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Abstract
The Thesis studies real-time physics of certain strongly coupled planar gauge the-
ories using a dual gravitational description. The dynamics of interest is the boost-
invariant flow in the setting of holographic conformal field theories in 3+1 dimen-
sions with dual description in terms of Einstein gravity in 5-dimensional asymptot-
ically anti-de Sitter spacetime. Resulting equations of motion are solved analyti-
cally at late and early proper time. The late-time gravity solution, which is dual to
boost-invariant hydrodynamics, is shown to be regular contrary to previous claims
and its causal structure is analyzed with possible implications on generalizations
of entropy to time-dependent field theory configurations. Furthermore, different
scenarios in the proposal to make quantitative comparisons between strongly cou-
pled quark-gluon plasma and holographic descriptions of conformal field theory
are examined by analyzing the form of corrections to certain transport coefficients
appearing in second order hydrodynamics from higher curvature terms in the dual
gravity theory. The far-from-equilibrium dynamics of conformal plasma is studied
in the regime of early proper time and it is shown, in contrast with the late-time
expansion, that a scaling solution does not exist. Gauge theory dynamics in this
regime depends on initial conditions encoded in the bulk behavior of metric coeffi-
cients at some initial proper time. The relation between the early-time expansion of
the energy density and initial conditions in the bulk of anti-de Sitter space time is
provided. Further investigations reveal rich, initial conditions dependent far-from-
equilibrium dynamics. The impact of this study on the problem of thermalization
at strong coupling is discussed.

Abstrakt
Praca porusza zagadnienia dynamiki silnie sprzężonych holograficznych teorii ce-
chowania w granicy dużej liczby kolorów przy użyciu dualnego opisu grawita-
cyjnego. W szczególności rozważana jest boost-niezmiennicza ekspansja plazmy
konforemnych teorii cechowania w 3+1 wymiarach o dualnym opisie w języku graw-
itacji Einsteina w 5-wymiarowych czasoprzestrzeniach asymptotycznie anty-de Sit-
tera. Otrzymane równania ruchu rozwiązane są analitycznie w granicy dużych i
małych czasów. Pokazane zostaje, że rozwiązanie grawitacyjne dla dużych cza-
sów opisujące boost-niezmienniczą hydrodynamikę jest regularne w sensie cen-
zury kosmicznej. Rozważania dotyczące termodynamiki tego rozwiązania w języku
kwazilokalnych horyzontów prowadzą do fenomenologicznej definicji entropii czar-
nych bran i mogą mieć znaczenie dla uogólnienia pojęcia entropii na procesy bliskie
równowagi w teorii cechowania. Zbadany zostaje także wpływ wiodących poprawek
wyższych rzędów w krzywiznach do działania grawitacyjnego na wartości współczyn-
ników transportu drugiego rzędu w holograficznych teoriach cechowania oraz prze-
analizowane zostają różne scenariusze w ramach których takie poprawki mogą się
pojawić. W pracy rozwiązano także analitycznie problem dynamiki grawitacyjnej
dla małych czasów, która odpowiada silnie nierównowagowej fizyce teorii cechowa-
nia, a także omówiono uzyskane wyniki w kontekście problemu termalizacji w silnie
sprzężonych teoriach cechowania.
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Foreword

As a Ph.D. student during the period of October 2007 - May 2010, I had the joy to take part in
a rapid development of the field called applied gauge/gravity duality. It is an interdisciplinary
field of theoretical physics, which applies tools provided by the string theory to study strongly
coupled setups and toy-models inspired by the real-world physics (for reviews see e.g. [1,
2, 3, 4, 5, 6, 7, 8, 9]). The primary motivation for undertaking that path of research is
physics of quark-gluon plasma, which above, but not far above, the critical temperature is
a strongly coupled phase of Quantum Chromodynamics. This new form of matter has been
under extensive experimental studies in the Relativistic Heavy Ion Collider and will be also
produced and probed at the Large Hadron Collider. In the absence of robust methods to
calculate dynamical properties of strongly coupled QCD, gauge/gravity duality offers an unique
opportunity to learn qualitative lessons about real-time physics of certain gauge theories at
strong coupling. In general, it is hard to judge how important these developments will be
for future understanding of QCD itself. However, so far there have been several important
lessons (with experimental implications), which followed directly or indirectly from this line of
research

1. Obtaining concrete values of transport properties of certain strongly coupled gauge the-
ories [10];

2. Understanding that small ratio of shear viscosity to entropy density might be correlated
with the strongly coupled physics [11];

3. Finding missing terms in second order conformal hydrodynamics [10, 12, 13];

4. Better understanding of hydrodynamics of theories with anomalies, which might lead to
discovering new effects in quark-gluon plasma [14, 15].

Most of the results presented in this Thesis were published in the articles listed below. An
executive summary of the most important achievements is given in the concluding Chapter.

1. P. Benincasa, A. Buchel, M. P. Heller and R. A. Janik, “On the supergravity description
of boost invariant conformal plasma at strong coupling,” Phys. Rev. D 77, 046006 (2008)
[arXiv:0712.2025 [hep-th]];

2. M. P. Heller, P. Surowka, R. Loganayagam, M. Spalinski and S. E. Vazquez, “Consis-
tent Holographic Description Of Boost-Invariant Plasma,” Phys. Rev. Lett. 102, 041601
(2009);

3. G. Beuf, M. P. Heller, R. A. Janik and R. Peschanski, “Boost-invariant early time dy-
namics from AdS/CFT,” JHEP 0910, 043 (2009) [arXiv:0906.4423 [hep-th]];
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4. A. Buchel, M. P. Heller and R. C. Myers, “sQGP as hCFT,” Phys. Lett. B 680, 521
(2009) [arXiv:0908.2802 [hep-th]];

5. I. Booth, M. P. Heller and M. Spalinski, “Black brane entropy and hydrodynamics: the
boost-invariant case,” Phys. Rev. D 80, 126013 (2009) [arXiv:0910.0748 [hep-th]].

During three years which span the period of publication of the original works there has been
an enormous progress in the field. This Thesis takes the perspective of the mature field, which
eventually applications of gauge/gravity duality have developed into, rather than directly the
views presented in the original publications. In particular, the large proper time limit of
boost-invariant flow is presented as an example of fluid/gravity duality [10] (see [6] for a
review), rather than an independent phenomenon. Moreover, the initial results of [16, 17]
suggesting an inconsistency of the gravity dual to the boost-invariant flow are reinterpreted
here following the results of [18] as a mere failure of the particular coordinate chart in describing
the perfectly regular gravity dual. Apart from that, the universality of transport properties
of holographic conformal field theories with a classical gravity dual is now understood as a
feature of the planar limit and strong ’t Hooft coupling. In particular, the shear viscosity of
certain holographic gauge theories [19] violates (though mildly) the famous conjectured bound
η/s ≥ 1/4π in natural units [11]. As a result, the question whether there is a physical bound
on the dissipation in the systems is still open (see [20] for a review).

There are numerous people who influenced directly or indirectly the contents of the Thesis.
In the very first place I would like to thank my advisor, Romuald A. Janik, who introduced
to me and has guided me through the fascinating subject of gauge/gravity duality and its
applications. I am also very indebted to Michał Spaliński for various discussions, advice
and fruitful collaborations. Moreover, I would like to thank Alex Buchel and Rob Myers
for inviting me to the Perimeter Institute and teaching me a lot of good physics. Last but
not least I would like to acknowledge discussions with friends, colleagues, collaborators and
masters, most notably Ofer Aharony, Ivan Booth, Paul Chesler, Hong Liu, Robi Peschanski,
Shiraz Minwalla, Mukund Rangamani, Dam Son, Andrei Starinets and Larry Yaffe.

The author is greatful to Romuald A. Janik and Michał Spaliński for valuable comments on
the draft. Most of the results presented in this Thesis rely on diffgeo.m, Matthew Headrick’s
excellent Mathematica package for tensorial manipulations. Figures 5.1 and 5.2 are taken from
the preprint version of [21] by Larry Yaffe and Paul Chesler.

This work has been supported by Polish Ministry of Science and Higher Education grants
1P03B04029 (2005-2008), N N202 247135 (2008-2010) and N N202 105136 (2009-2011), by
Foundation for Polish Science award START 2009 and 2010 and by Jagiellonian University
scholarships from Florentyna Kogutowska (2008) and Adam Krzyżanowski Funds (2009-2010).



Introduction

One of the most important challenges in contemporary physics is understanding quantum
field theories at non-perturbative level. There are various motivations to undertake that path
of research, majority of them tied to the success of quantum field theory framework as a(n
effective) description of microscopic phenomena in high energy and condensed matter physics.
The new motivation to deal with quantum field theories is the AdS/CFT correspondence or
more generally gauge/gravity duality [22, 23, 24]. This conjecture relates particular quantum
field theories to certain vacua of string theory stating complete equivalence (in a sense of two
languages describing the same physics). The AdS/CFT duality is the first concrete example of
holographic correspondence proposed by Susskind and ’t Hooft [25, 26], since it relates certain
quantum field theories with gauge symmetry in lower dimensional non-dynamical spacetimes
(i.e. 3+1 dimensional) to 10-dimensional string theory or 11-dimensional M-theory solutions.
The correspondence is a weak/strong coupling duality, which means that strongly coupled field
theory is equivalent to the weakly coupled string theory description and vice versa1.

Gauge/gravity duality is a conjecture: its weak/strong coupling character makes it very difficult
to prove. However, a highly suggestive amount of evidence has been gathered during the
years, all in support of the correspondence2. This makes gauge/gravity duality a conservative
statement and any disagreement between the two sides of the conjectured equivalence would
imply a serious gap in the current understanding of quantum field theories or string theory.

Assuming that the AdS/CFT correspondence is correct opens a new exciting possibility of
studying real-time non-perturbative physics of certain (dubbed holographic) quantum field
theories. More concretely, the correspondence maps non-perturbative physics of those theories
at large number of colors to, in principle, solvable problems in classical gravity. This means
that higher dimensional Einstein gravity supplemented with necessary or desired matter fields
is capable of describing a wide range of quantum field theory phenomena (including real-time
physics) in the dual geometric language.

Among all quantum field theories, the one of particular interest is Quantum Chromodynam-
ics. This theory has been recently probed experimentally at high energies and densities in the
collisions of heavy ions at Relativistic Heavy Ion Collider [1]3. The collisions of heavy ions
are highly dynamical and complicated processes with both perturbative and non-perturbative

1There is also an intermediate regime where both sides of the correspondence are complicated quantum
theories.

2Some are the following: matching between Kaluza-Klein modes of Type IIB supergravity on AdS5 × S5

and the chiral operators of N = 4 super Yang-Mills theory in four dimensions [23]; success of the holographic
renormalization program – an agreement between the UV structure of correlation functions on both sides of
the correspondence [27] (the author thanks Kostas Skenderis for pointing this out); agreement between string
theory [28] and perturbative gauge theory calculation [29] of Konishi operator at four loops.

3The heavy ion collisions program is going to be an important part of LHC agenda as well.
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physics involved. A particularly interesting outcome of the experiment was that the late time
physics of nuclear matter excited in the collision is well described by an almost ideal hy-
drodynamics. This experimental observation raises questions why nuclear matter thermalizes
quickly (applicability of hydrodynamics) and why dissipative effects are small (small viscosity).
These features of the collective flow of a small (of order of nucleus size) portion of quark-gluon
plasma are nowadays attributed to non-perturbative effects. String theory methods provided
the first calculation of the shear viscosity in certain strongly coupled quantum field theories
[30]. This result, although not directly applicable to QCD itself, played an important role in
the paradigm shift from perturbative QCD with very large shear viscosity to strongly coupled
quark-gluon plasma being one of the most perfect fluids in nature [1].

While the famous ’t Hooft argument [31] suggests that QCD has a dual description in terms
of string theory, gauge/gravity duality has not been (yet) formulated for QCD itself. This
however did not stop the string theory research in trying to understand the implications of
strong coupling on real-time physics of gauge theories with a view towards QCD. In particular,
although the vacua of strongly coupled theories with a classical gravity dual differ significantly
from the QCD vacuum, there are suggestive qualitative features shared by the holographic
plasmas and QCD above, but not far above critical temperature, being precisely a range of
temperatures achieved at RHIC4. The (quasi)conformality [3], Debye screening of color charge
[32] and small shear viscosity of theories with classical gravity duals, which are also features of
QCD in the temperature range achieved at RHIC, might suggest to use holographic techniques
in order to study qualitative features of strongly coupled plasmas and apply certain outcomes
of this program to experimental investigations. This led to an extensive study of QCD-inspired
setups using the gauge/gravity duality with some concrete successes of the approach listed in
the Foreword.

The program of applications of gauge/gravity duality to study QCD-inspired setups has some
natural limitations. One technical obstacle is that the gravity dual language is tractable only
when quantum (string worldsheet and string loop) effects are negligible. This amounts to
studying strongly coupled holographic gauge theories in the planar limit. Moreover, including
string theory effects in an effective low-energy gravity action can be done in a self-consistent
fashion only when higher derivative corrections are treated perturbatively5. Some of higher cur-
vature contributions correspond to finite coupling corrections on the field theory side and their
perturbative treatment on top of the two-derivative background amounts to staying within
the strong (but in that case finite) coupling planar gauge theory on the dual side. On the
other hand, certain aspects of the evolution of RHIC fireball are believed to be governed by
perturbative processes and their AdS/CFT description will not give a reliable qualitative pic-
ture (although then it might be unnecessary). This means that gauge/gravity correspondence
might give some direct or indirect hints about the dynamics of QCD plasma only if the latter
is strongly coupled and departures from planar limit are not crucial.

This Thesis develops real-time gravitational methods within the AdS/CFT correspondence fo-
cusing on a particular example of QCD-inspired dynamics given by the boost-invariant flow [33]
and its gravity dual6. The boost-invariant dynamics of interest is a very simple one-dimensional
expansion of plasma with additional symmetries of boost-invariance and rotational invariance

4i.e. temperatures of order 350 MeV with deconfinement temperature being 170 MeV.
5With a notable exceptions of Gauss-Bonnet and Lovelock gravities.
6Both conformality on the field theory side and boost-invariant character of its dynamics are chosen because

of simplicity.
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along the expansion axis, as well as translational invariance in the perpendicular plane. Al-
though such boost-invariant flow is not a realistic approximation for the dynamics of the
quark-gluon plasma at RHIC (thus will not lead to results which can be compared with exper-
imental data), it is still able to capture some of the physics of interest7. The reason for focusing
on the boost-invariant example is that gravitational calculations in AdS/CFT correspondence
are performed in at least one more spatial coordinate than on the field theory side. This in-
quires that any time-dependence in holographic quantum field theory requires solving Einstein
equations, which in the simplest dynamical setup are a system of partial differential equations
for a couple of functions depending on at least two variables (time + radial coordinate in AdS).
On the other hand, late-time behavior governed by the universal hydrodynamic tail requires
apart from temporal also spatial gradients on the field theory side (otherwise hydrodynamic
modes are not excited). This, in most cases, introduces dependence on additional variables
on the gravity side and makes the string theory calculation very demanding. However, the
boost-invariant example is a notable exception. The assumption of boost-invariance mixes the
spatial and temporal gradients in such a way, that quantum field theory observables depend
on a single coordinate – proper-time. This makes the gravity dual tractable using analytic
methods both at late and early times with the relatively simple numerics providing results
about the dynamics at transient times.

The structure of the Thesis is the following. Chapters 1-3 review theoretical background,
whereas Chapters 4-7 present original results. Chapter 1 provides a short exposure to the
methods of gauge/gravity duality with an emphasis put on applications. Chapter 2 reviews a
modern treatment of conformal relativistic hydrodynamics, whereas Chapter 3 introduces the
boost-invariant model of field theory dynamics. The gravity dual to boost-invariant hydrody-
namics is presented in Chapter 4 with global analysis of the resulting space-time postponed
to Chapter 5. Going beyond the supergravity paradigm in the holographic picture of hydro-
dynamics is a subject of Chapter 6. Chapter 7 concerns far-from-equilibrium boost-invariant
dynamics. The results are summarized in the last part of the Thesis.

7In particular, its late time dynamics is governed by hydrodynamic tail, whereas early time dynamics by
far-from-equilibrium physics.
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Chapter 1

The Gauge/Gravity duality

1.1 Holographic dictionary
The gauge/gravity duality is a conjectured, but well motivated and tested, exact equivalence1

between certain gauge theories and string theory solutions. Gauge theories, which have a string
theory description, are called holographic, since the dual dynamics involves more spacetime
dimensions than the quantum field theoretic one and one can think of those quantum field
theories as “holograms” of string theory physics. Although the duality is conjectured to hold
for certain conformal and confining theories in flat or curved backgrounds of various dimension-
ality, with various matter content, with or without supersymmetry, with various gauge groups
and at arbitrary coupling, this Thesis studies QCD-inspired setups in holographic conformal
field theories (hCFTs) in planar strongly coupled limit in (3 + 1)-dimensional Minkowski space-
time, the primary reason being simplicity. The masterfield description of complicated quantum
dynamics of those gauge theories is given in terms of type IIB supergravity solutions, being the
low-energy limit of type IIB string theory [34], on product of 5-dimensional2 asymptotically
anti-de Sitter spacetime and 5-dimensional (compact) Einstein manifold3. In all applications
covered in this Thesis compact manifold will not be excited and one can perform Kaluza-Klein
reduction leaving only zero modes. The latter have a consistent truncation to an univer-
sal4 gravity action [35] consisting of 5-dimensional Einstein-Hilbert term supplemented with a
negative cosmological constant

Igravity = 1
2l3P

∫
M

d5x
{
R+ 12

L2

}
, (1.1)

where lP is the 5-dimensional Planck length and L is the curvature radius of anti-de Sitter
spacetime5. ForN = 4 super Yang Mills theory with number of colors Nc and ’t Hooft coupling
λ, the first entries in the holographic dictionary take the form

λ = L4/α′2 and g2
YM = λ/Nc = 4πgs, (1.2)

1Any holographic gauge theory phenomenon should have a dual string theory counterpart and vice versa.
2Note, that on the gauge theory side the dimensionalities appear usually in the “(3 + 1)-form” to stress

real-time character of the problems covered in this Thesis. Although the string theory side dimensionalities are
expressed in the standard form (i.e. “5-dimensional”, “10-dimensional”), all bulk new developments covered in
the rest of the text required Minkowski signature.

3An example of such compact manifold is a 5-sphere.
4Holding for infinitely many holographic conformal field theories in 3+1 dimensions, including N = 4 super

Yang Mills, for which AdS/CFT correspondence was initially postulated.
5The most symmetric solution of Einstein’s equations with negative cosmological constant.
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where string α′ parameter is related to fundamental string tension and gs is the string coupling
constant. This formula makes it clear that the planar limit on the gauge theory side is dual
to tree level string theory, whereas keeping ’t Hooft coupling large decouples massive string
states leaving only the supergravity multiplet. For an extensive discussion of the holographic
dictionary in more complicated examples of gauge/gravity duality see [36].

The (Poincare patch of) anti-de Sitter spacetime, which is identified with vacuum state of dual
conformal field theory6, in Fefferman-Graham coordinates takes the form7

ds2 = GAB dxAdxB = L
2

z2

{
dz2 + ηµνdxµdxν

}
(1.3)

with ηµν being the (3 + 1)-dimensional Minkowski metric, z the radial direction in anti-de
Sitter spacetime running from 0 to ∞ and again L its curvature radius8. AdS vacuum metric
(1.3) is symmetric with respect to dilatations, namely simultaneous rescalings of xµ and z
coordinates

xµ → αxµ and z → α z. (1.4)
This suggests the interpretation of the radial direction in AdS as an energy scale in dual gauge
theory. UV physics of gauge theory should be related to the behavior of the asymptotically
AdS metric at small z, whereas large z behavior governs the IR part of gauge theory dynamics.
Because of 1/z2 warping, AdS spacetime is a throat-like geometry with (conformal [23, 37])
boundary located at z = 0. In order to see that AdS spacetime indeed has a boundary, one
can look at the equation for radial null geodesics, which takes the form

ds2 = 0 = 1
z2 {−dt2 + dz2} . (1.5)

Solutions of this equation are given by z = z0 ± t, which implies that null geodesics reach
surface z = 0 in finite coordinate time. This means that one indeed needs to specify boundary
conditions at z = 0 for all fields in the gravitational theory, including 5-dimensional metric
tensor itself. The boundary condition for the 5-dimensional metric has an interpretation of a
metric in which the dual quantum field theory is formulated and in (1.3) is chosen to be the
Minkowski metric ηµν . It needs to be stressed that the vacuum AdS metric is an exact solution
of Einstein’s equations. There are two interesting directions of research to pursue at this point.
The first is to consider dynamical solutions of (1.1) with Minkowski metric taken as a boundary
condition, and such studies using a very specific example of holographic quantum field theory
dynamics – the boost-invariant flow (see Chapter 3 and references therein for an introduction)
– are the main subject of the Thesis. The second interesting and recently revived avenue is
to construct ground or thermal states of strongly coupled planar gauge theories on curved
manifolds using the gravitational prescription. In particular, one can consider more involved
situations, in which the field theory is put on some non-dynamical curved background (e.g.
asymptotically flat Schwarzschild black hole in 3+1 dimensions [38]), which is at the same time
interpreted as a boundary condition for a 5-dimensional asymptotically locally AdS metric. In
such cases the metric (1.3) with ηµν literally replaced by a metric on some curved manifold
mµν(x) is no longer an exact solution of Einstein’s equations, but it is an approximate solution

6More precisely the gravity dual to vacuum state at strong coupling and large number of colors is full
10-dimensional metric AdS5×M5.

7Note that capital Latin indices denote 5-dimensional (bulk) coordinates, whereas Greek indices 4-
dimensional ones (coordinates on slices of constant radial variable).

8L � lP for consistency of classical gravitational description.
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near z = 0. That part of holography is not explored in the Thesis, but approximate methods
developed in original publications [18, 39] presented in Chapters 4 and 7 based on pioneering
approach introduced by Janik and Peschanski in [40] should be applicable as well to the case
of a curved boundary metric depending on a single time-like coordinate (see also [41])9.

Excitations on top of the vacuum can be studied systematically by solving Einstein’s equations
in the near-boundary (small z) expansion. The most general (not assuming any symmetries)
metric Ansatz in the Fefferman-Graham chart takes the form

ds2 = L
2

z2

{
dz2 + gµνdxµdxν

}
, (1.6)

where the 4 × 4 matrix gµν is a function of both xµ (“gauge theory”10) directions as well as
the radial coordinate z and for z = 0 reduces to a metric in which the dual gauge theory is
formulated. The presence of a boundary implies that the variational principle for the action
(1.1) is ill-posed and has to be supplemented with a boundary term, which is the standard
Gibbons-Hawking term [42]11

IGH = 1
l3P

∫
∂M

d4x
√
− det g(ind)K. (1.7)

Here K is the trace of the extrinsic curvature defined as

KAB = 1
2P

ACPBD (∇CnD +∇DnC) , (1.8)

where

PAB = GAB − nAnB,
nA = − z

L
[∂z]A (1.9)

with the latter choice tied to Fefferman-Graham coordinates and gind being the 4-dimensional
metric induced on the boundary12.

It is matter of direct calculation to show that Einstein’s equations for flat boundary metric
are solved by

gµν = ηµν + 0 · z2 + g(4)
µν (x) z4 + . . . , (1.10)

where the expansion contains only even powers of z, the z2 term vanishes and g(4)
µν (x) is an

arbitrary 4× 4 matrix which is conserved and traceless13

9An example of such setup might be some cosmological, highly symmetric metric taken as a boundary
condition – the author thanks Alex Buchel for discussions on that point.

10Note that in Fefferman-Graham chart xµ have an interpretation of coordinates on the boundary.
11The presence of Gibbons-Hawking (1.7) term has important consequences for obtaining expectation value

of gauge theory energy-momentum tensor.
12In Fefferman-Graham chart it is taken to be g(ind)

αβ = L2/z2 gαβ
∣∣
z=ξ with regulator ξ taken to 0 at the end

of calculation.
13Note the presence of covariant derivative – although the boundary is taken to be Minkowski spacetime,

coordinates on boundary might be curvilinear (this is the case in the rest of the Thesis, where gravity dual of
the boost-invariant flow is considered).



4 The Gauge/Gravity duality

∇µg(4)
µν (x) = 0 and ηµνg(4)

µν (x) = 0. (1.11)

Terms higher order in z turn out to be fully specified by g(4)
µν (x) and its derivatives [37, 40]14.

Both tensorial structure with respect to boundary coordinates and properties of conservation
and tracelessness (1.11) strongly suggest to regard g(4)

µν (x) as being proportional to energy-
momentum tensor of boundary gauge theory (or more correctly its one-point function, since
boundary theory is quantum mechanical). In order to make it precise one needs to evaluate
expectation value of the energy-momentum tensor of holographic conformal field theory in
terms of dual gravity action and compare the result with g(4)

µν (x).

The supergravity action, a reduction of which is the universal gravity action (1.1), is a saddle
point of the path integral representation of the string theory partition function Zstring on
AdS5×M5. At the core of the AdS/CFT correspondence lies the identification of Zstring with
the holographic gauge theory partition function Zgauge. The gauge theory generating functional
for connected correlation functions of the energy-momentum tensor is given by logZgauge [mµν ],
where the background metric mµν is understood as a source for the energy-momentum tensor.
One-point function of the energy-momentum tensor for a gauge theory in a background metric
ηµν is then defined by

〈
Tαβ

〉
= − 2 i√

−m
δ

δmαβ

logZgauge[mµν ]
∣∣∣
mµν= ηµν

. (1.12)

The identification of partition functions suggests for the case of planar strongly coupled gauge
theory to evaluate the saddle point contribution to the string theory partition function from
the universal gravity action for an arbitrary boundary metric generalizing (1.10) and then
evaluate the functional derivative〈

Tαβ
〉

= 2√
−m

δ

δmαβ

{Igravity[mµν ] + IGH [mµν ]}
∣∣∣
mµν= ηµν

. (1.13)

Some words of caution are in order here, since the action (1.1) contains integration over the
whole volume of asymptotically AdS spacetime and is formally divergent. This divergence
comes from the near-boundary region of spacetime and has a holographic interpretation as the
standard UV divergence on the gauge theory side. This is in line with the intuition provided
by the identification of the radial direction in AdS with an energy scale on the gauge theory
side. The holographic renormalization procedure proposed in [37, 27] following [44] amounts
to introducing a UV regulator, so that the integration in (1.10) in the radial direction reaches
z = ξ instead of z = 0, adding local covariant counter-term15 being

ICT = 3
l3P

∫
∂M

d4x
√
− det gind (1.14)

and eventually removing the regulator by taking ξ → 0 limit

〈
Tαβ

〉
= 2√
−mξ

δ

δ mξ
αβ

{
Iξgravity[mξ

µν ] + IξGH [mξ
µν ] + IξCS[mξ

µν ]
} ∣∣∣

mξµν= ηµν and ξ→0
. (1.15)

14For curved background metric the near-boundary expansion is more complicated, in particular energy-
momentum tensor acquires trace related to curvature of the background manifold (trace anomaly). For an
extensive discussion see [43, 37].

15Note that counter-term does not modify the equations of motion. For curved boundary metrics another
counter-term, proportional to boundary curvature, is needed.
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After carefully evaluating the functional derivative including both the Gibbons-Hawking bound-
ary term and counter-term contributions one arrives at

〈Tαβ〉 = 2L3

l3P
g

(4)
αβ , (1.16)

which indeed justifies the previous intuition [37]. The coefficient can be computed using the
holographic dictionary and in the limit of large number of colors is given by

2L3

l3P
= N2

c

2π2 . (1.17)

This ratio appears as a prefactor in front of the universal gravity action (1.1) and gets very
large in the planar limit, which indeed justifies taking (1.1) as a saddle point. Note also
that although the result (1.17) was derived in the limit of very large ’t Hooft coupling, all λ
dependence has dropped out from (1.17).

It is peculiar that the equations of motion following from universal gravity action can be solved
up to arbitrary order in near-boundary expansion just by providing the boundary metric and
one-point function of the energy-momentum tensor. On the field theory side this feature can
be attributed to the large-Nc limit and subsequent trace factorization, so that higher-point
correlation functions of local gauge-invariant operators factorize to be a product of one-point
functions in the leading order in Nc (see [45] for a detailed discussion). The quantum field
theory dual to the universal gravity action is thus given by decoupled dynamics of one-point
function of the energy-momentum tensor, which turns out to be a universal sector of dynamics
for infinitely many holographic conformal field theories at large number of colors and strong
coupling16.

Holographic near-boundary reconstruction of 5-dimensional bulk metric (1.10) works for ar-
bitrary g(4)

µν (x) obeying (1.11). It is intuitively clear that not every conserved and traceless
g(4)
µν (x) will give rise to genuine dynamics of the energy-momentum tensor. In particular, it is
expected that for majority of choices of this function the bulk metric will have naked singular-
ity in the sense of curvature blow-up not covered by the event horizon. Such singularities will
not be visible within the near-boundary expansion. Thus if one would like to see what is the
admissible dynamics of energy-momentum tensor, one would have to solve Einstein’s equations
with boundary conditions (1.10) beyond power series at z = 017. In general, this is a very dif-
ficult task, but in some cases it can be done in an approximate way, with the boost-invariant
dynamics at late times being the primary example [40] (see Chapter 4 and references therein
for details and further developments). On the other hand, if one adopts a more numerical GR
attitude and sets regular (in the sense of cosmic censorship) initial conditions in AdS at some
constant time slice, it is expected that they will give rise to a genuine, naked singularity-free
evolution on the gravity side and thus to physical configuration of holographic conformal field
theory (see Chapter 7 for such an approach to early time boost-invariant dynamics). Thus
there is a clear interplay between cosmic censorship conjecture [46] on the gravity side and
allowed dynamics of the energy-momentum tensor of holographic gauge theories.

16This universality is understood entirely in terms of dual gravitational picture with quantum field theory
counterpart being somewhat mysterious.

17Note also that the Fefferman-Graham coordinates may break down in the bulk not leading to any patholo-
gies. For the purposes of such studies one may use other, better-adapted, coordinate frames like the ingoing
Eddington-Finkelstein coordinates, see Chapter 4.
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1.2 Black holes and their dual interpretation
A particularly interesting situation on the gauge theory side is plasma in global equilibrium18

described by static isotropic energy-momentum tensor

T µν = diag (ε, p, p, p)µν . (1.18)

This form of the energy-momentum tensor with energy density and pressure related to each
other via a theory-dependent equation of state does not assume anything about the type of
gauge theory. There is a major simplification in the conformal case, where the equation of
state is fully specified by the tracelessness condition of the energy-momentum tensor. In 3+1
dimensions it reads

ε = 3 p. (1.19)

Simple dimensional analysis allows one to express energy density in terms of temperature (the
only dimensionful scale present in the system19)

ε = e0T
4, (1.20)

where e0 is some theory-dependent constant. Imposing further the first law of thermody-
namics allows to express the entropy density as a function of the dimensionless coefficient e0
(temperature dependence alone is again fully specified by dimensional analysis)

s = 4
3e0T

3. (1.21)

Note that above formulas follow directly from conformal symmetry and are valid for arbitrary
conformal field theory in 3+1 dimensions20, with coefficient e0 being theory-dependent. The
energy-momentum tensor (1.18) is by definition conserved and traceless and as such can be
plugged into near-boundary power series for an asymptotically AdS metric. This series can be
formally resummed by solving Einstein’s equations with the metric Ansatz21

ds2 = L
2

z2

{
dz2 − f(z)dt2 + g(z)d~x2

}
. (1.22)

The outcome of this calculation, performed in [40] (see [47] for more extensive discussion), is
a black brane22 metric

ds2 = L
2

z2

dz2 −

(
1− z4

z4
0

)2

1 + z4

z4
0

dt2 +
(

1 + z4

z4
0

)
d~x2

 (1.23)

with 3 z−4
0 = l3P

2L3 ε = 2π2

N2
c
ε. The emblackening factor leads to coordinate singularity at the

position of event horizon z = z0 (more precisely the event horizon is located at z0 and t →
18Thermal state in the language of canonical ensemble.
19For uncharged plasma at global equilibrium different temperatures are equivalent, since they are mapped

onto each other by dilatation symmetry (1.4).
20In particular, at arbitrary coupling and rank of gauge group.
21The form of metric Ansatz follows from symmetries of near-boundary expansion of bulk metric, which are

determined by symmetries of CFT’s energy-momentum tensor.
22Black brane is a black hole with planar event horizon. For metric (1.23) horizon is of the form R3+1. For

an extensive discussion of black hole properties see Chapter 5 and references [48, 49].
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∞), which can be avoided by choosing different coordinate chart (e.g. Eddington-Finkelstein
or Kruskal coordinates). In particular, one can check that simple curvature invariants, e.g.
RABCDRABCD, are regular in the vicinity of z = z0. The coefficient e0 appearing in (1.20) is
hitherto unspecified, but can be fixed using self-consistency of the gravity description. So far
all calculations assumed Lorenzian signature, but results can be trivially (t→ i t) continued to
Euclidean signature. In particular, in thermal (Euclidean) quantum field theory the Euclidean
time direction is compactified on a circle, whose circumference is identified with temperature
inverse [50]. In such a setup the boundary metric is taken to be S1×R3 and in the context of
AdS/CFT such a compactification is performed both on the boundary and in the interior of
Euclideanized asymptotically AdS spacetime [51]. The form of the bulk metric given by (1.23)
remains unchanged apart from standard Wick rotation, but now at z = z0 the Euclidean time
circle shrinks to 0, which may lead to a conical singularity. Such a conical singularity gives
an additional contribution to the curvature and in effect the metric with a conical singularity
ceases to be a saddle point of the action (1.1). There is however a single choice of e0 for which
the Euclidean time circle joins smoothly at z = z0 and it is given by

e0 = 3
8N

2
c π

2. (1.24)

This calculation is an example of subtle interplay between consistency of gravitational descrip-
tion and properties of holographic matter. Similar reasonings are going to be used extensively
throughout the Thesis.

Black objects are thermodynamic in nature [52] and in the context of AdS/CFT correspondence
their thermodynamics is identified with thermodynamics of gauge theory plasma [51]. In
particular, quarter of area density a of constant time sections of black brane event horizon (in
Planck units) is identified with boundary entropy density23

s = a

4l3P
(1.25)

and detailed calculation indeed shows an agreement with (1.21). Note also that the temper-
ature T has an interpretation of Hawking temperature [53] of the black brane, which again
confirms consistency of AdS/CFT approach.

Fefferman-Graham coordinates break down at the horizon (note that the determinant of metric
vanishes at z = z0) and it is useful to replace them with a better-adapted chart. An example
of such can be given by ingoing Eddington-Finkelstein coordinates, in which black holes metric
takes the form [10]

ds2 = 2dt̃dr − r2

L2

{
1− (πL2T )4

r4

}
dt̃2 + r2

L2 d~x2. (1.26)

Now boundary is located at r = ∞ and black hole curvature singularity at r = 0. As antic-
ipated, the singularity is covered by the event horizon at r = πL2T . In this new coordinate
chart both the metric and its inverse are regular everywhere apart from r = 024. Moreover,
metrics (1.23) and (1.26) are related to each other by a singular coordinate transformation
given by

23For planar black holes the total area of horizon is formally infinite.
24This is due to the absence of Grr term in the metric.
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r = L2

z

√
1 + 1

4π
4T 4z4,

t̃ = t+ 1
4T −

1
2πT arctan

(
r

πL2T

)
+ 1

4πT log r − πL
2T

r + πL2T
. (1.27)

It is also worth stressing that ingoing radial null geodesics in ingoing Eddington-Finkelstein
coordinates are curves of constant t, which means that an ingoing null signal is instantaneously
transmitted into the bulk.

As anticipated, the eternal black brane (1.23)25 corresponds to plasma in global equilibrium.
The simplest dynamical situation is given by linearized perturbations of the bulk metric on
top of the AdS-Schwarzschild black brane. Such perturbations must obey asymptotic AdS
boundary conditions at r = ∞, but more importantly they have to fall into the horizon of
the black brane26. Modes escaping from the horizon towards the boundary are not allowed by
causal structure of spacetime, since the horizon acts as a surface of no return. This behavior of
linearized 5-dimensional perturbations leads to complex dispersion relations for those modes
(called quasinormal modes), which is a counterpart of dissipation in the boundary quantum
field theory (see Chapter 2 for a discussion of those modes in the long-wavelength limit on
quantum field theory side of correspondence).

25More precisely metric (1.23) covers small patch of full black brane Penrose diagram.
26Ingoing boundary conditions at black hole horizon.



Chapter 2

Conformal relativistic hydrodynamics

2.1 Modern relativistic hydrodynamics
Modern understanding of relativistic hydrodynamics is that of an effective field theory [12, 10].
Hydrodynamics describes long-distance (IR) near-equilibrium evolution of conserved quantities
– the energy-momentum tensor and charge currents – and as such assumes local validity of
thermodynamics. The relevant degrees of freedom are temperature1 and fluid velocity, as well
as densities of conserved charges if present in the system. Those are macroscopic quantities
(IR observables) whose scales of changes (but not amplitudes of changes!) are required to be
large compared to microscopic scale. When a quasiparticle picture is valid, the microscopic
scale is set by the mean free path lmfp and the hydrodynamic expansion parameter δ is given
by

δ = lmfp/L, (2.1)

where L denotes the characteristic scale of changes of relevant macroscopic quantities. In
strongly coupled systems – examples of such are quark-gluon plasma at temperatures not much
bigger than the transition temperature and holographic gauge theories at strong coupling – the
microscopic scale is taken to be of order of temperature inverse on dimensional and physical
grounds [12, 10]. In such cases hydrodynamic expansion parameter takes the form

δ ∼ 1
LT

. (2.2)

The assumption of slow changes translates into the notion of gradient expansion around the
locally equilibrated solution, namely the one containing no gradients. The effective field the-
ory approach is based on including all irrelevant structures up to a desired order in gradient
expansion of the energy-momentum tensor and conserved currents, as well as entropy current
– hydrodynamic generalization of notion of entropy. This Thesis focuses on uncharged hydro-
dynamics and the only conserved macroscopic observable is the energy-momentum tensor (or
more correctly its one-point function). The leading term in the expansion is provided by the
energy-momentum tensor of equilibrated boosted plasma

T µν = ε uµuν + (gµν + uµuν)P + . . . (2.3)

with both temperature T and velocity uµ (which is normalized uµuµ = −1) being functions
of spacetime coordinates, whose behavior is specified by the equations of motion following
from conservation of the energy-momentum tensor. The energy density ε and pressure P are

1or equivalently the energy density or pressure.
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related by the equation of state ε = ε(P ). As anticipated before in Chapter 1, the equation
of state in conformal case is dictated by tracelessness of the energy-momentum tensor and in
3+1 dimensions takes the form ε = 3P with both quantities scaling with temperature as T 4

on dimensional grounds.

Suppressed derivative (irrelevant) terms carry information about dissipation and relaxation
processes in plasma and the perfect-fluid hydrodynamics given by (2.3) is not satisfactory. In
particular, since in the comoving frame plasma locally “looks like” in equilibrium, the notion
of entropy should, at least intuitively, make sense there. In the lab-frame there will be thus
an entropy current flowing through the system, which in the leading approximation is just the
product of thermodynamic entropy density and fluid velocity

Jµ = s uµ . . . (2.4)
The second law of thermodynamics δS ≥ 0 generalizes to an analogous statement about the
divergence of the entropy current

∇µJ
µ ≥ 0. (2.5)

It is a matter of direct calculation to check that the divergence of leading order entropy
current vanishes on-shell, so that in perfect fluid hydrodynamics there is no dissipation (in a
sense of entropy production). This means that suppressed quantities indeed carry new physics
and both the energy-momentum tensor and entropy current have to be supplemented with
additional contributions containing gradients of velocity and temperature, as well as metric of
the manifold in which the quantum field theory lives2.

The effective field theory approach to hydrodynamics is based on including all possible terms
in gradient expansion of the energy-momentum tensor (and other conserved quantities if ap-
plicable) with decreasing relevance with the expansion terminated usually at first or second
order. Such an approach was pioneered by Landau and Lifschitz in the case of first order
hydrodynamics [54] and was revived recently in the context of second order hydrodynamics
in [12, 10]3. It has to be opposed to more phenomenological approach, where only certain
(desired) second order terms were included [56, 57]. In particular, the perfect fluid energy-
momentum (2.3) is to be supplemented with a dissipative part being symmetric tensor made of
gradients of velocity, temperature and metric. Before defining the gradient terms entering the
expansion it has to be specified what is meant by both temperature and velocity. One possible
definition, so called Landau frame, states that the velocity of the fluid is the eigenvector of the
energy-momentum tensor with the eigenvalue being −ε

T µν u
ν = −ε uµ, (2.6)

where ε is thermodynamic energy density, whose dependence on temperature is known4. Such
definition is consistent with leading order expression (2.3) and implies that dissipative part of
the energy-momentum tensor is orthogonal to velocity (i.e. it is a transverse tensor). Another
important issue is that at the given order of the expansion not all gradient terms might be

2Note, that due to disspation, gradient expansion is performed at the level of equations of motion rather
than action principle.

3Other important papers which found missing gradient terms in hydrodynamic expansion are [14] (for
hydrodynamics with anomalous currents) and [55] (for magnetohydrodynamics). In all cases crucial insight or
inspiration followed from string theory calculations.

4This definition implies that there is no momentum flow in local rest frame.
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independent – some of them are usually equivalent on shell and only those which are not
enter the gradient expansion. With these restrictions taken into account the most general
energy-momentum tensor up to first order in derivatives takes the form [54]

T µν = εuµuν + (gµν + uµuν)P − ησµν − ζ∆µν∇αu
α, (2.7)

where

σµν = ∆µα∆νβ(∇αuβ +∇βuα)− 2
3∆µν∇αu

α,

∆µν = gµν + uµuν (2.8)

and η and ζ are transport coefficients called shear and bulk viscosity respectively. Since
each gradient produces additional power of energy (or inverse of L, which is identified with a
macroscopic length scale of (2.1) and (2.2)), both η and ξ scale as T 3 on dimensional grounds.
At the hydrodynamic level, differences between quantum field theories lie in concrete values
of transport coefficients and the form of the equation of state5, since microscopic degrees
of freedom (e.g. quasiparticles in weakly coupled medium) are integrated out. Transport
coefficients in the canonical approach6 are functions of thermodynamic quantitites, as well as
possibly dynamically generated scale (e.g. QCD). In order to compare transport properties
of different (relativistic) quantum field theories one should focus on dimensionless intensive7

quantities. For shear and bulk viscosities the relevant numbers are usually taken as their ratios
to thermodynamic entropy density. In particular, the ratio of shear viscosity to entropy density
in weakly coupled (λ� 1) gauge theories is very large [60, 61]

η

s
∼ 1
λ2 log λ−1 , (2.9)

whereas for strongly coupled theories with classical two-derivative gravity dual lagrangian it
takes the universial form [62, 63]

η

s
= 1

4π (2.10)

in natural units. The result (2.10) played an important role in paradigm shift from weakly
coupled gas of quarks and gluons to strongly coupled quark-gluon plasma at RHIC, since it
suggests that small viscosity (in the sense of relevant ratio) might be a signal of strongly
coupled regime. On the related note, the authors of [11] compared (2.10) with ratios of shear
viscosity to entropy density of other systems and found out that it seems to be the lowest one8.
This lead them to conjucture that actually the result (2.10) provides the lower bound on the
relevant ratio, which stimulated a lot of interest in computing string theory (higher derivative)
corrections to it (see Chapter 6 and [64], where very general set of higher order corrections to
shear viscosity and other transport properties is provided, some of which are known to violate
[19] the bound proposed in [11]).

5Note that the tensorial structure of the hydrodynamics is going to be different for conformal and non-
conformal theories, but this can be taken into account by requiring that certain transport coefficients vanish.

6Not including any resummations, see however [58, 59]
7In a sense that they do not depend on the number of degrees of freedom in the leading order when this

numer is taken to be large
8Currently the ratio shear viscosity to entropy density of strongly coupled quark-gluon plasma and fermions

at unitarity seems to be of the same order of magnitude.
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The energy-momentum tensor (2.7) is the most general one up to first order in gradients. How-
ever, the equations of motion it obeys are parabolic rather than hyperbolic and certain modes
propagate with speeds exciting the speed of light. In order to restore causality, it is desirable
to go to second order in gradient expansion, since this would make the equations of motion
hyperbolic9. In Israel-Stewart framework [56, 57] the causality is restored by including single
term of second order in gradients with corresponding transport coefficient called relaxation
time10. This coefficient has been calculated for the first time at strong coupling in gravity
dual to boost-invariant flow in [68] and using different hydrodynamic solution in [12]. The
results disagreed and the authors of [12] proposed to resolve this inconsistency by including
more terms in the hydrodynamic energy-momentum tensor at second order in gradients, so
that the boost-invariant flow result was not really a relaxation time alone, but a sum of two
different transport coefficients (see Section 3.3.1 and reference [12] for more details).

2.2 Conformal symmetry and allowed gradient terms
The effective field theory approach to hydrodynamics reviewed in this Chapter amounts to
including all terms allowed by symmetries up to given order in gradients, in all applications
in the literature so far it is at most second order (see however [58, 59]). For (holographic)
conformal field theories, whose dynamics is a subject of this Thesis, the guiding symmetry
principle highly constraining the form and number of possible gradient terms is conformal
symmetry. Note that in conformal field theories in 3 + 1 dimensions trace anomaly is made
of squares of curvature tensor, so appears at fourth order in gradients in the hydrodynamic
expansion11. This implies that the hydrodynamic energy-momentum tensor up to fourth order
(so in particular at leading, first and second order in gradients) should be traceless and Weyl-
covariant (see [12] for an excellent discussion on Weyl covariance in conformal hydrodynamics).
The former requirement forces in particular bulk viscosity to be zero in all conformal field

9The causality violation happens for large wavelength modes, so beyond the validity of hydrodynamic
description [65]. On the other hand, in numerical simulations such modes indeed propagate [66] and including
second order terms is important. Second order hydrodynamics can be also understand as a theory improving
the results of the first order approach (but not necessarily the regime of its validity – see Section 3.3.2 and
references [67, 49] for a discussion on concrete example). In particular, second order effects influence estimates
of shear viscosity and it is important to have a good control over their tensorial structure as well as intuition
about the values of second order transport coefficients.

10The reasoning of Israel-Stewart approach can be summarized as follows. In the first order approach, the
dissipative part of the energy-momentum tensor is given by the equation Tµνdissipative + ησµν + ζ∆µν∇αuα = 0.
This forumula means that Tµνdissipative relaxes instantaneously to its standard form. The causal theory should not
have instantaneous phenoma and this drawback has been cured by Israel and Stewart by introducing relaxation
time τ IS

Π on the right hand side of the equation, so that it eventually reads in schematic form Tµνdissipative +
ησµν + ζ∆µν∇αuα = τ IS

Π ∇T
µν
dissipative. It has to be stressed that this approach is purely phenomenological and

at the second order in gradient expansion there are more terms available, all of which need to be included for
consistency of the description.

11Note that trace anomaly is
〈
Tµµ
〉

= c
16π2 I4 − a

16π2 E4, where a and c are central charges of the theory and
I4 and E4 are Euler density and square of Weyl curvature in 3+1 dimensions defined as [19]

E4 = RµνρλR
µνρλ − 4RµνRµν +R2,

I4 = RµνρλR
µνρλ − 2RµνRµν + 1

3R
2. (2.11)

See also Chapter 6 for a discussion on coefficients in sitting in the trace anomaly in the context of higher
derivative corrections to universal gravity action.
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theories, while the latter implies that the hydrodynamic energy-momentum tensor at low orders
of gradient expansion transform homogeneously (Weyl-covariantly) under the rescalings of the
metric by an overall local factor (Weyl rescalings)

gµν → e−2ω(x) gµν . (2.12)

In the above formula the conformal weight of the metric is taken to be−2. In such a convention,
the conformal weight of the hydrodynamic energy-momentum tensor in 3 + 1 dimensions with
both indices raised is 6, i.e.

T µν → e6ω(x) Tµν , (2.13)

which can be derived from classical definition of the energy-momentum tensor. Moreover,
the conservation equation of the energy-momentum tensor also transforms homogeneously in
the orders of interest, as required by the self-consistency of this approach. This approximate
symmetry of hydrodynamic equations implies that up to fourth order in gradients the hy-
drodynamic observables (the energy-momentum tensor, entrony current, conserved charges if
present in a system) have to be written in terms of Weyl-covariant quantities, i.e. such that
under Weyl rescalings transform homogenously (Weyl scalars, Weyl vectors and Weyl tensors).

The hydrodynamic degrees of freedom, T and uµ, transform uniformly under Weyl transfor-
mations. In particular, velocity normalization condition uµuµ = −1 makes the Weyl scaling of
velocity transparent

uµ → eω(x)uµ, (2.14)

whereas the conformal weight of temperature can be deduced from leading order expression
for the energy-momentum tensor (2.3)

T → eω(x)T. (2.15)

Note that if (and only if) entropy current is Weyl vector of weight 4, which is the case for
leading order expression (2.4), its divergence also transforms homogeneously

∇µJ
µ → e4ω(x)∇µJ

µ (2.16)

and non-negativity property does not depend on Weyl rescalings in the orders of interest.

Weyl covariance allows for efficient construction of the energy-momentum tensor and entropy
current of holographic conformal gauge theories in terms of elementary building blocks – Weyl-
covariant transverse traceless tensors, transverse vectors and scalars containing given number
of gradients. It is quite easy to understand why Weyl covariance is so restrictive. Since each
gradient of Weyl rescaled velocity, temperature or metric produces derivative of Weyl factor
ω (x), which should not appear up to the order when the conformal anomaly enters, to obey the
symmetry of Weyl covariance gradients must be combined in such a way, so that all derivatives
of ω (x) cancel out and the sum of all terms transforms homogeneously under Weyl rescalings.
Using the notation of [13] (which descends from [69]) one has at second order12 5 conformal

12In the hydrodynamic formulas ∆µν = gµν + uµuν is projector to the fluid’s local rest frame, whereas
∇µ⊥ = ∆µν∇ν . Moreover fluid shear tensor (responsible for dissipation in the first order conformal hydro-
dynamics) reads σµν = ∆µα∆νβ (∇αuβ +∇βuα) − 1

4−1∆µν∇αuα and vorticity (nonzero for rotating fluid)
Ωµν = ∆µα∆νβ (∇αuβ −∇βuα).
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tensors
Oµν1 = R<µν> − c2

s

(
2∇<µ
⊥ ∇ν>

⊥ ln s+ σµν (∇ · u)− 2c2
s∇

<µ
⊥ ln s∇ν>

⊥ ln s
)
,

Oµν2 = R<µν> − 2uαuβRα<µν>β ,

Oµν3 = σ<µλσ
ν>λ , Oµν4 = σ<µλΩν>λ , Oµν5 = Ω<µ

λΩν>λ , (2.17)
3 possible conformal (Weyl-covariant) scalars

S1 = σµνσ
µν , S2 = ΩµνΩµν ,

S3 = c2
s∇⊥µ∇

µ
⊥ ln s+ c4

s

2∇
⊥
µ ln s∇µ

⊥ ln s− 1
2uαuβR

αβ − 1
4R + 1

6 (∇ · u)2 (2.18)
and 2 possible conformal vectors13

Vµ1 = ∇⊥ασαµ + 2c2
sσ

αµ∇⊥α ln s− uµ

2 σαβσ
αβ , Vµ2 = ∇⊥αΩµα + uµΩαβΩαβ . (2.19)

Note that at first order the only conformal quantity is the shear tensor. This implies that
conformal field theories14 are characterized by single transport coefficient at first order and
five others at second order in gradients15 with the most general energy-momentum tensor in
the absence of conserved charges reading [10, 12, 13]

T µν = εuµuν + P ∆µν − ησµν +

η τΠ

{
Oµν1 −O

µν
2 −

1
2O

µν
3 − 2Oµν5

}
+ κOµν2 + λ1Oµν3 + λ2Oµν4 + λ3Oµν5 . (2.20)

τΠ is an analog of Israel-Stewart relaxation time and κ, λ1,2,3 are other transport coefficients
of conformal fluids. In particular, for vorticity-free (Ωµν = 0) flows in flat spacetimes only
two tensorial structures contribute to the energy-momentum tensor at second order, so that
the flow is sensitive only to values of τΠ and λ1 besides shear viscosity η. An example of such
solution is boost-invariant hydrodynamics discussed extensively in the next Chapter.

Equations of hydrodynamics support linearized perturbations – shear and sound waves, which
are respectively transverse and longitudinal modes (relative to direction of propagation) . Out
of all transport coefficients appearing in the energy-momentum tensor up to second order in
derivatives, linearized fluctuations in flat background are sensitive only to shear viscosity η
and relaxation time τΠ

16. Sound waves propagating in direction x3 are perturbations of energy
density ε, pressure P (those perturbations are related to each other by the equation of state)
and 2 components of velocity u0 and u3 (related to each other by normalization condition
uµu

µ = −1), whose spacetime dependence is harmonic and reads exp (−i ω (k)x0 + i k x3).
The dispersion relation ω (k) for large wavelengths (compared to temperature – hydrodynamic
limit) takes the form [12]

ω (k) = ±cs k − iΓk2 ± Γ
cs

(
c2
sτΠ −

Γ
2

)
k3 +O

(
k4
)

(2.21)

with speed of sound being cs = 1√
3

17 and sound attenuation Γ = 2
3

η
ε+P . Once the form of sound-

13Note the absence of parity breaking terms present in [69]. For discussion of hydrodynamics with parity
breaking terms see [14].

14In dimensions 1+2 and higher, since in 1+1 dimension the energy-momentum tensor is trivial, see [70]
15In non-conformal case there are 15 independent tensorial structures apearing at second order in derivatives

[13].
16All tensorial structures up to second order in gradients apart from σµν and combination Oµν1 − O

µν
2 −

1
2O

µν
3 − 2Oµν5 are nonlinear in gradients.

17≈ 0.58 – propagation of sound waves in relativistic hydrodynamics is a relativistic process
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wave dispersion relation is known, it allows for efficient calculation of shear viscosity η and
relaxation time τΠ. AdS/CFT correspondence maps sound waves in holographic gauge theories
to linearized gravitational perturbations on top of AdS Schwarzschild black hole of respective
polarization with ingoing boundary conditions at the horizon specifying the coefficients in the
dispersion relation, thus some of transport properties of holographic gauge theories [71, 72,
73]18.

2.3 Entropy current and hydrodynamics

The requirement that entropy should be non-decreasing during hydrodynamic evolution can be
expressed in a covariant way in terms of an entropy current whose divergence is non-negative
(2.5). While the energy-momentum tensor is a canonically defined operator, the entropy
current is a derived notion. In the spirit of hydrodynamics (or effective field theory) it is
also constructed in a gradient expansion as a sum of all possible terms at a given order. The
dynamical equations of hydrodynamics are the conservation equations for the expectation value
of the energy-momentum tensor. Thus, the coefficients appearing in the gradient expansion
of the expectation value of the energy-momentum tensor (the transport coefficients) are the
physical parameters of this phenomenological theory, since they figure directly in the evolution
equations. They describe physical properties of the underlying quantum field theory. In
contrast, the coefficients which appear in the phenomenological expression for the entropy
current are constrained only by the requirement that its divergence be non-negative. These
parameters are logically independent of the transport coefficients. At the present level of
understanding they reflect a real ambiguity in the phenomenological notion of entropy current
in hydrodynamics (as explained in the rest of the section). This ambiguity is however of no
consequence when entropy differences between equilibrium states are considered.

In the case of conformal fluids the most general form of the entropy current was recently
constructed [69, 13] up to second order in gradients

Sµnon−eq = suµ + A1

4 S1u
µ + A2S2u

µ + A3

(
4S3 −

1
2S1 + 2S2

)
uµ

+B1

(1
2V

µ
1 + uµ

4 S1

)
+B2 (Vµ2 − uµS2) . (2.23)

Here s denotes the thermodynamic entropy density (3.9), and S1,2,3 are conformal scalars and
V1,2 are conformal vectors.

18The analogous statement holds for shear waves, which are perturbations of ε, P , u0 and u1 (later two are
related to each other through normalization condition) with the same spacetime dependence and dispersion
relation reading

ω (k) = −ihk2 − ih2τΠk
4 +O

(
k6) , (2.22)

where h = η
ε+P . Note that two dispersion relation are different, yet they should yield the same transport

coefficients. This is very non-trivial check of correctness of transport coefficients obtained holographically.
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The entropy current depends (2.23) on 5 constants A1,2,3 and B1,2 and its divergence reads

∇µS
µ
non−eq = 1

2∇
⊥
µ∇⊥ν σµν (−2A3 +B1) + 1

3∇
⊥
µσ

µν∇⊥ν ln s (−2A3 +B1)

+σµν
[
η

2T σ
µν +Rµν

(
− κ

2T + A3

)
+ uαuβR

α<µν>β
(
κ− ητπ
T

+ A1 +B1 − 2A3

)
−1

4σ
µ
λσ

νλ

(
2λ1 − ητπ

T
+ A1 +B1 − 2A3

)
+ 1

3∇
<µ
⊥ ∇ν>

⊥ ln s
(
ητπ
T
− A1 − 2A3

)

+Ωµ
αΩνα

(
−λ3 + 2ητπ

2T + A1 − 2A2 − 2A3 +B1

)
(2.24)

+σµν (∇ · u)
12

(2ητπ
T
− 2A1 + 6A3 − 5B1

)
+ 1

9∇
<µ
⊥ ln s∇ν>

⊥ ln s
(
−ητπ
T

+ A1 +B1

)]
.

If the shear tensor is non-vanishing, which is a generic situation19, the positivity of the shear
viscosity η should guarantee (see however [13] and the next footnote) that divergence of the
entropy current is non-negative: higher order terms cannot change this conclusion as long as
the gradient expansion is valid. However, as noted in [69], it is perfectly reasonable for σµν to
locally vanish (requiring this imposes just 5 conditions for derivatives of the four-velocity) in
which case the higher order terms will dominate the entropy production. Positivity of (2.24)
thus requires

B1 = 2A3. (2.25)
Since the shear tensor σµν is multiplying the whole square bracket in (2.24), in the case when
it is 0 the whole contribution from first two orders is absent. At this level there is a real
4-parameter ambiguity in the hydrodynamic construction of the entropy current20.

2.4 Fluid/gravity duality
Hydrodynamic modes are understood as long-wavelength perturbations on top of locally equi-
librated plasma and their leading order energy-momentum tensor matches precisely the form
of the one of equilibrated boosted plasma with boost parameter uµ and temperature T under-
stood as slowly varying functions of position. On the other hand, the gravity dual to uniformly
boosted plasma is given by boosted AdS-Schwarzschild black hole

ds2 = 2uµdxµdr − r2

L2

{
1− (πL2T )4

r4

}
uµuνdxµdxν + r2

L2 (ηµν + uµuµ)dxµdxν . (2.26)

The idea behind fluid/gravity duality [10] was to promote T and uµ from formula (2.26) to
be slowly varying (in hydrodynamic sense) functions of position and treat (2.26) as an ap-
proximate solution of Einstein equations valid in the leading order in gradients. The metric
(2.26) gets corrected by gradient terms, which give rise to first and second order hydrodynam-
ics in the boundary quantum field theory. An important feature of the construction [10] is
that both the leading order metric (2.26) as well as subleading corrections are regular all the
way to black brane singularity at r = 0 with singularity covered by the event horizon [69].
The regularity of bulk metric is attributed to well-adapted coordinate choice being ingoing

19Note that σµνσµν as a trace of the square of matrix cannot be negative and vanishes if and only if σµν = 0.
20Considerations of the case with an arbitrary small σµν in [13] suggest that further constraints on the entropy

current may be imposed. In particular, the only freedom left after such consideration is in the parameter A1. It
appears that these arguments rest on competition between terms of different orders in the gradient expansion.
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Eddington-Finkelstein ones and this choice is also used in Chapters 4 and 5 to show that
gravity dual to boost-invariant hydrodynamics is indeed a regular spacetime.
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Chapter 3

Boost-invariant flow

3.1 Toy-models of plasma dynamics
The main motivation to do RHIC-inspired field theory calculations using gravitational prescrip-
tion is to understand thermalization time, initial conditions for hydrodynamic evolution and
transport properties of strongly coupled mediums resembling real-world quark-gluon plasma1.
There has been an enormous progress in obtaining the latter quantities and that part of
applications of gauge/gravity duality is rather well explored2. In particular, all phenomena
involving hydrodynamic evolution of holographic matter are captured within the framework of
fluid/gravity duality [10]. Once transport properties of the theory in question are known there
is usually no point in studying the gravity dual picture3 and currently far-from-equilibrium
applications of holographic methods seems to be the most exciting ones. However, one has to
bear in mind that some parts of early time dynamics of QCD plasma might be governed by
weak coupling and the results obtained for holographic gauge theories might not be directly ap-
plicable to QCD even at crude qualitative level. It still does not mean that AdS/CFT methods
are of no relevance for nonequilibrium QCD. They are currently the only tools to understand
thermalization process in strongly coupled gauge theories and their experimental relevance
depends on the existence of pre-equilibrium strongly coupled phase. Very short thermalization
time of QCD matter at RHIC suggests that this might be indeed the case. On a related note,
it should be stressed here that hadronization of QCD matter is much beyond the scope of
non-conformal gravitational methods. This is because the applicability of classical gravita-
tional description requires the large-Nc limit on the field theory side in which the plasma-like
configurations are dominant and hadronization is suppressed by a factor of N−2

c
4. Intuitively

this means that holographic expanding mediums are going to cool down indefinitely5.
1There was also a considerable interest in the behavior of hard probes in the holographic plasmas, but this

topic is beyond the scope of the Thesis.
2Concrete values of transport coefficients of holographic gauge theories beyond the universal gravity action

are model-dependent, e.g. they differ for theories with or without SUSY (see references [74, 36, 74, 75, 64, 76]
and Chapter 6 for more details).

3Fluid/gravity duality might also serve as a tool to understand the properties of black hole space times
using the equations of hydrodynamics [77].

4This means that confinement/deconfinement phase transition is of the first order. For real-world QCD it
is a crossover.

5Confront this with gravity dual to cascading gauge theory [78, 79, 80], which is perturbatively unstable
below certain temperature lower than the critical temperature [81]. In the expanding plasma scenario (e.g.
boost-invariant flow), this temperature is going to be achieved in finite time possibly triggering the instability
(the author thanks Ofer Aharony for pointing this out and for various discussions on that point). The fate of
this instability is unknown. It would be very interesting to understand the nonlinear dynamics driving such
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Taking the limitations of applied AdS/CFT framework into account, this Thesis develops gravi-
tational methods for studying nonlinear nonequilibrium physics of strongly coupled holographic
quantum field theories. For simplicity, only conformal examples of gauge/gravity duality are
considered. Ideally, hCFT dynamics of interest should resemble, at least at the superficial
level, the one of QCD matter at RHIC. In the first, very crude, approximation one can think
of the central collision of nuclei as a process involving collision of two pancakes made of gauge
theory matter, which fill all the transverse space and at same time are infinitely thin. The
collision process should create debris, which eventually will become an expanding “quark-gluon
plasma”, and two receding “wounded” projectiles.

Single projectile can be toy-modelled by the field theory configuration with non-vanishing −−
component of the expectation value of the energy-momentum tensor [40]6

T−− = µδ(x−). (3.1)

The AdS/CFT dual of a single projectile is just a shock-wave metric7

ds2 = −dx−dx+ + µ z4 δ (x−) dx− 2 + dx2

z2 + dz2

z2 , (3.2)

which is an exact solution of Einstein equations for any lab-frame time t. The expectation
value of the energy-momentum tensor before the collision is given by the sum of the energy-
momentum tensors of the projectiles and the gravity dual is thus a superposition of two shock-
waves. Such metric is a valid solution of equations of motion for t < 0 and the subsequent
dynamics has to be determined by solving Einstein equations with superposed metric taken
as an initial condition at some tini < 0. It should be noted that there is no clear physical
reason for the energy-momentum tensor on the light-cone to be the same or similar before and
after the collision. This means that one should not regard the evolution after the collision
as a small perturbation on top of the two, almost unchanged, shock-waves. In particular,
such calculations lack sensible dimensionless perturbative parameters and presumably the only
reliable approach to solve the problem of shock-wave collision requires using numerical methods
from the beginning. Postponing this issue for possible future work, this Thesis focuses on
another toy-model, which captures some of the physics of interest (namely nontrivial far-from-
equilibrium dynamics involving thermalization with subsequent hydrodynamic evolution) and
at the same time leads to simpler gravitational dual. This example of field theory dynamics is
provided by Bjorken’s boost-invariant flow [33].

3.2 General features of boost-invariant dynamics
Boost-invariant flow of interest is a one-dimensional expansion of plasma with the boost sym-
metry along the expansion axis as well as rotational and translational symmetry in the per-
pendicular plane8. The assumption of boost-invariance is more transparent in the coordinate
system which makes it manifest. If x0 denotes the lab frame time and x1 is the cartesian

instability in an expanding setup. It is also worth stressing that in general, non-conformal plasmas exhibit
richer dynamics, e.g. bulk viscosity peaking near the phase transition might lead to plasma cavitation for
certain initial conditions [82].

6Note that in hCFTs the projectiles of interests consist of N2
c degrees of freedom, so are “plasma-like” states.

7For an extensive discussion of shock-waves metrics in this context see [83].
8In literature the latter assumptions are often lifted, leading to more realistic dynamics, see e.g. [84].
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coordinate along the expansion axis, then the transformation to more convenient coordinates
– proper time τ and rapidity y – takes the form

x0 = τ cosh y and x1 = τ sinh y. (3.3)

Note that proper time is invariant under boosts along the expansion axis, whereas rapidity is
not (it is shifted by a constant). This means that the assumption of boost-invariance in proper
time - rapidity coordinates translates into the requirement that physical observables do not
depend on rapidity. Boost-invariant flow is thus an example of nontrivial (1 + 1)-dimensional
dynamics, which effectively depends on a single evolution parameter, the proper time τ . It is
worth noting that proper time dependence leads to non-vanishing gradients with respect to the
space-like coordinate x1 and thus allows for hydrodynamic behavior. This would not be the
case if the field theory dynamics depended only on lab-frame time. It is also worth stressing
that proper time and rapidity are curvilinear coordinates in which the Minkowski metric takes
the nontrivial form

ds2 = −dτ 2 + τ 2dy2 + dx2 . (3.4)

The metric in this coordinate frame has a couple of interesting properties, which will be
important for later applications. Firstly, as expected on general grounds, it does not depend
on rapidity. Moreover, the curvilinear character of the coordinate system leads to nonvanishing
Christoffel symbols, as well as nontrivial form of the constant proper time volume element,
which increases linearly with proper time. Lastly, the point τ = 0, corresponding to the
boundary of the light-cone in x0 and x1, is regular in analogy with cylindric or spherical
coordinates in euclidean signature. In particular, it makes perfect sense to expand physical
quantities around τ = 0, as well as τ =∞ and it is natural to expect finite results.

This Thesis studies the universal sector of decoupled dynamics of the energy-momentum tensor
of holographic conformal field theories with the use of gravitational techniques. The most
general one, which obeys the symmetries of the problem9 and is conserved and traceless10 is
fully expressible in terms of a single function which is the energy density ε (τ) [40]

Tµν = diag
{
ε (τ) , −τ 3ε′ (τ)− τ 2ε (τ) , ε (τ) + 1

2τε
′ (τ) , ε (τ) + 1

2τε
′ (τ)

}
. (3.5)

All the physics of interest is hidden within a single unknown function – the energy density
ε (τ)11.

The main physical questions are to understand the behavior of holographic gauge theory
plasma at late (near-equilibrium physics) and early time (far-from-equilibrium physics). At
late time, one expects hydrodynamic behavior and would like to derive its properties – low
viscosity, transport coefficients, etc. At early time, one would like to understand the rapid
thermalization starting from ultra-relativistic initial conditions, with transient times linking
the two regimes.

9And is also invariant under parity transformations in rapidity. For studies of the Bjorken flow with this
assumption lifted see [85].

10Note that these requirements comes naturally from solving Einstein equations in the near-boundary ex-
pansion.

11Overall τ2 in Tyy component of the energy-momentum tensor comes from the metric with lower indices
and does not lead to any pathologies.
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3.3 Boost-invariant flow near equilibrium

3.3.1 Bjorken hydrodynamics

It is natural to expect that at late time the plasma is locally equilibrated (thus is isotropic).
This would imply, that in the leading approximation longitudinal p‖ = T yy and transverse
pressures p⊥ = T xx are equal leading to the differential equation for the energy density

− ε(τ)− τε′(τ) = ε(τ) + 1
2τε

′(τ) . (3.6)

This equation has a simple solution

ε(τ) ∼ 1
τ 4/3 , (3.7)

which after taking into account that ε ∼ T 4 in local equilibrium12 leads to

T ∼ 1
τ 1/3 . (3.10)

The result is exact in the large-τ limit, but otherwise will get corrected. These corrections
will be important, since they are responsible for entropy production. In particular, note that
although the entropy density s ∼ T 3 decreases with proper time, total entropy stays constant
because of nontrivial volume element which scales linearly with proper time.

There will be two types of corrections to the energy density (3.7)13, which are associated
with dissipative processes (entropy production). Because proper time dependence introduces
nontrivial spatial gradients, the leading corrections will come from hydrodynamic gradient
expansion. Those will arise as power-like tails. There will be also exponential corrections
dying off very quickly at late time, but otherwise responsible for thermalization processes.

Following the hydrodynamic prescription, each gradient of the physical quantity is suppressed
by the inverse of the temperature14. Since gradients produce additional powers of 1/τ and
temperature scales asymptotically as T ∼ 1/τ 1/3, one should expect hydrodynamic expansion
to be in integer powers of 1/τ 2/3. The equations of second order hydrodynamics with T being
the function of proper time only and boost-invariant velocity specified by

uµ = [∂τ ]µ (3.11)

12Since for a conformal fluid the equation of state is p = 1/3ε, one has

ε = e0T
4 , (3.8)

s = 4
3e0T

3 , (3.9)

where s is the usual thermodynamic entropy density.
13Note that the notion of the temperature should make sense only in local equilibrium. The energy density

is a general concept and requires no assumptions.
14Or equivalently the hydrodynamics expansion parameter is given by 1

LT , where L is the scale associated
with gradients of macroscopic quantities and 1

T is the microscopic scale, which is integrated out.
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take the form (see [12])

∂τ ε = −4
3
ε

τ
+ Φ
τ
, (3.12)

τΠ∂τΦ = 4
3
η

τ
− Φ− 4

3
τΠ

τ
Φ− 1

2
λ1

η2 Φ2,

where Φ is the yy component of the shear tensor Πµν (dissipative part of the energy-momentum
tensor). These equations determine the proper time evolution of the energy density, which in
turn specifies the dependence of temperature on τ . Substituting the form of the energy density
(together with the equation of state) into these equations leads to the following, confirming
previous intuition, perturbative solution for the temperature as a function of proper time

T (τ) = Λ
τ 1/3

1− 1
Λ τ 2/3 ·

η0

2 + 1
Λ2 τ 4/3 ·

λ(0)
1
6 − η0τ

(0)
Π

6

+ . . .

 , (3.13)

where Λ is a scale fixed by the initial conditions and the only arbitrary number in the construc-
tion15. In much of the literature (such as [40, 86, 68, 16]) the choice Λ =

√
2

31/4π
is made. The

constants η0, τ (0)
Π , λ(0)

1 are various transport coefficients from the first (η0) and second order
viscous hydrodynamics16. They are universal numbers related to the microscopic physics of
the underlying quantum field theory. Their presence signals the dissipative nature of the flow
– the entropy production.

The constant Λ is a dimensionful quantity, which sets the overall scaling of temperature with
proper time. The formula (3.13) makes it transparent why hydrodynamics is universal –
no matter what were the (boost-invariant) initial conditions in the past, at late time the
only quantity which cares about them is a single dimensionful number Λ. Note that due
to symmetries and flat background, at second order only two out of five allowed gradient
terms enter. Since relaxation time can be obtained from linearized hydrodynamics, the boost-
invariant flow allows for efficient calculation of the coefficient λ1 in different models.

3.3.2 Validity of the hydrodynamic description
The modern view of hydrodynamics is similar to that of effective field theory. It is a phe-
nomenological description of phenomena on scales much larger than those of their microscopic
dynamics, constructed as a systematic expansion in gradients. In the context of boost-invariant
flow this translates into an expansion in powers of 1/τ 2/3. As in the case of any perturbative
expansion, one needs to observe the regime where the expansion can be reasonably expected
to apply. A criterion for this is that the subleading terms in the expansion be smaller than
the leading order. In the context of Bjorken flow this can be understood as a condition on the

15It is easy to understand the presence of Λ if one considers the dilatation xµ → αxµ. Then τ → α τ and
Λ→ α−2/3Λ which leads to ε (ατ) = α−4ε (τ) being the correct scaling.

16More precisely these are dimensionless numbers related to the transport coefficients by the relations

η = η0e0T
3,

τΠ = τ0
ΠT
−1,

λ1 = λ0
1e0T

2, (3.14)

where e0 is defined as previously by ε = e0T
4.
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minimal time when the expansion can be trusted. For the first subleading term in (3.13) to
be smaller than the leading order17 one needs τ > τmin, where

1
Λ τ 2/3

min

· η0

2 ≡ α < 1 . (3.15)

One requires that the expansion of any physical quantity such as energy or entropy density
should have this property.

Note that including higher order terms does not extend the regime of validity of the hy-
drodynamic expansion, but rather improves the accuracy within the hydrodynamic window.
Moreover, in a general boost-invariant dynamical situation τmin does not coincide with ther-
malization time, since the non-hydrodynamic (exponential) modes do not have to be negligible
at that time [67].

3.3.3 Boost-invariant entropy current
From the perspective of the AdS/CFT correspondence it is natural to ask whether the am-
biguities appearing in the construction of the hydrodynamic entropy current match on both
sides of the duality. In a general situation this might be involved, but one may try to gain
some insight into this question by considering a particular solution. The Bjorken flow provides
a simple, highly symmetric, yet nontrivial example.

The current (2.23) evaluated on the boost-invariant solution given by the velocity uµ = [∂τ ]µ
and temperature T (τ) (3.13) takes the form

Jµ = s̃uµ (3.16)
with

s̃(τ) = s(T (τ))
{

1 + 2 A1 − A3 +B1

3π2T (τ)2τ 2

}
. (3.17)

In general the entropy current does not have to be proportional to the flow velocity beyond
leading order (perfect fluid), but in the special case of boost-invariant flow non-leading order
effects are captured by the single scalar function s̃(τ). This function involves 3 of the 5
constants appearing in the general phenomenological construction. Changing the value of A1
has been identified with the freedom in choosing the horizon to boundary map [69]. The
ambiguity parametrized by A3 was not interpreted in [69]. One would like to interpret this
freedom in terms of allowed definitions of “horizon” on gravity side. Note that the example of
Bjorken flow, while rather special, is still rich enough to partially capture this ambiguity.

In quantitative terms this ambiguity can be estimated as follows. In order for the hydrodynamic
expansion of (3.17) to be valid the magnitude of |A1 +A3| should bounded so that the leading
term dominates for times larger than τmin defined by (3.15). Expanding (3.17) up to second
order one has

s̃(τ) ∼ Λ3

τ

{
1− 1

2πΛ
1
τ 2/3 + (8(A1 + A3) + log(2))

12π2Λ2
1
τ 4/3

}
. (3.18)

Demanding that the second order contribution be smaller than the first order correction by a
factor of αβ at τ = τmin leads to the bound

1
8(−β − log(2)) < A1 + A3 <

1
8(β − log(2)) , (3.19)

17The temperature has been chosen here because it enters the definition of the gradient expansion.
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where β is at most of order 1/α. This provides a rough estimate of the allowed indeterminacy
in the phenomenological notion of non-equilibrium entropy as defined by (3.17)

s̃(τ) ∼ Λ3

τ

{
1− 1

2πΛ
1
τ 2/3 ±

β

12π2Λ2
1
τ 4/3

}
. (3.20)

One would like to understand this quantitatively in terms of the freedom of defining entropy
on the gravity side. This has been done in [49] and is a subject of Chapter 5.
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Chapter 4

Near-equilibrium dynamics of the
boost-invariant flow from supergravity

4.1 Bulk non-singularity condition and boost-invariant
hydrodynamics

AdS/CFT correspondence relates physical configurations of gauge fields at large Nc and strong
coupling to naked singularity-free dual geometries. As anticipated before, checking regularity
of geometry requires solving Einstein’s equations beyond the near-boundary power series (1.10)
and in the general case is expected to involve advanced numerical methods. A notable exception
is the boost-invariant holographic gauge theory dynamics, in which case Einstein’s equations
can be solved exactly in the radial direction and approximately in proper time. The regimes
of special interest are late (where near-equilibrium dynamics is expected) and early proper
time (regime of far-from-equilibrium evolution)1 linked by an approach to local equilibrium at
transient time.

In the pioneering work [40] Janik and Peschanski showed using only mild assumptions and
working in Fefferman-Graham coordinates that non-singularity of the dual gravity description
forces the boost-invariant solution at late time to be governed by perfect fluid hydrodynamics
(see next Section for a brief introduction). Subsequent developments included solving Ein-
stein’s equations in the late-time expansion being, as now understood, bulk counterpart of
boundary gradient expansion and calculating shear viscosity [86]2 and Israel-Stewart [56, 57]
relaxation time [68]3, all of which was completed prior to formulation of fluid/gravity duality
[10]4. The key requirement, which fixed integration constants related to transport coefficients
of holographic gauge theory undergoing boost-invariant evolution, was non-singularity of the

1It turns out that in Fefferman-Graham coordinates gravitational constraints can be easily solved only at
τFG = 0. Contrary, in Eddington-Finkelstein coordinates there is no major benefit from considering τEF = 0
and constraints can be solved for any τEF . Note also that surfaces τFG = const and τEF = const differ in the
bulk despite coinciding at the boundary.

2Yielding standard result η/s = 1/4π, which at the time of publication [86] was regarded as a non-trivial
cross-check of the whole framework introduced in [40].

3Israel-Stewart relaxation time calculated in [68] is actually linear combination of relaxation time τΠ and
λ1 – see extensive discussion in previous Chapter.

4Actually gravity dual to boost-invariant flow at late time should be regarded as a special example of
fluid/gravity duality. The difference between Janik and Peschanski approach and this of fluid/gravity duality
lies in a different choice of coordinate chart being Fefferman-Graham coordinate frame in [40] and ingoing
Eddington-Finkelstein one in [10].



28 Near-equilibrium dynamics of the boost-invariant flow from supergravity

dual geometry at each order of late-time expansion understood as regularity of late-time-
expanded curvature invariants, not necessarily the metric itself. In particular, in order to
calculate Israel-Stewart relaxation time, it was required to compute the metric up to third or-
der in the late-time expansion and demand regularity of late-time-expanded the Kretschmann
scalar RABCDR

ABCD in that order. This turned out to be impossible – even after getting rid
of all power-like singularities, the Kretschmann scalar at third order contained a left-over log-
arithmic singularity [68]. The most straightforward and obvious interpretation back then was
that the boost-invariant flow cannot be realized in a sector of universal dynamics of one-point
function of energy-momentum tensor and some additional bulk matter fields need to be pro-
vided (or equivalently some additional operators need to acquire expectation value on gauge
theory side of duality), inclusion of which would yield regular geometry [68]5. There was only
a finite number of such fields, since only zero modes of Kaluza-Klein reduction on compact
manifold were of interest. However, singularities were present also in late-time-expanded more
involved curvature invariants in such a way that adding a finite number of matter fields would
not cure them [16]. This led to a conjecture that boost-invariant dynamics cannot be realized
in gauge theories with classical gravity dual [16, 17].

On the other hand, as explained in Chapter 3, boost-invariant hydrodynamics described by
velocity (3.11) and temperature (3.13) is just a particular solution of hydrodynamic equations
and as such can be substituted into fluid/gravity duality metric obtained up to second order in
gradients in [10]. Such geometry is manifestly regular6 up to second order in gradients and it
is hard to envisage how potential singularities would arise at higher orders of the bulk gradient
expansion, though there is no explicit construction beyond those first two orders7. This led to
a confusion whether there was something fundamentally wrong with boost-invariant flow or
rather with the way bulk metric was reproduced at late time in [40] and follow-up works, the
last possibility being that the condition of non-singularity as understood in [40] was somehow
misleading. The aim of this Chapter based on the Letter [5] is to provide explicitly regular
gravity solution dual to boost-invariant hydrodynamics up to third order in gradients utilizing
ingoing Eddington-Finkelstein coordinates and explain its relation to Fefferman-Graham ap-
proach of Janik and Peschanski8. Manifestly regular character of constructions [5] and [91, 92]
made it possible to calculate the position of the event horizon in [90] and independently in [49]
completing the proof of regularity of boost-invariant bulk geometry at late time (see Chapter
5 for an extensive discussion) and assuring that the gravity dual to boost-invariant flow is a

5A very recent example of such reasoning is a bulk black brane-like metric, which leads to anisotropic static
energy-momentum tensor of the schematic diagonal form

(
ε, p‖, p⊥, p⊥

)
. In the absence of additional matter

fields in the bulk, such geometry is known to possess naked singularity [87]. On the other hand, inclusion of
non-Abelian bulk gauge field leads to a smooth solution of Einstein’s equations, which in dual quantum field
theory picture has anisotropic energy-momentum tensor and non-zero expectation value of vector operator [88].
Such setup is dubbed holographic p-wave superconductor [89]. The bulk system of gravity coupled to a gauge
field is just one out of many possible sets of fields for which boundary energy-momentum tensor is anisotropic
in global equilibrium.

6Here meaning the absence of terms singular at finite nonzero values of radial position measured in tem-
perature units both in metric itself as well as in curvature expanded in gradients. Full proof of regularity
requires presence of the event horizon shielding standard black brane singularity, which was only proven in
later publications [90, 49] and is one of the subjects of Chapter 5.

7This is due to technical complexity of the problem and insufficient motivation, rather than any fundamental
obstacle.

8See [91] and [92] for an independent construction of gravity dual to boost-invariant flow in Eddington-
Finkelstein coordinates. The authors also provide a proof that gravity dual to boost-invariant flow is regular
up to all orders in bulk hydrodynamic gradient expansion.
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trustable framework contrary to previous claims [16, 17]. This cleared the way to calculate
the effect of higher derivative corrections to the universal gravity action on some of transport
properties9 of holographic conformal field theories, which was done in [93] and [64]. Chapter
6 provides more details about [64].

4.2 Bulk construction utilizing Fefferman-Graham co-
ordinates

As anticipated before, holographic reconstruction of spacetime can be done for an arbitrary
conserved and traceless 4×4 matrix identified with boundary energy-momentum tensor. How-
ever, in vast majority of cases spacetime will have a naked singularity somewhere in the bulk
signalling an unphysical holographic field theory configuration. In the case of boost-invariant
dynamics the energy-momentum tensor is fully specified in terms of energy density. Functional
form of the energy-momentum tensor with three a priori distinct entries on the diagonal (3.5)
suggest to introduce the following metric Ansatz10 in Fefferman-Graham variables

ds2 = 1
z2

{
dz2 − ea(τ,z)dτ 2 + τ 2eb(τ,z)dy2 + ec(τ,z)dx2

⊥

}
. (4.1)

This metric Ansatz contains 3 functions which are subject to asymptotic AdS boundary con-
ditions at z = 0, so that for small z they all start as z4 and have a regular expansion in even
powers of z. More concretely, the near-boundary expansion of warp-factors a, b and c reads
(note suppressed τ dependence in ε)

a = −ε̄ z4 +
{
− 1

4τ ε̄
′ − 1

12 ε̄
′′
}
z6 +

{
− 1

6 ε̄
2 + 1

128 τ 3 ε̄
′ − 1

6τ ε̄ ε̄
′ − 1

16τ
2ε̄ ′ 2 − 1

128 τ 2 ε̄
′′ +

− 1
64 τ ε̄

(3) − 1
384 ε̄

(4)
}
z8 + . . .

b = {−ε̄− τ ε̄ ′} z4 +
{
−1

3 ε̄
′′ − 1

12 ε̄
(3)
}
z6 +

{
− 1

6 ε̄
2 − 1

64 τ 3 ε̄
′ − 1

6τ ε̄ ε̄
′ − 1

16τ
2ε̄ ′ 2 +

+ 1
64 τ 2 ε̄

′′ − 1
128 τ ε̄

(3) − 7
384 ε̄

(4) − 1
384τ ε̄

(5)
}
z8 + . . .

c =
{
ε̄+ 1

2τ ε̄
′
}
z4 +

{ 1
8 τ ε̄

′ + 5
24 ε̄

′′ + 1
24τ ε̄

(3)
}
z6 +

{
− 1

6 ε̄
2 + 1

256 τ 3 ε̄
′ − 1

6τ ε̄ ε̄
′ +

− 1
16τ

2ε̄ ′ 2 − 1
256 τ 2 ε̄

′′ + 3
256 τ ε̄

(3) + 1
96 ε̄

(4) + 1
768τ ε̄

(5)
}
z8 + . . . (4.2)

where ε̄ is a rescaled energy density given by

ε̄ = 2π2

N2
c

ε . (4.3)

Up to this point everything is exact and the formula (4.2) is valid for any function ε(τ)11.
However in such a general setup it is a priori not known how to single out the physical ε(τ)

9More precisely shear viscosity η, relaxation time τΠ and second order transport coefficient λ1. Note that
although the former two can be obtained from linearized hydrodynamics, the latter comes from term nonlinear
in gradients and can be obtained utilizing either full fluid/gravity duality or the gravity dual to boost-invariant
flow.

10In the rest of the text (apart from Chapter 6) AdS radius L is taken for simplicity to unity and can be
restored using dimensional analysis.

11Or equivalently ε̄ (τ).
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and in [40] Janik and Peschanski proposed to focus on late-time behavior assuming asymptotic
form of energy density to be

ε(τ) ∼ 1
τ s

(4.4)

with s constrained to lie within the range 0 < s < 4 by positivity of energy density in any
frame12. Keeping at each order of the near-boundary expansion (4.2) leading order asymptotics
was shown in [40] to be equivalent to an introduction of a scaling variable v = z/τ s/4, which is
kept fixed while taking large-τ limit. This observation made by Janik and Peschanski reduces
Einstein’s equations to a solvable, but nonlinear, system of ordinary differential equations in
the scaling variable v. Although the solution of those equations exists for any s appearing
in (4.4), the Kretschmann scalar RABCDR

ABCD in the scaling limit (τ → ∞ keeping v fixed)
is regular only for s = 4/3. Comparison with the hydrodynamic analysis of boost-invariant
evolution in Chapter 3 makes it is clear, that s = 4/3 has an interpretation of boost-invariant
perfect fluid hydrodynamics and the reasoning of Janik and Peschanski can be thus regarded
as a derivation of nonlinear hydrodynamics of holographic conformal field theory in the boost-
invariant case.

The final result of the analysis presented in [40] was the metric of the form

ds2
τ→∞= 1

z2

dz2 −

(
1− π4Λ4

4
z4

τ4/3

)2

1+ π4Λ4

4
z4

τ4/3

dτ 2+τ 2
(

1+π4Λ4

4
z4

τ 4/3

)
dy2+

(
1+π4Λ4

4
z4

τ 4/3

)
dx2
⊥

 (4.5)

which bears a striking similarity to a boosted and dilated AdS-Schwarzschild black brane in
Fefferman-Graham coordinates13 with both boost parameter and temperature being exactly
the ones of boost-invariant hydrodynamics given by (3.11) and (3.13)14. On the other hand,
the Fefferman-Graham coordinate frame breaks down at z = 21/2π−1Λ−1τ 1/3 and at this level it
is impossible to give a geometrical interpretation of spacetime described by the metric (4.5) in
terms of a Penrose diagram. This is precisely the reason why the surface z = 21/2π−1Λ−1τ 1/3

at τ → ∞ is called “horizon-to-be” rather then genuine event horizon despite the striking
resemblance of leading order boost-invariant and standard black brane metrics15.

It should be clear that the metric (4.5) is not an exact solution of Einstein’s equations, in the
same way as perfect fluid hydrodynamics is not a full solution of hydrodynamic equations,
and it will be corrected by gradients terms16. The guiding principle in both understanding the
structure of subleading terms at late time, as well as in fixing integration constants appearing
on the way17 was non-singularity of the Kretschmann scalar RABCDR

ABCD18. In particular,
12Such condition is not expected to hold for a general energy density. See [40] for more extensive discussion.
13Given by the metric ds2 = − (1−z4λ4)2

z2(1+z4λ4)uµ uν dxµ dxν + 1
z2

(
1 + z4λ4) (ηµν + uµuν) dxµdxν + 1

z2 dz2.
14In a sense of asymptotic expression.
15Note also that locating event horizon in time-dependent setting is a very subtle issue due to its teleological

nature. See Chapter 5 for more detail.
16Being just leading order corrections – note the presence of exponentially suppressed non-hydrodynamic

tale.
17Most of integration constants were fixed by requiring AdS asymptotics and only one at each order (precisely

the one related to expectation value of energy-momentum tensor) by non-singularity condition.
18As well as more complicated scalars made out of curvature; metric (4.1) itself was not demanded to be

regular, which was attributed at the time of original publications to the fact, that the form of the metric
depends on coordinate frame.
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article [86] postulated following structure of subleading terms

a (τ, z) = a0

(
z

τ 1/3

)
+ 1
τ 2/3a1

(
z

τ 1/3

)
+ 1
τ 4/3a2

(
z

τ 1/3

)
+ . . .

b (τ, z) = b0

(
z

τ 1/3

)
+ 1
τ 2/3 b1

(
z

τ 1/3

)
+ 1
τ 4/3 b2

(
z

τ 1/3

)
+ . . .

c (τ, z) = c0

(
z

τ 1/3

)
+ 1
τ 2/3 c1

(
z

τ 1/3

)
+ 1
τ 4/3 c2

(
z

τ 1/3

)
+ . . . (4.6)

which was later derived using again non-singularity argument in [68]. Note that the scaling
variable v = z/τ 1/3 implies that radial direction in AdS is measured in units of (asymptotic
form of) boost-invariant temperature (3.10), whereas 1/τ 2/3 damping of subsequent terms has
an interpretation of gravity counterpart of the boundary gradient expansion. The limiting
procedure τ → ∞ in the scaling limit can be thus intuitively understood as focusing in the
bulk of AdS on counterpart of IR dynamics of hCFT.

Integration constants appearing as leading order coefficients at z4 in z2 expansion of functions
ai
(
z/τ 1/3

)
are interpreted through (1.10) with coefficients in the late-time expansion of boost-

invariant energy density or equivalently temperature (3.13). Einstein’s equations are thus
solved order by order in the scaling limit with the following structure appearing in the first
two orders: in order to fix integration constants corresponding to transport properties of
holographic conformal field theory at order i, Einstein’s equations have to be solved up to
order i + 1 and then regularity of the Kretschmann scalar expanded up to this order in the
scaling expansion

RABCDR
ABCD = Rsq0

(
z

τ 1/3

)
+ 1
τ 2/3Rsq1

(
z

τ 1/3

)
+ . . .+ 1

τ 2(i+1)/3Rsqi+1

(
z

τ 1/3

)
+ . . . (4.7)

(more precisely regularity of Rsqi+1
(
z/τ 1/3

)
term at z/τ 1/3 = 21/2π−1Λ−1) fixes the value of

the coefficient in question. This procedure was used in [94] to derive viscous correction to
perfect fluid metric, which takes the form

a1 (v) = 2η0

Λ

(
12
π4Λ4 + v4

)
v4

16
π8Λ8 − v8 ,

b1 (v) = −2η0

Λ
v4

4
π4Λ4 + v4 + 2η0

Λ log
4

π4Λ4 − v4

4
π4Λ4 + v4 ,

c1 (v) = −2η0

Λ
v4

4
π4Λ4 + v4 −

η0

Λ log
4

π4Λ4 − v4

4
π4Λ4 + v4 , (4.8)

where v is a scaling variable v = z τ−1/3 and η0 is related to shear viscosity of holographic
gauge theory by (3.14). Evaluating the late-time-expanded the Kretschmann scalar (4.7) at
second order, done in [86], leads to the following structure

RABCDR
ABCD = regular terms + 1

τ 4/3
Polynomial in η0 and v(

4
π4Λ4 − v4

)4 ( 4
π4Λ4 + v4

)6 + O
( 1
τ 2

)
, (4.9)
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where the power-like singularity at v = 21/2π−1Λ−1 is cancelled only for η0 = 1/3π. Using
holographic results (1.21) and (1.24), η0 = 1/3π can be translated into η/s = 1/4π, which is
the expected number, signalling self-consistency of the approach [86]19.

Note, that although first order formulas are singular at v = 21/2π−1Λ−1, by taking τ sufficiently
large one can nevertheless make sense of this expansion until arbitrary close to v = 21/2π−1Λ−1.
However, the point v = 21/2π−1Λ−1 is not covered by the Fefferman-Graham coordinates and so
checking non-singularity of the metric there is not really guaranteed to work. Despite that, the
condition of non-singularity of the Kretschmann scalar at zeroth, first and second order of bulk
late-time expansion worked well and shear viscosity derived in such way agreed, as anticipated
before, with results obtained by other means. On the other hand, in the bulk calculation of
the Israel-Stewart relaxation time a logarithmic singularity of the form log

(
21/2π−1Λ−1 − v

)
showed up at the third order (so at τ−2) in the expansion of the Kretschmann scalar [68],
which questioned the validity of the whole approach. The perfect agreement between the
gauge theory results delivered by Janik and Peschanski framework and by other methods,
which yield explicitly regular gravity dual (in particular fluid/gravity duality [10]), suggests
that there might be a subtlety hidden in the non-singularity condition adopted in [40] and in
the follow-up works, rather than a naked singularity spoiling this background. In the rest of the
Chapter it is shown how to obtain a manifestly regular gravity dual to boost-invariant flow up
to third order in gradients in the ingoing Eddington-Finkelstein coordinate frame, which settles
down the issue whether it is possible to realize the boost-invariant expansion in planar strongly
coupled hCFTs. Then a singular perturbative coordinate transformation from the regular
solution in the Eddington-Finkelstein frame to the Fefferman-Graham chart is presented (and
vice versa) yielding precisely the metric found in [68]. The physical interpretation of this result
in given in the last Section.

4.3 Bulk construction utilizing Eddington-Finkelstein co-
ordinates

Following the ideas of fluid/gravity duality introduced in [10] and reviewed in Chapter 2,
boost-invariant perfect fluid flow can be obtained locally from the 5-dimensional boosted black
brane solution expressed in ingoing Eddington-Finkelstein coordinates

ds2 = −2uµdxµdr − r2
(

1− π4T 4

r4

)
uµuνdxµdxν + r2 (ηµν + uµuν) dxµdxν , (4.10)

where uµ is the boost velocity parameter and T the temperature. The key ingredient of
this approach is the introduction of the ingoing Eddington-Finkelstein coordinates. At the
boundary this chart reduces to usual Minkowski coordinates. Fluid/gravity duality maps
long-wavelength (IR) universal dynamics of the one-point function of energy-momentum, the
object naturally defined in the vicinity of the boundary of AdS spacetime, into the bulk by
decreasing r while keeping the Eddington-Finkelstein time and spatial coordinates fixed [69].
For a Bjorken expansion it is natural to use proper time τ instead of the usual Minkowski
time, so an analogous Eddington-Finkelstein type proper time coordinate τ̃ is introduced.
Specifically, u = ∂τ at the boundary, but is now taken as u = ∂τ̃ in the bulk of AdS spacetime.

19Note different convention than in original works [94, 86] – keeping constant Λ unspecified in all expressions
instead of using Λ =

√
2

31/4π
as in [40].
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Furthermore, for a boost invariant flow the temperature T is asymptotically proportional to
τ−1/3, which gives

ds2 = −r2(1− π4Λ4

τ̃ 4/3r4 )dτ̃ 2 + 2dτ̃dr + r2τ̃ 2dy2 + r2dx2
⊥. (4.11)

Note that in boost-invariant ingoing Eddington-Finkelstein coordinates τ̃ = const is an equa-
tion for ingoing null geodesics. This implies that surfaces of constant proper time must eventu-
ally cross the future event horizon if present in the bulk. In particular, absence of singularities
at finite value of radial variable measured in units of energy density or temperature at given
time instance τ̃ should be sufficient to have a regular geometry at any later time. Such a
nice feature is not present in the Fefferman-Graham chart, but it is nevertheless demonstrated
that metric (4.11) is related to the Janik-Peschanski metric (4.5) by a singular coordinate
transformation

τ̃ = τ

{
1− 1

τ 2/3

[
1

4 Λ + 1
2πΛ arctan

(
r · τ 1/3

πΛ

)
+ 1

4 πΛ log r · τ
1/3 − πΛ

r · τ 1/3 + πΛ

]}
,

r = 1
z
·
√

1 + π4Λ4

4
z4

τ 4/3 . (4.12)

which works provided keeping scaling limit in both coordinate frames and neglecting terms
subleading when τ and τ̃ are both large. Note also that the relation between τ and τ̃ is singular
when z = 21/2π−1Λ−1τ 1/3. This is precisely the locus where the singularities found in [68] were
encountered. In particular, the perturbative coordinate transformation (4.12) works up to
arbitrarily close to the point v = 21/2π−1Λ−1, but exactly at that point all order resummation is
required from the formal point of view. Compare this with a singular coordinate transformation
from the Fefferman-Graham to the ingoing Eddington-Finkelstein coordinates in the case of
eternal AdS-Schwarzschild black brane. The singularity in the latter transformation is required
to extend the patch covered by the Fefferman-Graham coordinates and go past the horizon.
Note that since this geometry is static, the position of the singularity in the transformation
does not change in time. The question whether such a perturbative transformation from
the Fefferman-Graham to Eddington-Finkelstein coordinate frame (or the other way around)
works up to the third order was the main problem addressed in the original publication.
To achieve this, an explicitly regular gravity background in the ingoing Eddington-Finkelstein
coordinates dual to third order boost-invariant hydrodynamics is computed and then a singular
perturbative coordinate transformation is carefully built order by order mapping therefore both
solutions.

The metric (4.11) is not an exact solution of Einstein’s equations with negative cosmological
constant – there are subleading corrections coming from derivatives of the velocity u and
temperature T . They correspond to the gradient expansion of the boundary energy-momentum
tensor [44]. The apparent curvature singularities in AdS encountered in [68] appear at third
order in the large τ (gradient) expansion. It is difficult to check what happens for a general
flow at this order of fluid/gravity duality. However the situation is much simpler for a boost-
invariant flow, since all the symmetries can be imposed from the outset, as has been done in
Fefferman-Graham frame. This leads to the following ansatz for the metric20

ds2 = GMNdxMdxN = −r2Ã(τ̃ , r)dτ̃ 2 + 2dτ̃dr + (1 + r τ̃)2 eb̃(τ̃ ,r)dy2 + r2ec̃(τ̃ ,r)dx2
⊥. (4.13)

20Factor (1 + r τ̃)2 at dy2 is to ensure that the limit T → 0 leads to an empty AdS spacetime, as explained
in [91].
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Introducing new scaling variable ṽ = r · τ̃ 1/3 in analogy with what is done in [40, 94, 86, 68, 16,
17] one obtains the natural expansion of the metric components in τ̃−2/3 on the gravity side

Ã(τ̃ , r) =
∑
k≥0

Ãk(ṽ) τ̃−2k/3,

eb̃(τ̃ ,r) = B̃(ṽ) exp
∑
k>0

b̃k(ṽ)τ̃−2k/3

,
ec̃(τ̃ ,r) = C̃(ṽ) exp

∑
k>0

c̃k(ṽ)τ̃−2k/3

. (4.14)

To obtain a uniform expansion of the Einstein’s equations EMN ≡ RMN−1
2RGMN−6GMN = 0

one needs to rescale them (see [86]) according to Ê =
(
τ̃ 2/3Eτ̃ τ̃ , Eτ̃ r,

1
τ̃2/3Err,

1
τ̃4/3Eyy, τ̃

2/3Ex⊥x⊥

)
.

This leads to

Ê(τ̃ , r) = Ê0(r · τ̃ 1/3) + 1
τ̃ 2/3 Ê1(r · τ̃ 1/3) + 1

τ̃ 4/3 Ê2(r · τ̃ 1/3) + 1
τ̃ 2 Ê3(r · τ̃ 1/3) + . . . (4.15)

The curvature invariants (e.g. RMNOPRMNOP ) defined recursively in [16] can be likewise
expanded. The crucial difference between the present approach and the one introduced in [40]
is that the expansion parameter involves τ̃ instead of τ . Einstein’s equations can be solved
order by order in τ̃−2/3 expansion starting from

Ã0 (ṽ) = 1− π4Λ4

ṽ4 ,

B̃ (ṽ) = C̃ (ṽ) = 1, (4.16)

which simply reproduces the boosted black brane solution (4.11). Thus the zeroth order
solution entails large but finite τ̃ . The singularity at r = 0 (or equivalently at ṽ = 0) should
be shielded by an event horizon, which is indeed the case as shown in Chapter 5 and references
[90, 49]. Note also that the metric in Eddington-Finkelstein coordinates is well-defined even
when Ã is zero due to the presence of off-diagonal term, which is a crucial difference between
those coordinates and Fefferman-Graham frame.

Gravity dual of the boost-invariant gradient expansion
The equations of motion (4.15) at a given order k are a system of ordinary second order
differential equations for the 3 functions Ãk (ṽ), b̃k (ṽ) and c̃k (ṽ). Each solution involves two
integration constants. On the other hand, two of the equations of motion are constraints. At
each order k > 0 one of the constraints fixes one of the integration constants appearing at that
order, and the other one fixes an integration constant left undetermined at order k−1. Out of
4 remaining integration constants, 3 can be fixed order by order by imposing asymptotic AdS
behavior at infinity and metric regularity in the bulk (up to the usual black brane singularity
at ṽ = 0 [10]) and 1 is related to residual diffeomorphism r → r+ f (τ̃) preserving the form of
the metric Ansatz (4.13) as spotted in [91]. It turns out that the potential singularity is located
only at ṽ = πΛ, thus the functions Ak (ṽ), bk (ṽ) and ck (ṽ) must remain finite as ṽ → πΛ.
The residual diffeomorphism invariance [91] preserved by the Ansatz (4.13) can effectively be
fixed by requiring that Ãk (ṽ) = O (v4) for k > 0. Furthermore asymptotic AdS behavior of
the metric requires that functions b̃k and c̃k vanish as ṽ →∞ (in the late proper time regime).
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These conditions together with the constraints fix 5 of the 6 integration constants at a given
order k > 0 and lead to a regular metric with no poles or logarithmic singularities apart from
v = 0. As an example, the first order solution (dual to viscous hydrodynamics [94, 86]) reads

Ã1 (ṽ) = 2 π3Λ3

3 ṽ4 + 2π4Λ4

3 ṽ5 ,

b̃1 (ṽ) = 1
3 πΛ

{
π − 4πΛ

ṽ
− 2 arctan

(
ṽ

πΛ

)
+ log

(
1 + ṽ2

π2Λ2

)

+2 log
(

1 + ṽ

πΛ

)
− 4 log

(
ṽ

πΛ

)}
(4.17)

with c̃1 (ṽ) = −b̃1 (ṽ) / 2. Higher order formulae (up to the third order) are quite lengthy, but
explicitly regular, and can be found in a Mathematica notebook available online21. Moreover,
holographic renormalization correctly reproduces the energy density for the boost-invariant
flow up to second order in derivatives [68, 12]. Using fourth order equations of motion in
Eddington-Finkelstein coordinates, third order contribution to boost-invariant energy density
could be obtained and the result is presented in [49]. However, precise interpretation of third
order energy density coefficient in terms of third order transport properties is (as yet) unknown,
since there was no clear motivation to pursue the construction of relativistic hydrodynamics
up to that order.

Absence of singularities and relation to Fefferman-Graham
coordinates
The assumption of non-singularity of coefficients of curvature invariants in the Fefferman-
Graham late proper time expansion was a crucial ingredient of [86, 68] needed to establish
some of transport properties of N = 4 SYM plasma and, as now understood, of universal sec-
tor of dynamics of any 3+1-dimensional hCFT [35]. Fluid/gravity duality-based holographic
approach to boost-invariant flow introduced in the Letter [18] and presented in this Chapter
starts from a manifestly regular metric in the leading order (no logarithmic and power-like
singularities at ṽ = πΛ) and produces regular solutions up to the third order. Further devel-
opment by other authors [91] led to the conclusion that gravity dual to boost-invariant flow in
ingoing Eddington-Finkelstein coordinates is perturbatively finite to all orders in the late-time
expansion (apart from standard black brane singularity at ṽ = 0, which is however shielded
by an event horizon22). Since in the present approach the components of the metric, its in-
verse, as well as their derivatives are regular, all curvature invariants are non-singular. Indeed,
from (4.13) it follows that the non-vanishing components of the inverse are Grr = r2A(τ̃ , r),
Grτ̃ = 1, Gyy = r−2τ̃−2e−b̃(τ̃ ,r), G⊥⊥ = r−2e−c̃(τ̃ ,r). If A(τ̃ , r)−1 had been present, singularities
would have appeared as a consequence of (4.16).

It is very natural to ask how these results are related to those obtained using the original
approach of [40, 68] utilizing Fefferman-Graham coordinate chart. The simplest, and in fact
realized, answer would be that they are related by a (singular) coordinate transformation order
by order in the large proper-time expansion. Such transformation generalizing (4.12) takes the

21http://th.if.uj.edu.pl/˜heller/boost_ver2.nb
22This was however proven only up to third order of boundary gradient expansion [49].

http://th.if.uj.edu.pl/~heller/boost_ver2.nb
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form

τ̃ = τ
(
t0( z

τ 1/3 ) + 1
τ 2/3 t1( z

τ 1/3 ) + 1
τ 4/3 t2( z

τ 1/3 ) + 1
τ 2 t3( z

τ 1/3 ) + . . .
)

(4.18)

r = 1
z

(
r0( z

τ 1/3 ) + 1
τ 2/3 r1( z

τ 1/3 ) + 1
τ 4/3 r2( z

τ 1/3 ) + 1
τ 2 r3( z

τ 1/3 ) + . . .
)
. (4.19)

and it is straightforward (though tedious) to determine coefficients explicitly; the results up to
third order are available online in the aforementioned Mathematica notebook. The transfor-
mation (4.18) defines a map between the two approaches and explains how it was possible that
energy density obtained in [68] and in previous works on the subjects was correct despite appar-
ent singularities in the bulk. An analogous coordinate transformation was considered later in a
gravity dual to non-conformal hydrodynamics [95]. The main motivation of those authors was
that the holographic renormalization procedure was derived for their background in Fefferman-
Graham-like coordinates, whereas to check regularity of the geometry they needed coordinate
transformation to Eddington-Finkelstein-like frame anyway. Note also an explicit construction
of gravity dual to a general solution of hydrodynamics up to first order in Fefferman-Graham
coordinates [96].

The coordinate transformation (4.18) might be understood as a resummation of metric coef-
ficients containing singularities into a regular solution, but now expressed in the Eddington-
Finkelstein chart (e.g. compare (4.8) with (4.17)). It would be very interesting to study nu-
merically the holographic dual to boost-invariant flow starting from some regular initial data
using some well-behaving coordinate chart or utilizing the Chesler-Yaffe framework [21, 67]
and follow on Penrose diagram lines of constant Fefferman-Graham chart. It would be also
interesting to see the full form of numerically obtained geometry transformed to Fefferman-
Graham chart to understand where precisely Fefferman-Graham result breaks down due to
apparent singularities.

4.4 Current understanding of Fefferman-Graham scal-
ing variable trick

The current understanding of Fefferman-Graham procedure presented above in the light of
Letter [18] is that Fefferman-Graham gradient-expanded metric (4.6) is a valid description
sufficiently close to the boundary at very late time, but it ceases to be correct in the vicinity
of the “horizon-to-be”23. In particular, demanding non-singularity of curvature invariants
at v = 21/2π−1Λ−1 is not really correct either24, but produces correct results close to the
boundary leading to a physical energy density. Singular coordinate transformation presented in
subsequent section explains this, signalling that demanding absence of power-like singularities
in the scaling expansion of Riemann squared in Fefferman-Graham chart is equivalent to non-
singularity condition at the genuine event horizon25 in Eddington-Finkelstein coordinates,
where the bulk gradient expansion is valid all the way up to the horizon itself. It is beyond
any doubts that Fefferman-Graham approach does not lead to a nice geometric picture in
which the causal structure of spacetime is transparent. On the other hand, the singularity in

23Late-time-expanded metric coefficients are singular leading to a break down of gradient expansion.
24Because this is the point where coordinate frame breaks down – gradient corrections to the metric blow

up there.
25see Chapter 5 for a discussion on event horizon in the gravity dual to boost-invariant flow
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the Fefferman-Graham late-time-expanded square of Riemann tensor (as well as higher order
curvature invariants) is a singularity of the expansion scheme, rather than a genuine curvature
singularity (being a naked singularity) contrary to the claims in [35]. As stressed before, the
singular coordinate transformation presented in [18] and elucidated in this Chapter can be
understood as a resummation of the Fefferman-Graham expansion leading to a regular result.

For a suggestive analogy one can consider linearized perturbation in the eternal AdS black
hole background given in Fefferman-Graham coordinate frame. After Fourier decomposition
perturbation δφ is given by some function depending only on the radius, modulated by a
standard oscillating phase factor

δφ = φ(z)e−i ω t+i~k·~x . (4.20)

The causality of boundary quantum field theory requires that this perturbation is ingoing into
the horizon (falls into the black brane – see [73] and references therein). In particular, close to
the horizon in Fefferman-Graham-like coordinates (so near z = z0) this perturbation should
behave as

φ (z) = (z0 − z)i
ω
3 z0 {regular terms} (4.21)

or after putting it into an exponent log (z − z0). This logarithmically singular term can be
understood as a part of coordinate transformation to ingoing Eddington-Finkelstein, so that
close to the horizon the perturbation in those coordinates takes the form

δφ = e−i ω tEF+i~k·~x + O
(
(r − r0)2

)
. (4.22)

Logarithmic singularity present in the late-time-expanded in Fefferman-Graham coordinates
should have a similar interpretation – it is a contribution, which shifts the coordinates, so that
one ends up on event horizon, where everything is regular if expressed in Eddington-Finkelstein,
Kruskal or other nice coordinate frame.
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Chapter 5

Entropy production in gravity dual to
boost-invariant flow

5.1 Area theorem as second law of thermodynamics of
hCFTs

A generalization of the notion of entropy to hydrodynamics is provided by a hydrodynamic
entropy current Jµ, which is constructed order by order in the gradient expansion (see Section
2.3 in Chapter 2 for an introduction). Such construction involves an ambiguity [69, 13] –
at second order a 4-parameter family of currents1 was identified in [69]. Subsequently some
important considerations on this topic have appeared in the literature [13], which suggest that
it may be possible to reduce this freedom to just a single parameter. In the light of AdS/CFT
duality it is natural to ask if one can understand the origins and implications of possible
ambiguities in a hydrodynamic entropy current on the gravity side of the correspondence.

At the root of this question lies the identification of the area increase theorems in general
relativity (see [48] for a brief review) with the second law of thermodynamics of dual gauge
theory. Thus if one hopes to understand this ambiguity on the gravity side, the first step
is to carefully examine and understand how horizon areas increase. In doing this, one may
build on the experience gained in the study of standard black holes in asymptotically flat
(3 + 1)-dimensional spacetime [97]. Generalizing these results to 5-dimensional AdS spacetime
is straightforward, but deep questions encountered earlier remain.

The most “conservative” definition of entropy identifies it with the area of a spatial section of
the event horizon. This notion has the drawback of being a teleological concept and in the
context of AdS/CFT duality leads to acausality in the field theory [21, 90] (see next Section
for a brief summary of [21]). In classical general relativity, the problems raised by the global
character of the event horizon have led to alternative, quasilocal notions of black objects
including trapping [98], isolated [99, 100, 101], and dynamical [102, 103] horizons. These
programs are closely related to each other and motivated by historical ideas about trapped
surfaces [104] and apparent horizons [97].

Quasilocal horizons have a problem of their own, namely non-uniqueness: unlike event hori-
zons, in dynamical spacetimes containing a black object, there are many possible time-evolved

1In general there might be a 5-parameter ambiguity, but one of these parameters is connected with parity-
odd effects. This Thesis considers only the parity-even case.
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quasilocal horizons. In the case of apparent horizons, each foliation of the spacetime will give
rise to a different time-evolved horizon [97] while trapping/dynamical horizons are also sub-
ject to deformations (see, for example, [105] [106]). Though this is generally thought to be
a bad thing, in the context of AdS/CFT it is natural to suspect that the ambiguity of the
hydrodynamic entropy current may be related to ambiguities of this type.

In this Chapter, based on [49], it is shown that non-uniqueness of time-evolved apparent
horizons is not the source of the ambiguity in the dual hydrodynamic entropy current. Instead,
the already existing uncertainty as to whether the event or (time-evolved) apparent horizon
determines the entropy is exploited to advocate a more general approach mimicking in the
bulk the phenomenological construction of the boundary entropy current. In the spirit of the
membrane paradigm [107] more general “horizons” are considered, which are made up from
families of (not necessarily trapped) codimension-two surfaces that satisfy properties such
as area increase, asymptoting to the correct equilibrium limit, and being “almost” (in the
appropriate sense, for details see original publication [49]) apparent horizons.

It is conjectured here that the ambiguity in the above definition of black brane entropy corre-
sponds to the known ambiguity of the hydrodynamic entropy current in the appropriate regime
on the gravity side. Verifying this claim in the general case of fluid/gravity duality [35] is a
subject of ongoing work [108] and here this question is explored in the gravity dual to Bjorken
flow at late proper time. Besides being tractable, this geometry has the important feature that
there is a unique time-evolved apparent horizon consistent with symmetries of boundary flow,
which implies that the ambiguity in the hydrodynamic entropy current (in case of Bjorken
flow) cannot be interpreted as a consequence of slicing dependence (see Chapter 3 for details
of entropy current in boost-invariant hydrodynamics). The rest of the Chapter follows along
the lines of [49].

5.2 Various notions of horizons in the bulk

5.2.1 A brief review of black objects and their horizons
Black objects in general relativity can be defined in various ways. While different definitions
of black holes or black branes generally agree for stationary black objects, they diverge away
from equilibrium. In particular, they identify different surfaces in spacetime as the boundary
of the black hole or black brane region and these surfaces have different surface areas. Since
thermodynamics of holographic gauge theory is identified with mechanics of black objects on
the gravity side of the correspondence, different surface areas would suggest different values of
entropy. In other words, gravity has different notions of entropy understood as the quantity
agreeing in equilibrium limit with thermodynamic entropy and obeying the second law of
thermodynamics.

Event horizons: causally defined black objects

Causally defined black holes or black branes and their event horizons are non-local objects. Not
very precise, but suggestive enough for the purposes of this Chapter, a paraphrased version of
the standard definition of a black object is that of a region of spacetime from which nothing
can ever escape [97]. The non-local character of black objects arise precisely from the concepts
of “ever” and “escape”. In general, in order to identify a black hole or black brane region
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Figure 5.1: Figure taken from original reference showing outgoing radial null geodesics prop-
agating through the geometry of [21]. v is the ingoing Eddington-Finkelstein time coinciding
at the boundary with time t and r is a radial direction in AdS with 1

r
= 0 corresponding to the

boundary of AdS. The boundary metric is significantly time-dependent between approximately
t = v = −1.7 and t = v = 1.7. Blue lines show outgoing radial null geodesics, black line –
the event horizon, green dashed line – the time-evolved apparent horizon (more precisely these
are constant x‖, constant x⊥ cross sections of relevant horizons). The color gradients on the
plot are of no relevance for the discussion here. Note that e.g. at v = −2 there is no way
in distinguishing light ray forming the event horizon from any other outgoing null geodesic,
which makes its teleological nature transparent.

one must essentially sit at infinity and wait forever to make sure that all escaping signals are
identified and further that those that initially look like they might escape really do make it to
infinity, see discussion below and Figure 5.1 for a concrete example. Equivalently (but more
rigorously) the black object is the complement of the causal past of future null infinity. The
boundary of this region is the congruence of null geodesics known as the event horizon.

To better understand the teleological character of event horizon in the context of AdS/CFT
correspondence, consider the following problem addressed by Chesler and Yaffe in [21]. The
idea of [21] is to start with a patch of vacuum AdS spacetime and for some period of time
make the boundary metric time-dependent in spatially anisotropic fashion

ds2
4 = dt2 + eB0(t)dx2

⊥ + e−2B0(t)dx2
‖ (5.1)

with B0 changing rapidly over some period of time (like e.g. Heaviside step function). On the
gauge theory side, the time-dependent background metric will source the energy-momentum
tensor operator out of its vacuum expectation value and such excited state will eventually
isotropize to form an equilibrated plasma configuration. The dual gravitational picture of this
phenomenon is that the time-dependent boundary metric sources gravitational waves collapsing
in the bulk of AdS and such dynamical geometry finally relaxes to become a patch of AdS-
Schwarzschild black brane. The primary motivation for the authors of [21] was to estimate
the isotropization time for strongly coupled non-Abelian plasmas, but an additional output of
those studies was a very nice AdS/CFT example of teleological nature of the event horizon.
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Figure 5.2: Figure taken from original reference showing areas of constant v cross sections
of event (called here actual) and time-evolved apparent horizons as a function of time v in
the geometry of [21]. Note that both notions are non-decreasing, although the area of the
event horizon started to expand before (in the sense of ingoing Eddington-Finkelstein time)
time-dependent boundary metric took the dual gauge theory out of its vacuum. The expresses
again teleological aspect of causal definition of black object. Note also that the area of time-
evolved apparent horizon start to change precisely when boundary metric seizes to be static and
coincide with the area of the event horizon in the far future when geometry is time-independent.

The authors of [21] used an ingoing Eddington-Finkelstein time coordinate, so that an ingoing
radial null signal propagates instantaneously into the bulk of AdS. Consider now Figure 5.1,
which shows outgoing radial null geodesics propagating towards the boundary of asymptotically
locally AdS spacetime of interest. A priori (before the geometry relaxes to be close to a patch
of standard black brane spacetime) it is not possible to tell which geodesics will make it to
infinity and which will hit the singularity sitting at r = 0. There is however a single radial null
geodesic which neither reaches the boundary nor dwells into the interior of black brane – this
is the one which spans the event horizon of the solution. Deciding which one it is requires the
knowledge of the whole spacetime in advance. Locating the event horizon was possible in this
particular case, because the geometry relaxed rather quickly to a patch of AdS-Schwarzschild
solution with a static event horizon. In other words, in the context of [21] it is known a
priori that no matter nor gravitational waves will traverse the horizon shortly after boundary
becomes static again.

The area of spatial sections of an event horizon is always non-decreasing, which, as anticipated
before, is one of the reasons why the gravitational notion of entropy has been traditionally
associated with it. Consider now Figure 5.2 which shows how the area of spatial sections
of the event horizon (actual horizon) in the geometry of interest evolve in time, making the
teleological nature of the event horizon transparent. Note that the area of the event horizon
started to increase in the past in anticipation of future events, before the boundary metric
began to be time-dependent. Thus if one wants to associate the entropy density of the dual
gauge theory with the area element of the event horizon, one is immediately led to acausal
behavior. On the other hand, the same Figure shows time dependence of the area element of
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time-evolved apparent horizon, which evolves causally and starts to expand only in reaction
to the arrival of gravitational waves (or matter) crossing it. This implies that in the context
of AdS/CFT correspondence quasilocal notions of horizon reviewed in the following Section,
should be taken rather seriously.

Apparent horizons: geometrically defined black objects

Quasilocal definitions of black objects and their boundaries leave aside the causal structure of
spacetime and instead focus on the strong gravitational fields characterized by the existence of
trapped surfaces. For regular (3 + 1)-dimensional astrophysical black holes, trapped surfaces
are closed (of topology of a sphere) and spacelike two-surfaces which have the property that
all families of null geodesics that intersect them orthogonally must converge into the future.
To understand this intuitively, consider the following standard example. The starting point
is a transparent spherical shell that is covered with light bulbs and sitting in empty space.
Then if the bulbs are quickly turned on and then off again, two spherical light fronts will be
generated – an outwards moving one that expands in area and an inwards moving one that
contracts. By contrast, if the shell is transported so that it lies inside a Schwarzschild black
hole, concentric with the horizon and enclosing the singularity, then both light fronts will fall
towards the center of the black hole and contract in area. The notion of trapped surface have
a simple generalization to AdS spacetimes where instead of topology of sphere it is rather a
plane. Again consider Figure 5.1 where some outward and inward (those are not depicted since
they move along the trajectories of v = constant) congruences of null geodesics contract in
area in the RHS part of the Figure below black line denoting the event horizon. This depicts
the key characteristic of a trapped surface.

More mathematically, if `A and nA are respectively the outward and inward future pointing
null normals to a codimension-two surface S then one can write

θ(`) < 0 and θ(n) < 0 , (5.2)

where θ(`) and θ(n) are the expansions of the null normals defined as

θ(`) = q̃AB∇A`B and θ(n) = q̃AB∇AnB (5.3)

with a projector q̃AB
q̃AB = gAB + `AnB + nA`B (5.4)

being the induced (spacelike) metric on the two-dimensional surface (here `a and nb are cross-
normalized to −1: `AnA = −1). Alternatively given outward and inward congruences of null
geodesics which have tangents `A and nA on S one can show that

√
q̃ θ(`) = 1

2L`
√
q̃ and

√
q̃ θ(n) = 1

2Ln
√
q̃ , (5.5)

where
√
q̃ is the area element on S and L indicates is the Lie derivative operator. It is clear then

that the sign of the expansion determines whether the congruence is expanding or contracting
in area.

More generally, given the energy conditions the mere existence of a trapped surface implies
both a singularity somewhere inside it [104] and assuming cosmic censorship that it is neces-
sarily contained in a causal black hole or black brane and so event horizon [97]. Indeed, for
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Figure 5.3: An “instant” Σt along with some of its trapped surfaces (small black circles), the
associated trapped region (dark gray) and the apparent horizon (thick dashed line).

the asymptotically flat Kerr family of (stationary) black hole solutions, the set of all points
contained on some trapped surface coincides exactly with the black hole region. Thus it is
not unreasonable to consider the existence of trapped surfaces as being the key characterizing
feature of a black hole region and this is the basis of the alternative definitions of black objects.

The original such definition was the apparent horizon. This begins with the foliation of a
spacetime into spacelike hypersurfaces – essentially instants in time. Then at a given instant,
the trapped region is the union of all the trapped surfaces contained in the hypersurface and
the boundary of that region is the apparent horizon. It can be shown [97], that on the apparent
horizon θ(`) = 0 and θ(n) < 0. For the purposes of this Chapter, quasilocal black hole (or brane)
horizons in a (n+ 1)-spacetime dimensions will be understood as n-dimensional hypersurfaces
(time-evolved apparent horizons) that are foliated by (n− 1)-dimensional marginally trapped
spacelike surfaces (apparent horizons).

The very important feature of quasilocal horizons is that they are not uniquely defined. Given
a foliation of spacetime one can define a time-evolved apparent horizon 4 as the union of
the apparent horizons from each surface. Then, it is clear that different foliations will sample
different subsets of all the possible trapped surfaces. Thus, different foliations will define
different 4.

5.2.2 The geometry of n-tubes

Time-evolved apparent horizons, event horizons as well as the time-like hypersurfaces of the
membrane paradigm are all examples of n-tubes, i.e. in (n + 1)-dimensional spacetime n-
dimensional surfaces foliated by (n − 1)-dimensional spacelike surfaces Sλ. The term “tube”
comes from 3 + 1 dimensions where the Sλ for horizons are compact objects of topology of S2

(see Figure 5.4). However, this name will be kept also for black branes where the Sλ are planar
and so certainly not compact. Event horizons are n-tubes of null signature which have the
correct causal properties as discussed in the previous Section. Time-evolved apparent horizons
are n − tubes whose Sλ are the apparent horizons found in individual spacetime slices. As
will be clear in moment, these are either null (if isolated and in equilibrium) or spacelike (if
dynamical and expanding). Finally in the membrane paradigm the 4 is a timelike surface.

To begin, consider the basic geometry of n-tubes and in particular focus on the spacelike Sλ.
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Figure 5.4: A schematic of an n-tube 4 with compact foliation surfaces Sλ along with the
outward and inward pointing null normals to those surfaces. VA is the future-pointing tangent
to 4 that is simultaneously normal to the Sλ.

First, the codimension of the Sλ is two and the normal space has Minkowski signature so, as
in the previous Section, one can always find null normals `A and nA which span that normal
space. `A is taken to be outward-pointing (and so is tangent to 4 if it is null) while nA points
inwards towards the singularity, see Figure 5.4. The normals are (usually) cross-normalized so
that `AnA = −1 which leaves a single scaling degree of freedom in their definition

`A → f`A and nA → 1
f
nA (5.6)

for any positive function f .

The next step is to consider how the Sλ fit together to form 4. In order to make it precise
it is natural to introduce the vector field VA, which evolves the leaves of foliation into each
other, i.e. the leaf at λ to the leaf at λ+ dλ for any λ (see Figure 5.4). Such field is called the
evolution vector field and by definition is tangent to time-evolved horizon 4, as well as normal
to each leaf of foliation Sλ. This in turn implies that VA is a linear combination of vectors `A
and nB, here chosen to be

VA = `A − C nA (5.7)

for some function C. If the time-evolved horizon is given by S = r − rH (xµ) = const2, then
the form normal to it is dS and the evolution parameter C can be obtained from the condition
dS (V) = 0.

2Note that such parametrization in general might not be the right one, but definitely works if the horizon
does not fold over, i.e. rH is single valued
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Clearly thanks to the normalization `AnA = −1, C > 0 ⇔ 4 is spacelike, while C = 0 ⇔ 4
is null, and C < 0⇔4 is timelike. Further the “time”-rate of change of the area element3 is

LV
√
q̃ =
√
q̃
(
θ(`) − C θ(n)

)
. (5.8)

Thus, for time-evolved apparent horizons with θ(`) = 0 and θ(n) < 0, C also characterizes the
evolution of the horizons and is often referred to as the expansion parameter. Specifically in
such cases

C < 0 ⇔
√
q̃ is decreasing ⇔ VA is timelike,

C = 0 ⇔
√
q̃ is unchanging ⇔ VA is null,

C > 0 ⇔
√
q̃ is increasing ⇔ VA is spacelike.

(5.9)

In contrast, for event horizons C = 0 but away from equilibrium θ(`) > 0 (due to the second law
[97]) and so the horizon can still expand. For the timelike surfaces of the membrane paradigm
none of θ(`), θ(n) or C vanish. Equation (5.8) will be very important in the following, also in
cases when θ(`) is not exactly zero: it is a universal statement of area law valid for different
notions of black hole or black brane horizons. The freedom of choosing between tubes in bulk,
which satisfy (5.8), have a correct equilibrium limit (namely asymptote in the appropriate
sense to the event horizon) and satisfy symmetries of boundary theory is conjectured here
to capture precisely the freedom in the construction of hydrodynamic entropy current. This
implies that demanding (5.8) to be greater or equal to zero is conjectured to be the gravitational
counterpart of non-negativity of divergence of hydrodynamic entropy current, i.e.

LV
√
q̃ ≥ 0 ⇔ ∇µJ

µ ≥ 0 , (5.10)
or equivalently

θ(`) − C θ(n) ≥ 0 ⇔ ∇µJ
µ ≥ 0 , (5.11)

where Jµ is a hydrodynamic entropy current and ∇µ is the boundary covariant derivative. In
the next Section this claim is positively verified in the case of gravity dual to boost-invariant
hydrodynamics and in a new article in preparation [108] it is shown to hold as well in the
general case of fluid/gravity duality up to second order in gradients. The important lesson,
which can be learned from (5.11) is that even beyond equilibrium in two-derivative Einstein
gravity the notion of a surface (or evolved surface called here a tube) seems to be sufficient to
capture the possible generalizations of entropy of black objects, here suggested by dual gauge
theory description. Moreover, if different hydrodynamic entropy currents have different phys-
ical meanings in dual gauge theory, then the construction of this Section originally presented
in [49] provides a first directly physical interpretation of quasilocal horizons.

5.3 Horizons in the boost-invariant spacetime

5.3.1 Preliminaries
With the tools from the last Section in hand one can now turn to the identification and
study of various notions of horizons in the spacetime defined by the bulk metric (4.13) in
the hydrodynamic regime. Since the main goal is to study possible notions of entropy in

3Quotation marks are used around the word time since if Va is spacelike then this is a coordinate rather
than physical notion of time.
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the dual field theory, the hypersurfaces of interest are those which satisfy the symmetries of
the boundary dynamics under consideration (Bjorken flow). This singles out spacelike three-
surfaces of constant τ̃ and r. Such surfaces are unique and possess outward and inward pointing
null normals

`A =
[
∂

∂τ̃

]A
+ 1

2r
2A(τ̃ , r)

[
∂

∂r

]A
,

nA = −
[
∂

∂r

]A
. (5.12)

Those vectors can be obtained (up to overall factor, which is arbitrary provided that both are
future oriented) from two (i = 1, 2) vectors V(i) of schematic form

V(i) = V τ̃
(i)∂τ̃ + V r

(i)∂r (5.13)
by demanding that both are null and cross-normalized to −1. These are 3 equations for 4
components, which do the job. The remaining unspecified component is precisely the rescaling
freedom of `→ f ` and n→ n/f and the specific scaling used here is chosen to be consistent
with the flow of time at asymptotic infinity.

The hypersurfaces of interest will all lie within the τ̃ = constant hypersurfaces. Given that
coefficients of the metric are expanded in the late time scaling power series (4.14), solutions
can be sought in the form

rS(τ̃) = 1
τ̃ 1/3 (r0 + 1

τ̃ 2/3 r1 + 1
τ̃ 4/3 r2 + 1

τ̃ 2 r3 + . . . ) . (5.14)

The coefficients rk appearing here will be determined by the conditions imposed, and it turns
out that the solutions are unique. Not only is the event horizon uniquely defined, but in this
case demanding that the time-evolved apparent horizon shares the symmetries of the spacetime
means that one can also select the unique time-evolved apparent horizon. In this Section the
focus will be on the time-evolved apparent horizon and the event horizon, while in the following
Section more general surfaces of the form (5.14) will play an essential role.

5.3.2 The boost-invariant time-evolved apparent horizon
To find marginally trapped three-surfaces within the τ̃ = constant hypersurfaces, one needs to
solve the equation θ(`) = 0. Evaluating θ(`) on a hypersurface of the form (5.14) yields

θ(`) = 1
τ̃ 1/3

{
3
2r0

(
1− π4Λ4

r4
0

)
+ 1
τ̃ 2/3

3π4 (3r1 + 1) Λ4 + 2π3r0Λ3 + r4
0 (3r1 + 1)

2r4
0

+ . . .

}
.

(5.15)
Solving θ(`) = 0 (to third order) shows that there is a unique apparent horizon on the τ̃ =
constant slices at:

rAH(τ̃) = 1
τ̃ 1/3 ·

πΛ− 1
2 ·

1
τ̃ 2/3 +

(
1

9πΛ + 1
24Λ −

log(2)
18πΛ

)
· 1
τ̃ 4/3 +

(
C

18π2Λ2 −
25 log(2)
162π2Λ2 +

− 1
7776Λ2 + 1

81π2Λ2 + 11
432πΛ2 −

log(2)
24πΛ2 + 7 log2(2)

162π2Λ2

)
· 1
τ̃ 2 + . . .

, (5.16)
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where C is Catalan’s constant. For the three-surface defined by r = rAH(τ̃), the inward
expansion is

θ(n) = τ̃ 1/3 ·
{
− 3
πΛ −

1
2π2Λ2 ·

1
τ̃ 2/3 −

−1 + 2 log(2)
12π3Λ3 · 1

τ̃ 4/3 + 1
τ̃ 2

(
7 log2(2)
54π4Λ4 −

log(2)
24π3Λ4 +

− 25 log(2)
54π4Λ4 −

1
2592π2Λ4 + C

6π4Λ4 + 35
216π4Λ4

)
+ . . .

}
. (5.17)

It is easy to see numerically that

θ(n) = −0.95
Λ − 0.051

Λ2τ̃ 2/3 −
0.0010
Λ3τ̃ 4/3 −

0.00039
Λ4τ̃ 2 + . . . , (5.18)

which is clearly negative and will stay negative in a neighborhood of rAH . Further it is clear
from the expression for the outward expansion (5.15) that for r ≈ rAH , r > rAH ⇒ θ(`) > 0
and r < rAH ⇒ θ(`) < 0. That is, there are fully trapped surfaces “just-inside” r = rAH and
so this marginally trapped surface bounds a fully trapped region and thus can be identified as
a black brane apparent horizon.

The remaining geometric quantities discussed in Section 5.2 can be calculated now. First,
requiring that the evolution vector Va be tangent to the horizon4, implies that in the large τ̃
regime the expansion parameter C has the form

C = C−1 + 1
τ̃ 2/3C0 + 1

τ̃ 4/3C1 + 1
τ̃ 2C2 + 1

τ̃ 8/3C3 + . . . (5.19)

for some set of coefficients C−1, . . . C3. It is straightforward to see that C−1 = 0 identically in
consequence of the structure of the large τ̃ expansion (even without using the explicit form of
the solution). The coefficients C0 (coming from zeroth order perfect fluid geometry) and C1
(first order viscous geometry) also turn out to vanish, so that the leading contribution appears
at order 1

τ̃2 . All in all, evaluating (5.19) on time-evolved apparent horizon (so at r = rAH(τ̃))
it is found that

C = 1
9 ·

1
τ̃ 2 −

(
log(2)
9πΛ − 1

54Λ

)
· 1
τ̃ 8/3 + . . . (5.20)

which is clearly greater than zero. This implies that the horizon is dynamical: spacelike and
expanding in area, which can then be cross-checked in two ways. First one can directly calculate
the volume element on the three-surfaces being the constant τ̃ slices of tube of interest

volAH =
√
q̃ dy ∧ dx1 ∧ dx2 (5.21)

where, up to third order

√
q̃ = π3Λ3 − 1

2π
2Λ2 · 1

τ̃ 2/3 +
(

1
4πΛ log(2) + π2

24Λ + π

12Λ
)
· 1
τ̃ 4/3

−
(

5
216 −

π

144 −
π2

2592 + 5 log(2)
216 − 1

24π log(2)− 35 log2(2)
216

)
· 1
τ̃ 2 . (5.22)

4i.e. its action on the form dS = dr−r′AH (τ) gives zero or in other words it is perpendicular to the direction
normal to the tube.
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Then, to lowest order, the rate of expansion is

1√
q̃

d
√
q̃

dτ̃
= 1
τ̃ 5/3

{
1

3πΛ +
(
− log(2)

3π2Λ2 −
1

18πΛ2 + 1
18π2Λ2

)
· 1
τ̃ 2/3

}
(5.23)

which is clearly positive. Alternatively using

1√
q̃

d
√
q̃

dτ̃
= 1√

q̃
LV
√
q̃ = −Cθ(n) , (5.24)

and substituting in the appropriate values one obtains the same result providing a simple
cross-check of the whole approach.

5.3.3 Event horizon
It was emphasized in Section 5.2.1 that the event horizon is somewhat inconvenient to work
with, since determining it requires knowing the entire future evolution of the spacetime under
consideration. This is indeed the case in the typical situation of computing the evolution of
spacetime geometry starting from some initial data. The setting explored in Chapter 4 of this
Thesis is in a sense complementary: the spacetime geometry is constructed order by order in
a large proper time expansion being a special example of hydrodynamic gradient expansion,
starting in the far future at zeroth order. This circumstance makes it possible to determine
the location of the event horizon in the late time regime.

The method of finding the event horizon for boost-invariant flow closely resembles the one
presented in [69] for the gravity duals to fluid dynamics [10]. The crucial assumption there
was that the metric relaxes to (uniformly boosted) AdS-Schwarzschild, where the position of
the event horizon is well known. The event horizon for the metrics there was defined as a
unique null surface which asymptotically coincides with the event horizon of the static AdS-
Schwarzschild dual to the uniform flow at constant temperature. Despite the fact that this is
not the case for boost-invariant flow, it is still possible to find a unique null surface which is
interpreted as the event horizon. The key observation is that the event horizon should coincide
with the time-evolved apparent horizon in the large-proper time regime and within the scaling
limit. Its radial position in AdS should depend on proper time only, which reflects the boost-
invariance (no rapidity dependence) together with translational and rotational symmetry in
the perpendicular directions (no ~x⊥ dependence). If r is the radial direction in AdS space, τ̃
the proper time and rEH (τ̃) expresses the time evolution of the horizon, then the equation
defining the sought codimension-one surface in AdS takes the form

r − rEH (τ̃) = 0. (5.25)

The covector normal to the surface is dr−r′EH (τ̃) dτ̃ and requiring it is null gives the equation
for rEH (τ̃)

A (τ̃ , rEH) · r2
EH − 2r′EH = 0, (5.26)

where for clarity the dependence of rEH on τ̃ is omitted. This equation can be solved pertur-
batively in the scaling limit. Using the late time solution valid up to third order in the late
proper time expansion one finds
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rEH = 1
τ̃ 1/3

πΛ− 1
2 ·

1
τ̃ 2/3 +

(
1

6πΛ −
1

24Λ −
log(2)
18πΛ

)
· 1
τ̃ 4/3 +

(
C

18π2Λ2 −
5

324π2Λ2 +

− 1
7776Λ2 + 7

432πΛ2 −
17 log(2)
81π2Λ2 −

log(2)
24πΛ2 + 7 log2(2)

162π2Λ2

)
· 1
τ̃ 2

. (5.27)

Comparing (5.16) with (5.27) it turns out that the time-evolved apparent horizon coincides
with the event horizon in the leading and first subleading orders, which is in agreement with
the observation that C, the expansion parameter on time-evolved apparent horizon, is non-zero
only in the second and higher orders in 1/τ̃ 2/3 expansion. The second orders differ and the
time-evolved apparent horizon becomes spatial. It is easy to see that time-evolved apparent
horizon indeed lies inside the event horizon at given instant of τ̃ , since the difference between
rEH − rAH

rEH − rAH = 1
18πΛ ·

1
τ̃ 5/3 + . . . (5.28)

is positive in the leading (here being second) order. The fact that event and time-evolved
apparent horizons match in the perfect fluid and viscous orders raises a question whether this
is a coincidence or there is some underlying principle. The answer to this question was provided
for the first time in [49] and is related to Weyl covariance of boundary hydrodynamics in those
orders of gradient expansion, as explained in the next Section.

Finally, observe that in the naive limit τ̃ → ∞ the boost-invariant metric relaxes to the
empty AdS5 metric instead of the static AdS-Schwarzschild solution. However, this is not
so strange from the dual CFT point of view, where the fluid is expanding to infinity and
its energy density becomes smaller and smaller. It means that the boundary system does
not permanently thermalize to non-zero temperature. The interesting feature of the boost-
invariant flow is an apparent thermalization, which expresses itself as an applicability of the
equations of hydrodynamics in the late stages of the evolution.

5.3.4 Revisiting the scaling limit
The symmetries of boost-invariant flow make it possible to seek the location of the event
horizon considering only the variables r and τ̃ . It is possible then to focus only on the dr – dτ̃
part of the full metric, which at leading order takes the form

ds2 = 2dτ̃ dr − r2
{

1− π4Λ4

(r τ̃ 1/3)4

}
d τ̃ 2 + . . . (5.29)

The scaling limit discussed at length in Chapter 4 involved introducing the scaling variable
ṽ ∼ r τ̃ 1/3 which is kept fixed as τ̃ →∞. This motivates the following change of variables

τ̃ =
(2u

3

)3/2
,

r =
√

3
2uṽ, (5.30)

which leads to
ds2 = 2du dṽ − ṽ2

{
1− π4Λ4

ṽ4

}
du2 + · · ·+O

(1
u

)
(5.31)
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showing that this part of the metric takes precisely the same form as the corresponding part
of the static black brane metric, with ṽ denoting the radial coordinate and u Eddington-
Finkelstein ingoing time coordinate. This implies that at leading order in the late-time expan-
sion the problem of determining radial geodesics5 in the asymptotic boost-invariant geometry
is the same as in the static case. It is then not surprising that the naive position of the horizon
coincides asymptotically with the actual event horizon. Note however that these considera-
tions do not imply that the asymptotic geometry is static. Clearly, the remaining terms in the
metric are time-dependent after this coordinate transformation, even though the area of the
event horizon remains constant in that order.

5.4 Phenomenological notions of entropy

5.4.1 Introduction

The equilibrium states of black objects are thermodynamic in nature. Their entropy is asso-
ciated with the area of spacelike slices of the event horizon in an unambiguous way and the
second law of thermodynamics is linked with area theorem. The property that the area of the
event horizon is non-decreasing continues to hold in a generic dynamical setting. This prompts
the question whether there is a sensible notion of entropy valid in such a non-equilibrium situ-
ation. However, as anticipated in previous Sections, there are hypersurfaces of non-decreasing
area other than the event horizon (which coincide with it in the static case). The notion of
entropy thus becomes less clear in these cases, as frequently discussed in the literature. The
AdS/CFT correspondence makes it possible to view this problem from the gauge theory per-
spective. As anticipated in Section 5.2.1, the teleological nature of the event horizon leads
to acausal behavior of gauge theory entropy associated with it [21, 90]. Although the bulk
description is under control precisely when the field theory is strongly coupled, which in itself
makes it hard to analyze directly, in the near-equilibrium regime one can base on intuition
following from hydrodynamic considerations on gauge theory side of duality [12, 10, 13].

5.4.2 Entropy from gravity

As reviewed in Section 5.2, in a dynamical setting it is no longer clear if there is an appropriate
geometrical notion which can be used for the definition of entropy. For example both time-
evolved apparent and event horizons appear to give rise to notions of entropy, which satisfy
the second law of thermodynamics and coincide in equilibrium. This provides motivation
to look more generally at the dynamics of hypersurfaces whose area is non-decreasing. The
starting point should be equation (5.8). This formula determines the rate of change of the area
element of a general 3-hypersurface in the terms of the expansions θ(n), θ(`) and the expansion
parameter C. In the boost-invariant case the 3-hypersurfaces consistent with the boundary
symmetry have the general form (5.14). Their area is given by

A = π3Λ3
{

1 + 3r1 + 1
πΛ · 1

τ̃ 2/3 + 36r2
1 + 24r1 + 36πr2 + 2π + 5 log(2)

12π2 Λ2 · 1
τ̃ 4/3

}
, (5.32)

5As stressed previously, this is all that is needed to determine the location of the event horizon.
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where ri come from (5.14), leading to the following form of “entropy” defined by such hyper-
surfaces6

S = N2
c

2πA. (5.33)

Equation (5.8), which expresses the change of area of the hypersurface sections becomes now

LV
√
q̃ =

√
q̃(θ(`) − Cθ(n)) =

= −6r1 + 2
3πΛ · 1

τ̃ 5/3 + 18r2
1 + 12r1 − 2π(18r2 + 1) + 6− 5 log(2)

9π2Λ2 · 1
τ̃ 7/3 (5.34)

with r0 set to πΛ to match the thermodynamic entropy when all gradient corrections are
discarded. For the leading term (at order 1/τ̃ 5/3) to be non-negative one gets the bound
r1 < −1/3, and then requiring that the following term be smaller gives an allowed range for
r2. At this level of analysis this is all one gets; r1 is not fixed. In particular, note that there
are surfaces outside the event horizon which are acceptable from this point of view. Both the
entropy via the event or time-evolved apparent horizon provide unique r1 = −1

2 , which lies in
the allowed range.

The entropy density7 obtained from the third order expression for the event horizon reads

sEH = 1
2N

2
c π

2Λ3 1
τ̃

{
1− 1

2πΛ ·
1
τ̃ 2/3 +

(
1

4π2Λ2 + 1
24πΛ2 + log(2)

4π2Λ2

)
· 1
τ̃ 4/3 +

−
(

35 log2(2)
216π3Λ3 + log(2)

24π2Λ3 + 31 log(2)
216π3Λ3 + 1

2592πΛ3 + 5
144π2Λ3 + 35

216π3Λ3

)
· 1
τ̃ 2

}
, (5.35)

whereas for the time-evolved apparent horizon it takes the form

sAH = 1
2N

2
c π

2Λ3 1
τ̃

{
1− 1

2πΛ ·
1
τ̃ 2/3 +

(
1

12π2Λ2 + 1
24πΛ2 + log(2)

4π2Λ2

)
· 1
τ̃ 4/3 +

−
(

35 log2(2)
216π3Λ3 −

log(2)
24π2Λ3 + 5 log(2)

216π3Λ3 −
1

2592πΛ3 −
1

144π2Λ3 −
5

216π3Λ3

)
· 1
τ̃ 2

}
. (5.36)

Numerically one finds

sAH = 1
2N

2
c π

2Λ3 1
τ̃

{
1− 0.16

Λ · 1
τ̃ 2/3 + 0.039

Λ2 ·
1
τ̃ 4/3 −

0.0065
Λ3 · 1

τ̃ 2

}
(5.37)

and for the event horizon

sEH = 1
2N

2
c π

2Λ3 1
τ̃

{
1− 0.16

Λ · 1
τ̃ 2/3 + 0.056

Λ2 ·
1
τ̃ 4/3 −

0.018
Λ3 ·

1
τ̃ 2

}
. (5.38)

The key observation already mentioned before is that the event and time-evolved apparent
horizons coincide at the leading and first subleading orders, which is a hint that also in the
case of a general surface there should be no ambiguity until the second subleading order. If
one is to identify the entropy defined here with the field theory observable, as required by the

6Note that in the units used here (AdS radius set to 1) G−1
N = 2π−1N2

c .
7Entropy density is understood as entropy per unit volume, which in the proper time – rapidity coordinates

involves a factor of τ̃ .
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AdS/CFT correspondence, then it should be Weyl-covariant in the boundary sense. To do this
explicitly one would need to solve the Einstein equations with the boundary metric given by

ds2
4 = e−2ω(τ)

{
−dτ 2 + τ 2dy2 + dx2

⊥

}
(5.39)

where ω(τ) is a conformal factor having the form of an expansion in powers of 1
τ2/3 . The

entropy computed this way would be Weyl-covariant (i.e. proportional to the appropriate
power of the conformal factor) only for r1 = −1/2., i.e. the value assumed by r1 in the case
of the event or time-evolved apparent horizon (which coincide at this order). The quick way
to get this answer is to write the entropy (5.33) in terms of temperature and velocity, whose
transformation rules under Weyl rescalings are known. This procedure parallels the field theory
analysis reviewed earlier. The first step is to factor out the thermodynamic entropy which sets
the Weyl transformation property of the entropy density. This leads to

s = 1
2N

2
c π

2T (τ̃)3

1 + 6r1 + 3
2πΛ · 1

τ̃ 2/3 + (5.40)

+36r2
1 + 42r1 + 36πr2 + 2π + 9 + 4 log(2)

12π2Λ2 · 1
τ̃ 4/3

. (5.41)

Since there are no Weyl-covariant scalars nor vectors at first order in derivatives, the only
way that this formula can be Weyl-covariant is if the first subleading term vanishes, which
determines r1 = −1/2. When this result is substituted into the equation (5.34), one finds

LV
√
q̃ =

√
q̃(θ(`) − Cθ(n)) =

= 1
3πΛ ·

1
τ̃ 5/3 + 9− 4π(18r2 + 1)− 10 log(2)

18π2Λ2 · 1
τ̃ 7/3 . (5.42)

The leading contribution ensures positive entropy production due to the shear viscosity so
there are no further constraints on r2. The appearance of possible freedom in choosing r2 can
be understood following again the hydrodynamic argument presented in Chapter 2. In the first
place, note that the formula (5.42) is evaluated using the bulk Eddington-Finkelstein proper
time τ̃ , which raises the question about its relation with boundary proper time coordinate
τ . Such a mapping freedom has been addressed using Weyl-covariant language in [69] and
amounts to the trivial mapping in the first two orders of the gradient expansion, with an
ambiguity showing up at the second order. In the case of boost-invariant flow the most general
mapping (up to second order) takes the form

τ̃ −→ τ̃(1 + δA1

Λ2 τ̃ 4/3 ), (5.43)

where δA1 is a constant parameter multiplying Weyl-covariant scalar S1. For such mappings
to make sense within the context of the gradient expansion this parameter must be suitably
bounded as explained earlier. The rest of the ambiguity can be understood following the Weyl
analysis of the properties of gravitational entropy. At second order in gradients there are two
Weyl-covariant scalars (S1 and S3) which are non-trivial when evaluated on the boost-invariant
solution. Since mapping freedom is identified (partly) with the S1 contribution, it is clear the
r2 must come from the relevant combination of S1 and S3

8. Evaluating (5.40) with r1 = −1/2
gives

s = 1
2N

2
c π

2T (τ̃)3
{

1 + −3 + 36πr2 + 2π + 4 log(2)
12π2τ̃ 4/3Λ2

}
(5.44)

8Note that there is no contribution from Weyl-covariant vectors, since those are transverse to velocity.
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Comparing this with (3.17) one finds

r2 = 2
9π (A1 − A3 +B1) + 1

12π −
1
18 −

log(2)
9π (5.45)

Although this is all one can get from the analysis of the gravity dual to the boost-invariant
flow9 it is reassuring that at least in this case the gravity picture is capable of capturing the
ambiguities of the boundary phenomenological construction.

5.4.3 A phenomenological definition of black brane entropy
The freedom in the definition of the hydrodynamic entropy current on the gravity side follows
not from the various possible notions of horizon, but rather from adopting the phenomenologi-
cal construction in the bulk, which is analogous to the boundary one. The surfaces considered
are not horizons in any of the usual senses, but they do have the property that their area
increases, they obey all symmetries of dual theory and have a correct equilibrium limit. The
last requirement can be made precise by adopting the framework of slowly evolving horizons,
for details of this construction with application to holographic boost-invariant hydrodynamics
see original publication [49]. In order to understand the phenomenological definition of black
brane entropy in greater generality one would of course need to go beyond the Bjorken flow
example and consider the equation (5.8) evaluated on the gravity dual to the general hydrody-
namics. This is possible employing the Weyl-covariant formulation in the bulk and is a subject
of ongoing work [108].

5.5 Conclusions and outlook
The main goal of this Chapter based on original publication [49] was to explore the rela-
tionship between the notions of entropy on both sides of AdS/CFT duality. This led to a
phenomenological definition of black brane entropy on the gravity side, which was inspired by
the corresponding construction in hydrodynamics. In the case of Bjorken flow the freedom
inherent in this definition accounts for the entire ambiguity appearing in the hydrodynamic
entropy current in this case. This led to an understanding why the event horizon coincides in
the leading and first subleading orders of the gradient expansion with the unique time-evolved
apparent horizon compatible with the boundary flow. The origin of this circumstance is the
Weyl covariance of the boundary hydrodynamics at those orders of gradient expansion (note
that conformal anomaly enters the expansion at order 4 in 3 + 1 dimensions). Generalization
of this argument to arbitrary flow within fluid/gravity duality of [35] is a subject of ongoing
research [108].

It is natural to ask what is the physical relevance of the potential ambiguity in the definition
of entropy current. In the case of local entropy production such an ambiguity might signal
lack of physical meaning. This however should not be disturbing, because the thermodynamic
notion of entropy makes sense only in equilibrium. Since one expects that systems described
by hydrodynamics equilibrate due to dissipative effects, the total entropy can be calculated in
the late stages of evolution and is given by the thermodynamic entropy. On the gravity side

9Note that in hydrodynamics due to the requirement of positive divergence of the entropy current, A1 and
B1 contributions to the entropy current are not independent, but rather linked by the equation (2.25). However
such considerations were done under the assumption that the shear tensor vanishes locally, which is never the
case in the Bjorken picture unless all the dissipative contributions are negligible.
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this translates to the notion of isolated horizons (see [109] for a review) as those for which
entropy can be defined precisely. On the other hand, it might still be the case that different
surfaces in the bulk carry information about different physical characteristics of dual gauge
theory. Further investigations of that issue surely deserve further work.

Apart from some more or less obvious generalizations it would be interesting to explore these
ideas in the context of equilibration of the boundary quantum field theory perturbed out of
equilibrium by localized sources (in the spirit of [21, 67, 45]). In the case of planar horizons
considered here there can be widely separated regions, of which some are in local equilibrium
while others are not.

This work also sheds some light on the long-standing discussion as to whether it is more
“correct” to consider event or (time-evolved) apparent horizons in physical situations. Instead
of there being just two choices, it is now proposed that are many more and the uncertainty as
to which one should considered actually reflects a physical ambiguity in the proper definition
of entropy and other quantities such as energy as one moves away from equilibrium. Again
these issues deserve further investigation.
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Chapter 6

Higher derivative corrections to
gravity action and hydrodynamics

6.1 Motivation
The studies of universal gravity action consisting of Einstein-Hilbert term and negative cos-
mological constant have led to many fruitful insights about dynamics of non-Abelian gauge
theories at strong coupling. The universality of such description lies in the fact that it is the
same for any (3 + 1)-dimensional hCFT in planar strongly coupled regime, no matter what is
its matter content, the gauge group, whether it is supersymmetric or not provided the only
operator with nonzero expectation value is the energy-momentum tensor. In the gravitational
language this amounts to the fact that the universal gravity action is a consistent truncation of
10-dimensional dynamics to 5 dimensions. The holographic result of biggest impact delivered
by those studies is definitely the celebrated ratio of shear viscosity to entropy density equal
to 1/4π for N = 4 SYM in planar strongly coupled regime [30]1. Subsequent developments
revealed that η/s is necessarily 1/4π in all (in any dimension (d + 1) > (1 + 1), conformal or
not, supersymmetric or non-supersymmetric) holographic gauge theories, as long as the dual
gravity action is based on two-derivative lagrangian [62, 63]. As anticipated before, Kovtun,
Son and Starinets influenced by early results [30, 62] and comparisons of transport properties
of holographic and real-world fluids proposed in [11] that η/s = 1/4π might be a universal
lower bound for the ratio of those quantities for any fluid (the KSS bound), which triggered a
lot of interest in holographic hydrodynamics. It is worth noting that experimental estimates
of η/s for nuclear matter at RHIC are of order of 1/4π [84, 1, 110].

In order to get closer with holographic models to real-world non-Abelian gauge theory of
interest – the QCD – it is needed to go beyond the paradigm of universal gravity action.
The first route is to break conformal symmetry in the holographic context, which is an active
area of research by itself, but not covered in this Thesis (see e.g. [111, 112, 113, 114]). The
second interesting direction, being the subject of this Chapter, is to include higher derivative
terms in the dual 5-dimensional effective gravity action2. By doing this one extends the range
of physical characteristics of dual gauge theories away from planar limit at infinite coupling.
In particular, the canonical example of such expression being a certain contraction pattern

1From nowadays perspective it is clear that the result of those authors is valid for any hCFT in (3 + 1)
dimensions, since it is derived from universal gravity action.

2Of course, as a next step in this program one would like to both break the conformal symmetry and include
higher derivative terms in the dual gravity action.
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of four Weyl tensors appearing in type IIB string theory [115] in the case of superconformal
holographic gauge theories (e.g. N = 4 SYM) is interpreted as a correction to their dynamics
from finite value of ’t Hooft coupling [36]. That is, by studying the solutions of equations
of motion for the action consisting of Einstein-Hilbert term, negative cosmological constant
and this particular contraction pattern of Weyl tensors one can calculate various properties
of those planar hCFTs for large, but in that case finite coupling [36]. In particular, such a
correction is known to increase the ratio of shear viscosity to entropy density [116, 117, 118]
and in the context of the conjectured KSS bound it was very interesting to understand whether
there might be another corrections, which for some hCFT(s) would lead to bound violation.
Early result by Kats and Petrov [119] (see also [120]), confirmed later by a detailed analysis
in [19], implies that for certain hCFTs with the dual gravity action having curvature squared
interaction there is a mild violation of the KSS bound. The question whether there exists
another bound on the ratio of shear viscosity to entropy density is unsettled, it may well be
that η/s can be driven consistently towards 0 (see [110] for an interesting discussion on these
topics).

Higher derivative terms usually lead to tachyons unless treated perturbatively on top of two-
derivative lagrangian (see however [120, 121, 122, 123, 124, 125, 126, 127]). Generally one
expects a whole bunch of higher derivative terms for the metric with non-trivial couplings to
other bulk (in particular scalar) fields, as well as higher derivative terms for those fields. The
self-consistency of the approach implies that inclusion of higher derivative expressions needs to
be understood as a bulk gradient expansion with microscopic scale set ideally by something of
order of Planck length (or at least parametrically smaller than the curvature scale of AdS) and
macroscopic one being the curvature scale of AdS geometry [19]. Note also that once going
beyond supergravity approximation the graviton sector might not be a consistent truncation
of 10-dimensional physics, or in other words in the dual hCFT language other operators than
the energy-momentum tensor might acquire an expectation value.

In this Chapter, based on [64], the focus is on the graviton sector in the absence of any
additional bulk matter fields and in the 5-dimensional effective action all independent higher
derivative terms quadratic and cubic in curvature are included. Furthermore two out of five
possible quartic terms are taken as a representative of a more general case [128]. Such an
effective gravitational action is used then to provide the corrections to thermodynamic and
transport properties of a general class of hCFTs from leading higher derivative terms coming
from the graviton sector with gravitational coupling constants re-interpreted in terms of gauge
theory parameters. These results might be used for comparisons with QCD plasma (see [36, 19,
129] for interesting proposals), provided the bulk gravitational construction is self-consistent.
In particular, complications arising from the presence of light (of masses of order of inverse
AdS radius) 5-dimensional scalar fields coupled linearly to higher derivative terms are outlined,
as well as problems coming from exactly massless scalars in the effective gravitational action.

6.2 A general framework for studying higher derivative
corrections to gravity action

The universal gravity action consisting of Einstein-Hilbert term and negative cosmological con-
stant comes from Kaluza-Klein reduction of supergravity on compact 5-dimensional manifold
with only a single zero mode kept nontrivial being a five-form field. Going beyond two-
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derivative description in 5 dimensions is non-trivial, since the full geometry is 10-dimensional
and some fields coming from Kaluza-Klein reduction may couple to terms higher order in
curvature. This Chapter focuses on thermo- and hydrodynamics in the absence of conserved
charges, so U(1) bulk gauge fields are set to zero by default (for an extensive discussion of
the effect of higher derivative corrections on hydrodynamics with conserved charges see [75]3).
The case of massless scalar field is discussed below and furthermore it is assumed here and
explained later in the text that there are not any light (of masses of inverse curvature radius
of AdS) scalars coupled linearly to higher curvature terms. With these assumptions one is
led to construct the gravity action from higher curvature terms order by order in number of
derivatives as required by the principle of gradient expansion. It is worth noting at this point
that including higher curvature terms does not destroy AdS vacuum, which is implied by the
conformal invariance of dual gauge theory, but it may change its radius of curvature with
respect to two-derivative value. The coefficients at each term in the gradient-expanded gravity
action should be typically suppressed by required ratio of Planck length to a curvature scale of
AdS, which as will be shown below leads to a hierarchy between these parameters. Nontrivial
situations may develop if there is no such suppression, which was the reason for additional
assumptions about scalar fields in the gravitational solutions.

Consider now the simplest case of including terms quadratic in curvature in the 5-dimensional
gravity action. In total there are 3 such terms leading to an expression of the form

Igravity = 1
2l3P

∫
M

d5x
{
R+ 12

L2 + L2
(
γ1RABCDRABCD + γ2RABRAB + γ3R2

)
+ . . .

}
, (6.1)

where “. . . ” denotes terms yet higher orders in derivatives and γi are dimensionless parameters,
each of order of l2P/L2. Analogously to the two-derivative case discussed in Chapter 1, the
action (6.1) needs to be supplemented with suitable boundary and counter terms, which will
be discussed later in the text. The crucial aspect of (6.1) is that equations of motion need to
be solved perturbatively on top of two-derivative solution, which implies that one can perform
freely a field (so here the metric) redefinitions in (6.1) to change the form of the higher derivative
correction with O(l4P/L4) precision in this case. This leads to (6.1) written equivalently as

Igravity = 1
2l3P

∫
M

d5x
{
R+ 12

L2 + L2α1CABCDCABCD + . . .
}
, (6.2)

where C is a 5-dimensional Weyl tensor, which by definition vanishes in AdS vacuum and “. . . ”
again denotes higher derivative corrections suppressed in that order of derivative expansion. It
can be checked further, that most of cubic terms can be removed by another field redefinition,
so that only a single term being a simple contraction of Weyl tensor is left

Igravity = 1
2l3P

∫
M

d5x
{
R+ 12

L2 + L2 α1 CABCDCABCD + L4 α2 C CD
AB C EF

CD C AB
EF + . . .

}
.

(6.3)
It is important to stress that the action (6.3) is the most general one in the absence of scalar
fields in the perturbative approach to higher derivative terms. Further analysis in [128] reveals
that there are 5 independent contributions from terms quartic in curvature, but here only the
following contraction pattern appearing naturally in type IIB string theory [115] is taken into
account

3More correctly, this is hydrodynamics with an anomalous current in the light of [14].
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W (C) = CABCD CEBCF CAGHE CDGHF −
1
4CABCD C

AB
EF CCEGH CDFGH (6.4)

as a representative of a general case. The final form of the gravity action is thus

Igravity = 1
2l3P

∫
M

d5x
{
R+ 12

L2 + L2 α1 CABCDCABCD +

L4 α2 C CD
AB C EF

CD C AB
EF + L6 α3W (C) + . . .

}
. (6.5)

Note that the gradient expansion ideally4 implies that αi = O (l2iP /L2i), forcing a hierarchy
between the couplings

α1 � α2 � α3. (6.6)

The equations of motion need to be solved perturbatively in couplings αi on top of solution
of two-derivative equations of motion. If the light 5-dimensional scalar fields can be set con-
sistently to 0 in the 5-dimensional effective action, it is sufficient to keep only first two higher
derivative terms and solve equations of motion to quadratic order in α1 and linear in α2, so
that the overall order of this perturbative expansion is O(l4P/L4). If the scalar is linearly cou-
pled to one of higher derivative interaction it will acquire non-trivial profile and integrating
it out spoils the hierarchy of terms (6.6) as will be shown in Section 6.5. It is assumed here
that no such field is present in the system. The things are more subtle in the case of exactly
massless scalar, but it turns out that in such cases typically α2 = 0 [64], so that one is left
only with quadratic and quartic contribution. Because the hierarchy of terms (6.6) cannot be
now trusted (see Section 6.5 for explanation), the best one can hope for is to solve equations
linearly both in α1 and α3

5. It needs to be stressed again that quartic contribution is not the
most general one possible and a more thorough studies are required at that order [128].

6.3 Solving equations of motion
As stressed before, Einstein’s equations for the action (6.5) need to be solved perturbatively
starting with supergravity solution, e.g. black brane metric (1.26) or gravity dual to boost-
invariant flow (4.1). Coefficients appearing in higher derivative expansion of the bulk action
have direct physical interpretation in terms of parameters of dual hCFTs. In particular, coef-
ficient in front of the particular term quartic in Weyl tensor (6.4) is interpreted in many cases
(including N = 4 SYM) as a leading correction from finite value of ’t Hooft coupling (see [36]
for a very extensive discussion on this topic). The physical meaning of other coefficients is
explained in the next Section. What needs to be stressed is that higher derivative corrections
are not going to change the form of hydrodynamic expansion, e.g. in the case of Bjorken flow
large-τ scaling of the energy density is going to remain −4/3 also in the presence of higher
derivative terms in the dual gravitational description. This is because hydrodynamic behavior
is universal: the only underlying assumption is large separation of scales between microscopic
dynamics and scales of changes of macroscopic quantities. What is going to change on the
other hand are coefficients appearing in thermodynamic quantities, i.e. the overall scaling of

4Confront it with assumptions about the absence of light scalar fields in the gravitational solution.
5It is also possible that more involved situations develop, so that light scalars couple to higher derivative

terms in such a way, that their presence does not matter up to desired order.
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energy density with respect to temperature, as well as values of transport coefficients, e.g. the
ratio of shear viscosity to entropy density is no longer going to be 1/4π. Note that since higher
derivative corrections do not destroy vacuum AdS solution, no new hydrodynamic coefficients
excluded by conformal invariance (the lowest being the bulk viscosity [111, 112]) are going to
appear. Note also that standard relations between thermodynamic quantities forced by con-
formal invariance are also going to remain valid in such case, i.e. s = 4/3 ε T−1 in the absence
of conserved charges.

In order to solve gravitational equations of motion in the presence of higher derivative interac-
tions it is most convenient to adopt an effective action method (reviewed for example in [117])
rather than write full Einstein’s equations for general metric and only then seek solutions.
For illustrative purposes consider now the gravity dual to boost-invariant flow, with any other
situation being just a straightforward generalization of that case. The most general form of the
metric Ansatz with all symmetries of the boundary dynamics (here being the boost-invariant
flow) taken into account reads

ds2 = 2Gτz (τ, z) dτdz +Gzz (τ, z) dz2 + 1
z2

{
−ea(τ,z)dτ 2 + τ 2eb(τ,z)dy2 + ec(τ,z)dx2

⊥

}
. (6.7)

In this expression G’s are gauge degrees of freedom on gravity side related to diffeomorphisms
in τ and z. Choosing Gτz = 0 and Gzz = 1/z2 leads to Fefferman-Graham coordinates,
whereas Gτz = −1/z2 and Gzz = 0 to ingoing Eddington-Finkelstein chart (note that now
r from (4.13) is equal to 1/z). Of course any other (regular) choice is also acceptable6, but
these two are presumably most convenient ones for the purposes of the near-boundary and
near-horizon expansion respectively. Einstein’s equations

RAB −
1
2RGAB −

6
L2 = 0 (6.8)

in the case of gravity dual to boost-invariant flow can be obtained directly from the action
(1.1) by varying it with respect to all 5 warp-factors present in (6.7) and setting eventually
G’s to their gauge-fixing values. Note that varying the action only with respect to a, b and c
warp-factors will not produce gravitational constraint equations, which are required for self-
consistency of the approach. Outlined procedure can be generalized to more involved cases,
e.g. gravity dual to linearized hydrodynamics, and is very useful when dealing with higher
derivative corrections. The action containing higher derivative terms has to be evaluated on
the most general metric Ansatz respecting symmetries of boundary dynamics with all gauge
freedom unfixed and the result needs to be varied with respect to all available warp-factors.

The action (6.5) needs to be supplemented with boundary and counter terms, as explained in
the case of universal gravity action in Chapter 1. These terms are required for holographic
renormalization procedure, in particular for calculating the expectation value of the energy-
momentum tensor. It turns out that when all higher derivative corrections are expressed in
terms of Weyl curvature tensor and equations of motion are solved perturbatively in correc-
tions, which is precisely the case considered here, no other boundary terms are required apart
from those already present in the supergravity approximation. This is due to the fact, that
Weyl tensor vanishes when evaluated on vacuum AdS metric and in asymptotically AdS space-
times of interest the fall-off of metric is such, that higher derivative terms does not lead to

6Different choices will cover different parts of bulk manifold.
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any new divergences. The expectation value of the energy-momentum tensor in this case is
obtained from standard formula (1.15), but now with Igravity given by expression (6.5). It
may be interesting for a reader to note that in this case, the one-point function of the energy-
momentum tensor seizes to be simply a z4-term in the near-boundary expansion, as was in
supergravity approximation (1.16).

As explained above, it is sufficient to solve equations of motion for the action (6.5) up to linear
order in α2 and α3 and to quadratic in α1, namely

GAB = G
(SUGRA)
AB + α1G

(1)
AB + α2

1 G
(1,2)
AB + α2G

(2)
AB + α3G

(3)
AB + O

(
α3

1, α1 α2, α
2
2, α

2
3

)
. (6.9)

At given order, αi’s from previous orders are treated as a source with dynamical part of equa-
tions coming from variation of Einstein-Hilbert term supplemented with negative cosmological
constant, which leads to very complicated and long expressions at each order. For the pur-
poses of original publication [64], Einstein’s equations were solved both for the case of the
boost-invariant flow at late time and linearized hydrodynamics in the presence of quadratic
and cubic interactions in the bulk up to quadratic order in α1 and linear in α2. The details
of those calculations are skipped here and reader interested in them is directed to excellent
articles outlining the foundations of the effective action method in the presence of (6.4) cor-
rection in the case of linearized [116, 118, 130] and boost-invariant hydrodynamics [117, 93].
What needs to be stressed is that there are multiple cross-checks at different levels of those
calculations and solutions needed for the purposes of original publications all passed them.
In particular, transport properties derived in that way agreed with known results obtained
by other authors. The final result for equilibrium pressure up to desired order O (α2

1, α2, α3)
obtained partly from direct gravitational calculations and partly taken from works by other
authors [116, 117, 118, 119, 120, 19, 130, 93, 36, 74, 131] is given by

P = π4

2
L3

l3P
T 4
(

1 + 18α1 + 24α2
1 + 24α2 + 15α3

)
. (6.10)

This formula can be related to the energy density ε or entropy density s, using standard
relations that apply for any CFT, i.e. ε = 3P and ε = 3

4 T s (in the absence of a chemical
potential). The results for transport coefficients are

η

s
= 1

4π

(
1− 8 α1 + 112 α2

1 − 384 α2 + 120 α3

)
,

τΠT = 1
2π

(
2− ln 2− 11 α1 − 125 α2

1 − 104 α2 + 375
2 α3

)
,

λ1T

η
= 1

2π

(
1− 2 α1 − 146 α2

1 − 32 α2 + 215 α3

)
. (6.11)

These expressions should be parametrized in terms of of dual hCFT variables, which is a
subject of the following Section.
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6.4 hCFT interpretation of coefficients in higher curva-
ture expansion

Two parameters which characterize any (3 + 1)-dimensional CFT are its central charges, a and
c, defined by conformal anomaly mentioned in Chapter 2

〈T µµ 〉 = c

16π2 I4 −
a

16π2E4, (6.12)

where E4 is the (3 + 1)-dimensional Euler density and I4 is the square of Weyl curvature in
3 + 1 dimensions. Those are given explicitly by

E4 = RµνρλR
µνρλ − 4RµνR

µν +R2, I4 = RµνρλR
µνρλ − 2RµνR

µν + 1
3R

2. (6.13)

Central charges can be computed from holographic Weyl anomaly [43, 132, 133, 134] and the
result for gravity action (6.5) reads

a = π2L3

l3P
, c = π2L3

l3P
(1 + 8α1) . (6.14)

It is worth noting that in general, coefficients in holographic Weyl anomaly are given in infinite
series in l2P/L2, but for higher derivative corrections parametrized by 5-dimensional Weyl
curvature the result (6.14) is exact, i.e. it does not receive any additional contributions at
higher orders in the expansion. Given the result (6.14), it is convenient to replace a and c by

L3

l3P
= a

π2 , α1 = 1
8
c− a
a
≡ δ

8 , (6.15)

which signals that curvature squared correction to universal gravity action has an interpretation
of a correction due to unequal central charges of dual hCFT.

As the corresponding interaction is cubic in theWeyl tensor, α2 naturally plays a role in defining
the three-point function of the energy-momentum tensor in the dual hCFT. In general, this
three-point function depends on three independent constants [135, 136]. In fact, the central
charges a and c each corresponds to a certain linear combination of these parameters. Recently,
it was also shown in [137] that the constants appearing in the three-point function define two
new parameters with a clear physical significance in the CFT. The authors of [137] considered
an “experiment” in which the energy flux was measured at null infinity after a local disturbance
was created by the insertion of the energy-momentum tensor O = T ijεij with εij being a
polarization tensor. The energy flux escaping at null infinity in the direction indicated by the
unit vector ~n is then [137]

〈E (~n)〉O = E

4π

{
1 + t2

(
ε∗ijεilnjnl

ε∗ijεij
− 1

3

)
+ t4

(
|εijninj|2

ε∗ijεij
− 2

15

)}
, (6.16)

where E is the total energy of the state. The two constants appearing on the RHS of (6.16)
denoted t2 and t4 can be used to characterize the underlying hCFT. However, recall that the
three-point function contains only three independent parameters which go into defining the
four constants: central charges a and c defined by (6.12), as well as t2 and t4 from (6.16). Thus
those 4 parameters are not all independent, but rather turn out to satisfy the relation [127]

a

c
= 1− 1

6t2 + 4
45t4. (6.17)
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In the rest of the text a, c and t4 are chosen as the independent parameters characterizing
hCFT with the latter taken as most naturally connected to the cubic curvature interactions
in dual gravity action. It turns out (see the original publication [64] for details) that in the
parametrization (6.5)

t4 = 4320α2 + O
(
α1, α2, α

2
3

)
. (6.18)

It is important to stress that t4 vanishes when the dual hCFT is supersymmetric [137].

Turning to α3, one would have to find an analogous parameter that characterizes the hCFT
through the four-point function of the energy-momentum tensor. Unfortunately, the four-point
function is much more difficult to analyze as it is less rigidly constrained by the symmetries
of the theory than the two- or three-point functions and it depends on details of the spectrum
of operators in the CFT and their couplings to the energy-momentum tensor. As a result, the
four-point function is less studied and no universal hCFT parameter is known to replace the
gravitational coupling α3. However, in many string theory constructions α3 ∼ 1/λ3/2, where λ
is the ’t Hooft coupling in the dual superconformal gauge theory [36]. As anticipated before,
at order “C4” in the effective gravitational action, one could write down 5 independent con-
tractions of the Weyl tensor and hence in complete generality there would be 5 independent
gravitational couplings appearing at this order [128]. In this analysis, one particular com-
bination of interactions has been chosen, which arises naturally in constructions of type IIB
superstring theory [115].

The physical parameters characterizing hCFTs with dual gravity action expanded up to quartic
terms in curvature are {a, δ = (c− a) /a, t4, α3} and using (6.15) and (6.18) one can re-express{
P, η

s
, τΠ, λ1

}
as

P = π2

2 a T
4
{

1 + 9
4δ + 3

8δ
2 + 1

180t4 + 15α3 + O
(
δ3, t4δ, t

2
4, α

2
3

)}
,

η

s
= 1

4π

{
1− δ + 7

4 δ2 − 4
45 t4 + 120 α3 + O

(
δ3, t4δ, t

2
4, α

2
3

)}
,

τΠT = 1
2π

{
2− ln 2− 11

8 δ − 125
64 δ2 − 13

540 t4 + 375
2 α3 + O

(
δ3, t4δ, t

2
4, α

2
3

)}
,

λ1T

η
= 1

2π

{
1− 1

4 δ − 73
32 δ2 − 1

135 t4 + 215 α3 + O
(
δ3, t4δ, t

2
4, α

2
3

)}
. (6.19)

It needs to be noted that these expressions will receive further higher order corrections. More-
over perturbative framework requires that a� 1, δ � 1 and t4 � 1, as well as α3 � 1.

6.5 Consistency of the perturbative approach to higher
derivative terms

Before the result (6.19) is used for any quantitative comparisons with RHIC data [36, 19],
one should examine different scenarios, which might naturally arise in the dual gravitational
picture. First, as discussed in [19], the gravitational couplings are typically suppressed by
the ratio of the Planck scale to the AdS curvature scale with αi ∼ (lP/L)2i. In this case,
beyond having each αi � 1, there would be anticipated hierarchy between the couplings
(6.6). On the other hand, the gravity action (6.5) overlooks the effects of dual operators
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other than the energy-momentum tensor. In particular, the authors [19] carefully examined
that such approach is consistent up to first order in the expansion in (lP/L)2. However,
additional considerations are required to go to higher orders when the 5-dimensional effective
action includes light scalar fields coupled linearly to higher curvature terms or exactly massless
scalars, as mentioned in previous Sections and explained in the following.

As an example of the first problem, one may consider a coupling of the form φ CABCDCABCD
with some massive scalar field φ7. In this case, the leading order (supergravity) solution (e.g.
black brane metric) implicitly includes φ = 0. However, the scalar will acquire a nontrivial
profile at higher orders when the effects of the higher curvature terms are included. Note that
CABCDCABCD term is nonzero upon evaluating on any nontrivial (other than vacuum AdS)
metric and thus sources the scalar field out of its supergravity (0) value. That is, at higher
orders, the dual operator acquires an expectation value in the CFT plasma. On the other
hand, in the case of nonlinear coupling between the scalar and higher curvature term taking
the form φα CABCDCABCD with α > 1 scalar field profiled trivially would be still a solution and
the problem considered above would be absent.

As the hydrodynamic properties of the plasma refer the physics at very long wavelengths, one
might attempt to proceed in the case of scalar coupled linearly to higher curvature terms by
integrating out this massive field. To be explicit, imagine one has the scalar action of the form

Iscalar = 1
2l3P

∫
d5x

{
−∂Aφ ∂Aφ+M2φ2 − 2L2β φ CABCDCABCD

}
, (6.20)

where β ∼ (lP/L)2 following the discussion in [19]. If the scalar is integrated out, there is an
additional contribution to the action of the form

Iintegrated out = 1
2l3P

∫
d5x

L6 β2

M2L2

(
CABCDCABCD

)2
+

+L8 β2

M4L4

(
CABCDCABCD

)
∇2

(
CABCDCABCD

). (6.21)

Now, when the scalar has a Planck scale mass, i.e. M ∼ 1/lP , the couplings of these higher
curvature terms are suppressed in accord with the expected hierarchy. If instead one considers
a scalar of a mass M ≈ 1/L, as might arise in the Kaluza-Klein reduction of a 10-dimensional
string background, the coupling constant of the new term quartic in curvature is suppressed
by only β2 ∼ (lP/L)4 and so this term will correct the thermodynamic and the transport
properties of the holographic plasma at the same order as α2

1 and α2. In fact, all of the higher
order terms in (6.21) have the same suppression and so can be expected to contribute at the
same order. Essentially this demonstrates that integrating out such scalar is not the right
approach to incorporating the effects of the dual operator. Thus if one wants to work with a
purely gravitational action beyond order (lP/L)2, one must impose the absence of such linear
couplings in the bulk.

7Note that the field φ should be a zero mode of KK reduction to 5 dimensions (or in other words it should
not be charged under the symmetries of compact manifold), since when integrating over the volume of compact
manifold contribution depending on the coordinates on this manifold will average to zero. The author would
like to thank Jan de Boer for pointing this out.
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A subtlety appears in the case of exactly massless scalar field. In such situation this field
may acquire arbitrary constant profile in the supergravity solution, which in particular may
be very large. Moreover, coupling constants in the gravity theory may have some complicated
dependence on this scalar field. Since the scalar field is very large in the leading order, these
couplings might not be suppressed as initially assumed. Furthermore, the presence of exactly
massless field(s) in the bulk seems to be interrelated with supersymmetry of the dual hCFT
[64]. In turn, supersymmetry would lead to α2 = 0 [137], so that the interactions quartic in
the curvatures would provide the next to leading order set of corrections in the perturbative
expansion.

There are thus two cases, where the results (6.19) can be consistently applied in a quantitative
comparison with the sQGP. The first one is the hCFT with dual effective 5-dimensional grav-
ity action not having any light scalars coupled linearly to higher derivative terms, nor exactly
massless scalars. In this case, one can truncate the string theory side of the correspondence
to include only gravity. Furthermore, the expected hierarchy should hold between the grav-
itational couplings, so that α2 ∼ α2

1 � α3 and it is then consistent to work with (6.10) and
(6.11) at order O (α2

1, α2), while dropping the O(α3) contributions. The second situation is
the hCFT with dual action having at least one exactly massless scalar field, which seems to
imply supersymmetry [64]. As mentioned above, α2 vanishes then and one cannot necessarily
assume α3 � α1 in this scenario. Such case can be consistently described by working with
the results at order O (α1, α3), while dropping the α2 contributions. In both of those scenarios
data may be consistently fit into the holographic framework.

6.6 Further directions
Higher derivative terms are tractable only in the Einstein gravity corner, which strongly re-
stricts the possibilities of quantitative comparisons of hCFT thermo- and hydrodynamic prop-
erties with lattice and RHIC data. The most interesting and at the same time very diffi-
cult direction is to go beyond this limitation. In particular, there are toy models of bulk
higher derivative interactions, such that perturbations on top of black brane backgrounds are
quadratic in spacetime derivatives for any values of higher derivative couplings. The studies
of thermo- and hydrodynamic properties of toy model hCFTs dual to those gravity actions
include [120, 121, 122, 123, 124, 125, 126, 127]. Note however, that the current level of un-
derstanding of AdS/CFT does not allow to calculate interesting gauge theory quantities (e.g.
η/s) for finite Nc or in the regime of intermediate couplings even in the simplest setting of
UV-complete holographic gauge theory, i.e. N = 4 SYM and to do this, further progress in
the string theory is needed.

Another interesting direction is to study the holographic hydrodynamics in non-conformal
settings. At first order in derivatives the bulk viscosity appears in such setups, which is however
rather well-studied holographically [111, 112, 114]. At second order in gradients a bunch of
new transport coefficients is produced [13] and to the author’s knowledge the only article
studying their properties at strong coupling is [113]. In particular, it might be interesting,
but technically demanding, to formulate the fluid/gravity duality in the non-conformal case(s)
of gauge/gravity duality. It may be also illuminating, but rather difficult, to understand
the effects of higher derivative interactions on non-conformal gravity backgrounds dual to
hydrodynamics.



Chapter 7

Boost-invariant early time dynamics
from gravity

7.1 Non-Abelian plasmas in far-from-equilibrium regime
Experimental and phenomenological motivation for understanding far-from-equilibrium dy-
namics of non-Abelian gauge theories at strong coupling is a short thermalization time of
quark-gluon plasma at RHIC, the most straightforward explanation of which attributes it
to non-perturbative effects1. On the other hand the problem of thermalization of strongly
coupled non-Abelian plasmas is intractable using any existing theoretical method apart from
gauge/gravity duality and it is thus very interesting to understand it in the holographic context.

The subject of this Chapter is early time dynamics of boost-invariant flow, which is a tractable
model of far-from-equilibrium dynamics in a setting of holographic conformal field theory.
Original results were published in [39] as one of the very first far-from-equilibrium applications
of gauge/gravity duality methods (see [21, 67] for other works on this subject). As was the
case with the late time solution of Janik and Peschanski [40], Einstein’s equations are going to
be solved exactly in (Fefferman-Graham) radial direction in AdS and approximately in proper
time, but now for τ = 02.

The problem of early time dynamics in the same setup was addressed previously by Kovchegov
and Taliotis in [141]. Those authors assumed certain behavior of energy density at early
time and applied scaling variable method of Janik and Peschanski [40] in this domain, which
eventually led them to a conclusion that early time energy density must start as a constant.
On a more physical ground, it is to be expected that far-from-equilibrium part of plasma
dynamics depends rather strongly on initial conditions, whereas scaling variable trick relies
on unique asymptotic form of behavior. As shown in the following Section, Kovchegov and
Taliotis reasoning is invalidated by a subtlety and no scaling solution exists at early time. The
correct picture appearing is that τ = 0 profiles of warp-factors set initial conditions both for

1Another possible explanation is due to collective effects in non-Abelian perturbative plasma [138, 139]
(see [140] for a review). It may be difficult to distinguish the two scenarios, since remnants of far-from-
equilibrium part of evolution are “washed-out” during hydrodynamic phase. It would be very interesting
to gather theoretical predictions based on weak-coupling analysis for QCD and strong coupling analysis for
holographic gauge theories and compare with relevant observables, when such are identified. The author would
like to thank Stanisław Mrówczyński for an interesting discussion on this topic.

2Although the equations can be in principle solved in the same manner for any finite τ , a major simplification
turns out to occur for τ = 0.
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bulk and boundary evolutions. Those profiles are however subject to gravitational constraint
equations, as well as a non-singularity condition leading to highly nontrivial restrictions on
possible evolutions of boundary theory’s energy density. The rest of the Chapter follows along
the lines of [39].

7.2 Why scaling variable does not exist at early time?
The starting point of Kovchegov and Taliotis analysis in [141] was the near-boundary expansion
of warp-factors in Fefferman-Graham coordinates (4.2) with postulated asymptotic form of
energy density3 at τ = 0 being4

ε̄(τ) = 1
τ s
. (7.1)

The authors of [141] focused on an energy density of such form because of simplicity; a priori
different asymptotics (e.g. logarithmic) were also allowed at that point5. The value of s in
(7.1) was assumed to be constrained by positivity of energy density in any reference frame, as
in [40], leading to 0 ≤ s < 4. Assuming finiteness of energy density per unit rapidity at τ = 0
limited s further to 0 ≤ s ≤ 1 [141]6. In analogy with [40], if at each order of near-boundary
power series (4.2) terms that dominate at τ = 0 are chosen, the following resummed expression
for the metric coefficient a (τ, z) at τ = 0 is obtained

z4

τ s
· f
(
w ≡ z

τ

)
(7.2)

with analogous ones for b (τ, z) and c (τ, z). Solving Einstein’s equations in the early time
scaling limit (τ → 0 keeping w fixed) leads to a unique set of solutions for each s (i.e. function
f (w) as for warp-factor a etc.), however with a complex branch cut singularity for s > 0. Thus
the only plausible value is s = 0 right at the margin of the allowed range [141], i.e.

ε(τ) ∼ const for τ → 0. (7.3)

However, the situation when s = 0 is special – going back to the derivation of the early time
scaling variable w = z/τ , it turns out that terms in the near-boundary expansion (4.2) which
lead to it are all multiplied by a factor of s. Hence for s = 0 all of those terms vanish and a
completely different hierarchy of terms appears invalidating the conclusions of [141].

Indeed, if one performs for instance the power series expansion of a(τ, z) starting from (7.1)
then the answer for the first three orders is

−z4 τ−s + z6
{1

6 τ
−s−2s− 1

12 τ
−s−2s2

}
+

+z8
{
− 1

16 τ
−2 ss2 − 1

6 τ
−2 s + 1/6 τ−2 ss+ 1

96 τ
−s−4s2 − 1

384 τ
−s−4s4

}
+ . . . (7.4)

3In the rest of the Chapter rescaled energy density ε̄ is used instead of genuine one ε (4.3), but for a
simplification it is still called energy density.

4Overall normalization of energy density plays no role in those considerations and is taken to be 1.
5However, the conclusions of this Chapter will make it clear that early time dynamics of boost-invariant

flow is not governed by any scaling solution.
6Energy density per unit rapidity is a product of standard energy density ε(τ) and volume element, which

as anticipated in Chapter 3 grows linearly with proper time.
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Consider now the term proportional to z8 in (7.4). There are two structures appearing,
z8/τ (s+4) and z8/τ 2s. The first of these leads to the early time scaling variable proposed
in [141] since it dominates for nonzero s. However its coefficient is proportional to s so for
s = 0 it is absent and the only contribution comes from the second term which is not contained
in the scaling-variable analysis. The same applies obviously already to the term in z6/τ (s+2), as
well as to all subsequent orders. On a related note, the energy density (7.1) with s > 0 makes
warp-factors divergent at τ = 0 already very close to the boundary, what from the perspective
of cosmic censorship is clearly unacceptable.

Analyzing the power series solutions in more detail, one finds that for a generic early time
expansion of the energy density7

ε̄(τ) =
∞∑
n=0

ε̄2nτ
2n, (7.5)

the coefficients an of the near-boundary expansion of warp-factors at τ = 0

a(τ = 0, z) =
∞∑
n=0

anz
4+2n (7.6)

depend on all terms ε̄2n in (7.5). This means that each of the possible initial conditions (7.6)
leads to a distinct proper time evolution (7.5), where the coefficients of the two power series
are linked through the Einstein’s equations. The following mapping is therefore obtained

a(τ = 0, z) =
∞∑
n=0

anz
4+2n =⇒ ε̄(τ) =

∞∑
n=0

ε̄2nτ
2n. (7.7)

Obviously certain nontrivial constraints limit possible gravity solutions. Among these, the
non-singularity condition of the geometry plays the crucial role, as will be shown in the next
Section.

7.3 Geometrical constraints on warp-factors at τ = 0
Einstein’s equations in the setup of gravity dual of decoupled dynamics of one-point function
of energy-momentum tensor can be written in an equivalent simplified form as

RAB + 4GAB = 0 (7.8)

or explicitly in Fefferman-Graham coordinates describing gravity dual to boost-invariant flow

(ττ) : b̈+2c̈− ȧ2(ḃ+2ċ)+ 1
2(ḃ2+2ċ2)− 1

τ
(ȧ−2ḃ) = ea

{
a′′− 3a′

z
+
(
a′

2 −
1
z

)
(a′+b′+2c′)

}
,

(yy) : b̈−ȧḃ+ 1
τ

(ḃ−2ȧ)+ 1
2(ȧ+ḃ+2ċ)

(
ḃ+ 2

τ

)
= ea

{
b′′− 3b′

z
+
(
b′

2 −
1
z

)
(a′+b′+2c′)

}
,

(⊥⊥) : c̈− ȧċ+ ċ

2

(
ȧ+ ḃ+ 2ċ+ 2

τ

)
= ea

{
c′′ − 3c′

z
+
(
c′

2 −
1
z

)
(a′ + b′ + 2c′)

}
,

(zτ) : 2ḃ′ + 4ċ′ + b′
(
ḃ+ 2

τ

)
+ 2ċc′ − a′

(
ḃ+ 2ċ+ 2

τ

)
= 0,

(zz) : a′′ + b′′ + 2c′′ − 1
z

(a′ + b′ + 2c′) + 1
2(a′2 + b′2 + 2c′2) = 0. (7.9)

7The restriction to even powers of τ is discussed in Section 7.4.
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In the above expressions the first parenthesis stands for the corresponding component of (7.8),
dot for the proper time τ -derivative and prime for the z-derivative.

It is important now to analyze what are the general properties of initial conditions for the
equations (7.9). Since there are five equations (7.9) for only three unknown functions, there is
some redundancy in Einstein’s equations, e.g. it is consistent to replace first three equations
(ττ), (yy) and (⊥⊥) by the combination −(ττ) + (yy) + 2(⊥⊥)− ea(zz), which reads

ċ
(
ċ+ 2ḃ+ 4

τ

)
= ea

{
2b′′ + 4c′′ + b′2 + 3c′2 + 2b′c′ − 6

z
b′ − 12

z
c′
}
. (7.10)

With such an replacement, the system made of three chosen equations (so (7.10) and equations
(zτ) and (zz) from (7.9)) is only of the first order in τ and the required initial conditions for
(proper) time evolution due to (zz) constraint equation can be given by two out of the three
warp-factors evaluated at initial proper time. Moreover (zτ) component of (7.9) taking the
form

∂za− ∂zb = τ · (. . .), (7.11)
indicates that at τ = 0, a(τ, z) and b(τ, z) can differ only by a constant. Since both functions
have to vanish at z = 0, this constant vanishes as well. Therefore

a(0, z) = b(0, z) (7.12)

and gravitational initial conditions at τ = 0 are parametrized by a single function, which is the
main reason for performing the rest of analysis exactly at τ = 0. It is worth stressing, that the
condition (7.12) could be also obtained by demanding the absence of conical-like singularity
on the light-cone τ = 0 for generic z.

It turns out, that the nonlinear character of the (zz) equation plays a crucial role in finding
initial conditions for boost-invariant evolution. Naively, one would expect to be able to consider
a small boost-invariant perturbation on top of an empty AdS5, i.e. linearized approximation
with neglecting quadratic terms in this constraint. However it turns out, as will be shown
below, that even if given an infinitesimal a at τ = 0, the nonlinear equation for c obtained
from (zz)8 will always generate a singularity for some large but finite z! Thus linearized
fluctuations cannot be used as initial conditions in the boost-invariant setup at τ = 0. This
conclusion is even stronger, namely a singularity in metric warp-factors is going to be present
at arbitrary proper time τ .

To simplify the (zz) equation it is useful to introduce the following notation

kτ (z2) = 1
4z∂za (τ, z) ,

ςτ (z2) = 1
4z∂zb (τ, z) ,

mτ (z2) = 1
4z∂zc (τ, z) (7.13)

with ς0 (z2) = k0 (z2) due to (7.12), but for generic τ > 0 different. If the constraint equation
has a regular solution, radial derivatives of warp-factors are bounded in the bulk and vτ , ςτ

8Note that b (0, z) = c (0, z) and thus equation (zz) at τ = 0 indeed allows to solve for a given c or the other
way around.
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and wτ vanish when z →∞. The constraint equation simplifies when written in terms of v, ς
and w

k′τ + ς ′τ + 2m′τ + k2
τ + ς2

τ + 2m2
τ = 0 (7.14)

with prime now denoting z2-derivative. Integrating (7.14) in z2 over the whole range (i.e. from
z = 0 to ∞) gives ∫ ∞

0
(k′τ + ς ′τ + 2m′τ ) d(z2) +

∫ ∞
0

(k2
τ + ς2

τ + 2m2
τ ) d(z2) = 0. (7.15)

Note however, that first integral vanishes due to the imposed boundary conditions (i.e. assumed
regularity of warp-factors), which leads to∫ ∞

0
(k2
τ + ς2

τ + 2m2
τ ) d(z2) = 0. (7.16)

On the other hand, this equality is satisfied only for kτ = ςτ = mτ = 0. Thus the only regular
solution is trivial – the vacuum AdS5. Therefore, at any time the metrics of interest must have
a singularity at some value of z. In particular, this will be the case even at τ = 0, inquiring
that any nontrivial initial condition consistent with Einstein’s equations will lead to a metric
singularity at some value of z. The non-singularity constraint on the geometry requires that
all the singularities apart from the one sitting at z = ∞ will be only of coordinate nature.
This provides a very strong selection mechanism for the allowed initial conditions.

At τ = 0 the constraint equation (7.14) can be solved exactly leading to the space of solutions
parametrized fully by the single function. The trick is to introduce the linear combinations

v+ = −m0 − k0,

v− = m0 − k0 (7.17)

for which the equation (7.14) becomes algebraic for v− (both v− and v+ are understood as
functions of z2). After trivial algebra one obtains

v− =
√

2v′+ − v2
+. (7.18)

Therefore all solutions of the initial value nonlinear constraint equations are parametrized by
an arbitrary function v+(z2). The next step is to analyze what further conditions must be
imposed on v+(z2). First, since warp-factors have to vanish as z4 one gets

v+(z2) ∼ 2
3ε0z

6 for z ∼ 0. (7.19)

Moreover, it follows from the previous argument that there is a singularity at some finite
z = z0. The behavior at this singularity is constrained by demanding that this would be just a
coordinate singularity and not a curvature blow-up. Assuming a power-like blow-up of v+ (z2)
at z = z0, the regularity of the Kretschmann scalar at τ = 0 leads to the conclusion, that
v+(z2) has to have a first order pole

v+(z2) ∼ 1
z2

0 − z2 for z ∼ z0 (7.20)

with residue 1.
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The coordinate singularity in v+ at z = z0 translates directly into the behavior of the metric
coefficients around z0. This means that the proper time metric component has a second order
zero at z0 so that the metric at τ = 0 looks like

ds2 = − 1
z2

(
1− z

z0

)2
{dτ 2 + τ 2dy2}+ . . .+ 1

z2dz
2 (7.21)

in the vicinity of z = z0, reminiscent of the behavior of a horizon in Fefferman-Graham
coordinates. Note, however, that at τ = 0 the term in curly braces becomes dx+dx− in
contrast to a ‘Schwarzschild’ horizon where the corresponding structure is of the form −(1 −
z/z0)2dt2 + . . . Some words of caution are in order here, since Fefferman-Graham coordinates
clearly break down at z = z0. If this 3-surface was indeed part of or just covered by the event
horizon, then profiles of warp-factors on the range

z ∈ (0, z0) (7.22)
at τ = 0 would form a well-posed initial value problem for subsequent (numerical) evolution
of part of spacetime accessible (in a sense of cosmic censorship) from the boundary. A good
probe of whether the surface z = z0, τ = 0 lies indeed inside a black brane region is evaluating
expansion scalars (introduced in Chapter 5) within the range (7.22) looking for trapped sur-
faces. It turns out however that none such surface is found and in order to have a well-defined
initial value problem at τ = 0, the Fefferman Graham coordinate frame needs to be extended
beyond the point z = z0

9. This is a subject of ongoing research project [142] which will be
reported elsewhere and does not invalidate the main conclusions of original paper [39] and this
Chapter10. Thus the rest of the Chapter follows directly the logic of [39].

It is interesting for further discussion to present explicit solutions of the constraints. One of
them arises from the choice

v+ = α(tanαz2 − tanhαz2). (7.23)
The initial metric profiles may be integrated explicitly to obtain

a0(z) = 2 log cosαz2,

c0(z) = 2 log coshαz2. (7.24)

The above solution possesses a (coordinate – not leading to any curvature singularities) sin-
gularity at

z0 =
√
π

2α. (7.25)

More generally one can parametrize v+ in the following manner

v+
(
z2
)

= 2
3ε0z

2
0 ·

z6

z2
0 − z2V

(
z2
)
, (7.26)

where V (0) = 1, V (z2
0) = 3/ (2ε0z8

0) and otherwise is a regular function of z2 variable for
z <∞11. One has also to ascertain that v− obtained from (7.18) does not become complex.

9Analogously as in the case of standard asymptotically flat Schwarzschild black hole.
10i.e. the absence of scaling variable at early time, τ2 expansion of energy density near τ = 0 and relation

between form of warp-factors and coefficients in early time expansion of energy density. What may change
is that some of the initial conditions (7.35) have a naked singularity beyond the range of Fefferman-Graham
coordinates. However, the author believes that such situation is rather unlikely. Again, this needs to be checked
explicitly and is a subject of ongoing work [142].

11The latter requirement probably should make sure that in extended coordinate frame (as discussed above)
there will be no naked singularity at finite value of (new) radial coordinate.
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Once the allowed initial conditions are under control one may proceed to find dual energy
density at early time.

7.4 Early time expansion of the energy density
Einstein’s equations (7.8) can be solved for any energy density perturbatively in z2. Starting
with some arbitrary energy density ε, the first three nontrivial terms in the expansion of a (τ, z)
warp factor take the form

a (τ, z) = −ε̄(τ) · z4 +
{
− ε̄
′(τ)
4τ −

ε̄′′(τ)
12

}
· z6 +

{1
6 ε̄(τ)2 + 1

6τ ε̄
′(τ)ε̄(τ) + 1

16τ
2ε̄′(τ)2

+ ε̄′(τ)
128τ 3 −

ε̄′′(τ)
128τ 2 −

ε̄(3)(τ)
64τ − 1

384 ε̄
(4)(τ)

}
· z8 + · · · (7.27)

This power series can be extended to an arbitrary order in z2 by solving Einstein’s equations
and the only obstructions are of a purely computational nature. Generically terms in the
expansion (7.27) contain inverse powers of proper time multiplying the energy density and its
derivatives. Assuming the energy density can be expanded in a regular power series around
τ = 0, the singular inverse powers of proper time in (7.27) will be present unless all the odd
terms vanish. This requirement constrains the energy density in the early time domain to be
a power series in even powers of τ, namely

ε̄ (τ) = ε̄0 + ε̄2τ
2 + ε̄4τ

4 + . . . (7.28)
On the other hand, taking τ to be zero in equation (7.27) gives the relation between the early
time energy density and the profile of a0 (z), which has been signaled in Section 7.2. Expanding
the initial profile of the metric in the radial AdS variable near the boundary and comparing
with (7.27) at τ = 0

a (0, z) = a0 (z) = −ε̄0 · z4 − 2
3 ε̄2 · z

6 +
(
− ε̄42 −

ε̄20
6

)
· z8 + . . . (7.29)

allows one to solve for all coefficients ε̄2i sitting in (7.28). This pattern continues to any order
in z (and thus τ) expansion. Note also, that each parameter in the expansion of energy density
around τ = 0 is an independent dimensionful quantity and in order to fully specify the initial
conditions infinitely many such terms are needed. This is in stark contrast to the late time
behavior, where only one dimensionful constant (denoted throughout the Thesis by Λ) appears.
Physically, this is in agreement with the fact that in the thermally equilibrated final stages of
Bjorken expansion all differences due to initial data should have been washed out by dissipative
effects and the only parameter characterizing the flow is an overall energy scale (given e.g. as
the energy density at a certain fixed large proper time τ0).

The strategy for finding the time evolution from given initial data is to use the Einstein’s
equations to generate the expansion of the metric warp-factors up to sufficiently high order
(the bigger, the better, but for technical reasons this has been achieved up to the order z84 or
equivalently τ 80 in most cases) and then for a given regular (with finite curvature evaluated
on initial data for z < ∞, see footnote 11) initial profile generate the power series for the
energy density at early time. It is worth stressing, that the presentation in this Chapter shows
how beautifully the AdS/CFT correspondence sets the allowed initial conditions for quantum
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dynamics of gauge theory using the gravitational description. Of course, since the series (7.28)
has generically a finite radius of convergence, some resummation method is needed in order to
extend it to larger proper time and extract physics of interest12.

7.5 Transition to the hydrodynamic regime

7.5.1 Resummation scheme for the energy density

The subject of this section is to provide a suitable numerical approach, relating (qualitatively)
the solutions of the Einstein’s equations (7.9) to physical quantities, energy density and pres-
sures, as functions of τ up to sufficiently large τ . Although early time dynamics of the field
theory is dictated by the initial conditions, after certain time the system is expected on phys-
ical grounds to settle down to local equilibrium. For τ sufficiently large the plasma should
exhibit the universal hydrodynamic behavior, where the only trace of the initial conditions is
given by the overall scale Λ, see (3.13). In order to track the dynamics of the system with
sufficient accuracy from τ = 0 to τ � 1, numerical methods are needed. In particular the early
time power series for the energy density has a finite radius of convergence and a resummation
is needed in order to find its behavior for large τ .

There are two interesting physics question at this point. Firstly, whether during the evolution
from some (generic) initial data at τ = 0 one can observe a passage to the asymptotic perfect
fluid behavior

ε (τ) ∼ 1
τ 4/3 + . . . (7.30)

and the second, what are the fine features of transition to equilibrium. To be more general
than (7.30) one may try first to determine the asymptotic exponent s in

ε (τ) ∼ 1
τ s

+ . . . (7.31)

and determine how close it is to s = 4/3 being the expected value (see Chapters 3 and 4 for
details). As explained above, it is quite difficult to answer this question as the energy density
in the early time regime takes the form

ε̄ (τ) = ε̄0 + ε̄2τ
2 + . . .+ ε̄2Ncutτ

2Ncut + . . . (7.32)

where Ncut is a natural number denoting the cut-off up to which the evaluation of the energy
density from the initial profile in the bulk has been performed. In most cases Ncut = 40 and
increasing this accuracy is difficult. Moreover series (7.32) has a finite range of convergence.
In order to estimate the asymptotic exponent s appearing in (7.31) it is convenient to express
it through a logarithmic derivative

s = −limτ→∞ τ ·
d
dτ log ε̄ (τ) (7.33)

12Such resummations should be understood only qualitatively and in order to get reliable profile of energy
density first the issue of extending the bulk coordinate chart needs to be solved and then a numerical simulation
starting from such initial data needs to be written, both of which are a subject of ongoing work [142].
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Figure 7.1: Approximate value of s obtained from the logarithmic derivative and Pade approx-
imation for A) Ncut = 32 (dotted line), B) Ncut = 40 (dashed line) and C) Ncut = 48 (solid
line) for initial profile v(1)

+ (z2). Two horizontal lines denote s = 1 (free streaming scenario)
and s = 4/3 (perfect fluid case).

and perform a Pade approximation (of order (Ncut, Ncut)) of the r.h.s. of (7.33) with ε̄(τ)
substituted with power series (7.32) (7.32):

sapprox = s
(0)
U + s

(2)
U τ 2 + . . .+ s

(2Ncut)
U τ 2Ncut

s
(0)
D + s

(2)
D τ 2 + . . .+ s

(2Ncut)
D τ 2Ncut

. (7.34)

s = 4/3 corresponds then to the perfect fluid case and s = 1 to the so called free-streaming
scenario (see [40] for more details). Of course it is not expected that (7.34) will give s = 4/3
exactly13.

In the following, three examples of initial profiles satisfying the curvature non-singularity
constraint are going to be considered; the first one being (7.23), the second its deformed
variant, and the third one taken from the family (7.26):

v
(1)
+

(
z2
)

= tan
(
z2
)
− tanh

(
z2
)
,

v
(2)
+

(
z2
)

= tan
(
z2
)
− tanh

(
z2 + z8

6

)
,

v
(3)
+

(
z2
)

= 2
3

z6

1− z2

(
1 + 1

2z
2
)
. (7.35)

The values of s for the first profile, for which energy density power series was obtained up
to order τ 100, are sapprox = 1.1667, 1.1923, 1.2025, 1.2025 and 1.2101 respectively for Ncut =

13Such a Pade approximation has, by construction, a different subleading large τ behavior from viscous
hydrodynamics.
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32, 36, 40, 44 and 48. The approximate value of s is closer to s = 4/3 than to s = 1 for
largest cut-offs (see Figure 7.1). For the second and third profile the results are inconclusive,
since the corresponding energy densities are provided with worse accuracy. In the rest of the
text, the asymptotic perfect fluid value s = 4/3 is taken as legitimate. Then, a suitable Pade
resummation scheme, with the required asymptotics can be given by

ε̄3approx (τ) = ε̄
(0)
U + ε̄

(2)
U τ 2 + . . .+ ε̄

(Ncut−2)
U τNcut−2

ε̄
(0)
D + ε̄

(2)
D τ 2 + . . .+ ε̄

(Ncut−2)
D τNcut+2

. (7.36)

where both ε̄2iD and ε̄2iU are obtained by expanding (7.36) around τ = 0 and comparing with
(7.32). Such a resummation imposes the correct asymptotic behavior, but differs, by construc-
tion, in the subleading behavior with viscous hydrodynamics.

ε̄approx (τ) = 1
τ 4/3

{
# + 1

τ 2 ·#
}
, (7.37)

(the first subleading term scales as τ−2 whereas the correct scaling is τ−2/3). This difference
is not substantial and can be cured by more refined resummation schemes14. Despite its
simplicity, it turns out that the resummation (7.36) works pretty well (the results seem to
converge well with increasing cut-off (see Figures 7.2 and 7.3) in extending the energy density
beyond the convergence radius of the early time power series (which is its main task) and in
providing a qualitative picture of dynamics.

7.5.2 Qualitative features of the approach to local equilibrium
The method (7.36) can be used to study the approximate behavior of the energy density as a
function of time for large enough time to see local equilibration. Figure 7.2 shows the plots
of energy density as a function of proper time for the three profiles (7.35) obtained for the
highest cut-offs. The results seems to converge well for the first profile, see Figure 7.3. Energy
densities obtained for these profiles differ at the initial stages, whereas in the late-time regimes
both seem to approach local equilibrium15. A measure of the local equilibrium is the relative
difference between the transverse p‖ = 〈T yy 〉 and perpendicular p⊥ = 〈T xx 〉 pressures defined as

∆p (τ) = 1− p‖ (τ)
p⊥ (τ) (7.38)

When this quantity is close to zero, it signals the isotropization indicating local equilibrium,
while a value of order one is an indication in favor of the free streaming scenario (defined
by vanishing longitudinal component of the energy-momentum tensor in the boost-invariant
form). Figure 7.4 shows the plot of the relative difference of pressures (7.38). It is interesting
to note the rapid fall-off of the pressure difference on a scale τ = O(1). This fall-off appears
to be stable after different numerical checks. Interestingly enough, there is a bump which
prevents the pressure to reach isotropy before τ = O(5). However, Pade approximants for the
pressure difference are less stable than for the energy density and the differences appear after
the bump. The second profile which is a slight deformation of the first one does not seem
to exhibit this bump. In any case, it would be physically interesting to check whether this
phenomenon of rapid fall-off but incomplete isotropization is or not a characteristic feature

14Another possible issue are roots of the denominator lying within the range (0,∞). If such feature is
encountered, it can be interpreted as an artifact of approximation without real physical significance.

15Which has been however put by hand into the resummation scheme.
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of the strong coupling evolution. This issue requires using numerical methods for solving
Einstein’s equations and is left for future work.

7.6 Summary
This Chapter studied the early time dynamics of boost-invariant plasma using analytical meth-
ods. The motivations for this work are both phenomenological and theoretical. On the one
hand, the recent findings of the RHIC experiment suggested that locally equilibrated nuclear
matter behaves as an almost perfect fluid, which presumably indicates a strongly coupled
regime (at least at this stage of its evolution) of the underlying gauge field theory, i.e. QCD.
Despite the fact that realistic dynamics of the QCD after the collision would require the un-
derstanding of rapidity dependence (i.e. deviations from boost-invariant dynamics, which is
only approximately valid in the central rapidity region) and might be driven as well by the
perturbative effects (as for the Color Glass Condensate [143] initial conditions), it is still in-
teresting to consider the boost-invariant expansion of a conformal plasma at strong coupling
as a useful toy-model for e.g. estimates of the thermalization time. On the other hand, the-
oretically, the boost-invariant plasma evolution is a workable example of a dynamical system
at strong coupling, which is interesting on its own. The modern developments translates (us-
ing the AdS/CFT correspondence) the dynamics of the strongly coupled gauge theories into
the evolution of higher dimensional space-time equipped with a nontrivial metric. Thus, as
suggested previously by various authors (e.g. [144]) the thermalization of the excited gauge
theory matter should be dual to black hole (or black brane) formation (see [21, 45] for concrete
realizations of this observation), which is obtained in late time as the dual of the Bjorken
hydrodynamical flow. This subject is very fresh and thus any work which may shed light on
this fascinating process is valuable.

The main result of the studies reported originally in [39] and presented in this Chapter is that
the boost-invariant dynamics of a strongly coupled conformal plasma is sensitive to the initial
conditions. This contradicts the scaling hypothesis of [141], which, analogous to the late-time
case [40] would indicate some uniqueness of the early time solution. In fact the scaling does not
occur due to a subtlety – the a priori dominant scaling contributions vanish precisely in the
limit s → 0 (see Section 7.2 for details). The correct physical picture leads to a link between
the early time expansion of energy density and the initial profile of the bulk metric. It was
found as a general result that at all time, including the initial one, a singularity of at least one
warp-factor should develop in the bulk providing working in Fefferman-Graham coordinates.
Hence, the requirement that this does not lead to real curvature singularities already at initial
time is a basic constraint on the possible initial conditions.

The analysis of the possible curvature singularities in the initial data sitting at finite Fefferman-
Graham radial position fixed the early times power series for the energy density to contain
only even powers of proper time. It has been shown that solving the nonlinear constraint
equation in the Fefferman-Graham coordinates leads to the conclusion that the initial data
must contain a coordinate singularity in the bulk of AdS, which however does not correspond
to any trapped surface.

Interesting and somehow required further directions of study include extending the coordinate
frame past the point z = z0 and subsequent numerical investigation of the bulk evolution dual
to the boost-invariant flow. This can be achieved using the methods presented in [21] and may



78 Boost-invariant early time dynamics from gravity

A)

B)

C)

Figure 7.2: A) Energy density ε1 (τ) as a function of proper time τ obtained from Pade
approximation for cut-off Ncut = 46 and initial profile v(1)

+ (z2) in the bulk; B) Energy density
ε2 (τ) for the second profile. C) Energy density ε3 (τ) as a function of proper time τ obtained
from Pade approximation for cut-off Ncut = 34 and initial profile v(3)

+ (z2) in the bulk.
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Figure 7.3: Relative difference between the energy densities for the first profile for cut-offs
Ncut = 16 and Ncut = 46 does not exceed 10%.

Figure 7.4: Relative difference in pressures for the first (left) and second (right) profiles –
for τ ≈ 1 there is a rapid fall-off but (perhaps, see text) does not reach yet a complete
isotropization for the first profile.
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provide precise numerical results covering both early, intermediate and late time regimes (see
[67] for an interesting study of boost invariant flow sourced by boundary metric perturbations).
It is important to understand more qualitatively the relation between the initial conditions in
the bulk and the shape of the energy density as function of proper time, which would give the
more precise estimates on the thermalization time. It would be also very interesting, and in
fact is a subject of ongoing work, to perform similar analysis of initial conditions in the context
of ingoing Eddington-Finkelstein coordinates [145].

The methods developed in original publication and presented in this Chapter are well suited
to reconsider the problem of plasma isotropization posed in [87] using analytical methods
(note that anisotropic energy-momentum tensor should reach the equilibrium exponentially
fast, whereas hydrodynamic evolution leaves a power-like tail). Finally the most interesting,
yet highly non-trivial, extensions of the AdS/CFT program for the dynamical evolution of a
plasma are the studies of the initial conditions such as shock waves collision using the dual
gravity picture (see for instance [146, 147] for some preliminary attempts).



Overview

Applied gauge/gravity duality

The AdS/CFT correspondence provides a novel perspective on both quantum field theories
and (quantum) gravity. The weak/strong nature of the conjectured equivalence makes it an
invaluable method to understand the strongly coupled side (being either the string theory in
the bulk or quantum field theory on the boundary) using the weakly coupled dual description.
In particular, applied string theory uses Einstein gravity as a masterfield description of certain
gauge theories at large number of colors and strong coupling (N = 4 super Yang-Mills in
3+1 dimensions being the primary example) to understand non-perturbative quantum field
theory dynamics in setups inspired by the real-world questions. Up to date, there were two
motivations to undertake that path of research: non-perturbative physics of Quantum Chro-
modynamics and condensed matter phenomena possibly described by some effective strongly
coupled quantum field theories. The results obtained so far do not allow for quantitative ex-
planations of the experiments. Rather than that, they should be and in fact are understood
as order of magnitude estimates16 or as clues providing insights or predicting new phenomena
in strongly coupled systems existing in nature17.

The topic of the Thesis was to use existing methods within the gauge/gravity duality and
develop new ones to understand QCD-inspired time-dependent phenomena in strongly coupled
holographic quantum field theories. Among all gauge/gravity dualities the simplest ones are
those, which hold for conformal field theories and such were the objects of this study. It is
clear by now, that any holographic conformal field theory at large number of colors and strong
coupling has a universal sector of its dynamics fully specified in terms of one-point function of
the energy-momentum tensor [45]. The gravity dual picture of this dynamics is described by
the universal gravity action consisting of Einstein-Hilbert term supplemented with the negative
cosmological constant. This means that there is a very rich (dual) physics hidden within the
solutions of classical gravity in asymptotically anti-de Sitter spacetimes. In particular, analytic
and numerical methods already shed some light on such important questions as transport
properties of strongly coupled gauge theories or isotropisation and thermalization of excited
strongly coupled matter [21, 67], just to name a few.

16e.g. the ratio of the shear viscosity to the entropy density of strongly coupled Quark Gluon Plasma is of
the order of magnitude of the famous string theory result η

s = 1
4π in natural units.

17e.g. suggesting that it is possible to see the effects of QCD axial anomaly in non-central heavy ion collisions
[14, 15] or going beyond the standard Landau theory of Fermi surfaces with possible implications on the physics
of strange metals [148, 149, 150].
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The role of cosmic censorship
The universal gravity action consisting of Einstein-Hilbert term and negative cosmological
constant is a low energy limit of complicated dynamics of string theory. Consistent truncation
of stringy physics is possible only if the bulk system will remain in the low energy regime
at all times. The gravity is known to produce curvature singularities and it is crucial for
the consistency of the approach that those singularities are covered by event horizons and
are thus disconnected from the dynamics. Naked singularities in the bulk are interpreted as
unphysical configurations in the dual quantum field theory description. An example of naked
(gravitational) singularity in the context of the AdS/CFT correspondence is the one present
in the gravity description of static anisotropic plasma [87]. The singularity ceases to be there
only if the anisotropy parameter is taken to be zero, which leads to AdS-Schwarzschild black
hole. This means that the only static plasma configuration in the boundary field theory in
the universal sector of decoupled dynamics of the energy-momentum tensor is the isotropic
plasma in the global equilibrium. This does not mean that there are not any other physical
configurations from other sectors (such that both the energy-momentum tensor and some other
operator(s) acquire(s) expectation value(s)) in which the plasma is anisotropic. In particular,
in a system of gravity with negative cosmological constant coupled to SU(2) gauge vector field,
there is a phase transition for sufficiently low temperatures to the anisotropic case with the
anisotropy in the energy-momentum tensor sourced by the black hole non-Abelian vector hair
[88].

Different coordinate charts in AdS and nonsingularity
The general covariance of Einstein gravity means that any coordinate chart in the bulk of
AdS will do. Different coordinates cover different patches of the spacetime and might be
more convenient for different purposes. The standard coordinates when dealing with near-
boundary behavior of AdS spacetime are Fefferman-Graham ones (see [37] and references
therein), whereas the example of ones which are explicitly regular in the near-horizon region
is given by ingoing Eddington-Finkelstein coordinates (see [35] for a discussion on those). The
nonsingularity condition should hold in any coordinate frame, but this Thesis demonstrates
that it might be not always transparent.
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Summary of results
Since Einstein’s equations are a very complicated system of nonlinear partial differential equa-
tions, it is important to have an example of the gravitational dynamics, which is simple enough
for efficient treatment and at the same time is capable of describing some of the physics of
interest. Such an example is given by the boost-invariant flow on the quantum field the-
ory side [33], which is a (1 + 1)-dimensional dynamics of plasma with the boost-invariance
along the expansion axis. The assumption of boost-invariance makes the problem effectively
one-dimensional (in a sense that quantum field theory observables depend only on single co-
ordinate – proper-time) and simultaneously allows for hydrodynamic regime. It is possible
then to construct the gravity dual solutions analytically at late and early proper-time. These
constructions, as well as analysis of their properties combined into the body of this Thesis.

Chapter 4. Late time solution, its regularity and hydrodynamics: Prior
attempts to construct the gravity dual of boost-invariant flow of hCFT plasmas
suffered from apparent curvature singularities in the late time expansion [68]. These
results lead to the conjecture that boost-invariant flow cannot be realized in hCFTs
with supergravity dual [16, 17]. The Letter [18] showed how these problems could
be resolved by a different choice of expansion parameter with a singular coordinate
transformation in the bulk relating this and previous approach. This work also
clarified the meaning of the non-singularity argument used by authors of [40] and
ensured that the gravity dual to the boost-invariant flow is a reliable tool for
computing certain transport coefficients beyond supergravity dual [117, 93, 64].
Moreover, it opened the possibility to study the global structure of the boost-
invariant spacetime at late time [90, 49].

Chapter 5. Horizons in the gravity dual to the boost-invariant flow
and hydrodynamic entropy current: Article [49] generalized the framework
of slowly evolving horizons [151, 106] to the case of black branes in asymptotically
anti-de Sitter spacetimes in arbitrary dimensions. The results were used to analyze
the behavior of both event and apparent horizons in the gravity dual to boost-
invariant flow. These considerations were motivated by the fact that at second
order in the gradient expansion the hydrodynamic entropy current in the dual
Yang-Mills theory appeared to contain an ambiguity [13]. This ambiguity, in the
case of boost-invariant flow, was linked with a similar freedom on the gravity side
leading to a phenomenological definition of the entropy of black branes. Some
insights on fluid/gravity duality and the definition of entropy in a time-dependent
setting were also elucidated. This work was one of the first examples of possible
direct physical interpretation of quasilocal notions of horizons (see [48] for a review).
It might be also relevant for numerical studies of gravitational solutions dual to
far-from-equilibrium quantum field theory configurations (such as [21, 67]), because
quasilocal horizons provide a natural cut-off for numerical integration in the radial
direction. A follow-up project, which generalizes the results of [49] to arbitrary
hydrodynamic flow within the fluid/gravity duality, is the subject of ongoing work
[108].

Chapter 6. sQGP as hCFT: The paper [64] examined the proposal to make
qualitative comparisons between the strongly coupled quark-gluon plasma and holo-
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graphic descriptions of conformal field theory. In particular, leading corrections
from higher curvature terms in the dual gravity theory to certain transport coef-
ficients appearing in second order hydrodynamics were studied. The applicability
of these results to quantitative comparisons with the sQGP was also discussed.
The approach started in [19] and developed further in [64] is one of the very few
attempts to treat holographic conformal field theories as an effective description of
real-world phenomena.

Chapter 7. Far-from-equilibrium dynamics of boost-invariant plasma:
Article [39] studied the boost-invariant dynamics of a strongly-coupled conformal
plasma in the regime of early proper-time. It was one of the first attempts to
understand far-from-equilibrium dynamics at strong coupling using the AdS/CFT
correspondence and the first one which studied setting the initial conditions for field
theory dynamics using the gravitational description. In particular, it was shown,
in contrast with the late-time expansion and contrary to claims by other authors
[141], that a scaling solution at early time does not exist. The boundary dynam-
ics in this regime turned out to depend on initial conditions encoded in the bulk
behavior of a Fefferman-Graham metric coefficient at initial proper-time. The rela-
tion between the early-time expansion of the energy density and initial conditions
in the bulk of AdS was provided and as a general result it was proven that a sin-
gularity of some metric coefficient in Fefferman-Graham frame exists at all times.
Requiring that this singularity at τ = 0 is a mere coordinate singularity without
the curvature blow-up provided constraints on the possible boundary dynamics.
Subsequent analytic and numerical approximations revealed subsequent reach dy-
namics. Numerical studies of the gravity dual to boost-invariant flow starting from
some regular initial conditions are subjects of ongoing projects [142, 145].

Future directions
The dynamics of boost-invariant flow at early and transient time is one the very first exam-
ples of the use of string theory methods to understand far-from-equilibrium physics of non-
perturbative quantum field theories. Further far-from-equilibrium applications of gauge/gravity
duality are the most interesting future line of research. Future developments will need com-
bined analytic and numerical methods and may be important for understanding of such di-
verse systems as early time phases of heavy ion collision and thermalization of the resulting
fireball, singularity formation in the bulk of AdS or even cosmology of the early universe
(dynamics of plasma on the expanding background). One particularly interesting applica-
tion of gauge/gravity duality lies in the study of collisions of gravitational shock waves (see
[146, 147, 152, 153] for preliminary attempts or [154, 155, 156] for estimates of entropy pro-
duction in heavy ion collisions based on the area of apparent horizon prior to collision of
gravitational waves). In the dual QFT language, the collision of gravitational waves maps
into the problem of collisions of lumps of matter which, superficially at least, can be made
to mimic collisions of nuclei in QCD. The power of the gravitational description in this and
similar setups is that it allows for tracking of observables during the complete time evolution
of the system – from the initial far-from-equilibrium dynamics to the late-time onset of hydro-
dynamics. However, it has to be borne in mind that some of pre-equilibrium RHIC physics
might be driven by perturbative phenomena.
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Another interesting direction is to extend the phenomenological constructions of “effective
hCFT of sQGP” including deviations from conformality in more systematic fashion18, as well as
going beyond the Einstein gravity corner (which may however need better understanding of the
gauge/gravity duality itself). On equal footing, recent progress in obtaining simplest transport
properties of gluodynamics from lattice might be a signal, that for some QCD quantities the
gauge/gravity duality is going to be replaced by more and more capable computer simulations
[157, 158] (see [159] for a review).

Very interesting, but somehow disconnected from the applications discussed in the Thesis, are
attempts to understand condensed matter phenomena at strong coupling in terms of gravity
dual description. Until now, almost all of the effort focused on static properties or linearized
dynamics and it would be very tempting to use the machinery developed for studying QCD-
inspired setups within the AdS/CFT correspondence to model real-time nonlinear dynamics
of collective phenomena at strong coupling.

It is peculiar that string theory – the unique framework offering the possibility of UV comple-
tion of gravity and Standard Model interactions – is closest to the real-world applications via
the holographic correspondence. In particular, the gauge/gravity duality provided a tractable
arena for the controlled study of strongly coupled dynamics in non-Abelian gauge theories.
Such calculations involved gravitational collapse and ensuing dynamics of black holes in the
bulk of higher dimensional (in simplest examples asymptotically Anti-de Sitter) spacetimes.
The importance of the results obtained was twofold. First, gauge/gravity duality is a pow-
erful tool which can be used to systematically understand the dynamics of strongly coupled
Quantum Field Theories from classical gravitational dynamics and some of its results (e.g.
transport properties at strong coupling) have proved to be useful. Second, dual (gravitational)
calculations which reveal the dynamics of strongly coupled gauge theories describe the evo-
lution of black branes and may teach us something about real-world black holes or gravity
in general. Specifically, they could lead to progress in string theory by addressing physical
phenomena where quantum gravity is expected to be important. Such advances might bring
us closer to understanding of real-world on smallest scales, which has been the ultimate task
of string theory for last 30 years.

18e.g. understand the fluid/gravity duality up to second order in gradients in non-conformal case.
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