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Preface

The Drell-Yan process has been widely studied in many past [1] and present [2]

hadron collider experiments and played a significant role in the development of

our understanding of quantum chromodynamics (QCD) and electroweak (EW)

interactions, both from the experimental and theoretical point of view. Cer-

tainly this will also be the case for the LHC experiments, especially because it

will soon become the unique W and Z boson production factory which is ex-

pected to collect 300 million W and 20 million Z events per year of its operation

at energies
√
s = 14 TeV and the luminosity of 1033 cm−2s−1. High-precision

studies of electroweak bosons properties, their propagation in vacuum and in

hadronic matter, their interactions with matter and with the radiation quanta

are expected to provide the decisive experimental insight into the mechanism

governing the electroweak symmetry breaking. In order to achieve these aims

and make the LHC successful it is essential that we simultaneously improve our

theoretical predictions and phenomenological tools, such as Monte Carlo event

generators, and, on the other hand, design novel measurement strategies which

are both robust and assure the highest-achievable precision in controlling the

detection and reconstruction systematic biases. In the presented thesis these

very important aspects for the LHC are of great concern.

In the first part of this thesis we present a new member of the Krakow YFS

Monte Carlo event generator family – ZINHAC, which is a dedicated Monte

Carlo event generator, written in C++, for the single Z-boson1 production in

hadronic collisions with YFS multiphoton radiation effects in leptonic decays.

The Drell–Yan-like production of the single Z-boson, with the weak bo-

son decaying into a lepton pair, is a clean process with a large cross section at

hadron colliders. It is well suited for a number of precision measurements, both

at the proton–antiproton (p p̄) Fermilab Tevatron collider and at the proton–

1 All our calculations include virtual photon γ∗ and the full interference between γ∗ and
Z in the Drell–Yan-like process, but for the convenience we will refer in the following to this
process as to Z-boson production.
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proton (p p) CERN Large Hadron Collider (LHC) [3, 4]. Just to give one

example here, as we will see in Chapter 3 that the precise description of the

neutral–curent Drell–Yan-like process is very important for the W -boson mass

and width measurements, both for the novel [5] and “standard” [6] methods.

For this reason, it is of utmost importance to predict the Z observables with

as-high-as-possible theoretical precision. Among radiative corrections that af-

fect the Z-boson observables considerably is the photon radiation in leptonic Z

decays. It distorts Z-invariant-mass distributions reconstructed from Z-decay

products as well as affects lepton pseudorapidity and transverse momentum dis-

tributions. These distortions are strongly acceptance-dependent. Therefore, in

view of the expected precision at the LHC, it will be necessary to eliminate

(or largely reduce) this source of theoretical uncertainty in the experimental

analysis by including multiple photon corrections to the process of the single

Z production. In order to be fully applicable in a realistic experimental situ-

ation, such predictions have to be provided in terms of a Monte Carlo event

generator, which is central to any high-energy physics experiment. The above

requirements are fulfilled by the ZINHAC Monte Carlo event generator.

In the second part of the thesis we will concentrate on the QCD correc-

tions, more specifically on the improvement of theoretical predictions for the

transverse momentum spectrum of vector bosons in the Drell–Yan processes,

which is one of the most useful and important Z and W observables for the

experimental program at the LHC. For this reason, it is of utmost importance

to predict the W and Z observables with as-high-as possible theoretical preci-

sion. The sources of uncertainty in the QCD theoretical predictions of W and Z

observables, such as the transverse momentum of electroweak bosons are of per-

turbative and non-perturbative origin. In Chapter 2 we will concentate on the

modelling of the latter in the framework of a backward evolution parton shower

approach [7] which is widely used in general-purpose Monte Carlo generators,

such as Herwig [8] or Pythia [9], and has become a key component of a wide

range of comparisons between theory and experiment. Clearly, it will also be

the case with the new generation of event generators, such as HERWIG++ [10],

the object oriented version of Pythia [11] or Sherpa [12]. Therefore, parton-

shower algorithms are important and challenging topics which still seek great

improvement. In Chapter 2 we present an example of such improvement which

is a new model of non-perturbative gluon emission in an initial-state parton

shower. This model gives a good description of transverse-momentum spec-
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trum of vector bosons for the data taken in previous experiments over a wide

range of CM energy. At the end of the chapter the model’s prediction for the

transverse momentum distribution of the Z bosons for the LHC is presented

and used for a comparison with other approaches. This quantity is very im-

portant for the experimental program at the LHC, for example in the case of

W -boson production – the uncertainty in the shape of the transverse momen-

tum spectrum directly affects the measurement of the W mass [6] and its mass

charge asymmetry MW+ −MW− [13].

Last but not least, in Chapter 3 we present a new strategy for the W -boson

mass measurement at the LHC. First, we show how to significantly reduce

the impact on the precision of the effects which are the strongest and, as a

consequence, the most important for the W -mass measurement at the Teva-

tron. In the proposed strategy the impact on the precision of the measured

parameters is reduced by using dedicated observables and dedicated measure-

ment procedures which exploit flexibilities of the collider and detector running

modes. This method features its robustness with respect to the systematic

measurement and modeling error sources and optimises the use of the Z-boson

production process as “the standard reference candle” for the W -mass measure-

ment at the LHC. The presented strategy allows to factorize and to directly

measure those of the QCD effects which are not under good theoretical con-

trol and which affect differently the W and Z production processes. In the

contrary to the QCD effects, the electroweak corrections in the neutral and

charged Drell–Yan processes can be controlled very precisely via dedicated

Monte Carlo generators, such as WINHAC and presented in the first part of

the thesis ZINHAC. In the second part of this chapter we demonstrate “new”

error sources which are not important for the Tevatron p p̄ collisions but will

play an important role in the p p collisions at the LHC. We argue that in or-

der to reach the O(10) MeV precision target, claimed by both the ATLAS [6]

and CMS [14] Collaborations, some novel LHC-specific measurement strategies

must be developed. At the end of this chapter two examples of such strate-

gies are proposed. In the first one we circumvent the LHC specific precision

‘brick-walls’ by proposing the dedicated LHC runs with deuterium or helium

ion beams. The second, alternative strategy includes a dedicated fixed-target

“LHC-support” experiment with a high-intensity muon beam.
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Chapter 1

The Monte Carlo event
generator ZINHAC

Abstract

In this chapter we present the calculation of multiphoton radiation effects in

leptonic Z-boson decays in the framework of the Yennie-Frautschi-Suura exclu-

sive exponentiation. This calculation is implemented in the dedicated Monte

Carlo event generator for precision description of the neutral-current Drell–Yan

process, i.e. Z/γ∗ production with leptonic decays in hadronic collisions. Some

numerical results obtained with the help of this program and comparisons with

SANC program are also presented.

This chapter is based on the following materials: [15], [16], [17] and [18].
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1.1 Introduction

The infrared (IR) divergences may emerge if considered theory includes a mass-

less field like the photon in quantum electrodynamics (QED). This type of di-

vergences comes from the region of real and virtual soft gauge bosons. The

divergences appear in every higher order of perturbative expantion to any elas-

tic scattering amplitude when a charged particle in QED (or a colour-charged

particle in QCD) changes the direction of its motion. In QED the resolution

of this problem is well known and the physical picture behind it is well under-

stood. When the infrared divergences in all loops are summed up, the elastic

amplitude vanishes. This is very natural and can already be explained at the

classical level: scattering of charged particles is always accompanied by the

bremsstrahlung of soft photons and the probability not to emit such a photon

is zero. But a pure elastic scattering is not a physical process. The detector

always has a finite energy resolution ∆ε. We never know whether soft photons

with energy ∆ε were emitted or not and we have to sum over the probabilities

of all these processes. Such a sum is called a physical cross section. These

physical cross sections are always finite: infrared divergences which show up in

the probabilities of individual processes cancel out of the sum.

At the first order of perturbative expantion, the mechanism of this cancel-

lation in QED was understood by Bloch and Nordsieck [19] back in 1937 and

is explained in the textbooks [20, 21, 22]. It was generalized to higher orders

by Yennie, Frautchi and Suura (YFS) [23]1. The YFS approach is based on

the concept of resumming the infrared contributions to all orders. The big

advantage of the YFS formalism is that, in addition, it allows for a systematic

improvement of this eikonal approximation, order-by-order in the QED cou-

pling constant. This is the reason why the most precise tools for the simulation

of QED radiation are based on this algorithm. Some examples of these pro-

grams will be mentioned later in this section. In their pioneering paper Yennie,

Frautchi and Suura presented the exact result for the processes:

f1(p1) + f2(p2)→ f3(p3) + f4(p4) + n(γ), (1.1)

accompanied by the original applications of their results at the precision of the

leading term. For example, for initial state radiation (ISR) in e+e− annihilation

1 Their proof was polished and presented in a nice transparent form by Weinberg [24].
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the result2 is as follows:

dσexp ∼= γFY FS(γ)(1− z)γ−1σBdz (1.2)

where we have defined:

z = s′/s, γ =
2α

π

(
ln

s

m2
− 1
)
, s = (p1 + p2)2, s′ = (p3 + p4)2 (1.3)

and

FY FS(γ) =
e−Cγ

Γ(1 + γ)
, (1.4)

here C ∼= 0.5772 denotes the Euler’s constant and σB is the respective Born-

level cross section. These first early applications were (semi-)analytical and

their accuracy was around . 10%, which was quite adequate for applications

of that time experiments in which errors on σB were much larger.

This situation changed during LEP1/SLC and LEP2 era where the precision

of the electroweak measurements improved drastically and, as a consequence,

there was a great need to improve precision of theoretical predictions. It turned

out that this was possible with the application of [23] to precision predictions

from quantum field theory via Monte Carlo (MC) methods. The pioneering

solution to this problem was given by S. Jadach in Ref. [25] which opened

the way to use the exact result of [23] via Monte Carlo methods, so that

very high precision predictions could be obtained on an event-by-event basis.

The first realistic MC for precision SLC/LEP1 physics – YFS1 with an exact

O(α), YFS-exponentiated multiple-photon MC for e+e− → ff̄ + n(γ), f 6=
e, was published by S. Jadach and B.F.L. Ward in Ref. [26]. The precision

reached by the program in Z physics was . 1%. Shortly after that the same

authors published in Ref. [27] the first realistic exact O(α), YFS-exponentiated

multiple-photon MC for e+e− → e+e− + n(γ) at low angles, BHLUMI 1.0, for

LEP/SLC physics, where the primary applications were precision luminosity

predictions. Again, the precision tag was . 1%.

The large number of Z’s at LEP1 (2× 107 were detected) necessitated the

per-mille-level theory precision in order that the theoretical error would not

compromise the outstanding experimental error in the attendant tests of the

electroweak (EW) and QCD theories. It was achieved by the YFS2 and YFS3

MC realizations of the YFS approach in Refs. [28, 29], wherein the precision

2Only the leading terms in γ are then retained in this β̄0-level approximation, see Ref [23]
for details.
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tags were 0.1% for initial state radiation and for the combination of initial state

and final state radiation, respectively.

The whole family of YFS Monte Carlo event generators was developed:

KORALZ 3.8, 4.04 [30, 31,32] with the 0.1% precision tag on 2f production at

the Z regime at LEP1/SLC, BHLUMI 2.01, 2.30, 4.04 [33,34] for the LEP1/SLC

luminosity-process small-angle Bhabha scattering and BHWIDE [35] for the

large-angle Bhabha scattering with the precision tag at 0.2% at the Z regime

at LEP1/SLC.

For LEP2 experiments there was a need for novel precise tools, therefore

new series of MC event generators appeared, KKMC [36], which gives 0.2%

precision on radiative return 2f production at LEP2 energies, YFSWW3 [37]

with the 0.4% precision on WW production, KoralW 1.02, 1.42 [38,39] with the

1.0% precision on the 4f background processes, KoralW 1.51 [40], the concur-

rent KoralW&YFSWW3 MC, with the 0.4% precison on the 4f production near

the WW regime, and YFSZZ [41] with the 2% precision for ZZ production.

The precisions of BHWIDE and BHLUMI at LEP2 was 0.4% and 0.122%, re-

spectively. All these programs, which are based on the rigorous MC realization

of the YFS approach on the event-by-event basis, played an important role for

the precise description of leptonic collisions. More details and examples of the

YFS MC event generators can be found in Ref. [42].

The situation becomes even more complicated in the case of hadron collid-

ers due to additional quantum chromodynamics (QCD) effects which have to

be taken in to account. One of many QCD complications will be discussed in

Chapter 2, nevertheless, as we will see in in Chapter 3, the electroweak cor-

rections still play an important role in the experimental analysis and it is of

utmost importance to predict them with as-high-as-possible theoretical preci-

sion. To evaluate, for example, the impact of electroweak corrections in the

case of the CDF and DØ, both collaborations at the Tevatron Run I made use

of the fixed-order calculations of Refs. [43,44] for the single W production and

for the single Z process. However, the anticipated precision for the Drell–Yan

process at the LHC, requires that leading contributions from radiation of mul-

tiple photons are included [45, 46]. A first attempt towards the inclusion of

higher-order QED corrections was the calculation of the W and Z production

with radiation of two additional photons in Ref. [47]. For the very first time the

higher-order corrections due to multi-photon (real and virtual) radiation in W

decays at hadron colliders have been computed in Ref. [48] and the new member
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of Krakow Monte Carlo generators family – the first Monte Carlo event genera-

tor for hadronic collisions which included calculation of multiphoton radiation

effects in leptonic decays in the framework of the Yennie-Frautschi-Suura ex-

clusive exponentiation – called WINHAC was constructed. Independently C.

Carloni Calame, G. Montagna, O. Nicrosini and M. Treccani constructed HO-

RACE [49] – the Monte Carlo generator for a Drell–Yan-like processes in which

the corrections due to multiphoton radiation are computed using QED struc-

ture function approach. The corrections are calculated by solving numerically

the DGLAP evolution equation for the QED structure function by means of

the parton shower algorithm described in detail in Ref. [50]. Those two dif-

ferent approaches were compared in the case of single W -boson production in

hadronic collisions with multiphoton effects in leptonic W decays [51]. These

comparisons were performed first at the parton level with fixed quark-beams

energy, and then at the hadron level for proton–proton collisions at the LHC.

In general, a very good agreement – ar the per-mille level between – HORACE

and WINHAC has been found. WINHAC was also compared with the SANC MC

integrator [52]. The main and very important conclusion of this comparison

was that both programs have reached the agreement for the O(α) EW correc-

tions to the charged-current Drell-Yan process at the sub-per-mill level, both

for the inclusive cross section and for the main distributions.

In this chapter we will present a new member of the Cracow YFS Monte

Carlo event generator family – ZINHAC, which is a dedicated Monte Carlo

event generator for the single Z-boson3 production in hadronic collisions with

YFS multiphoton radiation effects in leptonic decays.

The Drell–Yan-like production of single Z boson, with the weak boson de-

caying into a lepton pair, is a clean process with a large cross section at hadron

colliders. Therefore, it is ideal for a number of precision measurements, both

at the proton–antiproton (pp̄) Fermilab Tevatron collider and at the proton–

proton (pp) CERN Large Hadron Collider (LHC) [3, 4]. As we will see in

Chapter 3, the precise description of the neutral–curent Drell–Yan-like process

is very important for the W -boson mass and width measurement, both for

the novel [5] and “standard” [6] methods. The forward–backward asymme-

try in the neutral–current channel can be used to measure the weak mixing

3All our calculations include virtual photon γ∗ and the full interference between γ∗ and
Z in the Drell–Yan-like process, but for the convenience we continue to refer in this chapter
to this process as Z-boson production.
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angle. The Z-boson data is also well suited for the so called “standard can-

dles”, i.e. as means to understand the detector performances and to accurately

calibrate its parameters, such as the energy scale and resolution of the elec-

tromagnetic calorimeter, as well as to monitor the collider luminosity with a

per-cent precision and constrain the parton distribution functions (PDFs), by

using observables such as the W/Z rapidity and lepton pseudorapidity. It

is important also as the Standard Model (SM) backgrounds to new physics

searches, such as the search for heavy Z
′

gauge bosons predicted by various

extensions of the SM. In this case, the relevant experimental observables are,

for example, the invariant mass of the final state leptons in the high tail, i.e.

in the few-TeV region at the LHC. For the above reasons, it is of utmost

importance to predict the Z observables with as-high-as-possible theoretical

precision. Among radiative corrections that affect the mentioned above Z-

boson observables considerably is the photon radiation in leptonic Z decays.

It distorts Z-invariant-mass distributions reconstructed from Z-decay prod-

ucts as well as affects lepton pseudorapidity distributions. These distortions

are strongly acceptance-dependent.

Therefore, in view of the expected precision at the LHC, it will be necessary

to eliminate (or largely reduce) this source of theoretical uncertainty in the ex-

perimental analysis by including multiple photon corrections to the process of

the single Z production. In order to be fully applicable in a realistic exper-

imental situation, such predictions have to be provided in terms of a Monte

Carlo event generator, which is central to any high-energy physics experiment.

They are used by almost all experimental collaborations to plan their experi-

ments and analyze their data. The above requirements are fulfilled by ZINHAC

Monte Carlo event generator. As conclusion, in Table 1.1 we stress the place

of ZINHAC with respect to multi-purpose and a few specialised Monte Carlo

programs that can produce W or Z in the Drell–Yan process. In this table

MC event generators (MCEG) are distinguished from the ones using Monte

Carlo methods only as a mean for integration (MCI). As can be seen, there is

up to date (2009) no Monte Carlo program that includes the QCD and EW

corrections at the same level of detail.

The chapter is organized as follows. In Section 1.2 we discuss the YFS ex-

ponentiation in leptonic Z-boson decays, together with spin amplitudes for the

4Currently this is possible by interfacing ZINHAC with a general purpose Monte Carlo
event generators such as Pythia 8 or Herwig++ via the Les Houches event files [75].
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Monte Carlo Ref. Process QCD EW Type

ZINHAC [18] Z PDF(x), impr.4 LO QED YFS⊗O(α) MCEG
WINHAC [48, 53,54] W PDF(x), impr. LO QED YFS⊗O(α) MCEG
HORACE [49, 55] W , Z PDF(x), impr. LO QED PS⊗O(α) MCEG
Pythia [9, 56] W , Z PDF(x), impr. LO LO MCEG
HERWIG [8, 57] W , Z PDF(x, pT ), impr. LO LO MCEG
Herwig++ [10, 58] W , Z PDF(x, pT ), NLO LO MCEG
Sherpa [59, 60] W , Z PDF(x, pT ), impr. LO LO MCEG
MC@NLO [61, 62] W , Z parton shower, NLO LO MCEG
AcerMC [63, 64] W , Z PDF(x), LO LO MCEG
ResBos-A [65, 66] W , Z PDF(x, pT ), NLO FS O(α) MCI
ResBos [67, 68] W , Z PDF(x, pT ), NLO LO MCI
WGRAD [44, 69] W PDF(x), LO O(α) MCI
ZGRAD2 [70, 71] Z PDF(x), LO O(α) MCI
SANC [72, 73,74] W , Z PDF(x), LO O(α) MCI

Table 1.1: The overview of some Monte Carlo programs capable of simulating the single
W or Z production in hadronic colliders. The quoted references corresponds to the main
reference and the software homepage for further references and details on the Monte Carlo
program, respectively.

Born-level process and for the process with single-photon radiation in Z de-

cays. In Section 1.4 we describe the Monte Carlo algorithm. Numerical results

and comparison with SANC are presented in Section 1.7. Section 1.8 sum-

marizes the chapter and gives some outlook. Finally, the appendices contain

supplementary formulae.

1.2 The YFS exponentiation in leptonic Z de-

cays

As was mentioned in the Introduction, the main purpose of this work is to pro-

vide a theoretical prediction for the multiphoton radiation in leptonic Z-boson

decays within the YFS exclusive exponentiation scheme. We restrict ourselves

to consider final-state QED corrections only (as is shown in the Fig. 1.1), be-

cause it is known from previous investigations that the electroweak corrections

to Drell–Yan-like processes are largely dominated by photon radiation from the

final-state charged leptons [43,44,76].

The total cross-section for the neutral–current Drell–Yan-like process in hadron

collisions accompanied by emission of an arbitrary number of photons in the
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q(p1)

q̄(p2)

Z + γ∗

l(q1)

l̄(q2)

γn

γ1

γ2

γ3

Figure 1.1: The production of a single Z + γ∗ in quark–antiquark collisions
with multiphoton radiation in the final state.

final state:

h1 + h2 −→ Z + γ∗ −→ l + l̄ + n(γ), (n = 0, 1, ...), (1.5)

where l = e, µ and h1, h2 ∈ {p, p̄, N} can be written using factorization

formula and the YFS formalism as follows:

σ =
∑
q

∫ 1

0

dx1dx2

[
fq/h1(x1, P

2)fq̄/h2(x2, P
2) + (q ↔ q̄)

]
σY FSqq̄−→l+l̄+n(γ), (1.6)

here q stands for a parton ∈ {g, d, u, s, c, b}, f(q,q̄)/h(x, P
2) are the parton dis-

tribution functions (PDF) of a parton q (or q̄) in a hadron h for the Bjorken

variable x and hard-process scale P 2, σY FS
qq̄−→l+l̄+n(γ)

denotes the QED YFS-

exponentiated total cross section for the process

q1(p1)+ q̄2(p2) −→ Z/γ(P ) −→ l(q1)+ l̄(q2)+γ(k1)+ . . .+γ(kn), (n = 0, 1, . . .),

(1.7)

which is also depicted diagrammatically in Fig. 1.1.

The O(α) QED YFS-exponentiated total cross section reads

σY FSqq̄−→l+l̄+n(γ) =
∞∑
n=0

1

n!

∫
dτn+2(p1 + p2; k1, ..., kn) ρ(1)

n , (1.8)

where

dτn(P ; p1, p2, ..., pn) =
n∏
j=1

d3pj
2p0

j

δ(4)

(
P −

n∑
j=1

pj

)
, (1.9)
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denotes the Lorentz-invariant phase space. The total cross-section is expressed

in terms of the final-state differential multiphoton distribution

ρ(1)
n (p1, p2,q1, q2, k1, ..., kn) = eQ

2
fYΩF

(q1,q2)
n∏
l=1

S̃F (kl) Θ̄(ΩF ; kl)

×
[
β̄

(1)
0 (p1, p2, q1, q2) +

n∑
i=1

β̄
(1)
1 (p1, p2, q1, q2, ki)

S̃F (ki)

]
,

(1.10)

where for the final-state charged leptons Q2
f = 1. The YFS soft (eikonal)

factors for real photons emitted from the final-state fermions read

S̃F (kl) = − α

4π2

(
q1

klq1

− q2

klq2

)2

. (1.11)

The YFS form factor is defined as follows

YΩ(p1, p2) ≡ 2αB̃(Ω, p1, p2) + 2α<B(p1, p2) (1.12)

where B and B̃ are the virtual and real-photon infrared YFS functions, given

explicitly in the next section for arbitrary four-momenta and masses of charged

particles.

In Eq. (1.10), β̄
(1)
0 and β̄

(1)
1 are the YFS IR-finite functions, which can be

calculated perturbatively from the Feynman diagrams. We present them below

in the centre-of-mass (CM) frame of the incoming quarks, i.e. the rest frame

of the intermediate boson, with the +z axis pointing in the quark q direction.

The function β̄
(1)
0 is given by

β̄
(1)
0 (p1, p2, q1, q2) = β̄

(0)
0 (p1, p2, q1, q2)

[
1 + δF (q1, q2)

]
, (1.13)

where β̄
(0)
0 is related to the Born-level cross section through

1

2
β̄

(0)
0 =

1√
λ(1,ml/M,ml̄/M)

dσ0

dΩl

=
1

16sP (2π)2

1

12

∑∣∣M(0)
∣∣2 , (1.14)

with sP = (p1 + p2)2, λ(x, y, z) = x2 + y2 + z2− 2xy− 2xz − 2yz and M is the

invariant mass of the intermediate boson (M2 = P 2). The factor 1
12

= 1
4
· 1

3

corresponds to averaging over the initial-state quark spins and colours (the

colour contents has been extracted explicitly), and the sum
∑

runs over all

the initial- and final-state spin indices. In Eq. (1.127), the correction

δF (q1, q2) = δFEW(q1, q2;mγ)− 2α<B(q1, q2;mγ) (1.15)
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is the 1st order non-IR correction to the β̄0 function, where δvEW is theO(α) EW

virtual correction. In ZINHAC the EW corrections are incorporated from the

SANC system. The expression for the pure QED corrections is much simpler:

δFQED(q1, q2) =
α

π

(
ln

2q1q2

m2
l

− 1

)
, (1.16)

therefore they are directly implemented in ZINHAC. These corrections are also

available in SANC framework, which is useful for tests of the ZINHAC to SANC

interface. The function β̄
(1)
1 is the YFS non-IR function corresponding to the

single-real-hard photon radiation. It is related to differential cross sections

through

1

2
β̄

(1)
1 (p1, p2, q1, q2, k) =

1√
Λ(k)

dσ1

dΩlk0dk0dΩk

− S̃F (k)
1√
λ

dσ0

dΩl

, (1.17)

where
dσ1

dΩlk0dk0dΩk

=

√
Λ(k)

32sP (2π)5

1

12

∑∣∣∣M(1)
FSR

∣∣∣2 , (1.18)

with √
Λ(k) =

2 |~q1|2
|~q1|(M − k0) + q0

1|~k| cos θ1k

(1.19)

being the phase-space factor (coming from the phase-space integration elimi-

nating the energy-momentum conservation δ(4)-function for single-photon ra-

diation), where θ1k = ∠(~q1, ~k); in the soft-photon limit Λ(k → 0) → λ. The

sum
∑

in Eq. (1.18) again runs over the initial- and final-state spin indices,

this time including also those of the radiative photon. Thus, we finally have

β̄
(1)
1 (p1, p2, q1, q2, k) =

1

16s (2π)5

1

12

∑∣∣∣M(1)
FSR

∣∣∣2 − S̃F (k)β̄
(0)
0 (p1, p2, q1, q2).

(1.20)

The calculation of the matrix elements M will be presented in Section 1.4

and, as we will see, the spin amplitudes formalism is applied for this purpose.

This completes our description of the cross section for the process (1.7)

with the O(α) QED YFS exponentiation for the FSR. In order to compute

this cross section and generate events, we have developed an appropriate MC

algorithm which will be described in detail Section 1.5, but first we will present

some analytical representations of the YFS infrared functions corresponding to

emission of virtual and real photons, and then show the calculations of the

matrix elements needed for the IR finite functions β̄
(1)
0 and β̄

(1)
1 .
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1.3 YFS infrared functions

The IR functions defined in the previous section

YΩ(q1, q2) ≡ 2αB̃(Ω, q1, q2) + 2α<B(q1, q2)

≡− 2α
1

8π2

∫
d3k

k0
Θ(Ω; k)

(
q1

kq1

− q2

kq2

)2

+ 2α<
∫
d4k

k2

i

(2π)3

(
2q1 + k

2kq1 + k2
− 2q2 − k

2kq2 − k2

)2

(1.21)

have to be regularized for example by the dummy photon mass mγ, which

cancels out in their sum. The real-photon function B̃ depends also on the

soft-photon energy cut-off. We define the IR domain ΩF with the condition

k0 < Emin �
√
s in the rest frame of Q = q1 + q2 referred to as QMS, which

means that it was integrated analytically over the photons with energies k0 ≤
Emin. The photons with energies k0 > Emin are generated exclusively with the

help of Monte Carlo techniques. The soft cut-off Emin is a dummy parameter,

i.e. the resulting cross section does not depend on it, which can be checked

both analytically and numerically (by evaluating the cross section for different

values of Emin). One of the advantages of exponentiation is that Emin can be

put arbitrarily low without causing any part of the cross section to become

negative – in contrast to fixed-order calculations.

An important feature of the representations of the YFS IR functions pre-

sented in Ref. [77] is that they are stable and fast in numerical evaluation.

Thus, they are particularly suited for Monte Carlo implementations such as

ZINHAC.

Here we just present the YFS form factor for our choice of Ω in the approx-

imation where m1,m2 �
√
s:

Yf (ΩF ; q1, q2) = γf ln
2Emin√
(q1 + q2)2

+
1

4
γf +Q2

f

α

π

(
− 1

2
+
π2

3

)
,

γf = 2Q2
f

α

π

(
ln

2q1q2

m2
f

− 1

)
.

(1.22)

This result, because of its simplicity, is very useful for the testing purposes as

well as for definition of the so-called simplified cross-section defined in Section

1.5.2. However, in our Monte Carlo generator we used general formulation

of the YFS form factor, without any approximation which has much more

complicated structure, therefore presented in Appendix A.1.
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1.4 Matrix elements

In this subsection we will present the calculations of tree-level matrix elements

needed by IR finite functions β̄
(1)
0 and β̄

(1)
1 , i.e the matrix elements at the Born

level and O(α) in the convention of Ref. [78]. There are several advantages of

using spin amplitudes for calculation of matrix elements. Firstly, the spin am-

plitudes can be seen as a kind of “Lego” toy in the sense that like in this famous

children game we can use some basic bricks (spinorial string functions) to build

more complicated objects (tree level amplitudes). The bricks can be assembled

and connected in many ways, to construct complicated tree amplitudes, more-

over we can reuse those complicated structures to build even more complicated

objects6. Secondly, the spin amplitudes are derived without the assumption of

the energy-momentum conservation. Therefore, they can be used directly in

evaluations of the above YFS β̄-functions over the multiphoton phase space,

without the need to resort to any “reduction procedure”, which reduces the

multiphoton phase space to the 0-photon phase space for β̄0 and the 1-photon

phase space for β̄1, see e.g. [23]. On top of that, since the spin amplitudes are

obtained for massive fermions, there is no need to use any phase-space slicing

or subtraction methods in order to separate the mass singularities [79]. Using

spin amplitudes instead of explicit analytical formulae for the squared matrix

elements may also be useful for some dedicated studies, such as investigation of

various Z-polarization contributions, “new physics” searches (spin amplitudes

can be easily modified to include some “new physics” components like Z ′), etc.

And, which is important in practice, the numerical evaluation of the matrix

elements based on the above spin amplitudes is fast in terms of CPU time.

The section is organized as follows. First we introduce the basic blocks

of the spin amplitudes in the framework of Ref. [78], i.e. the spinorial string

function S(pi, a1, . . . , an, pj)
α
λi,λj

, then we use them to construct the amplitude

for the Drell–Yan process at the Born and O(α) QED level. For calculation

of the latter we will reuse the result of the structure constructed for the spin

amplitudes at the Born level.

6We will see later in this section how we will reuse the Born–level building blocks to
construct the O(α) matrix elements.
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1.4.1 Basic blocks – spinorial string functions

In the approach of Hagiwara–Zeppenfeld [78], a generic four-spinor ψi for a

fermion or anti-fermion with momentum p and helicity λ,

ψi = u(pi, λi) or ψi = v(pi, λi)
7 (1.23)

is expressed in terms of the 2-component Weyl spinors, (ψi)±:

ψi =

 (ψi)−

(ψi)+

 , ψ̄i =
[
(ψi)

†
+, (ψi)

†
−

]
. (1.24)

As a basis for free spinors the helicity eigenstates χ±(p) are used:

~σ · ~p
|~p| χλ(p) = λχλ(p), (1.25)

where ~σ is the ”vector” of Pauli matrices in the standard basis (see Ap-

pendix A.2). The free spinors in this basis read,

u(p, λ)± = ω±λ(p)χλ(p), v(p, λ)± = ±λω∓λ(p)χ−λ(p), (1.26)

where

ω±(p) = (E ± |~p|)1/2. (1.27)

For an arbitrary momentum pµ = (E, ~p) = (E, px, py, pz) with |~p| + pz 6= 0 we

have:

χ+(p) =
[
2 |~p|(|~p|+ pz)

]− 1
2

 |~p|+ pz

px + ipy

 , (1.28)

χ−(p) =
[
2 |~p|(|~p|+ pz)

]− 1
2

 −px + ipy

|~p|+ pz

 . (1.29)

In the case when |~p| = pz we use the convention:

χ+ =

 0

1

 , χ− =

 −1

0

 . (1.30)

The free spinors satisfy the Dirac equation of motion (p2 = m2):

/p±u(p, λ)± = mu(p, λ)∓, /p±v(p, λ)± = −mv(p, λ)∓, (1.31)

7See Appendix A.3 for details on our convention.
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and are normalised as:

ū(p, λ)u(p, λ) = 2m, v̄(p, λ)v(p, λ) = −2m, (1.32)

which fixes our convention for the spinors.

In general, an arbitrary tree amplitude with external fermions can be ex-

pressed as a “fermion spinorial string”:

ψ̄1P−α 6a1 6a2 . . . 6anψ2 (1.33)

where

P± =
1

2
(1± γ5), (1.34)

and

6a = aµγ
µ =

 0 (6a)+

( 6a)− 0

 . (1.35)

Above we use the chiral (Weyl) representation of γ matrices (see Appendix A.2

for details) and aµ = (a0, a1, a2, a3) denotes the four-vector in the Minkowski

space. The a± are 2× 2 c-number matrices

(6a)± = aµσ
µ
± =

 a0 ∓ a3 ∓(a1 − ia2)

∓(a1 + ia2) a0 ± a3

 . (1.36)

The block structure of 6a allows us to rewrite the ”fermion spinorial string”

eq. (1.33) in terms of the 2-dimentional Weyl spinors

ψ̄1P−α 6a1 6a2 . . . 6anψ2 = (ψ1)†α[a1, a2, . . . , an]α(ψ2)−δnα. (1.37)

The internal part of the above string function

[a1, a2, . . . , an]α = (6a1)α( 6a2)−α . . . ( 6an)(−1)n+1α, (1.38)

is the product of 2 × 2 c-number matrices. Now pluging (1.37) into (1.26) we

get final expression for the ”fermion spinorial string”:

(ψi)
†
α[a1, a2, . . . , an]α(ψj)β = CiCjωαλi(pi)ωβλj(pj)S(pi, a1, . . . , an, pj)

α
λi,λj

,

(1.39)

where the constants Ci and Cj are determined by (1.26):

Ck =

 1 for (ψi)α = u(pk, λk)α,

−λkα for (ψi)α = v(pk,−λk)α.
(1.40)
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Finally, the basic brick of the method – the spinorial string function reads

S(pi, a1, . . . , an, pj)
α
λi,λj

= χ†λi(pi)[a1, . . . , an]αχλj(pj). (1.41)

As was advertised, the spinorial function S can be easily evaluated numerically

for arbitrary n. One can for example compute a product of internal 2×2 matri-

ces (/ai)α, and then multiply the resulting matrix by the external 2-dimensional

c-number vectors χ. However, a better and more efficient metod is, instead of

matrix-by-matrix multiplication, to perform recursively matrix-by-vector mul-

tiplication. In our computation of the function S, we start from multiplying

the left-hand-side vector χ† by the matrix (/a1)α, and continue by multiplying

the resulting vectors by the consecutive matrices (/ai)α until we reach the last

matrix, (/an)α. The computation is completed by performing the scalar product

of the final vector of the above multiplication with the right-hand-side vector

χ.

Three polarization vectors of a massive vector-boson with four-momentum

k = (k0, ~k) = (k0, k1, k2, k3) and the mass m are, in the Cartesian basis, given

by

εµ(k, λ = 1) =
1

|~k|kT
(
0, k1k3, k2k3,−k2

T

)
,

εµ(k, λ = 2) =
1

kT

(
0,−k2, k1, 0

)
,

εµ(k, λ = 3) =
k0

m|~k|

(
|~k|2
k0

, k1, k2, k3

)
,

(1.42)

where kT =
√

(k1)2 + (k2)2 is the transverse momentum. For massless vector

bosons, such as photons, εµ(λ = 3) = 0, i.e. there are only two non-zero

polarizations εµ(λ = 1) and εµ(λ = 2). Helicity eigenstates can be obtained

from the above polarization vectors through

εhel(k, λ = ±) =
1√
2

[∓ε(k, λ = 1)− iε(k, λ = 2) ] ,

εhel(k, λ = 0) = ε(k, λ = 3),

(1.43)

which ends this subsection and we can move to the calculation of matrix ele-

ments.

1.4.2 Born level

As is shown in the Fig. 1.2 the Born-level matrix element for the Z or γ∗ boson8

in the Drell–Yan process is given by the coherent sum of the single Z or γ∗

8In this section we will always use B to denote Z or γ∗ boson.
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production and decay spin amplitudes over the boson polarizations multiplied

its propagator. In general for a given boson B, where B = γ∗, Z the Born-level

Figure 1.2: Born level feynman diagram for Z or γ∗, denoted by B, as the
intermediate boson in the Drell–Yan process.

matrix element reads:

M(0)B(σ1, σ2; τ1, τ2) =
1

ZB(Q2)

∑
λ

M(0)B
P (τ1, τ2;λ)M(0)B

D (λ;σ1, σ2). (1.44)

where the inverse of the boson propagator ZB(Q2) in case of photon is equal

to

Zγ(Q
2) = Q2, (1.45)

while in the case of Z boson the Breit–Wigner function corresponds to the Z

propagator, therefore

ZZ(Q2) = Q2 −M2
Z + iγZ(Q2) (1.46)

and

γZ(Q2) =

 MZΓZ : in the fixed-width scheme,

Q2ΓZ/MZ : in the running-width scheme.
(1.47)

here MZ and ΓZ are the mass and width of the Z boson.

It is worth to mention that in the analogical way one can construct the

tree-level spin amplitude for an arbitrary complicated process with external

fermions and vector bosons, for example for the process

e+ + e− −→ l+ + l− −→ (νLf1f̄2)(ν̄Lf3f̄4). (1.48)

which is depicted in Fig. 1.3 where k′s, q′s, p′s and κ′s, σ′s λ′s denote, re-

spectively the four-momenta and helicities of the fermions. For a given heavy
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lepton helicities σ1 and σ2, the amplitude of the full process can be written

as a product of three amplitudes Mi, (i = 1, 2, 3), where M1 describes the

production of the ll̄–pair, while M2 and M3 are the decay amplitudes of ll̄.

We can hence write the amplitude of the full process as

�Z(q)

l−(q1, σ1)

l+(q2, σ2)

e+(k2, κ2)

e−(k1, κ1)

ν̄L(p4, λ4)

f5(p5, λ5)

f̄6(p6, λ6)

f3(p3, λ3)

f̄2(p2, λ2)

νL(p1, λ1)

Figure 1.3: Example of the more complicated tree-level amplitude.

M(κ1, κ2,λ1, λ2, λ3, λ4.λ5λ6) =
1

Zl(q2
1)

1

Zl̄(q
2
2)
× (1.49)∑

σ1,σ2

M1(κ1, κ2, σ1, σ2)M2(σ1, λ1, λ2, λ3)M3(σ2, λ4, λ5, λ6).

The amplitudesMi, i = 1, 2, 3, have identical structure but different quantum

numbers (which can be translated into “Lego” language as a three the same

“Lego” blocks with different colours). Therefore, in order to calculate this

spin amplitude it is enough to know the amplitude for much simpler process

depicted on the left–hand side of Fig. 1.2.

(a) Born-level Z-boson decay

The Feynman diagram for the Born-level Z or γ∗ (denoted by B) decay:

B(Q, λ) −→ l(q1, τ1) + l̄(q2, τ2), (1.50)

where (pi, τi) are four-vector and helicity of the fermion/antifermion, (Q, λ)

denotes the four-vector and polarisation of the boson B, is shown diagrammat-

ically in Fig. 1.2 (the second diagram on the right–hand side of the equation in

the figure). Using the Feynman rules from Appendix A.3, the matrix element

for this process can be expressed as fallows

M(0)B
D (λ; τ1, τ2) = −ieεµ(Q, λ)ū(q1, τ1)γµ

{
cBll̄L

1− γ5

2
+ cZll̄R

1 + γ5

2

}
v(q2, τ2).

(1.51)
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Making use of definitions from Section 1.4.2 and information from Appendix

A.15), we can evaluate this expression and write it in terms of the spinorial

string functions:

M(0)B
D (λ; τ1, τ2) = ie

[
cBll̄L ω−τ1(q1)τ2ωτ2(q2)S

(
q1, εB(Q, λ), q2

)−
τ1,−τ2

−
− cBll̄R ωτ1(q1)τ2ω−τ2(q2)S

(
q1, εB(Q, λ), q2

)+

τ1,−τ2

]
,

(1.52)

with B = γ, Z which means that this expression is valid both for the Z-boson

and the photon as a decaying particles.

(b) Born-level Z-boson production

The spin amplitude for single-Z or γ∗ production in fermion–antifermion col-

lisions

q(p1, σ1) + q̄(p2, σ2) −→ B(Q, λ), (1.53)

shown diagrammatically in Fig. 1.2 (the first diagram on the right–hand side

of the equation in the figure), is given by

M(0)B
P (σ1, σ2;λ) = ie×

[
cBqq̄L ω−σ1(p1)σ2ωσ2(p2)S(p2, ε

∗
B(Q, λ), p1)−−σ2,σ1

− cBqq̄R ωσ1(p1)σ2ω−σ2(p2)S(p1, ε
∗
B(Q, λ), p2)+

−σ2,σ1

]
.

(1.54)

Details on the calculation of above spin amplitudes as well as the ones of

the order O(α) presented later in this section are demonstrated in the Ap-

pendix (A.4.1), here we just restrict ourself to the final results.

The above spin amplitudes can be easily translated from the vector-boson

Cartesian basis into the helicity basis, using the following transformations:

Mhel(λ = ±) =
1√
2

[∓M(λ = 1)− iM(λ = 2) ] ,

Mhel(λ = 0) =M(λ = 3).

(1.55)

for decay amplitudes. For production amplitudes one should replace in the

first line of the above equation i→ −i (due to ε∗B).

Pluging Eq. (1.54) and Eq. (1.52) in to formulae (1.44) we can easily calcu-

late the matrix element at the Born Level for the Drell–Yan process for a given

intermediate bosons γ and Z. The full matrix element for the neutral current

Drell–Yan proces at the Born level is a sum of those two matrix elements:

M(0)γ+Z(σ1, σ2; τ1, τ2) =M(0)γ(σ1, σ2; τ1, τ2) +M(0)Z(σ1, σ2; τ1, τ2) (1.56)



1.4 Matrix elements 31

1.4.3 Real hard-photon radiation

In this subsection we present the scattering amplitudes for single hard-photon

radiation in leptonic B boson (Z or γ∗) decays

q(p1, σ1) + q̄(p2, σ2) −→ B(Q, λ) −→ l(q1, τ1) + l̄(q2, τ2) + γ(k, κ) (1.57)

and productions

q(p1, σ1) + q̄(p2, σ2) + γ(k, κ) −→ B(Q, λ) −→ l(q1, τ1) + l̄(q2, τ2), (1.58)

using the spin-amplitude formalism and the notation introduced in the previous

subsections.

(a) Single hard-photon radiation in leptonic Z-boson decays

For calculations of the matrix element for the single hard-photon radiation

in leptonic B boson decays (Eq. 1.57) we will take advantage of the “Lego”

feature of spin amplitudes. Therefore, in order to obtain the spin amplitude

for this process we will replace in Eq. (1.44) a “brick” M
(0)B
D by the new one

M
(1)B
D which denotes the spin amplitude for the single hard-photon radiation

in leptonic B (Z or γ) boson decays

B(Q, λ) −→ l(q1, τ1) + l̄(q2, τ2) + γ(k, κ), (1.59)

thus, we have

M(1)B
FSR(σ1, σ2; τ1, τ2, κ) =

1

ZB(Q2)

∑
λ

M(0)B
P (σ1, σ2;λ)M(1)B

D (λ; τ1, τ2, κ).

(1.60)

The missing element – the spin amplitude M
B(1)
D can be obtained from the

Feynman diagrams given in Fig. 1.4.
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γ
B(Q, λ)

l

l̄

γ
B(Q, λ)

l

l̄

Figure 1.4: The Feynman diagrams for, denoted by B in this figure, Z-boson
or γ∗ decay including single real-photon radiation.

This spin amplitude reads

M
B(1)
D (λ; τ1, τ2, κ) =

−ie2Ql

2[
cBll̄L ω−τ1(q1)τ2ωτ2(q2)

{(
2q2 · ε∗
q2 · k −

2q1 · ε∗
q1 · k

)
S(q1, εZ , q2)−τ1,−τ2+

+
1

q2 · kS(q1, εZ , k, ε
∗, q2)−τ1,−τ2 −

1

q1 · kS
(
q1, ε

∗, k, εZ , q2

)−
τ1,−τ2

}
−

− cBll̄R ωτ1(q1)τ2ω−τ2(q2)

{(
2q2 · ε∗
q2 · k −

2q1 · ε∗
q1 · k

)
S(q1, εZ , q2)+

τ1,−τ2

+
1

q2 · kS(q1, εZ , k, ε
∗, q2)+

τ1,−τ2 −
1

q1 · kS
(
q1, ε

∗, k, εZ , q2

)+

τ1,−τ2

}]
.

(1.61)

See Appendix A.4.2 for details. The full matrix element for the neutral current

Drell–Yan process with the final state single photon radiation is a sum of the

matrix element for Z-boson and γ∗ obtained from Eq. (1.60):

M(1)γ+Z
FSR (σ1, σ2; τ1, τ2, κ) =M(1)γ

FSR(σ1, σ2; τ1, τ2, κ) +M(1)Z
FSR(σ1, σ2; τ1, τ2, κ)

(1.62)

(b) Single hard-photon radiation in quarkonic Z boson production

The spin amplitude for the process of single hard-photon radiation in Z-boson

or γ∗ production (see Eq. (1.58)) will be needed in order to introduce into

our calculations the “initial-final” interference effects, therefore it will also be

presented here. This calculation is very similar to the one performed in the

previous subsection, but this time we will replace in Eq. (1.44) the “brick”
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M
B(0)
P by the M

B(1)
P which denotes the spin amplitude for the single hard-

photon radiation in leptonic Z boson production

q(p1, σ1) + q̄(p2, σ2) + γ(k, κ) −→ B(Q, λ) (1.63)

thus we have

M(1)B
ISR (σ1, σ2; τ1, τ2, κ) =

1

ZB(Q2)

∑
λ

M(1)B
P (σ1, σ2;λ, κ)M(0)B

D (λ; τ1, τ2).

(1.64)

The spin amplitude M
B(1)
D can be obtained from the Feynman diagrams given

in Fig. 1.5. This spin amplitude reads

γ

B(Q, λ)

q

q̄

γ
B(Q, λ)

q

q̄

Figure 1.5: The Feynman diagrams for Z-boson or γ∗ production including
single real-photon radiation.

M(1)B
P =

−ie2Qq

2{
cBqq̄L σ2ωσ2(p2)ω−σ1(p1)

[(
2p2ε

∗

p2 · k −
2p1ε

∗

p1 · k
)
S(p2, ε

∗
Z , p1)−−σ2,σ1

−

− 1

p2 · kS(p2, ε
∗, k, ε∗Z , p1)−−σ2,σ1

+
1

p1 · kS(p2, ε
∗
Z , k, ε

∗, p1)−−σ2,σ1

]
−

− cBqq̄R (σ2)ω−σ2(p2)]ωσ1(p1)

[(
2p2ε

∗

p2 · k −
2p1ε

∗

p1 · k
)
S(p2, ε

∗
Z , p1)+

−σ2,σ1
−

− S(p2, ε
∗, k, ε∗Z , p1)+

−σ2,σ1
+ S(p2, ε

∗
Z , k, ε

∗, p1)+
−σ2,σ1

]}
. (1.65)

The full matrix element for the neutral current Drell–Yan process with the

initial state single photon radiation is a sum of the matrix element for Z-boson

and γ∗ obtained from Eq. (1.64):

M(1)γ+Z
ISR (σ1, σ2; τ1, τ2, κ) =M(1)γ

ISR(σ1, σ2; τ1, τ2, κ) +M(1)Z
ISR(σ1, σ2; τ1, τ2, κ)

(1.66)
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We have performed two tests on these calculations. First, we have checked

analytically and numerically that these amplitudes are QED gauge invariant

which means that

M(1)B(εγ → k) = 0. (1.67)

By substituding in Eq. (1.65) for the photon’s four-momentum k the εγ we see

that the expressions in round brackets becomes equal to 0 and what is left are

terms which consist the spinoral string functions of the type S(. . . , k, k, . . .).

They are equal to zero, because from the spinoral string function definition

Eq. (1.41) we have

S
(
q1, . . . , k, k, . . . , q2)ατ1,τ2 =χ(q1, τ1)†[q1, . . . , k, k, . . . , q2]αχ(q2, τ2) = (1.68)

=χ(q1, τ1)†(/q1)α . . . (/k)±(/k)∓ . . . (/q2)−δnαχ(q2, τ2) = 0,

where in the last line we have used masslessnees of the photon, k2 = 0, in the

following way:

1 · 0 = 1 · k2 = 1 · /k/k =

 0 /k+

/k− 0

 0 /k+

/k− 0

 =

 /k+/k− 0

0 /k−/k+

 ,

(1.69)

which means that (/k)±(/k)∓ = 0. This is also true for the matrix element

for single hard-photon radiation in leptonic Z-boson decays Eq. (1.61). The

numerical check has also shown that after the replacement εγ → k, the values

of the spin amplitudes are consistent with zero within the double-precision

accuracy.

The second test is the so-called soft-photon limit, which means

lim
k→0
M(1)B v ε∗µ

(
qµ1
q1 · k −

qµ2
q2 · k

)
M(0)B

D . (1.70)

By taking the soft-photon limit for the amplitude for single hard-photon ra-

diation in leptonic Z-boson decays, Eq. (1.61), we see that all terms with the

spinoral string function S containing photon’s four-momenta disappear. This

follows directly from the spinoral string function definition, see Eq. (1.41).

What is left can be rewritten in the following way:
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lim
k→0
M(1)B

D = ie2
∑

B=Z,γ

(
q1 · ε∗
q1 · k −

q2 · ε∗
q2 · k

)
× [cBLω−τ1(q1)τ2ωτ2(q2)S(q1, ε

∗, q2)−τ1,−τ2 − cBRωτ1(q1)τ2ω−τ2(q2)S(q1, εZ , q2)+
τ1,−τ2

]
= −ie2

(
q1 · ε∗
q1 · k −

q2 · ε∗
q2 · k

)
M(0)B

D

∼ ε∗µ

(
qµ1
q1 · k −

qµ2
q2 · k

)
M(0)B

D , (1.71)

which ends the proof. The soft-photon limit test has also been preformed, in

a very similar way, in the case of the single hard-photon radiation in quarkonic

Z-boson production. The numerical soft-photon limit tests have also given

satisfactory results.

1.5 Monte Carlo algorithm

Having all ingredients in the place, we are now ready to construct a Monte

Carlo algorithm for the generation of multiphoton radiation in the final state

for the Drell–Yan process according to eq. (1.8). Our algorithm is constructed

using elementary techniques of weighting, multibranching9 and, wherever it is

gainful, mapping (change of integration variables). More details about those

methods can be found for example in Ref. [80]. The procedure of constructing

our Monte Carlo algorithm has two stages. In the first stage, called “phase-

space reorganization”, we will transform the original integrand of eq. (1.8) with-

out any approximations to the form which is the most convenient for the MC

generation. In the second stage, called “simplification of the distribution”, we

simplify step-by-step this transformed but still very difficult integrand, such

that at the end we obtain a simple distribution, which we can integrate analyt-

ically over certain integration variables and generate those variables easily with

the help of the standard uniform random numbers10. For each such a simplifi-

cation s, we introduce a correction weight ws. Therefore the events generated

with the simplified distribution have to be corrected by the total weight

wtot = w1w2...wn−1wn, (1.72)

9We used the multibranching technique when it was unavoidable for example for the
generation of the photons kinematics (i.e. cos θj , see Eq. (1.112)).

10The remaining small subset of variables for which we are not able to perform the man-
ual/analytical integration/mapping is treated with the help of the self-adapting cellular
Monte Carlo sampler Foam [81].
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where n is the total number of modifications introduced in order to obtain

the simplified distribution from the original one. The integrated original cross

section can be numerically calculated using the average weights from the Monte

Carlo run

σexact = 〈W tot〉 σsimple (1.73)

and may be obtained with an arbitrary precision, simply by increasing the

number of generated events.

ZINHAC is in fact more than just the phase-space integrator, because we

can require that events are generated with total weight equal to 1, which means

that they can be directly used in a detector simulation programs such as [82,83,

84, 85] and compared with experimental data. It is quite a strong restriction

on the MC algorithm and it means that our MC program is not merely a

phase-space integrator, but the full-scale MC event generator (MCEG).

1.5.1 Phase-space reorganization

The total cross section at the parton level (see eq. (1.8)) in the PMS frame

(the rest frame of P = p1 + p2) reads

σY FSqq̄→l+l̄+n(γ) =

∫
dτn+2(P ; k1, . . . , kn, q1, q2)eQ

2
fYΩF

(q1,q2)

n∏
l=1

S̃F (kl) Θ̄(ΩF ; kl)β̄
(1)
0+1(p1, p2, q1, q2, kl),

(1.74)

where

β̄
(1)
0+1 = β̄

(1)
0+1(p1, p2, q1, q2, k1, ..., kl)

≡ β̄
(0)
0 (p1, p2, q1, q2) +

n∑
l=1

β̄
(1)
1 (p1, p2, q1, q2, kl)

S̃F (kl)
.

(1.75)

Unfortunately, the straightforward Monte Carlo generation of photons mo-

menta from this distribution is impossible. The reason for that is simply that

we do not know the four-momenta of the final leptons q1 and q2 before photons

momenta are generated and both q1 and q2 are inside of the integral in both

dτn+2(P ; k1, . . . , kn, q1, q2) and S̃f (kl) factors, therefore they are necessary in

order to generate photons momenta. So it is a “catch-22” situation and we are

stuck. Fortunately, the total cross-section from eq. (1.74) is Lorentz–invariant

and, in principle, can be evaluated in any reference frame. Therefore we can
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take advantage of the reference frame “attached” to the q1 and q2, i.e. “co-

moving” with them, that is in the frame where
−→
Q = −→q1 +−→q2 = 011 (QMS frame).

In the QMS reference frame the integration over final leptons four-momenta

vanishes and this is actually the reason why we will simulate emissions in the

rest frame of the charged dipol. However, the problem is still there because

we cannot make a transformation from PMS to QMS frame simply because, as

before, we do not know Q = P −∑i ki, and we have to know photons four–

momenta ki in the first place. So we have made a step forward but in some

sense we have just moved the problem from one place to the another. The final

solution to this problem is to reparametrize the integral with the help of the

integration over the Lorentz group, like it was showed in detail in Refs. [86,87].

Here we just apply the result of this work and obtain the new formula:

σY FSqq̄→l+l̄+n(γ) =

∫
dψd cosω

∞∑
n=0

1

n!

∫
dsQ

n∏
l=1

d3k̃l

2k̃0
l

sQ
sP

βf
2

S̃f (k̃l)Θ̄f
(k̃l) δ

sP − [Q̃+
n∑
j=0

k̃j

]2
 β̃

(1)
0+1 e

YΩ̃F
(q̃1,q̃2)

,

(1.76)

where

Q̃ ≡ (
√
sQ, 0, 0, 0), q̃1 ≡

√
sQ

2
(1, 0, 0, βf ), q̃2 ≡

√
sQ

2
(1, 0, 0,−βf ), (1.77)

here P = p1+p2, sP = P 2, sQ = (q1+q2)2 = 2q1q2+2m2
f , βf =

√
(1− 4m2

f/sQ).

All variables with a tilde are defined in the QMS frame. The explicit trans-

formation from QMS to PMS defines the meaning of the new ψ, ω integration

variables:

qi = LAq̃i, (1.78)

where LA = R3(ψ)R2(ω)B−1

P̃
is the Lorentz transformation consisting of the

z and y rotations R3(ψ)R2(ω) and the parallel boost along P̃ denoted by

B−1

P̃
,where P̃ is defined in the rest frame of the outgoing fermions. The corre-

sponding transformation matrix is

BP̃ =


P̃ 0

MP̃
,

~̃PT

MP̃

~P
MP̃

, I +
~̃P⊗ ~̃P

MP̃ (MP̃+P̃ 0)

 , P̃ 2 = M2
P̃
, (1.79)

11here q1 = (q0
1 , 0, 0, |q3

0 |)



38 The Monte Carlo event generator ZINHAC

where T marks the matrix transposition and ⊗ marks the tensor product. The

Jacobian due to the reparametrization of the integral is equal to sP
sQ

2
βf

. Let

us work a little bit more on the eq. (1.76). Firstly, we express the photon

momenta as a fraction of 1
2

√
sQ and in the polar coordinate system:

k̃j ≡
√
sQ

2
k̄j ≡

√
sQ

2
xj (1, sin θj cosφj, sin θj sinφj, cos θj), (1.80)

and denote the sum of photons momenta as

K̃ =
n∑
l=0

k̃l ≡
√
sQ

2
K̄. (1.81)

This allows us to use the δ-function:

sP∫
4m2

f

dsQ δ

(
sP −

(
Q̃+

n∑
l=0

k̃l

)2
)

=

sP∫
4m2

f

dsQ δ

(
sP − sQ

(
1 + K̄0 +

1

4
K̄2

))

=
Θ
(
sQ(k̄1, ..., k̄n)− 4m2

f

)
1 + K̄0 + 1

4
K̄2

,

(1.82)

and write sQ in the following maner

sQ = sQ(k̄1, ..., k̄n) ≡ sP
1 + K̄0 + 1

4
K̄2

. (1.83)

The single-photon distribution also gets transformed:

d3k̃j

k̃0
j

S̃f (k̃j) =
dxj
xj

dφj
2π

d cos θj
α

π
s̃f

(
θj,

m2
f

sQ

)
,

s̃f

(
θj,

m2
f

sQ

)
=

1 + β2
f

δ1jδ2j

− µ2
f

2

1

δ2
1j

− µ2
f

2

1

δ2
2j

,

δ1j = 1− βf cos θj, δ2j = 1 + βf cos θj,

(1.84)

and the whole integral is transformed into the semi-factorised form:

σY FSqq̄→l+l̄+n(γ) =

∫
dψd cosω

∞∑
n=0

1

n!

n∏
j=1

∞∫
εf

dxj
xj

2π∫
0

dφj
2π

1∫
−1

d cos θj β̃
(1)
0+1

sQ
sP

βf
2

α

π
s̃f

(
θj,

m2
f

sQ

)
Θ(sQ − 4m2

f )

1 + K̄0 + 1
4
K̄2

e
YΩ̃F

(q1,q2)
.

(1.85)

We have called the above formulae ‘‘semi-factorised” because it does not fac-

torise yet into a product of independent integrals, one per photon, which would
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allow us to perform generation of photons momenta. The reason for this is that

all photon momenta k̄j are connected through the variable sQ, see eq. (1.80).

The second problem caused by the use of 1
2

√
sQ as an energy scale is that, in

the case of the hard photon emission, the upper limit of xj extends to large

values, not really to infinity because of the Θ(sQ − 4m2
f ) condition which is

not very good for the MC integration. This problem can be solved by a simple

change of variables:

yi =
xi

1 +
∑
xj
, xi =

yi
1−∑ yj

,

1 +
∑
j

xj =
1

1−∑j yj
= 1 + K̄0 = 1 +

2K ·Q
sQ

=
sP
sQ

(
1− K2

sP

)
,

(1.86)

which leads us to the final form for the total cross-section at the parton level

σY FSqq̄→l+l̄+n(γ) =

∫
dψd cosω

∞∑
n=0

1

n!

n∏
j=1

1∫
εf/(1+K̄0)

dyj
yj

2π∫
0

dφj
2π

1∫
−1

d cos θj
sQ
sP

βf
2

α

π
s̃f

(
θj,

m2
f

sQ

)
1 + K̄0

1 + K̄0 + 1
4
K̄2

Θ(sQ − 4m2
f ) e

YΩ̃F
(q1,q2)

β̃
(1)
0+1.

(1.87)

With the new variables the condition sQ > 4m2
f (easily implementable in the

MC) translates approximately into
∑

j yj < 1. Furthermore, we have

1 + K̄0

1 + K̄0 + 1
4
K̄2
≤ 1, (1.88)

which is ideal for the MC. The new IR limit yj > εf/(1 + K̄0) is however

inconvenient for the MC. The solution is to substitute

εf = δf (1 + K̄0) (1.89)

where δf � 1 is from now on the new IR regulator for FSR real photons. Note

that this sets

E ′min = δf
1

2

√
sQ(1 + K̄0) = δf

1

2

√
sQ

(
1 +

2K · Q̃
sQ

)
(1.90)

as a lower limit for the photon energy in the QMS, which is higher than the

previous one Emin = 1
2

√
sQδf (for ε = δf ). Consequently, we have to keep the

value of δf very low, in fact we need δf � m2
f/sP .
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There is a one-to-one correspondence between the points in the Lorentz-

invariant phase space from the original of integral Eq. (1.74) and the points in

space of our new variables:

{n, (k̃1, . . . , k̃n)} ↔ {n, (yj, θj, φj), j = 1, . . . , n}, (1.91)

moreover, as has been advertised before all transformations which were intro-

duced in this subsection were performed without any approximations. The first

simplification to the eq. (1.74) will be introduced in the next subsection.

1.5.2 Simplification of the distribution

This is the point from which we are ready to step by step simplify the very dif-

ficult formulae for the total cross-section from Eq. (1.87) and its phase space

limits, such that at the end we obtain a simple distribution, which we can

integrate analytically over certain integration variables. For each such a mod-

ification, we introduce a correction weight for the events generated with the

simplified distribution, so that at the end the events will be generated accord-

ing to the original distribution of eq. (1.8). The simplifications consist of four

steps:

Step 1. Simplification of non-IR YFS β̄-functions:

β̃
(1)
0+1 → β̃cru =

sP
sQ

2

βf
ρ0(ŝ, φ, cos θ) (1.92)

where ρ0(ŝ, φ, cos θ) is the Born-level differential cross section presented

in Appendix A.5. This simplification is corrected by so-called model

weight:

wmod(p1, p2, q1, q2, k1, ..., kn) =
β̃

(1)
0+1(p1, p2, q1, q2, k1, ..., kn)

β̃cru(p1, p2, q1, q2, k1, ..., kn)
. (1.93)

The numerator in the above equation is a model distribution which can

have several variants (for example different perturbative orders, other

variants of corrections, the BSM contributions, ect.). In our case the best

model distributions is from eq. (1.75) but in the section with numerical

results we will consider also other model distributions.

Step 2. Simplification of the eikonal factors:

s̃f

(
θj,

m2
f

sQ

)
→ s̄f

(
θj,

m2
f

sP

)
=

1 + β̄2
f

β̄f

1

1− β̄2
f cos2 θj

, (1.94)
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compensated by weight

wsj =
s̃f

(
θj,

m2
f

sQ

)
s̄f

(
θj,

m2
f

sP

) . (1.95)

Step 3. Substitution:
1 + K̄0

1 + K̄0 + 1
4
K̄2

Θ(sQ − 4m2
f ) → 1, (1.96)

which is corrected by

wK̄ =
1 + K̄0

1 + K̄0 + 1
4
K̄2

Θ(sQ − 4m2
f ). (1.97)

Removing Θ(sQ − 4m2
f ) in the simple distribution means that we can-

not map every event generated according to the simple distribution into a

Lorentz-invariant phase-space point of the original distribution dσY FS
qq̄−→l+l̄+n(γ)

.

This problem is simply cured by seting wK̄ = 0 for events which do not

fulfil Θ(sQ − 4m2
f ) requirement.

Step 4. Simplification of the YFS form-factor

e
YΩ̃F

(q1,q2) → eγ̄f ln(δf ), (1.98)

where γ̄f = Q2
f
α
π

1+β̄2
f

β̄f
ln

1+β̄f
1−β̄f

, β̄f =
√

1− (4m2
f/sP ).

This modification is compensated by a weight

wγf = e
YΩ̃F

(q1,q2)−γ̄f ln(δf )
. (1.99)

The remaining dependence on the momenta of all photons through sQ is re-

moved by simple replacing sQ by sP .

The resulting simple differential distribution is:

σSimple
qq̄→l+l̄+n(γ)

=

∫
dψd cosω

∞∑
n=0

1

n!

n∏
j=1∫

dyj d cos θj dφjρ
Simple(yj, θj)ρ0(sP , φ, cos θ)

(1.100)

where

ρSimple(yj, θj) = eγ̄f ln(δf )

(
α

2π2

)n n∏
j=1

Θ(yj − δf )
yj

s̄f

(
θj,

m2
f

sP

)
. (1.101)
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By convoluting the parton level result with the PDFs we obtain the total crude

cross section in hadron collisions

σcru =
∑
q

∫ 1

0

dx1dx2

[
fq/h1(x1, Q

2)fq̄/h2(x2, Q
2) + (q ↔ q̄)

]
σSimple
qq̄−→l+l̄+n(γ)

(sP )δ(sP − x1x2S)

=
∑
q

∫ 1

0

dx1dx2

∫
dψd cosω[

fq/h1(x1, Q
2)fq̄/h2(x2, Q

2) + (q ↔ q̄)
]
ρ0(sP , φ, cos θ)δ(sP − x1x2S)

∞∑
n=0

1

n!

n∏
j=1

∫
dyj d cos θj dφjρ

Simple(yj, θj),

(1.102)

The total crude cross-section clearly factorizes into two independent parts, the

“hadronic” part with parton distribution functions and the differential Born

level partonic cross-section with the principal integration variables x1, x2, ψ

and cosω

Jhad =
∑
q

∫ 1

0

dx1dx2

∫
dψd cosω[

fq/h1(x1, Q
2)fq̄/h2(x2, Q

2) + (q ↔ q̄)
]
ρ0(sP , φ, cos θ)δ(sP − x1x2S),

(1.103)

and photon radiation part from which we will generate photons momenta

JY FS =
∑
n=0

JY FSn =
∞∑
n=0

1

n!

n∏
j=1

∫
dyj d cos θj dφjρ

Simple(yj, θj), (1.104)

In the next section we will show how to generate variables from the both

distributions.

1.5.3 Generation of variables

Now we introduce variables that are generated at the lowest level of the MC

algorithm according to the photonic and hadronic distribution.

(a) “Hadronic” part

The total integral of the “hadronic” part Jhad plays in our algorithm a role

of σsimple12from eq. (1.73) and is performed using the general-purpose, self-

adapting cellular Monte Carlo (MC) program Foam. Foam also provide us

12As we will see the total integral of the “partonic” part is equal to 1.
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the Bjorken x’s of quark and antiquark from which we are able to reconstruct

the kinematics of both partons in the PMS frame. The angles θ, φ can be

respectively assosieted with ω and ψ. Then φ is trivial to generate:

φ = 2πr, (1.105)

where r is the standard uniform random number 0 < r < 1. The distribution

of cos θ requires applying the branching method or can be also generated by

Foam. The total weight for this part of generation is simply equal to the weight

provided by Foam

whad = wFoam. (1.106)

For the given Bjorken variables x1 and x2 we can generate partons flavour qf

according to a probability

Pqf =

[
fqf/h1(x1, Q

2)fq̄f/h2(x2, Q
2) + (qf ↔ q̄f )

]
ρ0(sP , φ, cos θ)∑

qf=u,d,c,s,b

[
fqf/h1(x1, Q2)fq̄f/h2(x2, Q2) + (qf ↔ q̄f )

]
ρ0(sP , φ, cos θ)

(1.107)

Having reconstructed kinematics we can calculate sP and move forward to the

generation of photons kinematics.

(b) “Photonic“ part

As was mentioned before the JY FSn integral can be calculated analytically:

JY FSn =
∞∑
n=0

1

n!

n∏
j=1

1∫
δf

dyj
yj

2π∫
0

dφj
2π

1∫
−1

d cos θj
α

π
s̄

(
θj,

m2
f

sP

)
eγ̄f ln(δf )

=
∞∑
n=0

e
−γ̄f ln 1

δf
1

n!

(
γ̄f ln

1

δf

)n
=
∞∑
n=0

e−〈n〉
〈n〉n
n!

= 1.

(1.108)

From eq. (1.108) we see that the photon multiplicity for the simple distribution

is the standard Poisson distribution, with the average given by

〈n〉 = γ̄f ln
1

δf
, (1.109)

and the overall normalization equal to 1. Therefore the photon multiplicity

can be easily generated using standard uniform random numbers. Having

generated number of photons n, next we generate other variables according to

the differential distribution

dJY FSn∏n
j=1 dyj dφj d cos θj

. (1.110)
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It is rather not complicated because this distribution is fully factorized and the

variables cos θj, φj and yj can be generated independently. The distribution of

φj is just flat and the distribution of yj is trivial to generate:

φj = 2πr1j, yj = δ
r2j
f , (1.111)

where rij are the standard uniform random numbers 0 < rij < 1. The distri-

bution of cos θj requires applying the branching method: it is split into two

components

2

1− β̄f cos2 θj
=

1

1− β̄f cos θj
+

1

1 + β̄f cos θj
, (1.112)

and cos θj is generated according to one component, chosen with the equal prob-

ability between the two. For example, if the first component 1/(1− β̄f cos θj)

is chosen then

cos θj =
1

β̄f

{
(1− (1 + β̄f )

(
1− β̄f
1 + β̄f

)r3j}
, (1.113)

where r3j is another uniform random number.

1.5.4 Kinematics

Having shown how all the variables are generated, we are now ready to trace

how from these variables the kinematics of all the particles in the event is

constructed. The construction of the kinematics consist of four steps:

Step 1. The four-momenta of the initial state partons in the PMS frame.

The Bjorken variable xi (i = 1, 2) is treated as a fraction of hadron’s hi

light-cone momentum in the beams center-of-mass (CM) frame. In terms

of the light-cone variables a given four-vector V µ = (V 0, V 1, V 2, V 3) can

be expressed as follows:

V µ =

(
V + + V −

2
, V 1, V 2,

V + − V −
2

)
(1.114)

where V ± = V 0 ± V 3. The four-momenta of quarks in the laboratory

frame (the beams CMS frame), with the +z axis pointing in the h1 di-

rection, read:

p
µ(lab)
1 =

(
p+

1

2
+
m2

1

2p+
1

, 0, 0,
p+

1

2
− m2

1

2p+
1

,

)
, (1.115)
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p
µ(lab)
2 =

(
p−2
2

+
m2

2

2p−2
, 0, 0,−p

−
2

2
+
m2

2

2p−2

)
, (1.116)

where p±i = xiP
±
hi

and P±hi is a light-cone momentum variable of the

hadron hi. Therefore, the four-momenta of the partons in the PMS frame

are:

pµ1 = (E, 0, 0, pz),

pµ2 = (
√
sP − E, 0, 0,−pz),

(1.117)

where sP = pµ1p2µ, E =
sP+m2

1−m2
2

2
√
sP

and pz =
√
E2 −m2

1.

Step 2. The four-momenta of the final state photons in the QMS frame.

Having calculated sP , we are able to move forward and construct the

photons kinematics {k̄j, j − 1, ..., n} in the QMS frame13. It is achieved

by pluging the variables xj(y1, ...yn), cos θj and φj, j = 1, ..., n; into

Eq. (1.80).

Step 3. The four-momenta of the final-state leptons in the QMS frame.

From the photons kinematics we are able to calculate Q̃, which then can

be used to obtain the final-state leptons kinematics in the QMS frame

according to Eq. (1.77).

Step 4. Transformation to the laboratory frame.

First, the momenta of all the photons and final-state leptons are trans-

formed from the QMS frame to the PMS frame using transformation

described by Eq. (1.78). In this transformation the angles ψ and ω of the

rotations R3(ψ)R2(ω) are assigned respectively to generated variables φ

and θ. This ensures that at the Born level in the PMS frame the az-

imuthal and the polar angles between momentum of the quark q and the

lepton l− are equal to the φ and θ, respectively. Then the four-momenta

of all the particles are transformed from the PMS frame to the laboratory

frame according to the transformation BP (lab) , where P (lab) = p
(lab)
1 +p

(lab)
2 ,

and the transformation itself is defined by Eq. (1.79).

The list of all the particles with their PDG codes and four-momenta in both

the lab and the PMS frames creates the event record, see Subsection 1.5.6.

13In the case of n = 0, sP = sQ and we are able to directly reconstruct the kinematics of
the leptons.
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1.5.5 Total compensating weight and unweighted events

The total compensating weight which corrects all approximations to the origi-

nal cross-section introduced in this subsection is

wsimple = wmodw
K̄wγf

n∏
j=1

wsj . (1.118)

In other words, one can write the original YFS parton-level cross-section of

Eq. (1.87) in terms of the simple distribution ρsimple in the following maner

σY FSqq̄→l+l̄+n(γ) =

∫
dψd cosω

∫ n∏
j=1

dyj d cos θj dφjρ
Simplewsimple (1.119)

The total weight is then equal:

wtot = wsimplew
had. (1.120)

The consistent and unbiased Monte Carlo estimator of the total cross-

section reads

σ̂Y FSqq̄→l+l̄+n(γ) = σcru 〈wtot〉 = σcru
1

N

N∑
i=1

w
(i)
tot (1.121)

when i runs over the sample of N Monte Carlo events, and the consistent and

unbiased Monte Carlo estimator of its standard deviation is

δ̂ =
σcru√

N(N − 1)

√√√√ N∑
i=1

[
w

(i)
tot

]2

− 1

N

[
N∑
i=1

w
(i)
tot

]2

. (1.122)

Therefore, in principle the final MC result may be obtained with an arbitrary

precision, simply by increasing the number of generated events N . The result of

the computation of eq.(1.121) depends on the sequence of the random numbers

used in the Monte Carlo generation and its distribution is interpreted in the

sense of the Central Limit Theorem, see e.g. Ref. [88].

Unweighted event generation can be switched on in ZINHAC and is obtained

using the standard Monte Carlo hit-and-miss method. For each generated event

after calculating the total weight wtot we accept event if

wtot

wmax
> r, (1.123)

where r is a uniform random number from the range (0, 1) and wmax is a

maximum weight for the process estimated for example by sampling the total
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cross-section many times. If the inequality (1.123) is not fulfilled the event is

rejected. This ensures that the accepted events are distributed according to

the distribution provided by the original cross-section, and so all have the unit

weight, see for example Ref. [80] for details.

It is worth mentioning that in the case of weighted event generation in a

single Monte Carlo run (generation of N events) we can analyse not just one

model but we are able to construct a vector of m model weights w
(k)
mod where

k = 1, 2, ...,m which allows us to investigate results of many models at the

same time.

1.5.6 Event record structure

Each event is made up of individual steps that reflect the treatment of the event

as it passes through the various stages of the generator (detailed description of

the structure of the program and the steps as is presented in Section 1.6). The

example of the step structure is presented in Fig. 1.6, every particle in a single

step has an entry like

ID PDG Parents Children (Px, Py, Pz; E) Mass

5 23 [3,4] (6,7,8) (0.0,0.0,985.577;990.1801) 19.21

Jt contains 5 – the particle’s label (ID) in this event; 23 – the PDG code; [3,4]

– the label(s) of parent particle(s), the particle without parents (beam particle)

is denoted by [b] ; (6,7,8) the label(s) of child particle(s), by (f) the final-

state particle is denoted; the four-momentum of the particle (px, py, pz;E) and

±√|E2 − ~p2| called mass. Each step contains the information about particle’s

four-momentum in both the PMS and lab frames; in the Fig. 1.6 we present

the print-out of the four-momenta in the lab frame.

From this exemplary event record we can read that this event was produced

in the proton-proton collision at the nominal LHC energy of 14 GeV. The

children of the proton–proton system were two so-called protons remnants,

both with the ID = 82, and a quark–antiquark pair uū. From the quark–

antiquark pair the Z boson was produced. Then the Z boson decayed into the

electron–positron pair from which one photon was radiated. The electron, the

positron and the photon are the final-state particles which can be detected by

experimental aparatus.
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Step 3: ModelHandler frame (lab)

1 2212 [b] (3,5) ( 0.0, 0.0, 6999.9999; 7000.0) 0.93827

2 2212 [b] (4,6) ( 0.0, 0.0,-6999.9999; 7000.0) 0.93827

3 82 [1] () ( 0.0, 0.0, 6012.1332; 6012.1) 9.61941

4 82 [2] () ( 0.0, 0.0,-6997.7103; 6997.6) -330.151

5 2 [1] (7) ( 0.0, 0.0, 987.8667; 987.866) 0.33

6 -2 [2] (7) ( 0.0, 0.0,-2.28961; 2.313271) 0.33

7 23 [5,6] (8,9,10)( 0.0, 0.0, 985.577; 990.1801) 95.363988

8 11 [7] (f) ( 4.115, 22.053, 42.05; 47.66) 0.0005109

9 -11 [7] (f) (-4.146,-19.653,-36.75; 41.88) 0.0005109

10 22 [7] (f) ( 0.0307,-2.399,-5.301; 5.818) -6.098e-08

Four-momentum conservation check (sum of the final momenta):

(-2.9143354e-16,8.8817842e-16,1.7763568e-15;95.363988)

Figure 1.6: The example of the step structure.

In the case of weighted events the event record, in addition to the list of

the particles with their four-momenta, includes also the best event weight, the

vector of model weights and the crude weight.

1.5.7 Including interference effects and weak corrections

If we were only interested in the pure final-state photon radiation we could

stop here. But since we also want to include into our calculations interference

between the initial and final-state radiation (the pure initial-state radiation in

hadronic collisions can be left for a parton-shower Monte Carlo generator), we

need to add interferences effects in our Monte Carlo algorithm: in the YFS

form factor, in the IR S̃-factor and in the non-IR β̄-functions. Moreover, we

would like to include also the pure weak O(α) corrections.

Let us start from the non-IR β̄-functions. In the β̄
(1)
0 -function we need to in-

clude the interference virtual correction. Therefore, the new virtual correction

which includes interferences takes the form

δEW = δF + δint + δweak, (1.124)

where the weak corrections δweak are calculated using the SANC [74,73] library,
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δF was defined before, see Eq. (1.15), and interference part reads

δint = δint
QED − Y int

Ω . (1.125)

The interference form factor Y int
Ω from the equation above can be expressed

in therms of ‘dipole’ form factors YΩ(p1, p2), defined in Appendix A.1, in the

following maner

Y int
Ω (p1, p2, q1, q2) = |Qq|{YΩ(p1, q1) + YΩ(p2, q2)− YΩ(p1, q2)− YΩ(p2, q1)},

(1.126)

where Qq is the value of the quark charge in the units of the positron charge.

The δint
QED part is calculated using the SANC [73, 74] library. The function β̄

(1)
0

is now given by

β̄
(1)
0 (p1, p2, q1, q2) = β̄

(0)
0 (p1, p2, q1, q2) [ 1 + δEW(p1, p2, q1, q2) ] , (1.127)

In β̄
(1)
1 we need to add the interference matrix element for the real-photon

radiation. This interference matrix element is obtained from calculated in

previous section spin amplitudes for boson production and decay with the

single-photon radiation ∣∣∣M(1)
int

∣∣∣2 = 2Re
(
M(1)

ISRM(1)∗
FSR

)
, (1.128)

where M(1)
ISR is given by Eq. (1.66). The β̄

(1)
1 -function now reads

β̄1 =
1

16s (2π)5

1

12

∑[∣∣∣M(1)
FSR

∣∣∣2 +
∣∣∣M(1)

int

∣∣∣2]−[S̃F (k)− S̃int(k)
]
β̄

(0)
0 , (1.129)

where

S̃int(k) = |Qq|
{
S̃(p1, q1, k) + S̃(p2, q2, k)− S̃(p1, q2, k)− S̃(p2, q1, k)

}
(1.130)

is expressed in terms of the eikonal factor

S̃(q1, q2, k) = − α

4π2

(
q1

kq1

− q2

kq2

)2

. (1.131)

Including the interferences in to the IR S̃-factor creates an additional weight:

wint
S̃

=
n∏
l=1

S̃int(kl) + S̃F (kl)

S̃F (kl)
. (1.132)
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The implementation of the interferences into YFS form factor corresponds

to including a new correction weight

wintY = eY
int
Ω . (1.133)

All the above interferences effects cannot, however, be implemented directly

in the MC algorithm described so far. In order to do this we need to set a

common framework for the ISR and the FSR. In the contrary to the FSR,

where the most convenient reference frame for photons generation is the QMS

frame in the case of the ISR the most natural frame is the PMS frame. As a

consequence we have two different IR domains: one for ISR with ΩI defined in

the PMS frame and one for FSR with ΩF defined in the QMS frame. Because

we have an analytical representation of the IR function B̃(Ω, q1, q2) for spherical

Ω, the obvious choice for both ΩI and ΩF in their reference frames are spheres.

Therefore, we define ΩI by: k0
j < εe

1
2

√
s in the PMS frame and for FSR ΩF was

already defined by k0
j < δf ((sQ + 2KQ)/sQ)1

2

√
sQ in the QMS. It is clear that

the two soft-photons regions, ΩI and ΩF partly overlap but they cannot be

the same because of the Lorentz transformation which connects both frames.

For example ΩF when transformed to the PMS frame loses its spherical shape

and becomes elliptical. We need to find a way how to introduce a common

soft-photon region Ω for both the ISR and the FSR. The simplest solution is

a rather crude method in which we generate photons using small ΩF ⊂ ΩI

(i.e. by setting δf very small) and assign the zero weight to all events where at

least one photon falls into ΩI . This method although perfectly fine is however,

very inefficient – many events are generated with the zero weight. The second

solution has exactly the same orgin, but instead of removing the whole event,

we just remove photons when ki ∈ δΩ = ΩI \ΩF . This method by construction

is of course much more efficient then the previous one. As a short algebraic

calculation shows [36], this treatment has to be corrected by the additional

weight

whide = exp

{
− 2α|Qf |

[
B̃(ΩI ; q

∗
1, q
∗
2)− B̃(ΩF ; q∗1, q

∗
2)

− B̃(ΩI ; q1, q2) + B̃(ΩF ; q1, q2)
]} (1.134)

where q∗i , i = 1, 2, are defined such that (q∗i )
2 = m2

f (sQ/sP ). Moreover, in the

QMS they have the same directions as the original ~qi and the same total energy,

q∗01 + q∗02 =
√
sQ.
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This method is very useful for the inclusion of the interference effects, which

will be implemented in the ZINHAC program in the future, but can be conve-

niently used for the pure FSR as well, which is the case of the current version

of the ZINHAC program.

1.6 Implementation of ZINHAC Monte Carlo

generator

This section is designed to give basic information about the structure of the

ZINHAC program and to supplement the ZINHAC Doxygen14 documentation.

The Doxygen documentation is written within code, and is thus quite easy to

keep up to date. Doxygen can cross reference documentation and code, so that

the reader of a document can easily refer to the actual code. The ZINHAC

Doxygen documentation of the source code in the html format will be available

at dedicated ZINHAC Trac website:

http://th-www.if.uj.edu.pl/ZINHAC

Trac [90] is an open source, web-based project management and bug-tracking

tool for software development projects. Among the users of Trac is Hep-

Forge (development environment for high energy physics software development

projects), UBS bank and NASA’s Jet Propulsion Laboratory. The screen-print

of the ZINHAC Trac website is shown in Fig. 1.7. Trac also provides an inter-

face to Subversion SVN [91] which is a version-control system widely used by

open source community. SVN is also used by ZINHAC for the management of

changes to the source code and input files of the program. The ZINHAC input

files are written in XML (Extensible Markup Language). XML [92] is a textual

data format which design goals emphasize simplicity and generality. Although

the XML’s design focuses on documents, it is widely used for the representa-

tion of arbitrary data structures, for example in web services. ZINHAC includes

two XML input files. The first, ParticleDataBase.xml, contains only infor-

mation about the particles (particle charge, mass, PDG code, etc.) and the

second one, InputData.xml, contains all other necessary information needed

for the event generation (coupling constants, mathematical constants, flags and

switches of the generator, etc.). The ZINHAC program hes been designed and

modeled in Unified Modeling Language (UML) [93] using VisualParadigm [94]

14Doxygen [89] is a tool for writing software reference documentation.

http://th-www.if.uj.edu.pl/ZINHAC
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Figure 1.7: The ZINHAC Trac website.

and Eclipse [95] software development environment. The very simplified version

of the ZINHAC UML model is presented in Fig. 1.8. Each part of ZINHAC is im-

plemented as a C++ class15 that contains the implementation of the presented

in the previous section Monte Carlo algorithm.

For reading of the input files is responsible the Reader base class, which

must be inherited. In such a way we keep flexibilty of different ways of reading

input files. Currently in ZINHAC, Reader is inherited by the XercescReader

class which uses the Xerces-C++ XML parser [96]. The Xerces-C++ parser

makes it easy for ZINHAC to read and write XML data, however, as mentioned

above, we keep the possibility of using other ways to read input files. The

actual generation of each event is the responsibility of the so-called Manager

class, see Fig. 1.8. The Manager class has pointers to all objects relevant for

the event generation, starting from InitializationHandler, which is respon-

sible for the initialization of each part of the ZINHAC program, and ending at

the AnalysisHandler, which aim is to perform physics analysis of the event

and book histograms. The Manager class manages the generation of the event

via subsequent evolution of the event which is passed through the so-called

15Except for the electroweak corrections which are incorporated from the SANC library
written in Fortran.
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Figure 1.8: The ZINHAC simplified UML scheme.
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ProcessHandlers. ProcessHandler is a base class which contains the virtual

method eventEvolve() and does not implement any event evolution itself.

This must be done by inheriting classes which provide an implementation of

a specific event evolution. The YFSHandler, for example, inherits from the

ProcessHandler and implements the ZINHAC YFS multiphoton radiation by

overriding the virtual eventEvolve() member function. This allows the im-

plementations of different event evolutions to live side-by-side and to be easily

exchanged. The most important ProcessHandlers in ZINHAC are:

1. BeamHandler – is responsible for generating of the initial-state quarks

flavours and kinematics, as well as beam remnants.

2. YFSHandler – generates the multiphoton radiation, if switched on in the

input file, and sets the final-state particles kinematics.

3. ModelHandler – is responsible for the calculation of the model weights.

4. AnalysisHandler – performs the physics analysis and books histograms.

Figure 1.9: The UML scheme of the Event, EventStep and Particle classes.
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All ProcessHandlers take as input the reference to the Event object and mod-

ify it. The fully-generated event has to pass through all ProcessHandlers in

the correct order. The Event class contains an STL vector of smaller objects

called EventSteps, see Fig 1.9. Each EventStep is associated with the step of

the event evolution (performed by a given ProcessHandler) and keeps all the

information about all particles available at the end of the evolution step, includ-

ing modifications made by ProcessHandler. The structure of the EventStep

class allows to keep all the information described in Subsection 1.5.6. This

“step” structure of the Event class allows the user to easily trace the evolution

of the event performed by each ProcessHandler as well as analyze the final

form of the event given in the last step.

1.7 Numerical tests

We have performed several numerical tests of the MC event generator ZINHAC,

which implements the calculations presented in the previous sections. In this

section we discuss some of the results. First, we present some parton-level tests

of the ZINHAC Monte Carlo event generator and then we show the results of

its comparison at hadron-level with the SANC program.

1.7.1 Parton-level tests

We have performed several numerical tests of the MC event generator ZINHAC

aimed at checking the correctness of the implemented matrix elements as well

as the corresponding MC algorithm.

(a) Setup

In this part of the numerical tests we considered the following process:

u+ ū −→ Z −→ l + l̄, (1.135)
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where l = e, µ, τ . All the results below, unless stated otherwise, have been

obtained for the following input parameters:

me = 0.51099892 MeV, mµ = 0.105658369 GeV, mτ = 1.77699 GeV,

mu = 0.0 GeV,

MZ = 91.1876 GeV, ΓZ = 2.4924 GeV,

MW = 80.37399 GeV, ΓW = 2.0836 GeV,

α = 1/137.03599911, αs(M
2
Z) = 0.1176, s2

W = 1− M2
W

M2
Z

,

ECM =
√
s = 90 GeV, Gµ = 1.16637× 10−5 GeV−2.

(1.136)

In order to cross-check the matrix elements presented here, we have im-

plemented in our MC program the matrix elements of Ref. [43], which in the

following we shall call B&K. These latter matrix elements were obtained in the

small-fermion-mass approximation mf � MZ ; their precision is therefore of

O(m2
f/M

2
Z). Since our spin amplitudes are obtained for massive fermions, we

performed the comparisons of these matrix elements for massless initial and

final particles. For both the Born-level and O(α) matrix elements, we reached

an agreement at the level of ∼ 10−14 for the relative difference.

Then, we performed several tests to check the MC algorithm of the program

ZINHAC. An important test of the algorithm for MC integration and event

generation according to Eq. (1.8) is to reproduce fixed-order calculations. The

strict Born-level cross section can be obtained from Eq. (1.8) by truncating the

perturbation series in α at the lowest-order term, which amounts to

σtot0 =

∫
d3q1

q0
1

d3q2

q0
2

ρ
(0)
0 e−Y . (1.137)

Within the multiphoton MC algorithm, this means calculating an appropriate

weight if the photon number n = 0 and setting it to zero if n > 0. The Born-

level total cross section can be easily calculated analytically. In the small-

fermion-mass approximation and in the fixed-width scheme it reads

σtot0 =
e4s

36π

(v2
Zuū + a2

Zuū)(v
2
Zll̄

+ a2
Zll̄

)

(s−M2
W )2 +M2

WΓ2
W

. (1.138)

In Table 1.2 we compare the results for the total Born cross section for the

massive e, µ and τ in the final state and massless initial state u quark, obtained

from the analytical formula of Eq. (1.138) with those calculated with the MC
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Calculation
σtot0 [nb]

e µ τ

Analytical 0.3665193 0.3665193 0.3665193

ZINHAC-Born 0.3665192 (3) 0.3665171 (3) 0.3659573 (3)

ZINHAC-YFS (n = 0) 0.36650 (4) 0.36648 (3) 0.36596 (1)

Table 1.2: The results of MC program ZINHAC for the total Born-level cross section
and YFS exponentiation with n = 0 photons compared with the analytical calcu-
lation in the small-fermion-mass approximation. The numbers in parentheses are
statistical errors for the last digits.

program the ZINHAC, both at the Born-level and for the YFS exponentiation

with n = 0 photons. We see a very good agreement between these three calcu-

lations for e. This it is what we expected because the precision of the analytical

small-lepton-mass approximation ml � MZ for electrons gives O(10−10). For

τ both ZINHAC’s results agree very well within the statistical errors but they

differ from analytical results by ∼ 0.1%, which can be explained by the τ -mass

effects (they are not negligible as in the case of e or even µ).

In a similar way, the first-order cross section can be obtained from Eq. (1.8)

by truncating the perturbative series at O(α), i.e.

σtot1 =

∫
d3q1

q0
1

d3q2

q0
2

δ(4)(p1 + p2 − q1 − q2) β̄
(0)
0

[
1 + δ

(1)
QED + Y

]
+

∫
d3q1

q0
1

d3q2

q0
2

d3k

k0
δ(4)(p1 + p2 − q1 − q2 − k)

[
β̄

(1)
1 + S̃β̄

(0)
0

]
θ(k0 − Emin) ,

(1.139)

where the first term on the r.h.s. corresponds to the Born plus virtual and

real-soft-photon contribution and the second one to the real-hard-photon con-

tribution. In practice, this means that the first term is evaluated within the

multiphoton algorithm only for n = 0, the second only for n = 1, otherwise

the appropriate MC weights are set to zero. In Table 1.3 we show the re-

sults from the program ZINHAC for the pure O(α) QED correction to the total

cross section. As can be seen, we have reached a very good agreement with the

analytical calculations, see e.g. Ref. [43].

In Table 1.4 we compare the results for the O(α) hard-photon correction as

a function of the lower photon-energy cut-off k0, i.e.

δh1 (k0) =
1

σtot1

∫
k0

dEγ
dσ1

Eγ
× 100% , (1.140)



58 The Monte Carlo event generator ZINHAC

Calculation
δ1 = σtot1 /σtot0 − 1

e µ τ

Analytical 1.75× 10−3 1.75× 10−3 1.75× 10−3

ZINHAC 1.9(2)× 10−3 1.7(1)× 10−3 1.9(3)× 10−3

Table 1.3: The results for the O(α) QED correction to the total cross section from
the MC program ZINHAC. The numbers in parentheses are statistical errors for the
last digits.

2k0/ECM
e µ

ZINHAC B&K ZINHAC B&K

0.01 41.04 (6) 41.1 21.93 (7) 22.0

0.05 24.18 (4) 24.2 12.85 (5) 12.9

0.10 17.27 (3) 17.3 9.13 (4) 9.1

0.15 13.45 (2) 13.5 7.08 (3) 7.1

0.20 10.87 (2) 10.9 5.70 (3) 5.7

0.30 7.50 (2) 7.5 3.89 (2) 3.9

0.40 5.34 (1) 5.4 2.74 (2) 2.8

0.50 3.82 (1) 3.8 1.94 (2) 2.0

0.60 2.67 (1) 2.7 1.34 (1) 1.4

0.70 1.79 (1) 1.8 0.88 (1) 0.9

0.80 1.07 (1) 1.1 0.52 (1) 0.5

0.90 0.485 (3) 0.4 0.227 (5) 0.2

Table 1.4: The fraction of events (in %) with a photon energy greater than k0

at O(1) from the MC program ZINHAC and from the MC program of Berends &
Kleiss [43] (denoted as B&K) for ECM = 90 GeV. The numbers in parentheses are
statistical errors for the last digits.

for the centre-of-mass energy ECM = 90 GeV, obtained from the program ZIN-

HAC and from the B&K MC program [43]. First of all we see that there is

more radiation from the electrons than from the muons which we expected.

Morover, assuming that the errors from B&K MC program, which were not

specified in Ref. [43], are of the order of the last significant digit, we see that

the both programs agree very well within the statistical errors.
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Calculation e µ τ

δexp =
(σtotYFS−σ

tot
1 )

σtot0
−3.0 (5)× 10−4 −1.1 (2)× 10−4 −3.6 (9)× 10−4

Table 1.5: The results for the fixed-O(α) and the YFS-exponentiated total cross
section from the MC program ZINHAC. The numbers in parentheses are statistical
errors for the last digits.

As the above fixed-order results from ZINHAC have been obtained in the

framework of the YFS-type multiphoton algorithm, they make us strongly

confident in the correctness of the corresponding MC algorithm.

In Table 1.5 we give the results for the higher order corrections, beyond

O(α) to the total cross-section, as given in Eq. (1.8). The YFS-exponentiation

corrections beyond O(α) are ∼ 10−4, i.e. of the expected size of higher-order

corrections. In Table 1.6 we present similar results to those shown in the

2k0/ECM
e µ

maxi{k0
i }

∑
i k

0
i maxi{k0

i }
∑

i k
0
i

0.01 33.43 (3) 34.02 (4) 19.62 (1) 19.83 (1)

0.05 21.26 (3) 21.92 (3) 11.99 (1) 12.21 (1)

0.10 15.64 (2) 16.30 (2) 8.65 (1) 8.86 (1)

0.15 12.35 (2) 13.00 (2) 6.75 (1) 6.96 (1)

0.20 10.08 (2) 10.69 (2) 5.46 (1) 5.65 (1)

0.30 7.01 (1) 7.56 (1) 3.75 (1) 3.91 (1)

0.40 5.02 (1) 5.49 (1) 2.65 (1) 2.79 (1)

0.50 3.59 (1) 4.00 (1) 1.88 (1) 1.99 (1)

0.60 2.52 (1) 2.87 (1) 1.30 (1) 1.40 (1)

0.70 1.69 (1) 1.98 (1) 0.86 (1) 0.93 (1)

0.80 1.02 (1) 1.24 (1) 0.50 (1) 0.56 (1)

0.90 0.46 (3) 0.63 (1) 0.22 (1) 0.26 (1)

Table 1.6: The fractions of events (in %) with sum of energies of all the pho-
tons greater than k0 (denoted by

∑
i{k0

i }) and at least one photon with energy
greater than k0 (denoted by maxi{k0

i }) from the MC program ZINHAC with the
YFS-exponentiation for ECM = 90 GeV. The numbers in parentheses are statistical
errors for the last digits.
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Table 1.4 but this time obtained from ZINHAC with the YFS-exponentiation.

The results corespond to two types of lower photon-energy cuts: maxi{k0
i } > k0

and
∑

i k
0
i > k0. As we expected, the fractions of the corss-section with the

sum of energies are always higher than the once with at least one photon with

energy greater than k0. Moreover, these results are in agreement with the

results for the pure O(α) QED correction presented in Table 1.4. For low

values of 2k0/ECM we expect to see the strongest multiphoton corrections, and

indeed for the 2k0/ECM valuse between 0.01−0.20, we see that the fractions of

cross-section in the case of pure O(α) correction are significantly higher than

in the case of YFS-exponentiation. From the value 2k0/ECM = 0.30 and higher

we see that in the case of the pure O(α) corrections the fractions are in-between

of the two types cuts used in the case of YFS-exponentiation. This is also what

we expect, because for hard photons the multiphoton effects should not play

an important role. In this case the cut on max{ki} for multiphoton radiation

should give the results close to the once at O(α), and this is what we observe

in tables 1.4 and 1.6.

All this is a very similar to the QCD parton-shower corrections which we

shall discuss in details in Chapter 2. The strongest effect in the parton shower,

which is based on the multiple soft and/or collinear emissions, is at low scales

and it gives no significant corrections at high scales, see Fig. 2.1.

All these tests make us strongly confident in the correctness of the con-

structed YFS MC algorithm and the corresponding matrix elements at the

parton-level. Therefore, the last thing which we have to do is to ensure ourself

that it also works at the hadron-level. This is the main subject of the next

subsection.

1.7.2 Hadron-level tests – comparisons with SANC

In this part of the numerical tests we present hadron-level results of the tuned

comparisons of the ZINHAC MC generator and the SANC program [72,73,74].

SANC is a Monte Carlo integrator base on the VEGAS [97]. It includes the

stand-alone packages for calculation of the EW NLO corrections for the neutral

and charged current Drell–Yan processes which are used by the WINHAC and

ZINHAC MC generators.
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Setup

For the numerical comparisons we considered the neutral current Drell–Yan-like

process for the proton-proton collisions at the nominal LHC energy,
√
s = 14

TeV:

p+ p̄ −→ Z + γ∗ −→ l + l̄, (1.141)

where l = e, µ.

Input parameters

All the results below, unless stated otherwise, have been obtained for the fol-

lowing input parameters16:

Gµ = 1.16637× 10−5 GeV−2, α = 1/137.03599911, αs(M
2
Z) = 0.1176,

MZ = 91.1876 GeV, ΓZ = 2.4924 GeV,

MW = 80.37399 GeV, ΓW = 2.0836 GeV,

MH = 115 GeV,

me = 0.51099892 MeV, mµ = 0.105658369 GeV,

mτ = 1.77699 GeV,

mu = 0.06983 GeV, mc = 1.2 GeV, mt = 174 GeV,

md = 0.06984 GeV, ms = 0.15 GeV, mb = 4.6 GeV,

|Vud| = 0.975, |Vus| = 0.222,

|Vcd| = 0.222, |Vcs| = 0.975,

|Vcb| = |Vts| = |Vub| = |Vtd| = |Vtb| = 0. (1.142)

The results are presented in the fixed-width scheme, both in the α(0) and

Gµ one-loop parametrization schemes. The quark masses are set to zero in

the matrix element and in the kinematics. To compute the hadronic cross

section we use the CTEQ6.1m set of parton density functions [99] and take the

renormalization scale, µr, and the QED and QCD factorization scales, µQED

and µQCD, to be µ2
r = µ2

QED = µ2
QCD = M2

Z .

Cuts

We impose only detector acceptance cuts on the leptons transverse momenta

and the charged lepton pseudorapidity (η`):

pT,l > 10 GeV, |η`| < 3.0, Ml+l− > 20 GeV, ` = e, µ. (1.143)

16The same parameters were used in the Ref. [98] page 5.
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Z boson observables

We consider eight different observables which let us compare not only the total

inclusive cross section but also various differential distributions.

• σZ : the total inclusive cross section of for the NC Drell–Yan process.

• dσ
dMl+l−

: invariant mass distribution of the final-state lepton-pair,

Ml+l− =

√
(pl+ + pl−)2. (1.144)

• dσ
d|yl+l− |

: rapidity distribution of the final-state lepton-pair,

yl+l− =
1

2
ln
P 0
l+l− + P 3

l+l−

P 0
l+l− − P 3

l+l−
, Pl+l− = pl+ + pl− . (1.145)

• dσ

dpl
+
T

: transverse lepton pluse momentum distribution,

pl
+

T =
√

(p1
l+)2 + (p2

l+)2. (1.146)

• dσ

dpl
−
T

: transverse lepton minus momentum distribution,

pl
−

T =
√

(p1
l−)2 + (p2

l−)2. (1.147)

• dσ
d|ηl+ |

: lepton pluse pseudorapidity distribution,

ηl+ = − ln tan
θl+

2
, (1.148)

where θl+ is the polar angle of l+ in the ılab frame.

• dσ
d|ηl− |

: lepton minus pseudorapidity distribution,

ηl− = − ln tan
θl−

2
, (1.149)

where θl− is the polar angle of l− in the lab frame.
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• AFB: forward-backward asymmetry as a function of Ml+l− ,

AFB is usually defined by

AFB =
F −B
F +B

, (1.150)

where

F =

∫ 1

0

dσ

d cos θ∗
d cos θ∗, B =

∫ 0

−1

dσ

d cos θ∗
d cos θ∗. (1.151)

Here, cos θ∗ is given by

cos θ∗ =
|P 3
l+l−|
P 3
l+l−

2

Ml+l−

√
M2

l+l− + (P T
l+l−)2

[
p+
l−p
−
l+ − p−l−p+

l+

]
, (1.152)

with

(P T
l+l−)2 = (P 1

l+l−)2 + (P 2
l+l−)2 and p± =

1√
2

(
p0 ± p3

)
. (1.153)

Acceptances

For each observable we provide “BARE” results, i.e. without smearing and

recombination of final-state particles four-momenta (only lepton separation

cuts are applied).

1.7.3 Results

In this section we present the numerical results of the tuned comparisons be-

tween SANC and ZINHAC at the Born level (LO). In Table 1.7 we show the

comparisons of the inclusive cross sections (in pb) within the acceptance cuts.

The Born cross sections from SANC and ZINHAC agree well within statistical

errors in the case of electrons. In the case of muons we see a small difference

in the total cross sections which can be attributed to different treatment of the

final-state lepton kinematics in the two programs: in ZINHAC the finite lepton

masses are fully taken into account while in SANC the massless approxima-

tion for leptons is applied. This is also the reason why in the case of SANC

the results for muons are the same (within statistical errors) as the ones for

electrons, where the finite-mass effects are completely negligible.

In Figs. 1.10–1.16 the distributions are shown for all seven observables under

consideration, both for the µ and e final-states in the scheme α(0). The lower
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LHC, pp→ Z + γ → e+e− + X

α-scheme Gµ-scheme

SANC 1331.847(2) —

ZINHAC 1331.843(6) 1432.287(7)

LHC, pp→ Z + γ → µ+µ− + X

α-scheme Gµ-scheme

SANC 1331.843(3) —

ZINHAC 1331.781(6) 1432.245(7)

Table 1.7: The tuned comparisons of the LO predictions for σZ from SANC

and ZINHAC for the “BARE” Cuts. The statistical errors of the Monte Carlo
integration are given in parentheses.

parts of the figures shows the relative deviation ∆ = (Z−S)/Z between the two

calculations (Z for ZINHAC, S for SANC). All the presented above distributions

agree very well – within the per-mil (Mll, p
l±
T ) or even sub-permil level (yll, ηl±).

This make us strongly confident in the correctness of the implementation of

the hadron-level part in ZINHAC. Particularly important and strong test of the

kinematic construction and hadron-level implementation is the presented below

comparison of the forward-backward asymmetry distribution as a function of

Ml+l− . The both programs give a consistent description of this observable.

The tuned comparisons of the SANC and ZINHAC programs including the

O(α) QED corrections (NLO) are in progress and will be presented in the

separate publication in the near future [16].
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Figure 1.10: The Born distributions of pl
−
T from SANC (red diamonds) and

ZINHAC (solid lines) for electrons and muons in final state and their relative
deviations δ = Z−S

Z
.

1.8 Summary and outlook

In this part of the thesis we have presented a new member of the Krakow YFS

Monte Carlo event generator family called ZINHAC. ZINHAC is the dedicated

Monte Carlo event generator for precision description of the neutral-current

Drell–Yan process, i.e. Z/γ∗ production with leptonic decays in hadronic col-

lisions. ZINHAC features multiphoton radiation within the Yennie–Frautschi–

Suura exclusive exponentiation scheme with O(α) electroweak corrections and

is able to generate weighted as well as unweighted (weight = 1) events.

In order to construct ZINHAC, we first performed the calculations of the

YFS exponentiation in the leptonic Z-boson17 decays. We have provided the

17 All our calculations include virtual photon γ∗ and the full interference between γ∗ and
Z in the Drell–Yan-like process, but for the convenience we shall refer in the following to
this process as to Z-boson production.
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Figure 1.13: The Born distributions of ηl+ from SANC (red diamonds) and
ZINHAC (solid lines) for electrons and muons in final state and their relative
deviations δ = Z−S

Z
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Figure 1.16: The Born distributions of AFB from SANC (red diamonds) and
ZINHAC (solid lines) for electrons and muons in final state and their relative
deviations δ = Z−S

Z
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fully massive spin amplitudes for the single Z-boson production and decay,

including the single-real-photon radiation in both Z decay and production,

the latter is needed for the inclusion of the initial-final state interface effects.

Spin amplitudes allow for studies of the spin-dependent effects in the neutral-

current Drell-Yan process. For example, ZINHAC is able to provide separate

generations of processes with pure-transversely or pure-longitudinally polarized

Z-bosons at the Born level.

All this has been implemented in the Monte Carlo event generator ZINHAC.

For this purpose, an efficient multiphoton Monte Carlo algorithm has been

developed. The parton-level process is convoluted with the parton distribution

functions (PDFs) provided by the LHAPDF package [100, 101]. This package

includes a large set of recent PDF parametrisations by several groups.

The ZINHAC Monte Carlo generator has been implemented using a mod-

ern computer program development techniques, including C++, SVN, XML,



72 The Monte Carlo event generator ZINHAC

Doxygen, VisualParadigm, cmake and Trac. This makes ZINHAC easy to main-

tain (C++, SVN, cmake) and provide a very good feedback to the future users

(Doxygen documentation, Trac ticket system, etc.).

Finally, we have performed several tests of the ZINHAC. The spin ampli-

tudes have been cross-checked with the independent analytical representations

of the appropriate matrix elements and they have been found to be in very

good numerical agreement. We have also performed several numerical tests of

the implemented MC algorithm, both at the parton and hadron level. The pre-

sented results make us strongly confident in the correctness of the constructed

YFS MC algorithm and its implementation into the ZINHAC MC program.

Numerically, the YFS-exponentiation corrections beyond the fixed O(α) calcu-

lations are at the level of ∼ 104 for the total cross section, which is the result

of the KLN-theorem. However, for some distributions they can be much more

significant, for example they are very important for the precision measurement

of the sin2 θW and W -bosons mass, see Chapter 3 for more details.

In the future we plan to implement also the QED interferences between

the initial and final-state radiation and the O(α) weak corrections for the full

process. This can be achieved by using the method described in the Subsec-

tion 3.2.5. We would like also to perform additional tests, including compar-

isons of the higher order corrections at the hadron-level with the SANC MC

integrator. Then we would like to use ZINHAC for the studies of the influence

of the QED and the weak corrections on the measurements of the Standard

Model parameters at the LHC and, finally, for the data analysis of the LHC

experiments.



Chapter 2

A model of non-perturbative
gluon emission in an initial state
parton shower

Abstract

The transverse momentum of electroweak bosons in the Drell-Yan process is an

important quantity for the experimental program at the LHC. In this Chap-

ter we consider a model of transverse momentum distribution in which non-

perturbative smearing takes place throughout the perturbative evolution, by

a simple modification to an initial state parton shower algorithm. This new

model gives a good description of this quantity for the data taken in previous

experiments over a wide range of CM energy. The model’s prediction for the

transverse momentum distribution of the Z-bosons for the LHC is presented

and compared with other approaches.

This chapter is based on the following publications [102], [103].
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2.1 Introduction

In this chapter we will concentrate on one particular property of the produced

W and Z bosons1, namely their transverse momentum distribution. This is

interesting from the QCD point of view as, sweeping across the distribution,

one has regions dominated by hard perturbative emission, multiple soft and/or

collinear, but still perturbative, emission, and truly non-perturbative confine-

ment effects, see Fig. 2.1. It is also an important quantity for the experimental

Figure 2.1: The W boson transverse momentum distribution. Colours illus-
trate the parts of the distribution dominated by non-perturbative confinement
effects (red – low pT ), multiple soft and/or collinear approximation (yellow –
the middle part of the distribution) and perturbative physics (green – hight
pT ).

programme, because the W reconstruction efficiency is transverse momentum

dependent, having a direct effect on the ultimate precision of the W mass mea-

surement (see Chapter 3 for details) as well as helping to understand the sig-

nature for the Higgs boson production at either the Tevatron or the LHC [104].

Although the experiments measure the Z transverse momentum distribution

and use this to infer that of the W , the extent to which the effects are non-

universal limits the ultimate accuracy of the measurement, unless elaborate

1We are also interested in virtual photons with invariant masses well below that of the
Z, particularly for tuning and validating our model. All our calculations include properly
the full interference between γ∗ and Z, but with an eye on the ultimate application at the
LHC, we continue to refer in this introduction to Zs.
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tricks as proposed in Ref. [105] are used. Thus, a deeper theoretical under-

standing and more reliable models are certainly needed.

The two approaches to predicting the transverse momentum distribution

are analytical resummation [106, 107, 108, 109, 110, 111, 67] and parton shower

(PS) algorithms [7,112,113] (there have also been attempts to combine the two

approaches [114]). We will focus on the latter, but will draw a few comparisons

with the former later on. The parton shower approach starts from the tree-

level matrix element, usually supplemented by ‘matrix element corrections’

[115, 116, 113, 117, 118, 119] that use higher-order tree-level matrix elements to

describe emission at scales of the order of the W or Z boson mass and higher2.

These give a significant tail of events with very high transverse momenta.

The hard events are then evolved down to low scales by using the backward

evolution parton shower approach [7].

2.1.1 Parton Showers

The parton shower evolution is necessary for a good description of observables,

such as, the transverse momentum of electroweak bosons in hadronic collisions

which is discussed in this Chapter. This is because there are kinematic re-

gions where higher-order terms in the perturbative expansion are enhanced3,

therefore, have to be included in the calculations. Unfortunately, the complete

perturbative calculations have been typically performed at the leading order

(LO) in QCD. Next-to-leading order (NLO) calculations are available for many

processes and even one further order in αs, NNLO calculations are available in

some special cases [122]. Due to the roughly factorial growth in complexity one

cannot expect much higher orders to be computed soon. On the other hand

the parton shower algorithm instead of aiming for a precise prediction to some

fixed order in perturbation theory give an approximate description in which

such enhanced terms are taken in to account to all orders. The source of these

enhanced terms are collinear and soft singularities in QCD which have similar

origin to the IR singularities in the QED which were discussed in Section 1.1.

Parton shower algorithms give an approximate description of these effects to

2We do not go into their details, but use the implementation of [120] throughout this
paper.

3These enhancements due to collinear and soft singularities can be easily seen for example
by the examination of the behaviour of the cross section of e+e → 3 partons when two of the
parton momenta become collinear or one parton momentum becomes soft, see for example
Ref. [121].
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all orders, by working in the collinear limit and to the leading-logarithmic ac-

curacy. The short description of the parton shower in this sections is based on

Refs. [123,124].

(a) Single branching

The collinear enhancements are associated with a parton branching. Such a

single branching of parton a into partons b + c is depicted in Fig. 2.2. The

Figure 2.2: Timelike branching.

blob represents the rest of the diagram. That means that a is an outgoing

parton with p2
a ≡ t > 0, which is called timelike branching. The branching of

an incoming parton is called spacelike branching, due to the negative virtuality

(t < 0) of the parton there. The opening angle is θ = θb + θc. With the energy

fractions

z =
Eb
Ea

= 1− Ec
Ea
, (2.1)

t is given, in the the collinear limit, by4

t = 2EbEc(q − cos θ) = z(1− z)E2
aθ

2. (2.2)

θ can be expressed in terms of θb or θc as θ = θb
1−z = θc

z
. The different possible

branchings are g → gg, g → qq̄ and q → qg, where g denotes gluon and q

quark. Using the small angle approximation one finds that the matrix element

squared for these n + 1 particle processes can be expressed in terms of the n

particle matrix element as

|Mn+1|2 ∼
4g2

coup

t
P̂ba(z)|Mn|2, (2.3)

where gcoup is the coupling constant which determines the strength of the inter-

action between coloured quanta. The additional factors P̂ba are the so-called

4assuming that p2
b , p

2
c � p2

a
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unregularised, massless splitting functions related to the Altarelli–Parisi ker-

nels see for example Chapter 4 of Ref. [123]. For the three possible splittings,

they are given by

P̂gg(z) = 3

[
1− z
z

+
z

1− z + z(1− z)

]
,

P̂pg(z) =
1

2
[z2 + (1− z)2],

P̂gg(z) =
4

3

1 + z2

1− z .

(2.4)

The differential cross section can be expressed using the splitting functions, as

long as the dependence on the azimuthal angle φ of the branched parton is

integrated out,

dσn+1 = dσn
dt

t
dz
αs
2π
P̂ab(z). (2.5)

One finds that exactly the same formula also describes spacelike branchings.

This universality of hierarchical emissions is known as factorisation of collinear

singularities.

(b) Multiple branching

The aim of a parton shower algorithm is now to simulate according to Eq. (2.5)

the ensemble effects of multiple parton branchings. Introducing the cut-off scale

Q2
0 ≡ t0 imposes a resolution parameter, such that branchings that are softer

or more collinear5 than that are not distinguishable from no branching at all,

i.e. unresolvable. By invoking unitarity (requiring the sum of branching plus

nobranching probabilities to be one), the cancellation between the divergent

parts of the splitting functions and the corresponding loop diagrams is implic-

itly handled. Let us consider only one type of branching, for example multiple

gluon radiation from spacelike quark, see Fig. 2.3. A incoming quark from

the hadron A, initially with a low virtuality mass-squared −t0 and carrying

a fraction x0 of the hadron’s momentum, moves to more virtual masses and

lower momentum fractions by successive small-angle emission. Eventualy it

participates in a hard scattering process at a scale Q2. The cross section for

the hard scattering process will depend on the scale Q2 and on the momentum

fraction distribution of the parton f(x,Q2). The integral equation for f(x, t)

5The boundaries of the z integration will also depend on t to regularise the divergences
in P̂ba(z) at z = 1 by z < 1− ε(t).
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Figure 2.3: Multi-gluon branching processes for the initial-state branching in
deep inelastic scattering.

in therms of the initial parton distribution f(x, t0) can be written as follows:

f(x, t) = ∆(t)f(x, t0) +

∫ t

t0

dt′

t′
∆(t)

∆(t′)

∫
dz

z

αs
2π
P̂ (z)f(x/z, t). (2.6)

where ∆(t) is so called the Sudakov form factor [125], ∆(t),

∆(t) ≡ exp

[
−
∫ t

t0

dt′

t′

∫
dz
αs
2π
P̂ (z)

]
. (2.7)

The Sudakov form factor has a simple physical interpretation, it gives the

probability for a parton i to evolve from t0 to t without any resolvable emission.

Therefore, Eq. (2.6) can be read in the following way, the first term on the right-

hand side of the equation is the contribution from branching paths that do not

branch between scales t0 and t. The second term is the contribution from all

paths which have their last branching at the scale t′. The factor ∆(t)/∆(t′)

represents the probability of evolving from t′ to t without branching. The

generalization of Eq. (2.7) to take into account of several types of partons is

straightforward. Each parton species i has its own form factor ∆i(t), which

describes its probability of evolving from t0 to t without branching. Since the

branching probability has to be summed over all possible i→ j, we have

∆i(t) ≡ exp

[
−
∑
j

∫ t

t0

dt′

t′

∫
dz
αs
2π
P̂ij(z)

]
, (2.8)

where P̂ij(z) is the unregularised i→ j spliting function.

Now, we need to find a Monte Carlo prescription how to generate the values

for the virtual mass scale t and momentum fraction x according to Eq. (2.6)

for a single evolution step, say (t1, x1)→ (t2, x2). The variable t2 will have the

correct probability distribution, if the equation

∆(t2)

∆(t1)
= r (2.9)
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is solved for t2, with r being a uniformly distributed random number, r ∈ [0, 1].

If the value t2 is higher then the hard subprocess scale Q2, this means that no

further branching occurs (stopping rule). Otherwise, we have to generate the

value of the momentum fraction z = x2

x1
for the next branching, with a proba-

bility distribution proportional to (αs/2π)P (z) where P (z) is the appropriate

spliting function. We can do this by solving the equation∫ x2/x1

ε

dz
αs
2π
P (z) = r′

∫ 1−ε

ε

dz
αs
2π
P (z) (2.10)

where r′ represents another random number in the interval [0, 1] and ε is the

IR cut-off for resolvable branching. The algorithm is then recursively applied

to each of the products of this branching till the moment when stopping rule

is reached. The values of (ti, xi) generated by successive application of the

algorithm define the virtual masses and momentum fractions of the exchanged

quark, from which momenta of the emitted gluons can be computed. The

azmiuthal angles of their emission are generated from the uniform distribution

in the range [0, 2π].

The evolution described above generates what is known as forward evolu-

tion. The evolution of spacelike partons (backward evolution) must take into

account, that these partons are extracted from the incoming hadrons. This

can be consistently done, by modifying Eq. (2.9) in the following way

fi(x, t1)∆i(t2)

fi(x, t2)∆i(t1)
= r (2.11)

where parton i evolves backwards from (t2, x) to (t1, x). The remaining vari-

ables to generate are the momentum fraction z and azimuthal angle φ. When

averaging over φ, a simple uniform distribution φ ∈ [0, 2π] can be chosen.

In the timelike case z was distributed according to αs
2π
Pi(z), whereas in the

spacelike case (t′, x′)→ (t, x) according to αs
2π

Pi(z)
z
fi(x

′/z, t).

(c) Coherent branching

Such an algorithm of multiple branchings treats all leading collinear loga-

rithms, arising from the dt
t

term, correctly. However, there are also impor-

tant soft logarithms, from dz
z

terms, for gluon emissions. After averaging

over azimuthal angle, their interference is completely destructive. It has been

shown [112, 126, 127, 128, 129, 130, 131, 132, 133, 134] that whenever soft gluon

emissions are considered, branchings that are not angular ordered do not give
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any leading logarithmic contributions. A major success of the original HER-

WIG program was its treatment of soft gluon interference effects, in particular

the phenomenon of colour coherence, via the angular ordering of emissions in

the parton shower. Herwig++ simulates parton showers using the coherent

branching algorithm of [113], which generalises that used in the original HER-

WIG program [112, 135, 136]. The new algorithm which we use in our studies

retains angular ordering as a central feature and improves on its predecessor

in a number of ways, the most notable of these being:

• a covariant formulation of the showering algorithm, which is invariant

under boosts along the jet axis;

• the treatment of heavy quark fragmentation through the use of mass-

dependent splitting functions [137] and kinematics, providing a complete

description of the so-called dead-cone region.

For more details on the parton shower evolution, see for example Refs. [123,

124].

2.1.2 ‘Intrinsic’ transverse momentum

Recoil from the gluons emitted6 during this evolution builds up a transverse

momentum for the W or Z. The evolution terminates at some scale of the

order of the confinement or a typical hadron mass scale. However, the con-

finement effects, described for example as the Fermi motion of partons within

the hadron, mean that the partons initiating the shower should have a non-

perturbative transverse momentum distribution, often described as their ‘in-

trinsic’ transverse momentum, which is also transferred to the W or Z by the

recoil [107].

Analysis of higher order corrections shows that the scale of the running

coupling used in this evolution should be of the order of the transverse mo-

mentum of the emission [138,139], and once this is done, one must introduce an

infrared cutoff in the transverse momentum that is active during every step of

the evolution. That is, the probability of each backward step in the evolution

variable, even at large values of that variable, is logarithmically dependent on

the cutoff. In Ref. [140], authors advocated the view that conventional infrared

6Together with other backward-evolution steps, such as an incoming sea quark being
evolved back to an incoming gluon by emitting a corresponding antiquark.
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cutoff scales on perturbative emission (in that case on the transverse momenta

used to describe the minijet production in an underlying event model) should

be thought of as infrared matching scales, with a non-perturbative model of

emission below the cutoff supplementing the usual perturbative one above. In

this paper we propose such a model for the backward evolution in which an

additional non-perturbative component at low transverse momentum provides

additional smearing at each step of the evolution.

2.1.3 Motivation

In order to fit existing data, as we have mentioned above the conventional

backward evolution parton shower approach needs to be supplemented by the

so-called intrinsic (or ‘primordial’) transverse momentum kT distribution of

partons initiating the shower. The physical motivation behind this additional

non-perturbative ingredient is the Fermi motion of partons within a hadron.

Therefore, its average value per parton can be estimated, based solely on the

proton size and uncertainty principle to be of the order of 0.3–0.5 GeV. But

the values extracted from data are, first of all, too large and, secondly, grow

with collision energy, which cannot be explained by the Fermi motion. For

example, in Herwig++ its value grows from kT = 0.9 GeV, which is needed to

describe the data taken at the energy
√
S = 62 GeV (the experiment R209),

to 2.1 GeV which, is needed at the Tevatron energies (
√
S = 1800 GeV). This

motivated us to propose a model for backward evolution in which an additional

non-perturbative component at low transverse momentum provides additional

smearing at each step of the evolution. By construction, we expect more non-

perturbative smearing for longer parton shower evolution ladder which might

cure the problem of dependence on the centre-of-mass energy as well as on the

size of the needed intrinsic smearing, which in our studies is kept, according to

the Fermi motion argumentation, fixed at 0.4 GeV. Therefore, in this chapter

we ask the question whether, with this additional source of the non-perturba-

tive transverse momentum, a truly intrinsic transverse momentum distribution

for the initial partons, that does not depend on the collision energy or type,

is sufficient. In Fig. 2.4 we show the comparison of the Z–boson transverse

momentum spectrum at the Tevatron Run I with the CDF data [141]. The left

panel shows that such a description is possible up to large transverse momenta.

The high transverse momentum region is, however, dominated by contributions

from hard gluon emissions. These will not be the focus of this paper. In
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Figure 2.4: The transverse momentum distribution of the Z bosons at the
Tevatron energies compared to the CDF data, up to large transverse momenta
(left) and only for the small p⊥ region (right). The line denoted “no IPT” is
from Herwig++ with intrinsic transverse momentum off.

general, the large transverse momentum region will not be affected by soft,

non–perturbative emissions.

In the right panel of Fig. 2.4 we see only the small transverse momentum

region. The Herwig++ result is shown with the intrinsic p⊥ = 2.1 GeV from

the Gaussian smearing [120], which is the default value at Tevatron energies.

To show the importance of this effect, we also plot the result with the intrinsic

p⊥ set to zero. Clearly, this non–perturbative Gaussian smearing only affects

the region of small transverse momenta. At the large boson p⊥, the recoil

against the hard, perturbative gluon radiation dominates the spectrum.

We also compared to the D0 data [142] and found a similar agreement.

However, the CDF data has a finer binning and is therefore more suitable for

our comparison.

2.2 Description of the model

The implementation of transverse momentum generation, in which non-per-

turbative smearing takes place throughout the perturbative evolution, was

achieved by a simple modification to an initial-state parton shower algorithm.

The model was implemented in the framework of Herwig++, in which the

Sudakov form factor for the backward evolution from some scale q̃max down to
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q̃ takes the form

∆(q̃; p⊥max , p⊥0) = exp

{
−
∫ q̃2

max

q̃2

dq̃′2

q̃′2

∫ z1

z0

dz
αs(p⊥)

2π

x′fb(x
′, q̃′2)

xfa(x, q̃′2)
Pba(z, q̃

′2)

}
,

(2.12)

with x′ = x/z, for further details cf. Ref. [113].

The argument of the strong coupling αs in Eq. (2.12) is the transverse

momentum p⊥ of an emission7. The cut-off scale represented by p⊥0 is needed

to avoid divergence (the Landau pole) of the strong coupling. Below the cut-

off scale αs is equal to zero and, consequently, the derivative of the Sudakov

form factor is equal to zero, which translates to zero probability of the gluon

emission below p⊥0 . Therefore, the two arguments of the Sudakov form factor,

p⊥max and p⊥0 , are not the evolution variables but only explicitly specify the

available phase-space of the emission.

In order to populate the phase-space below p⊥0 by additional non–perturba-

tive emissions, we introduce the additional Sudakov form factor ∆NP , such that

∆(q̃; p⊥max , 0) = ∆pert(q̃; p⊥max , p⊥0)∆NP(q̃; p⊥0 , 0) (2.13)

We achieve this by extending αs(p⊥) into the non-perturbative region using

the following model

αs(p⊥) =

{
ϕ(p⊥), p⊥ < p⊥0 ,

α
(pert)
s (p⊥), p⊥ ≥ p⊥0 .

(2.14)

In this way, the kinematics and phase space of each non–perturbative emission

are exactly as in the perturbative case. We only modify their probabilities in

the region of small transverse momenta. In Fig. 2.2 we show how the phase

space expressed in terms of parton shower variables q̃ and z is populated by

gluons without (top plot) and with our non-perturbative model (bottom plot).

The two lines (solid and dashed) on each plot denote the lines along which

p⊥has a constant value8 (isolines). The solid line is the isoline with p⊥ = 0

GeV and the dashed line with p⊥ = 1 GeV. In general, isolines with higher p⊥

are situated closer to the left-top corner of the plot. We can clearly see that,

as we wanted, our model introduced additional soft radiation in the region

7In Herwig++, the argument of αs is a slightly simplified expression, equal to the trans-
verse momentum to the required accuracy, but not exactly. We have tested the implemen-
tation of our model with this simplified expression and the exact expression for transverse
momentum, and found very similar results. We therefore use the default expression.

8The value of p⊥ is completely determined by the q̃ and z.
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between 0 < p⊥ < 1. We can also observe that there is a remaining small part

of the phase space which is not available for the gluon emission. This is because

we have to keep the cut-off on the parton shower variables q̃ – in the case of

Fig. 2.2 it was set to 1 GeV. This small remaining non-populated area is the

reasons for us to keep a small value of the intrinsic smearing in our studies.

In order to explore the possibility of a reasonable description of experi-

mental data, we have studied in a greater detail two simple choices of the

non–perturbative function ϕ(p⊥):

(a) “flat”: the flat continuation of αS(p⊥ < p⊥0) with a constant value ϕ0 =

ϕ(0),

αS(p⊥ < p⊥0) = ϕ0 . (2.15)

(b) “quadratic”: a quadratic interpolation between the two values αS(p⊥0)

and ϕ(0).

αS(p⊥ < p⊥0) = ϕ0 + [αS(p⊥0)− ϕ0]
p2
⊥

p2
⊥0

. (2.16)

In both cases our model is determined by two free parameters: p⊥0 and ϕ0.

We have concentrated our study on the small transverse momentum region

of vector boson production. Therefore, the only modification of the Herwig++

code that had to be made was the introduction of the two non–perturbative

parameters to αS(p⊥). In fact, as we implemented it, this would also affect the

final-state radiation but our observable is not sensitive to effects in the final

state. Details of the final state effects will be discussed in Section 2.5.3.

We would like to emphasize that we want to keep this model as simple as

possible in order to explore the possibility of a reasonable description of the

data. Therefore, the shape of αS in the non–perturbative region is only a crude

guess. A further study of the details of the shape would go beyond the scope

of this work.

2.3 Parton-level results

To simulate fully exclusive events, Monte Carlo event generators, such as Her-

wig++, use a hadronization model, which is assumed to be universal across

different types of collisions and different processes within them. Therefore for

our final results, presented in Sections 2.4 and 2.6, we will combine our model

for non-perturbative gluon emission with the standard Herwig++ model for
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Figure 2.5: Available phase space for the gluon emission without (top plot)
and with our non-perturbative model (bottom plot) expressed in terms of the
parton shower variables q̃ and z.
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the termination of the shower using non-perturbative effective parton masses

tuned to e+e− data, so that the corresponding hadronization model can be

used. However, if we are only interested in the W or Z transverse momentum

distribution, we do not need to hadronize the final state: we can terminate the

simulation at the end of the parton shower. We can therefore make a purely

parton-level study with all light-quark and gluon effective masses and cut-offs

set to zero9 with our model for the low-scale αS as the only non-perturbative

input.

The first observation that we can make with our model is that we can easily

find the parameter values that describe the existing Tevatron data. However,

the main focus of our work is on the understanding of the dependence of the

non–perturbative effects on the typical centre-of-mass (CM) energy of the sys-

tem or even of the collider. We therefore consider two more data sets. The

first is Fermilab E605 [143] fixed target p–Cu data, taken at the 38.8 GeV

CM energy. We only take the data with an invariant mass in the range

11.5 < M/GeV < 13.5 as this goes out to the highest transverse momen-

tum. The other data we consider were taken in p–p collisions at
√
S = 62 GeV

at the CERN ISR experiment R209 [144]. There are more data available but

all at even lower CM energies. Our main interest is in finding a reasonable

extrapolation to the LHC energies that is still compatible with the early data.

We have run Herwig++ with varying non–perturbative parameters ϕ0 and

p⊥0 for the two forms of αS in (2.15) and (2.16). After an initial broader scan,

we focussed on the region of ϕ0 between 0 and 1 and p⊥0 between 0.5 GeV and

1.0 GeV. Each parameter set was run for the three different experimental setups

we consider. For each resulting histogram we have computed the total χ2/bin

in order to quantify its agreement or disagreement with the data. We took the

data errors to be at least 5% as we did not want to bias towards exceptionally

good data points. Furthermore, we ignored an additional systematic error of

the two fixed-target data sets which is quoted to be around 5–10%. Fig. 2.6

shows the χ2 values we obtain for the “quadratic” model compared to the three

considered data sets. The basic features are the same. In each case we find

9For technical reasons, it is not possible to set them exactly to zero. However, we have
confirmed that if they are small enough, their precise values become irrelevant. For this
study we actually set the quark masses and the δ parameter to 1 MeV, so that the non-
perturbative mass that cuts off the parton shower, called Qg in the Herwig++ manual, is
given by the so called cParameter. For the cParameter we ran with values in the range
10 MeV to 100 MeV and found very little effect. We therefore use 100 MeV for our main
results.
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Figure 2.6: The parton-level results for χ2 values for the quadratic non–
perturbative model compared to E605, R209 and Tevatron data as a func-
tion of the NP parameter p⊥0 . The different lines are for different values of
ϕ0 = αS(0).
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Figure 2.7: The comparisons of the parton level results from the non–
perturbative model with data from the E605 (top left), R209 (top right) and
CDF (bottom). The Monte Carlo results are from our parameter set with
ϕ0 = 0.0, p⊥0 = 0.75 GeV. Each panel includes two plots. The upper plot
compares MC to the data directly, whereas the lower plot shows the ratio
(MC-Data)/Data against the relative data error.
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clear minima within the given p⊥0 range. In going from one experiment to

another we find the more or less sharp minima. The minimum in Fig. 2.6 for

Tevatron is not as clear as in the cases of the other two experiments. The

best and most stable situation for all experiments is found for αS(0) = 0.0 and

p⊥0 = 0.75 GeV. In Fig. 2.8 we show the non–perturbative region of our αS

parametrisation. We have inspected all distributions directly as well, and found

a consistency with this choice. For this optimal choice over the energy range

from 38.8 GeV to 1.8 TeV we show the resulting low p⊥ distributions in Fig. 2.7.

We should stress that the used parameter set may not be the optimal choice

for each experiment or CM energy but rather the best compromise between the

three experiments. As the fixed target data do not even include the systematic

errors quoted, we have deliberately put a bit more emphasis on the Tevatron

result. Ultimately, our goal will be to extrapolate our results further to the

LHC energies, and we believe that for this purpose we have made the right

choice of the parameters.

2.4 Hadron-level results

As we have mentioned earlier, the results of the previous section are not suit-

able for the full event simulation, because the masslessness of the light quarks

and gluons is not consistent with the hadronization model used in Herwig++.

Therefore, in this section we perform the same comparison with data but with

the effective parton masses returned to their default values, tuned to e+e− an-

nihilation data. Performing an initial scan over parameter space we find that

we need to consider a much wider range of values than in the massless case.

We can get a good description of the data from each experiment, but there is

more tension between the three experiments leading to a larger total χ2 value.

In this case, the best and most stable situation was found for αs(0) = 4 and

p⊥0 = 2.5 GeV, giving the χ2/dof value per of 0.74 for CDF, 0.88 for R209,

and a little bit worse, 3.1 for E605. This is not bad because, as was mentioned

before, the fixed target data in our analysis do not even include the systematic

errors quoted to be around 5–10%. We show the results in Fig. 2.10. Although

the overall description of the data is somewhat worse with the non-perturbative

parton masses, it is acceptable, and we prefer to maintain Herwig++’s descrip-

tion of final states, so we keep this as our default model for the remainder of

the study.
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2.5 Remarks

Before we present our prediction for the LHC and comparison with other ap-

proaches let us make few remarks.

2.5.1 Dependence of the results on the intrinsic momen-
tum k⊥

We have checked how the results depend on the intrinsic momentum k⊥ by

varying its value with δk⊥± = ±0.1 GeV around our fixed value k⊥ = 0.4

GeV, which is in the range permitted by the Fermi motion. We have repeated

the fitting procedure and observed that for both intrinsic momenta, k⊥± =

k⊥ + δk⊥± , we are able to find a pair of parameters for which our model gives

equally good description of data sets as for the central value of k⊥ = 0.4

GeV. Moreover, we have observed that the value of the αs(0) parameter for all

studied intrinsic momenta remains the same but the p⊥0 value is shifted for a

bigger intrinsic momentum to a higher scale and for a smaller one to a lower

scale. Therefore, by changing the intrinsic momentum from 0.4 to 0.5 GeV we

can obtain exactly the same best model’s parameters set as in [102]10 and the

10 In this thesis we present some new results of the model which have been obtained after
important improvements of the Herwig++’s parton shower, released with the version 2.3.1
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same shape of αs as presented in Figure 4 of [102], which is discussed below.

2.5.2 Comparison of our parametrisation of αs with other
approaches

It is interesting to compare our αs parametrisation with other approaches to

modelling of non-perturbative corrections to inclusive observables with a mod-

ified coupling in the soft region, see for example Refs. [145,146,147]. Ref. [145]

finds an average value of the coupling over the range from 0 to 2 GeV of

about 0.5, while Ref. [146] argues that the effective coupling should vanish at

p⊥ → 0. For our best-fit parametrisation at the parton level for k⊥ = 0.5

(the shape of αS is the same as in Fig. 4 of Ref. [102]), the average value of

the coupling over the range from 0 to 2 GeV is around 0.7. Considering that

their fits to data typically use the NLO calculations, while we have used the

leading-log parton shower, this could be considered the good agreement. In

case of the hadron level our best-fit αS parametrization is very different from

those of Refs. [145,146,147] – it is much larger in the non-perturbative region.

This is not surprising since our coupling is now ‘fighting against’ the emission

distribution that is already falling as p⊥ → 0 relative to the perturbative one.

2.5.3 Non-perturbative final-state radiation

As briefly discussed in Introduction, we want to stress that the approach of

adding the non–perturbative soft-gluon radiation to the parton shower should

be connected to the non–perturbative input that the parton shower is linked to

in the initial state. We think of this radiation as originating from long–range

correlations within the coloured initial state.

We have checked the effect of the same model for the final-state radia-

tion. We find a dramatic increase in the amount of soft radiation when we

compare event shapes, simulated with our new model for soft emissions, to

the LEP data, which are described well by the default parton-shower model.

Using the default hadronization model, we observe a dramatic softening of

the event shapes, leading to a poor description of data. However, the default

hadronization model produces a considerable amount of transverse momentum

smearing during cluster splitting and decay, and is tuned to data together with

of the program. The main change in the program was a fix for a wrongly applied PDF veto
in the parton shower q̄ → q̄ g splittings which, by construction of our model, could have
influenced on results presented in the first publication introducing the model, see [102].
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the parton-shower model that does not include the non-perturbative smearing.

Therefore, to turn on this smearing, without modifying or, at least, retuning

the hadronization model, must lead to a significant amount of double-counting.

It is an interesting question, which we reserve for future works, whether a good

fit can be obtained with our model?

The last remark is that using our model as the only non-perturbative ingre-

dient in the simulation, i.e. removing the non-perturbative constituent parton

masses that usually cut off the parton shower in Herwig++, gives a somewhat

better description of the data. This lays open the speculation that perhaps,

in some way, the two approaches could be combined. One could, for example,

use our model for the initial-state radiation, and the usual model, tuned to

describe the final states of e+e− annihilation, for the final-state radiation.

2.6 LHC results and comparisons with other

approaches

2.6.1 Z boson transverse momentum

At the end of this chapter we would like to compare the results for a transverse

momentum distribution of the Z-boson at the LHC energies using our non-

perturbative gluon emission model and two other approaches: ResBos [148]

and the Gaussian intrinsic k⊥ extrapolation. But first let us compare our

prediction at the parton level, marked as the filled histogram in Fig. 2.11, and

at the hadron level, the dot–dashed blue line. Both histograms, as expected,

give a consistent extrapolation. The result from ResBos in Fig. 2.11 (the

solid black line) shows a slightly different behaviour from our prediction. We

predict a slightly more prominent peak and a stronger suppression towards

larger transverse momenta. The same trend is already visible when comparing

both approaches to the Tevatron data, although both are compatible with the

data within the given error band, see Fig. 2.12. Both computations match the

data well at large transverse momenta as they rely on the same hard matrix

element contribution for the single hard-gluon emission. We want to stress the

remarkable feature that we both predict the same peak position with these

two different models, which is very important from the experimental point of

view. This feature is quite understandable, as both models are built on the

same footing: extra emissions of soft gluons. The comparisons of ResBos to
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data from experiments at various energies, including the experiments E605 and

R209, were done in [149].

Furthermore the dashed red line in Fig. 2.11 is the Herwig++ result where

only intrinsic 〈k⊥〉 = 5.7 GeV was used, as recommended in [150,10]. This large

value stems from the extrapolation of lower-energy data, with the assumption

that the average k⊥ depends linearly on ln(M/
√
S). The peak is seen to lie

at a considerably higher value of transverse momentum. It would clearly be

of interest to have experimental data to distinguish these two models of the

non–perturbative transverse momentum.

2.7 Herwig++ parameter settings

The study has been done with Herwig++ 2.3.1. We ran with the default

matrix element for the γ, Z production with only initial state parton showers.

We left final state parton showers and hadronic decays switched off as they

were irrelevant for this study. The following parameters in the release 2.3.1 are

important to switch off the final-state parton shower and to adjust the intrinsic

p⊥:

cd /Herwig/Shower

set SplittingGenerator:FSR No

set Evolver:IntrinsicPtGaussian 0.4*GeV

Our preferred result, as shown in Fig. 2.10, was obtained by setting

set AlphaQCD:NPAlphaS 5

set AlphaQCD:Qmin 2.5*GeV

set AlphaQCD:AlphaMaxNP 4

Here, “AlphaQCD:NPAlphaS 5” selects the quadratic non–perturbative model.

The flat model corresponds to setting this parameter to 6.

AlphaQCD:Qmin sets the value of p⊥0 and AlphaQCD:AlphaMaxNP directly sets

the value αS(0). As obtaining the results for the parton level with very small

masses and cutoffs was very CPU intensive, we have also modified the code in

order to leave out the time-like showers from partons radiated in the initial-

state shower.
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2.8 Conclusions

Aiming for a universal model of the non–perturbative soft gluon radiation we

have achieved a good description of the experiment data at three different

energies. We have considered the model based on the soft-gluon radiation,

much like the resummation procedure in ResBos [148], to have a more mean-

ingful physics input than simply extrapolating the Gaussian smearing of the

primordial transverse momentum. Let us sum up by citing the opinion of B.

R. Webber about the model from his CERN Academic Training Lecture [151]

given at CERN on 21 Feb 2008, the video is available from CERN website

http://cdsweb.cern.ch/record/1082256 (see 67th minute of the video):

The question from a person from audience:

“I have a question on this intrinsic pT . In principle, for example the

pT distribution of the Z-boson we will be able to measure very precisely.”

B. R. Webber:

“Right.”

The person from audience:

“Now you said, there is a theory problem. There is something like phenome-

nological intrinsic pT which needs to be added, but it is a several GeV and

it looks not just to be non-perturbative, what is the strategy in order to

better understand this?”

B. R. Webber:

“Well. I think in my mind the most interesting theoretical development has

been the recent model for that, I mean it is still phenomenological but

seems very reasonable to me and that is a model of [102] (...)”

which is the model described in this chapter.

Of course, if this model is universal, it should make good predictions for

other processes, such as the jet and photon production. We plan to study these

processes in a more detail in the future.

We have also found that using our model as the only non-perturbative ingre-

dient in the simulation, i.e. removing the non-perturbative constituent parton

masses that usually cut off the parton shower in Herwig++, gives a somewhat

better description of the data. This lays open the speculation that perhaps, in
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some way, the two approaches could be combined, using our model for initial-

state radiation, and the usual model, tuned to describe the final states of e+e−

annihilation, for final-state radiation. However we leave considerations of this

combination to our future works.



Chapter 3

W -mass measurement at the
LHC

Abstract

In this chapter we focus our attention on the measurement of the W -boson

mass. This is one of the most important Standard Model measurements at

the LHC. In the first part of the chapter we discuss the systematical effects

which are the largest and, as a consequence, the most important for the W -

mass measurement at the Tevatron hadron collider experiments. We propose

a novel method of the W -mass measurement. It is robust with respect to these

systematic measurement and modeling error sources. In the second part we

investigate whether this method can reduce the present uncertainty of MW at

the LHC. An emphasis is put on effects that are not important at the Tevatron

but may play an important role at the LHC. The result of this investigation

shows that several important sources of errors have been neglected in all the

previous analyses performed by the LHC experimental Collaborations (ATLAS

and CMS). For the very first time the precision of the W -boson mass is eval-

uated in the presence of these effects. This evaluation shows that in order to

reach a desired precision of the W -boson mass at the LHC, novel measurement

strategies must be developed. At the end of this chapter we provide two ex-

amples of such strategies.

This chapter is based on the following works: [5, 13,105,152,153,154].
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3.1 Introduction

One of the major goals of the experimental programme at the LHC is to im-

prove the precision of the Electroweak Standard Model (SM) parameters, in

particular the mass of the W -boson. Given the precise measurements of the

80.3

80.4

80.5

150 175 200

mH [GeV]
114 300 1000

mt  [GeV]

m
W

  [
G

eV
]

68% CL

∆α

LEP1 and SLD
LEP2 and Tevatron (prel.)

August 2009

Figure 3.1: The plot from Ref. [155]. The comparison of the indirect constraints
on MW and mt based on LEP/SLD data (dashed contour) and the direct
measurements from the LEP2/Tevatron experiments (solid contour). In both
cases the 68% CL contours are plotted. Also shown is the SM relationship for
the masses as a function of the Higgs mass in the region favoured by theory
(< 1000 GeV) and allowed by direct searches (114 GeV to 170 GeV and > 180
GeV). The arrow labelled ∆α shows the variation of this relation if α(M2

Z)
is changed by plus/minus one standard deviation. This variation gives an
additional uncertainty to the SM band shown in the figure.

Fermi constant GF = 1.166367(5) × 10−5 GeV−2 [156], the electromagnetic

coupling constant α and the Z-boson mass MZ = 91.1876± 0.0021 GeV [156],
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a precision measurement of the W mass, which is known to a much worse ac-

curacy: MW = 80.399 ± 0.023 GeV [156], plays a central role, as it allows for

both testing the Standard Model – by confronting predictions of the W and

top quark masses [157] with measurements [158,159], as well as putting limits

on the SM Higss boson mass [160]. The W -boson mass is given by

MW =

√
πα√
2GF

1

sin ΘW

√
1−∆R

. (3.1)

At the lowest order the radiative correction ∆R is equal to zero. At higher or-

ders of the perturbation theory ∆R depends upon the masses of the particles in

the W self-energy diagrams. That is why, in the context of the SM, the precise

measurements of the top quark mass and the W mass provide a constraint on

the unobserved Higgs boson mass. The recent results of such a constraint are

shown in Fig. 3.1, taken from Ref. [155]. Of course, ∆R could also be modified

by the radiative corrections involving masses of heavy Beyond-Standard-Model

particles [161]. Therefore, the precise measurement of MW provides also con-

straints on new physics, see Fig. 3.2 (this plot is taken from Ref. [162]) for

more information about the current status of such studies.

At the Large Electron-Positron Collider LEP2 the W -mass has been mea-

sured to be 80.376±33 MeV [160], while at the hadron collider Tevatron, both

experiments CDF and D0 have measured the W -mass respectively to be:

MW = 80.413± 0.034(stat)± 0.034(sys) GeV (CDF), (3.2)

MW = 80.401± 0.021(stat)± 0.038(sys) GeV (DØ). (3.3)

Combining the above two Tevatron measurements gives [163]:

MW = 80.420± 0.031 GeV (Tevatron), (3.4)

which is more precise than the combined LEP2 measurement. The current

world-average value of MW is [163]

MW = 80.399± 0.023 GeV (World average). (3.5)

Although a precision of the W mass that matches the precision of the Z-boson

mass (±2 MeV) is experimentally not within a reach at the LHC, a much better

precision than available at present is desirable to make the most use out of the

relation between the W mass and the Fermi constant GF given by Eq. (3.1).

Therefore, in this chapter we examine the upper limit on the precison of the
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Figure 3.2: Predictions for MW in the MSSM and the SM as a function of mt

in comparison with the present experimental results for MW and mt and the
prospective accuracies (using the current central values) at the Tevatron/LHC
and at the ILC. The allowed region in the MSSM, corresponding to the light-
shaded (green) and dark-shaded (blue) bands, results from varying the SUSY
parameters independently of each other in a random parameter scan. The
allowed region in the SM, corresponding to the medium-shaded (red) and dark-
shaded (blue) bands, results from varying the mass of the SM Higgs boson from
MH = 114 GeV to MH = 400 GeV.

W -boson mass measurement at the LHC. This examination is divided into

two main stages. In the first stage, we will consider the systematical effects

which are the largest and, as a consequence, the most important for the W -

mass measurement at hadron collider experiments performed at the Tevatron.

We will show, step-by-step, a construction of a novel method of the W -mass

measurement at the LHC which is robust with respect to these systematic

measurement and modeling error sources. We call it the “Z candle” method

because it optimizes the use of the Z-boson, which properties are measured

to the high-level precicion, as “the standard reference candle” for the W -mass
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measurement. Coping with reduction of the most important systematic errors

from the previous hadron experiments is, of course, a mandatory step for the

precision measurement of W -boson mass at the LHC. However, the question

that remains to be addressed is whether dealing with these effects is enough

to make this measurement competitive or whether one will be faced with new

kinds of problems that are not important at the Tevatron. This question is

addressed in the second part of the chapter called “LHC specific effects”. In

order to answer this question we first look in more detail at the differences in the

production and decay of W+, W− and Z bosons in hadronic collisions. Next,

we discuss how these differences are reflected in the relationship between W and

Z boson observables at the Tevatron and at the LHC. We trace the principal

differences between the Tevatron and the LHC, identify the effects which are

specific to the LHC p p collision scheme and evaluate their impact on the MW

measurement biases at the LHC. This is the first time that the precision of

the W -boson mass is evaluated in the presence of these effects. We reveal that

several important sources of errors have been neglected in the previous analyses

performed by both ATLAS [6] and CMS [14] Collaborations, resulting in too an

optimistic, of O(10) MeV, assessment of the expected measurement precision of

the W -boson mass. We argue that in order to reach the desired precision target,

claimed by both the ATLAS [6] and CMS [14] Collaborations, novel LHC-

specific measurement strategies must be developed. At the end of this chapter

two examples of such strategies are discussed. In the first one we circumvent

the LHC specific precision ‘brick-walls’ by proposing the dedicated LHC runs

with deuterium or helium ion beams. The second, alternative strategy includes

a dedicated fixed target “LHC-support” experiment with a high-intensity muon

beam. At the end of the chapter we summarize our studies.

3.2 Basic information and definitions

In this section we provide the basic information and definitions needed by

subsequent sections. First, we specify the event selection rules and define the

observables. Next, we describe the tools used in our studies. Finally, at the

end of the section, we present the analysis method used in this chapter. All

the technical aspects of the analysis discussed here were also presented in the

publications devoted to the measurement of MW+ −MW− , see Refs. [13,164].

Throughout this chapter, we assume that the intrinsic MW+ and MW−
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masses are equal1.

3.2.1 Event selection and basic observables

In our studies we consider the charged and neutral current Drell–Yan processes,

i.e. the single W -boson and Z-boson production with leptonic decays:

p+ p (p+ p̄, d+ d) −→ W± +X −→ l± +
(−)
νl +X ,

p+ p (p+ p̄, d+ d) −→ Z + γ −→ l+ + l− +X ,
(3.6)

where p denotes the proton, d–deuteron and l = e, µ. The nucleon–nucleon

centre-of-mass energy,
√
s, is assumed to be 14 TeV for the p p and p p̄ collisions

and 7 TeV/nucleon for the d d collisions. The studies reported in this chapter

have been performed for the one-year-long low-luminosity LHC run allowing

to collect the integrated luminosity of 10 fb−1. By the time of reaching such

a luminosity, the leptonic decays of O(108) W and O(107) Z bosons will be

recorded at the LHC.

The extraction of the W -mass is made by studying the electronic and

muonic decays of W and Z boson, namely W → l νl and Z → l+l−, where

l = e, µ. The choice of leptonic decays is motivated by the fact the dijet QCD-

background is by several orders of magnitude higher than the W → q q̄′ and

Z → q q̄ signals. The leptonic decays provide processes with large cross sections

and ensure the absence of the QCD effects in the final state. The decays of

electroweak bosons into the τ channel is not considered because τ decays pre-

dominantly into hadrons (huge background), while its leptonic decays involve

two neutrinos (not detected).

Basic observables. The commonly chosen kinematical variables for the

above processes are the charged lepton transverse momentum pT,l (or equiva-

lently ρl = 1/pT,l) and the pseudorapidity ηl, defined as

pT,l =
√
p2
x,l + p2

y,l , (3.7)

ρl =
1

pT,l
, (3.8)

ηl = − ln tan(θl/2) , (3.9)

1 The best experimental support of this assumption stems from a comparison of the
measured µ+ and µ− lifetimes [156], which translates into an equality of MW+ and MW−

masses at the 1.6 MeV level.
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where θl is the polar angle of the outgoing charged lepton in the laboratory

frame. The general features of the pseudorapidity distribution dσ/dηl and the
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Figure 3.3: The plots from Ref. [164]. General features of the charged lepton pseudo-
rapidity (a) and transverse momentum (b) in the Drell–Yan process. In the case of pT,l both
LO and improved LO are shown.

transverse momentum distribution dσ/dpT,l for the charge lepton originating

from W -decay in the Drell–Yan process are presented in Fig. 3.3 (plots taken

from [164]). As we can see from Fig. 3.3 (a) the main pattern of the ηl distri-

bution resembles the one of the W rapidity distribution dσ/dyW , where

yW ≡ 1

2
ln

(
EW + pz,W
EW − pz,W

)
. (3.10)

In the Fig. 3.3 (b) we can see the transverse momentum distribution dσ/dpT,l

for the two cases. First, when pT,W = 0 – in this case a Jacobian peak around

≈MW/2 is visible and the measurement of pT,l distribution allows to deduce the

value of MW . However, this case is not realistic, as we have already discussed in

detail in Chapter 2. Because of the non-perturbative effects and higher-order

corrections, the transverse momentum distribution of the W -boson is highly

nontrivial. In this case, as we can see from Fig. 3.3 (b), the transverse mo-

mentum of W smears the sharpness of the Jacobian peak. This means that

the extraction, from the bare pT,l distribution, of MW implies a refined Monte

Carlo modelling of the pT,W . A model of the perturbative and non-perturbative

effects in the electroweak bosons transverse momenta was presented in Chap-

ter 2.

Just for completness we mention here two alternative methods to measure

the mass of the W boson. The first one uses the transverse momentum dis-

tribution of the neutrino, which is similar to the transverse momentum of the
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charged lepton. However, pT,νl can only be derived from the measurement

of the missing transverse energy given by the energy decomposition in the

calorimeters. This leads to the larger systematic errors on MW when using

the p/T,ν distribution. The second method is based on the measurement of the

transverse mass, defined as follows

mT, l νl ≡
√

(pT,l + pT,νl)
2 − (~pT,l + ~pT,νl)

2,

=
√

2 pl pνl (1− cosφlνl). (3.11)

The discussions in this chapter can be, to a large extent, applied to the

determination of the W mass from mT, l νl spectra. The determination of mT, l νl ,

however, involves the reconstruction of the neutrino transverse momentum as

the missing transverse momentum. The systematic error of this measurement

is too large to be useful for the measurement of the W mass at the 10 MeV

level, therefore is not considered in our studies.

3.2.2 Tools

All the results discussed below have been obtained using the Born-level Drell–

Yan processes implemented in WINHAC (see Section 1.1 for more details on the

generator). The parton-level process is convoluted with the parton distribution

functions (PDFs) provided by the LHAPDF package [101] which includes a

large set of recent PDF parametrisations by several groups. WINHAC is also

interfaced with the Pythia 6.4 [9] MC event generator in order to provide the

QCD/QED initial-state parton shower as well as hadronisation. WINHAC, in

addition to the charged-current Drell–Yan process, includes the neutral-current

Drell–Yan process (with γ + Z bosons in the intermediate state) but only at

the Born level. Therefore, for a more precise description of the latter process,

including the full set of the QED/EW radiative corrections, a dedicated MC

event generator, called ZINHAC [15], has been developed and presented in

detail in Chapter 1. We plan to use these twin MC generators for precision

studies/analyses of the Drell–Yan processes at the LHC.

For the presented study the version 1.23 of WINHAC has been used. It is

equivalent to the recent version 1.31 [53] for all the aspects addressed in this

chapter.
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3.2.3 The detector model

The methods presented in this chapter are suited for the two general-pourpose

LHC experiments: CMS and ATLAS. For both experiments the high-precision

measurements of the W -boson production observables will be based on samples

of at least 108 recorded W -boson production events, therefore a full detector

simulation of a comparable sample of Monte Carlo events for presented studies

is both unrealistic and unnecessary. Therefore, instead of the full detector

simulation we use the average response functions of the ATLAS tracker to

charged particles as specified in Refs. [165, 166, 167, 168]. The inner detector

performances in pT , θ and φ are parametrised using Gaussian functions (cf.

Ref. [165] § 3.3.1.6) with, the σ-parameters:

σ1/pT = 3.6× 10−4 ⊕ 1.3× 10−2

p
(true)
T

√
sin θ(true)

[GeV−1], (3.12)

σcotan θ = 0.7× 10−3 ⊕ 2.0× 10−3

p
(true)
T sin3/2 θ(true)

, (3.13)

σφ = 0.075× 10−3 ⊕ 1.8× 10−3

p
(true)
T

√
sin θ(true)

[rad], (3.14)

where p
(true)
T are in GeV and (true) superscript means that kinematics is con-

sidered at the generator level. In the future, the response functions of the LHC

detectors will be determined in situ from the measurements of the decay prod-

ucts of the known narrow resonances. The ATLAS detector response functions

are used here merely for the initial estimate of the size of the systematic mea-

surement effects. Charged track are measured in the ATLAS detector within

the pseudorapidity range of

− 2.5 ≤ ηl ≤ 2.5. (3.15)

We therefore restrict our studies to a lepton tracks measured within these

pseudorapidity limits.

3.2.4 The analysis method

Below we present technical aspects of the analysis method used in the eval-

uation of the achievable precision of the measurement of the W -boson mass.

In order to evaluate the impact of the systematic uncertainties on the ex-

tracted values of MW we use the likelihood analysis of the distributions for the
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pseudo-data (PD) event-samples and those for the mass-template (MT ) event-

samples. Each of the PD samples represents a given systematic bias ξ in the

detector response or in the theoretical modeling of W -boson production pro-

cesses, implemented respectively in the event-simulation or event-generation

process. We have already discussed an example of the theoretical modeling

bias source caused by the non-perturbative effects (Chapter 2) which affects

the measured distribution of the lepton transverse momentum. This and the

other systematic effects will be discussed in Sections 3.3 and 3.5. Here we

concentrate only on technical aspects.

Each of the MT samples was generated by assuming a specific MW value.

The MT samples were simulated using the unbiased detector response and

fixed values of all the parameters used in the modeling of the W -boson pro-

duction and decays, except for the W -boson mass. The likelihood analysis,

explained below in more detail, allows us: (1) to find out which of the sys-

tematic measurement and modeling errors could be falsely absorbed into the

measured value of the W -boson masses and (2) to evaluate quantitatively the

corresponding measurement biases.

(a) Likelihood analysis

Let us consider, as an example, the impact of a systematic effect ξ on the bias

in the measured value of the W mass determined from the likelihood analysis

of the d σ/d pT,l distributions.

The simulation of the pseudo-data event sample, PD, representing a given

systematic bias ξ, is carried out for a fixed value of the mass M ref
W . Subse-

quently, a set of the 2k + 1 unbiased (i.e. ξ = 0) template data samples,

MT , is simulated. Each sample n of theMT set corresponds to a given value

of M
(n)
W = M ref

W + δM
(n)
W , n = −k, . . . , k. The likelihood between the binned

d σ/d pT,l distributions for the nthMT sample and the ξ-dependent PD sample

is quantified in terms of the χ2 value:

χ2(pT,l; ξ, n) =
∑
i

(d σi; ξ − d σi; ξ=0,n)2

∆d σ2
i; ξ + ∆d σ2

i; ξ=0,n

, (3.16)

where d σi is the content of the ith bin of the d σ/d pT,l histogram and ∆d σi

is the corresponding statistical error. The results presented in this chapter

have been obtained using a bin size equal to σ of the anticipated measure-

ment resolution of the track curvature [167]. The χ2(pT,l; ξ, n) dependence
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upon δM
(n)
W is fitted by a second order polynomial. The position of the

minimum, MW (ξ)min, of the fitted function determines the systematic mass

shift ∆MW (ξ) = MW (ξ)min − M ref
W due to the systematic effect ξ. As an

illustration of this procedure one example is shown in Fig. 3.4, taken from

Ref. [164] (p. 139). In order to see the difference between the d σ/d pT,l dis-

tributions, the mass templates were generated with ± 500 MeV. Note that

these plots were made for unbiased (i.e. ξ = 0) pseudodata PD, therefore

as expected the parabola fit is centered at MPD
W+ −M ref

W = 0, more precisely

MPD
W+−M ref

W = (−1.4 ± 2.7) MeV with χ2
min/dof = 0.86, (dof = 100). It shows

that no systematic biases are introduced by the proposed analysis method and

determines the size of the statistical errors. If the systematic effect under study
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Figure 3.4: Distributions of the transverse momentum of the positively charged lepton
for the three values of δM = −500, 0, +500 MeV with respect to 80.403 GeV (a) and the χ2

dependence for each {PD,MT } couple (points) and their associated polynomial fit (line)
in function of ∆(+,−) (b). Figure from Ref. [164] (p. 139).

can be fully absorbed into a shifted value of MW , then the expectation value of

χ2
min/dof, where dof =

∑
i, is close to 1. The position of the minimum of the

parabola fit will be shifted from the central valueMPD
W+−M ref

W = 0 by some value

∆MW (ξ) which estimates size of the mass shift caused by the effect ξ, see for ex-

ample Fig. 3.6. The error of the estimated value of the mass shift, δ (∆MW (ξ)),

can be determined from the condition χ2(MW (ξ)min+δ (∆MW (ξ))) = χ2
min +1.

Of course, not all the systematic and modeling effects can be absorbed into a

variation of a single parameter, even if the likelihood is estimated in a nar-

row bin-range, purposely chosen to have the highest sensitivity to the mass

parameters. In such a case the value of χ2
min/dof can be substantially differ-

ent from 1 and, consequently, δ (∆MW (ξ)) looses its statistical meaning. This
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can partially be recovered by introducing supplementary degrees of freedom

However, even in such a case the estimated value of δ (∆MW (ξ)) will remain

dependent upon the number of theMT samples, 2k+ 1, their MW spacing in

the vicinity of the minimum and the functional form of the fit. Varying these

parameters in our analysis procedure in a ξ-dependent manner would explode

the PC farm CPU time and, therefore, it was abandoned in our studies. In-

stead, we have calibrated the propagation of statistical bin-by-bin errors into

the δ (∆MW (ξ)) error and checked the biases of all the aspects of the above

method using the statistically independent “PD-calibration samples” in which,

instead of varying the ξ effects, we have varied the values of MW . More details

on this calibration method can be found in Ref. [13].

3.2.5 Event generation and simulation

The results presented below have been obtained using the dedicated processor

farm, CCALI in Lyon [169]. We have generated several large samples of events,

for the Z-boson O(107) and W -bosons O(108) production events which corre-

spond to one year of the low-luminosity LHC run. Every pseudo-data/sample

batch has been generated using a different seed for the random number gen-

eration to avoid any events redundancies. These events have been generated

for the mass samples starting from MPDG
W [156] with the mass shifts shown in

Table 3.2.5. In addition, several samples of events corresponding to the mea-

surement and modeling biases ξ has been simulated. The list of studied effects

is presented in the next section.

3.3 Tevatron effects

In this section we consider the systematic effects which were dominant in the

measurements made by the two Tevatron’s experiments: CDF [170, 171, 172]

and D0 [173]. Those effects are listed below:

• Energy scale (ES). The energy scale is the most important source of

error at the Tevatron and should be the one as well at the LHC. This

bias arises from the misalignment of the different tracker cells which, in

turn, affects the reconstruction of the charged lepton track ρl like:

ρ
(rec.)
l = ρ

(smr.)
l (1 + εl), (3.17)
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No. δMW > 0 δMW < 0

1 +5 MeV −5 MeV

2 +10 MeV −10 MeV

3 +15 MeV −15 MeV

4 +20 MeV −20 MeV

5 +25 MeV −25 MeV

6 +30 MeV −30 MeV

7 +40 MeV −40 MeV

8 +50 MeV −50 MeV

9 +75 MeV −75 MeV

10 +100 MeV −100 MeV

11 +200 MeV −200 MeV

Table 3.1: The list of positive and negative mass shifts for whichMT samples
have been generated.

where ρ
(rec.)
l is the reconstructed curvature, ρ

(smr.)
l – the particle true cur-

vature smeared by the detector resolution, and εl – a constant accounting

for the energy scale bias for the charged lepton l. The biases which are

charge independent (the same for l+ and l−) have been chosen with values

εl+ = +εl− = ±0.5%, ±0.05%, (3.18)

where the first value is the precision achieved at the Tevatron.

• Energy resolution factor (ERF). The finite resolution of measuring

the lepton track parameters may lead to biases in the measured value of

MW . We model the possible biases introduced by the ambiguity in the

assumed size of the σ1/pT (Eq. 3.12) and σcotan θ (Eq. 3.13) smearing by

decreasing or increasing the widths of their Gaussian distributions by the

factor ERF = 0.7, 1.0, 1.3.

On top of the apparatus effects, we consider the following theoretical biases,

which are important for the Tevatron’s experiments:

• PDFs errors. In order to assess the relevance of uncertainties arising

from the parton distribution functions we follow the standard procedure
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Figure 3.5: Consequences of the radial expansion distortion on the positively and negatively
charged particles reconstructed tracks. Tracks of the same curvature, i.e. ρ(smr.)

T,l+ = ρ
(smr.)
T,l− ,

are considered. Figure from Ref. [164] (p. 61).

described in Ref. [174]. It allows us to determine a global PDF error by

studying the pseudodata samples with minimum and maximum weights

PDFmax/min = PDFcen ± δPDF, where PDFcen is the central value from

the PDF’s set. All calculations have been performed with the CTEQ6m

PDF sets.

• W and Z transverse momenta are driven by the strong interaction

effects (see Chapter 2). They are difficult to predict because of the in-

terplay between the leading and higher-twist perturbative effects [45] as

well as the non-perturbative effects [102]. The influence of the uncertain-

ties in modelling the transverse momenta of the W and Z bosons were

investigated by changing the partonic intrinsic transverse momentum dis-

tribution modeled by Pythia Gaussian scheme [9]. In this scheme the pri-

mordial kT distribution inside hadron is given by exp (−kT 2/σ2
kT

) kTdkT

and has only one free parameter, namely the width of the distribution

σkT . For the LHC experiments the width of the distribution is estimated

to be ∼ 4 GeV. In our studies we were changing it by the following values:

∆σkT = {±4,±2,±1}GeV. Such a shift of partonic intrinsic transverse

momentum is transferred in a wide-enough range to the W/Z transverse

momentum distribution change.

• W -boson width. The uncertainty in ΓW can translate to a signifi-

cant systematic bias on MW . This effect have been estimated by chang-
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ing width of the boson to the values in the range of the error from

PDG 2008 [156].

The possible improvement of the W -width measurements at the LHC will

be presented in a forthcoming paper [175].

• Photon radiation. The QED radiation in the final-state decreases the

value of pT,l because of the lepton four-momentum loss to the emitted

photons. This effect is of high importance for the precision measurements

of MW . Since such effectes for the W bosons are included in WINHAC

and for the Z boson have been recently implemented in ZINHAC, we plan

to study their influence on the precision the W -mass measurement in the

near future. As long as radiation processes are neglected, the electron and

muon track reconstruction quality remains the same. In the following,

leptons will have the meaning of either electrons or muons.

• Backgrounds. In the present studies we do not investigate the contri-

bution of the QCD background to the selected samples of the W and

Z boson events. Earlier studies [172] (see Fig. 46) and [4] have shown

that the QCD background contamination is small and its uncertainty will

have a negligible effect on the final measurement precision.

This ends the list of the most dominant systematic effects in measurements

performed by the Tevatron’s experiments.

3.4 The methods

In this section we evaluate the measurement strategy which was proposed in

[105]. One of the key ideas of this strategy is an attempt to factorize the

electroweak and the strong interaction effects as much as possible. The latter,

not precisely known from the theoretical point of view, are proposed to be

determined using the dedicated procedure based solely on the data. Contrary

to the QCD effects, the electroweak corrections in the neutral and charged

Drell–Yan process are controlled using the dedicated Monte Carlo generators,

such as WINHAC and ZINHAC.

The ratio between the characteristic scale of the pT spectrum of decay

leptons, which is at the 40 GeV level, and the desired W -mass precision, which

is at the 10 MeV level, amounts to a factor of 4000. Since the W mass is
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largely derived from the characteristics of the Jacobian peak, it is intuitively

clear that unusually precise understanding of the shape of the pT spectrum is

mandatory. Such a precision can be reached only by relating the pT spectra

for the W -boson decays to the corresponding ones for the Z-bosons. This is

the second key idea of this method, i.e. to use of the Z-boson as a “standard

candle” for the W -mass measurement.

3.4.1 The “standard method”

The starting point and the first step in our procedure is to use the simplest

possible method. This method uses the standard setup of the LHC and the

standard observable for extracting the W mass, namely the transverse momen-

tum2 of the charge lepton pT,l originating from the W -boson. Therefore, we

shall refer to this method as to the “standard method”. The domain for the

χ2 computation is restricted to the range

30 GeV < pT,l < 50 GeV, (3.19)

which is most sensitive to the mass of the W -boson, see for example Fig. 3.4.

The likelihood analyses described in Subsection 3.2.4(a) show that in the case

of the “standard method” all considered systematic effects ξ give huge uncer-

tainties to MW . The smallest distortion is caused by the ES systematic effect

for its smaller value εl = ±0.05% and gives ∼ 30 MeV shift of the W mass

(χ2/dof = 1.2, dof = 100) which is much bigger than its statistical errors3

∼ 5 MeV. The χ2-plots for the ES effects for all the methods presented in this

section will be shown later in Fig. 3.6. It is worth to add that for some of these

effects the “standard method” gives a large value of χ2 which means that the

effect cannot be absorbed into variation of a single parameter and their values

are only indicative.

3.4.2 The “standard Z-candle method”

The “standard method” requires a very precise control of the systematic er-

rors to make the W -mass measurement competitive at the LHC. Therefore,

in order to reduce the influence of the systematic effects, we will introduce

2In our studies we use ρl = 1/pT,l instead of the transverse momentum pT,l, – the reason
for that will be explained later in this section.

3For one year of a low-luminosity LHC run which means the integrated luminosity of
10 fb−1.
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the Z-boson as a “standard candle” for the W -mass measurement. We expect

that this procedure can improve the precision of the W -mass measurement

because the Z-boson’s parameters have been much more precisely measured

than the corresponding W -boson’s onces, and some of the considered effects

affect both boson’s observables in a similar way. Therefore, we expect that

some of the effects will cancel. The main difference between Z and W boson

events is such that in the case of Z-boson both leptons momenta can be di-

rectly measured while in the case of W -boson only the charged lepton can be

detected4. Therefore, in order to preserve democracy in both the W and Z

samples, we apply the dedicated triggering and data-selection scheme to min-

imize the uncertainty in the relative efficiency and the acceptance corrections

for the Z and W boson samples of events. This scheme consists of using the

inclusive charged-lepton Level-1 trigger followed by the Z/W -symmetric cut in

the reconstructed lepton-track curvature ρl in the high-level trigger and in the

off-line event selection phases. This is achieved by searching for a second, same

flavour but opposite charge lepton in the selected bunch crossings. If such a

track is found to point to the same vertex, it is removed from the charged-track

sample and the event is flagged as the Z-boson event. The missing transverse

momentum measurement is then identical for the W and the Z-boson samples.

The corresponding choice for a observable which will be used to determine MW

is a ratio of the charged lepton track curvature radius ρl:

RWZ =
dσ/dρWl
dσ/dρZl

. (3.20)

The main improvement is for the PDF systematic effects which are reduced

from a few hundred MeV to ∼ 18 ± 6 MeV. It also makes a change in the

case of ES systematic effects which are reduced by ∼ 30%, i.e. to the value

∼ 22 ± 6 MeV for the εl = ±0.05%, and to the value ∼ 220 ± 6 MeV for

the εl = ±0.5%, see Fig. 3.6. This result confirms the result of the analysis

presented in ATLAS [6]: using this method the charge-average scale of the

lepton momentum must be known to the precision better than 0.02% for the

W -boson mass to be measured with the precision better than 10 MeV. As was

demonstrated in Ref. [6], such a detector-fiducial-volume-average precision can

be achieved for an integrated luminosity of 10 fb−1 using the Z-peak method,

4The neutrino four-momentum can be reconstructed only indirectly, by using the recon-
structed momenta of all the particles produced in the collision of the beam particles, which,
in our opinion, is not suited for high-precision measurements.
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regardless of the functional form of the momentum-dependent biases. However,

still the errors due to all considered effects are bigger (especially RF and ∆σkT )

than the statistical errors. Therefore, this method must be improved in order

to further reduce the influence of these effects.

Figure 3.6: The χ2 results for the energy scale (ES) systematic effects for three
methods: the “standard method” (denoted on plots by “Standard method
W”), the “standard Z-candle” (denoted by “Standard method W

Z
”) and the

“improved Z-candle” (denoted by “Candle method W
Z

”).

3.4.3 The “improved Z-candle method”

In the previous step we have seen that indeed some of the considered systematic

effects affect the dσ/dρWl and dσ/dρZl observables in the similar way and, as

a consequence, their impact on MW error can be reduced. However, there

are still differences between the distributions which lead to the visible and

different distortions of the bosons observables. Therefore, in this section we

will introduce a new method: the “improved Z-candle method”. In this method
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we put both bosons, as much as possible, on the same footing. This is done by

the following procedure:

• We propose to collect data at the two CM-energies:
√
s1 and

√
s2 =

MZ

MW
×√s1. These two settings allow to keep the momentum fractions of

the partons producing the Z and W bosons equal if the W -boson sample

is collected at the CM-energy
√
s1 and the Z-boson sample at the CM-

energy
√
s2.
√
s2 in our studies is set to the nominal LHC energy, i.e.√

s2 = 14 TeV.

• We propose to rescale the solenoid current while running at the two CM-

energies
√
s1 and

√
s2 by the factor i2/i1 = MZ/MW to equalize (up to

the effects of the QCD/QED radiative corrections) the distribution of the

curvature radius ρl for charged leptons originating from the decays of the

Z and W bosons.

The W and Z boson events are then selected by demanding the presence of

the charged lepton with the track curvature radius ρl satisfying the following

conditions:

ρl1(s, i) ≤ ρBl (s, i) ≤ ρl2(s, i), (3.21)

here B stands for the W or Z boson, ρlk(s, i) = i(s)
i(s2)

1
pT,k(s)

, where k = 1, 2 and

pT,1(s2) = 50 GeV, pT,2(s2) = 20 GeV, pT,k(s1) = pT,k(s2)
MW

MZ

,

i(s2) = i2, i(s1) = i2
MW

MZ

, (3.22)

and the pseudorapidity ηl within the range:

− 2.5 ≤ ηl ≤ 2.5 . (3.23)

For the event sample with two charged leptons (Z candidates) we first randomly

choose one of the two leptons and select an event only if this lepton satisfies the

same selection criteria as specified above. Note that by specifying the selection

condition in terms of the radius of the track curvature rather than in terms

of the transverse momentum and by rescaling the solenoid current and CM-

energy we achieve almost symmetric selection of the W -boson and Z-boson

events5.

5The remaining residual asymmetry reflects the differences in the transverse momentum
of the Z and W bosons and in the angular distributions of the charged leptons.
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Figure 3.7: The χ2 results for ERF, PDF and intrinsic pT systematic effects for
two methods: the “standard Z-candle” (denoted by “Standard method W

Z
”)

and the “improved Z-candle” (denoted by “Candle method W
Z

”).
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We introduce the following new observable

Rc
WZ =

dσ/dρWl (s1, i1)

dσ/dρZl (s2, i2)
. (3.24)

In Table 3.2 we present the results (the W mass shifts, their statistical errors

and their χ2 values) for all considered in this section systematic effects, both

for the “standard Z-candle” and “improved Z-candle” methods. The same

results can be seen in the series of plots in Figure 3.7. We can see the striking

improvement of all the results in the case of the “improved Z-candle” method –

this procedure reduces the impact of the almost all effects on the MW precision

(except for the ∆σkT ) to the level of the statistical error.

RWZ RcWZ

Syst. ξ ∆MW [MeV] χ2
min/dof ∆MW [MeV] χ2

min/dof

Cent. Exp. ξ = 0 2.1± 5.7 0.9 −0.0± 7.2 1.0

ES [%]

−0.05 % −20.2± 5.7 1.2 −2.0± 7.2 0.9

+0.05 % 23.3± 5.7 1.1 1.2± 7.2 0.9

−0.50 % −224.5± 5.6 9.3 −4.5± 7.1 1.0

+0.50 % 227.4± 5.7 9.1 2.1± 7.2 1.0

ERF
0.7 −83.4± 5.7 5.9 1.9± 7.2 1.0

1.3 104.0± 5.7 9.5 4.0± 7.2 1.3

PDF
Max 12.2± 5.7 0.9 4.0± 7.2 1.0

Min −18.2± 5.7 1.0 −4.5± 7.2 1.0

∆σkT [GeV]

−2 −149.8± 5.6 18.1 −18.9± 7.2 1.2

−1 −72.0± 5.7 4.7 −7.8± 7.2 1.2

+1 97.7± 5.7 6.1 8.1± 7.2 1.1

+2 204.4± 5.7 22.4 12.7± 7.2 1.4

Table 3.2: The systematic errors for the “standard Z-candle”(RWZ) and “improved Z-
candle” (RcWZ) methods.

In particular, we observe that the sensitivity of the W -boson mass to the

charge-averaged scale uncertainty is reduced by a factor of ∼ 100. This is

easy to understand by noticing that (leaving aside the polarization, flavour-

dependent and QCD-scale effects) the leptons from decays of Z and W bosons

will give rise to the same topology of reconstructed space points. One has

to admit that this method brings a burden of the necessity of the detector

re-calibration and re-alignment for the reduced energy runs. But this extra

burden exist only for a perfectly stable detector. In reality its calibration must

be optimized in shorter time intervals with respect to those devoted to running

at the different CM-energies. The net gain, as far as the measurement of the
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W mass is concerned, is obvious and the decrease of luminosity collected at

the highest achievable CM-energy is statistically insignificant.

3.4.4 The fourth step – the CQCD factor.

The change of partonic intrinsic momentum distribution, governed by the

Gaussian smearing parameter σkT , which is the last remaining effect exceeding

the statistical error, has been introduced in order to investigate the influence

of QCD uncertainties. From the QCD point of view, one of the differences

between the Z and W bosons is the difference in their masses (scales). We

propose to remove this remaining asymmetry by correcting the Rc
WZ observ-

able by the CQCD factor. This factor is extracted from the data rather than

modeled.

We propose to select the samples of events containing a pair of opposite

charge and same flavour leptons and to measure the ratio of the integrated

lepton pair production rates

CQCD =

∫MZ+3ΓZ
MZ−3ΓZ

Nl+l−(s2, i(s2),Ml+l−) dMl+l−∫MW+3ΓW
MW−3ΓW

fBW(sl+l− ;MW ,ΓW ) wEW Nl+l−(s1, i(s1),Ml+l−) dMl+l−

(3.25)

as a function of ρl and as a function of ηl of the randomly chosen lepton, l+ or

l−. The rates Nl+l− in the above formula are integrated over the invariant-

mass Ml+l− of the lepton pairs in the ranges (MZ − 3ΓZ ,MZ + 3ΓZ) and

(MW − 3ΓW ,MW + 3ΓW ), correspondingly. Each event having a reconstructed

invariant-mass in the latter region is weighted by the Breit–Wigner function6

fBW(sl+l− ;MW ,ΓW ) =
1

π

MWΓW
(sl+l− −M2

W )2 +M2
WΓ2

W

, (3.26)

where sl+l− = (Ml+l−)2, and by the QCD-independent normalization factor

wEW. This factor is defined such that the integral of the weighted lepton

invariant-mass spectrum in the region of (MW − 3ΓW ,MW + 3ΓW ) is equal

to the cross section of a Z-like boson having the mass and the width of the

W -boson7. The lepton-pair production events used in the determination of

CQCD(ρl, ηl) must be triggered and selected on the basis of the presence of

6This formula corresponds to the so-called fixed-width scheme, however it can also be
applied to the running-width scheme, in which case both MW and ΓW have to be divided
by the factor

√
1 + (ΓW /MW )2.

7The weighting procedure takes care of the asymmetries of the angular distributions of
the leptons produced in the region of the Z-peak and in the region outside the Z-peak.
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RcWZ RcWZ + CQCD

Systematic ξ ∆MW [MeV] ∆MW [MeV]

∆σkT

+2 12.7 4.6

+1 8.1 −0.3

−1 −7.8 −3.3

−4 −26.6 −8.5

Table 3.3: The W -mass shifts corresponding to the ∆σkT systematic effect for
the “Z-candle” and “Z-candle + CQCD” methods.

two same-flavour, opposite-charge lepton candidates. Each of the leptons must

satisfy the kinematical selection criteria specified in the previous step. This

requirement, stronger than the corresponding one for the Z-boson sample of

events discussed in the previous step, is necessary to reduce the background to

the inclusive lepton samples in the lepton-pair invariant-mass region outside

the Z-peak. Table 3.3 shows that this procedure is able to decrease significantly

the influence of the ∆σkT effect on the W -mass measurement.

3.4.5 Summary

As we have demonstrated (Tables 3.2 and 3.3), the final measurement method

proposed in this section is capable to reduce the influence of all the considered

so far systematic effects on the measured W -boson mass uncertainty below its

statistical error. Note that these studies have been preformed for one year

of the low-luminosity LHC run, therefore for higher luminosity or/and longer

time of collecting data these results should be even better.

As we have mentioned in the introduction, dealing with the most impor-

tant systematic errors from the previous and current hadron experiments, is of

course, a mandatory step for the precision measurement of MW at the LHC.

However, the question which remains to be answered is whether this is suffi-

cient for the LHC measurement, or whether one will be faced with new kinds

of problems which were not important at the Tevatron but become apparent

at the LHC. This question is addressed in the next section.
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3.5 LHC specific effects

In this section we discuss the biases which are of negligible importance at

the Tevatron but become dominant at the LHC. These sources of errors have

been neglected in the ATLAS [6] and CMS [14] analyses, resulting in too an

optimistic assessment of the expected measurement precision of the W -boson

mass. The common origin of those new sources are:

• the net excess of quarks over antiquarks in p p collisions,

• the flavour dependence of the quarks momentum distributions (PDFs),

• the increase of the collider energy.

In this section we discuss in some details the differences in the production

and decay of W+, W− and Z bosons in hadronic collisions. We show how

these differences are reflected in the relationship between W and Z boson

observables at the Tevatron and at the LHC. We trace the principal differences

between the Tevatron and the LHC, identify the effects which are specific to the

LHC p p collision scheme and evaluate their impact on the MW measurement

biases at the LHC. For the first time the precision of the W -boson mass is

evaluated taking into account these effects. We argue that the present precision

of MW cannot be improved at the LHC unless a dedicated “precision-support

measurement programme” is persued. Two examples of such a programme are

proposed at the end of this section. The first one involves colliding at the LHC,

for a fraction of time, light iscoscalar ion beams – for example of the deuterium

or helium nuclei. The core of the second one is a dedicated muon scattering

experiment with proton and deuteron targets.

3.5.1 Production and decay of W and Z bosons

At the begining of this subsection we will assume that the masses of the W

and Z bosons are equal8. The rationale behind it is to simplify our discussion

by factorizing the electroweak and QCD effects and by considering only the

former. In the subsequent sections we will restore the canonical mass values

and consider the QCD effects.

8We have already seen that the methods developed in Section 3.4 allow us to suppress,
to some extent, the effects caused by the difference in the electroweak-bosons masses.
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Figure 3.8: MSTW 2008 NLO PDFs at Q2 = 10 GeV2 and Q2 = 104 GeV2.
The plot taken from Ref. [176].

(a) Production

Let us start the discussion on the differences in the production of electroweak

bosons from recalling that quite different quark–antiquark pairs contribute

predominantly to the production of W+, W− and Z, see Table 3.4. As a

W+ ud̄+ us̄+ ub̄+ cd̄+ cs̄+ · · ·
W− dū+ dc̄+ sū+ sc̄+ · · ·
Z uū+ dd̄+ ss̄+ cc̄+ bb̄+ · · ·

Table 3.4: Quark–antiquark pairs that contribute to the W+, W− and Z pro-
duction.

consequence, in the production mechanisms of W+, W− and Z, the following

differences need to be carefully assessed:

(i) differences in the respective partonic distribution functions, see Fig. 3.8,

(ii) differences in the respective EW quark coupling constants,

(iii) differences in the respective transverse momenta kT distribution of anni-

hilating quarks in W and Z production.
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Because the W mass is determined from the pT spectrum of decay leptons, our

interest focuses on the direction perpendicular to the beam. For the following

three reasons they are mutually different:

- the correlation of the Bjorken-x of the participating quarks and anti-

quarks with their kT (small x is correlated with large kT), see Fig. 3.119,

- the dependence of kT on the quark type (heavier quarks have larger kT,

on average),

- the types of quarks that participate according to their EW coupling con-

stants and to the values of the CKM matrix elements.

These differences in the production of W+, W− and Z propagate through

leptonic-decay characteristic into differences of the charged-lepton momenta

spectra.

(b) Decay

With respect to the W+, W− and Z spin directions, the angular distributions

of decay leptons are different according to the V −A and V +A amplitudes in

the boson-lepton coupling. In the W±-rest frame, the pure V −A coupling leads

to the following angular distribution of the charged-lepton emission amplitude:

w(θ) ∝ 1± cos θ , (3.27)

where θ denotes the angle between the directions of the W -spin vector and the

charged-lepton emission. In the Z-rest frame, the quark-charge-specific mixture

of V − A and V + A leads to the angular distribution of the corresponding

emission amplitude:

w(θ) ∝ 1 + γ cos θ , (3.28)

where |γ| < 1.

The charged-lepton emission asymmetries are modified by the Lorenz boost

from the boson rest frame into the laboratory frame. As can be expected, an

important contribution to the differences in the pT distribution of charged lep-

tons from W+, W− and Z decays that are observable in the laboratory frame

comes from the interference between transverse and longitudinal boson polar-

ization amplitudes. Finally, since the charged leptons with the pseudorapidity

9 This effect will be discussed in more details in Section 3.5.2(b).
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|η| > 2.5 can hardly be measured in both ATLAS and CMS detectors, a limited

pseudorapidity range impacts on the charged-lepton pT distribution.

Altogether, the different polarizations of W+, W− and Z, in conjunction

with the different angular distributions of charged-lepton emission, and in con-

junction with their different pT spectra, lead to the question whether the differ-

ences of the pT spectra of decay leptons from W+, W− and Z can be sufficiently

well understood to achieve the desired precicion of the W -boson mass measure-

ment at the LHC.

Following the above discussion on the differences between the production

and decay of electroweak bosons, we can now discuss how the important dif-

ferences of W+, W− and Z production in the p p collisions at the LHC and in

the p p̄ collisions at the Tevatron come into play. The goal of this discussion is

to identify the LHC-specific effects, which are of no significant importance for

the Tevatron measurements, but will limit the measurement precision of the

W -boson mass at the LHC.

3.5.2 W and Z bosons at p p and p p̄ colliders

(a) Charge and polarization effects

The Tevatron case.

In the p p̄ collisions, there is a small forward–backward asymmetry in the pro-

duction of charged leptons, at the polar angles θ and π−θ, for Z-boson decays

and a large asymmetry for W -boson decays – in both cases positively charged

leptons are produced preferentially along the incoming proton direction. How-

ever, the rates and the momentum spectra of positive leptons from W+ at the

polar angle θ are exactly the same as the rates of negative leptons from W−

at the polar angle π − θ, see plots on the left-hand side of Fig. 3.9. The same

holds when integrated over the same range of θ and π − θ, respectively. Since

for any θ-symmetric cuts the rates and distributions of positive and negative

leptons are the same, a common analysis of leptons with positive and negative

charge is justified at the Tevatron.

The common analysis of charged leptons from the W+ and W− decays is

equivalent to the W decay with equal V − A and V + A amplitudes, which is

parity-conserving and resembles closely (because of the Nature’s choice of the

electroweak mixing angle sin2 θW , close to 1/4) the nearly parity-conserving Z

decay amplitude. There is thus a fortunate cancellation of polarization effects
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Figure 3.9: The pseudorapidity ηl and transverse momentum pT,l distributions
for charged leptons produced in W -boson decays for the p p̄ (a,b) and p p (c,d)
collisions, see Ref. [13] for details.

when calibrating, without regard to the charge sign, charged lepton spectra

from the W decays with lepton spectra from the Z decays – for the charge

blind analysis. Let us note that for the equal proportion of the W+ and W−

bosons and in the presence of the full overall symmetry of the quark and an-

tiquark PDFs, the relations of the Z and W boson rapidities and the lepton

pseudorapidities are similar, and boiling down predominantly to smearing ef-

fects.

The LHC case.

In the p p collisions at the LHC, there is, for each electroweak boson, an in-

herent symmetry in the forward–backward production of both the positively

and the negatively charged leptons: at the polar angles θ and π − θ the rates

and the momentum spectra are identical. However, the rates and the momen-

tum spectra are different between W+, W− (see plots on the right-hand side
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of Fig. 3.9) as well as for Z. First of all, we note the difference in the rates

and the momentum spectra of charged leptons from the W+ and W− decays,

which a priori renders a common analysis of leptons with positive and nega-

tive particularly difficult. Because of the preponderance of W+ over W− in the

p p collisions, none of the cancellations is at work. This opens the LHC ‘Pan-

dora box’ containing several important effects that have been circumvented at

the Tevatron but must be understood at the LHC. We note that the relative

proportion of W+ over W− will depend both upon the choice of the lepton

angular acceptance region and upon the asymmetry in the PDFs of the up and

down-type quarks.

The first consequence of the LHC asymmetry in theW+ andW− production

is that the calibration procedure of the lepton transverse momentum scale,

which has been developed at the Tevatron [172], cannot be applied at the

LHC. To be more specific, the charge-average calibration using the ‘Z-peak’

position method, applicable both in the Tevatron and in the LHC case, can no

longer be supplemented by an unbiased lepton-charge dependent calibration.

Note that at the LHC, contrary to the Tevatron, the pT distributions of positive

and negative leptons coming from the W decays are no longer identical. If one

would ignore this effect and calibrate the relative momentum scale for positive

and negative leptons by adjusting the peak positions of their respective pT

distributions, then the MW would be biased by ∼ 240 MeV for the central

|ηl| < 0.3 region, rising to ∼ 2000 MeV for the forward 3.5 < |ηl| < 4.5

region. These LHC-specific calibration biases, absent at the Tevatron, must be

controlled at the LHC with a high precision by introducing the LHC-dedicated

calibration method.

(b) Valence quarks

If only the sea quarks were involved in the production of W ’s in p p collisions,

the symmetry in the production of W+ and W− would not be broken and

the LHC measurement of the W -boson mass could follow the path chartered

by the Tevatron experiments. In practice, the symmetry is broken by valence

quarks, more specifically by the difference of the u(v) and d(v) PDFs of the

proton, see Fig. 3.8. In Fig. 3.10 we show the distributions of the transverse

momentum, pT,l, of the leptons coming (a) from the W+ decays and (b) from

the W− decays for the two following cases: (1) the W -bosons are produced

only by the sea quarks and antiquarks and (2) the W -bosons are produced
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by all the quarks and antiquarks of the colliding protons. The positions of

the Jacobian peaks are determined using the second-order polynomial fit in

the range 37 GeV < pT,l < 52 GeV. Such a fit can be considered as a rough

estimate of the size of the LHC-specific effects induced by the valence quarks.

We find that by including the processes of the W -boson production by the

valence quarks, one generates a shift in the MW+ value by 360 MeV and in the

MW− value by −50 MeV with respect to the sea-only driven production. At

the Tevatron these biases are of no relevance.

0 10 20 30 40 50 60
pT,l+ [GeV]

0.45

0.50

0.55

p
u

re
ly

se
a

st
an

d
ar

d

0.0

0.2

0.4

0.6

0.8

(a), p p, W+ production

d
σ

+
/d
p T

,l
+

[n
b
/G

eV
] standard

purely sea

0 10 20 30 40 50 60
pT,l− [GeV]

0.68

0.70

0.72

0.74

0.76

0.78

p
u

re
ly

se
a

st
an

d
ar

d

0.0

0.2

0.4

0.6

(b), p p, W− production

d
σ
− /
d
p T

,l
−

[n
b
/G

eV
] standard

purely sea

Figure 3.10: The polarization effects in the pT,l distributions for the W+ (left
plot) and W− (right plot) production at the LHC.

The dominant source of the observed shifts are the charge-dependent W -

boson polarization effects which are generated by the presence of the valence

quarks (u(v) and d(v)). The polarization effects alone could not, however, ex-

plain the magnitude of the observed biases, in particular their large charge-

asymmetry. Clearly, other effects must come into play. It turns out that they

originate from the shape difference of the up-type and down-type quark PDFs,

coming predominantly from the asymmetry in the u(v) and d(v) PDFs. This

asymmetry is reflected in the transverse momentum spectra of leptons through

the correlation of the Bjorken-x’s of the quarks and antiquarks forming the

W -bosons with their kT’s. In order to understand the subtle interplay of the

above two effects we have factorized out the polarization effects and analyzed

the flavour decomposition of the transverse momentum spectra of the W and Z-

bosons, rather than the spectra of their decay products. In the plot on the left

hand side of Fig. 3.11 we show the ratio of the kT distribution of the ū-antiquark

participating in the production of the W−-boson to the corresponding distri-
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bution for the Z-boson. The integrals of both distributions are normalized to

the same value. We observe a harder kT spectrum for the Z formation process

than for the W− formation process as expected from the relative difference of

the hardness scale (MZ > MW ). In the plot on the right hand side of Fig. 3.11

we show the same ratio for equal masses of W and Z bosons. Note that for

the p p̄ collision such a ratio is independent of kT and equal to 1. Surprisingly,

the large asymmetry remains for the p p collisions. Its origin is explained in

the following. The ū partners to produce Z and W -bosons are, respectively,
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Figure 3.11: The ratio of kT distribution of ū-quarks taking part in producing
W and Z bosons.

the u and d-quarks10. Because of large momentum asymmetry of the valence

u(v) and d(v) quarks, the average Bjorken-x of the ū quark forming the Z-boson

is smaller than the average Bjorken-x of the d̄ quark forming the W−-boson.

This leads to a harder kT spectrum of the ū quark forming the Z-boson with

respect to that for the W−-boson. The above effect turns out to be larger than

the QCD scale effect between MW and MZ (!) and it is present only for the p p

collider. A similar analysis has been performed for each quark and antiquark

flavour. In each case significant asymmetries in the kT distributions of quarks

(antiquarks) forming the Z, W+ and W− bosons have been observed. The

key point here is not only the presence of such asymmetries but the fact that

they cannot be circumvented by taking the sums of isospin mirrored processes

(relevant for the charge-blind analysis).

So far we have focussed our discussion on the effects generated by the quarks

10For simplicity of arguments, we discuss here only the Cabibbo-allowed processes of the
W -boson formation. The sub-leading Cabibbo-suppressed effects are included in the pre-
sented plots but are of no significant relevance for the current discussion.
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of the first flavour family. In the following we will discuss the contribution of

the second and of the third family of quarks to the W and Z boson production

processes. Their contribution, of residual importance at the Tevatron, becomes

significant at the LHC – complicating further the relationship between the W

and Z boson production processes.

(c) The second and the third quarks family effects

At the Tevatron energies, the Z-bosons are produced predominantly by the u,

d and s quarks, see Fig. 3.12 (only ∼ 3% of the Z-bosons are produced by the

c and b quarks, see Table 3.5). Similarly, the W -bosons are produced predom-

inantly by the u and d quarks (annihilations involving the c and s quarks con-

tribute to the total cross section at the ∼ 7% level). Altogether, the systematic

error of the W mass at the Tevatron due to uncertainties in the heavy-quark

sector is negligible in comparison with the statistical error. The contribution
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Figure 3.12: Parton decomposition of the W+, W− (plot on the left) and Z
(plot on the right) total cross sections in p p̄ and p p collisions. Individual
contributions are shown as a percentage of the total cross section in each case.
The plot taken from Ref. [177].

of the second and third quark family to the W and Z production cross section

increases sizeably at the LHC energies. The probabilities that the W+ (W−)-
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boson is formed from the charm (anti-charm) quark are ∼ 21% (∼ 28%). The

probability that the Z-boson is formed in the annihilation of the c and b quarks

rises to ∼ 15%. They can no longer be disregarded. There are two essential

W+

Subprocesses ud̄ us̄ cd̄ cs̄ cb̄

Tevatron II 90 2 1 7 0

LHC 74 4 1 21 0

W−

dū sū dc̄ sc̄ bc̄

90 2 1 7 0

67 2 3 28 0

Z

Subprocesses uū dd̄ ss̄ cc̄ bb̄

Tevatron II 57 35 5 2 1

LHC 36 34 15 9 6

Table 3.5: The results from Ref. [178] showing partial contributions σqq̄′/σtot
of quark–antiquark annihilation subprocesses to the total Born cross sections
in W± and Z boson production at the Tevatron and LHC (in percent).

reasons why the presence of the second and third family quarks introduces the

biases to the relationship between the transverse momentum distribution of the

leptons coming from the W and Z decays and, as a consequence, the biases in

the unfolded MW value. The first and the most important one is related to the

flavour asymmetries of the Bjorken-x and kT distributions of both the quarks

and antiquarks. These asymmetries are of nonperturbative origin and must be

constrained experimentally. They influence the lepton transverse momentum

spectra through the transverse momentum spectra of the parent bosons which,

in turn, are driven by the Bjorken-x and kT spectra participating quarks (an-

tiquarks) and their correlations11. These correlations are different for the light

(u, d, s) quarks, for the c-quark and for the b-quark. The second reason is the

large gap in the masses of the quarks in the third family. As a consequence the

b quarks do not participate in formation of the W -bosons, see Fig. 3.12, while

they participate in the formation of the Z-bosons. Since the Z-boson serves as

a calibration template for the W -boson, the broadening of the pT,l distribution

due to the contribution of the b-quark annihilation processes must be taken

into account.

11The presence of the quarks of the second and third families modifies also the polarization
of the produced bosons. These polarization effects are Cabibbo suppressed. They are taken
into account throughout this paper but, in order to simplify the discussion, omitted in this
section.
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Figure 3.13: The effects of the second quark family in the pT,l distributions for
the W+ and W− production at the LHC.

In Fig. 3.13 we show the shapes of the distributions of the transverse mo-

mentum, pT,l, of the leptons coming (a) from the W+ decays and (b) from the

W− decays, for the following two cases: (1) the W -bosons produced only by the

first-family quarks and antiquarks, and (2) the W -bosons produced by all the

quarks and antiquarks. The positions of Jacobian peaks are determined using

the second order polynomial fit in the range 37 GeV < pT,l < 52 GeV. Such a

fit can be considered as a rough estimate of the size of the LHC-specific effects

induced by the second-family quarks. We find that by including the processes

of production of the W -bosons by the second-family quarks one generates a

shift in the MW+ value by −140 MeV and in the MW− value by −120 MeV.

These biases must be understood at the LHC to the precision better than

∼ 10% in order to measure the W -boson mass to the precision of 10 MeV. At

the Tevatron the corresponding biases are smaller by approximately the factor

∼ 5 and do not contribute significantly to the overall measurement error of the

W mass.

3.6 A biased W mass

The goal of the analysis presented above was to explain the basic reasons

why the measurement strategy which is justified for the p p̄ collisions at the

Tevatron cannot a priori be used as the template for the p p collisions at the

LHC. The assessment of the impact of the uncertainties in the longitudinal

and in the transverse polarization amplitudes of the W+, W− and Z bosons
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and in their interferences on the pT spectra of decay leptons has been missed

in all the studies made so far. We note as well that not a single LHC-physics

study has made so far a difference between charged leptons coming from the

W+ and W− decays. In addition, even if the effects of the heavy quarks on

the pT spectra of decay leptons have been discussed, the detailed assessment of

the flavour-dependent effects has been largely missing in the previous studies.

As a consequence, unrealistically small errors were reported for the W mass

measurement at the LHC.

Below we evaluate the uncertainties caused by these “new” effects and show

that their effect is not only significant but also dominant in the case of the W -

mass measurement at the LHC. For technical reasons, not MW+ and MW− are

separately determined but, equivalently, the average (MW+ +MW−)/2 and dif-

ference (MW+ −MW−) of the bosons masses. Since in p p collisions the spectra

of positive and negative leptons are to be analyzed separately, it is natural to

make the same distinction also for the leptons from Z decay. Along this line of

reasoning, ‘Z+’ and ‘Z−’ lepton pT spectra are considered, in analogy to ‘W+’

and ‘W−’ lepton pT spectra.

3.6.1 Uncertainties in the parton distribution functions

In the studies of the sensitivity of the MW measurement precision to the mod-

eling uncertainties of the PDFs discussed in the previous section we have used

the CTEQ6.1 PDF set [179] as the standard template distributions. The un-

certainties in the PDFs are conventionally propagated to the measurement

errors of the physics observables by varying the PDF sets chosen in the event

generation process. Alternatively, the uncertainties of the QCD-fit parameters

of a given PDF set are propagated by re-weighting the generated events with

“min” and “max” weights, PDFmax/min = PDFcen ± δPDF, where PDFcen are

the central-value distributions of a given PDF set and δPDF is computed ac-

cording to the method described in Ref. [174] – this method was used in the

Section 3.4. However, in our view the above methods largely underestimate

the influence of the PDFs uncertainty on the measurement precision of the

W -boson mass. The current understanding of the parton density functions is

summarized in Fig. 3.8 which shows the MSTW-2008 set [176]. It is advocated

and widely believed that the proton PDFs are precise enough not to pose a

limitation for the LHC data analysis. For example, the u(v) and d(v) PDF are

claimed to be precise to 2% [176]. But for example, from Fig. 3.14 we clearly
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Figure 3.14: MSTW 2008 NLO PDFs compared to CTEQ6.6 NLO PDFs. The
plot taken from Ref. [176].
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Figure 3.15: MSTW 2008 NLO PDFs compared to Alekhin NLO PDFs. The
plot taken from Ref. [176].

see that CTEQ6.6 NLO [180] and MSTW 2008 NLO [176] proton u(v) and d(v)

PDFs differ by much more than 2%, although they stem largely from the same

input data. The difference between the MSTW 2008 NLO PDFs and Alekhin

NLO PDFs is even more striking, see Fig. 3.15. Therefore, a 5% error of

the PDFs of the u and d quarks appears more realistic. Another problem for

the use of the current proton PDFs in the analysis of W and Z production

and decay at the LHC arises from ‘compensating’ PDF changes: a change of

the PDF of one quark can be compensated by a change of the PDF of the

other quark of the same family that leaves the Z rapidity distribution nearly

invariant, and hence escapes detection12.

12 The condition of invariance of the Z rapidity distribution, and hence invisibility even
in high-statistics data samples, is decisive: if the measured Z rapidity distribution looked
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Therefore, in the studies presented in this section the following two ways of

modeling the uncertainty in the u(v) − d(v) distribution have been assumed:

u
(v)
max/min = u(v) ± 0.05u(v), d

(v)
min/max = d(v) ∓ 0.05u(v), (3.29)

and

u
(v)
max/min = u(v) ± 0.02u(v), d

(v)
min/max = d(v) ∓ 0.08 d(v). (3.30)

The first one preserves the sum of the distributions of the the u and d quarks

and is constrained, to a good precision, by the measured singlet structure func-

tion in neutrino and antineutrino deep-inelastic scattering (DIS) off isoscalar

nuclei. At the LHC the sum of the distributions will be constrained by the ra-

pidity distribution of the Z-bosons13. The second one assures the correct prop-

agation of the measurement errors of the sum of the charge-square-weighted

distributions of the u and d quarks, constrained by the high-precision charged-

lepton-beam DIS data, to the uncertainty of the individual distributions.

While the sums of the distributions are well controlled by the existing and

future data, their mutually compensating shifts are not. The only experimental

constraints on such shifts come from (1) the measurements of the ratio of

the cross sections for deep-inelastic scattering of charged leptons on proton

and deuteron targets and (2) the measurements of the ratio of the neutrino–

proton to antineutrino–proton DIS cross sections. They determine the present

uncertainty range of the u(v) − d(v) asymmetry.

The present experimental uncertainty of the PDF of the c quark is at the

10% level14, see Fig. 3.16. Therefore, we have assumed the following way of

modeling the uncertainty in the s− c distribution:

smax/min = s± γ c, cmin/max = c∓ γ c, (3.31)

with γ = {0.2, 0.1}. As in the case of the u(v) − d(v) asymmetry, we have

assumed that the sum of the distribution of the s and c quarks will be controlled

to a very good precision by the Z-boson rapidity distribution. Therefore, we

differently than expected from the current proton PDFs, an appropriate change of the proton
PDFs would be unavoidable.

13Note that the precise compensation of the correlated shifts in the observed rapidity
distribution of the Z-bosons require the equality in the coupling of the u and d quarks to
the Z-boson and the symmetry of the ū and d̄ sea. Neglecting these small effects has no
significant effect on the results presented in this section.

14 Theoretical calculations of heavy-quark PDFs from the gluon PDF are claimed to have
a smaller error margin.



136 W -mass measurement at the LHC

x
-5

10 -410
-3

10 -210 -110
0

0.2
2 = 2 GeV2Q

x
-5

10 -410
-3

10 -210 -110
0

0.2

2 = 4 GeV2Q

x
-5

10 -410
-3

10 -210 -110
0

0.5
2 = 7 GeV2Q

x
-5

10 -410
-3

10 -210 -110
0

0.5
2 = 11 GeV2Q

x
-5

10 -410
-3

10 -210 -110
0

0.5
2 = 18 GeV2Q

x
-5

10 -410
-3

10 -210 -110
0

0.5

2 = 30 GeV2Q

x
-5

10 -410
-3

10 -210 -110
0

0.5

2 = 60 GeV2Q

x
-5

10 -410
-3

10 -210 -110
0

0.2

0.4

2 = 130 GeV2Q

x
-5

10 -410
-3

10 -210 -110
0

0.5

2 = 500 GeV2Q

ZEUS data

H1 data

MSTW 2008 LO

MSTW 2008 NLO

MSTW 2008 NNLO

)2(x,Qcc
2

Charm structure function, F

Figure 3.16: The charm structure function, F cc̄
2 (x,Q2), compared to data from

H1 and ZEUS. The plot taken from Ref. [176].



3.6 A biased W mass 137

have introduced only unconstrained, mutually compensating modifications of

the s and c quark distributions15.

Finally, the present experimental uncertainty of the PDF of the b quark is

at the 20% level, see Fig. 3.17. Therefore, the uncertainty in the b distributions

is modeled by using the following ansatz:

bmax/min = b± κb (3.32)

with κ = {0.4, 0.2, 0.1}.
The impact of these uncertainties in the missing input in the parton dis-

tribution distributions on the measurement precision of the W mass has been

evaluated by the consecutive simulations of the measurement procedure for all

the partonic distributions defined in this section. The simulation results have

been quantified using the likelihood analysis methods, described in detail in

Section 3.2.4(a). The observable used for average mass in the likelihood anal-

ysis is the one defined in the framework of the “improved Z-candle” method,

the results for difference (MW+ −MW−) of the bosons masses are taken from

Ref. [13,164]. The systematic shifts of the measured values of MW induced by

the u(v) − d(v), s − c and b biases are presented in Tables 3.6, 3.7 and 3.8, re-

spectively. Evidently, with the present precision of the PDFs, which cannot be

improved by the LHC data, there is no way to improve the precision of the W -

boson mass. Moreover, it will be impossible to approach the precision reached

at the Tevatron. We stress again that these effects are a direct consequence of

the p p rather than p p̄ collision scheme of the LHC.

3.6.2 Momentum calibration

At the Tevatron, the determination of the W -boson mass is almost indepen-

dent of the relative biases in the calibration scale of the positive versus negative

leptons. At the LHC, the excess of the positive over negative leptons and the

differences of their transverse momentum spectra are reflected in the sensitivity

of the measured MW to the relative momentum scales of positive and negative

leptons. Therefore, we have to consider in addition to the charge independent

systematic biases in the momentum scale calibration (discussed in Section 3.4,

15As in the case of the first quark family, the s and c quarks couple to the Z-boson with
slightly different strength. The resulting effect will play no important role in the presented
analysis. Similarly, the effect of the initial asymmetry of the s and c quark distributions is
ignored here.
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∆M [MeV] ∆(MW+ −MW−)[MeV]

Systematic ξ p p: |ηl| < 2.5 p p: |ηl| < 2.5

u(v), d(v)

u
(v)
max = 1.05u(v)

d
(v)
min = d(v) − .05u(v)

−79 115

u
(v)
min = 0.95u(v)

d
(v)
max = d(v) + .05u(v)

64 −139

u
(v)
max = 1.02u(v)

d
(v)
min = 0.92 d(v)

−48 84

u
(v)
min = 0.98u(v)

d
(v)
max = 1.08 d(v)

32 −89

Table 3.6: Systematic shifts of MW induced by the valence-quarks biases dis-
cussed in the text.

∆M [MeV] ∆(MW+ −MW−)[MeV]

Systematic ξ p p: |ηl| < 2.5 p p: |ηl| < 2.5

s, c

cmin = 0.8 c
smax = s+ 0.2 c −257 39

cmax = 1.2 c
smin = s− 0.2 c 237 −29

cmin = 0.9 c
smax = s+ 0.1 c −148 17

cmax = 1.1 c
smin = s− 0.1 c 111 −11

Table 3.7: Systematic shifts of MW induced by the s and c quarks biases
discussed in the text.
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∆M [MeV]

Systematic ξ p p : |ηl| < 2.5

Cent. Exp. ξ = 0 −6.1 ± 7.4

b

bmax = 1.4 b −77

bmin = 0.6 b 56

bmax = 1.2 b −42

bmin = 0.8 b 39

bmax = 1.1 b −13

bmin = 0.9 b 12

Table 3.8: Systematic shifts of MW induced by the b-quark biases discussed
in the text. The shifts for the value ξ = 0 correspond to a bias-free pseudo-
sample of events; their errors illustrate the statistical precision of the likelihood
method for the integrated luminosity of 10 fb−1.

∆M [MeV]

Systematic ξ RWZ RcWZ

Cent. Exp. ξ = 0 −1 ± 6 0 ± 7

ES [%]

εl+ = −εl− = +0.05 % 5.3 0

εl+ = −εl− = −0.05 % −0.3 −8

εl+ = −εl− = +0.50 % 39.5 22

εl+ = −εl− = −0.50 % −19 −31

Table 3.9: Systematic shifts of MW induced by the charge-dependent energy-
scale biases discussed in the text for the “standard candle” (RWZ) and “Z-
candle” (Rc

WZ) observables. The shifts for the value ξ = 0 correspond to a bias
free pseudo-sample of events. Their errors illustrate the statistical precision of
the likelihood method for the integrated luminosity of 10 fb−1.
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see Eq. 3.18) the lepton charge-dependent systematic biases in the scale cali-

bration factors16. We studied the influence of the following scale biases of the

reconstructed momenta of positive and negative leptons:

εl+ = −εl− = ±0.5%, ±0.05%. (3.33)

The impact of the above bias on the W -mass measurement was not studied in

Ref. [6]. The result of our studies, presented in Table 3.9, is that the relative

scale-factor calibration biases of the positive and the negative lepton samples

must be controlled to the precision better than 0.2% for theW -boson mass to be

measured with the precision better than 10 MeV. As expected, the sensitivity

of the W -boson mass to the lepton-charge asymmetric momentum-scale bias

is the same for the methods based upon the “standard Z-candle” (RWZ) and

“improved Z-candle” (Rc
WZ) observables, see Table 3.9. Even if the sensitivity

to the lepton-charge dependent effects is by a factor of 10 smaller than the

lepton-charge independent effects (see Table 3.2), their experimental control

at the LHC is a big challenge. This is because the Z-peak position is invariant

with respect to the charge-asymmetric momentum biases.

A method for the precise relative calibration of the momentum scale for the

positive and negative leptons has been proposed in the papers Refs. [13, 164].

We recall here that the calibration precision needed to measure MW+ −MW−

must be by the factor of 10 higher than the one needed to measure MW un-

der the assumption that the masses of the positive and negative W -bosons

are equal (for equal measurement errors). The “Double Asymmetry” method

proposed in Refs. [13, 164] is based upon a dedicated measurement procedure

with two running periods characterized by a reversed polarity of the central

tracker solenoid. Such a method could also be used for the MW measurement,

providing the requisite calibration precision. However, a sufficient calibra-

tion precision for the MW measurement can be delivered by a complementary

method which we propose below. This method uses the l+l− event samples and

optimizes the choice of the Mll region where the differences of the transverse

momentum distributions of positive and negative leptons are minimized. By

definition, in the optimal “calibration region” the forward–backward asymme-

try of leptons coming from the uū and dd̄ annihilations, reflecting the excess

of quarks over antiquarks in the proton beams, averages out to zero. The

16For detailed discussion of the tracker deformation modes giving rise to the miscalibration
of the transverse momentum scales see our analysis presented in Refs. [13, 164].
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Figure 3.18: The forward–backward asymmetry (AFB) as a function of the
centre of mass energy in the neutral current Drell–Yan process – the plot taken
from Ref. [181].

first lucky coincidence is that, for the actual value of sin2 θW , this region lies

in the vicinity of the Z-boson mass peak marked in Fig. 3.18, such that the

statistical precision of the method could be maximized. The second lucky co-

incidence is that the sensitivity of the calibration method to the assumed value

of the sin2 θW is sufficiently weak to assure the factorization of the calibra-

tion procedure aiming at the precision of 0.2% from the procedure of precise

determination of sin2 θW at the LHC.

In Fig. 3.19 we show the Asym
(+,−)
Z () distribution in the −2.5 < ηl < 2.5

region. We observe that the choice of the statistically optimal narrow mass

region centered at the MZ value is sufficient to reduce the asymmetries in the

transverse momentum distribution for the positive and negative leptons to the

requisite level of 0.2%. This sample of events could thus be used to calibrate

the relative momentum scale for positive and negative leptons to the same

precision. An improvement of the calibration precision by a factor of 20 – nec-

essary for the measurement of the MW+ −MW− to a comparable precision as

MW – is no longer independent of the assumed form of the u(v) and d(v) distri-

butions. It would involve as well the necessity of simultaneous determination

of the sin2 θW value. We have thus demonstrated that the calibration of the

momentum scale for the positive and negative leptons can be made with the

sufficient precision to keep the corresponding MW bias below 10 MeV.
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Figure 3.19: The Asym
(+,−)
Z () distribution as a function of pT,l at the LHC.

3.7 The way forward

3.7.1 Isoscalar beams

The LHC collider programme context

The difficulty of relating the W -boson observables to the Z-boson ones,

inherent to the p p-collision scheme, can be largely avoided by running the

isoscalar beams at the LHC. The unique capacity of the LHC collider to run

the ion collisions, if exploited, could put the LHC collider back into the EW

measurement precision competition. The complementarity of the p p and the

isoscalar-ion collision modes is similar to that of the collisions of neutrino and

antineutrino beams with proton and iron (or calcium) targets.

It has to be stressed that colliding one of the low atomic number isoscalar

beams at the LHC, optimally the deuterium (or He4) ions, even if technically

feasible, is not foreseen in the present LHC plans and has never been dis-
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cussed. This section can thus be considered as building the case for running

the isoscalar light-ion beams in the advanced phase of the LHC operation.

If the LHC can deliver the luminosity which scales as LAA = Lpp/A
2 (A

being the mass number of a given ion) for the light isoscalar ion beams, then

the event rates containing the high-pT signatures will be similar for the proton

and for the light-ion collisions.

(a) d d collisions

The deuteron beams restore the isospin symmetry for the quarks of the first

family. In addition, the spin density matrices for the W and Z bosons pro-

duced by the first quark-family are almost the same, especially if the effect

of the difference of the masses of the Z and W bosons are circumvented by

using the measurement procedure explained in Subsection 3.4.4. Therefore,

if one could neglect the contribution of quarks coming from the second and

third families, the isospin symmetry at the LHC would play the same role as

the matter–antimatter symmetry at the Tevatron. Namely, it would result

in a quasi model-independent relationship between the “charge-blind” W and

the Z boson observables. However, in the realistic studies one has to consider

all the quark families. Let us assume that: s(x) = s̄(x), c(x) = c̄(x) and

b(x) = b̄(x). In that case we can propose to reduce (control) the sensitiv-

ity of the unfolding of MW to the uncertainty in the b-quark distribution by

analyzing the “improved Z-candle” observable in the restricted region of the

lepton pseudorapidity: 2 < |ηl| < 2.5. Since the sensitivity of this variable to

the b-quark distribution enters only via the Z-boson observables and since the

contribution of the bb̄ annihilations to the Z-bosons is reduced in this kinemat-

ical region, we expect a significant reduction of the sensitivity of the unfolded

MW value to the exact form of the b-quark distribution. We have simulated

the full unfolding procedure by changing the distribution of the b-quark within

40% of its template value and found that the biases in the unfolded MW values

were reduced from the values shown in Table 3.8 to the negligibly small values,

compatible with the statistical errors representing the integrated luminosity of

50 fb−1.

Once this PDF is eliminated, the unfolding of the remaining PDFs using

the LHC deuteron collision data is straightforward. Its main precision limita-

tion comes from the statistical error of the Asym
(+,−)
W () observable measuring

directly, for the dd collisions, the s(x)− c(x) distribution [13,164]. In Fig. 3.20
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we show the statistical unfolding precision of the s − c distribution for the

integrated d d luminosity of 25 fb−1 (equivalent to the nucleon–nucleon lumi-

nosity of 100 fb−1). The compensating differences of the input distribution

of ±10% are easily detectable at this collected luminosity, even if the initial

charge asymmetry is small17. However, reducing this uncertainty to the level

sufficient to determine the W -boson mass to the precision better than 10 MeV

requires collecting 10 times more luminosity. In Table 3.10 we show the ex-
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Figure 3.20: Unfolding of s− c in d d runs.

pected reduction of biases in the measured value of MW by replacing the p p

collision scheme by the d d collision scheme. Note that the remaining isospin

asymmetry of the u and d quark reflects the effect of different electric charges

of the u and d quarks. This residual asymmetry is irrelevant as long as the

LHC precision target stays at the level of 10 MeV. We thus demonstrate that

by using the deuteron beams one can restore the favourable “Tevatron-like”

environment for the measurement of the W -mass. For the d d collision scheme

the LHC data alone is able to constrain both the W -mass and the relevant

17The s− c contribution to the charge asymmetry of the W -boson is proportional to the
value of sin2 θC , where θC is the Cabibbo angle.
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Systematic ξ Expected precision [%] ∆M [MeV]

“u(v) − d(v)” 0.2 < 5

“s− c” Lint = 2.5fb−1 2 25

“s− c” Lint = 25fb−1 0.7 8

“b” 40 < 10

Table 3.10: The expected biases of the measurement of MW for the d d collisions
at the LHC due to remaining uncertainties of the PDFs. The quark–antiquark
symmetry for s, c and b quark distribution is assumed in the unfolding proce-
dure.

partonic distributions. It has to be stressed, however, that the exact quark–

antiquark symmetry for s, c and b quarks, inherent to the presented unfolding

method, cannot be verified experimentally and has to be taken for granted. In

the subsequent section we discuss an alternative, complementary method for

reducing the space of the LHC-unconstrained PDFs .

3.7.2 p p and d d collisions

An alternative method could use both the d d collision runs and the p p runs

taken at a half of the energy of the deuteron beam as the basic data-taking

configuration for the W -mass measurement. In such a scheme only two as-

sumptions are needed to fully constrain the unfolding procedure of the PDFs:

c(x) = c̄(x) and b(x) = b̄(x). These assumptions have never been put in doubt.

The equality is exact if the c and b quarks have purely bosonic (gluonic and

photonic) origin.

The combined p p and d d data could then provide the fully model-indepen-

dent determination of the W -mass at the LHC. However, even in such a scheme

some problems exist and need to be handled or circumvented, see Ref. [153,

182,183].

3.7.3 Solving LHC problems with LHC-auxiliary mea-
surement programme

The proposed way to solve the LHC-specific problem by colliding isoscalar

beams is elegant, technically feasible, but not realistic in the foreseeable fu-

ture. The other option is to try to reduce the present uncertainty of the
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“missing input” to the LHC analysis in a dedicated “LHC-precision-support”

measurement programme. It must be stressed right away that we will not

consider here a new round of the PDF measurements but the ways of obtain-

ing the experimental information that can directly be incorporated into the

LHC-specific EW-sector measurement procedures with minimized extrapola-

tion uncertainties. This problem is highly nontrivial, as one has to combine

the measurements made by different experiments, using different beams, at

different collision energies and the correspondingly different x and Q2 scales.

The analysis presented in Section 3.6.1 has shown that the present preci-

sion of understanding of the flavour-nonsinglet PDFs is insufficient to improve

the precision of the measurement of the W -boson mass at the LHC, even if

we circumvent most of the QCD extrapolation uncertainties using the dedi-

cated measurement procedures. The important question now is whether the

presently running experimental programme in high energy physics will be able

to deliver eventually the requisite measurements with the sufficient precision

or whether new experimental initiatives are indispensable.

Analysis of present experimental programme.

The HERA DIS programme came to the end. The final analysis of the full inclu-

sive DIS data collected by the H1 and ZEUS collaborations and corresponding

to the integrated luminosity of 250 pb−1 has just been published. The pub-

lished uncertainty of the u(v), d(v), s and c quark distributions is compatible

(larger) as compared to the uncertainty assumed in the analysis presented in

this chapter. It has to be stressed that the statistical accuracy of the HERA

data for the electron and positron scattering charged-current processes is by

far too low to provide the LHC-precision-programme-adequate accuracy for the

flavour dependent separation of the quark and the antiquark densities. More-

over, the proton collision neutral-current data are largely insensitive to the

relative movements of the u, d and s quark densities.

The final H1 and ZEUS combined data on DIS–associated heavy-flavour

production has not been published yet. It is, however, highly improbable that

this data will allow to pin down experimentally the relative densities of the

charm and bottom quarks with respect to the corresponding light quarks to

the level of O(1%). We are thus bound to conclude that the final HERA data

cannot put the LHC precision programme back in competition with the Teva-

tron one. They may be of some help in constraining the following flavour
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singlet combination of partonic densities: 4/9 [u(x) + ū(x) + c(x) + c̄(x)] +

1/9
[
d(x) + d̄(x) + s(x) + s̄(x)

]
in the small-x region. However, it will remain

to be proven that the extrapolation of the above combination of partonic den-

sities from the HERA Q2 region to the M2
W region can be fully controlled by

the perturbative QCD – the DGLAP evolution scheme leading to a O(2%) ex-

trapolation uncertainty [184] cannot be a priori taken for granted in the very

low-x region.

The Thomas Jefferson National Accelerator Facility (TJNAF, Newport

News, USA) DIS programme will provide a very detailed and precise insight

into the large-x structure of protons. These data are, however, of no direct

relevance to the LHC programme because the LHC W and Z production data

will be insensitive to the quark structure of protons at such a large x values.

The data which certainly could be of help in pinning down the missing

input for the LHC programme are the Tevatron W and Z boson production

data. If the Tevatron reaches the integrated luminosity of 10 fb−1 before its

shut-down, then of the order of 107 W -boson production events and 106 Z-

boson production events will be available to provide important constraints of

the missing PDF densities.

The measurement of the lepton-charge asymmetry will certainly provide a

very high precision, O(1%), constraint of the ratio of the u and the d quark

densities. It has to be stressed, however, that the Tevatron W−/W+-boson

production data cannot, alone, constrain the d/u ratio but only the double

ratio [d(x1)/u(x1)] / [d(x2)/u(x2)], where MW = sx1x2 and x1 (x2) are respec-

tively the fractional momenta carried by the faster (slower) parton. In order to

constrain u/d, a supplementary experimental measurement must be provided

by the LHC (or other complementary data covering, at least partially, the req-

uisite x1 or x2 kinematical region). The Tevatron data are unable to control

separately the ratios for the valence and for the sea quarks – a necessary condi-

tion to understand the W -boson polarization effects (of no importance for the

Tevatron measurements as long as the Z template is used for the W events,

but of high importance at the LHC).

The large statistics data on the forward–backward asymmetry of charged

leptons from the Z-boson decays at the Tevatron will provide some constraint

on the of sum of the u(v) and d(v) quarks but will not provide a sufficiently

precise constraint on each of the distribution separately18. A very important

18The statistical precision of the forward–backward asymmetry data outside the Z-boson
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constraint will come from the precision measurement of the Z-boson rapidity

distribution, provided that it could be incorporated into the LHC measurement

strategy in a way which minimizes the impact of the uncertainty in the absolute

normalization of the measured distribution and the uncertainties in the relative

energy-dependent effects in the interpretation of this ratio in terms of partonic

densities.

The key question which we will address now is: will the Tevatron data

alone provide the missing input with a sufficient precision? As demonstrated

in Refs. [153,185,154], the unconstrained degree of freedom remains. Therefore,

the combined analysis of the LHC and Tevatron data must be complemented

by a dedicated DIS scattering experiment, optimized to serve as a provider of

high-precision missing input-data for the MW measurement. The Letter Of

Intent (LOI) for such an LHC-programme-dedicated experiment at the SPS

was submitted in September 2009 to the SPSC and the LHCC [185].

3.8 Conclusions and outlook

In this chapter we have focused our attention on the measurement of the W -

boson mass, the most important Standard Model measurements to be made at

the LHC.

We have presented a novel method for the W -mass measurement at the

LHC. This method is robust with respect to the systematic measurement and

modeling error sources which were found to be dominant for the W -boson

mass measurements at the Tevatron. We have shown that already for one year

running of the LHC at the low-luminosity this method removes the sensitivity

of the W -mass to these effectes.

Then we have identified and pointed out the principal differences of the

measurement for the Tevatron’s p p̄ and for the LHC’s p p collision scheme. We

have explained how those differences lead to the LHC-specific error sources

which are not relevant in the case of the Tevatron but will play an extremely

important role in the case of the LHC. Even if the W -boson measurement has

already been intensively discussed over the last decade, the impact of these

LHC-specific effects on the precision of the W -mass was overlooked in the pre-

vious ATLAS and CMS analyses. We have evaluated the uncertainties caused

by the LHC-specific effects and have shown that their effect is dominant for

mass peak will be too low.
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the W -mass measurement at the LHC. Therefore, it will be impossible to reach

the precision of the order of 10 MeV, sugested by the ATLAS and CMS anal-

yses, unless an additional experimental support is provided. It will be even

difficult to approach the precicion reached at the Tevatron. Therefore, we have

proposed two measurement programmes allowing to put back the LHC SM

parameters measurement program into the precision competition: (1) colliding

the deuteron beams at the LHC and (2) improving the precision of the LHC-

external missing-input information in a dedicated “LHC-precision-support”

programme. Both programmes have complementary merits and shortcomings.

Both are capable to measure the W -boson mass with the precision better than

10 MeV. Running of deuteron beams at the LHC is very elegant solution but

it is highly unlikely, at least in the initial phase of the collider operation. The

“LHC-precision-support” programme must be based on a correlated LHC and

Tevatron measurement scheme. This is a necessary but not sufficient condition

of its success. The core of such a programme is a dedicated precision exper-

iment to measure the proton–neutron asymmetry in DIS collisions of leptons

with the proton and deuterium targets. It must use the TJNAF programme

to understand the deuteron nuclear effects.
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Appendix

A.1 YFS infrared functions

The YFS infrared functions (see Section 1.3) are defined by:

YΩ(p1, p2) ≡ 2αB̃(Ω, p1, p2) + 2α<B(p1, p2)
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(A.1)

In this appendix we present the explicit and general form, from Refs. [77] and [48],

for both the virtual IR function <B(s, p1, p2) and the real IR function B̃(p1, p2;Emin)

for both s and t channels.

A.1.1 Virtual photon IR function for s-channel

The YFS form factor in the s-channel is needed in ZINHAC for the final-state

radiation. The virtual photon YFS IR function for this channel <B(s, p1, p2)

for any two charged particles with the four-momenta p1, p2 and the masses

m1,m2 reads
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, (A.3)
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and mγ is the mentioned above fictitious photon mass used to regularize the

IR singularity.

A.1.2 Virtual photon IR function for t and u channels

The t and u channel virtual photon YFS IR function <B(p1, p2) is needed in

ZINHAC in order to include interferences between the final and initial states.

For two charged particles with the four-momenta p1, p2 and the masses m1,m2,

where m1 > m2, this function, according to Ref. [48], in the case of t, u 6= 0

reads
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A.1.3 Real photon IR function

The YFS IR function B̃ corresponding to the emission of real photons with

energy k0 ≤ Emin in a process involving any two charged particles with the

four-momenta p1, p2 and the masses m1,m2 can be expressed as
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α

π

{(
1

ρ
ln
µ(1 + ρ)

m1m2

− 1

)
ln

4E2
min

m2
γ

+
1

2β1

ln
1 + β1

1− β1

+
1

2β2

ln
1 + β2

1− β2

+ µA4(p1, p2)

}
, (A.5)



A.2 Chiral reprezentation of γ matrices 155

where βi =
√

1−m2
i /E

2
i , and µ and ρ are defined in Eq. (A.3). The most

complex part of the above expression is the function A4(p1, p2). It can be

expressed in terms of logarithms and dilogarithms

A4(p1, p2) =
1√

(Q2 + ω2)(Q2 + δ2)

{
ln

√
∆2 +Q2 −∆√
∆2 +Q2 + ∆

[
X14

23 (η1)−X14
23 (η0)

]
+ Y (η1)− Y (η0)

}
, (A.6)

where

X ij
kl(η) = ln

∣∣∣∣ (η − yi)(η − yj)(η − yk)(η − yl)
∣∣∣∣ ,

Y (η) = Z14(η) + Z21(η) + Z32(η)− Z34(η) +
1

2
X12

34 (η)X23
14 (η), (A.7)

Zij(η) = 2<Li2

(
yj − yi
η − yi

)
+

1

2
ln2

∣∣∣∣η − yiη − yj

∣∣∣∣ ,
and

η0 =
√
E2

2 −m2
2, η1 =

√
E2

1 −m2
1 +

√
∆2 +Q2,

y1,2 =
1

2

[√
∆2 +Q2 − Ω +

ωδ ±√(Q2 + ω2)(Q2 + δ2)√
∆2 +Q2 + ∆

]
, (A.8)

y3,4 =
1

2

[√
∆2 +Q2 + Ω +

ωδ ±√(Q2 + ω2)(Q2 + δ2)√
∆2 +Q2 −∆

]
,

where we used the following notation

∆ = E1 − E2, Ω = E1 + E2,

δ = m1 −m2, ω = m1 +m2, (A.9)

Q2 = −(p1 − p2)2.

The only approximation used in deriving the above formulae is that mγ �
Emin.

One can easily check that the dependence of the above functions on the

IR regulator mγ, as was mentioned in Section 1.3, cancels out in the sum

2α<B + 2αB̃, which is used to construct the YFS form factor.

A.2 Chiral reprezentation of γ matrices

In the Section 1.4 we used the chiral reprezentation of γ matrices,

γµ =

 0 σµ+

σµ− 0

 , (A.10)
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with

σµ± = (1,±~σ), (A.11)

where ~σ denotes the ”vector” of Pauli matrices in the standard basis,

~σ =
(
σ1, σ2, σ3

)
=

 0 1

1 0

 ,

 0 −i
i 0

 ,

 1 0

0 −1

 . (A.12)

The γ5 matrix in this reprezentation is defined as follows

γ5 = iγ0γ1γ2γ3 = γ5, (A.13)

which in this representation takes the following form,

γ5 =

 −1 0

0 1

 . (A.14)

Using the definition (A.10) and (A.13) one can proof the anti-commutation

relations for these matrices:

{γ5, γµ} = 0 (A.15)

and get square of γ5 matrix,

γ2
5 = 1. (A.16)

Let us also define the Levi-Civita symbol, also called the antisymmetric symbol,

as fallows:

εµνρσ =


+1 for an even permutation of 0, 1, 2, 3

0 if any index is repeated,

−1 for an odd permutation of 0, 1, 2, 3.

(A.17)

which implies: ε0123 = −1.

εαβγδεαβγδ =− 24, (A.18)

εαβγµεαβγν =− 6δµν , (A.19)

εαβµνεαβρσ =− 2(δµρ δ
ν
σ − δµσδνρ). (A.20)

A.3 Feynman rules

The Feynman amplitude for a given graph in QED is obtained form the Feyn-

man rules. This appendix collects together the formulae which were used in

1.4.



A.3 Feynman rules 157

A.3.1 External lines

This section lists the factors that are associated with the external lines of a

Feynman graph for the initial or final particles of an amplitude.

(a) Initial particles

The following factors give the (momentum-space) Feynman rules appropriate

to an incoming spin-half and spin-one particle. The arrows on the fermion lines

indicate the direction of fermion flow, the dot indicates where the line attaches

to an interaction vertex.

spin–half particle:

�

ui(p, σ)

spin–half antiparticle:

�

v̄i(p, σ)

spin-one particle:

�

εµ(p, σ)

(b) Final particles

Feynman rules for a outgoing spin-half and spin-one particle.

spin–half particle:

�

ūi(p, λ)

spin–half antiparticle:

�

vi(p, σ)

spin-one particle:

�

ε∗µ(p, σ)
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A.3.2 Internal lines (propagators)

The momentum space description for an internal line is given by the propagator

for the corresponding particle.

spin–half particle:

�

i

/p−m+ iε
= i

/p+m

p2 −m2 + iε

photon:

(t’Hoofta–Feynman gauge)

�

−igµν
k2 + iε

massive vector-boson (W±,Z):

(unitary gauge)

	

i

k2 −M2
V + iε

(
− gµν +

kµkν

M2
V

)

A.3.3 Vertices

The Feynman Rules that differentiate the standard model from any other the-

ory of interacting spin-one, spin-half particles are those that describe the ver-

tices or interactions of the theory.

γff̄ vertex:

γ

µ

f̄f

= −ieQfγ
µ = −ieγµ

(
cγff̄L

1− γ5

2
+ cγff̄R

1 + γ5

2

)

where:

cγff̄L = Qf , cγff̄R = Qf , for a fermion f .

Zff̄ vertex:

Z

µ

f̄f

= −ieγµ
(
cZff̄L

1− γ5

2
+ cZff̄R

1 + γ5

2

)
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where:

cZff̄L = g(−1
2

+ sin2 θW ), cZff̄R = g sin2 θW , for f = e−, µ−.

cZff̄L = g(+1
2
− 2

3
sin2 θW ), cZff̄R = −2

3
g sin2 θW , for f = u, c, t.

cZff̄L = g(−1
2

+ 1
3

sin2 θW ), cZff̄R = 1
3
g sin2 θW , for f = d, s, b.

g = 1
cos θW sin θW

.

If we denote by t3 the third component of the weak–isospin and by Qf the

charge of the fermion f then we can write general formuleas for cL and cR :

cZff̄L = g(t3 −Qf sin2 θW ), cZff̄R = g(−Qf sin2 θW ).

The Bff̄ vertex, where B = Z, γ can also be written in terms of axial and

vector coupling constants

− ieγµ
(
cBff̄L

1− γ5

2
+ cBff̄R

1 + γ5

2

)
= −ieγµ(vBff̄ + aBff̄γ5). (A.21)

Therefore, we may express axial and vector coupling constants in therms of

chiral coupling constats in the following maner

vBff̄ =
1

2
(cBff̄R + cBff̄L ), aBff̄ =

1

2
(cBff̄R − cBff̄L ). (A.22)

A.4 Spin amplitudes

A.4.1 Born Level

The spin amplitude for single Z or γ∗ production at the Born level in fermion–
antifermion collisions can be obtained in the very similar way to corresponding
spin amplitude for single Z or γ∗ decay, see Subsection 1.4.2(a):

M(0)B
P = ε∗µ(Q,λ)v̄(p2, σ2)(−ie)γµ(cBqq̄L P− + cBqq̄R P+)u(p2, σ2) =

= iev̄(p2, σ2)(cBqq̄L P+ + cBqq̄R P−)/ε∗Z(Q,λ)u(p2, σ2) =

= − ie[cBqq̄L v†−(p2, σ2)[ε∗(Q,λ)]−u−(p2, σ2) + cBqq̄R v†+(p2, σ2)[ε∗(Q,λ)]+u+(p2, σ2)
]

= ie
[
cBqq̄L σ2ωσ2(p2)ω−σ1(p1)S(p2, ε

∗, p1)−−σ2,σ1

− cBqq̄R σ2ω−σ2(p2)ωσ1(p1)S(p2, ε
∗, p1)+

−σ2,σ1

]
(A.23)

A.4.2 Real hard-photon radiation

(a) Single hard-photon radiation in leptonic Z boson decays

The spin amplitude for single hard-photon radiation in the leptonic Z-boson

or γ∗ decays M
(1)B
D is a sum of two amplitudes – the amplitude for the single
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hard-photon radiation from a lepton M
(1l)B
D (see the left plot in Fig. 1.4) and

the amplitude for the single hard-photon radiation from an antilepton M
(1l̄)B
D

(see, the right plot in Fig. 1.4):

M
(1)B
D = M

(1l)B
D +M

(1l̄)B
D (A.24)

where the amplitude for a single hard-photon radiation from antilepton reads:

M(1l̄)B
D =

ie2Ql
2q2 · k ū(q1, τ1){cBll̄L P+ + cBll̄R P−}/εZ(Q,λ)

(
/q2 + /k −m)/ε∗(k, κ)v(q2, τ2)

=
ie2Ql
2q2 · k ū(q1, τ1){cBll̄L P+ + cBll̄R P−}/εZ(Q,λ)

(
/k + 2k · q2

)
/ε∗(k, κ)v(q2, τ2)

=
ie2Ql
2q2 · k ×

[
cBll̄L ū(q1, τ1)−

{
[εZkε∗]− + 2q2 · ε∗[εZ ]−

}
v(q2, τ2)−+

+ cBll̄R ū(q1, τ1)+

{
[εZkε∗]+ + 2q2 · ε∗[εZ ]+

}
v(q2, τ2)+

]
=
−ie2Ql
2q2 · k

[
cBll̄L ω−τ1(q1)τ2ωτ2(q2)

{
S(q1, εZ , k, ε

∗, q2)−τ1,−τ2 + 2q2 · ε∗S(q1, εZ , q2)−τ1,−τ2
}
−

− cBll̄R ωτ1(q1)τ2ω−τ2(q2)
{
S(q1, εZ , k, ε

∗, q2)+
τ1,−τ2 + 2q2 · ε∗S(q1, εZ , q2)+

τ1,−τ2
}]

(A.25)

The amplitude for a single hard-photon radiation from lepton:

M(1l)B
D (λ; τ1, τ2, κ) =

= −ie2Qlū(q1, τ1)/ε∗(k, κ)
/q1 + /k +m

2q1 · k /εZ(Q,λ){cBll̄L P− + cBll̄R P+}v(q2, τ2)

=
−ie2Ql
2q1 · k ū(q1, τ1)

[
/ε∗/k/εZ + 2q1 · ε∗/εZ

]{cBll̄L P− + cBll̄R P+}v(q2, τ2)

=
−ie2Ql
2q1 · k ū(q1, τ1){cBll̄L P+ + cBll̄R P−}

[
/ε∗/k/εZ + 2q1 · ε∗/εZ

]
v(q2, τ2)

=
−ie2Ql
2q1 · k

[
cBll̄L ū(q1, τ1)−

{
[ε∗kεZ ]− + 2q1 · ε∗[εZ ]−

}
v(q2, τ2)−

+ cBll̄R ū(q1, τ1)+

{
[ε∗kεZ ]+ + 2q1 · ε∗[εZ ]+

}
v(q2, τ2)+

]
=

ie2Ql
2q1 · k

[
cBll̄L ω−τ1(q1)τ2ωτ2(q2)

{
S
(
q1, ε

∗, k, εZ , q2

)−
τ1,−τ2 + 2q1 · ε∗S

(
q1, εZ , q2

)−
τ1,−τ2

}
−

− cBll̄R ωτ1(q1)τ2ω−τ2(q2)
{
S
(
q1, ε

∗, k, εZ , q2

)+
τ1,−τ2 + 2q1 · ε∗S

(
q1, εZ , q2

)+
τ1,−τ2

}]
.

(A.26)

(b) Single hard-photon radiation in quarkonic Z boson production

The spin amplitude for single hard-photon radiation in the quarkonic Z-boson

or γ∗ productionM
(1)B
P is a sum of two amplitudes – the amplitude for the single

hard-photon radiation from a quark M
(1q)B
D (see the left plot in Fig. 1.5) and
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the amplitude for the single hard-photon radiation from an antiquark M
(1q̄)B
D

(see the right plot from Fig. 1.5):

M
(1)B
P = M

(1q)B
P +M

(1q̄)B
P , (A.27)

where the amplitude for a single hard-photon radiation from quark reads:

MZ(1q)
P =

−ie2Qq
2p1 · k v̄(p2, σ2){cBqq̄L P+ + cBqq̄R P−}/ε∗Z(Q,λ)(/p1 − /k +m)/ε∗(k, κ)u(p1, σ1)

=
−ie2Qq
2p1 · k v̄(p2, σ2){cBqq̄L P+ + cBqq̄R P−}/ε∗Z(Q,λ)

[
2p1ε

∗(k, κ)− /k/ε∗(k, κ)
]
u(p1, σ1)

=
−ie2Qq
2p1 · k ×

[
cBqq̄L v̄(p2, σ2)−

{
2p1ε

∗(k, κ)[ε∗(Q,λ)]− − [ε∗(Q,λ), k, ε∗(k, κ)]−
}
u(p1, σ1)−

+ cBqq̄R v̄(p2, σ2)+

{
2p1ε

∗(k, κ)[ε∗(Q,λ)]+ − [ε∗(Q,λ), k, ε∗(k, κ)]+
}
u(p1, σ1)+

]
=
ie2Qq
2p1 · k ×

[
cBqq̄L (−σ2)ωσ2(p2)ω−σ1(p1)

{
2p1ε

∗S(p2, ε
∗
Z , p1)−−σ2,σ1

− S(p2, ε
∗
Z , k, ε

∗, p1)−−σ2,σ1

}
− cBqq̄R (σ2)ω−σ2(p2)]ωσ1(p1)

{
2p1ε

∗S(p2, ε
∗
Z , p1)+

−σ2,σ1
− S(p2, ε

∗
Z , k, ε

∗, p1)+
−σ2,σ1

}]
.

(A.28)

The amplitude for a single hard-photon radiation from antiquark reads:

MZ(1q̄)
P =

−ie2Qq
2p2 · k v̄(p2, σ2)/ε∗(k, κ)(−/p2 + /k +m)/ε∗Z(Q,λ){cBqq̄L P− + cBqq̄R P+}u(p1, σ1)

=
−ie2Qq
2p2 · k v̄(p2, σ2)[/ε∗(k, κ)/k − 2p2ε

∗(k, κ)]/ε∗Z(Q,λ){cBqq̄L P+ + cBqq̄R P−}u(p1, σ1)

=
−ie2Qq
2p2 · k v̄(p2, σ2){cBqq̄L P+ + cBqq̄R P−}

[
/ε∗(k, κ)/k/ε∗Z(Q,λ)− 2p2ε

∗(k, κ)/ε∗Z(Q,λ)
]
u(p1, σ1)

=
ie2Qq
2p2 · k ×

[
cBqq̄L v̄(p2, σ2)−

{
2p2ε

∗(k, κ)[ε∗Z(Q,λ)]− − [ε∗(k, κ), k, ε∗Z(Q,λ)]−
}
u(p1, σ1)−

+ cBqq̄R v̄(p2, σ2)+

{
2p2ε

∗(k, κ)[ε∗Z(Q,λ)]+ − [ε∗(k, κ), k, ε∗Z(Q,λ)]+
}
u(p1, σ1)+

]
=
−ie2Qq
2p2 · k ×

[
cBqq̄L σ2ωσ2(p2)ω−σ1(p1)

{
2p2ε

∗S(p2, ε
∗
Z , p1)−−σ2,σ1

− S(p2, ε
∗, k, ε∗Z , p1)−−σ2,σ1

}
− cBqq̄R (σ2)ω−σ2(p2)]ωσ1(p1)

{
2p2ε

∗S(p2, ε
∗
Z , p1)+

−σ2,σ1
− S(p2, ε

∗, k, ε∗Z , p1)+
−σ2,σ1

}]
.

(A.29)
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A.5 Born level differential cross section in terms

of Mandelstam variables

The Born-level differential cross section in the small fermion-mass approxima-

tion expressed in terms of Mandelstam variables reads:

ρ0(ŝ, φ, cos θ) =
dσ0

dΩ̂
=

d2σ0

dφd cos θ
=

1

12

1

64π2ŝ

∑
pol

|MLO
qq̄ |2

=
α2

12 ŝ3

{
2Q2

qQ
2
l (t̂2 + û2)

+ 2QqQl<
[[

(cZqq̄R cZll̄R + cZqq̄L cZll̄L ) û2 + (cZqq̄R cZll̄L + cZqq̄L cZll̄R ) t̂2
]
χZ(ŝ)

]
+
[
(|cZqq̄R |2|cZll̄R |2 + |cZqq̄L |2|cZll̄L |2) û2

+ (|cZqq̄R |2|cZll̄L |2 + |cZqq̄L |2|cZll̄R |2) t̂2
]
|χZ(ŝ)|2

}
.

(A.30)

The explicit factor 1/12 in the above equation results from the average over

the quark spins and colours, and Ω̂ is the solid angle of the outgoing l− in

the partonic centre-of-mass (CM) frame. In our conveniention the +z axsis is

pointing in the direction of the momentum of the quark q. The Mandelstam

variables in the CMS frame take form:

ŝ = (p1 + p2)2 = 2p1p2,

t̂ = (p1 − q1)2 = −2p1q1 = − ŝ
2

(1− cos θ),

û = (p1 − q2)2 = −2p1q2 = − ŝ
2

(1 + cos θ).

(A.31)

and χZ(ŝ) = ŝ/Z(ŝ) where Z(ŝ) is the inverse of the Z-boson propagator defined

in the Eq. (1.46).
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∆MW = 10MeV/c2 at the LHC: a forlorn hope?, in preparation, to be

submitted to Phys. Lett.

[155] The ALEPH Collaboration et al., (2009), arXiv:0911.2604 [hep-ex].

[156] Particle Data Group, C. Amsler et al., Phys. Lett. B667, 1 (2008).

[157] The ALEPH Collaboration, Phys. Rept. 427, 257 (2006), arXiv:hep-

ex/0509008.

[158] The D0 Collaboration, S. Abachi et al., Phys. Rev. Lett. 74, 2632 (1995),

arXiv:hep-ex/9503003.

[159] The CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 74, 2626 (1995),

arXiv:hep-ex/9503002.

[160] The ALEPH Collaboration, J. Alcaraz et al., (2006), arXiv:hep-

ex/0612034.



BIBLIOGRAPHY 181

[161] S. Heinemeyer, W. Hollik, and G. Weiglein, Phys. Rept. 425, 265 (2006),

arXiv:hep-ph/0412214.

[162] S. Heinemeyer, W. Hollik, D. Stockinger, A. M. Weber, and G. Weiglein,

JHEP 08, 052 (2006), arXiv:hep-ph/0604147.

[163] Tevatron Electroweak Working Group, (2009), arXiv:0908.1374.

[164] F. Fayette, Strategies for precision measurements of the charge asym-

metry of the W boson mass at the LHC within the ATLAS experiment,

2009, arXiv:0906.4260 [hep-ex], Ph. D. thesis.

[165] The ATLAS Collaboration, ATLAS: Detector and physics performance

technical design report. Volume 1, CERN-LHCC-99-14.

[166] The ATLAS Collaboration, ATLAS detector and physics performance.

Technical design report. Vol. 2, CERN-LHCC-99-15.

[167] The ATLAS Collaboration, ATLAS inner detector: Technical design

report. Vol. 1, CERN-LHCC-97-16.

[168] The ATLAS Collaboration, ATLAS inner detector: Technical design

report. Vol. 2, CERN-LHCC-97-17.

[169] Le centre de calcul de lin2p3/cnrs, http://cc.in2p3.fr/.

[170] The CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 65, 2243 (1990).

[171] The CDF Collaboration, T. Aaltonen et al., Phys. Rev. Lett. 99, 151801

(2007), arXiv:0707.0085.

[172] The CDF Collaboration, T. Aaltonen et al., (2007), arXiv:0708.3642

[hep-ex].

[173] The D0 Collaboration, V. M. Abazov et al., Phys. Rev. Lett. 103, 141801

(2009), arXiv:0908.0766 [hep-ex].

[174] J. Pumplin et al., JHEP 07, 012 (2002), arXiv:hep-ph/0201195.

[175] K. Rejzner, M. W. Krasny, F. Fayette, W. P laczek, and A. Siódmok,
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