probability 1 − α. It may be seen as adding to the original network a complete

graph with some small edge weights. Practically, it allows the random walker to

explore even very isolated areas of the graph and, if the graph is disconnected,

to move between components. It is said that the parameter α originally had

the value 0.85, and it seems that the values between 0.6 − 1 keep the desired

balance. Let us note, that α = 1 simply reproduces GRW. I discuss stationary

state properties of PageRank random walk in relation to mean �rst-passage times

in Sec. 3.3.1 and refer to it also in the context of centrality measures in Chap. 4.
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An elegant generalisation of MERW that also allows teleportation is discussed

in [79]. The adjacency matrix can be rede�ned Ãij → Aij exp(Uij), where Uij can

be thought of as an energy of transition along the edge (i, j). Taking Uij = 0

for the existing edges and Uij = −U0 < 0 for the rest, we introduce a small

probability of teleportation between any two non-adjacent vertices by rede�ning

P̃ij → Pij exp(Uij) the stochastic matrix (3.7). This results in maximising not

the entropy, as before, but the free-energy of paths. The stationary state is once

again given by the eigenvectors of the modi�ed adjacency matrix Ã.

Apart from these, so called biased random walks are sometimes considered.

The name comes from the fact that the transition probabilities are correlated with

a chosen property of vertices or edges. Such biased RWs are contrasted to GRW,

whose the transition probabilities are independent of any properties of the target

vertices, and thus are considered unbiased. From this point of view, MERW can

also be classi�ed as a biased random walk.

The most common example of such RWs is the bias connected to the degree

of vertices, as in the case of

Pij =
Aijk(j)α∑
lAjlk(l)α

, (3.14)

where α can take both positive or negative values depending on whether high or

low-degree nodes should be preferred [80]. In a similar manner, a bias based on

any centrality measure (see Chap. 4) can be introduced [81]

Pij =
Aij exp(βc(j))∑
lAil exp(βc(l))

, (3.15)

where c(j) is for instance betweenness centrality (4.7) of a vertex j. Likewise,

edge centralities can be used.

The principal idea behind these random walks is that real processes, as

transport or search in networks, can exhibit a bias themselves. A simple example

might be a car driver who wishes to avoid high betweenness routes. Such RWs can

be used, e.g., to model and design routing protocols which would prevent tra�c

52



3.3. Mean �rst-passage times

congestion in communication networks. By tuning the bias to a selected graph

property one might also think of utilising biased random walks to the analysis of

structure of complex networks, including community detection.

3.3 Mean �rst-passage times

The mean �rst-passage time (MFPT), also called the average or mean

�rst hitting time, is a quantity o�ering relevant insights into various processes

[82], such as kinetics of chemical and biochemical reactions, disease spread,

animals' foraging strategies, or target information search. It is extensively used

in Studies IV and V, but some of my own observations are presented also here in

Sec. 3.3.2 and 3.3.1 below.

First passage time is a concise term for the time it takes a random walker

starting from an initial vertex i to reach (or hit) a target �nal vertex f for the

�rst time. We are not interested in what happens to the random walker after the

�rst hit, therefore, in calculating this quantity the random walk can be treated as

absorbing at the vertex f . The matrix, whose element Mif encodes the expected

(i.e., mean) value of this time for the ordered vertex pair (i, f), will be called

MFPT matrix and denoted by M. It ought to be stressed that this matrix is

not symmetric in general; for instance, it might take less time to get from a

peripheral node in the graph to a central one than the other way round. Hence,

it is worthwhile to remember which matrix index refers to the initial vertex and

which to the �nal one.

The MFPT matrix can be very neatly constructed from the stochastic matrix

P and the stationary state π with the use of the fundamental matrix [83]

Z = (1−P + ~e~πT )−1 , (3.16)

53



RANDOM WALKS

where 1 is the identity matrix, and ~e = (1, 1, ..., 1)T . The MFPT matrix is then

given by

M = (EZdg − Z)Π−1 , (3.17)

where E is a matrix of all ones, Zdg is a diagonal matrix with elements (Zdg)ii =

Zii, and similarly Πii = πi, as introduced in (3.3).

On expanding (1 − P)−1 into Maclaurin series 1 + P + P2 + . . . it can be

noted that the fundamental matrix is de�ned so as to contain all the powers of

the stochastic matrix P, which enables to average the �rst passage times over all

walk lengths. For the expansion to exist, the matrix 1 − P has to be invertible

and its eigenvalues have to lie within a unitary circle. The matrix, however,

is non-invertible, as the largest eigenvalue of the stochastic matrix is Λ0 = 1.

The correction ~e~πT subtracts the zeroth mode, and guarantees a well-de�ned

inversion. Instead of the fundamental matrix it is possible to use also other so

called generalized inverses, the formalism of which is summarized in [84].

3.3.1 Correlation between MFPT and stationary states

As, I have indicated above the PageRank random walk (3.13) is in the limiting

case α = 1 identical to GRW. In fact, close to that value the teleportation

parameter α can be treated as perturbation to GRW. What follows is presentation

of how the information contained in the MFPT matrix of a random walk might be

used to approximate the stationary state of the random walk with teleportation

by the stationary state of the random walk without teleportation (let us call

it shortly the pure random walk). A part of the calculations are performed in

analogy to the note by Grolmusz [85].

For P′ denoting the stochastic matrix of any random walk, the random walk

with teleportation in matrix notation is de�ned by

P = αP′ + (1− α)~e~vT , (3.18)
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where ~e = (1, 1, . . . , 1)T and ~v = ~e/N is the personalisation vector. The form of

~v might di�er depending on the a priori information, e.g., in the context of web

search it describes the user preferences.

Let us now denote by ~π(0) the stationary state of the pure random walk

and by ~π(α) the stationary state of the walk with a given teleportation α. Our

aim is to express the stationary state ~π(α) with the use of only the quantities

corresponding to the pure random walk:2

~π(α)T − ~π(0)T = (1− α)[~v − ~π(0)]T (1− αP′)−1. (3.20)

On recalling the construction of MFPT matrix, for 1 − α � 1 we can

approximate (1 − αP′)−1 ≈ Z + c(α)~e~πT , where R 3 c(α) −−→
α→1

∞. The precise

form of c is not important since it cancels out, leaving

[~π(α)− ~π(0)]f ≈ (1− α)
[
Zff − πf (0)(1 +

m̄f

N
)
]
, (3.21)

where m̄f =
∑

iMif =
∑

i
Zff−Zif
πf (0)

is the sum over the f -th column of the MFPT

matrix, i.e., over all the initial vertices. Finally, one obtains

[~π(α)− ~π(0)]f ≈ (1− α)πf (0)

[
~πf (0)− ~e

N

]
· ~M∗f , (3.22)

where ~M∗f is the f -th column of the MFPT matrix. This result means that

the stationary state of any random walk with small teleportation, as de�ned in

(3.18), is equal to the stationary state of a RW without teleportation plus a term

proportional to the mean �rst-passage time of reaching a given node.

2 Equation (3.20) can be obtained by the following series of transformations

~π(α)TP = ~π(α)T

~π(α)T [αP′ + (1− α)~e~vT ] = ~π(α)T

~π(α)T (1− αP′) = (1− α)~vT

~π(α)T = (1− α)~vT (1− αP′)−1.

(3.19)
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Fig. 3.1 illustrates how the above equation works for GRW and PageRank.

The stationary states of GRW (i.e., for PageRank with α = 1) are proportional

to vertex degrees, and thus each horizontal line corresponds to the group of

vertices having the same degree. In the subsequent �gures, one can see how

these lines increase their slope. This is the result of (3.22): for each given line,

the nodes with higher total MFPT value, ~e · ~M∗f =
∑

iMif , are lifted higher than

those with smaller total MFPT. This e�ect can be intuitively phrased in terms

of teleportation allowing random walkers to explore the isolated parts of a graph

(i.e., those with smaller ~M∗f ).

3.3.2 MFPT and modular graph structure

The properties of MFPT might be helpful in modelling tra�c dynamics in

communication networks with the use of biased random walks [80]. In (3.17) the

multiplication by Π−1 causes the columns of MFPT matrix to be proportional

to the inverse of stationary state Mif ∼ π−1f . For some random walks this

approximation can be improved [80], but the information in a given column is

averaged, and thus the whole matrix is �attened to just a vector. In fact, a

large amount of structural information on the network, possibly indicative of the

community structure, is lost.

Thus, instead of averaging the columns of MFPT matrix M∗f (which tells

how much time it takes to get to a �nal vertex f from anywhere in the network)

we average rows Mi∗ (which is the mean time to get from an initial vertex i to

anywhere in the network), that is we calculate M̄i =
∑

f Mif . Histograms of

these values for GRW and MERW in a sample LFR benchmark graph (see Chap.

5.2) have a multimodal structure. In Fig. 3.2, I have roughly separated the

consecutive peaks with the vertical strokes.

In order to better visualise the structure of these histograms, we plot the values

on a logarithmic scale after subtracting the maximal value M̄MAX = maxi{M̄i}.
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Figure 3.1: Log-log plot of the stationary probability of PageRank ~π(α) versus

total mean �rst-passage time
∑

iMif of reaching a vertex f for GRW on a sample

network with power-law degree distribution. The case of α = 1 is GRW, whose

stationary states are proportional to degrees, hence the quantisation. Lowering

α makes π(α) increase more, if the corresponding MFPT is larger, as expected

from (3.13).
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Figure 3.2: The histograms show the number of vertices i having a given

MFPT value of going from the vertex to anywhere in the network; M̄i =
∑

f Mif and M̄MAX = maxi{M̄i}. MFPT is calculated for (left) MERW

and (right) GRW. The vertical strokes are placed roughly in the minima:

(left) 10000, 24000, 33500, 39000, 47000, 70000, 80000, 99000, 114000, and (right)

620, 1200, 1610, 1730, 1850, 2400, 3100.

In these histograms one can de�ne intervals of values M̄i containing signi�cantly

separated peaks. Based on the intervals, we divide the vertices of the network.

A sample results for GRW are shown in Fig. 3.3, where the vertices are coloured

according to the built-in community assignment.

That the average values of rows of the MFPT matrix can indicate such non-

trivial structure to our best knowledge has not been shown before; usually, it

was the recurrence times that were studied. This result motivated us to further

examine the dynamic properties of random walks and their application to analysis

of complex networks. Another interesting result connected to mean �rst-passage

times for a special type of biased random walks is shown below.

To close this chapter, I have de�ned discrete-time random walks on graphs

in terms of Markov chains, together with some of the primary quantities that

characterise them, as stochastic matrices, stationary states, or relaxation times.
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100<M MAX-M i<10000 10000<M MAX-M i<24000

47000<M MAX-M i<70000 114000<M MAX-M i<300000

Figure 3.3: The graphs show a sample LFR network (see Chap. 5.2) with 16

built-in communities. The coloured vertices are the ones whose M̄i lie in the

given interval as determined from Fig. 3.2 for MERW. Each colour corresponds

to the community assignment of a given vertex. As can be seen, the vertices in

the given intervals often belong to just one, or only a few communities, but are

not dispersed over the whole network.
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Selected types of random walks, whose properties I compare in Studies II-V, have

been brie�y described in Sec. 3.2. In practice, the choice of a given random walk

type depends on the process that is modelled, or the features of the network one

wants to detect. In Sec. 3.3, mean �rst-passage times have been discussed at

length, with particular focus on some properties that may be used in the context

of centrality measures and community detection in complex networks.
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Study II

In this analytical paper, we address the questions how static and dynamic

properties of GRW and MERW di�er on a simple model graph: a Cayley tree.

This is a tree (see Chap. 1.1) constructed in the following way: the �rst vertex

has the degree k (the root of the tree), all its neighbours (called jointly the �rst

generation of the tree) also have the same degree k, which in the second generation

there are k(k − 1) vertices all of which also have degree k, and so on, until the

last generation (the so called leaves) which have no further neighbour and their

degree is just 1. In the limit of in�nite number of vertices (and generations) the

Cayley tree becomes a Bethe lattice. Such a model thus has many symmetries;

however, we also extend it a little further and break the symmetry at the root,

where we allow the degree to be arbitrarily varied.

Figure 3.4: A Cayley tree with the branching number k = 2, except of the root

r = 3. The last generation g = 3 of nodes is comprised of the leaves.

Although such a model is deterministic, and consequently has a number of

symmetries, it allows to locally approximate random graphs which are known to

be tree-like.

In our paper, we were able to �nd analytically the eigenspectrum of the

adjacency matrix of Cayley trees with the parameters being the root degree r,

the degree of other vertices k, and the number of generations of the tree G.

Thanks to this result, we derived the exact stationary state of MERW given
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by the principal eigenvector of the adjacency matrix (3.9). Interestingly, the

stationary state may be localised or not depending on the degrees r and k. These

results, compared with the stationary state of GRW, are visualised in an online

interactive demonstration [86].

The solution to the eigenproblem of the adjacency matrix also allowed further

to reveal di�erences in the dynamics of the two random walks. Their dynamic

behaviour, and in particular their relaxation times, are governed by the second

largest eigenvalues Λ2 of their stochastic matrices, similarly as in (3.5). Knowing

the eigenspectrum of A, we were also able to �nd Λ2 for the stochastic matrix of

GRW. The results show that while GRW relaxes to the stationary state in time

proportional to the size of the network τ1 ∼ N (as expected for a di�usion), the

relaxation time of MERW is much faster τ1 ∼ lnN . The times can additionally be

faster depending on the initial probability distribution of a random walk, which is

due to the symmetries. These e�ects are visualised in another online interactive

demonstration [87], allowing to vary the initial conditions, branching degrees of

the tree, etc.

In a more recent work by Goltsev et al.[88], in this spirit, i.e., using approx-

imate solutions for Cayley trees, the authors were able to calculate when an

epidemic on a scale-free network can localise. The localisation is de�ned in terms

of the participation ratio of the principal eigenvector of the adjacency matrix,

which corresponds to the stationary state of MERW that we have calculated

exactly.
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Study III

The third paper included in this thesis is a continuation and extension of

Study II, so that it summarises the above results in an orderly manner, but more

importantly its aim is to attempt solving static and dynamic behaviour of the

two random walks, GRW and MERW, on another model graph: in this case a

ladder graph.

Figure 3.5: A ladder graph with 28 nodes and periodic boundary conditions

marked by half-edges on both sides. The graph has two intact regions separated

by two gaps of size g = 3.

This graph is comprised of two one-dimensional rings linked together, so that

a vertex vi is connected to its neighbours vi±1, but also to the mirror vertex on

the other ring v′i. Thus, it is a 3-regular graph, but in principle, due to the mirror

symmetry, it is a quasi-one-dimensional system. When some edges connecting

the two rings are deleted, the equation for the stationary state of MERW is the

same as tight-binding equation with repelling potential introduced by the deleted

edges. The behaviour of a two dimensional system of that kind can be illustrated

by the online demonstration [89]. The system is interesting, since random walkers

(moving according to MERW) to be trapped for a longer time in regions between

two such deleted edges.

To be more precise, in a graph where two equally-sized regions of that type

exist, the relaxation time of GRW is proportional to N2 as in a normal di�usion

and is independent of the number of edges taken out in between these two regions

(let us call it g for gap). For MERW, however, the relaxation time primarily
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depends exponentially on the gap size τ1 ∝ exp(g), and so the more isolated

the intact regions are, the (exponentially) harder it is for a random walker to

move between them. These results were obtained numerically, since, as far, exact

analytical treatment has failed. Further modi�cations of the model were also

studied, where the relative sizes of the intact regions and the gaps were varied,

however such multiparameter behaviour remains not fully understood.

The results on the relaxation times of such ladder graphs in some way

represent the tendency of a given random walk to be trapped in well-connected

subgraphs. From the perspective of the analysis of complex networks they provide

tentative arguments for using one random walk rather than the other as a model

stochastic process taking place on the network. It is especially tempting to check

such trapping behaviour on real networks and use it in community detection (see

Chap. 5), which we partly tried to assess in Study V.
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Chapter 4

Centrality measures

The aim of my research is to analyse processes taking place on networks (which

has been done in Studies I-III), as well as analyse networks with the use of these

processes (which is the subject of Studies IV-V). The critical assumption in the

�rst of these problems is that the network topology a�ects the behaviour of the

process, and in the second that once the behaviour is known it can be traced

back to the network's topology. In a sense, the process is used in a conceptually

similar way as a test particle in gravity or particle physics which allows to learn

about the geometry of a given �eld.

Below, I introduce a wide class of quantities called centrality measures for

which the test process can be a random walk on a graph. As the name suggests,

a centrality measure attributes to a vertex or an edge the value of how central

it is with respect to the rest of the graph. Such measures are utilised in ranking

web pages or in analysis of communication, transport, and social networks. The

selection of centralities in Sec. 4.2 includes only the ones related to random walks,

which are analysed in Study IV, or, for comparison, the ones that are most widely

known, as betweenness and closeness.

What 'central' exactly means, depends on the particular application one has

in mind. It might be simply understood as a central position in the sense of some
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physical or geographical distance or perhaps as a superior economic or social

status. It might be useful to think of centralities as values according to which

the vertices or edges can be ranked; one such ranking that is frequently referred

to is the list of web pages found by a web search engine. Such rankings can be

obtained by simulating a web surfer, or as a matter of fact a random walker similar

to PageRank (3.13). To what extent centralities based on di�erent random walks

are similar or di�erent has been the topic of Study IV, to which this chapter might

be regarded as an introduction. However, due to the numerous interpretations

and applications, there is an entire menagerie of centrality measures. For this

reason, this chapter is focused predominantly on the ones de�ned with the use of

random walks.

4.1 Basic properties

As far as terminology is concerned, the centrality measure is also often

referred to as centrality index, importance, or just centrality. Its minimal de�ning

condition is as follows: given a graph G = (V,E) and the set X = V or X = E,

let us call a real-valued function c : X −→ R which is invariant to graph

isomorphisms a centrality index. This function is called elsewhere a structural

index [90].

There are several properties a centrality index is expected to have. Firstly,

since we want to rank the vertices according to their importance, centrality,

in�uence or some other intuitive concepts, we should be able to compare the

value of centrality index for any two vertices in the graph. Since c(.) is a real-

valued function this property is provided by 'less than' relation in R. Additionally,

we would rather the centrality did not have the same values for di�erent vertices

or edges; in other words, at best we expect that c(.) be a one-to-one function. Of

course, in some cases it is an unreasonable requirement, e.g., in complete graphs,
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where all the vertices and edges are structurally equivalent. Vertices or edges

that are structurally di�erent, however, should be discriminated.

In decision-making processes such grading, which tells which vertex has a

higher status as well as which vertices are equivalent, might serve practical

purposes. The question of which centrality index can best preserve the structural

di�erences is discussed, e.g., in very recent papers [91, 92].

The structural equivalence and grading, however, depend on the process and

the network, to which an appropriate centrality index should be selected. For

instance, in vertex-transitive graphs all vertices are indistinguishable, i.e., for all

pairs of vertices u and v there exists an automorphism f : V (G) −→ V (G) such

that f(u) = v and f(v) = u. Or in other words, relabelling the vertices produces

the same graph. If a graph is not vertex-transitive, some centrality measures may

still fail to distinguish some of its vertices [91]. For example, the degree centrality

yields the same value for all vertices in a regular graph, regardless of any other

features (e.g., belonging to cycles of di�erent lengths). On the other hand, the

classic centralities (degree, eigenvector, betweenness, closeness) yield the same

result for all vertices in walk-regular graphs, which we call all graphs having the

property that for all vertices in the graph v ∈ V the number of closed walks

(v, v1, . . . , vk−1, v) of any length k ∈ N, where v1, . . . , vk−1 ∈ V , is the same.

These are some limiting cases, which show that for a given problem centrality

measures should be chosen with care, as their discriminating power may di�er.

4.2 Types of centralities

I do not intend to give a comprehensive catalogue of all the centrality measures

that have appeared in the literature. However, a reader unfamiliar with the

topic might bene�t from recalling some basic de�nition and terminology. I do

therefore provide a short list of classic centralities together with a few less known

which are of interest in the context of the studies presented in Study IV. A more

67



CENTRALITY MEASURES

comprehensive catalogue can be found in [90]. In the following, the symbolic

names of the centralities will take the form cN , with the abbreviation of the name

in the subscript. The various centralities are de�ned either with the use of purely

structural, graph theoretic concepts as paths and cycles or with the use of some

signal or transport processes like random walks or electrical current �ows. Below,

we do not divide them into those categories, but rather try to present them in

the order of their importance and/or similarity to each other.

Let us begin with the simplest structural index one could think of (�rst

introduced in [93]), namely

Degree centrality

cD(v) = k(v), v ∈ V. (4.1)

As simple as it is, it requires a comment: for di�erent applications in-, out-degree,

or strength could be taken instead. All of them are clearly local properties and

do not bear much information on a vertex's in�uence on the rest of the graph.

Even so, they can be described in terms of a process propagating over the whole

network.

In this case, the stationary state of the generic random walk (3.6) is a

normalised version of the degree centrality. In general, one can de�ne what we

call

Stationary state centrality

cSS(v) = πv, where ~π is a solution to (4.2)

~πTP = ~πT , (4.3)

that is ~π is the stationary state of a random walk de�ned by the stochastic matrix

P. Thus, assuming an opinion or information spreads on the network according

to GRW, the in�uence of a node on the network indeed is just the number of

neighbours it has. Due to this identity, the name stationary state centrality

is hardly ever used in the literature. The cause is also that rarely have other
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random walks than GRW been used. The centrality, nevertheless, is a function

of the stochastic matrix as well cSS(v;P), and other random walks can be used

as well.

In fact, a centrality measure based on (3.13) is now almost a household name

- the PageRank. It is still mostly based on local information spread and yields

very similar results to GRW, although they are not quantised into integers (see

Fig. 3.1).

Interestingly, another random walk - MERW (3.7) - has a stationary state

πi = ψ2
0i, where

~ψ0 is the normalised principal eigenvector of the adjacency matrix,

which leads us to

Eigenvector centrality [94]

cEV (v) = ψ0v, where ~ψ0 is a solution to (4.4)

A~ψ0 = λ0 ~ψ0. (4.5)

This is a global measure, in the sense that the knowledge of the whole network,

represented by A, is needed to calculate the centrality of one node. The random

walk interpretation allows to perceive it as a result of an iterative process of

information propagation, in which the consecutive steps have probabilities pro-

portional to the centrality of the next node on the way, and the probability of

the whole walk from one node to another is weighted by λl0, where l is the walk's

length (note the di�erence between a walk and a path, as de�ned in Chap. 1.1).

Measuring centrality can thus be understood in terms of counting walks, which

are appropriately weighted. Random walks provide only some ways of doing that.

For comparison, we invoke the de�nition of

Estrada's subgraph centrality [95]

cEst(v) =

( ∞∑

l=0

Al

l!

)

vv

=
(
eA
)
vv
, (4.6)

where the walks are weighted by factorials of their length and only closed walks

are taken into account (hence the index vv in the de�nition).
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More classical approach does not even weigh the walks, it only counts them.

However, the set of walks is restricted to the shortest paths only. Let s(a, b) > 0

be the number of shortest paths between vertices a and b and let s(a, b|v) be the

number of these paths passing through the vertex v.

Betweenness centrality [96] is then de�ned as

cB(v) =
∑

a,b∈V
a6=v 6=b

s(a, b|v)

s(a, b)
. (4.7)

Analogously, it can be de�ned for edges, so that the ratio counts the shortest paths

between vertices but they traverse a given edge e = {v, w} ∈ E. On assumption

that transport processes use only the shortest paths, the betweenness centrality

corresponds to the load of a vertex or an edge. The process also assumes that

a vertex tries to send to other vertices as many packages as there are shortest

paths.

The sets of paths can be restricted in other ways, e.g., including only the

shortest paths not longer than some value, or including also the paths that are

longer than the shortest ones by some value.

If the communication or transport process is stochastic, i.e., the sender (nor

any other intermediary node) does not choose any speci�c route for the package,

it has to perform some kind of random walk on the network to �nally reach the

addressee. For GRW, we show what is known as

Random-walk betweenness [97]. First, we construct a matrix

(Pt)ij = Pij, if j 6= t, (4.8)

with the t-th column zeroed: (Pt)it = 0, ∀i, which means that the random walk

is absorbing at the node t (random walkers cannot come out of this node). Next,

we also remove the t-th row, for it does not a�ect the other transitions. Now,

the probability that the random walker reaches node u starting from s in r steps

is: (Pr
t )us. To obtain the probability that it also traverses a given edge incident
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to u, the result has to be multiplied by k(u)−1. Summing over all possible walk

lengths r = 0, . . . ,∞ yields the mean number of times the walk has passed an

edge incident to u: k(u)−1((I−Pt)
−1)us. Finally, this gives

V = D−1t · (1−Pt)
−1 · ês = (Dt −At)

−1 · ês, (4.9)

where ês is a vector with s-th element equal 1, and the rest 0. The betweenness

for the given source and target nodes s and t is

b(st)(v) =
1

2

∑

j

Avj|V st
v − V st

j |, for v 6= s, t, (4.10)

b(st)(s) = b(st)(t) = 1, (4.11)

and after averaging over all source-target pairs

cRW(v) =
2

N(N − 1)

∑

s<t

b(st)(v). (4.12)

For GRW, as shown in [97] this centrality is identical to the current-�ow be-

tweenness. The latter models the network as an electrical grid with the edges

having unit resistors, and the current �owing between nodes s and t according to

Kircho�'s law. We are not aware of any studies of random-walk betweenness for

other random walks, the above centrality, however, can be easily generalised.

Technically somewhat similar is the centrality based on mean �rst-passage

times introduced in Chap. 3, which is called

Markov centrality or Random-walk closeness centrality [98, 99]. It is

simply de�ned as

cM(v) =
N∑

u∈V Muv

, (4.13)

where M is the MFPT matrix from (3.17). Thus, this centrality measures inverse

total distance between a given vertex and the rest of the network, understood

in terms of the average distance a stochastic particle traverses to reach its

destination.
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In some transportation problems, called facility location problems, minimising

the deterministic distances is more reasonable. More precisely, minimising the

total distance to all nodes in the network. It is connected to

Closeness centrality

cC(v) =
1∑

u∈V d(u, v)
, (4.14)

where d(u, v) is the distance between the two nodes. The centrality was discussed

in analysis of social networks [100], where the maximum-closeness person could

be considered the most central and therefore in�uential. However, since the inter-

pretation of d(u, v) in such cases is not straightforward, the closeness centrality

might be better suited for problems in which it represents a physical distance.

Some other centralities based on geographical distances are mentioned below.

The clustering coe�cients can be also interpreted as centrality measures, both

the vertex and edge clustering [see equations (1.17)-(1.20)].

4.3 Example applications of centrality measures

As regards the geographical structures, one has to take into account also the

real Euclidean distances. In [8] Latora et al. used closeness, betweenness, and

two other centralities: straightness and information centrality, in analysis of street

networks of several cities.

Given the graph, in which vertices correspond to crossings, edges to the streets,

and edge weights to the street lengths, one might want to �nd the most e�ective

transportation routes. The idea of straightness is to take into account the

degree to which the routes are straight, which supposedly eases transport and

reduces the time of travel. For this purpose its de�nition

cS(v) =
1

N − 1

∑

u6=v

dEucl(u, v)

d(u, v)
, (4.15)

includes the Euclidean distance dEucl(u, v), so that the more winding the route

is, the smaller the ratio dEucl(u, v)/d(u, v).
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Information centrality on the other hand is a relative change in e�ciency

of the graph after node removal [101]:

cI(v) =
e(G)− e(G\{v})

e(G)
,where

e(G) =
1

N

∑

u∈G
cS(u).

(4.16)

It appears that the betweenness and information centrality are able to detect

the primary communication routes in the urban street networks. Moreover, the

distributions of information centrality values indicates whether a city was planned

or self-organised (exponential vs. power-law cumulative distribution).

To show a speci�c example of facility location problems, we refer to the

geographical model of the Internet (in the sense of routers) as an evolving network

with the new nodes attaching preferentially [102]. For a given new node v, the

preference relies on �nding

u : min
u<v

(αdEucl(u, v) + c(u)) . (4.17)

That is the new node v connects to the node that minimises the trade-o� between

the closest geographical location and the operation costs due to communication

delays. One of candidate functions for c(u) is the closeness centrality.

We have already mentioned that betweenness centrality can be understood

as load communication or transportation networks. In particular, Goh et al.

[103] consider the distribution of this centrality over nodes of a network as the

load of routers in data packet transmission. One can imagine that overloading of

power grids, computer and routing networks, or urban networks can cause failure,

blackouts, tra�c jams, congestion, etc. Centrality measures can be applied

in modelling such failure cascades in the framework of percolation models, as

reviewed brie�y in [16].

The cascade-like failures in networks due to attacks and capacity overload was

studied in [104].
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The simple assumption was that a limiting load

L(v) = (1 + α)c(v) (4.18)

could be assigned to the nodes in an undamaged network, with α ≥ 0 a tolerance

parameter for an excess load the node can take. The cascading failure can then

be modelled as an iterative procedure in which

(i) a vertex is removed, and betweenness is recalculated (as a result of some

shortest paths disappearing and others being redirected)

(ii) the overloaded nodes are removed

and the procedure is repeated until there are no more overloaded nodes. Such

process allows to study the extent of damages in the network, to search for

vulnerable nodes in it, etc.

The function c(v) is an initial load that in the absence of empirical data can

be modelled by centrality measures. Motter [105] �rst used for that purpose

closeness, degree, and other centralities. He found out that networks are more

sensitive to removal of nodes with larger centralities, which can trigger global

cascades.

Similar models but with overloaded links, and consequently betweenness

playing the role of load, were studied in [106] or in [107] where the Kircho�'s

equations of electrical currents were solved for (similarly as in calculation of

current-�ow betweenness).

Another large branch of applications is the analysis of the Internet (either on

the level of autonomous systems or of routers) and the World Wide Web (i.e., the

network of web pages) [108]. The research problems connected to the Internet are

somewhat similar to designing, e.g., urban networks for car tra�c, which can be

considered an analogue for routing tra�c of information packets. One of the basic

quantities studied in this context, in order to understand how to avoid jamming,

is betweenness [100]. The analysis of WWW, on the other hand, is mainly focused

on ranking the web pages according to their importance (and ultimately also the
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user's preferences) by search engines. The most popular algorithms of that kind

are Google's PageRank [12] and Hubs & Authorities (HITS) [109], the former

being a random walk stationary state centrality, and the latter a centrality based

on eigenvectors of ATA and AAT matrices.

In applications, the sensitivity of a centrality index to the presence of complete

subgraphs or similar structures in a network may be helpful in detecting artefacts,

e.g., so-called link farms in WWW which aim at deceiving ranking of pages

in search engines. This issue is discussed in [79], where web page ranking

centralities (PageRank, HITS, and stationary state centrality based on MERW)

are compared.

Lastly, centrality measures can also form a basis for community detection

algorithms, or can enhance them. This particular application is brie�y reviewed

in Chap. 5.4, after the outline of standard problems and methods of community

detection has been presented. It is also at the end of the chapter on community

detection that Study IV is summarised, since some of the concepts it utilises

include similarity matrices used in community detection methods. The main

concern of this study is, nevertheless, the relation between various centralities

based on random walks that have been collectively introduced in Sec. 4.2 of the

present chapter.
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Chapter 5

Community detection

Real networks, or rather real systems represented in a simpli�ed way as

networks, be it biological, social or other, tend to have a non-random structure

governed by its function. On the one hand, knowledge of the structure may allow

to understand or predict the behaviour of the system (i.e., processes taking place

in it and its own evolution); on the other, one may try to deduce the function

of the elements of the system from the structure. That is why beside looking at

the properties of individual vertices, as in the case of centrality indices, massive

research has been conducted to reveal the modular structure of networks. In

social sciences, the modules have for us an intuitive meaning of communities,

groups of friends, business interests, etc., and have already been researched for

decades [5]. Such studies can allow analysing social changes, targeting groups

of customers, or understand the spread of ideas. The interest of biologists in

these topics is relatively new [110] and concerns, e.g., metabolic networks, gene

regulatory networks, or protein interaction networks. Knowledge of modules in

such networks can help discover joint functions of groups of genes or discern the

functional modules of proteins taking part in cellular processes.

Because of these and many other applications the discipline has been dynam-

ically developing for the last decade. The results of this research is thoroughly
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reviewed in [111]. Below, the intuitions about what a community is are made

slightly more precise; next, dominant models of graphs with community structure

are presented; and �nally, a selection of community detection algorithms is given,

together with their connection to percolation, random walks, and centralities.

This choice of topics is intended to provide context for the Studies IV and V.

Although the former concerns to a large extent centrality measures discussed

in the previous chapter, it also makes use of the similarity matrices de�ned in

Sections 5.1 and 5.3.2.

5.1 What is a community?

There are numerous attempts at developing a rigorous de�nition of a commu-

nity (also called modules or clusters), some of which provide a formal method

for constructing arti�cial networks with known communities built in (see Sec. 5.2)

or a well-de�ned quality function that can be optimised by community detection

algorithms (see Sec. 5.3). Nevertheless, there is no de�nition universally agreed

upon. On the contrary, what is meant by the term 'community' might depend on

what the network represents or what is the intended application of the information

on community structure.

For that reason, only a few possible choices are presented so that the initial

intuitions can be made more precise, and so that the most representative or

in�uential ideas are covered. We begin with a several de�nitions based on the

local graph properties. The easiest way to start is to consider as a community

a maximal complete subgraph H of a graph G also called a clique [112]. The

condition of maximality is essential, for we do not expect for instance every 3

out of 5 friends to constitute a separate community, provided the only knowledge

we have is that they know each other. Similar de�nitions based on the concept

of a maximal subgraph with a given property have been used, e.g., in which

the diameter is bounded by n (n-clan)[113] or where each vertex is adjacent
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to at least k other vertices in the subgraph (k-core)[114]. These restrictions

can be understood as a kind of minimal conditions for connectivity within the

community.

However, one has to take into consideration the connections between the

examined subgraph and the rest of the graph, which can be done as follows [37].

Let us take a subgraph H ⊂ G and a node v ∈ H. The degree of the node can

be split k(v) = k(v;H) + k(v;G\H), where the parts denote the number of links

pointing to vertices in H and outside H, respectively (usually they are denoted

by kinv and koutv , which however might be confused with the in- and outdegrees

of a node in a directed network; for this reason we prefer the notation above).

Formally k(v;H) =
∑

u∈H Auv, and k(v;G\H) =
∑

u/∈H Auv.

Then, we call the subgraph H

a Community in the strong sense if and only if

∀v ∈ V (H) : k(v;H) > k(v;G\H). (5.1)

This means that each node in a strong community has more connections with it

than with the rest of the graph.

We call H

a Community in the weak sense if and only if

∑

v∈V (H)

k(v;H) >
∑

v∈V (H)

k(v;G\H). (5.2)

This means that the total number of internal connections of a whole community

must be greater than the total number of its external connections. These local

de�nitions can serve well to set conditions for the structure of arti�cial benchmark

graphs with built-in communities, some of which are described in Sec. 5.2.

They should be treated with caution, however, when used with respect to some

deterministic, especially regular graphs, where they can lead to rather unintuitive

results.
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On the other hand, global quantities can be found that indicate whether

there is any community structure in the network. Such quantities can be �tness

measures (or quality functions), which means that the closer their values are to

the optimum, the more distinct communities can be found in a given graph. These

functions can be framed in terms of the deviation from a null model, i.e., a model

which is known to have no community structure, as the ER graph ensemble or

the like. Of course, the closer the null model to the examined network the better,

since then the deviation can be attributed to the modular structure only. For

this reason, the most popular null model is based on randomising the original

network, so that the edges are randomly rewired, while keeping the expected

degree of each vertex constant. The quality function based on this idea is called

modularity[115].

For a given partition of the graph into communities, each node v has an

assigned membership Cv to one of these communities. The modularity can then

be written down as

Q =
1

2m

∑

u,v

Auv − puvδ(Cu, Cv) =
1

2m

∑

u,v

Auv −
k(u)k(v)

2m
δ(Cu, Cv), (5.3)

where m = |E| is the total number of edges, puv is the probability of forming an

edge between vertices u and v, which in the second equality has been substituted

with the value obtained for uncorrelated networks (1.24), and δ(Cu, Cv) is one if

u and v are members of the same community, and zero otherwise. It should be

noted that in fact it is the choice of puv that sets the null model against which

the given network is tested. Due to the delta function we can sum over clusters

instead of nodes

Q =
nc∑

c=1

[
lc
m
−
(
kc
2m

)2
]
, (5.4)

where nc is the number of communities in the examined partition, lc is the number

of inter-cluster edges, and kc =
∑

v∈c k(v) is all the degrees in c summed. The

two terms in the sum re�ect the di�erence between the fraction of edges in the
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original graph and in the null model, where the expected degrees of vertices are

preserved. The more non-random modular structure a given graph has, the larger

the modularity. Thus, given a graph which �xes A and the degree sequence, the

goal of community detection algorithms utilising modularity is to �nd a partition

of the graph that maximises its value (see Sec. 5.3.3) by changing the number of

clusters nc and the assignments Cv.

Another way of assigning vertices to the same community is based on the

similarity between pairs of vertices: then, the groups of most similar vertices

naturally form a community. This can be better understood if the network

is embedded in a metric space. The central concept for metric spaces is the

distance function d(u, v) ≥ 0, whose de�ning properties are: the coincidence

axiom d(u, v) = 0 ⇐⇒ u = v, symmetry d(u, v) = d(v, u), and triangle

inequality d(u,w) ≤ d(u, v) + d(v, w). Thus intuitively, if vertices are close to

each other, they are similar, and if they are distant, they are dissimilar. As a

consequence, in the study of complex networks distance-like measures are often

called a dissimilarity. The dissimilarity is not a distance, because it does not

ful�l the coincidence axiom. In what follows, it can be noted that the dissimilarity

duv might be null even though u and v are di�erent vertices. In such cases, the

vertices can be called structurally equivalent.

An example comes from image segmentation problems [116], where in the

simplest case a number of points on a two-dimensional plane is clustered into

two separate groups. Then, the Euclidean distance (or countless others) between

any two points can be used as a basis for clustering algorithms. Although such

visual information can be mapped into a weighted graph, the converse may not

be possible.

Nonetheless, for simple graphs dissimilarities based solely on the adjacency

matrix A can be constructed, e.g., [117]

duv =

√∑

w 6=u,v
(Auw − Avw)2, (5.5)
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where the similarity is understood as having the same set of neighbours. Beside

such straightforward cases, one can resort to counting paths between vertices,

e.g., [118]

duv =
∞∑

t=0

(At)uv
t!

, (5.6)

which in turn views the similarity as a property associated with all other vertices.

This idea is close to utilising random walks, in particular powers of their stochastic

matrices, mean-�rst passage times, commute times, and related quantities, which

will be described in Sec. 5.3 and which have been analysed in Studies IV and V.

It can be observed that most of the vertex-similarity de�nitions are in fact matrix

analogues of some centrality measures listed in Chap. 4.

5.2 Graphs with community structure

As far, graph-theoretical properties of communities in empirical networks are

still rather skimpy. We know, however, that for many classes of networks the

average path length within communities is typically very small, l < 3. It grows

approximately logarithmically for small community sizes, until about n ≤ 10.

Above this size the intervertex distance either quickly saturates or the growth

becomes even slower. The distribution of sizes of the communities is broad, with

the tail that can be �tted with a power-law (see, e.g., [119]).

Since neither ER nor the con�guration model has the community structure

built in, numerous modi�ed models have been developed to account for this crucial

characteristic. The ones presented here are regarded as the classical benchmarks

utilised to test algorithms of community detection. The modular structure in such

benchmarks is prede�ned, so that the results of the algorithms can be compared

with the planted partition.

One of the simplest ways to produce a random graph model with community

structure is the planted l-partition model [120]. In general, it assumes that the

82



5.2. Graphs with community structure

vertices are divided into l groups of equal size. Each pair of vertices within

one group is connected with probability pin, while vertices belonging to di�erent

groups are linked with probability pout. For pin > pout the edge density within

groups (intra-cluster) is greater than between them (inter-cluster), and so the

whole graph has a community structure. Each group is then a subgraph of ER

type (speci�cally, binomial model graph with p = pin), and consequently the

degree distribution is Poissonian, the average shortest path length scales as lnn

within each of them as well.

A special case of this model is Girvan-Newman benchmark [121], where n =

128 and l = 4 and 〈k〉 = 16. The last condition makes the probabilities pin

and pout dependent on each other: pinn/l + poutn(l − 1)/l = 16, where the �rst

term is the mean number of intra-cluster connections zin of a vertex, and the

second of inter-cluster connections. For example, zin = 14 results in dense, well-

separated clusters, as only the remaining 2 edges per vertex can form bridges

between communities. For pin = pout, or equivalently zin ≈ 4, the benchmark

becomes a random graph. As simple as it might seem, detection of the transition

between graph having community structure and devoid of it is nontrivial. Su�ce

it to say that community detection algorithms fail to �nd the correct clusters

below zin < 8. This interesting problem is raised again in the conclusions.

Further modi�cations can be introduced similarly as with the transition from

ER to con�guration model. Very successful in this respect is the Lancichinetti-

Radicchi-Fortunato (LFR) benchmark [122], which not only allows for a power-

law degree distribution, but also a power-law distribution of community sizes. The

parameter that steers the level of inter-cluster connections is called the mixing

parameter µ ∈ [0, 1], de�ned as the fraction of edges of a vertex that lead outside

of its community.

The construction procedure is similar to the con�guration model, as given

below:
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• �x the number of vertices n

• draw the community sizes from the community size distribution

• for each vertex v ∈ {1, 2, . . . , n} draw the number k(v) of half-edges

(according to the degree distribution P (k))

• for each vertex v attach (1− µ)k(v) half-edges to it

• for each community randomly, pairwise join the remaining ends of the half-

edges

• for each vertex v attach µk(v) half-edges to it

• randomly, pairwise join the remaining ends of the half-edges between the

vertices of di�erent communities.

The benchmark allows for manipulating the average degree, the power-law expo-

nents of degree and community size distributions, the minimal and maximal sizes

of the distributions, and the mixing parameter. The benchmark has been further

developed to include directed and weighted networks.

5.3 Community detection algorithms

We give a very brief overview of selected types of community detection

methods, particularly the ones connected to random walks. There are many

classical data mining methods used for data clustering, as hierarchical clustering

algorithms [123] partitional clustering [124] (of which k-means clustering is the

most well-known one) graph bipartitioning [125] and many other [126] that,

however useful they may be, are beyond the scope of this thesis. Nevertheless,

since the main stochastic processes I have researched was MERW, whose de�nition

involves eigendecomposition of the adjacency matrix, it is worthwhile to see what

information is stored in the spectral properties of matrices representing graphs.

Hence, we begin with a note on spectral methods, and go on with random-walk

based methods, and modularity optimisation. Additionally, sections 5.4 and 5.5
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describe some other popular methods based on the concepts of centrality and

percolation that we reviewed in previous chapters.

5.3.1 Spectral methods

These methods utilise eigenvalues and eigenvectors of matrices representing

graphs (see Chap. 1.2). Most often either the Laplacian L or adjacency A matrix

is used. This is because L has a number of interesting properties: it always has

at least one zero eigenvalue associated with the eigenvector (1, 1, . . . , 1). The

number of zero eigenvalues match the number of connected components in the

graph. This suggests that the eigenvalues which are close to zero and are visibly

separated from the spectrum correspond to fairly well-de�ned communities, which

can be found by examining the associated eigenvectors.

That is why the smallest non-zero eigenvalue (Fiedler value or spectral gap)

and the corresponding eigenvector (Fiedler vector) [127] has been used for graph

bipartitioning [128] that is cutting the graph into two subgraphs. By repeating the

procedure iteratively a set number of times, a partition into several communities

can be obtained. Such spectral bisection method [129] consists in �nding the

minimum cut R (i.e., the minimum number of edges connecting the two groups

of vertices)

R =
1

4
~sTL~s =

∑

i

a2iλi, (5.7)

where one minimises over the partition assignment vector ~s, and the coe�cients

ai are scalar projections ai = ~sT~vi on the eigenvectors ~vi of the Laplacian matrix.

The solution in the real domain is obtained by the Fiedler vector ~v2, since the

Fiedler value is the smallest one. However, the partition assignments si take

values either 1 or −1 depending on whether the vertex i belongs to one or the

other group. In such case, it is su�cient to choose si = sgn(v2i), where sgn is the

signum function, which is fairly close to the minimum.
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Similar techniques can be used with the adjacency or weight matrices [130]

not without some caveats, however, for which one can consult [131]. The spectral

bisection method has been further developed into more sophisticated spectral

clustering algorithms [116, 132, 133] that take into account k eigenvectors, which

serve for embedding the graph vertices in a k-dimensional Euclidean space and

performing k-means clustering (one of the classic data clustering techniques [124]),

that groups the vertices into k clusters.

Interestingly, these methods are linked to random walks, since LRW = D−1L =

I−P [see equations (1.4)-(1.6)] where P is the stochastic matrix of GRW (3.6).

As a result it has been proven that if the cut R for a bipartition is properly

normalised, it is equal to the probability that a random walker moves from one of

the clusters to the other [134]. Unfortunately, we are not aware of any analogous

studies on other types of RW.

5.3.2 Random walks

The heuristic arguments behind the random-walks based clustering methods

are that since the number of paths connecting vertices in the same community is

higher than for vertices belonging to di�erent communities, random walkers are

expected to wander longer within the clusters, and are less likely to leave them.

This idea has been elegantly formalised in [135], where the probabilities

of moving from one cluster to another in time t are encoded in the clustered

autocovariance matrix

R(t) = HT (ΠPt − ~πT~π)H, (5.8)

where P is the stochastic matrix of a RW and ~π is its stationary state, Π is a

diagonal matrix with Πii = πi, and H is a N × c membership matrix, whose

element Hvi = 1 if vertex v is in cluster i, and 0 otherwise. For a certain time

scale t trace of matrix R(t) is minimised, and then optimal partitions are found

by maximising the result.
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Earlier studies usually adopted two other approaches: either based on dissim-

ilarity matrices or expansion techniques discussed below (part of this discussion

is also included in Study IV and is the main topic of Study V). One of the more

e�ective algorithms is due to [136], where the dissimilarity matrix is de�ned in a

similar manner to (5.5) as

d(t)uv =

√∑

w

[(Pt)uw − (Pt)vw]2

πw
, (5.9)

where the random walk de�ned by stochastic matrix P and stationary state ~π

proceeds with t steps from the vertex u and v. The dissimilarity between the two

vertices thus in a way measures the di�erence between how they can see the rest

of the network as the RW evolves. The choice of the time t is rather arbitrary,

but typically small so that the RW does not come to close to the stationary state.

In the same spirit [137�139] use the whole MFPT matrix

duv =
1

N − 2

√∑

w 6=u,v
[Muw −Mvw]2, (5.10)

and hence the view the vertices have on the rest of the network is time independent

(in short, M sums all powers of P). The clustering methods utilising the above

dissimilarity matrices then proceed with the agglomerative hierarchical clustering

algorithms of choice. Other particular de�nitions have also appeared in the

literature (see, e.g.,[140, 141]), but the above ones can be regarded as the most

representative.

The other approach might be called expansion and �ltering the edges. Let us

say that we track a process of information spread taking place on the network,

and each time a piece of information is passed across a given edge, we change the

weight of that edge - the more frequent the transmission the larger the weight.

After some time the weights can be normalised and the smallest weights can be

discarded by the �lter. We assume that it is the inter-cluster edges that are �ltered

out, leaving us with disconnected components corresponding to the communities

we have been looking for.
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The idea was used for instance in [142], but perhaps a more elegant method

was presented in [143]:

(i) the RW performs t steps (rather small number, so as not to reach the

stationary state), which means we take T = Pt

(ii) T is in�ated, i.e., each of its elements is raised to some power

(iii) the rows (if the matrix is row-stochastic) are normalised, so that T is row-

stochastic as well and we can go back to step (i).

Such a process reaches a stationary state with zeros and a single 1 in each row

(unless some symmetries are involved). In a row corresponding to v, the position

of 1 indicates what is the attracting vertex of v. The set of vertices with the same

attractor form a community.

Among other noteworthy methods utilising RWs the Infomap [144] is perhaps

the most successful. It strongly di�ers from the standard approaches presented

above; generally speaking, the method treats partition into communities as means

of compressing the information needed to describe a process on the network (in

this case PageRank random walk). It should be noted, however, that in all these

methods GRW is the predominant random walk to be used, not least because of

its computational simplicity; the other, biased random walks are quite rare.

5.3.3 Modularity optimisation

Modularity (5.3) has become by far the most popular quality function used

in community detection. It was �rst used in the divisive algorithm by Girvan

and Newman [115] , which is described in Sec. 5.4 below, to choose the best

partition out of those produced by the algorithm. Later on, a multitude of

di�erent algorithms have emerged and have been re�ned, so as to �nd the most

accurate approximation of the optimal modularity value in the least time. Since

in fact the idea is rather simple and the null model associated with modularity has

already been explained, only brie�y a couple of such approaches are mentioned.
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The �rst is a greedy agglomerative clustering method [145], in which the N

vertices of the graph are clustered together one by one; each time the vertex

to be merged with existing clusters (including single vertices) is chosen so as to

maximise the modularity of such subsequent partition. In the end, the partition

with the highest modularity from among those that appeared during the process

is chosen.

Another classic technique used to optimise modularity is the simulated anneal-

ing [146], in which the set of all possible partitions constitutes a space explored by

the algorithms. Consecutive visited states (partitions) are chosen with a standard

Monte Carlo probability of transition: 1 if the di�erence of the quality function

in the two states is positive ∆Q > 0, and exp(β∆Q) if ∆Q < 0, the parameter β

being, physically speaking, the inverse temperature. The stationary state of such

process is the optimum of the quality function, in this case modularity [147].

Finally, also spectral algorithms can be used by substituting in (5.7) the

Laplacian matrix with the modularity matrix [148, 149]

Buv = Auv −
k(u)k(v)

2|E| . (5.11)

As earlier, the procedure follows by choosing a bipartition vector ~s so that its

elements ±1 reproduce the signs of the eigenvector v1 associated with the largest

positive eigenvalue of B.

Whatever the precise method of optimising modularity is, it su�ers from

several problems. Firstly, the number of high-modularity partitions reaching

values very close to the global maximum grows exponentially with the number

of modules present in the network [150]. This means that the true maximum

is impossible to �nd even in fairly small graphs, since there are too many high-

scoring local maxima in the modularity landscape to be checked. Moreover,

even though the algorithms reach values close to the global maximum, di�erent

sampling heuristics can lead to signi�cantly di�erent modular structures of the

same network. Secondly, in random graphs (e.g., ER type) partitions can be found
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to score high modularity values [147, 151], while no communities can be present by

de�nition. This e�ect is due to �uctuations in distribution of edges in the graph

ensemble, but in real networks one cannot tell if the community is meaningful

or has appeared as a �uctuation only. Lastly, modularity optimisation has a

resolution limit [152], which may result in clustering together a number of small

communities (compared to the whole graph), regardless of the density of their

inter-cluster connections. Due to these reasons methods based on modularity

should be cross-checked against algorithms of other kinds. These problems also

raise questions regarding signi�cance of the community detection results as such,

which we discuss in Conclusions to the thesis.

5.4 Centrality measures in community detection

Vertex centralities reduce and extract, in this way or the other, the information

contained in the adjacency matrix, stochastic matrices, dissimilarity matrices or

similar entities (which can be seen explicitly, e.g., in the case of eigenvector or

Markov centralities). The full structural information contained in an N × N

matrix is reduced to a vector of N numbers; the structure is lost.

The methods of community detection often use the above matrices to answer

more complex (or just more dimensional) questions - to �nd the modular structure

of a network. In a sense, some of them may be considered counterparts of the

centrality measures. One of the primary approaches to community detection,

however, utilised the residual information stored in centralities [115]. The hierar-

chical, divisive, clustering algorithm by Girvan and Newman consists in iteratively

repeating the following steps:

(i) calculating edge betweenness,

(ii) removing the edges with the highest scores,

(iii) going back to step (i).
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5.4. Centrality measures in community detection

After a number of removals, the network splits into components, and the con-

secutive partitions can be represented in the form of a dendrogram. The process

continues until a given number of components is obtained, and the best partition

is chosen so as to maximise modularity. For the purpose of step (i) the shortest-

paths, random-walk and current-�ow edge betweenness were used with similar

results.

The choice of centrality, nevertheless, may depend on the speci�c problem

to be solved. Thanks to the application in community detection, numerous

modi�cations to the edge betweenness were introduced [153], e.g., the set of

shortest paths was further restricted to non-redundant ones only (i.e. each vertex

can be used only once as a beginning or an end of a shortest path), which enhanced

the performance of the algorithm. The centralities have also been extended to

weighted graphs.

Several innovations utilising centrality measures were also introduced to en-

hance community detection methods to �nd overlap between communities. For

instance, in [154] the algorithm by Girvan and Newman is extended as follows.

It consists in an alternative step to edge removal, namely a vertex split: if a

vertex v can be split into two, v1 and v2, with the edges incident to it split into

two sets, so that the yet virtual edge (v1, v2) has more shortest paths traversing

it than any real edge, the split should be performed; else, a real edge should

be removed in the standard way. The algorithm thus utilises a modi�ed version

of shortest-path betweenness, called split betweenness, which allows to �nd the

vertices which belong at the same time to several communities.

Feeding some other algorithms with vertex centrality values, e.g., [155] which

is based on �nding ground states of a frustrated ferromagnetic Ising spin model,

allows to restrict the set of pairs of frustration centres (which are supposed to

be community centres) from n2 to O(1). This greatly reduces the computation

time. Similar enhancements, involving degree, betweenness or PageRank, were
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introduced to some other algorithms [156, 157]. which we provide only examples

of.

5.5 Percolation in community detection

In [158] Derenyi et al. generalise the concept of site percolation to k-clique

percolation, in which adjacent k-cliques (i.e., ones that share k − 1 vertices)

play the role of adjacent vertices. Such a de�nition of adjacency allows to

introduce paths and connectedness in the usual manner (see Chap. 1.1). The

giant connected component, in the sense of k-clique adjacency, then appears in

ER graphs at p equal to

pc(k) = [(k − 1)N ]−1/(k−1) , (5.12)

which recovers the classical percolation threshold pc = 1/N for k = 2, that is

k-cliques representing edges.

We mention this result, as it has been used to de�ne what is called a k-clique

community: a union of all k-cliques which are connected in the sense of k-clique

adjacency. This allows to obtain overlapping community structure and to develop

an algorithm for its detection [159] (called Clique Percolation Method).

I conclude this chapter with the summaries of Studies IV and V below. They

are both comparative in character, and the systematic control of the numerical

comparison is ensured by the use of LFR benchmark graphs introduced brie�y

in Sec. 5.2. This allows to produce results for network topologies close to the

ones observed in real networks without risking too much bias caused by very

de�nite structures. The core quantities discussed in this chapter that appear in

the Studies are dissimilarity matrices of the kind given in (5.5)-(5.5) and (5.9)-

(5.10), which encode the structural distance relations between vertices of a given

graph, and from which it is moderately easy to extract the structural information.

92



5.5. Percolation in community detection

Although the Studies focus on methods based on random walks, it is not without

purpose that we decided to include in the above digest of community detection

algorithms also the ones based on spectral decompositions and modularity. While

the former is grounded in the classical graph theory, and is popular in image

analysis, the latter has become a standard quality function and can be used as

auxiliary means to other methods; both, they can serve as a point of reference

for other methods.
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Study IV

In Chap. 4.2 it has been indicated that a number of centrality indices,

including random-walk betweenness, degree or eigenvector centrality, Markov

centrality and others, are de�ned with the use of a random walk (which is by

default GRW). Some other centralities can be obtained from the dissimilarity

matrices used also in community detection, e.g., those given in (5.6) or (5.9),

since they are all based on concepts of walks, shortest or weighted paths, etc. In

these contexts, several observations regarding MERW has lead me to believe that

some of the above approaches can be uni�ed or at least some analogies between

them can be drawn.

The aim of the paper was therefore to compare, both analytically and numer-

ically, a number of centrality indices and a couple of dissimilarity matrices. If

these quantities could be shown to be related, I thought, one could assume that

the structural information about the network and the results they produce are

largely equivalent. Thus, the idea was primarily reductive and synthetic.

In the paper, both MERW and GRW were shown to belong to a special class

of random walks whose stochastic matrix can be symmetrised as in (3.3). This

allowed me to draw analogies between one of the dissimilarity matrices (5.9)

(proposed in [136]) and the MFPT matrix (3.17). In particular, it appears that

the fundamental matrix Z (3.16), which is used to construct MFPT matrix, is

in fact an unsymmetric version a particle propagator G (3.10) associated with a

given random walk. The latter is in turn closely related to what we call a heat

kernel eβA, proposed as a dissimilarity matrix (5.6) in [118].

I further studied the connection between several random-walk based cen-

tralities, including the eigenvector centrality (4.4), which is associated with the

propagator mentioned above, as well as centralities based on powers of a RW's

stochastic matrix, stationary states of RWs and Markov centrality (4.13). I

compared the resulting values of centrality on a set of benchmark graphs (LFR
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benchmarks were used, since at present they seem to re�ect most closely the

structure of real networks). The results of comparison in the form of a dendrogram

(Fig. 2 in IV) show how close the di�erent centralities, understood as vectors of

real numbers, are to each other. In particular, it can be seen that centralities

based on MERW give consistently distinct results from all the other methods,

while they are very similar to each other. Centralities associated with GRW are

slightly less similar to each other and mix with some other methods.

In sum, I was able to unify some approaches to calculating centralities, which

I hope will help to synthesise part of the existing knowledge on complex networks

analysis. Additionally, the choice of a random walk was once again shown to be

important in the methods of analysis. More generally, the connection between

spectral properties of adjacency matrices, counting paths, calculating mean �rst-

passage times or other quantities associated with random walks is an argument

for one mathematically favoured structural information on networks that could

be extracted irrespective of the method one assumes. I raise this argument again

in the Conclusions to the thesis, where I discuss my ongoing and prospective

research.
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Study V

Random-walk based methods are one of the successful branches of community

detection. Both their strength and weakness at the same time is the fact that the

resulting partition may depend on the chosen RW: on the one hand, this allows

to model a given process as closely as possible with the appropriate RW, and

thus obtain results relevant to the particular system under study; on the other

hand, there exists a certain preconception (not necessarily a misconception) that

all community detection methods should give similar results approximating some

ideal graph partition. The latter is precisely the case, if one assesses the methods

on a set of benchmark graphs constructed so as to have a certain prede�ned

community structure known to us.

With these thoughts in mind, in our paper we aimed at extending the existing

RW-based methods of community �nding with a stochastic process other than just

the classic GRW. Since in the previous studies (II-IV) we have shown that MERW

has both static and dynamic properties strongly contrasting it with GRW, as well

as by de�nition it contains some spectral information (which, as discussed in Sec.

5.3.1, is one of the basic means of graph partitioning), we substituted one RW for

the other in several community detection methods. The aim was to systematically

compare their performance. To that end we used the popular benchmark graphs

by Lancichinetti, Fortunato, and Radicchi [122], brie�y introduced earlier in Sec.

5.2. One thus has to bear in mind that the partitions generated by the algorithms

were compared to the communities de�ned in terms of local quantities (inter- and

intra-cluster degrees).

The comparison was performed on several algorithms, some of which had not

been previously checked on benchmark graphs. We spotted one algorithm, based

on the dissimilarity matrix (5.10), that performed below expected standards;

other algorithms from [136, 142] and one adapted from [118] were found to do

reasonably well. In the best algorithms, the two random walks gave comparable
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results with no clear preference for any of them. These are only some practical

conclusions on which method or which RW is better or worse with respect to

the given set of benchmark graphs. With the bene�t of hindsight, however, one

could raise further questions, namely, is there really one favoured graph partition

irrespective of the random walk or do the algorithms which we call 'good' ones

somehow suppress the RW-dependent information.
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Conclusions

In the course of my doctoral studies I have explored the topics of epidemiolog-

ical modelling and percolation, static and dynamic properties of random walks,

and the analysis of structure of complex networks; the problems I have tackled

were both analytical and numerical, and although my studies have remained to a

great extent theoretical in nature, the emphasis has shifted towards applications.

In Paper I, I studied disease spread modelled by percolation on Watts-Strogatz

type of small-world networks; beside numerical study of �nite-size e�ects, known

analytical results have been extended to networks with dynamically rewired edges,

and showed lowering of epidemic thresholds. In Papers II and III, I calculated

stationary states and relaxation times of the generic and maximal-entropy random

walks on two model network types: on Cayley trees the results are analytical, and

on ladder graphs they are numerical; they show that the two random walks have

very disparate properties, with MERW being able to localise and be trapped in

parts of the network. In Papers IV and V, I study the relation between a number

of dissimilarity matrices based on random walks; the results of the former paper

unify some of the random-walks based centralities; in the latter paper, I conduct

a systematic comparison between the generic and maximal-entropy random walks

utilised in community detection methods.

At this point of the thesis, I believe it is worthwhile to look a little bit

farther ahead and outline the perspective of future research. The advances in

the discipline of complex networks are very dynamic, and the new models and

99



CONCLUSIONS

empirical studies are brought closer and closer to each other; now, it is not only

the undirected, directed, and weighted networks that are simulated or examined,

but also temporal networks or multiplex1 networks. These new entities often

require qualitatively new methods of treatment and ways of de�ning processes

like random walks [160]. Similarly, the range of questions raised has extended, so

that for example the communities to be detected can have internal hierarchical

structure or can overlap [161].

Even though these novel paths of research have already emerged, there are still

questions that are only partly answered even for undirected graphs. One of them,

which is of my personal interest and can be regarded as a natural continuation

of the studies presented in this thesis, is the relation between existence of a

statistically signi�cant community structure in a network and the possibility of

any algorithm to detect it. This problem has been initiated in [162], where a

phase transition from detectable to undetectable community structure has been

observed, and which recently has been discussed [163�165] by examining spectral

properties of the modularity matrix. The problem can be approached also from

the random-walk centred viewpoint of this thesis, leading to the conclusion that

quantities constructed from stochastic and mean �rst-passage time matrices can

detect the transition irrespective of the random walk chosen. Moreover, this

behaviour seems to be attributable simply to the shape of spectrum of the

adjacency matrix of a graph, and can be observed for as simple quantities as

clustering coe�cients (1.16)-(1.19).

As a �nal commentary, in my view the studies presented in the thesis were

governed by two ideas: one is simplicity � however paradoxical it may sound in the

context of science of complex networks � which resulted in using unsophisticated

but, hopefully, e�ective mathematical techniques; the other is similarities, which

1Brie�y, in multiplex networks, for a given set of vertices there exist multiple layers of

connections.
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I strove to �nd between di�erent concepts and approaches, and which lead to,

once again hopefully, a meaningful synthesis of knowledge.
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Abstract. The study compares the epidemic spread on static and dynamic small-world networks. They
are constructed as a 2-dimensional Newman and Watts model (500 × 500 square lattice with additional
shortcuts), where the dynamics involves rewiring shortcuts in every time step of the epidemic spread. We
assume susceptible-infectious-removed (SIR) model of the disease. We study the behaviour of the epidemic
over the range of shortcut probability per underlying bond φ = 0–0.5. We calculate percolation thresholds
for the epidemic outbreak, for which numerical results are checked against an approximate analytical
model. We find a significant lowering of percolation thresholds on the dynamic network in the parameter
range given. The result shows the behaviour of the epidemic on dynamic network is that of a static small
world with the number of shortcuts increased by 20.7 ± 1.4%, while the overall qualitative behaviour stays
the same. We derive corrections to the analytical model which account for the effect. For both dynamic
and static small worlds we observe suppression of the average epidemic size dependence on network size in
comparison with the finite-size scaling known for regular lattice. We also study the effect of dynamics for
several rewiring rates relative to infectious period of the disease.

1 Introduction

The epidemic modelling has become a significant and
needed branch of complex systems research, as we have
witnessed the recent epidemic threats and outbreaks of
human diseases (H5N1 and H1N1 influenzas [1,2] or se-
vere acute respiratory syndrome [3,4]) or animal (foot-
and-mouth disease [5]) and plant diseases alike (e.g. Dutch
elm disease [6] or rhizomania [7]). There are two crucial
characteristics of the epidemic spread that make it com-
plicated to be modelled on the one hand, and costly to be
prevented in reality on the other: firstly, a number of in-
fectious diseases exhibit long-range transmissions of varied
nature, and secondly, the contact network of individuals
affected by the disease may change in time as the epi-
demic spreads (which seems particularly relevant in the
case of sexually transmitted diseases that are extensively
discussed within the medical community [8,9]). These fea-
tures make epidemiological models a part of larger studies
of dynamics on complex networks, but also dynamics of
complex networks.

Research findings of the epidemic spread on dynamic
networks include its behaviour on adaptive networks,
where the susceptible are able to avoid contact with the in-
fected [10]), however a coupling between the epidemic and

a e-mail: jeremi.ochab@uj.edu.pl

the network dynamics does not necessarily exist. For in-
stance, in [11], spread of the aforementioned plant diseases
is modelled by vectors performing random walk on the net-
work, thus infecting individuals on their paths; Saramäki
and Kaski [12] utilise SIR (susceptible-infectious-removed)
mechanism on a dynamically changing small-world con-
tact network, although mainly time development of the
epidemic is of their interest. Likewise, in [13] (where focus
is on the average epidemic size in time) nodes of the con-
tact network can swap their edges at a given rate, preserv-
ing the degree distribution. It is also worth to note [14],
where disease spread was simulated on a weighted con-
tact network produced from real day-to-day encounters
(as weights represent the frequency of encounters, the dy-
namics has been in a sense projected onto static weighted
network).

While dynamic network models have been applied in
the recent research, it seems that we lack comparative
study on how the dynamics of the network influences the
process that takes place on it. The aim of this paper is to
find and quantify this effect for SIR epidemic spread on
static and dynamic small-world networks. Based on known
analytical calculations for static small-world network [15]
we derive corrections accounting for the dynamics of the
network, and check the results against numerical agent-
based simulations.
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(a) (b) (c)

Fig. 1. (a) Regular 2D grid with periodic boundary conditions
(torus). (b) Newman-Watts 2D small-world network: 2D grid
with shortcuts added to it. (c) Dynamic small-world: all the
long-range links connected to a set of source nodes randomly
rewire in time.

2 Model

2.1 Network

We adopt Watts-Strogatz model of a small-world net-
work [16] with the alteration by Newman and Watts [17]:
first we take a 2-dimensional square lattice with N = L2

nodes and 2N undirected edges (Fig. 1). To avoid some
finite-size effects we impose periodic boundary conditions
for the lattice (i.e. we get a torus). Then, we add a number
of undirected edges between random pairs of nodes. The
number of additional edges (‘shortcuts’) is set as 2φN ,
hence φ is shortcut probability per underlying bond. Net-
work with φ = 0 is just a regular lattice. For nonzero φ we
call the network a static small-world.

The third type of network is a dynamic small-world.
One can construct it by randomly distributing shortcuts
in every time step of simulation. Here, we choose 2φN
nodes randomly, and keep them fixed for the whole run
of the epidemic. In every time step we randomly launch
shortcuts anchored in these nodes, which means the dy-
namics consists in rewiring one end of these shortcuts.
For the sake of simplicity we allow for multiple shortcuts
being incident with the same node, for shortcuts leading
to nearest neighbours, and for loops being formed. The
construction of the source nodes launching shortcuts al-
lows for an easier interpretation of the network: the fixed
nodes could correspond to centres of activity that can be
identified as in the real world networks.

2.2 Epidemic

The SIR (susceptible-infectious-removed) model is ado-
pted, where the disease is transmitted along the edges of
the network in discrete time steps. The probability p of
infecting a susceptible node by an infectious neighbour
during one time step is set equal for short- and long-range
links, both static and dynamic. The infectious period l of
the disease is measured in discrete time units (we take
l = 3, 4). Thus, an infectious node can transmit disease
to susceptible nodes with probability p every turn for the
period of l turns, and after that time it is removed, i.e.
it cannot infect nor be reinfected. Every simulation starts

Fig. 2. (Color online) Snapshots of the epidemic spread
slightly above percolation threshold. L = 512, the number of
shortcuts is 10 (which gives φ = 2 × 10−5). t gives the epi-
demic’s time steps. The snapshots for t = 364, 694 show a
dynamic infection (the two joined blue lines appear).

with only one initially infecting node, all others being sus-
ceptible, and it ends when no node in the infectious state is
left. Sample snapshots of the epidemic time development
are presented in Figure 2.

3 Numerical data

3.1 Parameters of simulations

The linear lattice size used for most calculations is L =√
N = 500. In Section 5.2 we take sizes L = 50, 63, 79,

100, 126, 158, 199, 251, 315, 397, 500. The disease infec-
tious period is set to l = 3 (for faster simulations reported
in Sect. 5) or l = 4 (in Sect. 5.3 in order to get larger set
of dynamic rates). The range of probability p scanned is
p = 0.05–0.22 (depending on φ) with resolution of 1/1024,
which translates to around T = 0.15–0.5. For every p and
φ the epidemic is run 1024 times with random distribu-
tions of shortcuts each time. The fraction of shortcuts is
φ = 0–0.5, with steps of 0.025. The simulations are per-
formed for both static and dynamic small-world network.

3.2 Calculating percolation threshold

In the study of the epidemic spread on networks, we stick
to the percolation theory as a reference point. In the
theory, a percolation threshold would be the value of p
that generates an epidemic cluster spanning between the
boundaries of the whole system. Otherwise, it is possible
to define percolation as the point at which a cluster of
macroscopic size forms (i.e. it occupies a finite fraction of
the system for N → ∞). We employ the latter to define
percolation threshold (numerically) as the point at which
the average epidemic’s size divided by N rises above a cer-
tain value (here, set to 0.00115). The average is taken over
a number of reruns for different shortcut drawings. As we
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can perform simulations only for finite sizes, we take the
results for a relatively large network of

√
N = 500.

The choice of the threshold value is taken so as to
calibrate the results for the static network to the previ-
ously confirmed analytical result. We take as the theoret-
ical model [15], where the generating function and series
expansion methods were used to find the approximate po-
sition of bond percolation transition in 2D small-world
network, which corresponds to the epidemic spread on
what we refer to as static small-world.

4 Theoretical analysis

We can account for the change between static and dy-
namic networks analytically using the model known for
static small-world network [15]. In their paper, Newman
et al. derive the expression for bond percolation thresh-
olds for any d-dimensional hypercubic lattices with the
addition of shortcuts:

Tc =
1

2dφ〈n0〉
, (1)

where 〈n0〉 is the average cluster size in bond percolation
process. The authors then provide the approximation of
〈n0〉 for the particular case of 2-dimensional square lattice,
and thus for Tc on the small-world generated from the
lattice. It is also known that Grassberger [18] related the
probability of infection p to the probability T in bond
percolation through

T =

l∑

t=1

p(1 − p)t−1 = 1 − (1 − p)l, (2)

where T is the so called transmissibility (it is the total
probability of a node infecting one of its neighbours during
the whole infectious period). In the case of 2-dimensional
square lattice the bond percolation threshold is Tc = 0.5.

As the original theory has no time variable, it would
be a hard task to introduce dynamics explicitly. The so-
lution, however, is astonishingly simple. One can estimate
the average number of nodes infected through shortcuts
during infectious period l:

〈Nstat〉 = φstatNT = φstatN

l∑

t=1

p(1 − p)t−1, (3)

i.e. the number of shortcuts in the static network multi-
plied by the total probability of infecting a neighbouring
node (this probability is the same for both regular links
and shortcuts). The analogous expression for the dynamic
network is found easily

〈Ndyn〉 = φdynN

l∑

i=1

i

(
l

i

)
pi(1 − p)l−i = φdynNlp, (4)

where the sum is an average number of infections trans-
mitted by a single source of dynamic shortcuts for a given

(a) (b) (c)

Fig. 3. (a) Infections through static shortcuts are symmetric.
(b) Infection of the dynamic shortcuts’ source through regular
lattice. (c) Infection of the dynamic shortcuts’ source through
a shortcut.

infectious period. It comes from the fact that a dynamic
shortcut can pass infection several times (the factor pi),
while in the static case a node could infect only once (since
nodes cannot be reinfected in the SIR model). This expres-
sion predicts lowering percolation thresholds, although nu-
merical values of the shift are considerably smaller than
the ones obtained from simulations.

Figures 3a–3c explain why the above expression is not
yet correct: it is derived only for the source nodes passing
the disease on, while it disregards the fact that the node
may itself become infected via long-range link. Since on
the static network there is no difference between short-
cuts’ source and target nodes, we can attach the factor
φN/2 to both infection graphs presented in Figure 3a. For
dynamic network, the graphs in Figures 3b, 3c for infect-
ing a source node through a regular link and through a
dynamic link give different counts of how many shortcuts
were used. The former was given in equation (4) as lp, and
the latter actually utilises the same formula, but with the
substitution l → l + 1. In total, we get

〈Ndyn〉 = φdynN/2lp + φdynN/2 (l + 1) p. (5)

We assume that 〈Ndyn〉 = 〈Nstat〉 if the epidemic on both
networks has the same percolation threshold. Thus, we
can obtain the ratio of the two shortcut densities

r(T, l) = φstat/φdyn =
p (l + 1/2)

T

=

[
1 − (1 − T )

1/l
]
(l + 1/2)

T
, (6)

where p is the probability of infection in one time step
and l infectious period of a disease. Now, we can calculate
Tc(rφ) numerically, just as we do it with the fitted Tc[(1+
v)φ)] in Figure 4. The ratio in equation (6) was used to
plot the lower solid line in Figure 4 and the predicted
thresholds in Figure 5.

5 Results

5.1 Shift of percolation thresholds

In Figure 4 we plot numerical and theoretical values of
percolation thresholds Tc for both static and dynamic
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Fig. 4. (Color online) Circles: dataset for the static small-
world. Squares: dataset for the dynamic network. The solid
blue (upper) line is the analytic approximation [15] for Tc(φ)
and the dashed line gives Tc[(1 + v)φ)], with the fit parameter
v = 0.207 ± 0.014. The solid purple (lower) line represents
theoretical approximation from Section 5.3. Error bars are of
the size of the plot markers, unless visible. Infectious period
l = 3.
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Fig. 5. (Color online) The shift of epidemic thresholds for dif-
ferent infectious periods. Uppermost curve – static network,
Tc(φ). Lower curves – dynamic networks, Tc(rφ) with infec-
tious periods l = 3, 6, 9, 12, 15, and r(T, l) given in equa-
tion (6).

small-worlds. The resulting Tc(φ) data points for static
small-world network agree with the analytical approxima-
tion [15], which confirms the validity of calibration pro-
cedure. As the lower dataset marks the effect of network
dynamics, the difference between the two networks proves
to be systematic and significant. The dashed line is a fit
Tc[(1 + v)φ] of the analytical model for the static net-
work, where the fitted parameter v may be interpreted
as a virtual percentage of additional shortcuts needed
to obtain the dynamic network percolation thresholds. It
follows from the fit that percolation thresholds for dy-
namic network are lower as if the shortcut density were
(1+v)φ (where v = 0.207 ± 0.014 is the fitted parameter).
Nonetheless, qualitatively the epidemic on dynamic small
world behaves in the same way as on the static one for

the given range of parameters (φ = 0.5 corresponds to ev-
ery node in the network having on average two additional
links).

The analytical correction slightly exceeds the values of
simulation data points, but the overall agreement is satis-
factory. The difference between the analytical solution and
the observed behaviour does not exceed the shift between
static and dynamic networks obtained from simulations.
The discrepancy might be due to the method of calculat-
ing percolation thresholds from numerical data or due to
the approximate nature of the correction.

In Figure 5 we give theoretical predictions for epidemic
thresholds for longer infectious periods, using the result of
Section 4. As can be seen, the lowering of thresholds with
respect to the static case may be much larger. Unfortu-
nately, producing numerical results for the longer infec-
tious periods becomes more costly.

The decrease in percolation threshold Tc may be un-
derstood in terms of increasing the average node degrees
as we add shortcuts to the network (i.e. we increase φ).
Following May and Anderson [8] who described HIV infec-
tion dynamics, we might estimate the invasion threshold
using the equation for the reproductive rate of infection
R0 (“which is the average number of secondary infections
produced by one infected individual in the early stages of
an epidemic”):

R0 = βcD, (7)

in the original notation (β here corresponds to transmis-
sibility T , D to infectious period l, and c is “the average
rate at which new sexual partners are acquired” in the
context of the original paper, and the average number of
dynamic links here). Thus, one expects epidemic outbreak
for R0 > 1. As c is given by the ratio of node degree mo-
ments c = 〈k2〉/〈k〉 = 1+4φ (the second equality assumes
Poissonian distribution of the number of dynamic links in
our model), we get βc ∼ 1/l(1 + 4φ). This relation in-
deed explains the general decrease of the thresholds with
higher φ and with longer infectious periods l, although it
does not take into account the underlying regular lattice,
and it does not predict correct numerical values within
the discussed model.

5.2 Suppression of finite-size scaling

The primary motivation of checking finite-size scaling for
the system was to utilise it to determine the percolation
thresholds very accurately (as the shift of thresholds ob-
served in Fig. 4 is relatively small), and to arrive at thresh-
old value for infinite system size. Yet, it is worth noting
at this point that the knowledge of thresholds for infinite
system sizes would not usually be appropriate for evalua-
tion of risks in the real epidemic, given the sizes of some
real networks. To study the size of finite-size effects is thus
vital on its own right.

In Figure 6b the convergence of the average epidemic
size to the threshold behaviour can be observed, and the
significant dependence on system size ranges up to the
epidemic size of around 0.5N and interval of transmissi-
bility of length around 0.08 (the numbers are very rough



J.K. Ochab and P.F. Góra: Epidemic thresholds for static and dynamic small-world networks 377

0 100 200 300 400 500
0.45

0.46

0.47

0.48

0.49

0.50

linear lattice size N

pe
rc
ol
at
io
n
th
re
sh
ol
d
T
N

(a)

0.42 0.44 0.46 0.48 0.50 0.52 0.54
0.0

0.2

0.4

0.6

0.8

1.0

transmissibility T

av
er
ag
e
ep
id
em

ic
si
ze

(b)

Fig. 6. (Color online) Behaviour of the epidemic outbreak
magnitude for various system sizes (linear size vary between
L = 50–500, left- and rightmost data points in (b), respec-
tively). (a) Finite-size scaling TN = T∞ − L−2/ν on regular
lattice. The points correspond to values of T at the level of the
epidemic size 0.1. (b) The extent of size dependence for regular
lattice.

estimates). As presented in Figure 6a, one may check that
sections of the plot for a given average epidemic size obey
scaling of the form

TN = T∞ − N−1/ν = T∞ − L−2/ν , (8)

where TN are the values of transmissibility for a given
system size N and a set section position, and T∞ is the
percolation threshold for infinite system size. For regular
lattice T∞ is fitted correctly for various section positions
as 0.500± 0.005 (the error may vary for different sections,
but does not exceed the given value).

It appears that the dependence on system size for
small-world networks (both static and dynamic) is dis-
similar to the one of regular lattices, as can be seen in
Figure 7 (φ = 0.05). It is suppressed to smaller values

Fig. 7. (Color online) For dynamic small world size depen-
dence of the epidemic outbreak magnitude is suppressed. Inset
shows enlarged region around percolation threshold.

of the average epidemic size. For the shortcuts density
φ = 0.5 the dependence on system size is already visible
only below the epidemic size of 0.03. Because the depen-
dence of the epidemic size on size of the system becomes
of the order of magnitude of statistical fluctuations (the
quality of the data can already be seen in Fig. 7), any
attempts to utilise finite-size scaling for determining per-
colation threshold are not viable. Indeed, the errors do not
allow us to check if the same form of finite-size dependence
as in equation (8) holds.

5.3 Dependence on the rate of dynamics

One can generalise the theoretical analysis for various
rates of dynamics, given the formula in equation (4). To
explain this, let us notice that there are two time scales in
the model: the infectious period l of the disease and the
duration 1/d between consecutive rewirings of dynamic
links (both measured in discrete time steps of the epidemic
spread). As the choice of infectious period l only rescales
the total probability of infection T = T (p, l), we can dis-
pose of it, and the crucial parameter ld that accounts for
the shift of percolation thresholds is defined as the number
of shortcut movements during infectious period.

Obviously, for a static network we get d = 0, while for
all the above analysis of dynamic network we have ld = 3
(l = 3 and the rewiring was performed every turn, so
d = 1). Depending on the interpretation of the model, we
could also consider d > 1. However, if p is to be the prob-
ability of infection during one time step it is reasonable
that shortcuts rewiring faster than one time step would
infect with appropriately smaller probability, and there
would be no further shift of percolation thresholds.

Since the epidemic spreads with discrete time, which
results in sums as in equation (4), we are interested in
rational numbers d ∈ [0, 1] ∩ Q, particularly of the form
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Fig. 8. (Color online) Dependence on dynamics for φ = 0.25,
infectious period l = 4.

1/i, i ∈ Z. What we need is Ndyn calculated in a sim-
ilar way to that in equation (4). Here, we take l = 4,
d = 1, 1/2, . . . , 1/7, and we plot both the numerical and
theoretical results for φ = 0.25 in Figure 8. Theoretical
derivation is to be found in the appendix. The theoretical
approach gives slightly exceeding values (the scale should
be noted), which is the same effect as discussed in the
Section 5.1.

6 Discussion

We have shown that introducing dynamics of the long-
range links in a small-world network significantly lowers
an epidemic threshold in terms of probability of disease
transmission, although the overall dependence on number
of shortcuts stays the same. Consequently, the risk of an
epidemic outbreak is higher than in any calculations in-
volving static models. The effect remains secondary to the
influence that the introduction of additional of shortcuts
has on the spread of the disease. It should be noted that
the shift of percolation thresholds depends on the relative
measure of dynamics of the network with respect to the
process on the network (rewiring rate and infectious pe-
riod, respectively). Any accurate analytical calculation or
simulation should take this quantity as a significant pa-
rameter, to be estimated for a particular disease and type
of the network.

As in reality we consider only finite-size networks, and
real epidemic sizes do not usually reach values of the order
of even 10% of the system size, the information on finite-
size effects seemed very much needed. That the epidemic
outbreak magnitude does not depend on the system size
for small-world networks as much as it does for regular
lattices means that we should not expect the epidemic
outbreaks below transmissibility threshold value. Thus,
finite-size effects seem to become secondary, as well.

The usefulness of such a model for risk prediction still
depends on our knowledge of the probability of transmis-
sion (p or T ) of a given disease, which is not easy to obtain
for diseases spreading outside of well controlled environ-
ments like hospitals. Relatively good estimates, thanks to
the nature of transmission, exist for syphilis. Transmissi-
bility of the disease is reviewed in [9], where authors give

values ranging from 9.2% to 63% per partner, and decide
on 60% as the lower boundary for untreated disease. This
seems to be well above the epidemic threshold, irrespec-
tive of very different network topology for such diseases.
However, this also shows that errors on estimates of trans-
mission probabilities exceed the effect of threshold shifting
studied here.

Though the 2-dimensional network structure used here
may be said to correspond mainly to that of plantations,
it is worth noting its generality: nodes may be interpreted
as plants, animals or humans, but also on a larger scale
as farms, households, or cities and airports; in turn, long-
range links could mean wind (on farms), disease vectors,
occasional human contacts, or airline connections. Still,
it has some other fairly realistic characteristics: accord-
ing to [14], who analysed the structure of human social
interactions, ‘the majority of encounters (76.70%; 75.26–
78.07) occur with individuals never again encountered by
the participant during the 14 days of the survey’. This
may mean that about 24% of the repeated contacts cor-
responds roughly to our regular underlying lattice with
z = 4 neighbours for each node, while the 76% correspond
to around 3z dynamic contacts distributed over 14 days.
This gives on average φ ≈ 0.20 for simulation with daily
time steps, which lies within the parameter range studied
in this paper.

This work is supported by the International Ph.D. Projects
Programme of the Foundation for Polish Science within the
European Regional Development Fund of the European Union,
agreement No. MPD/2009/6.

Appendix A: Dependence on the rate
of dynamics

Below we present the way to calculate Ndyn for infectious
periods l = 4, 5 (in the simulation we set l = 4, but we
need to take into account also the process from Fig. 3c,
which in a sense increases infectious period by 1). Let us
define

A0(p, l) = 1 − (1 − p)l ≡ T (l), l ≥ 1

A1(p, l) = T (1) [1 − T (l − 1)] + [1 − T (1)]T (l − 1)

+ 2T (p, 1)T (l − 1)

A2(p, l) = T (2) [1 − T (l − 2)] + [1 − T (2)]T (l − 2)

+ 2T (2)T (l − 2)

A11(p, l) = 3T (1)2T (l − 2) + 2T (1)2 [1 − T (l − 2)]

+ 2T (1)T (l − 2) [1 − T (1)]+

+ T (l − 2) [1 − T (1)]
2

(A.1)

+ 2T (1) [1 − T (1)] [1 − T (l − 2)]

A12(p, l) = 3T (1)T (2)T (l − 3) + 2T (1)T (2) [1 − T (l − 3)]

+ T (1) [1 − T (2)]T (l − 3)

+ [1 − T (1)]T (2)T (l − 3)

+ T (1) [1 − T (2)] [1 − T (l − 3)]

+ [1 − T (1)]T (2) [1 − T (l − 3)]

+ [1 − T (1)] [1 − T (2)]T (l − 3),
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where we substituted T (1) for p on the right-hand sides,
and we leave out the argument p in T (p, l) to simplify
the notation. Those quantities correspond to the average
number of infections during one infectious period depend-
ing on when the rewiring takes place. One can present
those diagrammatically (here for l = 5) as

A 0(p, 5) = · · · · ·
A 1(p, 5) = ·| · · · · + · · · · |· = 2 · | · · · ·
A 2(p, 5) = · · | · · · + · · · | · · = 2 · ·| · · · (A.2)

A 11(p, 5) = ·| · · · | ·
A 12(p, 5) = ·| · ·| · · + · · | · ·|· = 2 · | · ·| · ·

where the symbol ‘|’ marks rewiring, and ‘·’ one epidemic
time step during infectious period. For instance ·| · · would
correspond to three turns with one rewiring, during which
either 0, 1 or 2 infections are possible. The derivation in-
volves only very easy combinatorics, but for longer infec-
tious periods one would need to repeat these calculations
to obtain more terms and different prefactors. Now, one
can easily obtain expressions for Ndyn for any 1/d ∈ Z.
Below we give only the general expression for 1/d ≥ l:

Ndyn =
φdynN

2
d{[2A1(l) + A2(l) + (1/d + 1 − l)A0(l)]

+ [2A1(l+1)+2A2(l+1)+(1/d−l)A0(l)]} (A.3)

where l = 4. The first term in the brackets corresponds
to Figure 3b and the second to Figure 3c. For greater
numbers of rewiring per turn d, we need to consider the
terms A11, A12. The result is plotted against simulated
data in Figure 8.
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Exact solution for statics and dynamics of maximal-entropy random walks on Cayley trees
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We provide analytical solutions for two types of random walk: generic random walk (GRW) and maximal-
entropy random walk (MERW) on a Cayley tree with arbitrary branching number, root degree, and number
of generations. For MERW, we obtain the stationary state given by the squared elements of the eigenvector
associated with the largest eigenvalue λ0 of the adjacency matrix. We discuss the dynamics, depending on the
second largest eigenvalue λ1, of the probability distribution approaching to the stationary state. We find different
scaling of the relaxation time with the system size, which is generically shorter for MERW than for GRW. We
also signal that depending on the initial conditions, there are relaxations associated with lower eigenvalues which
are induced by symmetries of the tree. In general, we find that there are three regimes of a tree structure resulting
in different statics and dynamics of MERW; these correspond to strongly, critically, and weakly branched roots.

DOI: 10.1103/PhysRevE.85.021145 PACS number(s): 05.40.Fb, 02.50.Ga, 89.75.Hc, 89.70.Cf

I. INTRODUCTION

After the theory of Brownian motion and diffusive pro-
cesses was formulated in the seminal works by Einstein [1]
and Smoluchowski [2], random walk (RW) models, which
stem from time or space discretization of these processes,
have continuously attracted attention. The most celebrated
ones include the Polya random walk on a lattice [3] and its
generalizations to arbitrary graphs. RW has been discussed
in thousands of papers and textbooks in statistical physics,
economics, biophysics, engineering, particle physics, etc., and
still is an active area of research.

Mathematically speaking, RW is a Markov chain which
describes the trajectory of a particle taking successive random
steps. For instance, in the case of Polya random walk, at each
time step the particle jumps onto one of the neighboring nodes
with equal probability. The generalization of this process to
any graph is what we call the ordinary or generic random walk
(GRW).

Another kind of RW, i.e., one that maximizes the entropy
of paths and hence is named maximal-entropy random walk
(MERW), has been investigated recently [4,5]. The same
principle of entropy maximization earlier led to the biological
concept of evolutionary entropy [6,7]. It was also used in
the problem of importance sampling where it served as an
optimal sampling algorithm [8]. Now, MERW enters also
the realm of complex networks [9–13]. Its defining feature
results in equiprobability of paths of given length and end
points, which means that if information is sent between two
places, MERW makes it impossible to resolve which route the
information has traveled. Such an ensemble of equiprobable
paths is a natural choice for a measure used in Feynman
path integrals in discrete quantum gravity models with curved
spacetime [5]. Another unprecedented feature of this RW is
the localization phenomenon on diluted or defective lattices,
where most of the stationary probability is localized in the
largest nearly spherical region free of defects [4,5]. It has

*jeremi.ochab@uj.edu.pl
†zdzislaw.burda@uj.edu.pl

been illustrated with an interactive online demonstration [14].
In this paper, we show not only how stationary states of
GRW and MERW differ, but also how their dynamics differs.
More precisely, we have analytically determined stationary
probability distributions and relaxation times of GRW and
MERW on Cayley trees. In particular, we have found that there
are three regimes of a tree structure, which depend on its root’s
degree, resulting in different stationary states and relaxation
times of MERW. This type of random walk in comparison to
GRW has stationary probability centered around the root of
the tree and its relaxation is generically faster, with the time
scaling as a logarithm of the system size.

The paper is organized as follows: we begin with Sec. II
defining GRW and MERW in general. In Sec. III, we restrict
our considerations to Cayley trees, for whose adjacency matrix
we solve the eigenvalue problem by generalizing the method
given in [15]. The scheme presented there is utilized in Sec. IV,
where we determine the eigenvector to the largest eigenvalue
of the adjacency matrix, and then in Sec. V, we generalize part
of this result to eigenvectors associated with next-to-leading
eigenvalues. Section VI presents the solution for the eigenvalue
problem of GRW transition matrix, repeating the order of
arguments from Sec. III. Based on results from previous
sections, Sec. VII describes stationary distributions of GRW
and MERW on Cayley trees. Sections VIII and IX concern
relaxation times of those two random walks, with general
remarks in the former and particular results in the latter. Details
concerning the solution of eigenproblems are to be found in
Appendices A and B.

II. GENERALITIES

Let us consider a discrete time random walk on a finite
connected undirected graph. We are interested in a class of
random walks with a stochastic matrix P that is constant in
time. An element Pij � 0 of this matrix encodes the probability
that a particle being on a node i at time t hops to a node
j at time t + 1. These matrix elements fulfill the condition∑

j Pij = 1 for all i, which means that the number of particles
is conserved. Additionally, let us assume that particles are
allowed to hop only to a neighboring node. This can be

021145-11539-3755/2012/85(2)/021145(12) ©2012 American Physical Society
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formulated as Pij � Aij , where Aij is the corresponding
element of the adjacency matrix A of the graph: Aij = 1 if
i and j are neighbors, and Aij = 0 otherwise. The generic
random walk (GRW) is realized by the following stochastic
matrix:

Pij = Aij

ki

, (1)

where ki = ∑
j Aij denotes the node degree. The factor 1/ki

in the above formula produces uniform probability of selecting
one of ki neighbors of the node i. Clearly this choice maximizes
entropy of neighbor selection and corresponds to the standard
Einstein-Smoluchowski-Polya random walk. The stationary
state1 is given by πi = ki/

∑
j kj . The other important type

of random walk, maximal-entropy random walk (MERW),
maximizes the entropy of random trajectories. In other words,
one looks for a stochastic matrix that maximizes entropy for
trajectories of given length and given end points. This is a
global principle similar to the least action principle. It leads to
the following stochastic matrix:

Pij = Aij

λ0

ψ0j

ψ0i

, (2)

where λ0 is the largest eigenvalue of the adjacency matrix A
and ψ0i is the ith element of the corresponding eigenvector �ψ0.
By virtue of the Frobenius-Perron theorem, all elements of this
vector are strictly positive, because the adjacency matrix A is
irreducible. For a stochastic matrix to maximize the entropy of
an ensemble of paths, the choice (2) is unique. The stationary
state of the stochastic matrix P is given by Shannon-Parry
measure [16],

πi = ψ2
0i . (3)

The last formula intriguingly relates MERW to quantum
mechanics. Namely, ψ0i can be interpreted as the wave
function of the ground state of the operator −A and ψ2

0i as
the probability of finding a particle in this state [4,5]. The
two types, (1) and (2), of a random walk have in general
completely different properties, although on a k-regular graph
exceptionally they are identical.

The stochastic matrix is not symmetric in general, so it may
have different right and left eigenvectors:

P ��α = �α
��α, ��αP = �α

��α. (4)

Throughout the paper, we consider left eigenvectors to be rows
and right eigenvectors to be columns. It can be easily seen that
all the eigenvalues and eigenvectors of the stochastic matrix P
can be expressed in terms of eigenvalues λα and eigenvectors
of �ψα of the adjacency matrix A:

�α = λα

λ0
, �αi = ψαi

ψ0i

, �αi = ψαiψ0i . (5)

1A stationary state exists if a graph is not bipartite, but, even for
bipartite graphs, a semistationary state can be defined by averaging
the probability distribution over two consecutive time steps.

g�3

g�2

g�1

g�0

k�2

r�5

FIG. 1. Cayley tree with root degree r = 5, branching number
k = 2, and G = 3 generations.

In particular, �0 = 1,�0i = 1, and �0i = ψ2
0i = π0i for all i.

The spectral decomposition of P reads

Pij =
∑

α

�α�αi�αj =
∑

α

λαψαiψαj

λ0

ψ0j

ψ0i

. (6)

Thus, clearly all properties of MERW are encoded in the
spectral decomposition of the adjacency matrix of a given
graph. In what follows, we analyze the spectral properties of
adjacency matrices for Cayley trees, derive the stationary state
and dynamical characteristics of MERW on these trees, and
compare them to GRW.

III. CAYLEY TREE

Let us consider a Cayley tree with G generations of nodes
and a branching number k defined as the number of edges that
connect a given node to nodes belonging to the next generation.
We assume that the root of the tree has r edges, which in
general may be different from k (see Fig. 1), and by convention,
it belongs to the zeroth generation. Consequently, the zeroth
generation contains one node, n0 = 1, the first one n1 = r

nodes, the second one n2 = rk, the third one n3 = rk2, and so
forth. The total number of nodes in the tree is n = ∑G

g=0 ng =
1 + r(kG − 1)/(k − 1).

The adjacency matrix of the underlying graph reads

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 B0

BT
0 0 B1

BT
1 0 B2

. . .
. . .

. . .
0 BG−1

BT
G−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

where the next-to-diagonal blocks Bg are rectangular matrices
of dimensions ng × ng+1:

Bg =

⎛
⎜⎜⎝

1 . . . 1
1 . . . 1

. . .
. . .

1 . . . 1

⎞
⎟⎟⎠ . (8)

Each line of Bg contains k unities corresponding to branches
leading to the descendent generation. The block B0 reduces
to a single-row matrix with r unities. The matrices BT

g are the
transposes of Bg’s.
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A. Eigenvalues of the adjacency matrix

In this section, we calculate eigenvalues of the adjacency
matrix of the Cayley tree using the method described in [15].
The eigenvalues are given by solutions of the equation

0 = det(A − λ1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

D0 B0

BT
0 D1 B1

BT
1 D2 B2

. . .
. . .

. . .
DG−1 BG−1

BT
G−1 DG

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(9)

where the diagonal blocks Dg = −λ1 are of size ng × ng ,
with n0 = 1, n1 = r , and ng = rkg−1 for g > 1. In order to
calculate the determinant, we use a sequence of elementary
transformations such as additions of multiple of a row to
another row, leaving the determinant invariant. This way the
matrix is reduced to a triangular form with zeros above the
diagonal. First, we annihilate nonzero elements of the block
BG−1 by multiplying rows that contain −λ in the diagonal
block DG by 1/λ and adding them to the corresponding rows
in BG−1 that contain unities. This way all elements of BG−1 are
turned to zero but at the same time the diagonal block DG−1 is
modified to D′

G−1 = −aG−11, where aG−1 = −λ + k/λ. Now,
this procedure can be repeated to set the block BG−2 to zero by
multiplying rows that contain diagonal elements of D′

G−1 by
1/aG−1 and adding them to rows that contain unities in BG−2.
While doing so, we see that the diagonal block DG−2 has been
modified to D′

G−2 = −aG−21, where aG−1 = −λ − k/aG−2.
Proceeding with this scheme recursively for the whole matrix,
we eventually obtain a triangular matrix determinant

det(A − λ1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D′
0

BT
0 D′

1 0
BT

1 D′
2

. . .
. . .

. . .

D′
G−1

BT
G−1 D′

G

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(10)

with diagonal blocks D′
g = ag1 of size ng × ng whose coeffi-

cients are given by

aG = −λ,

ag = −λ − k/ag+1 for g = G−1, . . . ,1, (11)

a0 = −λ − r/a1.

The diagonal coefficients aG(λ) = −λ, aG−1(λ) = −λ − k/λ,
aG−2 = −λ − k/(−λ − k/λ), etc., are nested fractions in the
argument λ. Hence, Eq. (9) for eigenvalues λ takes the
following form:

G∏
g=0

[ag(λ)]ng = 0. (12)

It is convenient to rewrite the left-hand side of the above
equation as a product of polynomials instead of fractions.
There is a natural set of polynomials which can be constructed

from ag’s to this end:

A0(λ) = aG = −λ,

A1(λ) = aGaG−1 = λ2 − k,

A2(λ) = aGaG−1aG−2 = −λ(λ2 − 2k), (13)

. . .

Ag(λ) = −λAg−1(λ) − kAg−2(λ) for g < G,

AG(λ) = −λAG−1(λ) − rAG−2(λ).

The recursive formula given above is derived by noticing
that Ag = Ag−1aG−g = Ag−1(−λ − k/aG−g+1) = −λAg−1 −
kAg−2. The exception is g = G, since then, in the last step,
the coefficient k has to be replaced by r . Expressed in terms
of polynomials Ag , the equation (12) reads

G∏
g=0

[Ag(λ)]mg = 0, (14)

where mG = 1 and mG−g = ng − ng−1, for g = 1,2, . . . ,G,
or, equivalently, mG−1 = r − 1, mG−g = r(k − 1)kg−2 for
g = 2,3, . . . ,G. A simple analysis of the last equation shows
that Ag(λ) are polynomials of order g + 1. Moreover, all odd
order polynomials have a root equal to zero. Later, we shall see
that the equation Ag(λ) = 0 has g + 1 real roots, and that if λ is
a root, then −λ also is. The total number of real roots of Eq. (14)
counted with degeneracy mg is

∑
g(g + 1)mg = ∑

g ng = n,
so Eq. (14) gives all n eigenvalues of the adjacency matrix.
The equation A0(λ) = 0 gives eigenvalues λ = 0 with the
degeneracy mG = r(k − 1)kG−2, the equation A1(λ) = 0 gives
eigenvalues ±√

k with the degeneracy mG = r(k − 1)kG−3,
etc. It should be noticed that some eigenvalues may be
solutions of Ag(λ) = 0 for different g. For instance, λ = 0
is a root of Ag(λ) = 0 for all even g, so the total degeneracy
of the eigenvalue λ = 0 is

∑
g(2g + 1)m2g .

It turns out that the solutions of equations Ag(λ) = 0 can be
found systematically. The polynomials Ag(λ) for g < G (13)
can be written in a concise form using an auxiliary parameter
θ (see Appendix A):

Ag = k(g+1)/2 sin[(g + 2)θ ]

sin θ
, (15)

where

cos θ = − λ

2
√

k
. (16)

It can be checked by inspection that these equations indeed
reproduce the polynomials (13). For example, for g = 0, one
retrieves A0 = √

k sin(2θ )/ sin θ = 2
√

k cos θ = −λ; for g =
1, A1 = k sin(3θ )/ sin θ = k[4(cos θ )2 − 1] = λ2 − k, etc., in
agreement with (13). The equation for AG can be obtained by
combining the last equation in (13), AG = −λAG−1 − kAG−2,
with the explicit form of AG−1 and AG−2 (15), which yields

AG = k(G−1)/2 k sin[(G + 2)θ ] + (k − r) sin(Gθ )

sin θ
, (17)

where θ is given by (16). When the root of the tree has r = k

neighbors (equal to the branching number of the tree), the last
equation reduces to the one for remaining generations (15).

The eigenvalues of the adjacency matrix can be determined
by finding values of the auxiliary parameter θ for which
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Ag (15) and AG (17) are zero, and inserting these values to
the formula λ = −2

√
k cos θ (16). As can be seen, Ag (15) for

g < G is equal to zero for θ �= 0, fulfilling the equation

sin[(g + 2)θ ] = 0 (18)

that has g + 1 solutions,

λg,j = 2
√

k cos

(
πj

g + 2

)
for j = 1, . . . ,g + 1. (19)

Each eigenvalue in this series is mg times degenerated, as
follows from (14). The situation is slightly more complicated
for g = G, since the equation AG = 0 amounts to an equation
for θ ,

k sin[(G + 2)θ ] + (k − r) sin(Gθ ) = 0, (20)

that can be solved analytically only for r = k or r = 2k. In
the first case, exactly the same formula as for g < G (19) is
obtained,

λG,j = 2
√

k cos

(
πj

G + 2

)
for j = 1, . . . ,G + 1, (21)

while in the second one,

λG,j = 2
√

k cos

[
π (j − 1/2)

G + 1

]
for j = 1, . . . ,G + 1.

(22)
For other values of r , one has to solve (20) numerically. The
largest eigenvalue of the adjacency matrix is λ0 = λG,1. For
r = k, it is equal to

λ0 = λG,1 = 2
√

k cos

(
π

G + 2

)
, (23)

while for r = 2k, it is

λ0 = λG,1 = 2
√

k cos

(
π

2G + 2

)
. (24)

For other values of r , the eigenvalue λ0 can be determined
approximately, as discussed in Appendix B. The solutions
can be divided into three classes with respect to values
of r: the first class for r ∈ (0,2k − 2k/G), the second one
for r ∈ (2k − 2k/G,2k + 2k/G), and the third one for r ∈
(2k + 2k/G, + ∞). In the large G limit, i.e., for G � 2k, the
second class reduces to a single integer value of r = 2k for
which the solution is known (24). The first class corresponds
to the values r < 2k for which the approximate solution reads

λ0 = 2
√

k cos
π

G + δ
, (25)

where

δ ≈ 2k

2k − r
, (26)

as explained in Appendix B. For the third class, r > 2k, the
equation (20) has no real solutions in the range [0,π/(G + 1)],
and the largest eigenvalue λ0 is obtained from a purely
imaginary solution for θ . The corresponding equations change
from trigonometric to hyperbolic. For large G, the solution can
be approximated by

λ0 = 2
√

k√
1 − x2

, (27)

where

x = z

[
1 − 2

(
1 − z

1 + z

)G+1]
(28)

and

z = 1 − 2k

r
. (29)

Again, we refer the reader to Appendix B for details. One sees
that x approaches z exponentially as G grows, so for large G,
one can substitute x by z in (27) to eventually obtain

λ0 ≈ r√
r − k

. (30)

As can be seen, the largest eigenvalue for trees with a strongly
branched root, r > 2k, behaves differently as compared to
trees with a weakly branched root, r < 2k. This eigenvalue is
now larger than 2

√
k, while it was smaller in the previous case;

it grows with r , and it is weakly dependent on G.

IV. THE EIGENVECTOR TO THE LEADING EIGENVALUE

In order to obtain the stationary state of MERW, the largest
eigenvalue λ0 and the squared elements of the eigenvector �ψ0

associated with this eigenvalue are needed:

(A − λ01) �ψ0 = 0. (31)

The ground state �ψ0 has a helpful symmetry in the sense that all
elements ψ0i for nodes in a given generation g are identical. So
the problem can be simplified by ascribing the same value ψg to
all nodes in the generation (henceforth, when we write out the
elements of the eigenvector, we omit the index corresponding
to the eigenvalue):

�ψ0 = (ψ0, ψ1, . . . ,ψ1︸ ︷︷ ︸
n1

, . . . , ψG, . . . ,ψG︸ ︷︷ ︸
nG

). (32)

Effectively, instead of n equations for ψ0i , i = 1, . . . ,n, (31),
there are just (G + 1) independent equations for ψg , g =
0, . . . ,G, remaining:

−λ0ψ0 + rψ1 = 0,

ψg−1 − λ0ψg + kψg+1 = 0 for g = 1, . . . ,G − 2,

ψG−1 − λ0ψG = 0.

(33)

This recurrence can be solved starting from the end, g =
G, and decreasing g to 0. For convenience, we introduce
coefficients

Cg = ψG−g

ψG

(34)

that invert the order of the recurrence. They correspond to the
original values normalized to ψG, in particular C0 = 1. The
recurrence relations (33) are equivalent to

Cg = λ0Cg−1 − kCg−2 for g = 2, . . . ,G, (35)

with the initial condition C0 = 1, C1 = λ0. Let us note that
the recurrence relation is identical as for Ag (13) when λ0 is
replaced by −λ0. The initial condition is also identical, except
that the counter of the recurrence is shifted by one, so the
solution can be copied: Cg(λ0) = Ag−1(−λ0) to obtain

Cg = kg/2 sin[(g + 1)θ ]

sin θ
for g = 0, . . . ,G, (36)
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where cos θ = λ0/2
√

k. The first equation in (33) −λ0ψ0 +
rψ1 = 0, which corresponds to an equation −λ0CG +
rCG−1 = 0, that is automatically fulfilled for CG and
CG−1 given by (36) under substitution of λ0 = 2

√
k cos θ

and r sin(Gθ ) = k sin[(G + 2)θ ] + k sin(Gθ ) according to
Eq. (20).

This concludes our calculations of the eigenvector to the
leading eigenvalue of the adjacency matrix. Using (34), we
have

ψg = CG−gψG = CG−g∑
h C2

h

(37)

for all nodes in the gth generation. The value ψG is chosen to
ensure the proper normalization,

∑
g ψ2

0,g = 1.

V. THE EIGENVECTOR TO NEXT-TO-LEADING
EIGENVALUES

In the case of the eigenvector �ψ1 to the eigenvalue λ1, we
exploit the fact that it is symmetric within each of r principal
branches of the tree (which means that for given generation
g within the branch, all the elements ψg are the same; once
again, when writing out the elements of the vector, we omit
the index corresponding to the number of the eigenvalue).
In appropriate coordinates, the elements belonging to these
principal branches can be separated,

�ψ1 = (ψ0,α1 �φ, . . . ,αr
�φ), (38)

where the branches may have different multiplicative factors
α1, . . . ,αr and the vector

�φ = (ψ1, ψ2, . . . ,ψ2︸ ︷︷ ︸
n2/r

, . . . , ψG, . . . ,ψG︸ ︷︷ ︸
nG/r

) (39)

represents the relative value of the eigenvector elements in each
branch. The multiplicities ng are evenly distributed among the
r branches, hence the factor 1/r .

We obtain (G + 1) independent equations for ψg , g =
0, . . . ,G, in analogy to Eq. (33):

−λ1ψ0 + (α1 + · · · + αr )ψ1 = 0, (40a)

ψ0/αi − λ1ψ1 + kψ2 = 0 for i = 1, . . . ,r, (40b)

ψg−1 − λ1ψg + kψg+1 = 0 for g = 2, . . . ,G − 1,

ψG−1 − λ1ψG = 0. (40c)

The only difference is the first two equalities above, which
show how the r branches couple together at the root of the
tree. The rest of the equalities stay the same, as the recurrence
progresses only within a given branch and the factor αi is
eliminated.

For each of the branches, the system is solved starting from
g = G and decreasing g to 1. Until this point, the solution is
the same as before (36).

Now, we check if (40a) and (40b) are consistent with this
solution. Clearly, in Eq. (40b), the terms −λ0ψ1 + kψ2 =
kG/2 sin[(G+1)θ]

sin θ
ψG = 0, because λ1 corresponds to the value

θ = π
G+1 . Thus, after rewriting, Eqs. (40a) and (40b) take the

form

α1 + · · · + αr = 0, (41a)

ψ0 = 0. (41b)

In fact, ψ0 = 0 is consistent with the explicit solution
CG ∝ sin[(G + 1)θ ] = 0. If we recall the form of eigenvalues
given in (19), of which one special case was λ1 = λG−1,1, it
is noticeable that for each g = 0, . . . ,G − 1, the eigenvalue
λg,1 corresponds to the angle π

g+2 and so the solution of the
recurrence equation vanishes for generation G − g. This is the
point at which the symmetry of the corresponding eigenvector
is broken. Such a vector to the eigenvalue λg,1 has the elements
ψg′ = 0 for g′ < G − g, and the symmetric values of ψg′ for
g′ � G − g. We do not discuss here the eigenvectors to the
other eigenvalues.

The last point concerns the multiplication factors of
branches α1, . . . ,αr . Noticeably, one of them can incorporate
the normalization factor ψG, which leaves r free parameters.
There are, however, r − 1 eigenvectors in the eigenspace of λ1,
so there are in fact r(r − 1) parameters [for lower eigenvalues,
one needs to include the degeneration according to (14)]. Now,
there are also constraints: r − 1 normalization conditions,
r − 1 constraints in (41b), and ( r − 1

2 ) = (r−1)(r−2)
2 pairwise

orthogonalizations. This leads to the number

r(r − 1) − (r − 1) − (r − 1) − (r − 1)(r − 2)

2

= (r − 1)(r − 2)

2
(42)

of free parameters, which are the allowed rotations O(r − 1)
of the eigenspace.

To illustrate this with a simple example, let us take r = 3,
which gives r − 1 = 2 eigenvectors to λ1:

�ψ = (0,α1ψ1, . . . ,α3ψ1, . . . ,α1ψG, . . . ,α3ψG), (43)
�φ = (0,β1φ1, . . . ,β3φ1, . . . ,β1φG, . . . ,β3φG). (44)

Two normalization conditions, for �φ and �ψ , rid Eqs. (41a) of
two parameters,

α1 + α2 + 1 = 0, (45a)

β1 + β2 + 1 = 0, (45b)

while the orthogonalization �φ · �ψ = 0 gives

α1β1 + α2β2 + 1 = 0, (46)

and finally the symmetric relation between the two vectors is
obtained, leaving one free parameter that rotates them,

2 + α1 + β1 + 2α1β1 = 0. (47)

VI. THE EIGENVALUES OF THE GRW
TRANSITION MATRIX

Under the same procedure of transforming the determinant
to the triangular form, as explained in Sec. III, the transition
matrix of generic random walk defined in (1) leads to similar
recurrence equations as in (11):

aG = −λ,

aG−1 = −λ − k

k + 1

1

aG

,

(48)

al = −λ − k

(k + 1)2

1

al+1
for g = G−2, . . . ,1,

a0 = −λ − 1

k + 1

1

a1
.
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FIG. 2. (Color online) Finite-size effect: the broken lines correspond to the distribution 
g for G = 5, . . . ,45 in steps of 10, for a tree with
k = r = 3. (a) The distributions for MERW. For r < k, the corresponding curves would be skewed and would approach the limiting distribution
from the right, while for r > k, they would approach from the left. (b) The distributions for GRW. The larger the number of generations, the
more peaked the distribution.

In the last equality, the factor r appears in the numerator and
denominator, so it cancels out, and the equations remain r

independent.
We proceed as before and define

Ag(λ) =
g∏

j=0

aG−j (λ) for g = 0, . . . ,G, (49)

and hence we get the recurrence relations

Ag(λ) = −λAg−1(λ) − k

(k + 1)2
Ag−2(λ) for g < G,

(50)

AG(λ) = −λAG−1(λ) − 1

(k + 1)2
AG−2(λ).

The general solution for g < G is (see Appendix A for
details)

Ag(λ) =
[

k

(k + 1)2

](g+1)/2 sin[(g + 2)θ ] − k sin(gθ )

sin θ

for g = 0, . . . ,G − 1, (51)

where cos θ = λ
2

√
(k+1)2

k
. AG(λ) can be found by inserting the

above solution to Eq. (50),

AG(λ) =
[

k

(k + 1)2

](G+1)/2 (2k cos θ − 1 − k2) sin(Gθ )

k sin θ
.

(52)

Now, the eigenvalues of GRW transition matrix are determined
by finding values of the auxiliary parameter θ for which
Ag (51) and AG (52) are zero. We first solve the equation
for g = G, which factorizes into two parts,

2k cos(2θ ) = 1 + k2, (53)

whose solution is the largest eigenvalue of the transition
matrix,

λ0 = 1, (54)

the second part being

sin(Gθ ) = 0, (55)

which gives

λG,j = 2

√
k

(k + 1)2
cos

(
πj

G

)
for j = 1, . . . ,G. (56)

For g < G, we obtain

sin[(g + 2)θ ] = k sin(gθ ), (57)

which has the same form as Eq. (20), but with different
coefficients. For k > 1 in (57), we enter the same range of
parameters as for r ∈ (2k + 2k/G, + ∞) in Eq. (20), which
means that the solution leading to the largest eigenvalue in
a given series is imaginary. The corresponding equations
change from trigonometric to hyperbolic. Under substitution
k = z+1

1−z
, z = k−1

k+1 , where z was given in (29), definition (28)
reads

x = k − 1

k + 1
[1 − 2k−(g+1)]. (58)

We are particularly interested in the second largest eigen-
value (corresponding to the series g = G − 1). For large G,
the solution is approximated by

λ1 = 2

√
k

(k + 1)2

1√
1 − x2

, (59)

and it can be easily seen that λ1 exponentially approaches
λ0 = 1 for large G.
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FIG. 3. (Color online) (a) Plots for 
g , which is a total probability for a generation. Curves for large G: a sine square for r < 2k, cosine
square for r = 2k, and hyperbolic sine for r > 2k (k = 3 and r = 3,6,9). (b) Probability per one node πg for r = 3,6,9, and G = 20.

VII. STATIONARY STATES OF GRW AND MERW
ON CAYLEY TREES

As mentioned earlier, a stationary state for a random walk
on a graph exists if the graph is not bipartite. In the case
of bipartite graphs, a semistationary state can be defined by
averaging probability distributions over two consecutive steps
(because even and odd times are independent) or by averaging
the state over initial configurations.

The stationary state of GRW is given by the linear
dependence on the degree of the vertices,

πi = ki∑
j kj

for i = 1, . . . ,n, (60)

so the distribution is flat (degree ki = k + 1), but for the root
(degree r) and leaves (degree 1). If we sum the probabilities
over whole generations, the exponential factor appears as


g = ngπi = kg−1 k2 − 1

kG − 1
for g = 1, . . . ,G, and i ∈ g.

(61)

The stationary state of maximal-entropy random walk is given
by squared elements of �ψ0, the eigenvector to the largest
eigenvalue of the adjacency matrix:

πi = ψ2
0i . (62)

Remembering the solution (37),

πi ∝ kG−g sin[(G − g + 1)θ ]2 for g = 0, . . . ,G,

and i ∈ g, (63)

where we omitted the normalization factor. As we sum the
stationary probability over i ∈ g, we get


g = ngπi ∝ kG−1 sin[(G − g + 1)θ ]2 for g = 1, . . . ,G,

and i ∈ g, (64)

where the only exception is g = 0 with its n0 = 1. Exemplary
probability distributions 
g for MERW and GRW are shown
in Fig. 2.

Now, as this result depends on θ , and the solutions for
λ depend on whether r < 2k [Eq. (21)], r = 2k [Eq. (22)],
or r > 2k [Eq. (27)], this means that we can get different
distributions for different choices of r . For r < 2k, parameter
θ ≈ π

G+δ
and the distribution remains a sine square; for r =

2k, θ = π/2
G+1 and the distribution becomes a cosine square;

for r > 2k, θ = i arctanh x [where x is given in (28) and
i is the imaginary unit], thus we obtain a hyperbolic sine.
Figure 3 illustrates these cases. An interactive demonstration
showing these results as well as finite-size effects is available
online [17].

VIII. RELAXATION TIMES

A. General considerations

Let us denote the probability of finding a particle at a
node i at time t of random walk by πi(t), and the probability
distribution on the whole graph {πi(t)}i=1,...,n by �π (t). Given
the initial probability distribution �π (0) and the stochastic
matrix P, one can determine the distribution at any time t ,

�π(t) = �π (0)Pt . (65)

Using the spectral decomposition of the stochastic matrix (6),
one can rewrite the last equation as

�π (t) =
∑

α

cα�t
α
��α, (66)

where cα is a spectral coefficient: cα = �π(0) · ��α =∑
i πi(0)�αi . In particular, c0 = ∑

i πi(0) = 1. In general, all
eigenvalues �α of the stochastic matrix are known to be located
inside or on the unit circle in the complex plane |�α| � 1. In
the limit t → ∞, all terms in the sum on the right-hand side
of the last equation for |�α| < 1 are suppressed exponentially,
and only those for |�α| = 1 survive. The stochastic matrices
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for GRW or MERW on trees have only two eigenvalues on
the unit circle:2 �0 = 1 and �n = −1, so for large t , one
has

�π(t) ≈ c0 ��0 + (−1)t cn
��n. (67)

The eigenvectors associated with the eigenvalue �0 = 1 are
�0i = 1 for all i, �0i = ψ2

0i = πi . In order to write down
the eigenvectors associated with the eigenvalue �n = −1, it
is convenient to bipartition the graph into nodes belonging
to generations numbered by odd and even g. Naturally, the
“odd” nodes are neighbors of “even” ones only, and vice
versa. Elements of the eigenvectors are �njo

= 1, �nje
= −1,

�njo
= πjo

, and �nje
= −πje

, where the index jo runs over
odd nodes and je runs over even nodes. This gives, for
large t ,

πjo
(2t) = 2σπjo

, πje
(2t) = 2(1 − σ )πje

,
(68)

πjo
(2t + 1) = 2(1 − σ )πjo

, πje
(2t + 1) = 2σπje

,

where σ is the probability that a particle is in the odd part.
Clearly, cn = 2σ − 1, and for σ = 1/2, the stationary state is
recovered. The equations above tell us that the probability
distribution oscillates between odd and even nodes. In a
single step of a random walk, particles disappear from odd
nodes to appear on even ones, and vice versa. If one traces
the state of the random walk process every second step,
one sees that the distributions of particles on odd and even
nodes approach the stationary state in each partition. The
relaxation to the stationary state is generically governed by
the next-to-leading eigenvalue �1 and its negative partner
�n−1 = −�1. The corresponding term in the spectral de-
composition (66) reads

∑
[c1 ��1 + (−1)t cn−1 ��n−1]�t

1, and its
contribution to the sum vanishes exponentially as exp(−t/τ1),
where τ1 = [− ln(�1)]−1 = [ ln(λ0/λ1)]−1. The symbolic sum∑

indicates that all eigenvectors in the eigenspaces of �1 and
�n−1 are taken into account. The exception is the case when the
corresponding spectral coefficients c1 and cn−1 vanish, since
then also the corresponding term vanishes. In that case, the
next-to-leading contribution in the large t limit comes from a
lower eigenvalue �k , the largest with a nonvanishing spectral
coefficient.

Thus, by τ1, we denote the generic relaxation time, the
largest one, and by τ2, the one associated with λG,2 (in the
Sec. VIII H, we explain what symmetries lead to this relax-
ation). As there are several tree parameter regimes which
yield different results for adjacency matrix eigenvalues, the
relaxation times for MERW in those cases are also different.
As explained in Appendix B, for eigenvalues of the adjacency
matrix, the relation λG−1,1 > λG,2 always holds, so the second
largest eigenvalue is λ1 = λG−1,1, unless some special param-
eters k,r are chosen. Thus, we discuss below the strongly,
critically, and weakly branched root, and then some special
cases. The discussion of relaxation for GRW and remarks on
numerical measurements conclude this section. An interactive
demonstration illustrating the results concerning relaxation is
available online [18].

2More generally, since trees are bipartite, one can show that if � is
an eigenvalue, then also −� is.

B. Strongly branched root

The strongest root branching that yields qualitatively
distinct behavior of MERW is r > 2k, where k > 1 is assumed.
The largest eigenvalue λ0 is given by (27), while the second
largest eigenvalue, with multiplicity r − 1, belongs to the
second level of hierarchy of eigenvalues,

λ1 = λG−1,1 = 2
√

k cos

(
π

G + 1

)
. (69)

Thus, the generic relaxation time reads

τ1 = −
{

ln

[√
1 − x2 cos

(
π

G + 1

)]}−1

, (70)

where x, defined in (28), approaches r−2k
r

exponentially fast
when G → ∞. Hence, asymptotically,

τ1
∼= c + c2π2

2

1

G2
+ · · · −→ c = const, (71)

where

c =
[

ln
r

2
√

(r − k)k

]−1

, (72)

which gives an extremely fast relaxation, with the relaxation
time converging to a constant for large G. A faster relaxation
resulting from symmetry and associated with the eigenvalue
λG,2 can be found as well; however, the relaxation time might
only be improved by a multiplicative constant.
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FIG. 4. (Color online) Cayley tree with k = r = 2 and G = 8:
the mild slope (circles) corresponds to the generic relaxation and the
steep slope (squares) corresponds to a symmetry-induced one. The
data points were generated in a Monte Carlo simulation with 5 × 104

random walkers, all starting either from a single node in the third
generation, which leads to the typical behavior (generic relaxation),
or from the root (the most symmetric initial condition), which always
leads to a faster relaxation. The distance between the stationary state
πi and the probability πi(t), measured at a single node i belonging
to the second generation, is shown on a logarithmic scale. The lines
represent theoretical slopes corresponding to τ1 = [ln(λ0/λ1)]−1 ≈
83 and τ2 = [ln(λ0/λG,2)]−1 ≈ 6.
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C. Critically branched root

The behavior of MERW changes for the special case of
r = 2k, k > 1, as could be observed in the stationary states.
The largest eigenvalue is given by (22) and the second largest
eigenvalue, λ1 = λG−1,1, as before, hence the asymptotic
relaxation time is

τ1
∼= 8G2

3π2
+ 16G

3π2
+ · · · . (73)

The symmetry-induced relaxation corresponding to λG,2 =
2
√

k cos( 3π/2
G+1 ) produces asymptotic behavior with the same

scaling with respect to the number of generations,

τ2
∼= 1

π2
G2 + 2

π2
G + · · · . (74)

It is worth noting that while the number of vertices n ∼ kG,
the probability distribution relaxes as a logarithm of the system
size τ1,τ2 ∼ ln n, which still is rather fast.

D. Weakly branched root

After passing the critical value of r = 2k, the tree enters the
regime of a weakly branched root, where 1 < r < 2k, k > 1.
The only exact solution for λ0 in this range of parameters is
r = k in (21), otherwise there is the approximation (25) at our
disposal. The second largest eigenvalue is the same as above,
λ1 = λG−1,1. Hence, the generic relaxation follows

τ1
∼= 2k − r

rπ2
G3 + 3(4k − r)

2rπ2
G2 + · · · , (75)

and the faster relaxation relying on λG,2 gives

τ2
∼= 2

3π2
G2 − 8k

3π2(r − 2k)
G + · · · . (76)

Noticeably, the generic relaxation time τ1 is G times longer
than τ2 and than both relaxation times for the tree with a
critically branched root.

E. Planted tree

Until now, we have considered only the root of degree
r > 1, where all the levels in the hierarchy of the eigenvalues
have a nonzero degeneracy. Trees with a root of degree r = 1
(known as planted trees) are a special case, because the level
λG−1,j of the hierarchy has degeneracy mG−1 = r − 1 = 0.
Thus, the second largest eigenvalue is λ1 = λG−2,1, while λ0

is approximated by (25), and the generic relaxation time is
given by

τ1
∼= 2k − 1

2kπ2
G3 + 3

2π2
G2 + · · · . (77)

The faster relaxation remains associated with the eigenvalue
λG,2, so the asymptote (76) is still valid for τ2 after inserting
r = 1.

F. Linear chain

Parameters k = 1, r = 1 produce a particularly degenerate
case of a Cayley tree, namely, a linear chain. While mG−1 =
r − 1 = 0 and mG−g = r(k − 1)kg−2 = 0, there remains only

one level in the hierarchy of the eigenvalues of the adjacency
matrix,

λG,j = 2
√

k cos

(
jπ

G + 2

)
, j = 1, . . . ,G + 1. (78)

Naturally, λG,i > λG,j for i < j , so λ0 = λG,1 and λ1 = λG,2,
hence

τ1
∼= 2G2

3π2
+ 8G

3π2
+ · · · , (79)

and the relaxation connected with the third eigenvalue,

τ2
∼= G2

4π2
+ G

π2
+ · · · . (80)

However, if the number of generations G is odd (n even),
then there does not exist a central vertex where this relaxation
could be measured. If G is even (n = G + 1 is odd; it actually
might be translated to r ′ = 2,k′ = 1,G′ = G/2 Cayley tree,
although the solution differs from the previous ones), then one
central node exists and the faster relaxation can be measured
there or if some symmetric initial conditions are taken.

Finally, let us notice that the system size is n = G + 1 and
the scaling is τ1,τ2 ∼ n2. This is the same result as for a simple
diffusion, which is modeled by GRW.

G. GRW relaxation times

For GRW, λ0 = 1 and the second largest eigenvalue is given
by (59) for all k > 1. It follows that the relaxation time is given
by

τ1
∼= 2

{
ln

[
1 + (k − 1)2

4k

4kG − 1

4kG2

]}−1

. (81)

After using Taylor expansion, in the limit of large G,

τ1
∼= 8k

(k − 1)2
kG, (82)

which means that τ1 ∼ n. Just as in the case of MERW, for
r = 1, one level of the hierarchy of eigenvalues vanishes and
λ1 has to be taken as the solution of Eq. (57), with g = G − 2
instead of g = G − 1.

The eigenvalue associated with the faster relaxation is λG,1

and it leads to the characteristic time

τ2
∼= c − c2π2

2

1

G2
+ · · · −→ c = const, (83)

where

c = −
{

ln

[
2

√
k

(k + 1)2

]}−1

. (84)

H. Numerical measurements

It is possible to measure the relaxation process in two ways:
either by explicitly taking powers of the transition matrix or by
Monte Carlo simulation with N walkers traversing the graph.

In the former case, compute the transition matrix P, choose
the initial conditions (initial probabilities for any vertex of
the graph), obtain the power of the transition matrix Pt (one
might use spectral decomposition for that, although for large t
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better precision is needed) corresponding to probabilities after
t steps, and measure the difference between the stationary
state that we have found theoretically. One might need to take
the average of two consecutive steps to avoid the odd-even
blinking.

In the case of Monte Carlo, let N walkers start from node
a (or a set of nodes), let every sweep for each of those walkers
draw a random number, and check it against the transition
matrix to know in which direction the walker should go. At a
node b, measure the number of random walkers at the sweep t ,
normalize it to the total number of walkers, and subtract the
stationary state probability.

We have confirmed the theoretical relaxation times in both
ways.

The difference between the stationary state and the proba-
bility at time t might be averaged over all nodes of the tree.
However, to observe both the generic and the faster relaxation,
one might do one of the following:

(1) take one initial vertex with probability 1, and one
measuring vertex, or

(2) take r initial vertices with probabilities p1,p2, . . . ,pr ,
and one measuring vertex.

In the first case, if the initial vertex or the vertex at which
one measures probabilities is the root, then the observed
relaxation time is τ2 and τ1 otherwise. In the second case, if
the vertices and probabilities are chosen symmetrically (e.g.,
for r = 2, the two neighbors of the root with probabilities 1/2
each), then one also sees τ2 if measuring the relaxation in the
generation g = 1. An interactive demonstration allowing the
study of this behavior is available online [18].

In general, one might spot other relaxations upon specific
choices of initial conditions. This may be seen as eliminating
contributions from given eigenvalues in the spectral decompo-
sition of P (6), as explained in Sec. VIII A. Intuitively, this is
the same phenomenon as interference of waves, although we
deal with probability waves here.

IX. CONCLUSIONS

In this paper, we have analytically derived the form of the
stationary state for GRW and MERW on Cayley trees, which
shows that the stationary probability of the latter is centered
around the root of a tree, in contrast to the flat distribution
of the former. The dynamics of the probability approaching
to the stationary state have proven to be generically faster for
MERW (logarithmic with respect to the system size) than for
GRW (linear with respect to the system size).

While maximal-entropy random walk is defined so as to
keep all paths of a given length between two given points
equiprobable, it might be considered a process capable of
hiding the route that the information has traveled, e.g., on the
Internet. The properties of stationary probability distribution of
MERW have already been used to enhance centrality measures
in complex networks [10]. Considering the faster dynamics of
MERW and the connection of eigenvalues of the adjacency
matrix to the paths’ statistics (which are a basis for a number
of community detection algorithms [19]), this type of random
walk may prove useful in finding community structures on
complex networks.

ACKNOWLEDGMENTS

The authors are grateful to B. Waclaw for valuable
discussions. Project operated within the Foundation for Polish
Science International Ph.D. Projects Programme co-financed
by the European Regional Development Fund covering, under
the Agreement No. MPD/2009/6, the Jagiellonian University
International Ph.D. Studies in Physics of Complex Systems.
The research of Z.B. was partially supported by the Polish
Ministry of Science Grant No. N N202 229137 (2009–2012).

APPENDIX A: DIFFERENCE EQUATIONS

In this Appendix, we provide the reader with a detailed
solution of the recurrence equations (13) resulting in

Ag = −λAg−1 − kAg−2 for g < G,
(A1)

AG = −λAG−1 − rAG−2.

These difference equations can be solved with two initial
conditions,

A0 = −λ, A−1 = 1, (A2)

where the first condition is found in Eq. (13) and the second
condition is chosen so as to stay in agreement with the
recurrence relation (indeed, A1 = −λA0 − kA−1 = λ2 − k).

The characteristic polynomial of this difference equa-
tion yields α2 + λα + k = 0, resulting in α = 1

2 (−λ ±
i
√

4k − λ2), and using the notation

cos θ = −λ/2
√

k,
(A3)

sin θ =
√

1 − (λ/2
√

k)2,

the general solution is obtained as

Ag = k(g+1)/2[α1 cos(gθ ) + α2 sin(gθ )]

for g = 0, . . . ,G − 1. (A4)

The first and second initial condition, respectively, lead to

α1 = 2 cos θ,
(A5)

α2 = cos(2θ )

sin θ
,

after insertion of which the solution takes the form

Ag = k(g+1)/2 sin(2θ ) cos(θg) + cos(2θ ) sin(θg)

sin θ

= k(g+1)/2 sin[θ (G + 2)]

sin θ
for g < G. (A6)

The last value, AG, is calculated separately due to the root
having degree r that may be different from k:

AG = k(G−1)/2 k sin[θ (G + 2)] + (k − r) sin(θG)

sin θ
. (A7)

In the case of GRW, the recurrence equations are given
by (50). The solution proceeds analogously; however, due to
different coefficients, the initial conditions need to be adjusted
accordingly:

A0 = −λ, A−1 = k + 1. (A8)

021145-10
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The general form of the solution remains the same as
given above, but for the prefactor k(g+1)/2 substituted with
[k/(k + 1)2](g+1)/2. The first and second initial conditions give

α1 = 2 cos θ, α2 = cos(2θ ) − k

sin θ
, (A9)

which eventually lead to the solutions [(51) and (52)].

APPENDIX B: TRIGONOMETRIC EQUATIONS

In this Appendix, we derive in more detail the approximate
solutions to the trigonometric equations that appeared earlier
in the paper. Equation (20) can be illustrated with Fig. 5.
For r = k and r = 2k, the analytical solutions (21) and (22)
are found immediately. As mentioned in Sec. III, for other
values of r , the solutions can be divided into three classes with
respect to values of r: the first class for r ∈ (0,2k − 2k/G),
the second one for r ∈ (2k − 2k/G,2k + 2k/G), and the
third one for r ∈ (2k + 2k/G,+∞). In the large G limit,
that is, for G � 2k, the second class reduces to a single
integer value of r = 2k (although for small G, one can find
several values, e.g., for G = 3,k = 3,r = 7, the solution is still
real).

As regards the first class, r < 2k, an approximation of the
smallest θ (the largest λ) for large G can be derived in the
following way: Let us transform Eq. (21) into

tan [(G + 1)θ ] = r

r − 2k
tan θ. (B1)

In the limit G → ∞, we expect θ → 0 (as we do observe such
behavior for r = k and r = 2k), and upon Taylor expansion,
we obtain

tan[(G + 1)θ ] ∼= r

r − 2k
(θ + θ3/3), (B2a)

(G+ 1)

(
θ − π

G+ 1

)
∼= arctan

[
r

r − 2k
(θ + θ3/3)

]
, (B2b)

(G + 1)

(
θ − π

G + 1

)
∼= r

r − 2k
θ + O(θ3), (B2c)

Π

2 G 2

Π

G

Π

G 2

Θ

k

0

r k
r k

r k

r 2k

r 2k

r 2k

FIG. 5. (Color online) The intersection of the black curve with
the other ones marks the solution of Eq. (20). The uppermost brown
dotted curve corresponding to a strongly branched root shows no real
solutions. The blue dot-dashed sine is an example of the rare case of
a strongly branched root with a real solution. The green dashed line is
the critically branched root and the red continuous lines correspond
to weakly branched roots.

which, when having denoted by δ ≈ 2k
2k−r

, finally leads
to

θ ∼= π

G + δ
, (B3)

and produces the asymptotic solution (25) for the first level of
eigenvalues in the limit G → ∞ for any branching parameters
k,r < 2k.

For the third class, r > 2k, Eq. (20) has no real solutions
in the range (0, π

G+1 ) and the largest eigenvalue λ0 is obtained
from a purely imaginary solution for θ . The corresponding
equations change from trigonometric to hyperbolic, so after
transformation of (21), one gets

tanh [(G + 1)θ ] = r

r − 2k
tanh θ. (B4)

For G → ∞, this equation approaches

1 = r

r − 2k
tanh θ∗, (B5)

which gives

θ∗ = arctanh

(
r − 2k

r

)
. (B6)

With the notation z = 1 − 2k
r

, and after utilizing the identity
arctanh(z) = 1

2 ln( 1+z
1−z

),

(G + 1)θ = 1

2
ln

(
1

z
tanh θ + 1

)
− 1

2
ln

(
1 − 1

z
tanh θ

)
.

(B7)

For large G, the first term on the right-hand side approaches
1
2 ln 2, while the left-hand side approaches (G + 1)θ∗. After
rearranging this equation,

θ ∼= arctanh(z{1 − exp[ln 2 − 2(G + 1)θ∗]}), (B8)

and finally under substitution of θ∗,

θ ∼= arctanh

{
z

[
1 − 2

(
1 + z

1 − z

)−(G+1) ]}
. (B9)

The final solution (27) for λ0 is due to the identity
cos(i arctanhx) = 1√

1−x2 .
The last remark concerns the problem of which eigenvalue

λg,j is the second largest one. If r > 1, the level G − 1
of the eigenvalue hierarchy exists. The eigenvalue λG−1,1

is defined by the angle θG−1,1 = π
G+1 , whereas the second

eigenvalue in the first level λG,2 is defined by an angle
θG,2 > π

G
. The latter information can be easily deduced from

Fig. 5, where the intersections below the angle π
G

correspond
to the largest eigenvalue. Thus, θG−1,1 < θG,2, and, conse-
quently, λG−1,1 > λG,2. As this argument holds in general,
λ1 = λG−1,1.

021145-11
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We focus on the study of dynamics of two kinds of random walk: generic
random walk (GRW) and maximal entropy random walk (MERW) on two
model networks: Cayley trees and ladder graphs. The stationary probabil-
ity distribution for MERW is given by the squared components of the eigen-
vector associated with the largest eigenvalue λ0 of the adjacency matrix of
a graph, while the dynamics of the probability distribution approaching to
the stationary state depends on the second largest eigenvalue λ1. Firstly,
we give analytic solutions for Cayley trees with arbitrary branching num-
ber, root degree, and number of generations. We determine three regimes of
a tree structure corresponding to strongly, critically, and weakly branched
roots. Each of them results in different statics and dynamics of MERW.
We show how the relaxation times, generically shorter for MERW than for
GRW, scale with the graph size. Secondly, we give numerical results for
ladder graphs with symmetric defects. MERW shows a clear exponential
growth of the relaxation time with the size of defective regions, which in-
dicates trapping of a particle within highly entropic intact region and its
escaping that resembles quantum tunneling through a potential barrier.
GRW shows standard diffusive dependence irrespective of the defects.

DOI:10.5506/APhysPolB.43.1143
PACS numbers: 05.40.Fb, 02.50.Ga, 89.75.Hc, 89.70.Cf

1. Introduction

After Einstein [1] and Smoluchowski [2] gave explanations of Brownian
motion and originated the theory of diffusive processes, there has been an
unceasing research on models of random walk (RW), which may be regarded
as time or space discretization of these processes. Thousands of papers and
textbooks in statistical physics, particle physics, engineering, economics,
biophysics, etc., have been published.
∗ Presented at the XXIV Marian Smoluchowski Symposium on Statistical Physics,
“Insights into Stochastic Nonequilibrium”, Zakopane, Poland, September 17–22, 2011.
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From the mathematical perspective, RW is a Markov chain describing
the random consecutive steps of a particle. As an example, the well-known
Polya random walk on a lattice [3] at each time performs equiprobable steps
to any of the neighboring nodes. This process, generalized to any graph, is
known as the ordinary or generic random walk (GRW).

RW can also maximize the entropy of paths, and hence we call it the
maximal entropy random walk (MERW); lately, this type has been studied
in [4,5]. This principle of entropy maximization, which is a global one alike
the least action principle, earlier brought about the biological concept of
evolutionary entropy [6,7]. It also served as an optimal sampling algorithm
in the problem of importance sampling [8]. MERW has also begun to be
used in the study of complex networks [9, 10,11,12,13].

The defining feature of MERW makes the paths of given length and
end-points equiprobable. This leads to an unprecedented feature that the
stationary probability on diluted lattices localizes in the biggest spherical re-
gion [4, 5]. An interactive online demonstration [14] illustrates this feature.
In this paper, we focus on how the dynamics of GRW and MERW differs.
More precisely, we show analytic expressions for stationary probability dis-
tributions and relaxation times of GRW and MERW on Cayley trees; we
also give numerical results for ladder graphs, showing that the relaxation
time for MERW grows exponentially with the size of defective regions as
opposed to diffusion behavior for GRW.

In this paper, in Sec. 2 we provide definitions and notes on the two
types of random walk. In Sec. 3, we give several analytical results concern-
ing Cayley trees (involving eigenproblem solution for the adjacency matrix,
discussion of stationary state and relaxation). Lastly, in Sec. 4, we show
numerical results concerning relaxation process on a class of ladder graphs.

2. General considerations

Let us consider a discrete time random walk defined by a constant
stochastic matrix P , on a finite connected undirected graph. The proba-
bility that a random walker which can be found on a node i at time t hops
to a node j at time t+ 1 is encoded by the element Pij ≥ 0 of this matrix.
Another condition fulfilled by this matrix element is

∑
j Pij = 1 for all i. If

we denote by A the adjacency matrix of the graph (Aij = 1 if i and j are
neighbors, and Aij = 0 otherwise), we can formulate an additional condi-
tion: Pij ≤ Aij , which means that particles are allowed to jump between
neighboring nodes only. The stochastic matrix corresponding to the generic
random walk (GRW) is given by

Pij =
Aij
ki

, (1)
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where ki =
∑

j Aij is the node degree, and the probability of selecting one
of ki neighbors of the node i is uniform. This means that the entropy of
neighbor selection is maximized and shows that this is the standard Einstein–
Smoluchowski–Polya random walk. Lastly, the stationary state of GRW is
given by πi = ki/

∑
j kj .

On the other hand, maximal entropy random walk (MERW) maximizes
the entropy of choosing a trajectory of given length and end-points. This
principle leads to

Pij =
Aij
λ0

ψ0j

ψ0i
, (2)

where λ0 is the largest eigenvalue of the adjacency matrix A and ψ0i is the
ith component of the corresponding eigenvector ~ψ0. From the Frobenius–
Perron theorem and from the fact that the adjacency matrix A is irreducible
it follows that all elements of ~ψ0 are strictly positive. Shannon–Parry mea-
sure [15] then describes the stationary state of P

πi = ψ2
0i . (3)

Intriguingly, this equation forms a connection between MERW and quantum
mechanics, as one may interpret ~ψ0 as the wave function of the ground state
of the operator −A and consequently ψ2

0i becomes the probability of finding
a particle in this state [4,5]. The two random walks, (1) and (2), in general
exhibit altogether different behaviors except for the case of k-regular graphs,
where they coincide.

3. Cayley tree

We define a Cayley tree with a branching number k, which is the number
of edges leading from a given node to the next generation of nodes, and the
number of generations G. The root of the tree is assumed to have a degree r
and it belongs to the zeroth generation (see Fig. 1). The number of nodes
in the zeroth generation is therefore n0 = 1, in the first n1 = r nodes, in
the second n2 = rk, in the third one n3 = rk2, etc. The tree has n nodes in
total: n =

∑G
g=0 ng = 1 + r(kG − 1)/(k − 1).

g=3

g=2

g=1

g=0

k=2

r=3

Fig. 1. A Cayley tree with root degree r = 3, branching number k = 2, and G = 3

generations.
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3.1. Eigenvalues of the adjacency matrix

This section is devoted to calculation of eigenvalues of the adjacency
matrix of Cayley tree, which can be determined by solving the equation

det(A− λ1) = 0 . (4)

The determinant can be calculated with the use of a sequence of elementary
transformations that leave it invariant, e.g., additions of multiple of a row
or column to another row or column. Thus, the determinant can be reduced
to a triangular form with zeros above the diagonal, as first presented in [16].
Details of this procedure can be found in [17]. The triangular form of the
determinant allows to rewrite (4) as a product of the diagonal coefficients

G∏

g=0

[Ag(λ)]mg = 0 , (5)

where mG = 1 and mG−g = ng − ng−1, for g = 1, 2, . . . , G, and Ag(λ) are
polynomials w.r.t. λ given by the recursive equations

A0(λ) = −λ ,
Ag(λ) = −λAg−1(λ)− kAg−2(λ) , for g < G , (6)
AG(λ) = −λAG−1(λ)− rAG−2(λ) .

Notice that for g = G the coefficient k is replaced by r, which is a conse-
quence of the tree structure allowing arbitrary root degree. To complete the
set of equations we have to take initial condition A−1 = 1. The real roots
of equation (5) counted with the degeneracy mg give the total number of∑

g(g + 1)mg =
∑

g ng = n, which means all n eigenvalues of the adjacency
matrix are retrieved.

The recurrence (6) can be solved

Ag = k(g+1)/2 sin[(g + 2)θ]

sin θ
, forg < G , (7)

where cos θ = −λ/(2
√
k) and θ is an auxiliary parameter. To obtain the

polynomialAG one needs to combine the last equation in (6)AG = −λAG−1−
kAG−2 with the solutions for AG−1 and AG−2 (7), which yields

AG = k(G−1)/2
k sin[(G+ 2)θ] + (k − r) sin(Gθ)

sin θ
. (8)

Now, instead of (5) we can consider equations Ag = 0 and AG = 0 to
find the solutions for θ and then determine the eigenvalues of the adjacency
matrix using the formula λ = −2

√
k cos θ. The first equation, leading to

sin[(g + 2)θ] = 0 , (9)
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has g + 1 solutions

λg,j = 2
√
k cos

(
πj

g + 2

)
, for j = 1, . . . , g + 1 . (10)

As follows from (5), each eigenvalue λg,j in this series has multiplicity mg.
The equation AG = 0 produces

k sin[(G+ 2)θ] + (k − r) sin(Gθ) = 0 , (11)

for which analytical solutions exist in the case r = k

λG,j = 2
√
k cos

(
πj

G+ 2

)
, for j = 1, . . . , G+ 1 , (12)

and in the case r = 2k

λG,j = 2
√
k cos

[
π(j − 1/2)

G+ 1

]
, for j = 1, . . . , G+ 1 . (13)

Other choices of r involve numerical solving of (11).
It can be shown that the largest eigenvalue of the adjacency matrix is

λ0 = λG,1. It belongs to one of three classes of solutions depending on r,
which takes values r ∈ (0, 2k−2k/G) in the first class, r ∈ (2k−2k/G, 2k+
2k/G) in the second, and r ∈ (2k + 2k/G,+∞) in the third.

For large G (i.e., G � 2k) the second interval becomes just a single
integer value r = 2k. The first class allows values r < 2k for which an
approximate solution exists

λ0 = 2
√
k cos

π

G+ δ
, (14)

where δ ≈ 2k/(2k − r), or the exact solution for r = k (12). In the third
class, r > 2k, there are no real solutions of (11) for θ ∈ (0, π/(G + 1)) and
λ0 corresponds to a purely imaginary θ. The trigonometric equation (11) is
thus replaced by a hyperbolic one. In the limit of large G the approximate
solution is

λ0 =
2
√
k√

1− x2
, (15)

where

x = z

[
1− 2

(
1− z
1 + z

)G+1
]

and z = 1− 2k

r
. (16)
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3.2. The eigenvalues of the GRW transition matrix

The stochastic matrix of generic random walk (1) can be subjected to
the same procedure as explained in Sec. 3.1. Transforming its determinant
to the triangular form generates analogous recursion as in (6)

A0 = −λ ,

Ag = −λAg−1 −
k

(k + 1)2
Ag−2 , for g = 2, . . . , G−1 , (17)

AG = −λAG−1 −
1

k + 1
AG−2 .

We take A−1 = k + 1 as an initial condition that agrees with the rest of
equations and proceed as before, solving this recurrence to obtain eigenvalues
from the equations Ag = 0 and AG = 0. From AG = 0 one gets

2k cos(2θ) = 1 + k2 and sin(Gθ) = 0 , (18)

whose solutions lead to, respectively,

λ0 = 1 , and λG,j = 2

√
k

(k + 1)2
cos

(
πj

G

)
, for j = 1, . . . , G , (19)

and from Ag = 0
sin[(g + 2)θ] = k sin(gθ) . (20)

The last equation has the identical form as (11) except for different coeffi-
cients. The class of solutions of (11) with r ∈ (2k+ 2k/G,+∞) corresponds
to value k > 1 in the above equation. Hence, the value of θ that leads to the
largest eigenvalue in a given series is imaginary. Once again, the trigono-
metric equations (20) change into hyperbolic ones. Upon replacements
k = z+1

1−z , z = k−1
k+1 , we end up with (16) rewritten as x = k−1

k+1

[
1− 2k−(g+1)

]
.

In the large G limit, the second largest eigenvalue is thus approximated by

λ1 = 2

√
k

(k + 1)2
1√

1− x2
(21)

and clearly the second largest eigenvalue λ1 approaches λ0 = 1 exponentially
in G.

3.3. Stationary states of GRW and MERW on Cayley trees

A random walk on a graph has a stationary probability distribution if
the graph is not bipartite. If a graph is bipartite, one can define a semi-
stationary state: it involves either averaging probability distributions over
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two consecutive time steps t and t + 1 (because the distributions for even
and odd times are independent) or averaging the distribution over initial
conditions.

GRW leads to the stationary occupation probabilities

πi =
ki∑
j kj

, for i = 1, . . . , n , (22)

which comprise a flat distribution for nodes of degree ki = k + 1 and the
exception of the root having r neighbors and leaves neighboring with just
one node. As nodes in each generation have equal stationary probabilities
we can sum over them Πg = ngπi ∝ kg−1, which produces the exponential
factor.

The stationary probabilities of MERW are equal to the squared com-
ponents of ~ψ0. All elements ψ0i of this vector have the same values for i
belonging to a given generation g. This simplifies the description of the
stationary state so that we may write ψg for all nodes in the generation g
(we omit the first index, which numbers the corresponding eigenvalue). Ex-
act solution for ψg can be obtained by solving a recurrence equation analo-
gous to (6)

πi = ψ2
0i ∝ kG−g sin[(G− g + 1)θ]2 , for g = 0, . . . , G and i ∈ g , (23)

where the normalization constant has been omitted. After summing over
whole generation i ∈ g, the probabilities become

Πg = ngπi ∝ kG−1 sin[(G− g+ 1)θ]2 , for g = 1, . . . , G and i ∈ g , (24)

where the case g = 0 with its n0 = 1 needs a separate treatment.
This result depends on the choice of r, k through θ and λ. For r < 2k,

parameter θ ≈ π
G+δ and the limiting distribution is a sine square; for r = 2k,

θ = π/2
G+1 and the distribution is a cosine square; for r > 2k, θ = i arctanh x

(where x is defined in (16), while i is the imaginary unit), which yields a
hyperbolic sine. These limiting results as well as finite-size effects are showed
in an online interactive demonstration [18].

3.4. Relaxation times

A stochastic matrix does not have to be symmetric, thus its right and left
eigenvectors may differ: P ~Ψα = Λα~Ψα, ~ΦαP = Λα~Φα. Hence, there exists a
spectral decomposition of P

Pij =
∑

α

ΛαΨαiΦαj , (25)
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where for MERW one can make replacements: Λα = λα/λ0, Ψαi = ψαi/ψ0i,
Φαi = ψαiψ0i. The spectral decomposition of the adjacency matrix of a
given graph thus contains information about all properties of MERW.

From the knowledge of the initial probability distribution ~π(0) and the
transition matrix P the distribution can be determined at any time t

~π(t) = ~π(0)P t , (26)

where the elements πi(t), i = 1, . . . , n of ~π(t) denote the probability of
finding a particle performing a random walk at a node i at time t.

The last equation can be reformulated utilizing the spectral decomposi-
tion of the stochastic matrix (25)

~π(t) =
∑

α

cαΛ
t
α
~Φα , (27)

where cα denotes a spectral coefficient: cα = ~π(0) · ~Ψα =
∑

i πi(0)Ψαi.
Generally, all eigenvalues Λα of P are located inside or on the unit circle

in the complex plane |Λα| ≤ 1 and in the limit of infinite t on the right-
hand side of (27) only |Λα| = 1 survive, while all the other terms vanish
exponentially.

TABLE I

Relaxation times τ1 for large G. All rows except for the last one refer to
MERW. The symbols λg,j correspond to one of the equations (10), (12), or (13),
whichever is appropriate for the choice of parameters k, r. In the first row:

c =

(
ln r

2
√

(r−k)k

)−1
. While the number of vertices n ∼ kG, the probability

distribution relaxes a logarithm of the system size τ1 ∼ lnn.

Regime λ0 λ1 τ1

Strongly branched:
r > 2k, k > 1 Eq. (15) λG−1,1 c+ c2π2

2
1
G2 + . . .

Critically branched:
r = 2k, k > 1 λG,1 λG−1,1 8G2

3π2 + 16G
3π2 + . . .

Weakly branched:
1 < r < 2k, k > 1 λG,1 λG−1,1 2k−r

rπ2 G
3 + 3(4k−r)

2rπ2 G2 + . . .
Planted tree:
r = 1 ≈ Eq. (14) λG−2,1 2k−1

2kπ2 G
3 + 3

2π2G
2 + . . .

Linear chain:
k = 1, r = 1 λG,1 λG,2

2G2

3π2 + 8G
3π2 + . . .

GRW: r > 1, k > 1 1 Eq. (21) 8k
(k−1)2 k

G
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For both GRW and MERW on a tree only two eigenvalues on the unit
circle are left Λ0 = 1 and Λn = −1 due to bipartiteness of the graph.
For t → ∞ the relaxation to the stationary state is generically governed
by the second largest eigenvalue Λ1 and its negative counterpart Λn−1 =
−Λ1. The corresponding term in the spectral decomposition (27) decreases
exponentially as exp(−t/τ1), where τ1 = [− ln(Λ1)]

−1 = [ ln(λ0/λ1)]
−1.

Thus, τ1 is what we call the generic relaxation time, which is the largest
one. We note, however, that there are symmetries that lead also to other
relaxation times. As the eigenvalues of the adjacency matrix depend on
the tree parameters, also the relaxation times for MERW fall into several
classes. The relaxation times for largeG are given in Table I. It is noteworthy
that whereas the probability distribution for GRW relaxes linearly with the
system size τ1 ∼ n ∼ kG, for MERW it is as fast as a logarithm of the
system size τ1 ∼ lnn. Derivations and further details expanding the note on
symmetries can be found in [17]. An online interactive demonstration [19]
can also facilitate understanding of these results.

4. Ladder graph

In this section, we discuss a particular class of ladder graphs (exemplary
ladder graph can be seen in Fig. 2). A ladder graph consists of two chains
of integer length n/2 which are connected by rungs, i.e. node i of one chain
is connected to node i′ of the second one, then i + 1 to i′ + 1 and so forth.
We also impose periodic boundary conditions producing a ring, where node
i + n/2 is connected to node i + 1, and node i′ + n/2 to node i′ + 1. This
structure is symmetric with respect to reflection i→ i′, and so the graph is
a quasi one-dimensional system. It is a 3-regular graph, although we remove
some rungs from the ladder to introduce defects, so that MERW and GRW
are not equivalent on this graph anymore.

0 5 10 15 20

0

0.02

0.04

Lattice site i

Π
i

Fig. 2. (Color online) Stationary probability for a ladder graph with periodic
boundary conditions: the probability localizes in the intact regions. The square
nodes represent initial condition that would be chosen for this graph.
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For the adjacency matrix of the graph A, its largest eigenvalue λ0 and
the eigenvector ~ψ0 associated with it, the stationary solution for MERW is
given as the ground state of the tight-binding equation

(
H ~ψ0

)
a

=
(
−∆~ψ0

)
a

+ Vaψ0,a = E0ψ0,a , (28)

where the Hamiltonian is defined asHab = kmaxδab−Aab, with the Kronecker
delta δab, maximum degree of the graph kmax, and Va = kmax − ka, E0 =
kmax − λ0. For a ladder graph with defects this equation yields

2ψ0,a − ψ0,a−1 − ψ0,a+1 + Vaψ0,a = E0ψ0,a , (29)

where E0 = 3 − λ0 and Va = 0 or 1 (rung present or absent). Stationary
states of a number of ladder graphs (with one, two, or a number of random
defects) were discussed in Section 6 of [5].

Additionally, we impose a symmetry on those defects: there can only be
two equal regions intact and two equal regions with rungs removed (gaps).
We take the initial probability 1 at the center of one of the intact regions
(this may be 2 or 4 nodes, depending on whether the length of the region is
odd or even, see Fig. 2). The systems under study have n = 48− 512 total
number of nodes and the number of deleted rungs separating two regions
(the gap size) varies between g = 1− 10.

We measure the probability P (t) summed over one whole region (as the
regions are equal in size, P∞ = 1/2 is its stationary value). It might be
understood as a macroscopic measure of the process taking place in this
region. As expected, the probability flows from one the initial intact region
to the other one until equilibrium (P (t) = 1/2 in both regions) is attained.

We fit the numerical results to exponential dependence on time t: P (t) ∼
exp[−a(t− b)], where a and b are fitting parameters from which we extract
the relaxation time τ , which is the characteristic time scale of an exponential
approach to the stationary state. The results for the behavior of relaxations
times for GRW and MERW are given in Table II. It turns out that for
MERW there is a clear dependence of the relaxation on the gap size for a
given lattice size (example in Fig. 3 (a) for n = 96): a(g) = exp(−c g − d),

TABLE II

Relaxation times τ as functions of the system size n and gap size g, where c(n) =
c∞ − fn−1/ν and d, c∞, f, ν are fitted constant.

GRW τ(n, g) = c nd, d = const. = 2

MERW τ(n, g) = exp [c(n) · g]
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b(g) = exp(c g + d), where c, d are constants with respect to the gap size g.
After extracting this dependence, only the dependence on the system size
remains in the function c = c(n), which is very well fitted with a power
law (Fig. 3 (b): c(n) = c∞ − fn−1/ν (best-fit value parameters are c∞ =
0.9643 ± 0.0078, f = 58 ± 42, ν = 0.773 ± 0.098). Thus, the macroscopic
probability depends on time, system size, and gap size

|P (t; g, n)− P∞| ∝ exp {−t exp [−c(n) g] } . (30)
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Fig. 3. Maximal Entropy RandomWalk: (a) Logarithmic plot shows an exponential
dependence of the relaxation time on the gap size (an exemplary system size,
n = 96) reminding of quantum tunneling, (b) the dependence of the relaxation
time on the system size, c(n) = c∞ − fn−1/ν [see (30)]. Continuous lines are the
best fits of an exponential function and power law, respectively.
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Fig. 4. Generic Random Walk: (a) log–log plot shows power law dependence of
relaxation time, expected for a diffusion process (continuous line is the best fit;
gap size g = 1), (b) the best-fit exponents d of the power law show independence
from the gap size. The errors result from finite-size effects.
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For GRW, both fitted parameters a and b have shown no dependence
from the gap size g, although they do depend on the system size: a(n) =

cn−d, b(n) = c′nd
′ , where d′, d ≈ 2 (see Fig. 4). This produces the familiar

behavior τ ∼ n2 which is expected for a one-dimensional random walk.

5. Conclusions

In this paper, we have discussed the dynamics of generic random walk
and maximal entropy random walk on two classes of graphs. For Cayley
trees, we have shown the analytic form of generic relaxation times governing
how fast probability distributions of those random walks approach their
stationary states. MERW has proven to be generically faster (logarithmic
with respect to the system size) than GRW (linear w.r.t. the system size).
However, on defective ladder graphs the relaxation of probability seems to
show opposite behavior: while GRW relaxes diffusively, the relaxation times
for MERW are much longer, growing exponentially with the size of the
defective region.

These results indicate that MERW might exhibit comparatively fast re-
laxation within intact or homogeneous regions (like a Cayley tree) but in-
hibits the relaxation process between regions separated by defects, bottle-
necks or bridges. While qualities of MERW’s stationary states have already
been utilized to improve centrality measures in complex networks [10], its
dynamic properties and a close relation between eigenvalues of the adja-
cency matrix and the statistics of paths may be of use in community search
algorithms on complex networks (a number of algorithms based on random
walks, path enumeration and spectral properties of the adjacency matrix are
reviewed in [20]). As a more speculative idea, it is also worth remembering
that MERW keeps all paths of a given length between any two endpoints
equiprobable, which makes it capable of hiding the route information travels,
e.g. over the Internet.

The author would like to thank Z. Burda and B. Waclaw for fruitful dis-
cussions. Project operated within the Foundation for Polish Science Inter-
national Ph.D. Projects Programme co-financed by the European Regional
Development Fund covering, under the agreement no. MPD/2009/6, the
Jagiellonian University International Ph.D. Studies in Physics of Complex
Systems.
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Maximal-entropy random walk unifies centrality measures
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This paper compares a number of centrality measures and several (dis-)similarity matrices with which they can
be defined. These matrices, which are used among others in community detection methods, represent quantities
connected to enumeration of paths on a graph and to random walks. Relationships between some of these matrices
are derived in the paper. These relationships are inherited by the centrality measures. They include measures based
on the principal eigenvector of the adjacency matrix, path enumeration, as well as on the stationary state, stochastic
matrix, or mean first-passage times of a random walk. As the random walk defining the centrality measure can
be arbitrarily chosen, we pay particular attention to the maximal-entropy random walk, which serves as a very
distinct alternative to the ordinary (diffusive) random walk used in network analysis. The various importance
measures, defined both with the use of ordinary random walk and the maximal-entropy random walk, are compared
numerically on a set of benchmark graphs with varying mixing parameter and are grouped with the use of the
agglomerative clustering technique. It is shown that centrality measures defined with the two different random
walks cluster into two separate groups. In particular, the group of centrality measures defined by the maximal-
entropy random walk does not cluster with any other measures on change of graphs’ parameters, and members
of this group produce mutually closer results than members of the group defined by the ordinary random walk.
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I. INTRODUCTION

Graphs represent abstracted relationships between entities.
They form a structure on which a process may take place,
which is often formalized into the mathematical concept
called random walk. Together, graphs and random walks can
constitute a model for citations in scientific collaboration
networks, dissemination of information on social networks,
or data transmission on the Internet. Instead of these kinds of
information transfer, more tangible subjects may be consid-
ered, such as molecule movement on physical or biological
networks. Whatever the exact nature of the phenomenon, the
natural question arises: Which entity in the network is the most
influential, be it a gene or a transcription factor, an overloaded
hub, a frequented web site, or a renowned researcher.

A number of importance (or centrality) measures answer-
ing that question have been invented to study social (e.g.,
Ref. [1]; Ref. [2] is an extensive resource) or telecommu-
nication networks (e.g., HITS [3] and PageRank [4]). A
significant portion of ideas defining the measures originate
from graph theory (e.g., the degree of a vertex, enumeration
of paths, or the principal eigenvector of the adjacency
matrix) and the theory of Markov chains (e.g., stationary
states of random walks, their stochastic matrices, and mean
first-passage times). Likewise, most of these approaches
have been widely utilized in algorithms of community
detection [5].

In this paper, we show that a number of these ideas can
be formulated in a common framework. A group of centrality
measures defined with the use of a given random walk produce
nearly equivalent results, and the results for such a group
are more distinct from other measures if they make use of
the maximal-entropy random walk (MERW; also called
Ruelle-Bowens random walk).

*jeremi.ochab@uj.edu.pl

The random walks (RWs) discussed here exist in discrete
time and space, in general on any graph, where a step from a
vertex (a node) to one of its nearest neighbors takes a unit of
time. The stochastic nature of the process expresses itself in
the probabilities of taking a step from one node to another. A
set of all such probabilities for the whole graph can be stored
in a stochastic matrix, which may serve as an object uniquely
defining a given RW. For instance, equal probabilities of going
from a node to any of its nearest neighbors are enough to define
what is called here the generic random walk (GRW), one that
is well known and commonly used. However, a sequence of
nodes, a path, traversed by a random walker, say a particle, can
also be attributed a probability, which is given by the product
of the one-step probabilities. A well-chosen set of those path
probabilities can also be taken as a RW’s definition. This is
the case of MERW, for which all paths of a given length and
end points are equally probable. These two approaches result
in RWs that significantly differ in their stationary and dynamic
behavior. It is often the case that either GRW or some biased
RWs are better suited for particular problems. However, the
author believes that MERW should serve alongside GRW as a
null model of random processes on networks. The reason is of
fundamental nature: It is GRW that maximizes entropy locally
(entropy of the nearest neighbor selection, which results in
equal one-step probabilities outgoing from a vertex), and it is
MERW that maximizes entropy globally (entropy of the path
selection, which results in the equiprobable paths). Since a
random walk can be seen as an ensemble of all paths it can
generate, it is MERW that yields the largest entropy for that
ensemble [6,7] (to be precise, the quantity maximized is the
entropy production rate). Thus, in a sense, it is the most random
of random walks.

We supplement the above statement with a couple more
practical reasons. MERW exhibits behaviors that may be of
general interest: Its stationary distribution localizes on diluted
lattices [6–8], its relaxation to stationary state is extremely
fast on Cayley trees [9,10], and it is very slow between two

066109-11539-3755/2012/86(6)/066109(7) ©2012 American Physical Society
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identical connected k-regular regions [11]. The equiprobable
paths that MERW produces are the natural candidates for
an ensemble used in Feynman path integrals (in models of
discrete quantum gravity with curved space-time) [7] or in
the optimal sampling algorithm in the path-integral Monte
Carlo methods [12]. Since entropy maximization is a global
principle, conceptually analogical to the least action principle,
it was also studied in biology and has led to the concept of
evolutionary entropy [13]. The same authors have found the
value of entropy for a given graph useful in selection of robust
networks [14]. Last, MERW has begun to be used as a tool for
analysis of complex networks [15–19].

The rest of this paper is organized as follows. We begin with
short definitions of the two random walks under consideration
in Sec. II, which allows us to derive relationships between
several (dis-)similarity matrices in Sec. III; this sets a frame-
work for revision of a number of known centrality measures
in Sec. IV and, finally, for their numerical comparison in
Sec. V. We conclude with Sec. VI.

II. GENERIC AND MAXIMAL-ENTROPY
RANDOM WALKS

Let us consider a finite connected undirected graph. We
define a discrete-time random walk on this graph by a
stochastic matrix (also transition or Markov matrix) P. Its
entry Pij � 0 is the probability that if a random walker stays
on a node i at a time t , it will step to a node j at time t + 1. Any
row Pi∗ contains the probabilities of moving to all neighbors
of i, and since the walker cannot disappear from the graph
nor be created, they all sum up to unity,

∑
j Pij = 1. As we

assume that the walker can only move to neighboring nodes,
the stochastic matrix can have a nonzero entry only if the
adjacency matrix of the graph has a nonzero entry at the same
place. Shortly, ∀i,j : Pij � Aij , where A is the adjacency
matrix of the graph. Elements of this matrix can take two
values: Aij = 1 if i and j are neighbors and Aij = 0 otherwise.
The binary values express the fact that the edges of the graph
are unweighted. The assumption of undirected edges results in
symmetry of the adjacency matrix A = AT , which means that
the edges can pass information both ways; this does not imply
symmetry of the stochastic matrix. Both P and A are assumed
to be time independent.

The probability that the random walker stays at a given
vertex i of the graph at a given time t is encoded in
the i-th element of the vector �π (t)T = [π1(t), . . . ,πN (t)].
Thus, the initial distribution of probabilities is �π (0)T , and
the distribution after t steps �π (t)T = �π (t − 1)T P = �π (0)T Pt ,
where the stochastic matrix has been multiplied t times.

A quantity of interest, given by a solution of

�πT = �πT P, (1)

is the stationary probability distribution (or stationary state),
which may be understood as the probability distribution after
infinite time. We assume it exists.1

1A stationary state exists if an undirected graph is not bipartite,
but even for bipartite graphs a semistationary state can be defined by
averaging probability distribution over two consecutive time steps.

The ordinary or, as we call it, generic random walk
corresponds to the standard random walks used by Einstein,
Smoluchowski, or Polya. It is realized by the following
stochastic matrix:

Pij = Aij

ki

, (2)

where ki = ∑
j Aij denotes a degree of i-th node (i.e.,

the number of its nearest neighbors). Its stationary state is
proportional to the degrees and is given by πi = ki/

∑
j kj .

An i-th row of the matrix contains uniform probabilities, each
equal to 1/ki , of selecting any of the ki neighbors of the node
i. Thus, the entropy of neighbor selection is maximal.

The other type of RW, introduced earlier, maximizes the
entropy of random trajectories and, hence, is called here the
maximal-entropy random walk. This maximization condition
leads to a unique stochastic matrix,

Pij = Aij

λ0

ψ0j

ψ0i

, (3)

where λ0 is the largest eigenvalue of the adjacency matrix
A and ψ0i is the i-th element of the principal eigenvector
�ψ0. Since the adjacency matrix is irreducible, the Frobenius-
Perron theorem guarantees that all elements of this vector are
strictly positive, thus the condition Pij � Aij is fulfilled. It
can be checked that matrix multiplication

∑
k PikPkj makes

the k-labeled eigenvector elements in the numerator and
denominator cancel out, which leaves the path probabilities
independent of the intermediate nodes. That is how the
aforementioned equiprobability of paths is expressed.

MERW has the stationary probability distribution given by
Shannon-Parry measure [20]

πi = ψ2
0i . (4)

Let us note that this formula allows us to interpret ψ0i as the
wave function of the ground state of the operator −A and ψ2

0i

as the probability of finding a particle in this state [6,7], thus
relating MERW to quantum mechanics.

It is easily seen that the two RWs, (2) and (3), are identical
on k-regular graphs (i.e., graphs whose all nodes have uniform
degree of k, e.g., grids or complete graphs). This should be
considered an exception, as, in general, their properties are
entirely distinct.

III. RELATIONS BETWEEN THE STOCHASTIC MATRIX,
ITS DISTANCE MATRIX, MEAN FIRST-PASSAGE

TIME MATRIX, AND THE RESOLVENT OF
ADJACENCY MATRIX

A. Properties of the stochastic matrix

In general, a stochastic matrix may be not symmetric, and
so it may have different right, ��α , and left, ��T

α , eigenvectors,

P ��α = �α
��α, ��T

α P = �α
��T

α , (5)

which results in a spectral decomposition,

P =
∑

α

�α
��α

��T
α . (6)

Clearly, the first left eigenvector is exactly the stationary
state vector from (1), ��0 = �π . We define a diagonal matrix

066109-2
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D ≡ diag(�π)−1, whose diagonal entries equal to the inverses
of the stationary state vector’s elements.

With the use of it we narrow down the set of stochastic
matrices to a more manageable one. Thus, let us consider
a class of random walks whose stochastic matrix can be
transformed into a symmetric matrix as given,

S = D−1/2PD1/2. (7)

It follows that
��α = D−1 ��α. (8)

This relation does not hold for any random walk but is clearly
obtained for GRW and MERW, which satisfy (7), as shown
below.

In matrix notation the stochastic matrix (2) for GRW can
be written as

P = diag(k1,k2, . . . ,kN )−1A. (9)

Since the stationary state of GRW is proportional to the
node degrees (k1,k2, . . . ,kN ), the diagonal matrix yields D =
diag(k1,k2, . . . ,kN )−1 ∑

j kj . At the same time, the symmetric

adjacency matrix can be decomposed into A = ∑
α λα

�ψα
�ψα

T
,

with notation defined in Sec. II. Substitution of these two
relations into the equation above yields

P = 1∑
j kj

∑
α

λαD �ψα
�ψα

T
. (10)

Comparing this formula with (6) one can easily see that the
eigenvectors are given by

��α = D �ψα, ��α = �ψα, (11)

which are related as given in (8).
Similarly, MERW allows for expression of all the

eigenvalues and eigenvectors of the stochastic matrix P (3)
in terms of eigenvalues λα and eigenvectors of �ψα of the
adjacency matrix A,

�α = λα

λ0
, ��α = D1/2 �ψα, ��α = D−1/2 �ψα, (12)

where D = diag(ψ2
01,ψ

2
02, . . . ,ψ

2
0N )−1. In particular,

�0 = 1,�0i = 1, and �0i = ψ2
0i = π0i for all i. The spectral

decomposition of P then reads

Pij =
∑

α

�α�αi�αj =
∑

α

λα

λ0
ψαiψαj

ψ0j

ψ0i

. (13)

Thus, clearly all properties of MERW are encoded in the
spectral decomposition of the adjacency matrix of a given
graph; it allows for an easier derivation of, for example, the
stationary state and dynamical characteristics of MERW for
Cayley trees [9,10,21].

B. (Dis-)similarity matrices

Taking the powers of the stochastic matrix has been utilized
in methods of both assessing centrality [22] and finding
communities [23,24]. The distance matrix used by Latapy and
Pons [24] was given by

r(t)ij =
√∑

k

[(Pt )ik − (Pt )jk]2

πk

, (14)

where P and �π were meant to correspond to GRW (we extend
it to a class of random walks). Intuitively, it is assumed that
the probability distribution of a random walk outgoing from a
node i after t steps [represented by the row (Pt )i∗] is a quantity
that characterizes the node i; in fact, it tells you how the node
i sees the graph after t steps of passing information according
to the RW. The difference of these viewpoints between nodes i

and j defines the distance between them. The division by πk is
a way of normalizing the contribution of a vertex’s centrality
to that distance.

These authors mention that r2, the entrywise square of this
distance matrix, is equivalent to

r2(t)ij =
N−1∑
α=1

�2t
α (�αi − �αj )2, (15)

based on spectral decomposition of P (6).
The remarks from the previous subsection allow us to make

further observations. For any RW for which S defined in (7) is
symmetric, and specifically in the case of MERW and GRW,
the spectral decomposition (6) leads to the compact form

r2(t) = D[(P2t )dgE − (P2t )T ] + [E(P2t )dg − P2t ]D, (16)

where (P2t )dg is a matrix with entries (P2t )ii on the diagonal
and zeros otherwise. This is a new formula, which, however,
very much resembles a symmetrized version of a quantity
known as mean first-passage time matrix.

The mean first-passage time (MFPT) matrix M is a useful
concept for studying RWs. Its elements Mif encode the average
time to reach the final vertex f from the initial vertex i for the
first time. We invoke a neat construction of the matrix given by
Kemeny and Snell [25,26]: first, let us define the fundamental
matrix

Z = (1 − P + �e �πT )−1, (17)

where 1 is the identity matrix and �e = (1,1, . . . ,1)T . The
MFPT matrix is then given by

M = (EZdg − Z)D, (18)

where E is a matrix of all ones, Zdg is a diagonal matrix with
elements (Zdg)ii = Zii , and D was introduced in (7).

The cited authors defined the fundamental matrix so as to
contain all the powers of the stochastic matrix P, which follows
from expansion of (1 − P)−1 in a series 1 + P + P2 + · · ·.
However, as they remark, matrix 1 − P is noninvertible and
consequently the expansion does not exist. The correction �e �πT

allows for a well-defined inversion. In fact, instead of the
fundamental matrix one may use other so-called generalized
inverses (the formalism is summarized in Ref. [27]), although
we use (17) for its conceptual and computational simplicity.

Drawing on the analogy between r2(t) and M that we have
spotted, we may redefine (14), and take

∑∞
t=0 Pt instead of

Pt to account for all the powers of the stochastic matrix. This
infinite sum

πf

∞∑
t=0

(Pt )f i = √
πf Gf i

√
πi (19)

reproduces the path-integral (MERW) and field-theoretical
(GRW) propagator G of a free relativistic particle, as has been
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shown in Ref. [7], which supports the view that the stationary
probability (4) is reminiscent of the square of a wave function.

Nevertheless, the matrix G needs further elaboration. An
elementary and more general definition than in (19) makes an
entry Gf i represent the number of trajectories of all lengths
between nodes i and f . We recall that the count of paths of
length t is conveniently given by the powers of the adjacency
matrix (At )f i . As the number of paths dramatically grows with
their length, however, a normalizing parameter eμ > eμ0 ≡ λ0

has to be introduced for the sum of paths to converge,

G(μ) =
∞∑
t=0

e−μtAt . (20)

From the point of view of paths’ statistics, G(μ) defines
the grand-canonical ensemble of paths. An element Gf i(μ)
corresponds to the grand-canonical partition function, μ to
the chemical potential, and the average path length is 〈t〉f i =
−(ln G)′f i(μ).

The role of μ is equivalent to a cutoff of a path length of the
order T = 1/	μ, where 	μ ≡ μ − μ0. In Eqs. (19) above
and (22) below, G stands for G(μ0), where the special choice
of μ0 = − ln λ0 explicitly relates the propagator to the graph
structure by the largest eigenvalue of the adjacency matrix.
In this limit, μ −→ μ0, infinite paths begin to dominate the
average, and G(μ) has a singularity.

However, μ = − ln λ very close to μ0 can be taken, yielding

G(μ) =
∞∑
t=0

At

λt
= 1

λ
(λ1 − A)−1, (21)

which is the resolvent of the adjacency matrix. Clearly, at
μ = μ0 the right-hand side is ill defined. To define G(μ)
at the singularity, the matrix λ01 − A has to be projected to
the subspace perpendicular to �ψ0 before inversion. It can be

done similarly as in (17) by taking (λ01 − A + λ0 �ψ0 �ψ0
T

)−1,
which eliminates the zeroth eigenmode. This is expected and
advantageous in community finding methods, as discussed in
Ref. [28].

Finally, on substitution of the infinite sum over t in place
of Pt in (16) we obtain

r2 = D(G2)dgE − 2
√

DG2
√

D + E(G2)dgD, (22)

with G functioning as an analog of the fundamental matrix Z
and where the time dependence has been eliminated. Thanks
to the symmetry of the matrix r2, however, the singular mode
of G cancels out, even without the projection discussed in
the paragraph above. This stands in contrast to the definition
of MFPT with the use of the fundamental matrix, which is
nonsymmetric, and where the singularity was elimated by
hand.

IV. CENTRALITY MEASURES

The above considerations constitute a common framework
for a number of centrality measures. Below, the connections
between them are reviewed and established.

A. Centrality based on paths

The original concept of counting paths to assess centrality
was introduced in 1953 [29]. The idea is to count all the paths
that lead to a vertex whose importance we measure. For a
given path length t , the number of such paths between vertices
i and f is given by the element (At )f i of the t-th power of the
adjacency matrix. This corresponds exactly to the definition
shown in (20). Below, we rewrite the original definition from
Ref. [30] in terms of the propagator G(μ).

The importance of the final vertex f is then given by the
element If of the vector �I = (G(μ) − 1)�e ≈ c0(μ) �ψ0, where
the uniform vector �e was chosen as a set of initial conditions
(the importance is measured uniformly with respect to all
initial vertices), and the proportionality to the principal eigen-
vector holds near μ0, with some constant of proportionality
c0 which depends on μ. Squared elements of the principal
eigenvector of A are the stationary probabilities of MERW,
which means they correspond to the contribution from infinite
paths. In the limit μ −→ μ0 the constant c0(μ) diverges. As a
result, the contribution to the centrality of other eigenvectors,
corresponding to paths of shorter lengths, is negligible. We
explain the nuances of this divergence at the end of the previous
section.

In Sec. V, where we perform numerical analysis, we do
not restrict the values of μ to be strictly greater than μ0.
Instead, we do effectively the same thing by setting μ = μ0

and limiting the maximal length of the enumerated paths with
finite sums taken in (20). The maximal length of the paths is
set equal to the diameter of a given graph. We also remark that
in the numerical analysis the elements of �I are squared so they
correspond to the stationary probability of MERW.

The path weights exponential with respect to the path’s
length t [i.e., e−μt in the notation we use in (20)] were also
employed in Ref. [22]. These authors, however, proposed
additional restrictions. The idea was to reduce the number of
paths one takes into account, e.g., by taking only the shortest
paths or k-short paths (i.e., paths of length smaller than k).
The heuristic explanation is that the path between given two
nodes that transmits the information the fastest is the crucial
one, and perhaps, in the real world, the longer paths would
not have been used. Similar idea motivates taking only k-short
vertex-disjoint paths (i.e., paths that additionally do not have
any nodes in common apart from the initial and terminal one).
Unfortunately, these ideas are harder to trace analytically, so
we just use them for the sake of comparison. In Sec. V we take
only the shortest paths without any constraints on their length.

The exponential weighting of paths, as e−μt in (20), is not
the only possible choice. Alternatively, factorial weights βt/t!
might be introduced [31,32]. As in the previous case, these
weights guarantee convergence of the infinite sum in (20).
Mathematically speaking, instead of producing a resolvent
operator, as in (21), the similarity matrix takes the form of
another well-known operator, the heat kernel K(−β) = (eβA).
We stress that what usually is called the heat kernel of a
graph has a Laplacian matrix in place of A and time in place
of −β. It is then the solution of the heat equation and is
thought to represent the flow of information on the graph
in time. Here, the analogy lies in the form of the operator,
where the adjacency matrix seems to play the role of the
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graph Laplacian. The interpretation the authors of the cited
paper give, however, differs: They think of the graph as a
network of balls (nodes) and springs (edges). The adjacency
matrix becomes then the Hamiltonian of the system, and
K(−β) becomes a Green’s function. The parameter β can then
represent an inverse temperature of a heat bath the system
is immersed in. Effectively, β < 1 suppresses and β > 1
allows for longer paths to be taken into account. The resulting
similarity matrix has been used in a method of community
detection.

We provide the reader with this type of path weighting as
an alternative. It is, however, the former weight choice (21)
that generates the unique maximally entropic random walk.
Those weights make MERW directly reflect the structure of
the graph, which is explicit in the transition matrix definition
(3) or, conversely, appropriately weighted paths gain the
interpretation of a random walk.

B. Centrality based on powers of the transition matrix

Equation (19) shows that path enumeration is equivalent to
the propagation of MERW. Let us note, however, that the walks
are also weighted by the ratio ψ0f /ψ0i = √

πf /πi of station-
ary probabilities of the two vertices. It is a reasonable intuition
that the importance of a random walk trajectory depends on
the importance of the initial and final vertices. It seems that the
problem of calculating centrality by employing the transition
matrix becomes self-consistent (importance calculated from
paths, whose weights depend on the importance) and, thus,
eliminates arbitrariness.

The method of assessing centrality by summing consecutive
powers of the transition matrix is stated in Ref. [22],

�IT =
T∑

t=1

�π (0)T Pt , (23)

where for simplicity we choose uniform initial probability
distribution �π (0)T . Intuitively, the influence of the initial vertex
on its surroundings is estimated with T steps of a random
walk, which corresponds to the appropriate choice of μ in
path enumeration approach, as explained above in Eq. (21).
This parameter controls whether local effects or the stationary
state is favored, with �I approaching the stationary probability
distribution for large T . The number of steps is usually kept
rather small, due to computation costs.

As noted at the beginning of this subsection, what results
from our study is that for MERW the definition (23) is very sim-
ilar to counting paths. Even for relatively small T , it produces
results very close to the stationary probability distribution.
Obviously, one expects it for large T , but the nontrivial fact
we have checked is that, on average, MERW reaches the
stationary state faster than GRW on the benchmark graphs
used. To be precise, the probability distribution of a random
walk comes closer to the stationary state as an exponent in time,
|πi(t) − πi | ∝ exp(−t/τ ), with the characteristic relaxation
time τ , which is shorter for MERW than for GRW (even
twice as short for graphs with very strong modular structure;
however, this is less visible for nearly random graphs). To a
large extent we have accounted for that behavior, as MERW
seems to relax very fast within connected regions (proven for

100 1000 104 105 106
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10 4
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MFPTf

Π f MERW

GRW

FIG. 1. (Color online) The stationary probability distribution of
MERW and GRW as a function of the averaged rows of MFPT matrix
(average MFPT of reaching a vertex f from any initial vertex) for
a sample graph with N = 1000 vertices. Solid lines have best fit
slopes −1.027 ± 0.001 (MERW) and −1.070 ± 0.005 (GRW). The
correlation for GRW is weaker, since the degrees of the graph take
values 10–50 and accordingly the stationary state is quantized. πf for
GRW is multiplied by 10 for clarity.

Cayley trees [9,10]), although it takes a long time to relax
between two identical connected regions [11].

C. Centrality based on mean first-passage times,
stationary distributions, and the principal eigenvector

of the adjacency matrix

As shown in Sec. III there is a close analogy between r2,
which uses powers of the transition matrix discussed above,
and mean first-passage times matrix M. The centrality based
on MFPT matrix is given by the inverse of

∑
i Mif , where the

sum represents the average time the information needs to reach
the final vertex f from anywhere in the graph. This definition
is called Markov centrality in Ref. [22].

Clearly, the multiplication by D in the definition of MFPT
(18) causes the approximate trend Mif ∼ π−1

f . However,
since previous studies usually assumed the Markov process
to be GRW, we complement them with comparison of the
dependence between MERW and GRW, shown in Fig. 1. Since
the stationary state of MERW is typically distributed over a
wide range of values (even on almost regular graphs [7]),
MFPTs correlate with it very strongly. Hence, for MERW the
information extracted from MFPT matrix and the stationary
distribution is largely equivalent. Especially on bounded-
degree graphs, their values extend much further than for GRW,
whose stationary distribution is proportional to vertex degrees
and, thus, also bounded.

This observation begs the question: Which random walk
should be chosen to define a centrality measure in terms of
the stationary distribution? Thus far, the one used most widely
is GRW, whose stationary state is produced by the simplest
version of the prominent PageRank [4]. The two random walk
centralities, however, have already been compared in Ref. [16]
and the conclusion was, among others, that MERW has “a
larger discriminating power between the best and worst pages”
and is sensitive to link farms.
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Nonetheless, in these studies the connection to other meth-
ods has been missing. We indicate that both paths’ statistics and
random walks are linked to the idea of calculating centrality
as an eigenvector associated with the largest eigenvalue of the
adjacency matrix, which is a concept as old as the economic
and sociological papers from 1965 [33] and 1972 [34]. In the
latter, this centrality was derived from the assumption that
�It = At�e/λt

0 is the t-th order importance measure and that
an objective measure should be taken in t = ∞, convergence
thus requiring the factor λ−t

0 . Clearly, this formula is simply
the canonical ensemble version of the one based on paths (20),
and the proposed eigenvector centrality is the square root of
the stationary state of MERW (4). This is also reminiscent of
the HITS algorithm [3] for directed graphs, which nevertheless
uses eigenvectors of AT A.

We note that just as centrality may be defined with the
use of the principal eigenvector of the adjacency matrix or
the stochastic matrix (the stationary state vector), there is a
family of community detection methods analyzing the rest of
the eigenvectors (often it is the spectrum of Laplacian that is
analyzed). In fact, each of the methods of assessing centrality
mentioned above has a number of counterparts that in a similar
manner try to find the community structure of a network. In
Ref. [28], we present a comparison between GRW and MERW
in performance of some community finding methods based on
the concepts presented above.

V. COMPARISON

We check the affinity of different centrality measures
described above (together with the closeness and betweenness
centrality given for reference; see Ref. [35]) by comparing the
result they produce for a sample of graphs. For a given graph,
each centrality measure produces a vector�I, whose consecutive
elements are centrality values of the corresponding nodes. To
compare results of a pair of methods on that graph, we take the
corresponding pair of vectors and measure the rms distance
between them (cosine or Pearson correlation distance have
been checked as well and have generated similar results). After
repeating this computation for all pairs of centrality measures
we obtain a square matrix. Since each graph from the sample
produces one such matrix, we take the average (entrywise)
over the whole sample. The entries of the resultant matrix
represent the average distance between a pair of centrality
measures. Finally, this distance matrix is used as input for
an agglomerative clustering algorithm with average weights,
which generates the dendrograms in Fig. 2. The heights of their
branches correspond to the distances between pairs of clusters.
The maximum standard deviation of the distance matrix entries
is smaller than 0.61%, hence, the results of the clustering
algorithm should be correct for most graphs in the sample.

For example, in the dendrogram on the left in Fig. 2, the
nearest centralities are 1 and 2 (which denote the stationary
state of MERW and its MFPT centrality), and they were the
first to be clustered together. Next, methods 5 and 7 were clus-
tered (the shortest paths’ centrality and the MFPT centrality
of GRW), and so on. It can be seen that the closeness and
betweenness (9 and 10) are always clustered at the very end,
which means they are very distinct from the other methods.
This is expected, as they are based on a different concept of

FIG. 2. (Color online) The dendrograms correspond to bench-
mark graphs with the mixing parameter μ = 0.1,0.3,0.6. The labels
1, 2, and 3 represent MERW’s stationary state, MFPT, and Pt (orange
cluster). 6, 7, and 8 are GRW’s analogs (blue cluster). 4 denotes
weighted paths’ and 5 shortest paths’ centrality. 9, 10 are closeness
and betweenness. In 3 and 8, the maximal power of P is T = 5. In 4
and 5 μ = ln λ0 and T equals the diameter of the graph.

importance and could, for instance, assign a high centrality
score to a node near a bottleneck (i.e., very narrow, local
bridge between two communities), even though it is poorly
connected. The methods 4 and 5 depend on the maximum path
length T taken into account (it is set to the diameter of the
graph, which varies between 4 and 10), so their assignment
might differ for parameter choices other than shown here.

More importantly, another look at the dendrograms reveals
that when the parameters of the benchmark graphs change
there are two clusters of methods that do not mix with each
other. One includes centralities derived from MERW (1, 2,
and 3: centralities based on the stationary state, MFPT, and
Pt , respectively) and 4, which is based on weighted paths (the
orange cluster in Fig. 2), while the other includes centralities
derived from GRW (6, 7, and 8, again the stationary state,
MFPT, and Pt ) and 5, which is based on shortest paths
(the blue cluster). Thus, methods utilizing GRW are close
to each other; however, for graphs with easily distinguishable
communities they can cluster together with other centrality
measures. The methods utilizing MERW are all connected to
path enumeration (20), as predicted in Sec. IV A, and they
never intermingle with the other centrality measures. The
average distance of this whole group from other methods
analyzed is greater than the analogous distance for the group
of GRW methods, whereas the average distance between the
members of this group is smaller than the corresponding value
for GRW methods. This means that, indeed, the centralities
defined by MERW comprise a distinct, close-knit family, and
produce equivalent results.

A. Benchmarks

In the analysis in the previous section Lancichinetti-
Fortunato-Radicchi benchmark graphs [36] were utilized.
Since they were designed to benchmark community finding
algorithms, they contain communities with preset size distri-
bution, constructed with the use of the planted partition model.
In short, the model is based on fixed probabilities, pin and pout,
which determine if two given nodes should be linked (in this
case they have been assigned to the same communities or to
different ones, respectively). Although the graphs constructed
that way are locally random, they model a range of possible
real-world structures, and so they serve our purpose in testing
centrality measures.

We follow the notation used by the authors of the bench-
marks. Thus, by μ we denote the mixing parameter [this
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should not be confused with the usage of μ in (20), where
chemical potential is meant; the context should make which
meaning is intended unambiguous], which is the fraction
of links a given node shares with the nodes outside its
community. The parameter is approximately equal for all
nodes in a graph. For chosen values of μ, we take 100 graphs
with N = 200 vertices; their exponents for the degree and
community size distributions are, respectively, τ1 = −2 and
τ2 = −1. The average and maximum degrees are 10 and 30,
and the community sizes range from 5 to 35.

VI. CONCLUSIONS

In this paper it has been shown that the random walk
distance matrix r2(t) defined in (14), when modified to account
for walks of all lengths, is equivalent to a symmetric version of
the mean-first passage matrix M (18), where the fundamental
matrix Z is substituted with the propagator G.

This observation also leads to the conclusion that a number
of known centrality measures are nearly identical if the
random walk under consideration is the maximal-entropy
random walk. This common perspective includes measures
related to the properties of graphs (the eigenvector centrality

and centrality based on enumeration of weighted paths) and
those related to random walks (their stationary state, powers
of their transition matrix, and, finally, their MFPT matrix), as
reviewed in Sec. IV.

A numerical investigation on a set of benchmark graphs
confirms this thesis, showing that there is a group of centrality
measures related to GRW that tend to produce similar results
and an even more homogeneous and distinct group of central-
ities related to MERW. To quote Bonacich [34]: “Three dif-
ferent approaches to calculating popularity scores have almost
the same solution [. . .]. This is an economy; three approaches
are reduced to just one. This is the main point of the paper.”
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Abstract. The aim of this paper is to check feasibility of using the
maximal-entropy random walk in algorithms finding communities in
complex networks. A number of such algorithms exploit an ordinary
or a biased random walk for this purpose. Their key part is a (dis)si-
milarity matrix, according to which nodes are grouped. This study en-
compasses the use of a stochastic matrix of a random walk, its mean
first-passage time matrix, and a matrix of weighted paths count.
We briefly indicate the connection between those quantities and pro-
pose substituting the maximal-entropy random walk for the previously
chosen models. This unique random walk maximises the entropy of
ensembles of paths of given length and endpoints, which results in
equiprobability of those paths. We compare the performance of the
selected algorithms on LFR benchmark graphs. The results show that
the change in performance depends very strongly on the particular al-
gorithm, and can lead to slight improvements as well as to significant
deterioration.

1 Introduction

Relationships between entities can be represented as a graph structure upon which
some process takes place, be it information or opinion spread on social networks,
including citation and collaboration networks, WWW or the Internet, or perhaps a
physical process (molecular motion) on physical or biological networks. One of the
natural questions to be asked is whether there are groups of entities which are con-
nected stronger to each other than to the rest of the network. Due to the sociological
legacy, these are called communities, but they can comprise researchers, websites,
genes or transcription factors as well.
A plenitude of methods have been devised to find such communities, and a pleni-

tude of definitions have been conceived to tell what it is that we really look for. These
definitions and methods have been thoroughly reviewed in [1]. A particular subgroup
of algorithms is based on random walks (RWs), since intuitively a random walker is
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expected to spend a longer time inside the well-connected graph regions, and there
should be only a slim chance that it crosses from one to another.
The most common choice for such algorithms has been the well-known random

walk defined by equal probabilities of going from a node to any of its nearest neigh-
bours, which we call the generic random walk (GRW). On the contrary, maximal-
entropy random walk (MERW) ensures equiprobability of all paths of a given length
and endpoints. Although for many problems, GRW and biased RWs are often more
suitable, MERW deserves particular interest: while the former maximises the en-
tropy locally (entropy of the nearest neighbour selection), the latter maximises the
entropy globally (entropy of the path selection) [2,3]. Among its curious behaviours,
MERW exhibits localization of its stationary distribution on diluted lattices [2–4] and
Cayley trees [5,6], it also relaxes extremely fast on these trees [5,7], while it does very
slowly between two identical connected regions [8]. Thus, we believe MERW can serve
alongside GRW as a null model of random processes on networks.
It is noteworthy that equiprobable paths (as generated by MERW) are the natural

choice for an ensemble used in Feynman path integrals (e.g., discrete quantum grav-
ity models with curved space-time) [3] or in the optimal sampling algorithm in the
path-integral Monte Carlo methods [9]. Entropy maximization is a global principle
much like the least action principle. It has earlier led to the biological concept of evo-
lutionary entropy [10]. Interestingly, the value of entropy for a given graph, as defined
by MERW, has been found useful for selection of robust networks [11]. Finally, it has
begun to be used in the study of complex networks [12–16].

2 Generic and maximal-entropy random walks

Let us consider a discrete time random walk on a finite connected undirected graph,
with its stochastic matrix P being constant in time. An element Pij ≥ 0 of this matrix
encodes the probability that a walker that stands on a node i at time t hops to a
node j at time t + 1. These matrix elements fulfil the condition

∑
j Pij = 1 for all

i, which means that the number of walkers is conserved. An additional assumption
allows the walkers to hop only to a neighbouring node. This can be formulated as
Pij ≤ Aij , where Aij is the corresponding element of the adjacency matrix A of the
graph: Aij = 1 if i and j are neighbours, and Aij = 0 otherwise.
For any time t, the probability of a walker staying on a given vertex of the graph is

encoded in the vector π(t) = (π1(t), . . . , πN (t))
T . The initial distribution of particles

is π(0), and the distribution after t steps π(t)T = π(0)TPt. A quantity of interest is
the stationary probability distribution, which we assume to exist. Then, it is given
by a solution of

πT = πTP, (1)

and may be regarded as the probability distribution after infinite time.
GRW is realised by the following stochastic matrix:

Pij =
Aij

ki
, (2)

where ki =
∑
j Aij denotes the node degree. The factor 1/ki in the above formula

produces a uniform probability of selecting one of ki neighbours of the node i. This
choice maximises the entropy of neighbour selection and corresponds to the standard
Einstein-Smoluchowski-Polya random walk. The stationary probability distribution
of GRW is given by πi = ki/

∑
j kj .

The other type of random walk, MERW, is defined by a stochastic matrix that
maximises entropy of a set of trajectories with a given length and end-points.



From Brownian Motion to Self-Avoiding Walks and Lévy Flights 75

This is a global principle similar to the least action principle. It leads to the
following stochastic matrix:

Pij =
Aij

λ0

ψ0j

ψ0i
, (3)

where λ0 is the largest eigenvalue of the adjacency matrix A, and ψ0i is the i-th
element of the corresponding eigenvector ψ0. By virtue of the Frobenius-Perron
theorem, all elements of this vector are of the same sign, because the adjacency
matrix A is irreducible. For a stochastic matrix to maximise the entropy of an ensem-
ble of paths, the choice (3) is unique.
The defining condition of entropy maximization leads to equiprobability of paths.

More precisely, let us take a sequence of nodes γa0aτ = (a0, a1, . . . , aτ ), which is a
path of τ steps with the initial node a0 and the final node aτ . The probability of
visiting this sequence of nodes is

P (γa0aτ ) = Pa0a1Pa1a2 · · ·Paτ−1aτ , (4)

which results from the Markov property of the random walk. Upon substitution of
MERW’s stochastic matrix, one obtains

P (γa0aτ ) =
1

λτ0

ψ0a0
ψ0aτ

, (5)

which depends only on the number of steps and on the two ending points, but is
independent of the intermediate nodes. This is what we mean by equal probability
of paths of a given length and end-points. Consequently, the probability measure on
this ensemble of paths is uniform, and its entropy is maximal.
The stationary state of MERW is given by Shannon-Parry measure [17]:

πi = ψ
2
0i. (6)

The last formula forms a connection between MERW and quantum mechanics, since
ψ0i can be understood as the wave function of the ground state of the operator −A
and ψ20i as the probability of finding a particle in this state [2,3]. The two types of
random walk, (2) and (3), behave identically on k-regular graphs. In general, however,
they have completely disparate properties.

3 (Dis)similarity matrices for community finding algorithms

Methods of both assessing centrality [18] and finding communities [19,20] have widely
utilised calculating powers of the stochastic matrix. The one by Latapy and Pons [20]
uses the dissimilarity matrix

r(t)ij =

√∑
k[(P

t)ik − (Pt)jk]2
πk

, (7)

where the division by πk is supposed to reduce the effect of centrality of a vertex.
Originally, P and π corresponding to GRW were chosen.
Another approach is an explicit use of the mean first-passage times (MFPT)

[21–23]. MFPT matrix M is a useful and well-studied quantity characterising RWs.
Its construction with the use of the fundamental matrix Z is given in [24,25]

Z = (1− P+ eπT )−1, (8)
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M = (EZd − Z)D, (9)

where 1 is the identity matrix, e = (1, 1, ..., 1)T , E is a matrix of all ones, Zd is a
diagonal matrix with elements (Zd)ii = Zii, and D is a diagonal matrix with elements
(D)ii = 1/πi. The elements Mij encode the average time to reach the vertex j from i
for the first time (in general Mij �=Mji).
The last approach we discuss is a similarity matrix containing the average number

of paths between two given nodes (which is just At) with weights that depend on the
length of the path.

G(µ) =
∞∑
t=0

e−µtAt. (10)

For eµ ≡ λ > λ0, the sum is convergent and can be carried out with the use of
spectral decomposition of A. From the point of view of statistics of the paths G(µ)
defines the grand-canonical ensemble of paths. An element Gfi(µ) corresponds to
the grand canonical partition function, µ corresponds to the chemical potential, and
the average path length is 〈t〉fi = −(lnG)′fi(µ). To avoid a conflicting notation,
henceforth we use λ ≡ eµ, whereas the symbol µ will be exclusively reserved for the
mixing parameter of benchmark graphs (see Sect. 4.2).
In the case of MERW and GRW (generally, for any RW for which D−1/2PD1/2 is

symmetric) it can be shown that these three quantities are intimately related consti-
tuting a common framework for a number of centrality measures [3,26].

4 Community finding algorithms

4.1 Comparison

Each of the above quantities has an analogic centrality measure: r has the stationary
state centrality and centralities defined by summation of powers of the stochastic
matrix, G has the eigenvector centrality and centralities defined by path enumeration,
andM has a centrality defined by the inverse of its average rows [26]. These are natural
counterparts to some community finding methods.
Just as centrality may be defined with the use of the principal eigenvector of the

adjacency matrix or the stochastic matrix (then, the eigenvector is the stationary
state), there is a family of community finding methods analysing the rest of the
eigenvectors (often it is the spectrum of Laplacian that is analysed) [27–32]. However,
having the two random walks at hand, we are more interested in methods that utilize
their characteristics. Particularly, we try to assess what difference it makes, when we
switch between those two random walks.
Below, we present several available methods that originally use GRW as the

random walk of choice. These algorithms have not been previously systematically
compared on benchmark graphs (described in detail in Sect. 4.2). We measure their
performance on a set of such graphs, and compare it with the performance of the
same methods, in which we substituted MERW for GRW.
There are a number of methods using powers of the transition matrix. For instance,

[19] use the matrix

P≤T ≡
T∑
t=1

Pt, (11)

where P corresponded to GRW, and T was taken around 2–3. The assumption is that
two nodes are close to each other if the corresponding rows of P≤t matrix are similar.



From Brownian Motion to Self-Avoiding Walks and Lévy Flights 77
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Fig. 1. Comparison of community detection efficiency between MERW (squares; T = 2, 4
iterations) and GRW (circles; T = 3, 3 iterations) transition matrix used in the first iteration
of algorithm [19] on benchmark graphs. Graph size: (a) N = 200, (b) N = 1000. Normalized
mutual information (NMI) equal to 1 means a perfect match between the communities
found and the preset community structure; NMI equal to 0 means no information on the
real community structure. The two random walks provide comparable performance of the
algorithm.

One of the proposed similarity functions between two vectors is

sim(x,y) = exp

(
2T −

N∑
i=1

|xi − yi|
)
− 1. (12)

In this formula, if T = 1, the vectors x,y are rows of the stochastic matrix. Hence,
the elements of each of them sum up to 1. There are T stochastic matrices summed
in (11), hence in general the elements of each vector sum up to T . If the two vectors
are maximally different, the sum in (12) becomes 2T , and the similarity reaches the
lower boundary value of 0.
The algorithm consists in replacing edge weights of the original graph with the

elements of the similarity matrix, so that external (intercommunity) links get smaller
weights, and the internal ones get larger weights. The procedure is iterated until
the differences between weights become large enough, and the weights below a given
threshold can be disposed of. What remains is the communities. It is viable to use the
transition matrix of MERW only in the first iteration step. As illustrated in Fig. 1,
MERW produces slightly better results, especially for considerable µ. The normal-
ized mutual information is equal to 1 when the algorithm finds the same community
structure as planted in the graph, and it is equal to 0 if the two partitions are sta-
tistically independent. (Details of the benchmark graphs parameters are described in
Sect. 4.2.)
Next, Pons and Latapy [20] introduced an algorithm using the quantity given in (7)

as a distance matrix between nodes of the graph. Their algorithm is an agglomerative
one: it starts with each node being a community, and then, based on the distance
matrix, it merges the two closest adjacent communities. The condition of maximal
modularity chooses the partition from the resulting dendrogram. We refer to the
original paper for details.
Figure 2 shows the performance of the algorithm. For large networks, the algo-

rithm is very good independently of the random walk chosen. For small networks,
MERW considerably decreases the efficiency of the algorithm for small µ; the pre-
cise reasons for that are not established. The general tendency of the algorithms to
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Fig. 2. Comparison of community detection efficiency between MERW (squares; summed
powers of Pt, t = 1 − 3) and GRW (circles; t = 3) for the algorithm of Pons and Latapy
[20]. Graph size:(a) N = 200, (b) N = 1000. It is the best among the algorithms discussed.
MERW slightly decreases its performance for small µ.
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Fig. 3. Comparison between λt0 (MERW, squares) and t! (circles) path weights. Graph
size:(a) N = 200, (b) N = 1000. MERW gives better performance for smaller µ, while
factorial weighting for larger. The overall performance is satisfactory for a method based on
agglomerative clustering.

perform worse for smaller networks is probably due to small average node degree,
which may result in single nodes detaching easier from their communities.
In (10), the weights e−µt produce the resolvent operator of A, but also factorial

weights βt/t! might be introduced [33,34], yielding the heat kernel. To analyse the
resulting matrix one needs to remove the zeroth eigenmode of A, so that G is well-
defined. The choice eµ = λ0 is directly related to MERW.
The procedure [33,34] goes on, producing a matrix with 0s and 1s in place of neg-

ative and positive entries of G. The original idea involved finding all maximal cliques
(maximal complete subgraphs) of the graph represented by this matrix. Since this is
computationally strenuous, we use a much simpler approach and carry out hierarchi-
cal clustering on that matrix. To obtain communities, we take the dendrogram section
which maximises the modularity [35]. This algorithm, however, should be considered
as only a very rough approach, just for the sake of preliminary comparison. It can
be seen in Fig. 3 that exponential weights works better for small µ, while factorial
weights give a reasonable performance for larger values of mixing parameter.
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Fig. 4. Comparison between Netwalk [23] using MERW (squares), GRW (circles) and biased
RW (diamonds)on benchmark graphs. Graph size:(a) N = 200, (b) N = 1000. The algorithm
becomes unreliable for relatively small µ. MERW considerably reduces its performance for
the whole parameter range.

Lastly, one may look at the methods grouping the nodes according to their MFPT
values. In [21,23], a similarity matrix is introduced that computes the total of differ-
ences between MFPTs of random walkers incoming to particular nodes a and b from
any initial node

Λab =

√∑N
c �=a,b |Mac −Mbc|2

N − 2 . (13)

On this basis, the authors developed an algorithm called Netwalk. We skip the details
of the algorithm and refer the reader to the original papers. In this case, the outcome
of the comparison between MFPTs of different random walks (we also implement a
biased random walk used originally by Netwalk), in Fig. 4, shows that MERW should
not be used in this algorithm. The original algorithm, however, works well only for
very small µ, and in general its performance is unexpectedly unreliable even for large
network size.

4.2 Benchmark graphs

The algorithms in Sect. 4.1 are compared to the use of unweighted undirected bench-
mark graphs introduced in [36] by Lancichinetti, Fortunato, and Radicchi (LFR) in a
manner analogous to the authors’ later work [37]. These graphs were designed specif-
ically to benchmark community detection methods, and they are characterized with
a preset power-law distribution of node degrees, and more importantly, also with a
power-law distribution of community sizes. They are constructed based on the planted
partition model, in which two nodes that are a priori assigned to the same commu-
nity are linked with probability pin, and with probability pout if they are assigned to
different communities. This means that each community is a random subgraph. The
LFR benchmark graphs are parametrized in a similar manner with the mixing para-
meter µ, which is the fraction of links that a given node shares with the nodes outside
its community, and may be thought of as a fixed ratio pout/pin. The parameter µ is
approximately the same for all nodes in a graph.
We take 100 benchmark graphs with N = 200, 1000 nodes; their exponents for the

degree distribution and for the community size distribution are respectively τ1 = −2
and τ2 = −1. For N = 200 the parameters are: the average degree of 10, maximum



80 The European Physical Journal Special Topics

degree of 30, and the minimum and maximum community sizes are taken to be 5
and 35. For N = 1000: the average degree of 20, maximum degree of 50, and the
minimum and maximum community sizes are 20 and 100, respectively. The mixing
parameter µ is set to µ = 0.1 − 0.6. For the upper bound, most of the algorithms
start to have severe problem with detecting communities.
To check how good partition has been found, we use the normalised mutual in-

formation (NMI) [38]. NMI treats node assignments to communities as probabilities.
As a result, it measures the statistical independence of two assignments (probability
distributions) yielding 1 if they are equivalent, and 0 if they are statistically indepen-
dent. We always measure NMI of the partition obtained from a given algorithm with
respect to the partition planted in the benchmark. Let us note that the definition
of a community here relies on the planted partition model, which means that the
performance of algorithms is checked in accordance with this particular definition.

5 Conclusions

We have briefly introduced the concept of maximal-entropy random walk and reviewed
some of its features, while in the main body of this paper we compared the perfor-
mance of several community finding algorithm, in which MERW-based (dis)similarity
matrices substituted the original ones.
The results obtained by the most reliable method checked here, made by

Latapy and Pons, are comparable for GRW and MERW, although we note a
significant worsening for small networks when using the latter.
The other methods have not been previously compared on LFR benchmark graphs.

The one by Harel and Koren is generally unreliable for µ > 0.4. However, its perfor-
mance is slightly improved by MERW for both small and large networks. By contrast,
MERW does not suit for Netwalk. Even for GRW, which was used originally, this algo-
rithm produces a markedly unsatisfactory results for the medium range of the mixing
parameter in comparison with the available state-of-the-art methods. The method
based on factorial path weighting has considerable problems for small µ. Surprisingly,
switching to exponential weighting, which corresponds to MERW, produces better
results than Netwalk. In general, it performs reasonably well, even though the al-
gorithm used a simple hierarchical clustering as a temporary means for the sake of
comparison.
Meanwhile, MERW exhibits a surprising localisation and relaxation properties on

some defective regular graphs. This case study shows that on the LFR benchmark
graphs, which are locally random, this random walk can offer a performance of com-
munity finding methods comparable to that of GRW. It remains to be investigated if
the behaviour of MERW on other types of graphs, including real-world networks, is
more distinctive. Further effort is also needed to determine whether the development
of a dedicated algorithm which makes better use of the information contained in this
type of random walk is possible.

Project operated within the Foundation for Polish Science International Ph.D. Projects Pro-
gramme co-financed by the European Regional Development Fund covering, under the agree-
ment no. MPD/2009/6, the Jagiellonian University International Ph.D. Studies in Physics
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