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List of abbreviations andremarks on notation1D � one-dimensional2D � two-dimensional3D � three-dimensionalAF � antiferromagneti
AO � alternating orbitalCDW � 
harge density waveFM � ferromagneti
FO � ferro-orbitalLOW � linear orbital waveLSW � linear spin waveSCBA � self-
onsistent Born approximationVCA � variational 
luster approa
hThroughout the thesis:(i) we use H (possibly with some indi
es) to denote any type of the HubbardHamiltonian,(ii) we use H (possibly with some indi
es) to denote any 
omponent of the(standard or extended) t�J model,(iii) we use Heff (possibly with some indi
es) to denote any 
omponent ofthe e�e
tive model obtained from the (standard or extended) t�J model byintrodu
ing slave fermions or slave bosons,(iv) the main Hamiltonians of the 
hapters (Hubbard, t�J , and possibly thee�e
tive one) do not have any index,(v) the latti
e 
onstant is set to unity,(vi) ∑
〈ij〉 means taking summation over the bond formed between site i and j.Despite the above mentioned 
ommon features of the notation used in thethesis the notation in ea
h 
hapter is independent of the other 
hapters and islogi
ally 
onsistent only within ea
h 
hapter.We 
all the spin t�J model of Refs. [1, 2, 3℄ the standard t�J model [seeEq. (1.22) in this thesis℄ to distinguish it from various other t�J�type modelsdis
ussed in this thesis.
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Prefa
eIn this thesis we dis
uss and present solutions of three related problems whi
harise in strongly 
orrelated ele
tron systems:1. Explaining 
harge order in Sr14−xCaxCu24O41.� The �rst problem 
on-
erns the explanation of the pe
uliar 
harge order observed experimentally atlow temperature T = 20K in the 
oupled ladders Cu2O5 in Sr14−xCaxCu24O41[4, 5, 6, 7, 8℄. On the one hand, the resonant soft x-ray s
attering shows thatthe 
harge order there is formed by a 
harge density wave (CDW) phase withodd period and is stable for x = 0 and x = 11 in Sr14−xCaxCu24O41 presumablydue to the on-site Coulomb repulsion [7, 8℄. On the other hand, a CDW phasewith even period has not been observed in these systems [8℄. These are strikingresults as they 
ontradi
t the theoreti
al predi
tion of a stable CDW phase witheven period for x = 4 and no CDW order for other values of x [9, 10, 11℄.2. Verifying the idea of orbitally indu
ed hole lo
alization.� The next prob-lem is more general and `tou
hes' the idea that the mere presen
e of orbitaldegenera
y in the transition metal oxides 
ould lead to the hole 
on�nement inthe strongly 
orrelated ele
tron system. This idea 
an be ba
ked by the followingfa
ts: (i) the manganites show a 
olossal magnetoresistive e�e
t [12, 13, 14, 15℄whi
h 
an be attributed to the orbital degenera
y [16, 17, 18℄, (ii) the transitionmetal oxides with orbital degenera
y (e.g. manganites or vanadates) have mu
hmore stable insulating phases in the regime of hole doping [15, 19℄ than the
uprates without orbital degenera
y [20℄. However, in strongly 
orrelated sys-tems without orbital degenera
y (and des
ribed by the simple Hubbard model)the hole had been thought to be lo
alized for a very long time [21℄ and onlymu
h later [22, 23℄ it was shown that the hole was mobile. This suggests that theveri�
ation of the idea of orbitally indu
ed hole lo
alization should be performedrather 
arefully.3. Understanding hole motion in LaVO3.� The last problem is devoted tothe understanding of the behaviour of the single hole doped into the ab plane ofLaVO3. This system is a Mott insulator and superex
hange intera
tions stabilizethe spin antiferromagneti
 (AF) and alternating orbital (AO) ordered groundstate [19, 24, 25℄. The problem whi
h arises here 
an be in short formulatedas follows: upon doping this plane with holes (whi
h is possible by substitutinglantanium for strontium in La1−xSrxVO3) the orbital dynami
s seems to in�u-en
e the hole motion mu
h more than the spin dynami
s (see 
onje
ture in theIntrodu
tion to Chapter 5 of this thesis based on the experimental results fromRef. [19℄). Thus, the question is: why the spin dynami
s is quen
hed in thehole doped AF and AO state.Common feature of the three problems.� Although all of the three topi
sbelong to the strongly 
orrelated transition metal oxides [20℄, `at �rst glan
e'7



it is hard to imagine that there is something more whi
h 
onne
ts all three ofthem.1 However, a 
loser look (taken in the 
onse
utive 
hapters) will show thatthe three simplest models, formulated to solve these problems, will have a lot in
ommon. A
tually, all three of them will turn out to be merely a more or lesselaborate version of the standard t�J model [1, 2, 3℄ although the standard t�Jmodel itself will be
ome evident not to be enough to explain these phenomena.More pre
isely, it will turn out that the simplest models 
apable of explainingthe above problems will be: (i) the t�J model for 
oupled ladders for the �rstproblem, (ii) the t2g orbital t�J model with three-site terms for the se
ond oneand (iii) the t2g spin-orbital t�J model with three-site terms for the third one.Thus, we will show that, as the title of the thesis suggests, one indeed has to gobeyond the standard t�J model to be able to understand the physi
s behind allthese three phenomena.Aim of the thesis.� The purpose of this thesis is to give answers to thethree problems using the above mentioned extensions of the t�J models. As `aside e�e
t' one will see how powerful is the 
on
ept of the t�J model and the
anoni
al perturbation expansion [1, 2℄ or the Zhang-Ri
e s
heme [26℄: merelyslight modi�
ations of the model mean that it is still 
apable of explaining ahuge variety of phenomena present in the transition metal oxides.Stru
ture of the thesis.� The thesis is organized as follows. Chapter 1
ontains a preliminary material 
on
erning the standard t�J model: (i) theHubbard model, (ii) its derivation from the Hubbard model by the 
anoni
alperturbation expansion, and �nally (iii) its form and range of appli
ability.This 
hapter may be easily skipped by the reader familiar with the standard
t�J model [1, 2, 3℄, though a qui
k look at this 
hapter would be always ofgreat help in understanding the results presented in this thesis. Next in thethree 
onse
utive 
hapters (whi
h are 
alled the main 
hapters of the thesis)we dis
uss the three problems mentioned above: (i) in Chapter 2 we explainthe 
harge order in Sr14−xCaxCu24O41 using the t�J model for 
oupled ladders,(ii) in Chapter 3 we verify the idea of orbitally indu
ed hole lo
alization usingthe t2g orbital t�J model with three-site terms, and (iii) in Chapter 4 we tryto understand hole motion in LaVO3 using the the t2g spin-orbital t�J modelwith three-site terms. Finally, in Summary we brie�y dis
uss the solutions ofthe problems and the 
ommon features of the new t�J models. The thesis issupplemented by two appendi
es (whi
h 
ontain some mathemati
al derivationneeded in Chapter 3), Bibliography, `Stresz
zenie' (summary in Polish), and thelist of publi
ations whi
h were published during my PhD studies. Finally, in theend we mention those people without whose support it would have never beenpossible to 
omplete this thesis.The organization of material serves the main idea of the thesis. First, inea
h of the three main 
hapters: (i) we dis
uss the problem in more detail inthe introdu
tion (�rst se
tion), (ii) we introdu
e the new t�J model by 
are-fully dis
ussing its di�eren
es with respe
t to the standard t�J model (se
ondse
tion), (iii) we derive the new t�J model from the Hubbard-type model appro-priate for the 
onsidered problem using the 
anoni
al perturbation expansion[1, 2℄ or the Zhang-Ri
e s
heme [26℄ (third se
tion). Se
ond, as the methods ofsolving ea
h t�J model di�er, we introdu
e the slave bosons (Chapter 2) or slave1Although, the reader familiar with the strongly 
orrelated ele
tron systems will immedi-ately note that the se
ond and third problem has a lot in 
ommon. See also Se
. 4.7 for amore detailed dis
ussion of the similarities between them.8



fermions (Chapters 3 and 4) to over
ome the 
onstraint of the restri
ted hoppingpresent in any t�J model and only then we solve the e�e
tive model written inthe slave parti
le language using the mean-�eld in Chapter 2 or self-
onsistentBorn approximation (SCBA) in Chapter 3 and 4 (fourth se
tion). Finally, wedis
uss the results in
luding its validity (�fth se
tion), and we draw some 
on-
lusions (sixth se
tion). Furthermore, ea
h main 
hapter is supplemented by aPosts
riptum (seventh se
tion) in whi
h we dis
uss some side issues whi
h areinteresting but are not 
entral for the main message and 
an be easily skippedin �rst reading. We would like to stress that the ability to build a 
ommonstru
ture of the three main 
hapters re�e
ts (pra
ti
ally) the above mentioned
ommon origin of the three problems dis
ussed in the thesis.
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Chapter 1Motivation: The standard t�Jmodel1.1 The Hubbard modelHamiltonian.� The (ar
he)typi
al model whi
h des
ribes the strongly 
orre-lated ele
trons is the Hubbard model des
ribed by the Hamiltonian [27℄
H = −t

∑

〈ij〉,σ

(
c†iσcjσ + H.c.

)
+ U

∑

i

ni↑ni↓, (1.1)where 〈ij〉 denotes the bond formed between site i and j, c†iσ operator 
reatesan ele
tron at site i with spin σ, and the ele
tron density operator is de�nedas niσ = c†iσciσ. Here the �rst term is responsible for the hopping ∝ t ofele
trons on a hyper
ubi
 latti
e while the se
ond term des
ribes the Coulombrepulsion ∝ U between two ele
trons with opposite spins on the same site. Thismodel is introdu
ed to des
ribe a 
ommon situation whi
h takes pla
e in varioustransition metal oxides [20℄: the latti
e potential is very strong and one needsto 
al
ulate the Coulomb intera
tion between ele
trons in the (almost) atomi
wavefun
tions. This leads to a modi�
ation of the bare Coulomb potential: it isshort range (i.e. merely on-site) but strongly ampli�ed. This naturally meansthat the physi
al regime of the model is when U > W (where W = 2zt is thebandwidth and z is the 
oordination number for the hyper
ubi
 latti
e) andthroughout the thesis we will assume that one is always in this regime.A
tually the more general de�nition of the Hubbard model (1.1) would 
on-tain the 
hemi
al potential. However, it is 
ustomary to omit that term andinstead to spe
ify the number of ele
trons per site n present in the systemseparately. This 
an take the values 0 ≤ n ≤ 2 due to the Pauli prin
iple.Spa
e dimensions of the latti
e.� Finally, let us note that the model Eq.(1.1) 
an be de�ned as well in the one-dimensional (1D), two-dimensional (2D)and three-dimensional (3D) version. However, due to its most interesting (inmy opinion) appli
ation 
on
erns the 2D 
opper oxide layers of high-Tc 
uprates[28℄. Moreover, as we will be interested either in layered stru
tures (Chapter 2)or in situations where the orbital order (Chapter 3) or spin and orbital order(Chapter 4) 
ontains two spatial dimensions, we restri
t the dis
ussion to the2D Hubbard model. 11



Drawba
ks and advantages of the model.� It is worth mentioning that themodel Eq. (1.1) has been indeed very su

essful in des
ribing various propertiesof the strongly 
orrelated ele
tron systems [28℄. However, there are two maindrawba
ks of the model. First, despite its simpli
ity it is hard to solve it in theinteresting regime n 6= 1 as the Monte Carlo simulations often break down dueto the `sign problem' whereas all other methods are also not reliable due to thehuge dimensions of the Hilbert spa
e of the model (whi
h in the half-�lled 
aseis [N !/(N/2)!(N/2)!]2 whereN is the number of latti
e sites) [28℄. Se
ond, let usremark that many systems are too 
ompli
ated to have the ele
tron 
orrelationsdes
ribed by the Hubbard model in a reliable way: e.g. the orbital degenera
yregime 
an 
hange the matters drasti
ally [29℄.On the one hand, to over
ome the �rst di�
ulty one performs the 
anon-i
al perturbation expansion1 of the Hubbard model whi
h hugely redu
es thedimensionality of the Hilbert spa
e by negle
ting the high-energy states in theregime U > W . This is done in the next two se
tions and the model whi
his obtained after su
h an expansion is the standard t�J model. On the otherhand, one should add extra terms and/or modify the two existing ones in Eq.(1.1) to make the Hubbard model more realisti
. A
tually, in the next three
hapters of this thesis we will 
ombine both of the approa
hes: we will modifythe Hubbard model to make it more realisti
 and redu
e it to the appropriate
t�J model using the 
anoni
al perturbation expansion.1.2 The 
anoni
al perturbation expansionHubbard subbands.� One of the main features of the model (1.1) is the splitof the Hilbert spa
e (spanned by the Hubbard Hamiltonian) into the so-
alledHubbard subbands [1, 2, 31℄. This 
an be understood in the following way. Letus assume that n ≤ 1 (the 
ase n > 1 follows from the parti
le-hole symmetryof the model) and swit
h o� the hopping t = 0 for a moment. Then the groundstate of the model will 
learly have no sites with two ele
trons as ea
h siteo

upied by two ele
trons 
osts energy U . This 
ondition de�nes the lowestHubbard subband with zero total energy whi
h 
onsists of all (degenerate) stateswith no double o

upan
ies. Next, all of the states with just one single siteo

upied by two ele
trons (and the rest singly o

upied or empty) de�ne these
ond Hubbard subbands with the total energy U . Repeating this pro
edurefurther, one splits up the Hilbert spa
e into the Hubbard subbands spanned bythe states with m doubly o

upied sites and energy mU .Swit
hing on hopping t obviously 
hanges the situation: not only the stateswithin the Hubbard subband are no longer degenerate but more importantly theHubbard Hamiltonian are no longer `diagonal in the Hubbard subbands' (morepre
isely the hopping t 
onne
ts the states from di�erent Hubbard subbands).However, as long as W < U the Hubbard subbands do not overlap, in orderto obtain the behaviour of the system in the low energy limit it is enough to
on
entrate on the lowest Hubbard subband and treat the hopping to the statesfrom higher Hubbard subbands as a perturbation.1Note that the more standard perturbation expansion of the Hubbard model [30℄, wherethe entire hopping term is treated as a small perturbation, is very tedious for the Hubbardmodel and yields results whi
h are very hard to interpret [2℄.12



Deriving the Hamiltonian within the Hubbard subband.� The 
anoni
al per-turbation expansion sets the above des
ribed pro
edure on the mathemati
algrounds [1, 2℄ (see also Refs. [32, 33℄). In the beginning one rewrites the Hub-bard Hamiltonian H in the following way:
H = H0 + H1, (1.2)where H0 des
ribes the physi
s within the Hubbard subband (σ̄ = −σ):

H0 = V + T0,

V = U
∑

i

ni↑ni↓

T0 = −t
∑

〈ij〉,σ

{
(1 − niσ̄)c

†
iσcjσ(1 − njσ̄) + niσ̄c

†
iσcjσnjσ̄ + H.c.

}
, (1.3)while H1 is responsible for hopping pro
esses between di�erent Hubbard sub-bands:

H1 = T+ + T−,

T+ = −t
∑

〈ij〉,σ

{
niσ̄c

†
iσcjσ(1 − njσ̄) + H.c.

}

T− = −t
∑

〈ij〉,σ

{
(1 − niσ̄)c

†
iσcjσnjσ̄ + H.c.

}
. (1.4)Next, the task is to 
onstru
t a 
anoni
al transformation S of the Hamilto-nian H

H̃ = eSHe−S, (1.5)where S† = −S. If H̃ is 
al
ulated from the above equation exa
tly then theunitarity of this transformation would mean that the observables 
al
ulatedusing the spe
trum spanned by H̃ will be identi
al to the ones 
al
ulated usingthe spe
trum spanned by H.The expli
it form of S is 
al
ulated from the single requirement that theHamiltonian H̃ would not 
onne
t states from two di�erent Hubbard subbands.A priori this 
an always be done as long as the Hubbard subbands do notoverlap, i.e. when W < U (whi
h is the 
ase here). Obviously, this meansthat the observables 
al
ulated using the spe
trum spanned by H̃ will not beidenti
al to the ones 
al
ulated using the spe
trum spanned by H. However,the bigger distan
es one has between the Hubbard subbands, the more similarthe observables are. Expli
itly one 
al
ulates H̃ and S using the following steps(
ompare Ref. [33℄):(i) One makes the Ansatz that S is of the order of t/U so that one 
an write
eS = 1 + S +

1

2
S2 +O

(
t3

U3

)
. (1.6)Sin
e t≪ U the terms of the order O( t

3

U3 ) should be mu
h smaller than 1 (e.g.
U = 12t in the high-Tc 
uprates [28℄ yields t3

U3 smaller than 10−3) and 
an beskipped. Then Eq. (1.5) 
an be rewritten using Eq. (1.6) as
H̃ = H + [S,H] +

1

2
[S, [S,H]] + O

(
t3

U2

)
, (1.7)13



to the order O( t
3

U2 ) (whi
h is again enough in the regime t ≪ U) sin
e H is(maximally) of the order of U .(ii) Let us �rst 
al
ulate S to �rst order in t/U [S(1)℄. Then Eq. (1.7) to theorder O( t
2

U ) is
H̃(1) = H + [S(1),H]. (1.8)Now, one demands that H1 is not present in H̃(1): this is due to the fa
t thatwith one hop one leaves the Hubbard subband under 
onsideration and oneprohibits that H̃ in any order des
ribes pro
esses whi
h 
ouple various Hubbardsubbands. Then in this order one needs to have:

T+ + T− + [S(1),H] ≡ 0. (1.9)However, T+ + T− is ∝ t while S(1) is ∝ t/U . Thus one 
an only have V in the
ommutator:
[S(1),V ] = −T+ + T−. (1.10)One 
an 
he
k that:
S(1) =

1

U
(T+ − T−), (1.11)ful�lls Eq. (1.10).(iii) Having determinded S to �rst order in t/U [S(1)℄ one 
an now pro
eedfurther and 
al
ulate S to the se
ond order [S(2)℄. For 
onvenien
e one de�nes

S′

S(2) = S(1) + S′. (1.12)Then S′ is 
al
ulated from [
ompare Eq. (1.8)℄:
H̃(2) = H0 + [S(1), T+ + T−] + [S(1), T0] +

1

2
[S(1), [S(1),V ]] + [S′,V ],(1.13)where we used the substitution [S′,H] → [S′,V ] similarly as when going fromEq. (1.9) to Eq. (1.10). Next using Eq. (1.11) we redu
e Eq. (1.13) to

H̃(2) = H0 +
1

U
[T+, T−] + [S(1), T0] + [S′,V ]. (1.14)However, the term [S(1), T0] is not allowed to appear in H̃(2) be
ause it is re-sponsible for transitions between Hubbard subbands and one prohibits that H̃in any order des
ribes pro
esses between various Hubbard subbands. Thus oneneeds to have

[S(1), T0] + [S′,V ] ≡ 0, (1.15)whi
h de�nes S′. From this equation one 
an 
al
ulate S′ � however it is notneeded (see below).(iv) To determine H(2) one needs only the expli
it form of S(1). In fa
t, it isstraightforward to determine it by substituting Eq. (1.15) to Eq. (1.14). Oneobtains
H̃(2) = H0 +

1

U
[T+, T−]. (1.16)14



This des
ribes the physi
s of a parti
ular Hubbard subband up to se
ond orderin t/U and one 
an write
H̃ = T0 + V +

1

U
[T+, T−] +O

(
t3

U2

)
. (1.17)Hamiltonian for the lowest Hubbard subband.� If one is interested in H̃des
ribing merely the lowest Hubbard subband in the 
ase n ≤ 1 (
alled H),one 
an skip T+T− and V terms in Eq. (1.17) and one arrives at

H = T0 −
1

U
T−T+ +O

(
t3

U2

)
. (1.18)One 
an now plug in the expli
it forms of T0, T+, and T− to obtain the expli
itform of H . This is done in the next se
tion. Note that due to the parti
le-holesymmetry a similar Hamiltonian as written above des
ribes the 
ase n > 1.1.3 The standard t�J HamiltonianExpli
it form.� After inserting Eqs. (1.3-1.4) into Eq. (1.18) one obtains theexpli
it form of the e�e
tive low-energy Hamiltonian for the lowest Hubbardsubband

H = − t
∑

〈ij〉,σ

{
(1 − niσ̄)c

†
iσcjσ(1 − njσ̄) + H.c.

}

− 1

4
J

∑

〈〈mij〉〉,σ,σ′

{
(1 − nmσ̄′ )c†mσ′ciσ′niσ̄′niσ̄c

†
iσcjσ(1 − njσ̄) + H.c.

}
,(1.19)where 〈〈mij〉〉 means the paths built of the three nearest neighbour sites. Herethe �rst term is responsible for hopping within the lowest Hubbard subbandwhile the se
ond term, whi
h arises from the virtual hoppings to the upperHubbard subband, is the so-
alled superex
hangeb term2 with the energy s
ale

J = 4t2/U .Equation (1.19) 
an be simpli�ed by repla
ing the ele
tron operators in thesuperex
hange term by the S = 1/2 spin operators:
Szi =

1

2
(ñi↑ − ñi↓),

S+
i =c̃†i↑c̃i↓,

S−
i =c̃†i↓c̃i↑, (1.20)where we de�ned the 
onstrained ele
tron operators
c̃†iσ = c†iσ(1 − niσ̄). (1.21)2Note that we use here the term `superex
hange' instead of the more proper `kineti
 ex-
hange' as typi
ally t is merely the e�e
tive hopping [33℄.15



Then one obtains the 2D version of the standard t�J Hamiltonian [1, 2, 3℄
H = −t

∑

〈ij〉,σ
(c̃†iσ c̃jσ + H.c.) + J

∑

〈ij〉

(
Si · Sj −

1

4
ñiñj

)
, (1.22)where ñi = c̃†i↑c̃i↑ + c̃†i↓c̃i↓ and we assumed that m = j in Eq. (1.19). The 1Dand 3D version of the standard t�J Hamiltonian follow in a natural way fromthe above equation.The kineti
 and superex
hange terms.� The �rst term ∝ t des
ribes thehopping of ele
trons in the 
onstrained Hilbert spa
e with no double o

upan
ies(i.e. the lowest Hubbard subband). Thus, it 
an be viewed as an e�e
tivehopping of holes as su
h a hopping of ele
trons is possible only if there is a holeat the site to whi
h the ele
tron hops. Note that the operators c̃†iσ do not ful�llthe fermioni
 
ommutation rules [32℄. Thus one 
annot treat these obje
ts asele
trons and e.g. one 
annot introdu
e the Fermi energy or momentum in this
ase. Therefore, even without the se
ond term (as obtained for U → ∞), Eq.(1.22) 
onstitutes a nontrivial problem.The se
ond term ∝ J des
ribes the intera
tion between the spins whi
h is ofthe AF 
hara
ter sin
e J > 0. The meaning of this term 
an be easily seen inthe half-�lled 
ase (n = 1) when Eq. (1.22) redu
es to the Heisenberg Hamilto-nian sin
e then there are no holes in the system and the kineti
 term does not
ontribute. Thus instead of having strongly 
orrelated ele
trons, see Eq. (1.1),one is left with intera
ting spin degrees of freedom as the 
harge degrees of free-dom are integrated out. This striking result means that the intera
tions are sostrong in this 
ase (due to U > W in the Hubbard model) that the ele
trons arelo
alized (
harge degrees of freedom are frozen) and only the virtual hoppingsof ele
trons (des
ribed by T+ and T− pro
esses) lead to a `residual' intera
tionbetween ele
tron spins. This is the physi
al explanation of the 
anoni
al per-turbation expansion. Note also, that naturally the dimensionality of the Hilbertspa
e is now redu
ed: e.g. in the half-�lled 
ase there are only spin degrees offreedom and the dimension of the Hilbert spa
e is 2N .The three-site terms.� The assumption m = j needs further explanation.It means that the ele
tron, whi
h is virtually ex
ited to the upper Hubbardsubband by T+ pro
ess, returns (by the T− pro
ess) to the same site fromwhere it was ex
ited in the lowest Hubbard band. Thus, one omits here the so-
alled three-site terms. These 
ontribute merely if there are holes in the lowestHubbard band sin
e the ele
tron ex
ited from site j in the lowest Hubbardsubband 
an return to a di�erent site m in the lowest Hubbard subband onlywhen there is a hole on site m (be
ause otherwise a double o

upan
y wouldbe 
reated whi
h is prohibited in the lowest Hubbard subband). Thus similarlyas the kineti
 term ∝ t in Eq. (1.22) the three-site terms will des
ribe thehopping of holes in the lowest Hubbard subband. However, unlike the kineti
term they s
ale as ∝ J . Thus, altogether the three-site terms 
ontribute to thetotal energy of the system as ∝ Jδ where δ is the number of holes in the system.If δ ≪ 1 (whi
h is the typi
al regime for the t�J model) and sin
e J < t (as

t ≪ U), then this 
ontribution to the total energy is very small. In parti
ular,it is mu
h smaller than both the 
ontribution of the kineti
 term ∝ tδ and thesuperex
hange term ∝ J(1 − δ)2.Appli
ation.� The appli
ation of the t�J model follows from two fa
ts: (i)as shown above, in the low energy but strongly 
orrelated regime, it des
ribes16



essentially the same physi
s as the widely used Hubbard model, (ii) it is mu
heasier to solve than the Hubbard model sin
e the dimensionality of its Hilbertspa
e is 
onsiderably redu
ed in 
omparison with the one of the Hubbard model.The latter property means that: (i) all the numeri
al 
al
ulations, su
h as theLan
zos or exa
t diagonalization te
hniques are more easily done, and (ii) thespins are mu
h easier to treat analyti
ally as the ground states of the spin modelsare typi
ally more 
lassi
al [33℄. Consequently there have been a tremendousnumber of papers on the t�J model, its solutions, and appli
ations. For furtherdetails we refer to the review arti
les of Ref. [28℄ or [20℄ or to Ref. [32℄ for themore `personal perspe
tive on the t�J model from the pioneering times'.
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Chapter 2Explaining 
harge order inSr14−xCaxCu24O41This 
hapter is based on the following publi
ations: (i) K. Wohlfeld, `Doped SpinLadder: Zhang-Ri
e Singlets or Rung-
entred Holes?', AIP Conferen
e Pro
eed-ings 918, 337-341 (2007); (ii) K. Wohlfeld, A. M. Ole±, G. A. Sawatzky, `Originof 
harge density wave in the 
oupled spin ladders of Sr14−xCaxCu24O41', Phys-i
al Review B 75, 180501(R)/1-4 (2007); (iii) K. Wohlfeld, A. M. Ole±, G. A.Sawatzky, `The t-J-V Model for Coupled Ladders', in preparation to be submittedto Physi
al Review B (Rapid Communi
ation).2.1 Introdu
tionCrystal stru
ture of Sr14−xCaxCu24O41.� The telephone number 
ompound, asSr14−xCaxCu24O41 is often 
alled due to its 
hemi
al formula whi
h resemblesa telephone number 14-24-41, is a layered material with two distin
tly di�er-ent types of 2D 
opper oxide planes separated by Sr/Ca atoms [4℄: (i) theplanes with almost de
oupled CuO2 
hains and (ii) the Cu2O3 planes formedby Cu2O5 
oupled ladders (see Fig. 2.1). Although in prin
iple there 
ouldbe some intera
tion between the ladder subsystem, the 
hain subsystem andthe Sr/Ca atoms1 we would assume that the ladder subsystem 
an be treatedindependently, i.e. the Hamiltonians for ea
h subsystem are independent onefrom another, ex
ept for the 
hemi
al potential whi
h should be determined to
onserve a parti
ular number of ele
trons in the whole 3D 
rystal (see below).Number of 
arriers in Sr14−xCaxCu24O41.� The 
ompli
ated 
hemi
al for-mula leads to the problems with determining the number of ele
trons present inthe system. Let us �rst 
on
entrate on the x = 0 
ase. A
tually, the ioni
 pi
-ture suggests that one has in the formula unit: 14 Sr2+ ions, 24 Cu2+ ions and41 O2− ions with all of these ions having �lled shells, ex
ept for 
opper (where1In parti
ular the substitution of strontium by 
al
ium yields stru
tural modulations inthe ladder subsystem, see Ref. [34℄. However, this modulation grows with 
al
ium doping xand 
annot explain the onset of 
harge order for small x and large x (while the 
harge orderis unstable for intermediate x), see dis
ussion below. Furthermore, the in�uen
e of the 
hainsubsystem on the ladder subsystem 
an be redu
ed to the 
hains being the 
harge reservoirfor the planes, see also Ref. [34℄. 19



Figure 2.1: Left panel: the 3D stru
ture of Sr14Cu24O41. Right panel:the Cu2O5 
oupled ladders whi
h form one of the two types of planes inSr14Cu24O41. The big yellow spheres depi
t 
opper atoms, the big red spheresstrontium atoms, the small blue spheres oxygen atoms. Both panels are repro-du
ed after Ref. [4℄.the 3d shell is naturally un�lled). Thus, one obtains from the ioni
 pi
ture thatthere is one hole per Cu2+ ion,2 similarly as in the CuO2 planes of La2CuO4[28℄.However, one sees that su
h ioni
 pi
ture 
onsiderations lead to the 6 extraholes present in the formula unit and the 
ompound is self-doped already at
x = 0. As the forumula unit 
onsists of 7 Cu2O3 units in the ladder plane,14 strontium atoms and 10 CuO2 units in the 
hain plane, a natural questionarises: how these 6 extra holes are distributed between the ladders and the
hains. A
tually, the answer to this question is nontrivial (see Refs. [35, 36,37℄ for various s
enarios) and it was only re
ently that the x-ray absorptionspe
tros
opy results suggested [9℄ that there are 2.8 extra holes in the formulaunit in the ladders (whi
h means that there are 0.2 holes per 
opper site) and3.2 extra holes in the formula unit in the 
hains (i.e. 0.32 holes per 
opper site).In what follows, we adopt the latter results as they seem to agree best withother experimental data for this system [9℄.Let us now turn to the x 6= 0 
ase. Here, the ioni
 pi
ture suggests thatagain there are 6 extra holes in the formula unit: this is be
ause 
al
ium is iso-valent with strontium. However, it has been suggested that introdu
ing 
al
iumleads to the gradual in
rease of the number of these extra holes in the laddersubsystem [9℄. Indeed the same x-ray absorption spe
tros
opy results as for the
x = 0 
ase [9℄ revealed that for the interesting 
ase (see below) of x = 4 thenumber of holes in the ladders is 3.4 (i.e. 
a. 0.24 per 
opper site) and 2.6 inthe 
hains (i.e. 
a. 0.26 per 
opper site) while for x = 11 the number of holes2Sin
e it is easier to talk about one hole per 
opper site than about 9 ele
trons per 
oppersite, we will use the hole language throughout this 
hapter.20



Figure 2.2: The intensity of the s
attering at the oxygen K `mobile 
arrierpeak' (528.6 eV, see Ref. [8℄ for detailed explanation) in the resonant soft x-ray s
attering for various values of 
al
ium doping x in Sr14−xCaxCu24O41 attemperature T = 20K. CDW is observed for x = 0 (with period λ = 5, depi
tedas LL = 1/5 on the �gure) and x = 11 (with period λ = 3, depi
ted as LL = 1/5on the �gure). A small intensity is also visible for x = 10 and even smaller for
x = 12 whi
h also 
orresponds to a (small) CDW with period λ = 3. For
0 < x < 6 no re�e
tions are observed and in parti
ular no CDW is seen at x = 4where nh = 1.24 would suggest a CDW with period λ = 4 (LL = 1/4) to bestable. The �gure is reprodu
ed after Ref. [8℄.in the ladders is 4.4 (i.e. 
a. 0.31 per 
opper site) and 1.6 in the 
hains (i.e. 
a.0.16 per 
opper site).Pe
uliar 
harge order in the ladder subsystem.�While the ladder subsystemexhibits the non-BCS super
ondu
ting phase for x = 13.6 under pressure largerthan 3 GPa [38℄, in broad range of x and under normal pressure a spin-gapedinsulating CDW states was dis
overed in the ladders [5, 6℄. By means of theresonant soft x-ray s
attering it was found [7℄ that this CDW state is drivenby many-body intera
tions (presumably just Coulomb on-site intera
tions sin
ethe long-range intera
tions are s
reened in 
opper oxides [39℄), and it 
annotbe explained by a 
onventional Peierls me
hanism. Hen
e, the observed 
om-petition between the CDW phase (also referred to as the `hole 
rystal' due toits ele
troni
 origin) and super
ondu
ting states in spin ladders resembles theone between stripes and the super
ondu
ting phase in CuO2 planes of a high-Tcsuper
ondu
tor [40℄. This is why the problem of the origin of the CDW phasein the ladder subsystem of Sr14−xCaxCu24O41 is both generi
 and of generalinterest.Furthermore, re
ently it was found [8℄ that the only stable CDW states inthe low temperature regime (T = 20K) are with period λ = 5 for x = 0, andwith period λ = 3 for x = 11 (and with a mu
h smaller intensity for x = 10and 12), see Fig. 2.2. Even more striking results show that su
h a CDW order
ould not be stable for 1 ≤ x ≤ 5, see also Fig. 2.2. These striking results,whi
h 
ontradi
t the previous suggestion [6℄ that the CDW order o

urs in the21



entire range of 0 ≤ x < 10, need to be explained by 
onsidering hole densityper 
opper site in
reasing with x. As written above x = 0 
ase with CDW statewith period λ = 5 
orresponds to nh = 1.20 (total number of holes per 
opperion) while the x = 11 
ase with CDW order with period λ = 3 
orresponds to
nh = 1.31. Interestingly, the x = 4 
ase (with no CDW phase) 
orresponds to
nh = 1.24, i.e. to the 
ase where the number of extra doped holes is very 
loseto 1/4 and where one 
ould intuitively expe
t a CDW state with period λ = 4.Main goals of the 
hapter.� The main aim of this 
hapter is to explaintheoreti
ally (at temperature T = 0K) the onset of the CDW order in thetelephone number 
ompound for only sele
ted values of x while using a modelwhi
h merely 
ontains on-site Coulomb intera
tions. In parti
ular the questionsto be answered in this 
hapter are: (i) what the proper t�J model for the 
oupledCu2O5 ladders, whi
h would arise due to the on-site Coulomb intera
tions, lookslike, and (ii) whether this model 
an explain the onset of the CDW phase withparti
ular periods for parti
ular values of x.Stru
ture of the 
hapter.� The 
hapter is organized as follows. In Se
.2.2 we start the analysis by looking at the anti
ipated features of the new t�Jmodel whi
h is derived in Se
. 2.3. Next, we solve the model for the threeinteresting hole dopings nh = 4/3, nh = 5/4 and nh = 6/5: (i) using theslave boson language we redu
e the model to the e�e
tive Hamiltonian withthe 
onstraints of `no double o

upan
ies' (always present in any t�J model)released � see Se
. 2.4.1, (ii) we introdu
e the mean-�eld approximation for thee�e
tive Hamiltonian � see Se
. 2.4.2 , (iii) we solve the mean-�eld equationson a �nite mesh of k points (Se
. 2.4.3). In Se
. 2.5 the results are dis
ussed,with a parti
ular emphasis on the approximations made in obtaining the 
orre
t
t�J model. Finally, we draw some 
on
lusions in Se
. 2.6 and add a pe
uliarexample of a toy-model for 
oupled 
hains in whi
h the even-period CDW 
anbe
ome unstable in the Posts
riptum in Se
. 2.7.2.2 The t�J model for 
oupled ladders`Rough' predi
tions of the new t�J model.� Let us �rst look at the anti
ipatedfeatures of the new t�J model without going deeply into mathemati
al details(su
h 
al
ulations will be performed in the next se
tion). A
tually, the biggestproblem with deriving su
h a model is that the Cu2O5 
oupled ladders belongto a 
lass of 
opper oxides whi
h are 
lassi�ed as 
harge transfer systems [41℄.On the one hand, in these systems the Hubbard repulsion U between holes inthe 3d orbitals on the 
opper sites is still the largest energy s
ale in the systemand it is mu
h bigger than the largest hopping tpd between the 
opper 3dx2−y2and the oxygen 2pσ orbitals [39℄. On the other hand, the on-site energies ∆ forthe holes in the oxygen 2pσ orbitals are smaller than the Hubbard repulsion Uon the 
opper sites [39℄. Therefore, when the number of holes is bigger than oneper one 
opper ion, some holes tend to o

upy oxygen sites. Thus, unlike in theMott-Hubbard system, here the oxygen atoms 
annot be easily integrated outand the Hubbard model (
alled then the 
harge transfer model [42, 43℄) shouldnot only 
ontain orbitals on the 
opper sites but also the ones on the oxygensites [41℄. Nevertheless, Zhang and Ri
e [26℄ showed that for the CuO2 planeit is still possible to integrate out the oxygen atoms and the t�J model, whi
hresults from su
h an itinerant model, is 
apable of des
ribing the low energy22



Figure 2.3: The artist's view of the CDW with period λ = 4 for a single ladder asobtained from the density matrix renormalization group 
al
ulations for the t�Jmodel on a single ladder with J = 0.25t [10℄. Bla
k �lled 
ir
les depi
t a 
oppersite o

upied by a hole, un�lled 
ir
les depi
t a 
opper site with the Zhang-Ri
esinglet 
entred around it, i.e. where the extra hole (situated symmetri
ally onthe four oxygen sites surrounding the 
opper site) formed a singlet state withthe hole on the 
opper site. In this way number of holes nh = 1.25 in the Cu2O5single ladder 
orresponds to the n = 0.75 �lling (number of spins per site) inthe t�J model on the two-leg ladder. The �gure is reprodu
ed after Ref. [10℄.physi
s of 
harge transfer systems. Note however, that the meaning of J is thendi�erent and J 6= 4t2/U .Although the above mentioned redu
tion of the 
harge transfer model tothe standard t�J model is done for the CuO2 plane [26℄, a similar derivationshould in prin
iple be possible for a single Cu2O5 ladder. The di�eren
e wouldbe that in this 
ase one will be left with a t�J model de�ned on a two-leg ladderbut otherwise the t�J model would be exa
tly the same as the standard one,known from Chapter 1. Indeed, it is widely believed [11, 44℄ that a two-legladder des
ribed by the t�J model 
aptures the essential physi
al properties ofthe plane with Cu2O5 ladders in Sr14−xCaxCu24O41. Furthermore su
h a modelhas been extensively studied (see e.g. Refs. [45, 46, 47, 48, 49℄): in parti
ularWhite et al. [10℄ found using the density matrix renormalization group, that aCDW of period λ = 4 is the (possibly spin gaped) ground state at nh = 1.25(n = 0.75 �lling in the t�J model, see 
aption of Fig. 2.3 and dis
ussion in theend of Se
. 2.3.3 for further details). Besides, only re
ently it was shown inRef. [11℄ that a CDW is possible for su
h a model merely for number of holes
nh = 1.25 (n = 0.75) and nh = 1.5 (n = 0.5).Reason for wrong predi
tions.� However, one immediately sees that theabove results are totally in
ompatible with the experimental ones des
ribed inSe
. 2.1: there the CDW was stable in the Cu2O5 ladders in Sr14−xCaxCu24O41for nh = 1.31 (x = 11) and nh = 1.2 (x = 0) whereas it was not stable for
nh = 1.24 (x = 4), i.e. around the only point (apart from nh = 1.5) wherethe density matrix renormalization group predi
ted the CDW to be stable. Onemay thus wonder what may be wrong with the above t�J model? A
tually,it is easy to see that the validity of the t�J model for the plane with Cu2O5ladders is far from obvious due to the spe
i�
 geometry. In parti
ular: (i)unlike the CuO2 plane of a high-Tc super
ondu
tor, a single Cu2O5 ladderla
ks the D4h symmetry whi
h makes the Zhang-Ri
e derivation [26℄ of the
t�J model questionable and (ii) Cu2O5 spin ladders are 
oupled through theon-site Coulomb intera
tions between holes in di�erent O(2p) orbitals, so newintera
tions 
ould arise.More 
areful approa
h needed.� Thus, instead of taking the t�J model for23



`granted', i.e. assuming that the derivation of the t�J model from the 
hargetransfer model valid for the CuO2 would work also for the 
oupled Cu2O5 laddersand would give a t�J model on the two-leg ladder, one should follow the Zhangand Ri
e s
heme [26℄ step-by-step in the 
ase of this spe
i�
 ladder geometry.More pre
isely, one should take the 
harge transfer model for 
opper oxide planes[42, 43℄, adopt it to the 
oupled Cu2O5 ladders, and then following the Zhangand Ri
e s
heme [26℄ derive the proper t�J model. We present su
h a derivationin the next se
tion.2.3 The model2.3.1 The t�J�V1�V2 HamiltonianThe Hubbard-type model.� As the starting point we 
hoose the Hubbard-typemodel relevant for the 
harge transfer systems (and thus 
alled also 
hargetransfer model [41℄). It follows from the multiband 
harge transfer Hamiltonian[41℄ and is adapted to the Cu2O5 
oupled ladder geometry, similarly as theone introdu
ed earlier for CuO2 planes [42℄ or CuO3 
hains [50℄, the stru
turalunits of high-Tc super
ondu
tors. As parameters the 
harge transfer modelin
ludes: the energy for oxygen 2p orbital ∆ (measured with respe
t to theenergy for the 3d orbital), the d-p hopping tpd between the nearest neighbour
opper and oxygen sites, and the on-site Coulomb repulsionU (Up) on the 
opper(oxygen) sites, respe
tively. Note that the 
harge transfer regime naturally leadsto ∆ < U sin
e otherwise the oxygen atoms 
ould be easily integrated out.Indeed, the typi
al parameters are U ∼ 8tpd, ∆ ∼ 3tpd, and Up ∼ 3tpd, see e.g.Ref. [51℄. Then the model in hole notation reads,
H = −tpd

{∑

iσ

(
− d†iLσxiLσ + d†iRσxiRσ + d†iLσbiσ − d†iRσbiσ + H.
.)

+
∑

iασ

(
d†iασyiασ − d†i+1,ασyiασ + H.
.)}

+∆
{∑

iα

(
niαx + niαy

)
+ ε

∑

i

nib

}

+Up

{∑

iα

(
niαx↑niαx↓ + niαy↑niαy↓

)
+

∑

i

nib↑nib↓
}

+Up

{
(1 − 2η)

∑

iασ

(
niαxσn̄iᾱyσ̄ + niαyσn̄iᾱxσ̄

)

+ (1 − 3η)
∑

iασ

(
niαxσn̄iᾱyσ + niαyσn̄iᾱxσ

)}

+U
∑

iα

niαd↑niαd↓, (2.1)where the phases of the orbitals were expli
itly taken into a

ount in the hoppingelements, the index α ∈ {R,L} denotes the right or left leg of the ladder (R̄ = Land L̄ = R), and σ̄ = −σ for σ ∈ {↑, ↓}. The parameter η = JH/Up ∼ 0.2 standsfor a realisti
 value of Hund's ex
hange on oxygen ions (Up is the intraorbitalrepulsion) [39℄. Besides, ε ∼ 0.9 yields the 
orre
t orbital energy (ε∆) at bridgepositions on the rung of the ladder [52℄ but, unless expli
itly stated di�erently,24
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xx bFigure 2.4: Three 
oupled Cu2O5 ladders. Only orbitals whi
h are in
luded inthe model Eq. (2.1) are shown, see text. The dotted line depi
ts the unit 
ellof the single ladder under 
onsideration; it 
onsists of seven orbitals.we will assume that ε = 1 for simpli
ity (see also Se
. 2.5.3 for a detaileddis
ussion on this issue). The model of Eq. (2.1) in
ludes seven orbitals perCu2O5 ladder unit 
ell (see Fig. 2.4): two Cu(3dx2−y2 ≡ d) orbitals on the R/Lleg, two O(2py ≡ y) orbitals on the R/L leg, two O(2px ≡ x) side orbitals onthe R/L leg, and one O(2px ≡ b) bridge orbital on the rung of the ladder.Spatial dimension of the Hubbard-type model.� It should be emphasized thatthe terms in the �fth and sixth line of Eq. (2.1) a

ount for interladder inter-a
tion � the holes within two di�erent orbitals on a given oxygen ion in a legbelong to two neighbouring ladders (shown as white/grey orbitals in Fig. 2.4),and are des
ribed by 
harge operators niαx(y)σ with/without bar sign in Eq.(2.1). Thus, in prin
iple one should de�ne two other Hamiltonians H whi
h de-s
ribe the two neighbouring ladders and from whi
h one 
an determine ñiαx(y)σ.Then, these two Hamiltonians will be again 
oupled to two Hamiltonians andso on. In what follows, we will impli
itly assume that su
h Hamiltonians areindeed de�ned and when needed we will use this feature to solve the 
oupledladder problem. Obviously, su
h a notation is not very elegant. An alternatives
enario would be to de�ne a single Hamiltonian for all the ladders in the plane� however, this would 
ompli
ate the notation even more and, in my opinion,would not make the physi
s more transparent.Central Hamiltonian of the 
hapter.� Applying the Zhang-Ri
e pro
edure[26℄ adopted to the geometry of 
oupled ladders and �nite value of the intera
-tion Up we obtain the following t�J model with intraladder intera
tion V1 andinterladder intera
tion V2 (therefore 
alled also t�J�V1�V2 Hamiltonian):
H = Ht +HJ +HV1

+HV2
. (2.2)Here Ht stands for the kineti
 term [see Eq. (2.13) in Se
. 2.3.3℄, HJ is thesuperex
hange term [see Eq. (2.5) in Se
. 2.3.2℄, while HV1

and HV2
are theintraladder and interladder terms, respe
tively [see Eq. (2.29) in Se
. 2.3.4 and25



Eq. (2.39) in Se
. 2.3.5℄.Note that, during the pro
edure suggested by Zhang and Ri
e not only theHamiltonian 
hanges but also the form and number of 
arriers 
hanges as theform of the Hilbert spa
e is 
hanged drasti
ally [26℄. Whereas in the 
hargetransfer model we denote by nh the number of holes per 
opper site, in the
t�J�V1�V2 model the �lling (number of spins per site) is n = 2 − nh, see alsodis
ussion in the end of Se
. 2.3.3.2.3.2 The superex
hange termSingle ladder in the undoped 
ase.� In the so-
alled half-�lled 
ase (i.e. whenthere is just one hole per 
opper site) and in the 
harge transfer regime (seeabove), the 
harge transfer model (2.1) 
an be easily redu
ed to the Heisenbergmodel using the perturbation theory to fourth order in tpd [53℄.3 This is be
ause,when tpd = 0 the holes are lo
alized on the 
opper sites, while for small tpd in
omparison with the other energy s
ales in the in the 
harge transfer systemthe holes perform merely virtual ex
itations whi
h involve the doubly o

upied
opper or oxygen site. Thus, the 
harge degrees are frozen and one is left merelywith spin degrees of freedom, somewhat similarly as in the half-�lled 
ase of theHubbard model of Chapter 1. One obtains [53℄:

HJ(nh = 1) = J
∑

iα

(
Siα · Si+1,α − 1

4

)
+ J

∑

i

(
SiR · SiL − 1

4

)
, (2.3)where the superex
hange 
onstant for �nite Up 
ase [53℄ is

J =
4t4pd
∆2

( 1

U
+

2

2∆ + Up

)
. (2.4)Spe
i�
 geometry of 
oupled ladders.� The reader may wonder, whether thegeometry of 
oupled ladders 
ould in�uen
e the above result. Indeed, there ex-ists a 900 superex
hange pro
ess between the holes on two neighbouring ladderswhi
h involves ñiαx(y)σ operators. However, a

ording to the Goodenough-Kanamori-Anderson rules [54, 55, 56℄ su
h a superex
hange pro
ess [whi
h isferromagneti
 (FM) in 
ontrast to the above AF intera
tion℄ is mu
h weakerthan the superex
hange along the 1800 path in the single ladder and 
an benegle
ted. Thus, Eq. (2.3) should also be valid for 
oupled ladders.Coupled ladder in the doped 
ase.� Although when the system is not half-�lled there are other pro
esses whi
h 
ontribute to the low energy t�J Hamilto-nian (see below), the above result 
an be extended to the doped 
ase. A
tually, ifthere is no hole on one of the sites forming a bond between the 
opper sites, thenthe superex
hange pro
ess does not o

ur. One 
an easily 
he
k that Eq. (2.3)for this parti
ular bond does not 
ontribute to the t�J Hamiltonian providedone 
hanges it into:

HJ = J
∑

iα

(
Siα · Si+1,α − 1

4
ñiαdñi+1,αd

)
+ J

∑

i

(
SiR · SiL − 1

4
ñiRdñiLd

)
.(2.5)3Note that in the half-�lled 
ase there is no need to perform the 
anoni
al perturbationexpansion of Chapter 1 as there are no hopping pro
esses within the lowest Hubbard subband.26



symmetri
 (|Piασ〉) antisymmetri
 single oxygensinglet −8(t1 + t2) + 2t3 −4t1 + 2t3 −2(t1 + t2) + 2t3triplet 0 −4t1 0Table 2.1: Binding energy of the singlet and triplet state formed by the the holeon the 
opper site and the extra doped hole in one of the three various oxygenstates: (i) symmetri
 plaquette |Piασ〉 state, (ii) antisymmetri
 plaquette statewith a similar 
ombination of oxygen orbitals as in |Piασ〉 but with the samesigns before ea
h oxygen orbital, and (iii) single oxygen orbital state. Here
t1 = t2pd/∆ ∼ tpd/3, t2 = t2pd/(U − ∆) ∼ tpd/5, t3 = t2pdUp/(∆

2 + Up∆) ∼ tpd/6where the estimations follow from the typi
al 
harge transfer parameters [51℄.Here tilde above the number operator denotes the fa
t that the double o

u-pan
ies on the 
opper sites are prohibited in the low energy limit of the 
hargetransfer system.2.3.3 The kineti
 energy termFinite 
ontribution only for doped 
ase.� As des
ribed above, in the half-�lled
ase the holes lo
alize on the 
opper sites with the 
harge degrees of freedomentirely gone and one is left with the Heisenberg Hamiltonian for the spins.Thus, there is no kineti
 term at all in the half-�lled 
ase and it 
ould only
ontribute in the doped 
ase due to the restri
ted hopping.Zhang-Ri
e s
heme needed.� In the doped 
ase a signi�
ant problem arises:where the extra hole doped into the half-�lled system goes. A
tually, if tpd = 0,then the hole will for sure lo
alize at one of the oxygen sites as the on-site energy
∆ is smaller than the repulsion between two holes at the same 
opper site U .Therefore, in this regime one 
annot integrate out the oxygen sites. It may beexpe
ted that su
h states will dominate also for �nite tpd.A
tually, for �nite tpd in the CuO2 plane, it o

urs that the hole also tendsto lo
alize on oxygen sites but forms a pe
uliar bound state with the nearby holeon the 
opper site � the so-
alled Zhang-Ri
e singlet [26℄. We now 
onstru
tsu
h a state step-by-step for the 
oupled ladder 
ase (again starting with thesingle ladder and only later on dis
ussing the 
oupled ladder problem), see Fig.2.5 for an artist's view of the result obtained in this se
tion.Nonorthogonal Zhang-Ri
e singlets.� First, it is evident that pla
ing a holeon the oxygen site and aligning its spin in the AF-way with respe
t to the spinof the hole on the 
opper site, one 
an gain some energy due to the virtualhopping pro
esses by small but �nite tpd (in the ferromagneti
 
ase su
h 
hargeex
itations are not allowed due to Pauli prin
iple). Se
ond, however, one 
angain even more binding energy if one uses the possibility of forming a phase
oherent state out of the four oxygen orbitals surrounding the 
opper. Morepre
isely it o

urs that the singlet state formed by a hole on the 
opper site anda hole in one of the following symmetri
 plaquette state (di�erent for the leftand right leg of the ladder):

|PiLσ〉 =
1

2
(x†iLσ − b†iσ + y†i−1,Lσ − y†iLσ)|0〉, (2.6)27



Figure 2.5: The artist's view of the Zhang-Ri
e singlet formation in the singleladder (the state depi
ted by a dotted ring). Large (small) arrows depi
t thehole spins for +1.0 (+0.25) 
harge. The red arrows stand for spins of dopedholes while the blue arrows show the spins in the undoped 
ase.or
|PiRσ〉 =

1

2
(−x†iRσ + b†iσ + y†i−1,Rσ − y†iRσ)|0〉, (2.7)has a binding energy of −8(t1 + t2) + 2t3. A
tually, this binding energy is notonly negative and huge in 
omparison with the e�e
tive hopping (whi
h is ofthe order of t1 or t2 [26℄) but it is also mu
h bigger than the binding energyof some other possible bound states formed by a hole on the 
opper site andoxygen site, see Table 2.1. It may be veri�ed that �nite Up, not 
onsidered inthe Zhang and Ri
e paper [26℄, whi
h results in �nite t3 term (see Table 2.1)does not 
hange qualitatively the large binding energy of a symmetri
 singletstate.At this stage one 
an already imagine that all of the doped holes (if theirnumber is smaller than the number of 
opper sites) should be able to form su
hsymmetri
 singlet states in the 
harge transfer systems and it would be possibleto integrate out oxygen sites entirely. Although this 
onje
ture will turn out tobe true, it 
annot be done so easily. A qui
k look at Eqs. (2.6-2.7) reveals thatthe above symmetri
 singlet states are nonorthogonal (they 
ould be 
alled thenonorthogonal Zhang-Ri
e singlets) as the neighbouring states share 
ommonoxygen orbitals.Orthogonalized Zhang-Ri
e singlets.� The task is now to make the states de-�ned in Eqs. (2.6-2.7) orthogonal. This is done by the following transformationin the single ladder 
ase:

|φlLσ〉 =
1

N

∑

jk

eikle−ikj(αk|PjLσ〉 + βk|PjRσ〉), (2.8)and
|φlRσ〉 =

1

N

∑

jk

eikle−ikj(βk|PjLσ〉 + αk|PjRσ〉), (2.9)28



where
αk =

1√
1 − 1

2 cos k − 1
4

+
1√

1 − 1
2 cos k + 1

4

, (2.10)and
βk =

1√
1 − 1

2 cos k − 1
4

− 1√
1 − 1

2 cos k + 1
4

. (2.11)One 
an 
he
k that the `extended' symmetri
 states |φiασ〉 are indeed orthogo-nal.Let us note that it is at this point that the equations are truely distin
t herethan the ones 
onsidered by Zhang and Ri
e in Ref. [26℄: there it was only shownhow to `orthogonalize' symmetri
 states for the 2D 
ase. While that pro
edure
ould have been easily generalized (or one should rather say `redu
ed') to the 1D
ase, the ladder 
ase required a more 
areful 
onsideration. A
tually the easiestway to obtain equations for αk and βk is to derive them �rst for merely a singlerung of the ladder. In that 
ase one 
an easily 
he
k αk = 1/
√

3 + 1/
√

5 while
βk = 1/

√
3 − 1/

√
5. Then one 
an generalize this result to the whole ladder.Finally one 
an expli
itly de�ne the Zhang-Ri
e singlets as

|ψiα〉 =
1√
2
|φiα↑diα↓ − φiα↓diα↑〉, (2.12)see also Fig. 2.5 for an artist's view of this state. In prin
iple, one shouldalso 
he
k how the binding energy 
hanges when the Zhang-Ri
e singlets areorthogonalized. It was shown in Ref. [26℄ that the energy splitting 
hangesonly slightly when the singlets are orthogonalized. Obviously, the results inRef. [26℄ are valid only for the 2D 
ase. Fortunately, a similar result 
an beeasily obtained for the 1D 
ase. A
tually, the energy splitting between theorthogonalized Zhang-Ri
e singlets and triplets 
an be de�ned as 16χ2t1 (forthe simpli�ed 
ase t1 = t2 and t3 = 0) [26℄. Then the 
ru
ial 
onstant χ is very
lose to one � both in the 1D (χ = 0.98) and in the 2D 
ase (χ = 0.96) [26℄.One 
an safely argue that χ for the ladders takes some value in between 0.96and 0.98 as there is no physi
al reason that the orthogonalization pro
edure forthe ladders would lead to totally di�erent behaviour than for the 1D 
hains or2D 
ase (despite the form whi
h is slightly more 
ompli
ated in the ladder 
ase).Thus, the orthogonalized Zhang-Ri
e singlets have a huge binding energy alsofor the ladder. In what follows, we will refer to Zhang-Ri
e singlets having inmind merely their orthogonal version.Kineti
 term for single ladder.� Having shown that the Zhang-Ri
e singletsin the single ladder do not di�er mu
h from those in the 2D 
ase, we 
an nowsafely assume that one 
an apply to the ladder 
ase all the arguments used inRef. [26℄ to derive the e�e
tive hopping of Zhang-Ri
e singlets due to �nite tpd.Thus, we obtain,

Ht = − t
∑

iασ

(
d̃†iασ d̃i+1,ασ + H.c.

)
− t

∑

iσ

(
d̃†iRσ d̃iLσ + H.c.

)
, (2.13)where again d̃iασ = diασ(1 − niασ̄) is the restri
ted fermion operator and asbefore diασ 
reates a hole in the 
opper site iα. This follows from the e�e
tivehopping of Zhang-Ri
e singlets t by a hole-parti
le transformation. While we29



do not show her the detailed expression for the e�e
tive hopping of Zhang-Ri
esinglets t, note that it is 
onsiderably smaller than tpd (
a. 30%). Note also thathaving two Zhang-Ri
e singlets on the same site 
osts energy 4t2 +2t1 (see Ref.[26℄) and therefore we used the tilde operators above to prevent from havingtwo Zhang-Ri
e singlets on the same site.Extension to 
oupled ladders.� Sin
e the interoxygen hopping tpp′ < tpd [39℄in 
opper oxide systems, there is no possibility of hopping between the ladders.Thus, the above result will also be valid for 
oupled ladders provided the Zhang-Ri
e singlets 
an be 
onstru
ted in that 
ase. This is indeed the 
ase, however itis somewhat subtle and we refer the reader to the next se
tion for more details.Number of 
arriers in the t�J�V1�V2 model.� Due to the Zhang-Ri
e pro-
edure not only the nature of 
arriers but also their number is 
hanged in thee�e
tive t�J�V1�V2 model. Sin
e the number of extra holes whi
h o

upy theoxygen sites and form the Zhang-Ri
e singlets is equal to nh− 1 per 
opper site(where nh is the number of holes per 
opper site), there are ne = nh − 1 persite empty states in the e�e
tive t�J�V1�V2 model. This means, that the �lling
n in the t�J�V1�V2 model (i.e. the number of spins) is n = 1− ne = 2− nh persite.2.3.4 The intraladder repulsive term V1Finite Up and the intera
tion between Zhang-Ri
e singlets in 2D 
ase.� Inthe original Zhang and Ri
e paper [26℄ the intera
tion on oxygen sites Up wasentirely negle
ted. Here, we have already stated its rather minor role in thestability of the Zhang-Ri
e singlets (see e.g. Table 2.1 where t3 is �nite for�nite Up as well as dis
ussion in Se
. 2.3.3). However, this is not the full story[57, 58, 59℄. A
tually, due to the �nite Up the two nonorthogonal Zhang-Ri
esinglets repel if they are situated on the nearest neighbour site. This is be
ausethese two nonorthogonal Zhang-Ri
e singlets share a 
ommon oxygen site andthe two holes situated on this oxygen site and belonging to two neighbouringnonorthogonal Zhang-Ri
e singlets repel.Obviously, this intera
tion is quite redu
ed as there is just 25% proba-bility to �nd a hole forming a nonorthogonal Zhang-Ri
e state on the par-ti
ular oxygen site (whi
h is shared with the neighbouring Zhang-Ri
e sin-glet). Indeed detailed 
al
ulations for the orthogonal Zhang-Ri
e singlets, per-formed in Refs. [58, 59℄, showed that this repulsion is of the order of 0.029Up(while the not-
onsidered-here �nite intersite Coulomb repulsion Vpd betweenholes on oxygen sites and 
opper sites even further redu
es this value [57℄).Thus, the orthogonalization pro
edure redu
es its value from the estimated
1/2(1/4 × 1/4 + 1/4 × 1/4) = 1/32 ∼ 0.031 (the fa
tor 1/2 before the equa-tion originates from the Pauli prin
iple) for nonorthogonal Zhang-Ri
e singlets.Therefore, one usually negle
ts the e�e
tive repulsion between holes in the t�Jmodel as it will be at maximum of the order of 0.2t (for parameters from [39℄where Up = 4.18 eV is rather large) while typi
ally J ∼ 0.4t in 
opper oxides[23℄.Intraladder and interladder repulsion.� In the 
oupled ladder geometry,however, the situation 
hanges drasti
ally. Although, within ea
h single ladderthe repulsion is somewhat similar as in the 2D 
ase (this will be 
alled theintraladder repulsion, see Fig. 2.6), a distin
t situation o

urs for the 
oupledladder. Here, there is a mu
h stronger repulsion between nearest neighbour30



Figure 2.6: The artist's view of the intraladder repulsion between two nearestneighbour Zhang-Ri
e singlets. See Fig. 2.5 for further explanation of thesymbols used here.Zhang-Ri
e singlets on neighbouring ladders. This is be
ause, su
h Zhang-Ri
esinglets share not one but two oxygen sites, see Fig. 2.7 in the next se
tion.Thus, the interladder repulsion between Zhang-Ri
e singlets should naively befour times4 as big as the intraladder repulsion and therefore it 
an happen thatit 
ould be of the order of J .Cal
ulation of the intraladder repulsion.� Whereas the signi�
an
e of theinterladder repulsion is dis
ussed in the next se
tion, let us now 
on
entrate onthe repulsion between the Zhang-Ri
e singlets within a single ladder (see Fig.2.6 for the artist's view of the problem). Thus, the task is to 
al
ulate repulsionbetween orthogonalized Zhang-Ri
e singlets within the ladder due to the on-siteintera
tion Up:
H′ = Up

{∑

iα

(
niαx↑niαx↓ + niαy↑niαy↓

)
+

∑

i

nib↑nib↓
}
. (2.14)Thus, one needs to 
al
ulate the following matrix elements:

〈ψsα, ψrα|H′|ψhα, ψjα〉, 〈ψsα, ψrᾱ|H′|ψhᾱ, ψjα〉. (2.15)Let us note that the mixed terms su
h as for example (RL,LL) give zero inthe Zhang-Ri
e singlet basis � they 
ould a priori lead to the destru
tion ofthe Zhang-Ri
e singlets but fortunately are mu
h smaller than the respe
tivebinding energy.Intraladder repulsion along the leg.� First, we 
al
ulate the matrix elements4This is be
ause here both the holes with the same and opposite spins 
an repel: 1/4 ×
1/4 + 1/4/4 = 1/8. However, this fa
tor will multiply smaller on-site repulsion, with respe
tto the intraladder 
ase, due to Hund's ex
hange and altogether it will turn out that for η = 0.2[39℄ the interladder repulsion is roughly twi
e stronger than the intraladder repulsion.31



of H′ between the orthogonal plaquette states Eqs. (2.8-2.9) along the leg:
〈φsασ , φrασ̄|H′|φhασ̄, φjασ〉 =

1

16
Up

1

N3

∑

kqf

eik(h−r)eiq(j−s)eif(r−s)

{ 1

16

(
αkαq + βkβq − αkβq − βkαq

)

(
αq−fαk+f + βq−fβk+f − αq−fβk+f − βq−fαk+f

)

+
(

sin
k

2
sin

q

2
sin

q − f

2
sin

k + f

2
+

1

16

)

(
αkαqαq−fαk+f + βkβqβq−fβk+f

)}
, (2.16)and

〈φsασ , φrασ̄|H′|φhασ, φjασ̄〉 = −〈φsασ , φrασ̄|H′|φhασ̄, φjασ〉, (2.17)and
〈φsασ, φrασ|H′|φhασ, φjασ〉 = 0. (2.18)One 
an evaluate numeri
ally the above expressions. It o

urs that the largestpositive element is the nearest neighbour intera
tion

〈φjασ , φj+1,ασ̄ |H′|φj+1,ασ̄ , φjασ〉 = 0.0544Up, (2.19)while following Eq. (2.18) the absolute value of the largest negative element,whi
h 
orresponds to spin-�ip nearest neighbour intera
tion, is the same. Fur-thermore, the se
ond largest element is the next nearest neighbour intera
tionand is over 20 times smaller, whi
h means that it 
an be easily negle
ted.Se
ond, we 
al
ulate the matrix elements of H′ between the nearest neigh-bour Zhang-Ri
e singlets. This introdu
es a fa
tor 1/2 to the above estimationsof the repulsion between orthogonal plaquette states: It is be
ause there isa 50% probability to have opposite spins on a parti
ular shared oxygen siteo

upied by two holes from two di�erent Zhang-Ri
e singlets. Note that thespin-�ip-plaquette terms do not give any 
ontribution to the repulsion betweenZhang-Ri
e singlets, although they 
ould in prin
iple destabilize the Zhang-Ri
estates themselves. Fortunately, this is not possible sin
e the binding energy ofthe Zhang-Ri
e singlets is mu
h larger. Thus altogether, we obtain
〈ψjα, ψj+1,α|H′|ψj+1,α, ψjα〉 = 0.0272Up. (2.20)Intraladder repulsion along the rung.� Following a similar s
heme, we 
al-
ulate the repulsion between Zhang-Ri
e singlets on di�erent legs. We obtainfor the matrix elements of H′ between the orthogonal plaquette states Eqs.32



(2.8-2.9) on di�erent legs
〈φsασ , φrᾱσ̄|H′|φhᾱσ̄, φjασ〉 =

1

16
Up

1

N3

∑

kqf

eik(h−r)eiq(j−s)eif(r−s)

{ 1

16

(
αkβq + βkαq − αkαq − βkβq

)

(
αq−fβk+f + βq−fαk+f − αq−fαk+f − βq−fβk+f

)

+
(

sin
k

2
sin

q

2
sin

q − f

2
sin

k + f

2
+

1

16

)

(
αkβqαq−fβk+f + βkαqβq−fαk+f

)}
, (2.21)and

〈φsασ , φrᾱσ̄|H′|φhᾱσ, φjασ̄〉 = −〈φsασ , φrᾱσ̄|H′|φhᾱσ̄, φjασ〉, (2.22)and
〈φsασ , φrᾱσ|H′|φhᾱσ, φjασ〉 = 0. (2.23)Evaluating numeri
ally the above expressions one obtains that the largest el-ement is the nearest neighbour repulsion � this time between the orthogonalplaquette states on the same rung:

〈φjασ , φj,ᾱσ̄|H′|φj,ᾱσ̄, φjασ〉 = 0.0529Up, (2.24)while the se
ond largest element (the next nearest neighbour intera
tion) but isvery small (over 15 times smaller) and 
an be negle
ted.Finally, following the same steps we obtain the repulsion between the nearestneighbour Zhang-Ri
e singlets whi
h is twi
e redu
ed:
〈ψjα, ψj,ᾱ|H′|ψj,ᾱ, ψjα〉 = 0.0265Up. (2.25)Intraladder repulsion between Zhang-Ri
e singlets.� Hen
e, one 
an notethat the intera
tion among the nearest neighbour Zhang-Ri
e singlets is almostisotropi
. Thus, one 
an write the e�e
tive Hamiltonian for the repulsion be-tween Zhang-Ri
e singlets (
ompare Fig. 2.6)

HV1
= V1

(∑

iα

nψiα
nψi+1,α

+
∑

i

nψiR
nψiL

)
, (2.26)where nψiα

= |ψiα〉〈ψiα| and
V1 ∼ 0.027Up. (2.27)Thus the 
onstant before Up is 
a. 14% smaller than the nonorthogonal value

1/32 = 0.03125. Note the trend of the renormalization fa
tors: 0.023, 0.025,
0.027, 0.029 for single rung, 1D 
ase, ladder, and 2D 
ase, respe
tively (
al
ula-tions are not shown; for 2D 
ase a similar result was obtained in Ref. [58, 59℄).This trend originates from the fa
t that in lower dimensions the 
harge es
apesmore from the main orbitals (b or y) responsible for the intera
tion (and the
ontribution to the intera
tion due to the other orbitals is very small). In 2D it33



Figure 2.7: The artist's view of the interladder repulsion between two nearestneighbour Zhang-Ri
e singlets on two di�erent ladders. See Fig. 2.5 for furtherexplanation of the symbols used here.does not es
ape in this way as all of the orbitals su�er from the orthogonalityproblem.Intraladder repulsion in terms of 
opper holes.� Sin
e Zhang-Ri
e singletsare `parti
le-hole 
ousins' of 
opper holes (i.e. Zhang-Ri
e singlets 
orrespondto empty sites on 
opper) one has
nψjα

= (1 − ñjαd), (2.28)where everything happens in the 
onstrained Hilbert spa
e with no double o
-
upan
ies on 
opper holes. Substituting this equation and shifting the 
hemi
alpotential one obtains the intraladder repulsion between 
opper holes
HV1

= V1

(∑

iα

ñiαdñi+1,αd +
∑

i

ñiRdñiLd

)
, (2.29)where V1 de�ned as in Eq. (2.27).2.3.5 The interladder repulsive term V2Cal
ulation of interladder repulsion.� Finally, the task is to 
al
ulate the re-pulsion between two Zhang-Ri
e singlets sitting next to ea
h other (and thussharing the same oxygen sites but not the p orbitals, see Fig. 2.7) due to theon-site repulsion on oxygen sites. However, again we will 
al
ulate the repul-sion between arbitrarily lo
ated Zhang-Ri
e singlets and only then we will showwhi
h elements are negligible. Note that the plaquette states on two ladders areorthogonal to ea
h other although they still have to be orthogonalized for thesame ladder (as before).Expli
itly one needs to 
al
ulate the following matrix elements:

〈ψsα, ψ̄r+ 1
2
,ᾱ|H′′|ψ̄h+ 1

2
,ᾱ, ψjα〉, (2.30)and

〈ψsα, ψ̄r+ 1
2
,α|H′′|ψ̄h+ 1

2
,α, ψjα〉, (2.31)34



where
H′′ = Up

{
(1 − 2η)

∑

iασ

(
niαxσn̄iᾱyσ̄ + niαyσn̄iᾱxσ̄

)
+

(1 − 3η)
∑

iασ

(
niαxσn̄iᾱyσ + niαyσn̄iᾱxσ

)}
. (2.32)Note that we introdu
ed here a bar sign over the Zhang-Ri
e singlet states todenote the Zhang-Ri
e singlets formed on a di�erent ladder than the one under
onsideration. Besides, sin
e the other ladder is misaligned by a latti
e 
onstant

1/2 with respe
t to the ladder under 
onsideration, we 
ount the Zhang-Ri
esinglets on the neighbouring ladder with the index j+1/2 (note that the latti
e
onstant in the single ladder is the 
opper-
opper distan
e whi
h we assume tobe equal to 1, see Remarks at Notation in the beginning of the thesis).Interladder repulsion between plaquettes with the same spin.� First, we 
al-
ulate the matrix elements of H′′ between the orthogonal plaquette states Eqs.(2.8-2.9) with the same spin but situated on di�erent legs:
〈φrασ, φ̄s+ 1

2
,ᾱσ|H′′|φ̄h+ 1

2
,ᾱσ, φjασ〉 =

1

16
(1 − 3η)Up

1

N3

∑

kqf

αkαqαq−fαk+f

{1

4
sin q sin(q − f) +

1

4
sin k sin(k + f)

}

eik(h−r)eiq(j−s)eif(r−s− 1
2
), (2.33)while for the same legs we obtain

〈φrασ, φ̄s+ 1
2
,ασ|H′′|φ̄h+ 1

2
,ασ, φjασ〉 =

1

16
(1 − 3η)Up

1

N3

∑

kqf

αkβqαq−fβk+f

{1

4
sin q sin(q − f) +

1

4
sin k sin(k + f)

}

eik(h−r)eiq(j−s)eif(r−s− 1
2
). (2.34)As it might have been expe
ted, it o

urs that the biggest term is the repulsionbetween orthogonal plaquette states with the same spin situated on the 
losestpossible sites in the neighbouring ladders (see Fig. 2.7):

〈φjασ , φ̄j± 1
2
,ᾱσ|H′′|φ̄j± 1

2
,ᾱσ, φjασ〉 = 0.1355(1− 3η)Up, (2.35)and all other terms are of the order of 10−3(1 − 3η)Up and 
an be negle
ted.Interladder repulsion between plaquettes with opposite spin.� Se
ond, anexa
tly similar 
al
ulation as above, but for the orthogonal plaquette statesEqs. (2.8-2.9) with opposite spins leads to the repulsion between orthogonalplaquette states with opposite spins and situated on the 
losest possible sites inthe neighbouring ladders:

〈φjασ , φ̄j± 1
2
,ᾱσ̄|H′′|φ̄j± 1

2
,ᾱσ̄, φjασ〉 = 0.1355(1− 2η)Up, (2.36)while again all other longer-range repulsive terms 
an be negle
ted.Interladder repulsion between Zhang-Ri
e singlets.� Combining the two re-sults for the plaquette states, one 
an 
al
ulate repulsion between Zhang-Ri
e35



singlets situated on nearest neighbour sites of the neighbouring ladders (see Fig.2.7):
HV2

= V2

∑

iα

(
nψiα

nψ̄
i+1

2
,ᾱ

+ nψiα
nψ̄

i− 1
2

,ᾱ

)
, (2.37)where nψiα

is de�ned as before and
V2 ∼ 0.1355(1− 5η/2)Up. (2.38)Note that we again negle
ted all spin-�ip terms whi
h are small in 
omparisonwith the Zhang-Ri
e binding energy and give zero when `sandwi
hed' in thesinglet states. Besides, the prefa
tor (equal to 0.1355) before the intera
tionbetween the Zhang-Ri
e singlets is slightly enhan
ed with respe
t to the ex-pe
ted 1/8 = 0.125 value (unlike in the intraladder 
ase). This is be
ause quitea lot of 
harge es
apes from the b and y orbitals to the x orbitals due to theorthogonalization pro
edure.Interladder repulsion in terms of 
opper holes.� Sin
e Zhang-Ri
e singletsare `parti
le-hole 
ousins' of 
opper holes one 
an easily write down the inter-ladder repulsion in terms of 
opper holes:

HV2
= V2

∑

iα

(
ñiαd ˜̄ni+ 1

2
,ᾱd + ñiαd ˜̄ni− 1

2
,ᾱd

)
, (2.39)where V2 de�ned as in Eq. (2.38). Note that to obtain Eq. (2.39) from Eq.(2.37) we again [see Eq. (2.29)℄ shifted the 
hemi
al potential.2.4 Method and results2.4.1 The slave-boson approa
hSlave-parti
le formalism.� The �rst di�
ulty one en
ounters while trying tosolve the t�J-type of Hamiltonian is to 
ope with the 
onstraint of no doubleo

upan
ies at ea
h site [20℄. While there are several methods whi
h approxi-mately implement these 
onstraints (see the following 
hapters where the slave-fermion approa
h is used), in this 
hapter we 
hoose the slave boson method [60℄to obtain qualitative insights. The reason is that this method is rather reliablein des
ribing properties of the relatively highly doped t�J models [20℄.Introdu
ing Kotliar-Ru
kenstein slave bosons.� In 
ontrast to the Barnesslave-boson approa
h [61℄, the Kotliar-Ru
kenstein slave-boson representation[60℄ 
orre
tly interpolates between the U = 0 and the U = ∞ limit and thereforewe 
hoose this slave-bosons approa
h in what follows. In this approximationone enlarges the Fo
k spa
e by introdu
ing three auxiliary boson �elds. First,one de
ouples the 
onstrained fermion 
reation operator d̃†iασ into a fermion
reation operator f †

iασ 
arrying the spin degree of freedom, a boson 
reationoperator p†iασ, and a boson annihilation operator eiα 
arrying the 
harge degreeof freedom (i.e. e†iα 
reates a 
harged hole):
d̃†iασ = f †

iασp
†
iασeiα. (2.40)This means that in order to 
reate a fermion at site iα, one �rst has to destroya hole at this site but then one also keeps tra
k of the 
hange of the boson36




on�guration by the extra boson p†iασ. Consequently, one not only 
annot 
reatea fermion at site iα, if there are no holes at this site but one also `remembers'whi
h type of the fermion was 
reated at site iα. However, in the U = 0 limitone re
overs only 25% of the value of the un
orrelated hopping, whi
h has tobe 
orre
ted [60℄. Thus, one further modi�es the de
oupling pro
edure in orderto reprodu
e the 
orre
t U = 0 limit:
d̃†iασ = f †

iασz
†
iασ, (2.41)where

z†iασ =
p†iασeiα√

(1 − e†iαeiα − p†iασ̄piασ̄)(1 − p†iασpiασ)
. (2.42)Note, however, that we need to introdu
e the following 
onstraints to get ridof the nonphysi
al states in the enlarged Fo
k spa
e:

∀iα
∑

σ

p†iασpiασ + e†iαeiα = 1, (2.43)
∀iασ p†iασpiασ = f †

iασfiασ. (2.44)Thus, the full transformation 
ontains not only Eq. (2.41) but also Eq. (2.44).Bosoni
 
ondensation.� A typi
al next step in the slave boson approa
his to assume that the introdu
ed auxiliary bosons 
ondense, i.e. they 
ould beregarded as 
lassi
al �elds [with their values determined either self-
onsistentlyor using Eq. (2.44)℄. Therefore, we assume that
p†iασ ∼

√
f †
iασfiασ ∼

√
n

2
,

piασ ∼
√
f †
iασfiασ ∼

√
n

2
,

eiα ∼
√

1 − n,

e†iα ∼
√

1 − n, (2.45)where n is the already mentioned `�lling fa
tor', i.e. the number of 
opper spins
reated by d̃iα operators in the e�e
tive t�J�V1�V2 model.Substituting transformations Eq. (2.41) together with Eq. (2.45) to Eq.37



(2.2) we obtain the following e�e
tive Hamiltonian for intera
ting fermions f
Heff = −tgt

{ ∑

iασ

(
f †
iασfi+1,ασ + H.c.

)
+

∑

iσ

(
f †
iRσfiLσ + H.c.

)}

−1

2
JgJ

{ ∑

iασ

(
f †
iασfiασf

†
i+1,ασ̄fi+1,ασ̄ + f †

iασf
†
i+1,ασ̄fiασ̄fi+1,ασ

)

+
∑

iα

(
f †
iRσfiRσf

†
iLσ̄fiLσ̄ + f †

iRσf
†
iLσ̄fiRσ̄fiLσ

)}

+V1gJ

{ ∑

iασ

(
f †
iασfiασf

†
i+1,ασ̄fi+1,ασ̄ + f †

iασfiασf
†
i+1,ασfi+1,ασ

)

+
∑

iα

(
f †
iRσfiRσf

†
iLσ̄fiLσ̄ + f †

iRσfiRσf
†
iLσfiLσ

)}

+V2gJ

{ ∑

iασ

(
f †
iασfiασ f̄

†
i+ 1

2
,ᾱσ̄
f̄i+ 1

2
,ᾱσ̄ + f †

iασfiασ f̄
†
i+ 1

2
,ᾱσ
f̄i+ 1

2
,ᾱσ

+ f †
iασfiασ f̄

†
i− 1

2
,ᾱσ̄
f̄i− 1

2
,ᾱσ̄ + f †

iασfiασ f̄
†
i− 1

2
,ᾱσ
f̄i− 1

2
,ᾱσ

)}
,(2.46)where the bar sign denotes the fa
t that the fermion operators a
t in the Hilbertsubspa
e of the Hamiltonian for the neighbouring ladder. Furthermore, thefa
tors gt and gJ are:

gt =
2 − 2n

2 − n
,

gJ =
4

(2 − n)2
. (2.47)The reader may wonder here whether we gained a lot by introdu
ing theZhang-Ri
e s
heme and then the slave bosons: The 
al
ulations were prettylengthy and we ended up with a Hamiltonian des
ribing again the intera
tingproblem. However, we gained quite a lot during the above pro
edure: (i) weintegrated out the oxygen orbital degrees of freedom entirely, (ii) the intera
tionterms in Eq. (2.46) are mu
h weaker than those in the original model sin
e J ,

V1 and V2 are of the order of the e�e
tive hopping gtt while in the Hamiltonian(2.1) the intera
ting terms are mu
h bigger than the kineti
 terms.Agreement with Gutzwiller fa
tors.� A
tually, the gt and gJ fa
tors areequal to the well-known Gutzwiller fa
tors [62, 63℄. Thus, we 
ould have intro-du
ed here the Gutzwiller approa
h to obtain the e�e
tive Hamiltonian (2.46).However, the slave boson approa
h seems to us to be more transparent.2.4.2 The mean-�eld approximationMean-�eld de
oupling.� To solve the e�e
tive Hamiltonian Eq. (2.46) we in-trodu
e the mean-�eld de
oupling:
f †
iασfiασf

†
iασ′fiασ′ →
f †
iασfiασ〈f

†
iασ′fiασ′ 〉 + 〈f †

iασfiασ〉f
†
iασ′fiασ′ − 〈f †

iασfiασ〉〈f
†
iασ′fiασ′〉,(2.48)38



where the 
lassi
al �elds 〈f †
iασfiασ〉 are to be determined self-
onsistently withthe initial values for these �elds 
hosen in the following way:First, we assume that

〈f †
iα↑fiα↑〉 = 〈f †

iα↓fiα↓〉 =
1

2

∑

σ

〈f †
iασfiασ〉 ≡

1

2
〈f †
iαfiα〉. (2.49)Se
ond, if the number of fermions f per site is n = 2/3. then we assumethat

〈f †
iαfiα〉 =

{
n− p for i/3 ∈ Z

n+ 1
2p for i/3 /∈ Z

, (2.50)while if n = 3/4 then
〈f †
iαfiα〉 =

{
n− p for i/4 ∈ Z

n+ 1
3p for i/4 /∈ Z

, (2.51)and �nally if n = 4/5 then we assume that
〈f †
iαfiα〉 =

{
n− p for i/5 ∈ Z

n+ 1
4p for i/5 /∈ Z

, (2.52)where p is a real number (with its value to be determined self-
onsistently, seenext se
tion) su
h that 0 ≤ p ≤ n.De
oupling for neighbouring ladder.� A
tually, a similar de
oupling is donefor f̄ fermion operators. However, here we assume di�erent initial values for the
lassi
al �elds:If the number of fermions f per site is n = 2/3, then we assume that
〈f̄ †
i− 1

2
α
f̄i− 1

2
α〉 =

{
n− p for (i+ 1)/3 ∈ Z

n+ 1
2p for (i+ 1)/3 /∈ Z

, (2.53)while if n = 3/4 then
〈f̄ †
i− 1

2
α
f̄i− 1

2
α〉 =

{
n− p for (i+ 1)/4 ∈ Z

n+ 1
3p for (i+ 1)/4 /∈ Z

, (2.54)and �nally if n = 4/5 then we assume that
〈f̄ †
i− 1

2
α
f̄i− 1

2
α〉 =

{
n− p for (i+ 2)/5 ∈ Z

n+ 1
4p for (i+ 2)/5 /∈ Z

. (2.55)Reasons for the assumed initial values of the �elds.� Note that we 
hoosethese parti
ular values for the 
lassi
al �eld in order to investigate the stabilityof the CDW state of period λ = 3 for n = 2/3 (nh = 4/3), period λ = 4for n = 3/4 (nh = 5/4) and period λ = 5 for n = 4/5 (nh = 6/5). Sin
ewe are merely interested in investigating whether the interladder intera
tion
an at all lead to the stability of the CDW phase in the 
oupled ladder, we
hoose the simplest possible pattern of the CDW order in the ladders [see Eqs.(2.50)-(2.52)℄. Furthermore, we 
hoose that the CDW order in the neighbouringladder is su
h that the rungs with lower densities in that ladder are as far away aspossible from the rungs with lower densities in the ladder under 
onsideration.55In the 
ase of n = 3/4 we 
ould have equally 
hosen (i+2) as the shift in the CDW orderin the neighbouring ladder. 39



In this way the 
lassi
al energy (i.e. for t = 0) of the system will be minimizedfor p = n with respe
t to the interladder intera
tion V2. Obviously, �nite t(and also �nite V1 and J) 
ould 
hange this result and it is the task of the nextse
tion to verify this assumption self-
onsistently.Validity of the approximation.� One may wonder whether the above de
ou-pling is justi�ed sin
e values of the intera
tion parameters J , V1, and V2 are
omparable with the e�e
tive kineti
 energy and therefore 
annot be assumedas being small terms. However, as dis
ussed in detail in Ref. [33℄ what mattersin su
h a mean-�eld de
oupling is the strength of quantum �u
tuations (whi
hare negle
ted in the mean-�eld de
oupling) while the strength of the intera
tionsis not important at all.2.4.3 The ground state propertiesStability of the CDW order.� We determine the value of the CDW order pa-rameter p (2.50-2.55) self-
onsistently by diagonalizing the e�e
tive Hamiltonian[Eq. (2.46)℄ of the model (2.2) rewritten using the mean-�eld de
oupling (2.48).The diagonalization is done numeri
ally in the single-parti
le k spa
e using 500
k points along the single leg of the ladder. The result is shown in Fig. 2.8: itdepi
ts the stability of the CDW order in the 
oupled ladders due to the inter-ladder intera
tion V2 for all three studied doping levels (n = 2/3, n = 3/4, and
n = 4/5). Besides, the CDW ground state has a small gap at the Fermi levelfor n = 3/4 and n = 4/5 while the gap at the Fermi level does not open for
n = 2/3 (although the bands are �attened in the CDW state).In parti
ular, let us note that the CDW state with λ = 4, 5 is stable forthe realisti
 values of the parameters J = 0.4t, V1 = 0.2t and V2 = 0.5t [as
al
ulated using Eqs. (2.4), (2.27), (2.38) and parameters from Refs. [39, 51℄℄.Furthermore, the CDW order state is stable for period λ = 3 for a somewhatenhan
ed value of the interladder intera
tion V2 ∼ 0.9t whi
h nevertheless 
ouldbe obtained using the 
harge transfer parameters of Ref. [64℄.Role of superex
hange J and intraladder intera
tion V1.� While the sta-bility of the CDW order is entirely due to the interladder intera
tion V2, thesuperex
hange ∝ J and the intraladder intera
tion ∝ V1 also slightly in�uen
ethe order. A
tually, in all three 
ases turning on these intera
tions redu
es themagnitude of the CDW order and makes it a bit less stable (i.e. the CDW orderis stable for larger values of the interladder intera
tion V2). Besides, this e�e
tis well visible for period λ = 3, 5 while for period λ = 4 it is rather suppressed,see Fig. 2.8.First, let us try to understand what kind of (ordered) ground state is favouredby these intera
tions. On the one hand, the role of the superex
hange J in themean-�eld de
oupling (2.48) amounts to the Ising-like intera
tion. Furthermore,we assumed that the solution is nonmagneti
 (2.49). Thus, the superex
hangemerely favours formation of pairs of 
harges along ea
h bond. On the other hand,the intraladder intera
tion V1 disfavours su
h pairs as it is a repulsive intera
tionbetween nearest neighbours. Sin
e a typi
al value of the superex
hange is J =
0.4t and of the intraladder intera
tion is V1 = 0.2t (see above), the joint e�e
t ofthese intera
tions is a suppression of pairs of 
harges (as they jointly 
ontributeas J − 4V1 to the e�e
tive mean-�eld Hamiltonian).Se
ond, one 
an try to understand how it in�uen
es the CDW state. This,however, strongly depends on the CDW period. In the simplest 
ase λ = 3 we40
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Figure 2.8: Stability of the CDW order due to the interladder intera
tion V2 asobtained self-
onsistently from the mean-�eld de
oupling (2.48) of the e�e
tiveHamiltonian [Eq. (2.46)℄ of the model (2.2). The panels depi
t the following
ases: (a) �lling n = 2/3 (nh = 4/3) with period λ = 3 and order parameter
p as de�ned in Eqs. (2.50, 2.53), (b) �lling n = 3/4 (nh = 5/4) with period
λ = 4 and order parameter p as de�ned in Eqs. (2.51, 2.54), (
) �lling n = 4/5(nh = 6/5) with period λ = 5 and order parameter p as de�ned in Eqs. (2.52,2.55). Solid lines are for realisti
 values of J = 0.4t and V1 = 0.2t [see Eqs.(2.4), (2.27), (2.38) and Refs. [39, 51℄℄ while dashed lines show results for J = 0and V1 = 0.have two rungs with enhan
ed 
harge densities and therefore the joint e�e
tis that the realisti
 J and V1 disfavour formation of the CDW order, see Fig.2.8(a). On the other hand, when λ = 4 the situation is more 
ompli
ated: wehave three sites with enhan
ed 
harge density along the leg, while the pairs of
harges are again formed along the rung. Together this yields that J and V1intera
tion disfavour the onset of CDW states only marginally, see Fig. 2.8(b).Finally, the 
ase with period λ = 5 is somewhat in between the two above
ases as along the leg there are four sites with enhan
ed 
harge density, see Fig.2.8(
).Understanding the results for J = 0 and V1 = 0.� Having understood theminor role of superex
hange J and intraladder intera
tion V1, let us now turnto the understanding of the onset of the CDW order due to the interladderintera
tion V2 for J = 0 and V1 = 0 (see Fig. 2.8). First, the basi
 me
hanismwhi
h supports the formation of the CDW order is rather simple. The onsetof the CDW state lowers the energy interladder intera
tion V2. This is be
ausethen the CDW states in the neighbouring ladders are arranged in su
h a waythat the rungs with more 
harge in one ladder are the nearest neighbours of therungs with less 
harge in the neighbouring ladder and vi
e versa, see Eqs. (2.50-2.55). Obviously, the onset of the CDW order is asso
iated with the �atteningof the bands (not shown) as then the mobility is redu
ed. Thus, in the CDWstate the kineti
 energy is higher and therefore the total energy of the systemis lowered (and the transition to the CDW state takes pla
e) only when thede
rease in the intera
tion energy is higher than the de
rease in the (negative)kineti
 energy. When the nesting 
onditions are not satis�ed (whi
h is the 
asehere but 
ompare also Se
. 2.7) this 
an take pla
e for �nite value of the ratio
V2/t. 41



Se
ond, there are relatively big di�eren
es between the onset of the CDWorder for di�erent doping levels n. However, with the ex
eption of the `
usp' forthe CDW order with period λ = 5 (see below), this 
an be understood rathereasily. The CDW state is more easily stabilized and has bigger amplitude p/nwhen the number of f fermions n is bigger. This is be
ause then the kineti
energy is redu
ed as there are less 
arriers in the system. Thus, for example theCDW order with period λ = 4 is stable already for smaller values of the ratio
V2/t and has bigger amplitude p/n than the CDW state with period λ = 3Understanding the `
usp' for period λ = 5.� Finally, the `
usp' in Fig. 2.8(
)needs some explanation. Here, in the numeri
ally most 
ompli
ated 
ase withperiod λ = 5, there is a 
ompetition between two di�erent types of the CDWorder: (i) the CDW state with a small amplitude p, rather un
hanged ele
troni
bands and small gap at the Fermi level, and (ii) the CDW state with a large
harge modulation p, almost �at bands and a large gap at the Fermi level. WhileCDW state (ii) 
ould be understood as a sort of `analyti
 
ontinuation' of theresults obtained for period λ = 3 and λ = 4, the CDW state (i) is awkward andneeds some further understanding.In fa
t, the existen
e of the possibility (i) is the result of the 
omplex inter-play of the 
ompli
ated band stru
ture for the CDW state with period λ = 5(where the e�e
tive Brillouin zone is `�ve-folded') and the 
ompli
ated e�e
tivemean-�eld potential from the neighbouring ladder. A
tually, the latter mean-�eld potential from the neighbouring ladder is due to the fa
t that the CDWorder in the neighbouring ladder a
ts as a negative potential merely on threerungs (out of �ve in the unit 
ell) in the ladder under 
onsideration. Thus, thispotential itself 
ontains 
ompeting terms and therefore the `interpolating' CDWstate with small amplitude p is formed.2.5 Dis
ussion2.5.1 Validity of the resultsPossible short
omings of the present approa
h.� In order to obtain resultsshown in Fig. 2.8 we introdu
ed a number of approximations to the t�J�V1�V2Hamiltonian. In parti
ular, we introdu
ed: (i) the slave-boson approa
h to over-
ome the problem of the 
onstraint of double o

upan
ies, (ii) the mean-�eldde
oupling. Whereas the �rst approximation is widely used [20℄, the se
ond oneis also a reasonable approa
h to the ordered states in the strongly 
orrelatedsystems [33℄.Still, however, both the slave-boson approa
h and the mean-�eld de
ou-pling were used in one of their simplest possible versions. For example, �rst,we assumed that the number of bosons whi
h 
ondense is equally distributedthrough the latti
e whi
h led to the site-independent Gutzwiller fa
tors. Onthe one hand, we 
he
ked that the site-dependent Gutzwiller fa
tors yield sim-ilar results for the CDW with period λ = 3 as obtained in Fig. 2.8. On theother hand, it turned out that the self-
onsistent mean-�eld 
al
ulations did not
onverge when we used the site-dependent Gutzwiller fa
tors for the CDW withperiod λ = 5. Se
ond, we assumed that the solution was nonmagneti
 � 
learlyintrodu
ing the possibility of �nite spin polarization would improve the presentresult. However, as the purpose of the 
al
ulations was to investigate the onset42



of the CDW order due to the interladder intera
tion, this was at least partiallyjusti�ed.Possible short
omings of the derivation of the model.� Distin
t approxima-tions and short
omings are related with the t�J�V1�V2 Hamiltonian itself. First,one 
ould verify whether the Zhang-Ri
e singlets do not get destroyed due tothe interladder intera
tion. Although the Zhang-Ri
e binding energy is of theorder of (4−5)tpd (see Table 2.1) whi
h is mu
h bigger than the biggest possiblevalue of the interladder intera
tion between them (V2 ∼ 0.7t), it is internally
onsistent when the expli
it 
al
ulations show that this indeed 
annot happen.Se
ond, we assumed that the on-site energy for holes on the rung orbital b isthe same as the one for holes in the other oxygen orbitals. However, due to adi�erent 
oordination number for this site, the on-site energy of the b orbitalshould be somewhat lower. Indeed, it is estimated that the ratio between thesetwo on-site energies is ε ∼ 0.9 [52℄. Thus, it is interesting to verify whetherthis asymmetry in the on-site energies of the oxygen orbitals 
an destabilize theZhang-Ri
e singlets. Hen
e, in the next two se
tions, we study in more detailthe above mentioned possible short
omings of the derivation of the model.2.5.2 `Rigidity' of the Zhang-Ri
e singletsPurpose of this se
tion.� In order to verify whether the interladder intera
tion
V2 
ould in�uen
e the stability of the Zhang-Ri
e singlets we solve the 
hargetransfer model (2.1). In this way we will be able to 
he
k how the Zhang-Ri
esinglets are in�uen
ed by the on-site intera
tion between holes on the sameoxygen sites but belonging to two neighbouring ladders.The CDW solution of the 
harge transfer model.� We solve the Hamilto-nian (2.1) for various values of the model parameters {U,∆, Up}, and for threedi�erent hole densities nh = 6/5, 5/4, 4/3 using the mean-�eld approximation,i.e., we de
ouple

njαµ↑njαµ↓ → 〈njαµ↑〉njαµ↓ + njαµ↑〈njαµ↓〉 − 〈njαµ↑〉〈njαµ↓〉, (2.56)where µ = d, x, y, b and a similar de
oupling holds for the neighbouring lad-ders. The ground state was found by diagonalizing the resulting one-parti
leHamiltonian in real spa
e for a single ladder with 60 unit 
ells, separately forspin up and spin down. The 
lassi
al �elds {〈njαµσ〉} and {〈n̄j− 1
2
,αµσ〉} weredetermined self-
onsistently with the initial values for these �elds as in Fig. 2.9.While a uniform spin density wave is stable for nh = 1, one �nds a CDW su-perimposed on the spin density wave order for realisti
 hole densities nh ≥ 6/5.The stability of this 
omposite order follows from the 1D polaroni
 defe
ts inthe spin density wave state. We limit the present analysis to the stability ofthis parti
ular CDW phase, while we do not study here the possible 
ompeti-tion with other phases (see Ref. [65℄ and next se
tion). Chara
terization of theCDW state in the 
harge transfer model.� For ea
h state we evaluate: (i) theCDW order parameter

p′≡
∑

i∈rung
〈nid + nib + nix〉−

1

λ− 1

∑

i/∈rung
〈nid + nib + nix〉

+
∑

i∈rung
〈niy〉 −

2

λ− 2

∑

i/∈rung
〈niy〉, (2.57)43



hn  = 1.25

y

x
hn  = 1.33 λ = 4(b)(a)λ = 3Figure 2.9: Artist's' view of two 
oupled Cu2O5 ladders (white and grey) witha CDW order of period: (a) λ = 3 and (b) λ = 4. Again (
f. Fig. 2.4) theCu2O5 unit 
ell with two 3dx2−y2 , three 2px, and two 2py orbitals is indi
atedby dashed line. The arrows stand for hole spins in 
opper and oxygen orbitals,with their (large) small size 
orresponding to +1.0 (+0.25) hole 
harge. Theovals show rungs with enhan
ed hole density in the CDW phase. The dottedovals in the grey ladder of (b) show the two possible degenerate states, see text.where λ is the period of the CDW state, and (ii) the se
ond moment of the holedensity distribution with respe
t to the ideal non-orthogonal Zhang-Ri
e singletstate (to be 
alled also Zhang-Ri
e dispersion; n0 = 0.25),

σ2≡
∑

i∈rung

{
(〈nib〉 − 2n0)

2+(〈nix〉 − n0)
2+(〈niy〉 − n0)

2
}
. (2.58)Here and in what follows by `rung' we mean the `rung with enhan
ed holedensity' whi
h 
onsists of seven oxygen orbitals (four y, two x and one b) andtwo 
opper orbitals (see the ovals in Fig. 2.9). Hen
e, in both above de�nitionsthe mean values of the parti
le number operators are 
al
ulated for these rungs(i ∈ rung) or for all remaining sites in the whole ladder (i /∈ rung). Note thatin the �rst term in Eq. (2.58) we subtra
t 2n0 hole density as we assume thatthere are two non-orthogonal Zhang-Ri
e singlets in the same rung whi
h sharethe 
ommon b oxygen orbital, see Fig. 2.9. Note also that in the ideal CDWphase (shown in Fig. 2.9) p′ = 2 and σ2 = 0, irrespe
tively of the a
tual period

λ. We also introdu
e rung hole densities on oxygen and 
opper sites
np≡

∑

i∈rung
〈nib + nix + niy〉, nd≡

∑

i∈rung
〈nid〉. (2.59)Similarly, magneti
 order parameters are

mp ≡
∣∣∣

∑

i∈rung∩L
mix+miy

∣∣∣ +
∣∣∣

∑

i∈rung∩R
mix+miy

∣∣∣, (2.60)
md≡

∑

i∈rung
|mid|, (2.61)44
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Figure 2.10: Chara
terization of the CDW ground states obtained with Up = 0for in
reasing U (left, ∆ = 3tpd) and ∆ (right, U = 8tpd): (a), (b) CDW orderparameter p′, and (
), (d) ZR singlet dispersion σ2, for λ = 5, 4, 3 shown by solid,dashed, and dotted lines, respe
tively; (e), (f) for λ = 5 
harge (magnetization)in the rung on 
opper sites shown by solid (dotted) line and on oxygen sitesshown by dashed (dashed-dotted) line, see Eqs. (2.59)�(2.61). The realisti
values (Ref. [51℄) of U = 8tpd and ∆ = 3tpd are marked by verti
al lines.where the magnetization for orbital µ at site i is miµ = 〈niµ↑ −niµ↓〉. We re
allthat when holes on the rungs form two lo
alized Zhang-Ri
e singlets next toea
h other, then nd = md ≃ 2, np ≃ 2, and mp ≃ 1.5, see Fig. 2.9.Results for a single ladder in the 
harge transfer model.� First, we inves-tigate the onset of the CDW phase in a single ladder of Fig. 2.9 by assuming
Up = 0. In the 
harge transfer regime (for ∆ = 3tpd following Ref. [51℄) theCDW is stable already for U ≥ tpd with periods: λ = 5 for nh = 6/5, λ = 4for nh = 5/4, and λ = 3 for nh = 4/3 [Fig. 2.10(a)℄. For higher values of theon-site Coulomb repulsion U , p′ �rst in
reases quite fast irrespe
tively of thea
tual CDW period, and next saturates at p′ ∼ 1, being only about 50% ofthe maximal value p′ = 2 (a weak de
rease of p′ for U > 6tpd follows from the
harge redistribution). In parti
ular, su
h a CDW order is robust for the widelya

epted value of U = 8tpd for 
opper oxide ladders [51℄.In the strong 
oupling regime of U > 4tpd the CDW state is formed by holesdistributed as in the Zhang-Ri
e singlets sin
e then σ2 ∼ 0.05 is indeed verysmall for all periods [Fig. 2.10(
)℄. This is also visible in Fig. 2.10(e) where,in this regime, both the number of holes on oxygen sites (np) and on 
oppersites (nd) in the rungs are rather 
lose to their values in the lo
alized Zhang-Ri
e states. Note that the minimum of σ2 would 
orrespond to np = nd whi
h45



further motivates the de�nition of Eq. (2.58). We 
an also probe the Zhang-Ri
e
hara
ter of holes forming the CDW state by looking at the magnetization ofholes in the rungs, 
f. Fig. 2.10(e). The magnetizationmd grows with in
reasing
U and for large U ∼ 12tpd it is still around 30% smaller than that for lo
alizedZhang-Ri
e singlets. However, even in this range of U the magnetization onthe oxygen sites mp is quite small and mu
h below the value for ideal Zhang-Ri
e singlets (around 70% smaller). This 
on�rms that the subtle (entangled)nature of the Zhang-Ri
e singlets 
an be only partly 
aptured within the 
lassi
almean-�eld approa
h. Therefore, in what follows we 
all these states 
lassi
alZhang-Ri
e singlets.Remarkably, 
hanging the value of ∆ for �xed U = 8tpd does not destabilizethe CDW state [Fig. 2.10(b)℄ irrespe
tively of the period. This suggests thatthe 
harge order is triggered by the on-site Coulomb repulsion. However, the
hara
ter of the holes forming the CDW state 
hanges and σ2 is small (σ2 ∼
0.07) only as long as ∆ is large [Fig. 2.10(d)℄. This is also visible in Fig. 2.10(f)where a similar dis
ussion as the one 
on
erning Fig. 2.10(e) applies.To gain a deeper understanding of the results we 
al
ulated the 
harge gapas a fun
tion of the Hubbard U (not shown): one �nds that the CDW stategains stability when an insulating state is formed. Altogether, one �nds that:(i) the Coulomb intera
tion U 
an stabilize the CDW in the Cu2O5 ladders, (ii)the CDW phase 
an be viewed as an equidistant distribution of the 
lassi
alZhang-Ri
e singlet states in the relevant parameter regime, and (iii) all of thestable periods (even and odd) behave similarly.Results for the 
oupled ladders in the 
harge transfer model.� Next, we in-vestigate the in�uen
e of the interladder 
oupling. At �nite Up the `external'�elds {〈n̄j− 1

2
,αµσ〉} in the mean-�eld version of Eq. (2.1) 
ontribute and wereself-
onsistently determined by iterating the mean-�eld equations. Thereby, thesymmetry of the CDW state was 
hosen in su
h a way that the rungs weretranslated by λ Cu-O latti
e 
onstants (λ odd) in the neighbouring ladders tomaximize the distan
e between them (Fig. 2.9), whi
h minimizes the 
lassi-
al mean-�eld energy. For even λ = 4 the numeri
al 
al
ulations performedwith the realisti
 parameters [51℄ for Cu2O5 ladder (U = 8tpd and ∆ = 3tpd)
on�rmed that the two topologi
ally equivalent possibilities of su
h a transla-tion are degenerate, as expe
ted. The e�e
t of the interladder intera
tion dueto Up was identi�ed by 
omparing the ground states derived separately in two
ases: (A) with {〈n̄j− 1

2
,αµσ〉} = 0, i.e., using only the (intraorbital) repulsionbetween oxygen holes on the 
onsidered ladder; (B) by implementing the `ex-ternal' �elds {〈n̄j− 1

2
,αµσ〉} 
al
ulated self-
onsistently, i.e. in
luding both theintraorbital and interorbital Coulomb repulsion between holes on oxygen sites.One �nds that in 
ase A the CDW order parameter p′ de
reases in a similarway for all periods, 
f. Fig. 2.11(a), as well as for even period (λ = 4) when theinterladder 
oupling is swit
hed on (
ase B). Remarkably, a qualitatively dis-tin
t behaviour is found for odd periods � here the interladder 
oupling supportsthe onset of the CDW phase and the order parameter either saturates or evenin
reases with in
reasing strength of the on-site repulsion Up (as for λ = 3), seealso Fig. 2.11(
). In fa
t, the interladder 
oupling enhan
es the hole density inthe rungs.Another striking e�e
t is the qualitatively distin
t behaviour of the Zhang-Ri
e dispersion σ2 for odd and even periods, see Fig. 2.11(b). While for period46
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Figure 2.11: The CDW ground state for in
reasing Up: (a) CDW order pa-rameter p′ and (b) Zhang-Ri
e singlet dispersion σ2, for λ = 5, 4, 3 shown bysolid, dashed, and dotted lines (squares, triangles, and 
ir
les) in 
ase A (B), seetext; (
) for λ = 3 
harge on 
opper (oxygen) sites in the rung shown by solid(dashed) line in 
ase A and by squares (
ir
les) in 
ase B, see Eq. (2.59); (d)for λ = 4 
harge in di�erent y orbitals (nȳ, ny1, and ny2, shown by diamonds,triangles down, and up) in the rung in 
ase (B), see text. Verti
al lines markthe realisti
 value (Ref. [51℄) of Up = 3tpd. Parameters: ∆ = 3tpd, U = 8tpd.
λ = 4 swit
hing on the interladder 
oupling (B) drasti
ally in
reases σ2 withrespe
t to the single ladder 
ase (A), the results are pre
isely opposite for oddperiods λ = 3, 5. Furthermore, this in
rease of σ2 with Up in 
ase (B) is largefor even period � its value ∼ 0.1 found for large (but still realisti
) Up ∼ 3.5tpdis 
omparable to the value of the Zhang-Ri
e dispersion for a single ladder with
∆ ∼ tpd [Fig. 2.10(d)℄, where we do not expe
t stable Zhang-Ri
e singlets.This large in
rease of σ2 in this 
ase follows from the geometri
al frustrationof the CDW state, as for even periods the two y orbitals in the same rung arenot equivalent [one of them (say y1) is 
loser than the other one (say y2) tothe rung in the neighbouring ladder℄, as shown in Fig. 2.11(d). We have alsoveri�ed that the mean hole density nȳ = 1

2 (ny1 + ny2) almost does not 
hangewhen the interladder 
oupling is swit
hed o� (not shown).Thus, the interladder intera
tion: (i) supports the CDW states with oddperiods λ = 3, 5 and slightly disfavours the frustrated CDW state with evenperiod λ = 4, (ii) destabilizes (strengthens) the homogeneous Zhang-Ri
e�typedistribution of holes in the rungs for period λ = 4 (λ = 3, 5 ), respe
tively.Final 
on
lusions.�- Altogether, the above 
al
ulations show that the Zhang-Ri
e�type distribution is stable in the odd-period CDW ground state of the
harge transfer model. In parti
ular, in su
h a 
harge ordered states it is notdestroyed due to the interladder intera
tion, i.e. due to the on-site repulsionbetween holes on di�erent oxygen p orbitals belonging to two neighbouring lad-ders.It is only in the even-period CDW (i.e. λ = 4) that the interladder in-47



RungZhang−Rice bridge orbital

leg orbitalsFigure 2.12: Artist's view of the Zhang-Ri
e singlet (left panel) and rung-
entred(rung) hole (right panel) in a Cu2O5 
luster. Large (small) arrows depi
t the holespins for +1.0 (+0.25) 
harge. The red arrows stand for spins of doped holes.tera
tion destabilizes the homogeneous Zhang-Ri
e�type distribution of holes.Although, it is not of su
h an importan
e for us as we are mainly interested inexplaining the onset of the odd-period CDW order, this result does not meanthat the true Zhang-Ri
e singlets will be destabilized in this 
ase. A
tually, inreality the Zhang-Ri
e singlets are even more robust than the ones dis
ussed inthis se
tion � the energy gain due to quantum �u
tuations and phase 
oheren
eare not 
aptured in these 
lassi
al states (see also Se
. 2.3.3 for more dis
ussionon the binding energy of the true Zhang-Ri
e singlets).Thus, we 
on
lude that the Zhang-Ri
e singlets are rather `rigid' obje
ts evenin their extremely simpli�ed 
lassi
al version. Their true quantum-me
hani
al
ounterpart with mu
h bigger binding energy is expe
ted to be even more `rigid'and is not destroyed due to the interladder intera
tion.2.5.3 Rung states or Zhang-Ri
e singletsPurpose of the se
tion.� The purpose of this se
tion is to investigate the in-�uen
e of the lower energy of the rung (
alled also bridge) oxygen orbital, withrespe
t to the on-site energy of the other (
alled leg) orbitals, on the stability ofthe Zhang-Ri
e singlets. Hen
e, one 
ould expe
t that instead of the Zhang-Ri
estate a rung-
entred state (rung) 
ould be stabilized with a doped hole residingon the O (2p) bridge orbital and bound to the two neighbouring Cu holes viasuperex
hange intera
tions (
f. Fig. 2.12).Zhang-Ri
e versus rung states in 
harge transfer model.� We solve the
harge transfer model (2.1) in a somewhat similar way as in the previous se
-tion. There are two di�eren
es: (i) we do it merely for the single ladder andfor only one hole doping nh = 4/3, (ii) we assume that the CDW state withperiod λ = 3 is formed by one Zhang-Ri
e singlet or rung state per rung (seeFig. 2.12). Let us note, that this means that the 
orresponding CDW state hasless 
harge (oxygen holes) per every third rung. This stays in 
ontrast with allthe previous 
al
ulations and with the experimental results [8, 9℄. However, thepurpose here is to merely verify how the lower value of the bridge orbital energyin�uen
es the stability of the Zhang-Ri
e state.Qualitatively the results are as follows. For ε = 1 the hole and magnetiza-tion distribution resembles the ones in 
lassi
al Zhang-Ri
e state (see previous48



se
tion): the doped hole is distributed rather isotropi
ally among four oxygensites surrounding the 
entral 
opper site o

upied by roughly one hole. Alsothe spin of the doped hole in the oxygen (2p) orbitals 
ompensates roughly thespin of the hole in the 
opper site. On the other hand, for ε = 0.8 the dopedhole enters mainly into the b orbital when the holes are transfered from the porbitals of the leg of the ladder, suggesting a rung 
hara
ter of the doped hole.Let us also note that, in agreement with the assumption of 
harge order, we�nd a CDW state with less 
harge per every third rung of the ladder for thesolution with Zhang-Ri
e or rung 
hara
ter.In order to quantitatively investigate the role of the spe
i�
 spin laddergeometry on the stability of the Zhang-Ri
e and rung states we 
al
ulate thedensities and magnetization of holes involved in forming:(i) the (
lassi
al) Zhang-Ri
e state:
nZR = nix + niy1 + niy2 , (2.62)for i belonging to the rung with enhan
ed hole density and y1 as well as y2orbitals de�ned as in the previous se
tion and
|mZR| = |nZR↑ − nZR↓|, (2.63)where we ex
lude the b orbital from the sum to be able to distinguish betweenthe rung and the Zhang-Ri
e states;(ii) the rung state:

nRung = nib, (2.64)for i belonging to the rung with enhan
ed hole density and
|mRung| = |nRung↑ − nRung↓|. (2.65)The results are shown in Fig. 2.13(a) as a fun
tion of the on-site energy ofthe bridge orbital ε. We �nd that with the de
reasing value of ε doped holestend to o

upy the b orbital, and the spins of the holes in the b orbital be
omepolarized. Besides, the spins of the holes involved in forming Zhang-Ri
e statedo not only 
ompensate the spin of the 
entral 
opper hole but for ε < 0.85 evenweakly align ferromagneti
ally with the 
opper spin. Hen
e, we suggest that for

ε < 0.85 the doped holes show a rung 
hara
ter while for ε > 0.9 they showa distin
tive Zhang-Ri
e-singlet 
hara
ter separated by a 
rossover regime. Itmeans that the Zhang-Ri
e state is stable for the value of ε = 0.92, 
al
ulatedin Ref. [52℄, though we are very 
lose to the 
rossover regime.Binding energies for the Zhang-Ri
e versus those for the rung states.� Letus now pose the question to what extent our results are relevant for the stabilityof the real quantum-me
hani
al Zhang-Ri
e singlets or rung states. Therefore,using se
ond order perturbation theory in U and U−∆ [26℄ (see also Se
. 2.3.3)we 
al
ulate the binding energy of a single hole doped into Zhang-Ri
e and rungstates: in the 
lassi
al 
ase (EZR and ERung, respe
tively), and in the quantum-me
hani
al 
ase (E|ZR〉 and E|Rung〉, respe
tively). In the 
lassi
al 
ase, whi
hresembles the states obtained in the mean-�eld approximation (see above), one49
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Figure 2.13: (a) Hole density (n) and absolute value of magnetization (|m|) forholes involved in forming the Zhang-Ri
e state (nZR, |mZR|) and the rung states(nRung, |mRung|) as a fun
tion of the ratio of the bridge orbital energy to the legorbital energy (ε). (b) Binding energies of a single hole in ZR and rung states in the
lassi
al 
ase (EZR and ERung, respe
tively) and quantum-me
hani
al 
ase (E|ZR〉 and
E|Rung〉, respe
tively) as a fun
tion of the ratio of the bridge orbital energy to the legorbital energy (ε). The verti
al line on both panels depi
ts the value of ε = 0.92, 
f.Ref. [52℄.�nds:

EZR =
1

4
(3 + ε)∆ + J ′

〈 ∑

i∈ZR

Si · SO− 1

4

〉

ZR
, (2.66)

ERung = ε∆ + J ′
〈 ∑

i∈Rung

Si · SO− 1

4

〉

Rung
, (2.67)where: the superex
hange J ′ = 2t1 + 2t2,6 SO is the spin of the doped oxygen(2p) hole, Si is the spin of the 
opper (3d) hole, and the sum in
ludes those 
op-per sites whi
h are involved in forming a bound state with the oxygen (2p) holein rung or Zhang-Ri
e state. The expressions for the energies in the quantum-me
hani
al 
ase look similar ex
ept for the averages of the spin operators whi
h,unlike in the 
lassi
al 
ase, in
lude also spin �u
tuations. In addition, for thereal Zhang-Ri
e singlet we in
lude the phase 
oheren
e of holes doped into theoxygen (2p) orbitals [26℄ (i.e. we assume that the holes are distributed amongthe oxygen orbitals in a symmetri
 way, see also Se
. 2.3.3). The results areshown in Fig. 2.13(b) as a fun
tion of the energy of the bridge orbital ε.We �nd for the 
lassi
al state that for ε < 0.97 the energy di�eren
e (EZR −

ERung) is larger than the e�e
tive hopping energy t of the oxygen (2p) hole(= t2pd/U or t2pd/(U −∆)). Hen
e for �nite bandwidth the rung state 
ould onlybe stabilized up to the above value of the bridge orbital energy, qualitativelyin agreement with the previous mean-�eld results. However, in the quantumme
hani
al 
ase the rung state 
ould never be stabilized, and due to the largeenergy di�eren
e (E|ZR〉 − E|Rung〉) the true Zhang-Ri
e singlet should not bedestabilized by �nite bandwidth.6Where the very small 
ontribution due to �nite Up is negle
ted, see also Table 2.1. Besides,
t1 and t2 should be slightly modi�ed for ε 6= 1 but the 
hange would be rather small.50



Con
lusions.� In summary, this se
tion shows again a profound stabilityof the Zhang-Ri
e singlets in the hole doped spin ladders. First, using themodel 
harge transfer 
al
ulations in the mean-�eld approximation we obtainthat the isotropi
 distribution of doped holes among the oxygen (2p) orbitalssurrounding the 
entral 
opper (3d) hole is stable. Se
ond, quantum-me
hani
al
al
ulations of the binding energy of holes forming Zhang-Ri
e singlets and rungstates suggest the Zhang-Ri
e singlets to be even more stable.2.6 Con
lusionsPurpose of this 
hapter.� The purpose of this 
hapter was to explain theoret-i
ally the onset of the CDW state in the telephone number 
ompound for onlysele
ted values of x while using a model whi
h merely 
ontains on-site Coulombintera
tions. In parti
ular the questions to be answered in this 
hapter were: (i)what the proper t�J model for the 
oupled Cu2O5 ladders, whi
h would arisedue to the on-site Coulomb intera
tions, looked like, and (ii) whether this model
ould explain the onset of the CDW order with parti
ular periods for parti
ularvalues of x in Sr14−xCaxCu24O41. Let us now answer these questions.Form of the proper model.� As dis
ussed in Se
. 2.2 the standard t�Jmodel solved for the single ladder lead to the results whi
h are in
ompatiblewith the experimentally observed CDW state in the 
oupled Cu2O5 ladders inSr14−xCaxCu24O41. In fa
t, the Cu2O5 ladder is a 
harge transfer system andthe Zhang-Ri
e s
heme [26℄, whi
h enables the derivation of the t�J model fromthe 
harge transfer system, has never been done (as far as we know) for a singleladder with no D4h symmetry. In addition, the spe
i�
 geometry of 
oupledladders 
ould lead to new intera
tions due to the on-site repulsion betweenholes on the di�erent oxygen orbitals belonging to two di�erent ladders (seeFig. 2.4).Thus, in Se
. 2.3 we derived the proper t�J model for 
oupled ladders,starting from the appropriate 
harge transfer model (see Se
. 2.3.1) and us-ing the Zhang-Ri
e s
heme [26℄. First, we showed that the kineti
 t part andthe superex
hange J part of the new model were similar to the kineti
 and su-perex
hange parts in the standard t�J model, see Se
. 2.3.3 and 2.3.2. This isbe
ause: (i) the holes do not hop between the 
oupled ladders as the interoxygenhopping 
an be negle
ted [39℄, (ii) the superex
hange pro
esses along the 900bonds are rather weak (see Se
. 2.3.2).Next, in Se
. 2.3.4 we dis
ussed the repulsion between the Zhang-Ri
e sin-glets (or e�e
tively between the 
opper spins in the new t�J model) in the sameladder. This term arises due to the �nite on-site intera
tion Up between holeson the same orbital in the oxygen sites but belonging to two nearest neighbourZhang-Ri
e singlets. Although, a similar term should also be present in theproper t�J model for CuO2 planes, it is usually negle
ted as it is roughly twi
esmaller then the superex
hange term J . A
tually, a very similar result is ob-tained for the ladder geometry but this was not a priori so 
lear. Besides, thisserved as a ni
e exer
ise before we we pro
eeded further to derive the 
ru
ialinterladder intera
tions (see below).The last, but 
ertainly not least, term whi
h 
onstitutes the new proper t�Jmodel for 
oupled ladders is the interladder repulsion between the Zhang-Ri
esinglets (or again e�e
tively between the 
opper spins in the new t�J model) in51



two di�erent ladders, see Se
. 2.3.5. This term also originated from the on-siteintera
tions between holes situated on the same oxygen orbital sites but thistime belonging to two di�erent orbitals in the two nearest neighbour Zhang-Ri
e singlets on neighbouring ladders. Sin
e, su
h Zhang-Ri
e singlets sharetwo oxygen sites su
h a term should be four times as big as the intraladderintera
tion (as the Pauli prin
iple does not prohibit holes with the same spinon the same oxygen site but di�erent orbital). In fa
t, a detailed 
he
k showedthat a realisti
 Hund's ex
hange redu
ed this intera
tion and it turned out thatthe interladder repulsion is twi
e stronger than the intraladder repulsion. This,however, means that for realisti
 
harge transfer parameters [39, 51℄ it is roughlyas strong as the superex
hange J and 
annot be negle
ted.The stability of the CDW state.� Having derived the proper model, in orderto establish whether the CDW state 
ould be stable in the 
oupled ladders, wepresented the solution of this model in Se
. 2.4. The model was solved usingthe the slave-boson approa
h (see Se
. 2.4.1) and the mean-�eld de
oupling(see Se
. 2.4.2) and the ground state properties were dis
ussed in Se
. 2.4.3).We showed the the CDW state 
ould be stable in the system entirely due tothe interladder intera
tion. In parti
ular, rather realisti
 values (see detaileddis
ussion in Se
. 2.4.3) of this intera
tion led to the stability of the CDWstate: (i) with period λ = 3 for the nh = 4/3 holes (n = 2/3 �lling), (ii)with period λ = 4 for the nh = 5/4 holes (n = 3/4 �lling), (iii) with period
λ = 5 for the nh = 6/5 holes (n = 4/5 �lling). Thus, the CDW phase with thepe
uliar periods λ = 3 or λ = 5 
ould indeed be stable in the ladder system.Furthermore, in the slave-boson and mean-�eld approa
h it o

urred that theCDW state with period λ = 4 
ould not be stable in the system merely due tothe superex
hange J and more sophisti
ated methods are needed, see Ref. [10℄.Validity of the results.� In the end of the 
hapter, we also dis
ussed thevalidity of the results (Se
. 2.5.1) and of the model itself (Se
s. 2.5.2-2.5.3).It is interesting to note that neither (i) the on-site repulsion between holes ondi�erent oxygen orbitals belonging to two neighbouring ladders (Se
. 2.5.2), nor(ii) the lower on-site energy of the oxygen site in the middle of the ladder rung(Se
s. 2.5.3) lead to the destabilization of the Zhang-Ri
e singlets. Therefore,the Zhang-Ri
e s
heme indeed 
ould have been used to derive the proper t�Jmodel for 
oupled Cu2O5 ladders.Final remarks.� To 
on
lude, let us stress that the t�J models for theladders are used frequently [10, 11, 45℄ as they are 
omputationally simplerthan the 2D t�J models. Here we showed that for the t�J model on a ladder tobe indeed physi
ally meaningful, and thus 
ould well des
ribe a realisti
 laddersubsystem found in Sr14−xCaxCu24O41, one should add the nearest neighbourinterladder repulsive term.As a posts
riptum, let us note that we have not resolved the problem ofthe pe
uliar absen
e of the CDW state with even period in Sr14−xCaxCu24O41.However, in Se
. 2.7 we des
ribe a toy-system 
onsisting of two 
oupled 
hainsin whi
h su
h a CDW 
ould be
ome unstable. Obviously, this does not answerthe question of the stability of the CDW state with even period and should berather treated as an interesting `side story'.52



2.7 Posts
riptum: destabilizing even-period-CDWstate in a toy-modelProblem with CDW state with period λ = 4.� The biggest drawba
k of theresults showed in this 
hapter is that they do not explain why the CDW orderwith period λ = 4 is not stable in the Cu2O5 
oupled ladders in Sr10Ca4Cu24O41[8℄. Indeed, as shown in Fig. 2.8 the CDW state with period λ = 4 has similarfeatures as the CDW state with odd period λ and there are no signatures thatthis parti
ular state 
an be
ome unstable. In fa
t, we 
ould have expe
ted thatthe CDW state with period λ = 4 
ould have be
ome unstable, sin
e for theeven period it is impossible to make a CDW state in the neighbouring ladderequally distant from the CDW state in the ladder under 
onsideration. This isvisible in Eq. (2.54) where we have some freedom in 
hoosing the CDW state inthe neighbouring ladder so that to satisfy the 
ondition that it is as distant aspossible from the CDW state in the ladder under 
onsideration. However, thisme
hanism did not yield any instability, see Fig. 2.8.On the other hand, it is visible that it is the ratio of the interladder in-tera
tion V2 to the kineti
 energy whi
h plays a 
ru
ial role in the stability ofthe CDW state, see dis
ussion in Se
. 2.4.3. Sin
e at the same time in the the
onstraint of the double o

upan
ies is treated at the mean-�eld level, it may bethat we overestimated the kineti
 energy in our 
al
ulations. Thus, if we wereable to redu
e it, then it may be that we would dis
over the di�erent behaviourof the even-period-CDW state (whi
h is now `
overed' by the overestimatedkineti
 energy).Toy-model for two 
oupled 
hains.� In order to verify the above idea, weintrodu
e the model with merely two 
oupled 
hains. As here, we will have norungs, the mobility of the 
arriers will be redu
ed and perhaps we would be ableto observe a di�erent behaviour of the CDW state with period λ = 4.The toy-model for two 
oupled 
hains is de�ned as follows,
H1D = −t

∑

iσ

(
d̃†iσ d̃i+1,σ + H.c.

)
+ V2

∑

i

(
ñid ˜̄ni+ 1

2
,d + ñid ˜̄ni− 1

2
,d

)
, (2.68)with all the symbols as in Se
. 2.3 and merely the leg-index α skipped (as wehave only two intera
ting legs). This model 
an be obtained from the t�J�V1�V2model (2.2) by putting V1 = 0 and J = 0 as well as by negle
ting the existen
eof one of the legs of the ladder. Note that taking V1 and J �nite does notintrodu
e any new physi
s in our mean-�eld approa
h, see Se
. 2.4.3.Results.� We solve the model (2.68) in a similar way as model (2.2): (i) weintrodu
e the slave bosons approa
h, (ii) assume 
ondensation of bosons, (iii)de
ouple the intera
tion between the new fermions f in a mean-�eld way, and�nally (iv) assume the existen
e of the CDW order parameter p (see Se
. 2.4for more details). The result is shown in Fig. 2.14.We see that the results resemble those found earlier for the ladder (see Fig.2.8) with two ex
eptions: (i) the CDW with λ = 3 is stable for mu
h smallervalue of the ratio V2/t, and (ii) the CDW with period λ = 5 does not have a`
usp'. While the latter is due to a distin
t (and simpler) band stru
ture for the
hain (
f. dis
ussion about the '
usp' in Se
. 2.4.3) and is not of big importan
ehere, the �rst di�eren
e is striking and needs some more studies. In parti
ular,this results in a very appealing interpretation of Fig. 2.8: sin
e the CDW order53
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Figure 2.14: The CDW order parameter p as a fun
tion of the interladderintera
tion V2 in the two 
oupled 
hains: for �lling n = 2/3 (nh = 4/3) withperiod λ = 3 (dashed line), for �lling n = 3/4 (nh = 5/4) with period λ = 4(solid line), and for �lling n = 4/5 (nh = 6/5) with period λ = 5 (dotted line).with period λ = 3 is stable for relatively small values of V2/t, it is possible to
hoose a rather realisti
 value of V2 ∼ 0.4t 7 that the odd-period-CDW stateare already stable while the even-period-CDW state is not yet stable (see Fig.2.14).The reason for this distin
t behaviour of the CDW state with period λ = 3lies in the pe
uliar band stru
ture for the 
hains for n = 2/3. In fa
t, this bandstru
ture is nested, i.e. the Fermi momentum 
oin
ides with the edge of the(folded) Brillouin zone (not shown). Therefore, the system is unstable towardthe order already for in�nitely small intera
tion.Con
lusions.� Thus, for the toy-model for two 
oupled 
hains we indeedobtain that there exists su
h a realisti
 value of the interladder intera
tion pa-rameter V2 where the even-period-CDW state is not stable while the odd-period-CDW states are stable. However, the me
hanism for this behaviour lies entirelyin the pe
uliar features of this 1D system (nesting). Therefore, although thephenomenon is interesting itself, it 
annot explain the la
k of the CDW statewith period λ = 4 in the Cu2O5 
oupled ladders in Sr10Ca4Cu24O41 [8℄.

7Whi
h is only 
a. 20% smaller than the 0.5t value 
al
ulated using Eq. (2.38) andparameters from Ref. [39, 51℄. 54



Chapter 3Verifying the idea of orbitallyindu
ed hole lo
alizationThis 
hapter is based on the following publi
ations: (i) K. Wohlfeld, `Polaron inthe t-J models with three-site terms: the SU(2) and the Ising 
ases', AIP Confer-en
e Pro
eedings 1014, 265-269 (2008); and (ii) K. Wohlfeld, M. Daghofer, A.M. Ole±, P. Hors
h, `Spe
tral properties of orbital polarons in Mott insulators',Physi
al Review B 78, 214423/1-24 (2008).3.1 Introdu
tionDoping Mott insulators with holes.� The Mott insulators, i.e. su
h insulatorsin whi
h ele
trons lo
alize due to the strong on-site Coulomb repulsion U , arebest understood in the so-
alled `
ommensurate 
ase' [2, 54℄. Then the averagenumber of ele
trons per site is an integer number and in the low-temperatureMott insulating phase the hopping between the neighbouring sites in the latti
eis not allowed as it 
osts energy U > W (where, as in the previous Chapter,
W = 2zt with t being the strength of the largest hopping element while z isthe 
oordination number in the hyper
ubi
 latti
e). A
tually the reason whythis state is well understood is the onset of the asso
iated magneti
 and/ororbital ordering in su
h a 
ase: the ele
trons in the `
ommensurate 
ase' 
an stillperform virtual hoppings whi
h lower the total energy of the system and whosemagnitude strongly depends on the alignment of the spins of the ele
trons onthe neighbouring sites. Su
h virtual pro
esses, 
alled superex
hange pro
esses,lead to some kind of magneti
 ordering and/or orbital ordering.1 Thus, morepre
isely, it is the asso
iated magneti
 and/or orbital ordering whi
h is well-understood in the `
ommensurate 
ase' while the Mott insulating state itself isstill far from being understood (despite over 70 years of resear
h [20, 66℄).A somewhat similar situation o

urs in the `non-
ommensurate' 
ase, i.e.when the number of ele
trons in the system is not an integer number (see Refs.[20, 28℄ for a not-up-to-date but nevertheless a thorough review on this extremelybroad subje
t). Sin
e always the limiting 
ases are the most interesting ones1The detailed form of the magneti
 and possibly orbital ordering depends on the details ofthe band stru
ture. 55



in physi
s (as being the easiest to study), one typi
ally looks at the problemwhen the number of ele
trons in the Mott insulating systems is very 
lose tothe integer number. At this stage one should make a remark on the language:a
tually when we just take out a fra
tion of ele
trons from su
h a `
ommensurate'Mott insulator, then it is easier to talk about introdu
ing holes into the Mottsystem. Anyway, in these hole doped Mott insulators one again fa
es a similarproblem as the one des
ribed in the above paragraph. Again, it is di�
ult todis
uss the hole doped Mott insulating state itself. On the other hand, one 
anrelatively easily dis
uss what happens when the holes are introdu
ed into theasso
iated magneti
 and/or orbital ordering.Motion of a single hole in Mott insulators.� The simplest problem whi
harises when the holes are doped into Mott insulators 
ould be stated as follows:what happens when merely a single hole is introdu
ed into the `
ommensuratestate' [21, 67℄. Would su
h a hole be 
on�ned (lo
alized) or would it rathermove 
oherently through the latti
e? As dis
ussed above su
h a general questionwould be rather di�
ult to answer. Instead it would be mu
h easier to verifywhat happens when a single hole is introdu
ed into the magneti
ally/orbitallyordered state whi
h 
ould be 
on
omitant with the Mott insulating state itself.Inter alia, one should mention here that there is a very attra
tive idea thatthe mere presen
e of orbital degenera
y in the transition metal oxides leads tothe hole 
on�nement in the strongly 
orrelated ele
tron system. As alreadymentioned in the Prefa
e to the thesis this is ba
ked by the following fa
ts: (i)the manganites show a 
olossal magnetoresistive e�e
t [12, 13, 14, 15℄ whi
h 
anbe attributed to the orbital degenera
y [16, 17, 18℄, and (ii) the transition metaloxides with orbital degenera
y (e.g. manganites or vanadates) have mu
h morestable insulating phases with hole doping [15, 19℄ than the 
uprates withoutorbital degenera
y [20℄.A
tually, in two simple magneti
ally/orbitally ordered states su
h a problemwas already investigated (see below) and (out of the simplest possible orderings)it is only in a pe
uliar Mott insulator with t2g orbital degrees of freedom thatthe answer to the problem is not yet settled � it is the purpose of this 
hapterto investigate this problem. Let us �rst, however, give a brief overview of thesetwo already investigated 
ases of the single hole in the magneti
ally/orbitallyordered states.Absen
e of hole 
on�nement in the AF phase.� If, in the Mott insulator, thehighest o

upied orbital in the ions with un�lled ele
troni
 shells is not degener-ate with any other orbital (whi
h 
ould in prin
iple happen in some parti
ular
rystal �eld, see below) and if the ions themselves form a 
ubi
 latti
e, thensu
h a Mott insulating state develops an AF order below a 
riti
al temperature
TN in the `
ommensurate phase' [54℄. A typi
al example is the 2D AF planeformed by CuO2 sheets of atoms in, for example, La2CuO4 (the parent 
om-pound for high-Tc supere
ondu
tors) or Sr2CuO2Cl2 [68, 69℄. When a singlehole is inserted into su
h a state then it forms a defe
t in the AF ba
kground[21℄. Naively, i.e., 
onsidering the fa
t that the AF state at temperature T = 0and in 2D has a 
lassi
al Néel order, one expe
ts that a propagating hole woulddisturb the AF ba
kground and generate a string of broken bonds, with everin
reasing energy 
ost when the hole 
reates defe
ts moving away from its initialposition. This suggests hole 
on�nement as realized already four de
ades ago[21℄. Nevertheless, the quantum nature of this problem leads to a new quality:a hole in the AF Mott insulator 
an propagate 
oherently on the superex
hange56



Figure 3.1: The energy splitting of the 3d states of the ion pla
ed in the 
ubi

rystal �eld into: (i) the t2g levels (3 degenerate states: dxy, dzx and dyz) and (ii)the eg levels (2 degenerate states: dx2−y2 and d3z2−r2). The �gure is reprodu
edafter Ref. [71℄.s
ale J whi
h 
ontrols AF quantum �u
tuations [22, 23, 70℄, be
ause they healthe defe
ts arising on the hole path. Cru
ial for this observation is the presen
eof transverse spin 
omponents ∝ (S+
i S

−
j + S−

i S
+
j ) in the e�e
tive low-energyHeisenberg model derived from the appropriate superex
hange intera
tions.Orbital degenera
y.� Quite often the highest o

upied orbital on the ionswith un�lled shells in the Mott insulators is energeti
ally degenerate with oneor more other orbitals. This gives rise to a ri
h variety of phenomena [72, 73, 74℄whi
h 
ould jointly be termed as `orbital physi
s'. For example, if the ions arepla
ed in the 
ubi
 
rystal �eld, then for instan
e the 3d levels are split intotwo distin
t degenerate levels: (i) the lower lying t2g levels (3 degenerate states:

dxy, dzx and dyz) and (ii) the eg levels with higher energy (2 degenerate states:
dx2−y2 and d3z2−r2); 
f. Fig. 3.1. This is due to the high symmetry of the
rystal �eld: obviously in the spheri
ally symmetri
 �eld of the nu
leus (as isthe 
ase of the single hydrogen atom) all 3d orbitals are degenerate whereasthe less symmetri
 
rystal �eld 
ould in prin
iple remove the degenera
y of the
t2g or eg levels. In the `textbook' example of the orbitally degenerate systemLaMnO3 the manganese ions have 3d4 
on�guration and, in the ioni
 pi
ture,the highest o

upied level is the degenerate eg level: in the absen
e of any otherpro
esses (see below) there would be 50% probability to �nd the ele
tron in thestate dx2−y2 and 50% probability to �nd the ele
tron in the state d3z2−r2 .Furthermore, in the orbitally degenerate Mott insulators the superex
hangepro
esses are more 
ompli
ated as they have to involve the orbital and spindegrees of freedom on equal footing [72, 73℄. This 
ould lead to the onset of boththe magneti
 and orbital order in the system. The parti
ular kind of this orderdepends on the symmetries of the orbitally degenerate orbitals. This in turnsmeans that the behaviour of the single hole doped into the Mott insulator withorbital degrees of freedom would depend on the kind of the orbital degenera
ypresent in the system [75℄.Absen
e of hole 
on�nement in systems with eg AO order.� As already57



mentioned above one of the most prominent examples of the orbitally degeneratesystems is LaMnO3. There, in this `
ommensurate 
ase', the superex
hangepro
esses lead to the development of the AO order 
on
omitant with the FMspin alignment in the ab plane and the FO order with spin AF order along the
c dire
tion [76℄.2 Similarly as in the purely spin 
ase (hole in the AF state, seeabove), one 
ould think that the doped hole would be 
on�ned in the plane ofsu
h an ordered state. This time the reason is that the superex
hange pro
esseswhi
h lead to the AO order are mu
h more 
lassi
al and the AO order is mu
hmore robust than in the spin AF 
ase [29℄. However, also here the hole �nds away to propagate: the 
oherent propagation arises not only due to the very smallbut still �nite quantum �u
tuations present in the system but predominantlydue to the possibility of the eg interorbital hopping whi
h allows for the holemotion without disturbing the AO ba
kground (whi
h in the spin languagewould 
orrespond to the spin-�ip hopping) [77℄.Main goals of the 
hapter.� As the t2g orbitals have naturally distin
t sym-metries than the eg orbitals one expe
ts a di�erent behaviour when the hole isdoped to the system with t2g orbital degrees of freedom. A natural questionarises then: would the hole be 
on�ned in su
h a Mott insulator? This questionis of high theoreti
al importan
e sin
e the hole 
on�nement in su
h a systemwould mean that it is possible to have orbitally indu
ed hole lo
alization inMott insulators. Of 
ourse the reverse is not true: negative answer to the abovequestion would not mean that the hole 
on�nement in the orbital systems wereimpossible. One 
ould imagine that there exist other me
hanisms whi
h lo
alizethe hole in the orbital systems � for example due to the intera
tions indu
ed bythe latti
e. However, the simplest possible me
hanism, as the one dis
ussed inthis 
hapter, would be outruled.Therefore, the main goals of the 
hapter are: (i) to establish what the min-imal t�J model, whi
h 
ontains the t2g orbital degrees of freedom and bears itstruly distin
tive features, looks like, (ii) what is the undoped ground state of thismodel (e.g. whether the quantum �u
tuations exist in the ground state), and(iii) whether the doped hole 
an move 
oherently in su
h an undoped groundstate.Stru
ture of the 
hapter.� The 
hapter is organized as follows. In Se
. 3.2we start the analysis by looking at the anti
ipated features of the new t-J modelwhi
h is derived in Se
. 3.3. Next, the model in the 
ase of the one hole added tothe undoped ground state is solved: (i) we redu
e the model to the polaron-typeHamiltonian using the slave fermion approa
h in Se
. 3.4.1, (ii) we derive theequations for the Green's fun
tions using the SCBA method in Se
. 3.4.2, (iii)we solve the equations obtained in point (ii) numeri
ally on a �nite mesh of themomentum k points (Se
. 3.4.3). Then, in Se
. 3.5 the results are dis
ussed:(i) its validity, see Se
. 3.5.1, (ii) the explanation why the dispersion relationof the doped holes is stri
tly 1D, see Se
. 3.5.2 (see also Appendix A), and (iii)we analyse how the three-site terms lead to the renormalized dispersion of thedressed hole in Se
. 3.5.3. Finally, the 
on
lusions are written in Se
. 3.6 whilein the Posts
riptum in Se
. 3.7 the experimental 
onsequen
es of the obtainedresults are studied (see also Appendix B).2While the Jahn-Teller e�e
t only further stabilizes su
h an order.58



Figure 3.2: The possible hopping elements between the t2g orbitals when theoxygen p orbitals are pla
ed between them: (a) the hopping between di�erent
t2g orbitals is zero, (b) the hopping between the same t2g orbital is possible onlyin the parti
ular plane (the 
hoi
e of the plane depends on the orbital under
onsiderations: e.g. for the dxy orbital is is the ab plane). Both panels arereprodu
ed after Ref. [71℄.3.2 The t2g orbital t�J model with three-site terms`Rough' predi
tions of the new t�J model.� Let us look at the anti
ipatedfeatures of the new t�J model. A
tually, the 
hoi
e of the new t�J model wassomewhat left arbitrary: we have merely noted in the introdu
tion that weintend to study the features of su
h an orbital t�J model that the symmetriesof the t2g orbitals would be demonstrated `at most'. A
tually, this not a verytransparent 
ondition and thus let us �rstly des
ribe what we mean by thesedistin
tive features. In Fig. 3.2 we show the possible hopping elements betweenvarious t2g orbitals. Whereas Fig. 3.2(a) merely shows that the interorbitalhopping is prohibited the most striking feature is shown in Fig. 3.2(b): theele
trons in dxy ≡ c orbital 
an hop in the ab plane whereas they 
annot hopalong the c dire
tion. A similar phenomenon o

urs for dzx ≡ b (hopping onlyin the ac plane) and dyz ≡ a (hopping only in the bc plane) orbitals. Thismeans that 
hoosing that the c orbital has higher energy (whi
h 
ould happenin realisti
 systems, 
f. Sr2VO4) and looking at the plane with ele
trons onlyin the a and b orbitals one 
an get rid of all the quantum �u
tuations in thesuperex
hange pro
esses: this is be
ause then the ex
hange pro
ess is impossibleas the same ele
tron whi
h performs a virtual hop to the neighbouring site hasthen to return to the original site. Thus, without any 
al
ulations, one 
animmediately see that the ground state at half-�lling of the appropriate t�Jmodel for spinless ele
trons would be the Néel AO state (i.e. an ordered statewith two sublatti
es: one with ele
trons lo
alized in a orbitals and the otherone with ele
trons in b orbitals) and is an exa
t ground state, i.e. it does not
ontain any quantum �u
tuations.What happens when one adds a single hole to su
h a state? This has alreadybeen partially dis
ussed in the Introdu
tion but is also shown s
hemati
ally inFig. 3.3. It presents in a s
hemati
 way a few �rst steps in the motion of a59



(a) (b)

(d) (c)Figure 3.3: S
hemati
 view of the anti
ipated hole motion in the t2g orbital
t�J model with AO order formed by a and b orbitals. Cir
les depi
t holes whilehorizontal (verti
al) re
tangles depi
t o

upied b (a) orbitals with ele
trons that
an move only horizontally (verti
ally), respe
tively. The hole inserted in theAO state (a) 
an move via nearest neighbour hopping t, and inter
hanges itsposition with an ele
tron, so that it has to turn by 90◦ in ea
h step along itspath and leaves behind broken bonds leading to string ex
itations with everin
reasing energy (b) and (
). After moving by 270◦ around a plaquette (d),the hole 
annot return to its initial position as would be ne
essary to 
ompletethe Trugman path [78℄.hole inserted at a sele
ted site into su
h a Néel ordered ground state with noquantum �u
tuations. When the hole moves via the nearest neighbour hopping
t, it 
reates string ex
itations in ea
h step that 
annot be healed by orbital�ips be
ause the orbital superex
hange is purely Ising-like. Moreover, it 
aneven not heal the defe
ts by itself be
ause it 
annot 
omplete a Trugman loop[78℄ when the orbital defe
ts are 
reated and three o

upied orbitals are movedanti
lo
kwise on a plaquette after the hole moved 
lo
kwise by three steps, seeFig. 3.3(d). Thus, the hole is 
on�ned in the t2g orbital t�J model.Reasons for wrong predi
tions.� A priori there should be no reason why notto believe in the 
onje
ture written above: provided, the detailed mathemati
al
al
ulations 
on�rm the above analysis one 
ould indeed make a 
laim that `thehole is 
on�ned in the t2g AO ordered state'. However, in the last se
tion wedis
ussed in detail how a hole 
ould move in the spin AF state or in the eg AOstate. In both 
ases the hole at �rst 
ould be thought to be immobile and onlythe detailed study and in
lusion of some negle
ted pro
esses (su
h as quantum�u
tuations or interorbital hopping) leads to the 
on
lusion that the 
oherenthole motion is possible. This `histori
al perspe
tive' suggests that also this timeone has to be very 
areful while negle
ting any pro
esses whi
h 
ould be essentialin the Hamiltonian to faithfully des
ribe the properties of the system.There is yet, another, more physi
al, reason. In Ref. [23℄ it is shown thatwhen one studies the motion of a hole in the model without quantum spin �u
tu-ations, then some approximations whi
h are valid in the SU(2) symmetri
 
aseno longer apply. More pre
isely, in the Ising 
ase the violation of the so-
alled
C1 
onstraint (see Ref. [23℄), stating that no hole and magnon 
an be presentat the same site in the e�e
tive polaron-model, leads to serious underestimationof the in
oherent bandwidth while the same violation of this 
onstraint in the60



SU(2) symmetri
 
ase does not 
ause any problem. Thus in the 
ase when the
SU(2) symmetry is absent in the model one has to be more 
areful with all theapproximations made.More 
areful approa
h needed.� There exists one serious approximationwhi
h is already a generi
 feature of the standard t�J model: the so-
alledthree-site terms are negle
ted there, see Chapter 1. These terms are presentin any meaningfull 
anoni
al perturbation theory derivation of the t�J fromthe Hubbard model [1, 2℄. A
tually, `why the full strong-
oupling model [i.e.
t�J model with three-site terms � note added by K. W.℄ has re
eived far lessattention than the t�J model is un
lear' as Eskes and Eder write in Ref. [79℄.Most probably the reason 
an be that the three-site terms give a mu
h smaller
ontribution to the total energy than the superex
hange term or the 
onstrainedhopping term: the latter two s
ale as ∝ J(1 − δ)2 or ∝ tδ (where δ ≪ 1 is thenumber of doped holes) while the three-site terms are ∝ Jδ. Indeed, in
ludingthe three-site terms in the standard t�J model does not yield any new quali-tative results 
on
erning the hole motion in the AF state [80℄. Here, however,in what follows it will be shown that these terms are indeed needed to give aphysi
ally relevant answer to the problem of orbitally indu
ed hole 
on�nement.Thus, let us now present the derivation of the physi
ally relevant t2g orbital t�Jmodel with three-site terms.3.3 The model3.3.1 The t2g orbital t�J HamiltonianHubbard-like model.� As the starting point we 
onsider the Hubbard-like modeldes
ribing ele
trons in transition metal oxides with a
tive t2g orbitals when the
rystal �eld splits them into eg and a1 states, and the doublet eg is �lled byone ele
tron per site. This o

urs for the d1 
on�guration (e.g. in the titanates)when the eg doublet has lower energy than the a1 state, or for d2 
on�gurationwhen the eg states have higher energy and are 
onsidered here, while the a1state is o

upied by one ele
tron at ea
h site and thus ina
tive (as in the high-spin ground state of the RVO3 perovskites [81℄ where R stands for a rare earthelement). More pre
isely, we 
onsider ele
trons with two t2g orbital �avours, aand b, moving within the ab plane. The ele
trons in su
h orbitals 
an propagate
onserving the orbital �avour by the nearest neighbour hopping t, but only alongone dire
tion in the ab plane, see also Fig. 3.2. Furthermore, we assume thatthe system has an FM order whi
h means that all the spins are the same and forthe purpose of the studies presented below one 
an safely skip the spin index,see also [82℄. This results in the following orbital Hubbard model

H = −t
∑

i

(
b†i bi+â + a†i ai+b̂

+ H.c.
)

+ U
∑

i

nianib, (3.1)where a†i (b†i ) 
reates a spinless ele
tron with orbital �avour a(b) at site i, {nia, nib}are ele
tron density operators, and t is the hopping element along b or a axis.Similarly as in the Introdu
tion U stands for the on-site intera
tion energy fora doubly o

upied 
on�guration. At the �lling of one ele
tron in {a, b} orbitalsper site this intera
tion 
orresponds to the high-spin d2 (or d3) state (i.e. it 
or-responds to U−3JH in terms of element of the Coulomb intera
tion between 3d61



ele
trons, where U is the intraorbital on-site intera
tion between two ele
tronsand JH is the on-site ex
hange element whi
h 
auses the Hund's rule energygain due to the FM alignment of two spins on the same site). As dis
ussed indetail in Se
. 3.2 su
h a 
hoi
e of a
tive t2g orbitals guarantees that the t�Jmodel would bear all of the desired and distin
tive features of the t�J modelfor 
orrelated ele
trons in t2g orbitals.Canoni
al perturbation expansion.� The task is now to apply to Eq. (3.1)the 
anoni
al perturbation expansion similarly as the one introdu
ed in Chapter1 for the spin Hubbard model. A
tually these 
al
ulations are done in the sameway as in that 
hapter and the only di�eren
e now is that the parts of theHamiltonian whi
h des
ribe pro
esses within/between the Hubbard subbandsare de�ned di�erently. Namely
H = H0 + H1, (3.2)where H0 des
ribes the physi
s within the Hubbard subband:

H0 =V + T0,

V =U
∑

i

nianib,

T0 = − t
∑

i

{
(1 − nia)b

†
i bi+â(1 − ni+â,a) + (1 − nib)a

†
i ai+b̂

(1 − n
i+b̂,b)

+ niab
†
i bi+âni+â,a + niba

†
i ai+b̂

n
i+b̂,b + H.c.

}
, (3.3)while H1 is responsible for hopping pro
esses between di�erent Hubbard sub-bands:

H1 = T+ + T−,

T+ = −t
∑

i

{
niab

†
i bi+â(1 − ni+â,a) + niba

†
i ai+b̂

(1 − n
i+b̂,b) + H.c.

}
,

T− = −t
∑

i

{
(1 − nia)b

†
i bi+âni+â,a + (1 − nib)a

†
iai+b̂

n
i+b̂,b + H.c.

}
. (3.4)Central Hamiltonian of the 
hapter.� Then following the same steps as inChapter 1 we obtain the appropriate t2g orbital t�J model:3

H = Ht +HJ +H3s, (3.5)where the Ht is the kineti
 energy in the 
onstrained Hilbert spa
e with nodouble o

upan
ies (see Se
. 3.3.2), HJ des
ribes the superex
hange terms (seeSe
. 3.3.3), and �nally H3s are the three-site terms whi
h were negle
ted in the�nal t�J Hamiltonian in Chapter 1 (see Se
. 3.3.4).3.3.2 The kineti
 energy termExpli
it form.� Using Eq. (3.3) and the 
anoni
al perturbation expansion of3In the literature the t�J model with three-site terms is also 
alled the strong-
ouplingmodel [80℄. However, to avoid 
onfusion we will not use this name sin
e throughout this thesiswe deal with several di�erent extensions of the standard t�J model and the strong-
ouplingmodel is just another variation of su
h extended version of the t�J model.62



Chapter 1 one obtains the kineti
 energy term,
Ht = −t

∑

i

(
b̃†i b̃i+â + ã†i ãi+b̂

+ H.c.
)
, (3.6)where the use of the operators

b̃†i = b†i (1 − nia), (3.7)and
ã†i = a†i (1 − nib), (3.8)mean that the hopping is allowed only in the 
onstrained Hilbert spa
e with nodoubly o

upied sites.3.3.3 The Ising superex
hange termExpli
it form.� Following the same steps as in Chapter 1 and using Eq. (3.4)we obtain that the superex
hange pro
esses for the Hubbard model under 
on-sideration take the form

HJ =
1

2
J

∑

〈ij〉

(
T zi T

z
j − 1

4
ñiñj

)
, (3.9)where the summation goes over the pairs formed by the nearest neighbour sites

i and j. The parameter J is de�ned as
J =

4t2

U
, (3.10)while the pseudospin operators T zi is

T zi =
1

2
(ñia − ñib). (3.11)Here ñi = ñia + ñib and the superex
hange vanishes when two ele
trons withthe same orbital �avour o

upy sites i and j.The Ising 
hara
ter.� Note the total absen
e of the pseudospin-�ip terms

∝ (T+
i T

−
j +T−

i T
+
j ) in the superex
hange intera
tions whi
h are now purely Isingtype. This is be
ause along ea
h parti
ular dire
tion only one orbital �avour 
anhop: the virtual ex
hange pro
ess∝ T−T+ in whi
h an ele
tron with for example

a orbital �avour makes a virtual ex
ursion to the neighbouring site (whi
h 
ostsenergy U) and then an ele
tron with b orbital �avour returns is impossible[see the form of Eq. (3.4)℄. Sin
e only su
h virtual pro
esses 
ontribute tothe pseudospin-�ip terms, the latter terms are absent. The same phenomenonexplains also the prefa
tor 1
2 in Eq. (3.9). Nevertheless, the stri
tly 1D kineti
energy of the ele
trons in the two orbitals leads to the 2D superex
hange.Let us also note, that the pseudospin-�ip pro
esses ∝ (T+

i T
−
j + T−

i T
+
j )would be present in the (not 
onsidered here) model for strongly 
orrelated aand b ele
trons along the c axis. In fa
t, this is the 
ase in a somewhat more
ompli
ated spin-orbital model for 
ubi
 vanadates [83℄ where su
h pseudospin�u
tuations are responsible for the onset of the AF order in the ab plane andthe FM order along the c axis in LaVO3 (see Ref. [83℄ and dis
ussion in Chapter4). 63



3.3.4 The three-site termsOrigin of the three-site terms.� As dis
ussed in Chapter 1 when one derivesthe t�J model from the Hubbard model one obtains also the so-
alled three-siteterms whi
h also originate from the ∝ T−T+ virtual pro
esses. These terms areoften negle
ted [e.g. in the standard t�J model, see Eq. (1.22)℄ but here theywill turn out to be important and lead to qualitative 
hanges, see dis
ussion inSe
. 3.2.Expli
it form.� We 
ast the three-site terms into two di�erent 
lasses:
H3s = H3s(l) +H3s(d), (3.12)where H3s(l) are the three-site terms along the line and H3s(d) are along thediagonal. It is relatively straightforward [using Eq. (3.4) and Eq. (1.18) fromChapter 1℄ to obtain their expli
it form:

H3s(l) =− τ
∑

i

(b̃†i−âñiab̃i+â + H.
.) − τ
∑

i

(ã†
i−b̂

ñibãi+b̂
+ H.
.) , (3.13)

H3s(d)=− τ
∑

i

(ã†
i±b̂

ãib̃
†
i b̃i±â + H.
.) − τ

∑

i

(ã†
i∓b̂

ãib̃
†
i b̃i±â + H.
.), (3.14)where

τ =
t2

U
. (3.15)Note that in prin
iple we 
ould have used J as the energy s
ale of the three-site terms but for dida
ti
 reasons we de�ne a di�erent 
onstant whi
h will be
onne
ted solely with the three-site terms. In what follows this will enable usto distinguish between the pro
esses related to the superex
hange terms and tothe three-site terms.3.4 Method and results3.4.1 The slave-fermion approa
hSlave-fermion approa
h.� It is widely re
ognized that the 
entral di�
ulty insolving any t�J model is the problem of ful�lling the 
onstraint of no doubleo

upan
ies at ea
h site. There are several methods suggested to over
omethis di�
ulty in an approximate way. One of them is 
alled the slave-bosonmethod and is typi
ally used for systems whi
h are relatively highly doped[20℄, 
f. Chapter 2. On the other hand, for the very lightly doped system themethod of 
hoi
e is the slave-fermion approa
h as it is quite good in des
ribingthe half-�lled ground state and its ex
itations (where it merely amounts to theintrodu
tion of S
hwinger bosons for spins and/or pseudospins [20℄). As in thepresent 
hapter we are interested in the properties of the system in the extremelylow doped regime we introdu
e the latter method in what follows and transformthe Hamiltonian H into the e�e
tive Hamiltonian Heff .Undoped 
ase: low energy ex
itations.� It is easy to verify that the 
lassi
alundoped ground state of the Hamiltonian Eq. (3.5) is the Néel ordered AOstate:

|Φ0〉 =
∏

i∈A
a†i

∏

j∈B
b†j |0

)
, (3.16)64



with a orbitals o

upied on the sublatti
e A and b orbitals o

upied on thesublatti
e B is an exa
t ground state. Here |0) is the true va
uum state with noele
trons, while |Φ0〉 is the physi
al va
uum at half �lling. Next, let us 
onsiderthe low energy states. Below, we will 
al
ulate the orbital ex
itations (orbitons �see Ref. [84℄) at half �lling by transforming the pseudospins into the S
hwingerbosons and then using the linear orbital wave (LOW) approximation.First, in the 
lassi
al state we introdu
e two sublatti
es A and B su
h thatall a (b) orbitals are o

upied in the perfe
t AO state in sublatti
e A (B). Nextwe rotate pseudospins on sublatti
e A so that the symmetry of the latti
e isre
overed, all the pseudospins in the whole latti
e take positive values now,
〈T zi 〉 = 1/2, and the Hamiltonian 
hanges appropriately.Se
ond, we introdu
e S
hwinger bosons t su
h that:

T zi =
1

2
(nitb − ntita) (3.17)with the lo
al 
onstraint at ea
h site i

∑

γ=a,b

t†iγtiγ = 1. (3.18)Third, we transform the S
hwinger boson operators into the Holstein-Primako�bosons β:4
t†ib =

√
1 − t†iatia ≡

√
1 − β†

i βi, (3.19)
t†ia = β†

i , (3.20)where the above 
onstraint is now no longer needed.Next, we substitute the above transformations into the Hamiltonian HJand skip higher order terms (LOW approximation). The latter approximationphysi
ally means that the number of bosons β is small (whi
h is naturally the
ase for low energy states). This results in the e�e
tive substitution
T zi =

1

2
− β†

i βi. (3.21)Finally, we introdu
e Fourier transformation separately for ea
h sublatti
e(N is the total number of sites on both sublatti
es while N/2 is the number ofsites in ea
h sublatti
e):
βkA =

√
2

N

∑

j∈A
eikjβj, (3.22)

βkB =

√
2

N

∑

j∈B
eikjβj. (3.23)Then, after negle
ting 
onstant terms whi
h merely give the 
lassi
al energyof the undoped ground state, the LOW Hamiltonian for orbitons reads:

Heff
J = J

∑

k

(β†
kAβkA + β†

kBβkB), (3.24)4We denote the orbital ex
itations with β sin
e it is very 
ommon in the literature [23℄ touse α for spin ex
itations. 65



where the orbiton energy does not depend on momentum k. The fa
t thatthe ex
ited states have higher energy than the ground state proves the stabil-ity ground state. In fa
t, the dispersionless ex
itations do not generate anyquantum 
orre
tions and the 
lassi
al ground state is exa
t.Doped hole: 
oupling with orbitons.� We expe
t that a doped hole does notmodify signi�
antly the 
lassi
al ground state stable for the half-�lled 
ase (seeabove). The situation 
ould be di�erent in the lightly doped regime but in the
ase of one hole in the whole plane su
h a modi�
ation is negligible and will benegle
ted below. Instead, the doped hole may modify its neighbourhood by its
oupling to the ex
itations of the 
lassi
al ground state � orbitons � whi
hrenormalize the hole motion. In order to des
ribe it mathemati
ally, we rewrite
Ht (see next paragraph) and H3s (see below) using similar transformations asperformed for the half-�lled 
ase.First, we rotate spins and pseudospins on sublatti
e A. Next, using the slave-fermion approa
h we express the ele
tron operators in terms of the S
hwingerbosons introdu
ed above and in terms of the (
onstrained) fermioni
 operatorsrepresenting holes:

ã†i = t†iahi, (3.25)
b̃†i = t†ibhi. (3.26)Here the 
onstraint on the bosoni
 operators is as in Eq. (3.18) while h†ihidenotes the number of holes at site i.Next, similarly as above, we transform the S
hwinger bosons into the Holstein-Primako� bosons, skip all terms 
ontaining more than two bosons, and performFourier transformation for bosons and (additionally) for holons to arrive at theHamiltonian:

Heff
t =

zt√
N

∑

k,q1

{
Mx(k,q1)h†kAhk−q1,Bβq1A+My(k,q1)h†kBhk−q1,Aβq1B+H.
.},(3.27)where z = 4 is the 
oordination number for the 2D square latti
e and

Mµ(k,q1) =
1

2
cos(kµ − q1µ) (3.28)is the vertex fun
tion with µ = x, y. Thus, the hopping term Ht, Eq. (3.6),transforms into a s
attering of holons on orbitons (orbital ex
itations), with themomentum 
onserved in ea
h s
attering pro
ess.Doped hole: free dispersion.� After performing similar transformations asthe ones introdu
ed for the t part of the Hamiltonian one obtains that the linearthree-site terms, Eq. (4.13), lead to the following Hamiltonian for the holes

Heff
3s = τ

∑

k

{
εB(k)h†kBhkB + εA(k)h†kAhkA

}
, (3.29)where the free dispersion relations are

εA(k) = 2 cos(2ky), (3.30)66



and
εB(k) = 2 cos(2kx). (3.31)Note that we entirely negle
t the diagonal three-site terms whi
h lead to the
oupling between holes and orbitons. This approximation will be dis
ussedfurther in the next se
tions.Thus, in the lightly doped 
ase, when the 
lassi
al orbital ordered groundstate present in the half-�lled 
ase survives, the t�J model (3.5) 
an be redu
edto an e�e
tive model:

Heff = Heff
t +Heff

J +Heff
3s , (3.32)see Eqs. (3.24), and (3.27)-(3.29). A
tually, this is a polaron-type model withthe 
oupling between fermions (holes) and bosoni
 ex
itations (orbitons) whi
his rather straightforward to solve, 
f. next Se
tion. Besides, the validity of themapping between the two models will be dis
ussed in Se
. 3.5.1.3.4.2 The self-
onsistent Born approximationGreen's fun
tions.� The spe
tral properties of the hole doped into the AOground state |Φ0〉 with energy E0 [see Eq. (3.16)℄ of the t�J model Eq. (3.5) athalf-�lling, treated here as a physi
al va
uum, follow from the Green's fun
tions:

Ga(k, ω) =

〈
Φ0

∣∣∣∣a
†
k

1

ω +H − E0
ak

∣∣∣∣ Φ0

〉
, (3.33)

Gb(k, ω) =

〈
Φ0

∣∣∣∣b
†
k

1

ω +H − E0
bk

∣∣∣∣Φ0

〉
. (3.34)However, due to the mapping of the t�J model onto polaron model (3.32) per-formed in the last se
tion, it is now 
onvenient to express the above Green'sfun
tions in terms of the polaron Hamiltonian Heff . This requires that one�rst writes down the ele
tron operators in terms of the operators used in Eq.(3.32):

ak =
1√
N




∑

j∈A
eikjh†j +

∑

j∈B
eikjh†jβj



 , (3.35)
bk =

1√
N




∑

j∈A
eikjh†jβj +

∑

j∈B
eikjh†j



 . (3.36)Se
ond, the ground state |Φ0〉 is now a physi
al va
uum |0〉 with respe
t tothe orbiton operators βk with energy E 
al
ulated in the LOW approximation.Then, one arrives at the following relations:
Ga(k, ω) =

1

2

〈
0

∣∣∣∣hkA
1

ω +Heff − E
h†kA

∣∣∣∣ 0

〉
≡ 1

2
GAA(k, ω), (3.37)

Gb(k, ω) =
1

2

〈
0

∣∣∣∣hkB
1

ω +Heff − E
h†kB

∣∣∣∣ 0

〉
≡ 1

2
GBB(k, ω), (3.38)67
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Figure 3.4: Diagrammati
 representation of the perturbative pro
edure usedwithin the SCBA: top � the Dyson's equation for the GBB(k, ω) and GAA(k, ω)Green's fun
tions; bottom � the summation of diagrams for the self-energy
ΣBB(k, ω). Dashed (dashed-dotted) lines stand for Green's fun
tions for or-bitons on sublatti
e B (A). Equation for ΣAA(k, ω) is similar (not shown).where the above set of equations follows from the fa
t that βk|0〉 = 0 and thefa
tor 1/2 is due to the operators hkA (hkB) being de�ned separately for ea
hsublatti
e. Note that here the ground state energy E is taken as a referen
e inorder to be able to 
ompare results of the present approa
h with those obtainedusing the variational 
luster approa
h (VCA) for the Hubbard model, see Se
.3.5.1.Equations for the self-energy.� We 
al
ulate the above Green's fun
tions bysumming over all possible non-
rossing diagrams (i.e. negle
ting 
losed loops),
f. lower part of Fig. 3.4. However, the 
rossing diagrams do not 
ontributehere sin
e the 
losed loops (Trugman pro
esses) do not o

ur, see Fig. 3.3.Sin
e the stru
ture of the present problem makes it ne
essary that two Green'sfun
tions and two self-energies are 
onsidered, we obtain the following SCBAequations for the self-energies (see also Fig. 3.4):

ΣAA(k, ω) =
z2t2

N

∑

q

M2
x(k,q)GBB(k − q, ω + J), (3.39)

ΣBB(k, ω) =
z2t2

N

∑

q

M2
y (k,q)GAA(k − q, ω + J). (3.40)The above equations should always be supplemented by the Dyson's equations:

GAA(k, ω) =
1

ω + J + τεA(k) − ΣAA(k, ω)
, (3.41)

GBB(k, ω) =
1

ω + J + τεB(k) − ΣBB(k, ω)
. (3.42)They, together with Eqs (3.39-3.40), form a self-
onsistent set of equations whi
hhas to be solved numeri
ally. 68
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Figure 3.5: The spe
tral fun
tions as obtained in the SCBA for the t2g orbital t�
J model (3.5) for a hole doped into: (a) a orbital, and (b) b orbital. Parameters:
J = 0.4t and τ = 0.1t. Broadening δ = 0.01t and 
luster size 20 × 20.Finally, on
e the Green's fun
tions are known, one 
an 
al
ulate the spe
tralfun
tions for a hole 
reated in a and b orbital:
Aa(k, ω) = − 2

π
lim
δ→0

ImGa(k, ω + iδ) = − 1

π
lim
δ→0

ImGAA(k, ω + iδ) , (3.43)
Ab(k, ω) = − 2

π
lim
δ→0

ImGb(k, ω + iδ) = − 1

π
lim
δ→0

ImGBB(k, ω + iδ) , (3.44)where we introdu
e a fa
tor of 2 in front of the de�nition of the spe
tral fun
tion
Aγ(k, ω) for 
onvenien
e.Note that the intersublatti
e Green's fun
tion GAB(k, ω) vanishes sin
e itwould imply that at least one defe
t was left in the sublatti
e B after the holewas annihilated in the sublatti
e A, resulting in orthogonal states as there areno pro
esses in the Hamiltonian whi
h 
ure su
h defe
ts [
f. the form of theHamiltonian Eq. (3.32) and Fig. 3.4℄.3.4.3 The spe
tral fun
tions and quasiparti
le propertiesSpe
tral fun
tions.� The system of SCBA equations (3.39)-(3.42) was solvedself-
onsistently on a mesh of 20 × 20 k-points (besides, the 
onvergen
e was
he
ked by 
omparing the results with those obtained for the 
luster with 32×32
k-points). The spe
tral fun
tions are displayed in Fig. 3.5. Surprisingly, thespe
tral density 
onsists of dispersive ladder-like spe
trum suggesting that thehole doped into any of the two orbitals is mobile. The dispersion is parti
ularlypronoun
ed for the �rst (low-energy) ex
itation whi
h 
an be identi�ed as aquasiparti
le state. One �nds that the dispersion is stri
tly 1D and is di
tatedby the orbital �avour at the site where the hole is originally added, i.e. nodispersion o

urs in the 
omplementary dire
tion. For example, a hole addedto the a orbital moves only along the b dire
tion.Hole propagation due to three-site terms.� Sin
e removing the three-siteterms from the Hamiltonian (3.5) leads to the disappearan
e of the dispersion(not shown) one 
an immediately as
ribe the onset of this small dispersion ∝ τto the hole motion via the three-site terms. Furthermore, then the spe
tralfun
tions (whi
h 
onsist of dispersionless ladder-type peaks) are qualitatively69
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Figure 3.6: Quasiparti
le properties obtained for the 2D t2g model within theSCBA for in
reasing superex
hange J (with τ = J/4): (a) the bandwidth of thequasiparti
leW1 (solid line) and the se
ond dispersive feature W2 (dotted line),(b) the spe
tral weight aQP, and (
) the distan
e between the �rst two peaksin the spe
tra (pseudogap) ∆. The solid (dashed) lines in (b) and (
) give theresults for k = (0, 0) [k = (π/2, π/2)℄, respe
tively. The light solid line in (
)indi
ates ∆ = t(J/t)2/3 law (see text).similar to the results obtained for a hole doped into the spin t�J model withIsing only intera
tion, see e.g. Fig. 3 of Ref. [23℄, where the hole is trapped in astring-like potential [22℄. This 
on�rms the ideas presented in Se
. 3.2 � indeedin 
ase the three-site terms were not in
luded in the t�J model the hole wouldbe immobile, as shown in Fig. 3.3. Furthemore, as predi
ted in Se
. 3.2, thein
lusion of the three-site terms 
hanges this pi
ture qualitatively as the hole
an then be
ome mobile and the spe
tral fun
tions a
quire a small dispersion.Quasiparti
le properties.� Let us analyse now the 
hara
teristi
 features ofthe quasiparti
le state su
h as: the bandwidth W and the quasiparti
le spe
tralweight aQP. The energy of in
oherent ex
itations (string states) is to someextent 
hara
terized by the separation between the quasiparti
le state and thenext (se
ond) spe
tral feature at higher energy � it is 
alled here a pseudogap
∆. All these quantities in
rease with in
reasing superex
hange energy J (here
τ = J/4), see Fig. 3.6. One �nds that: (i) the bandwidth W1 of the �rstquasiparti
le peak, see Fig. 3.6(a), is proportional to J2 for small J (J < 0.7)and to J in the regime of large J (J > 0.7) � the bandwidth renormalizationis here distin
t from the one found either in the spin SU(2) (see Ref. [23℄) or inthe orbital eg models [77℄, (ii) the bandwidthW2 of the se
ond largest dispersivepeak [Fig. 3.6(a)℄ is smaller than that for the �rst peak and tends to saturateat a value W2 ∼ 0.25t obtained for larger J > t (not shown), (iii) the spe
tralweight aQP of the quasiparti
le peak, shown in Fig. 3.6(b), grows with J , and(iv) the pseudogap ∆ shown in Fig. 3.6(
) grows generally like t(J/t)2/3, whilefor higher J values some deviation from this law is observed for the k = (0, 0)point.Two problems left, to be studied in next se
tions.� Firstly, the la
k of thequasiparti
le dispersion in one dire
tion, e.g. along the a dire
tion for a holedoped into the a orbital (see Fig. 3.5), is at �rst instan
e 
ounterintuitive: One
ould imagine that it should be allowed that the hole doped into the a orbitalswit
hes to a neighbouring site of the B sublatti
e by the t pro
ess, and thenpropagates freely along the a axis by the three-site e�e
tive hopping τ withoutgenerating any further defe
ts. This might in prin
iple lead to some dispersion70



in the spe
tra along the kx dire
tion. In Se
. 3.5.2 we study this problem indetail.Se
ondly, one �nds that the bandwidth of the quasiparti
le is strongly renor-malized as it is mu
h smaller than its free value (
al
ulated from the free three-site term dispersion) W = 2zτ = 2J . Furthermore, the totally di�erent me
h-anism of hole motion in the 
onsidered here t2g orbital model and in the spinmodel [23, 85, 86℄ suggest that one 
annot explain the renormalization of thequasiparti
le bandwidth using any of the ideas proposed previously. In fa
t, themere dependen
e of the bandwidth on the superex
hange energy s
ale J is a
onvex fun
tion of J (see Fig. 3.6) whereas in the spin t�J model the band-width is a 
on
ave fun
tion of J [23, 85, 86℄. Thus, one needs to understandmi
ros
opi
ally how the three-site terms, whi
h lead to the dispersion here, arerenormalized � we investigate this issue in Se
. 3.5.3.3.5 Dis
ussion3.5.1 Validity of the resultsGeneral remarks.� As there are a number of approximations employed whileredu
ing the t2g orbital t�J model (3.5) to the polaron Hamiltonian (3.32) andthen a slightly new approa
h was used to solve the latter model using the SCBAmethod (see below), in what follows: (i) we look at three parti
ular problems
onne
ted with the approximations and methods employed in the previous se
-tions, and (ii) we 
ompare the results obtained using the SCBA method for the
t2g orbital t�J model (3.5) with those obtained in the numeri
al VCA methodfor the Hubbard model (3.1).Sublatti
e-dependen
e of the Green's fun
tions.� Firstly, as it has been al-ready noted in the previous se
tion, if one skips the �avour-
onserving three-siteterms (3.13), the 
al
ulated spe
tral fun
tions (not shown) reprodu
e the well-known ladder spe
tra and are equivalent to those 
al
ulated for the Ising limitof the spin t-J model [23℄. This means that the zig-zag-like hole trapping inthe orbital 
ase is physi
ally similar to the standard hole trapping in the spin
ase (apart from the modi�ed energy s
ale due to a di�erent value of the su-perex
hange, the ladder spe
tra are similar in both 
ases), whereas for the freehole movement obviously it matters whether the dispersion relation is 1D or2D. Moreover, this also means that in this spe
ial 
ase (τ = 0) the spe
tra arethe same for holes doped into either of the orbitals as the Green's fun
tions arethe same for both sublatti
es. However, even in this 
ase it is not allowed toassume a priori that A = B and GAA(k, ω) = GBB(k, ω). In fa
t, these are twosublatti
es with two distin
t orbital states o

upied in the ground state at half�lling, and ea
h orbital has entirely di�erent hopping geometry. This does nothappen in the standard spin 
ase with isotropi
 hopping, and for this reasonone 
an eliminate there the sublatti
e indi
es.Negle
ted three-site terms.� Se
ondly, the result shown in Fig. 3.5 is ob-tained by negle
ting the three-site terms with 90◦ hopping, see Eq. (3.14). Onemay wonder whether this approximation is justi�ed whereas the formally quitesimilar forward hopping term (3.13) is 
ru
ial and is responsible for the absen
eof hole 
on�nement in the ground state with the AO order [85℄. Hen
e, let uslook in more detail at these two di�erent kinds of three-site terms, shown in Fig.71



Figure 3.7: S
hemati
 representation of two three-site terms in the t2g orbitalmodel (3.5). Cir
les depi
t holes while horizontal (verti
al) re
tangles depi
to

upied orbitals with ele
trons that 
an move only horizontally (verti
ally),respe
tively. Pro
esses shown in panels (a)�(
) result from forward propagation(3.13), while the ones shown in panels (d)�(f) and given by Eq. (3.14) 
reate adefe
t in the AO order with the energy 
ost indi
ated by the lines for the bonds
onne
ting two identi
al orbital states (broken bonds) in (f).3.7. The �rst (linear) hopping term (3.13) transports an a ele
tron along the
b axis over a site o

upied by a b ele
tron. Su
h pro
esses are responsible forthe 1D 
oherent hole propagation. As one 
an see in Figs. 3.7(a)�(
), the AOorder remains then undisturbed, so these pro
esses determine the low-energyfeatures in the spe
tra. Hopping by the other three-site term (3.14), shown inFig. 3.7(d)�(f), involves an orbital �ip at the intermediate site, destroys theAO order on six neighbouring bonds, and thus 
osts additional energy. As twoorbitals are �ipped and two ex
ited states are generated, these pro
esses go be-yond the lowest order perturbation theory, and it is 
onsistent to negle
t themin the SCBA. In any 
ase, they 
ould 
ontribute only to the in
oherent pro
essesat high energy and not to the low-energy quasiparti
le. Indeed, this interpre-tation is 
on�rmed by exa
t diagonalization performed for the t2g orbital t�JHamiltonian (3.5) on 4×4 and 4×6 
lusters, whi
h give the same results for thequasiparti
le dispersion, no matter whether the orbital-�ipping terms (3.14) arein
luded or not. In addition, the quasiparti
le dispersion found in the SCBAagrees with the numeri
al results obtained by the VCA (see below), whi
h givesfurther support to the SCBA approa
h in the present problem.Vertex fun
tion in the polaron model.� Lastly, despite several other approx-imations made in writing down the Hamiltonian Eq. (3.32), the vertex part Htis exa
t , in 
ontrast to the Ising intera
tion in the spin t�Jz model [23℄. Thereason is that the 
onstraint C1 mentioned in Ref. [23℄, whi
h states that a holeand a boson ex
itation are prohibited to o

ur simultaneously at the same site,
annot be violated here, be
ause hopping t is stri
tly 1D. This 
an be veri�edby 
onsidering one hole ex
itation spe
tra in the limit of J → 0. Indeed, for72
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Figure 3.8: Spe
tral fun
tion A(k, ω) obtained with the VCA method for the2D t2g Hubbard model (3.1) for: (a) a orbitals, and (b) b orbitals. Parameter:
U = 10t. This result was obtained by Maria Daghofer.
J = 0 one obtains the in
oherent spe
trum with a bandwidth of Winc = 4

√
2t(not shown), whi
h (unlike in the spin 
ase) perfe
tly agrees with the retra
e-able path approximation result Winc = 4

√
z − 2t from Ref. [67℄, where z − 2is the number of possible forward going steps in the model. However, still thethree-site terms H3s and the orbiton terms HJ are not exa
t in Eq. (3.32) andthus it is ne
essary to 
he
k the present results by 
omparing them with thenumeri
al spe
tra obtained for the orbital Hubbard model (3.1) � the resultsare presented below.Comparison with VCA results.� Sin
e the problem of a hole added to theba
kground with the AO order of t2g orbitals 
annot be solved exa
tly usinganalyti
 methods and the SCBA had to be employed in the last se
tion, thenumeri
al VCA 
al
ulations are presented below.5 A
tually, we 
ompare theanalyti
 results for the t2g orbital t�J Hamiltonian (3.5) presented in Se
. 3.4.3with those obtained for the t2g Hubbard model (3.1) using the VCA method.This enables us to 
ompare not only the methods employed but also the twomodels whi
h stand for the same physi
s in the strongly 
orrelated regime.Before we analyse the spe
tral fun
tions, let us re
all that the VCA method[87℄ is appropriate for models with on-site intera
tions, as for instan
e thepresent Hubbard model (3.1) for t2g orbitals, but 
annot be easily implementedfor models where the intera
ting part 
onne
ts di�erent sites, like in the t-Jmodel. For the present t2g model (3.1) the VCA method is used with theopen boundary 
onditions [87℄, whi
h leads to the spe
tral densities depi
ted inFig. 3.8. The results resemble very mu
h the SCBA results of Fig. 3.5 for t2gorbital t�J model (3.5), suggesting that not only both models are indeed equiv-alent in the strongly 
orrelated regime, but also that the implemented SCBAmethod of Se
. 3.4.3 is of a very good quality. The di�eren
es between them,almost ex
lusively a�e
ting high-energy features, are dis
ussed below.On the one hand, one sees that the high-energy part of the spe
tral densityin Fig. 3.8 is 
omposed of a number of peaks with a dispersion almost parallel tothat of the quasiparti
le state. In fa
t, the spe
trum 
orresponds almost exa
tlyto the ladder spe
trum of the spin t-J model with Ising superex
hange [22, 23℄but with a weak dispersion added to the peaks. The peaks at higher-energyare dispersive for the same reason as the quasiparti
le state: After hopping a5These 
al
ulations were performed by Maria Daghofer.73



few times by nearest neighbour hopping t � and 
reating string ex
itations,see Fig. 3.7 � the hole 
an exhibit 
oherent propagation via three-site terms,leading to the observed dispersion. On the other hand, the VCA spe
trum (Fig.3.8) does not show these distin
t peaks and the stru
ture of A(k, ω) is ri
her.However, the �rst moments 
al
ulated in separate intervals of ω follow similardispersions to those found for the �rst three peaks obtained in A(k, ω) withinthe SCBA [85℄.The above di�eren
e 
an be understood as following from the full Hilbertspa
e used in the VCA 
al
ulations whi
h results in ex
itations of doubly o
-
upied sites, weakening of the AO order even for relatively large U = 10t.Therefore the spe
tra of Fig. 3.8 have more in
oherent features. In addition,the three-site terms whi
h 
reate two orbiton ex
itations (3.14) that were ne-gle
ted in the SCBA, might also in�uen
e the high-energy part of the spe
trum.The di�eren
e to the SCBA results might also be due to the fa
t that stateswith longer strings in
luding several orbital ex
itations, whi
h o

ur when thehole moves by a few steps via t, 
annot be dire
tly a

ommodated within the10-site 
luster solved here, and 
annot be therefore reprodu
ed with su�
ienta

ura
y.Apart from the di�eren
es in the high-energy part of the spe
trum, onealso observes di�eren
es in the spe
tral weight distribution: In the VCA re-sults (Fig. 3.8) the total weight found in photoemission part (hole ex
itation)strongly depends on momentum k, while no su
h variation 
an be seen in theSCBA results in Fig. 3.5. This di�eren
e does not originate from di�erent ap-proximate methods used, but stems from the di�erent models : In Hubbard-likemodels, the number of ele
tron states o

upied depends on the momentum k[88℄. In 
ontrast, undoped t�J-like models have exa
tly one ele
tron per site,whi
h enfor
es a di�erent sum rule and eliminates the k-dependen
e from thephotoemission part.3.5.2 Understanding the 1D dispersionPurpose of the se
tion.� In order to understand why the dispersion of the holedoped into 2D t2g AO state is stri
tly 1D (both for the quasiparti
le and for theex
ited states) we introdu
e below the 1D orbital Hubbard model.1D orbital Hubbard model.� The 1D orbital Hubbard model is de�ned as
H1D = −t

∑

i

(a†iai+1 + H.
.) + U
∑

i

nianib , (3.45)where (similarly as in 2D 
ase) a†i (b†i ) 
reates a spinless ele
tron with orbital�avour a (b) at site i, and {nia, nib} are ele
tron density operators. On-siteCoulomb repulsion U is the energy of a doubly o

upied state (it arises as alinear 
ombination of the Coulomb and Hund's ex
hange in the respe
tive high-spin 
on�guration [84℄), and t is the nearest neighbour hopping element. Onlyele
trons with orbital �avour a are mobile while the other ones with �avour b
annot hop. To simplify, we 
all below the a and b orbitals mobile and immobileones, respe
tively. This situation not only des
ribes a toy-model de�ned for thepurpose of understanding better the spe
tral fun
tions of the 2D t2g orbitalmodel but also 
orresponds to (spinless) intera
ting eg ele
trons in the FM
hain (as along the c dire
tion in the manganites, see Ref. [89℄) or to the 1D(spinless) Fali
ov-Kimball model with degenerate orbitals.74
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Figure 3.9: Hole propagation in the 1D orbital t�J model (3.46). Two top panelsshow a hole doped into: (a) mobile a orbitals (empty boxes), and (b) immobile borbitals (�lled boxes). Solid (dashed) arrows indi
ate possible hopping pro
esseswith hopping elements t and τ , respe
tively; in 
ase of a hole added to the borbital the latter pro
ess o

urs only after the initial hopping by t, see panel(
). Panel (d) shows the exa
t spe
tral fun
tions A1D
a (k, ω) and A1D

b (k, ω) ofa hole added into the a orbital (middle dispersive feature between ω = −0.4tand ω = 0) and the b orbital (two side dispersionless maxima) as obtained fromthe 1D orbital t�J model (3.46). Parameters: J = 0.4t, τ = 0.1t, and peakbroadening δ = 0.01t.1D orbital t�J model.� In the regime of large U , i.e. for t ≪ U , the
anoni
al perturbation expansion dis
ussed in Chapter 1 (see Se
. 3.3 for asimilar derivation in the 2D 
ase) leads to the e�e
tive t�J Hamiltonian withIsing-like superex
hange and three-site terms
H1D = − t

∑

i

(
ã†i ãi+1 + H.
.) +

1

2
J

∑

i

(
T zi T

z
i+1 −

1

4
ñiñi+1

)

− τ
∑

i

(
ã†i−1ñibãi+1 + H.
.) , (3.46)where (again) a tilde above a fermion operator indi
ates that the Hilbert spa
eis restri
ted to uno

upied and singly o

upied sites and the pseudospin T zi =

(ñia − ñib)/2. The superex
hange 
onstant J and the three-site term hopping
τ are de�ned as in Eq. (3.10) and Eq. (3.15), respe
tively. The 1D t�J orbitalmodel de�ned without the three-site hopping τ , was solved exa
tly before [89℄and all ex
itations o

urred to be dispersionless. Here we generalize this exa
tsolution to the full Hamiltonian (3.46) in
luding the three-site terms, and showhow the spe
tral fun
tions 
hange then.Spe
tral fun
tion for a hole in the mobile orbital.� We start with 
al
ulating75



the Green's fun
tion for the hole doped into the a (mobile) orbital,6
G1D
a (k, ω) =

〈
Φ1D

0

∣∣∣∣ a
†
k

1

ω +H1D − E1D
0

ak

∣∣∣∣ Φ1D
0

〉
, (3.47)where E1D

0 is the energy of the ground state. As in 
ase of t2g orbitals 
onsideredabove, the o

upied orbitals alternate and at half �lling form sublatti
es {A,B}.The physi
al va
uum is
|Φ1D

0 〉 =
∏

i∈A
a†i

∏

j∈B
b†j |0

)
, (3.48)where (again) |0) is the true va
uum state with no ele
trons. Besides, the holewith momentum k is 
reated by the operator

ak =
1√
N

∑

j

eikjaj , (3.49)with N being the number of sites in the 
hain. Then one 
an easily verifythat the state ak|Φ1D
0 〉 in Eq. (3.47) is an eigenstate of the Hamiltonian (3.46).The hopping ∝ t is blo
ked by the 
onstraint of no double o

upan
y in theHilbert spa
e and the only two terms that 
ontribute in this state are: (i) thesuperex
hange term (∝ J) whi
h gives the energy 1

2J of two missing bonds as a
orre
tion to E1D
0 , and (ii) the three-site hopping term (∝ τ) whi
h 
ontributesto the k dependen
e due to the pro
esses shown in Fig. 3.9(a) after Fouriertransformation. As a result, one �nds

G1D
a (k, ω) =

1

2

1

ω + 1
2J + 2τ cos(2k)

, (3.50)where the fa
tor 1/2 originates from the fa
t that 〈Φ1D
0 |a†kak|Φ1D

0 〉 = 1/2. Notethat ñib ≡ 1 in the three-site terms, as in this 
ase all the sites with j ∈ B areo

upied by b ele
trons in the ground state (3.16). The hole spe
tral fun
tion,
A1D
a (k, ω) = − 2

π
lim
δ→0

ImG1D
a (k, ω + iδ) , (3.51)
onsists of a single dispersive state, shown as the middle peak in Fig. 3.9(d).As expe
ted, the hole is mobile thanks to the three-site terms and it propagates
oherently with the unrenormalized bandwidth W = 4τ . The result obtainedhere is identi
al with the one found using the VCA for the 
orresponding Hub-bard model (3.45) (see also Fig. 5 of Ref. [85℄). This 
on�rms that both theorbital Hubbard model (3.45) and its t�J model with three-site terms (3.46) areequivalent and pre
isely des
ribe the same physi
s in the regime of t≪ U .Spe
tral fun
tion for a hole doped into the immobile orbital.� The 
al
ula-tion of the Green's fun
tion for the hole doped into the b (immobile) orbital is
onsiderably more involved as one needs to use the 
ontinued fra
tion method.6We 
al
ulate the `mobile 
ase' for dida
ti
 reasons. It will be the `immobile 
ase' (seebelow) from whi
h we will draw some 
on
lusions 
on
erning the understanding of the 1Ddispersion in the 2D 
ase. 76



Thus, we perform these 
al
ulations in Appendix A. We obtain k-independentGreen's fun
tion [
ompare Eq. (A.10)℄
G1D
b (ω) =

1

2

{
ω +

1

2
J − 4t2

ω + 1
2J ∓

√
(ω + J)2 − 4τ2

}−1

, (3.52)from whi
h we 
al
ulate the the hole spe
tral fun
tion
A1D
b (ω) = − 2

π
lim
δ→0

ImG1D
b (ω + iδ), (3.53)shown in Fig. 3.9(d). It also does not depend on k and for the realisti
 pa-rameters with τ < t it 
onsists of two poles and the in
oherent part 
entredaround ω = −J . This latter 
ontribution has rather low intensity and is thusinvisible on the s
ale of Fig. 3.9(d) and the two peaks absorb almost the entireintensity. This result resembles the 
ase of τ = 0 (see Ref. [89℄) and mightappear somewhat unexpe
ted � we analyse it below.Why the three-site terms are suppressed in the immobile 
ase.� First, we
omment on the absen
e of the k dependen
e in the spe
tral fun
tion A1D

b (ω)(3.53). To understand this result It su�
es to analyse the hole doped into the borbital at any �nite value of J whi
h indu
es the AO ground state (3.48). Thehole 
an only move in
oherently, be
ause on
e it moves away from the initial site
j by the hopping t [see Fig. 3.9(b) and (
)℄, it 
reates a defe
t in the AO statewhi
h blo
ks its hopping by the three-site pro
esses over site j. Consequently,the hole may hop only in the other dire
tion, i.e. away from the defe
t in theAO state, and in order to absorb eventually this orbital ex
itation it has to
ome ba
k to its original position, retra
ing its path. In this way a forward andba
kward propagation along the 1D 
hain interfere with ea
h other, resulting inthe fully in
oherent spe
trum of Fig. 3.9(d).Looking at the spe
tral fun
tion A1D

b (ω) of a hole doped into the b orbitalat �nite τ = 0.1t shown in Fig. 3.9(d) one may be somewhat surprised that theresult indi
ates only two �nal states of the 1D 
hain. These are the bonding andthe antibonding state of a hole 
on�ned within a three-site box and dis
ussedin detail in Ref. [89℄ in the limit of τ = 0. One �nds that the two ex
itationenergies obtained for the present parameters, ω = −1.67t and ω = 1.17t, areindeed almost un
hanged from those given by Eq. (A.9) at τ = 0. We notethat the third nonbonding state has a di�erent symmetry and thus gives no
ontribution to A1D
b (ω).Altogether, one �nds that in the realisti
 regime of parameters with τ = J/4,the in
oherent part of the spe
trum is extremely small and thus invisible in thes
ale of Fig. 3.9(d). This implies that the hole is still pra
ti
ally trapped withinthe three-site box depi
ted in Fig. 3.9(b), in spite of the potential possibility ofits delo
alization by �nite τ . Only when the value of the three-site hopping τis 
onsiderably in
reased, the hole 
an es
ape from the three-site box and maydelo
alize over the entire 
hain.A systemati
 evolution of the spe
tral fun
tion A1D

b (ω) with in
reasing τ isdepi
ted in Fig. 3.10. One observes that the in
oherent spe
tral weight growswith in
reasing τ and is already visible in between the two maxima for τ = 0.5t.When the three-site hopping term approa
hes τ = t, the spe
trum 
hangesin a qualitative way � both peaks are absorbed by the 
ontinuum and thespe
tral density resembles the density of states of the 1D 
hain with the nearest77
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Figure 3.10: Spe
tral fun
tion A1D
b (ω) of a hole doped into the b orbital in the1D model with: (a) τ = 0, (b) τ = 0.5t, (
) τ = t, and (d) τ = 2t. Dashed(solid) lines for J = 0 (J = 0.4t), respe
tively, with broadening δ = 0.01t.neighbour hopping. For the extremely large e�e
tive hopping τ ≃ 2t the twopeaks 
orresponding to the energies given by Eq. (A.9) from Appendix A areabsorbed by the 
ontinuum 
entered at ω ∼ 0, and the spe
trum 
orrespondsto the in
oherent delo
alization of the hole over the 1D 
hain. Note also that�nite J results only in an overall shift of the spe
tra due to the energy 
ost ofthe hole ex
itation in the ordered ground state (3.16).Understanding the 1D dispersion in the 2D model.� Having understood the1D 
ase in detail one 
an now try to understand why the dispersion relationfor the hole doped into the 2D t2g AO state is stri
tly 1D. More pre
isely, thequestion whi
h arises here is: why, in the 2D 
ase, a hole doped for example intothe b orbital 
annot hop along the b dire
tion. In prin
iple one 
ould imaginethat the hole doped into the b orbital in the 2D latti
e hops by the t pro
essto the neighbouring site, 
reates one defe
t in the AO site and then propagatesfreely along the b dire
tion via the three-site terms. This, however, 
annot
ontribute to any k-dependent motion: as shown in the above 1D example thehole always has to return to the original site where it has been doped as it hasto erase the defe
t it has 
reated in the �rst t step while moving to the othersublatti
e (otherwise, the hole annihilation operator would not permit to returnto the ground state).A similar phenomenon o

urs in the 2D 
ase. One should only note thatstri
tly speaking, in the 1D model there are a
tually two interrelated reasonswhy the hole 
annot move 
oherently when it is doped into the b orbital: (i)the 
reation of the defe
t after the �rst t step whi
h has to be erased by thehole before the hole itself is annihilated by the a†k operator in Eq. (3.47), and(ii) the fa
t that this defe
t blo
ks the hole motion by three-site terms in onedire
tion. However, in the SCBA treatment the latter 
onstraint is negle
ted,so it is the point (i) whi
h su�
es alone to 
on�ne the hole.Furthermore, the spe
trum asso
iated with su
h a propagation, as des
ribedin the above paragraph, is not only k-independent but also its spe
tral weightis extremely small both in the 2D model in the realisti
 range of parameters78



(where it is invisible at the s
ale of Fig. 3.5) and in the 1D 
ase (as dis
ussedabove). Again, the reason why this spe
tral weight is so small in the 2D 
ase
an be understood using the 1D model: the value of the three-site hopping istoo small to delo
alize the hole from the three-site box.3.5.3 Renormalization of the three-site termsPurpose of the se
tion.� In what follows we will study the extended versionof the 1D model, 
alled the `
entipede model', with ele
trons hopping between
dyz and dzx orbitals in ab plane � the model in
ludes two neighbours on everyse
ond site and thus has 2N sites for the 
hain of length N , see Fig. 3.11. Wewill show that even the shortest possible strings with the length of one bondwhi
h 
an be ex
ited here when the hole moves in this geometry are su�
ientto generate some 
hara
teristi
 features re
ognized in the spe
tral properties ofthe 2D t2g model (see Se
. 3.4.3). In parti
ular, using this toy-model we willshow how the renormalization of the three-site terms in the 2D t2g orbital t�Jmodel arises due to the pe
uliar interrelation between the 
oherent propagationvia the three-site terms and the in
oherent motion due to the 
reation of thestrings by the nearest neighbour hopping t.Introdu
ing the 
entipede model.� The 
entipede model of Fig. 3.11(a)
onsists of a 
hain along b axis, with the Hamiltonian as des
ribed by Eq.(3.45), and two sites being the nearest neighbours of every se
ond site of the
hain along the a axis, whi
h 
ould represent radi
als added to a linear mole
ule.We use here the 
onvention introdu
ed already in the previous se
tions, that aand b orbitals stand for dyz and dzx t2g orbitals, respe
tively, that permit theele
tron hopping along the b and a axis in the ab plane. The Hamiltonian ofthe present model is
Hce=−t

∑

i

{
b†2i(b2i,u + b2i,d) + H.
.} − t

∑

i

(a†iai+1 + H.
.) + U
∑

i

nianib.(3.54)The hopping along the bonds parallel to the a axis is allowed only to the orbitals
b, with the 
orresponding 
reation operators {b†2i,u, b†2i,d}, see Fig. 3.11(a). Tosimplify notation, we 
all these orbitals u and d, and introdu
e the followingoperators:

u†2i ≡ b†2i,u, d†2i ≡ b†2i,d . (3.55)In the limit of large U (U ≫ t) the o

upied orbitals form AO order alongthe 
hain and we sele
t the Néel state with b (u and d) orbitals o

upied onthe external sites, as shown in Fig. 3.11, sin
e we are interested in their e�e
ton the hole propagation when the hole is doped to an a orbital. This leads tothe following 1D 
entipede t�J model (derived using the 
anoni
al perturbationexpansion dis
ussed in Chapter 1, see also Se
. 3.3 for a similar derivation inthe 2D 
ase) :
Hce= − t

∑

i

{(ũ†2i + d̃†2i)b̃2i + H.
.} − τ
∑

i

(ã†2iñ2i+1,bã2i+2 + H.
.)
− 3

4
J

∑

i

(ũ†2iũ2i + d̃†2id̃2i) . (3.56)79
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Figure 3.11: Propagation of a hole added into the a orbital in the 
entipede t�Jmodel (3.56): (a) s
hemati
 pi
ture of a hole doped at site a and its possibledelo
alization via hopping t (solid lines) and three-site e�e
tive τ term (dashedlines); (b) spe
tral fun
tion Acea (k, ω). Parameters: J = 0.4t, τ = 0.1t, peakbroadening δ = 0.01t. The 
hain is oriented along the b axis, and non-equivalentpositions of the orbitals whi
h do not permit hopping along this dire
tion arelabelled b, u and d in panel (a).On the one hand, the superex
hange intera
tion for all the bonds within the
entipede is not in
luded in Eq. (3.56) as it results only in a rather trivialenergy shift of the spe
tra obtained from the Green's fun
tion Gcea (k, ω) whi
his of interest here,7 
f. Se
. 3.5.2. On the other hand, the last term in Eq.(3.56) is added to to in
lude the energy loss when the hole delo
alizes to one ofthe side sites and a short string is 
reated whi
h as well o

urs in the full 2Dmodel of Se
. 3.4.3 (see also dis
ussion below).Whereas the se
ond term in Eq. (3.56) is on
e again the three-site hoppingderived before in the 1D model (3.46) [
f. Fig. 3.9(a)℄, the other two termsdes
ribe the possibility of 
reating defe
ts in the AO order when the hole leavesthe spine of the 
entipede (i.e. moves away from the a sites) by 
reating stringsof length one, just as it may happen in the t2g 2D model. Here the hole 
anleave the 
hain to its nearest neighbour orbital u2i or d2i [
f. sites atta
hedto the 
hain along the a axis shown in Fig. 3.11(a)℄. Su
h defe
ts are 
reatedby hopping t and 
ost energy 3J/4 in ea
h 
ase. Hen
e, the present 1D modelrepresents an extreme redu
tion of the full t2g 2D model, allowing only thestrings of length one, and ea
h defe
t has to be deex
ited before the hole 
anhop to another three-site unit along the 
hain. Note, however, that the energiesof these string ex
itations are properly 
hosen and are just the same as in thefull 2D model.The model given by Eq. (3.56) 
onstitutes a one-parti
le problem (afterinserting ñ2i+1,b ≡ 1 whi
h is 
onsistent with the Ising nature of the superex-
hange) and hen
e 
an be solved exa
tly. We will 
onsider the Green's fun
tion
Gcea (k, ω) for a orbitals, de�ned similarly as in Eq. (3.47), and a hole ex
itationis 
reated again by the operator ak of Eq. (3.49). The 
ontinued fra
tion (seealso Appendix A for a more elaborate version of the method) terminates after7The Green's fun
tion Gce

b
(k, ω) does not show new qualitative features as 
ompared withthe solution obtained for the 1D orbital 
hain of Se
. 3.5.2.80
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Figure 3.12: Chara
teristi
 features in the spe
tra obtained for the 1D 
entipedemodel (Fig. 3.11) for in
reasing J : (a) the bandwidth W1,2, (b) the spe
tralweight aQP, and (
) the distan
e ∆ between the two peaks. The solid (dotted)line in (a) 
orresponds to the �rst (se
ond) dispersive peak in Aa(k, ω) whereasthe solid (dashed) lines in the lower panels show results for k = 0 (k = π/2),respe
tively. The light solid line in (a) is merely a guideline for the eye toshow that the bandwidth of the �rst peak is a fun
tion with a positive se
ondderivative. Parameter: τ = J/4.the se
ond step and one �nds the exa
t Green's fun
tion
Gcea (k, ω) =

1

2

1

ω + 2τ cos(2k) − 2t2

ω+ 3
4
J

, (3.57)leading to the 
orresponding spe
tral fun
tion Acea (k, ω), de�ned as in Eq.(3.51). The numeri
al results obtained with J = 0.4t are shown in Fig. 3.11(b).Instead of a single dispersive state of Fig. 3.9(d), the spe
tral fun
tion 
onsistshere of two dispersive peaks separated by a gap of roughly 2
√

2t. This demon-strates that the larger hopping t suppresses at �rst instan
e the hopping alongthe 
hain by the element τ , and a hole doped into the a orbital delo
alizes inthe �rst pla
e over the three-site unit, dis
ussed in Se
. 3.5.2, 
onsisting of ahole and two b (u and d) orbitals. Therefore the hole behaves e�e
tively asa defe
t 
reated at a b site in the 1D 
hain of Se
. 3.5.2. This explains thatthe maxima of Acea (k, ω) are found again for the lo
al bonding and antibondingstate, similar to the stru
ture of A1D
b (ω) in Se
. 3.5.2. However, at present the
orresponding states gain weak dispersion be
ause the hole may as well delo
al-ize along the 
hain by the three-site hopping τ . Note also that the low-energy(right) peak has slightly higher dispersion (leading to a broader band) than theleft one. This 
ase illustrates that the 1D dispersion is broader for the (lowenergy) quasiparti
le state but is also shared by the feature at higher energy.This observation will help us to interpret the spe
tra for the 2D t2g model (seebelow).In addition, we also 
al
ulate some 
hara
teristi
 features of the spe
tra ofthe 
entipede model, 
f. Fig. 3.12. They will mostly serve for a 
omparison withthe respe
tive results of the 2D t2g model in the next paragraph. However, let usonly remark that the renormalization of the bandwidth, shown in Fig. 3.12(a),follows from an intri
ate interplay between 
oherent hole propagation and thestring ex
itations. With in
reasing τ = J/4 the free bandwidth in
reases but atthe same time the energies of the defe
ts (generated by the hole when it movesto `lower' or `upper' sites) are ∝ J ; hen
e, the bandwidth does not depend in a81



linear way on J , 
f. Fig. 3.12(a). Physi
ally this means that the hole motionis gradually more and more 
on�ned to just the 1D path along the 
hain within
reasing J (and keeping τ = J/4).Renormalization of the three-site terms in the t2g orbital t�J models.� Asalready noted in Se
. 3.4.3 [see also Fig. 3.6(a)℄ the quasiparti
le bandwidth inthe 2D t2g orbital t�J model, arising from the superex
hange three-site terms, isrenormalized as it was found to be mu
h smaller than the respe
tive free value,
W ≪ 2J . Even at J = t, the quasiparti
le bandwidth is only W ≃ J/2, i.e. itis here redu
ed by a fa
tor of 4.A similar but 
onsiderably weaker redu
tion of the 1D dispersion by stringex
itations 
an be seen in the present 
entipede model, see Fig. 3.12(a). Inaddition, the dispersion of the se
ond peak is weaker than that of the quasipar-ti
le. Interestingly, the bandwidth 
orresponding to the dispersion of the se
ondpeak in the 
entipede model is not only weaker than that of the quasiparti
leitself but is also renormalized in a similar way to that found for the full 2D t2gmodel.Although it should be noted that in the 
entipede 
ase the renormalizationis almost linear as the length of the string ex
itations is limited to a single step(within one of the three-atom units along the 
hain), the 
entipede model 
anindeed explain mi
ros
opi
ally how the renormalization of the three-site termsin the 2D model arises: The renormalization of the 
oherent hole propagationin the 2D t2g model, leading to a redu
ed bandwidth, follows from the 
reationof string states during the 1D hole propagation via three-site terms. Note thatthe latter pro
esses were absent in the 1D model, and therefore the hole movedthere freely by three-site hopping terms and the bandwidth was unrenormalized[see Eq. 3.50℄.Further 
omparison between the 
entipede and the t2g orbital t�J model.�A
tually, the other quasiparti
le properties in the 2D t2g model and in the
entipede model are mu
h more di�erent than the bandwidth: It is only thein
rease of aQP(π/2, π/2) with respe
t to aQP(0, 0) in the 2D 
ase [see Fig.3.6(b)℄ whi
h resembles the in
rease of the spe
tral weight for the low-energypeak at k = π/2 over the one at k = 0 in the 
entipede model [see Fig. 3.12(b)℄.These di�eren
es are due to the fa
t that both the quasiparti
le spe
tral weightand the pseudogap are heavily related to the string ex
itations in the systemwhi
h are entirely di�erent in the 2D 
ase (in�nitely long strings possible) andin the 
entipede model (where only strings of length one are possible).3.6 Con
lusionsPurpose of this 
hapter.� The purpose of this 
hapter was to investigate whethera single hole added to the Mott insulating ground state at half-�lling 
an be
on�ned due to the presen
e of the orbital degenera
y. A
tually, more pre
iselythe idea was to study the simplest possible example, where one 
ould naively ex-pe
t hole 
on�nement: a 2D Mott insulator with t2g orbital degrees of freedom.It o

urred that the hole 
an never be 
on�ned in su
h a system but instead
an move there on a renormalized s
ale due to the so-
alled three-site terms.Obviously, this does not imply that the hole 
on�nement in the Mott insula-tor with orbital degrees of freedom is impossible: one 
an imagine that theremay exist another phenomenon in orbitally degenerate systems whi
h leads to82



hole 
on�nement. However, the simplest possible me
hanism, as shown here, isoutruled.8In what follows, we will now show why the hole is not 
on�ned in su
h anorbitally degenerate system by giving answers to the three questions posed inthe introdu
tion to this 
hapter.Form of the t�J model with t2g orbital degrees of freedom.� As dis
ussed inSe
. 3.2 one had some 
hoi
e in de�ning the t�J model with t2g orbital degreesof freedom. However, the idea was to formulate the model in su
h a way thatthe 
hara
teristi
 symmetries of the t2g orbitals, whi
h leads to the la
k of theinterorbital hopping and the 2D hopping of ele
trons between a parti
ular t2gorbital, 
ould be visible `as far as possible'. This is not a very pre
ise statementbut nevertheless we demonstrated in Se
. 3.2 that a model with only two a
tive
{dzx, dyz} orbitals in the ab plane and spinless strongly 
orrelated ele
tronswould indeed bear all these distin
tive features.Altogether this led (see Se
. 3.3) to the t�J model with an Ising-type inter-a
tion between orbital pseudospins and 1D hopping of ele
trons with parti
ularorbital �avour. However, it o

urred that due to the absen
e of the SU(2)symmetry in su
h a model one had to be more 
areful with any approximationsmade during the derivation of the model or while solving it. Thus, the frequentlynegle
ted three-site terms had to be in
luded in the model.Undoped ground state.� In the half-�lled 
ase the above dis
ussed t2g orbital
t�J model with three-site terms redu
ed to the Ising-like intera
tion betweenpseudospins. As the superex
hange 
onstant J was positive in this model, theground state 
onsisted of alternating pseudospins between two sublatti
es andhad no pseudospin quantum �u
tuations, see Se
. 3.4.1. Consequently, theground state turned out to be a 
lassi
al AO state with dzx and dyz alternatingorbitals.Motion of the hole in the undoped ground state.� In order to investigatemotion of a single hole doped into the half-�lled AO ground state we redu
edthe t2g orbital t�J model to the e�e
tive polaron Hamiltonian using the slave-fermion approa
h (Se
. 3.4.1). The latter one was rather easy to solve using theSCBA method and we obtained the spe
tral fun
tions whi
h 
onsisted of thedispersive ladder-like peaks (Se
. 3.4.3). While the onset of the ladder spe
trumrevealed the fa
t that the hole was trapped in string-like potential, the smalldispersive features suggested that the hole was not truely 
on�ned. This resultwas thoroughly 
he
ked and 
on�rmed in Se
. 3.5.1 where (in parti
ular) weshowed that the Hubbard model led to similar spe
tral fun
tions with a small1D dispersion. Furthermore, in Se
. 3.5.2 we explained the la
k of the 1D
hara
ter of the dispersion relations using the auxiliary orbital 1D model.We emphasize that the me
hanism of 
oherent hole propagation whi
h o
-
urs in the 2D t2g orbital model is 
ompletely di�erent from the one known inthe spin 
ase. Generally, in orbital systems (with 
onserved orbital �avours) itoriginates entirely from the three-site hopping pro
esses, similarly to the dis-
ussed 1D 
ase in Se
. 3.5.2. But unlike in the latter 
ase, in the 2D t2g 
asethe quasiparti
le bandwidth is strongly redu
ed from the value given by the am-plitude of bare three-site hopping. In order to investigate this problem in moredetail, we dis
ussed the subtle interplay between the 
oherent hole propagation8Note that a di�erent me
hanism present in systems with orbital degenera
y (orbital po-larization), shown in Ref. [90℄, leads to the strong redu
tion of the bandwidth � but thebandwidth is still �nite and additional e�e
ts are needed to truely lo
alize the hole.83



and string ex
itations in the 1D 
entipede model (Se
. 3.5.3), where polaroni
hole 
on�nement 
ompeted with 
oherent propagation along the 
hain, whi
hto some extent resembled the realisti
 2D t2g 
ase. Indeed, this explained therenormalization as following from in
oherent string ex
itations whi
h dressedthe 
oherent propagation and did not 
ontribute additional momentum depen-den
e.Final remarks.� In the whole 
hapter we dis
ussed a highly theoreti
alproblem of the hole 
on�nement indu
ed by the presen
e of the orbital degrees offreedom. However, a natural question arises: 
ould su
h a problem be relevantfor any experiment. A
tually, introdu
tion of a single hole to the half-�lledsystem 
orresponds to the photoemission experiment on the half-�lled system:there the photon removes the ele
tron from the 
rystal (somewhat similarly asin the well-known photoele
tri
 e�e
t), i.e. it 
reates a hole in the system [69℄.Thus, the only problem with whi
h still arises is: 
an one �nd a 
rystal witha plane with two a
tive {dzx, dyz} orbitals in the ab plane. As shown in thePosts
riptum (Se
. 3.7) there exists a 
ertain 
lass of vanadates and �uorideswhose photoemission spe
tra should bear all of the 
hara
teristi
 features ofthe spe
tral fun
tions shown in Figs. 3.5 or 3.8. It remains a 
hallenge for theexperimental 
ommunity to verify this 
onje
ture.3.7 Posts
riptum: photoemission spe
tra of vana-dates and �uoridesRealisti
 systems with longer range hopping.� In this se
tion we dis
uss thepossible impli
ations of the results obtained for the t2g orbital model of this
hapter on future experiments and make predi
tions 
on
erning the photoemis-sion spe
tra of strongly 
orrelated �uorides and vanadates. The �rst importantfeature to 
onsider is the interplay of the three-site hopping with the longer-range {t2, t3} hopping to se
ond and third neighbours whi
h 
ontributes to theele
troni
 stru
ture and may always be expe
ted in any realisti
 system (forinstan
e, due to hybridization with oxygen orbitals). These hopping elementswere negle
ted in both the Hubbard model (3.1) and in the t�J model (3.5) butthey 
ould signi�
antly in�uen
e the spe
tral weight distribution. One will see,however, that although features indu
ed by longer-range hopping are small aslong as |t2(3)| < t, they 
an be 
learly distinguished from the e�e
ts of three-sitehopping.Next nearest neighbour hopping.� The same requirements for orbital symme-try that are ne
essary to obtain nearest neighbour hopping, as dis
ussed in thiswork, also strongly restri
t the range of allowed longer-range hopping terms.It is important to re
all that the d�d hopping elements involve intermediateoxygen orbitals. For next nearest neighbour hopping, the orbital phases of theinvolved oxygen 2pπ orbitals make all terms vanish that 
onserve orbital �avour[75℄, and only orbital-�ipping terms
HNNN = −t2

∑

i

(
a†
i±b̂

bi±â + a†
i∓b̂

bi±â + H.
.) , (3.58)given by hopping element t2, are �nite. With realisti
 parameters one arrives atthe estimation of |t2| ∼ 20 meV, i.e., |t2| ∼ J/3. Similar to the orbital �ipping84
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Figure 3.13: Spe
tral density Ab(k, ω) obtained within the VCA method for ahole inserted into b orbitals of the t2g model (3.1), supplemented by �nite nextnearest neighbour hopping (3.58). Parameters: U = 10t, and t2 = 0.15t. Thisresult was obtained by Maria Daghofer.three-site term (3.14), su
h a hopping pro
ess disturbs the AO order stabilizedby the superex
hange and indu
es string ex
itations. For this reason, its impa
tis largely 
on�ned to the high-energy part of the spe
trum and is rather small forthe low-energy quasiparti
le state. This 
an be seen in Fig. 3.13 where we showthe spe
tral density for t2 = 0.15t and J = 0.4t: While the higher energy partis somewhat a�e
ted by �nite t2, the intensity and dispersion of the low-energyquasiparti
le is almost the same as obtained for t2 = 0, see Fig. 3.8(b).Third neighbour hopping.� The quasiparti
le dispersion 
ould also be in-�uen
ed by the third-neighbour hopping terms t3, where the orbital symmetryleads to the same anisotropy as for nearest neighbour hopping: a orbitals allowonly hopping along the a axis, and b orbitals only along the b one:
Ht3 = −t3

∑

{imj}‖a
b†i bj − t3

∑

{imj}‖b
a†iaj . (3.59)Here the unit 
onsisting of three sites {imj}, shown in Fig. 3.3(a), is parallelto one of the 
ubi
 axes in the ab plane. In 
ontrast to t2 terms, these termsdo not indu
e any string ex
itations but 
ontribute only to the dispersion ofthe quasiparti
le state itself, so they mix with the three-site e�e
tive hopping

τ . To illustrate this e�e
t, one 
an 
hoose t3 = ±J/4 for the spe
tra shown inFig. 3.14. Note that the value of |t3| is here larger than expe
ted in transitionmetal oxides where it is in general smaller than the three-site hopping term
τ = J/4. The spe
tral density A(k, ω) 
ontains now the 
ombined e�e
ts of thethree-site terms ∝ τ and third-neighbour hopping ∝ t3 and one �nds that t3,depending on its sign, 
an either amplify or weaken the quasiparti
le dispersionwhi
h stems from the e�e
tive three-site hopping, see Fig. 3.14.Third versus next nearest neighbour hopping.� From the above example one
an see that the longer-range hopping violates the parti
le-hole symmetry of thespe
tral fun
tions. The spe
tra obtained for the original orbital Hubbard model(3.1) with nearest neighbour hopping t obey the parti
le-hole symmetry. Thethree-site superex
hange terms arise from this model and therefore these termsalso have to follow the parti
le-hole symmetry. This is in marked 
ontrast to85
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Figure 3.14: Photoemission [(ω−µ) < 0℄ and inverse photoemission [(ω−µ) > 0℄part of the spe
tral density Ab(k, ω) for a hole inserted into b orbitals ob-tained within VCA for the t2g model (3.1) with an additional longer-rangethird-neighbour hopping t3 (3.59). The value t3 is sele
ted so that to suppressdispersion arising from the three-site e�e
tive hopping in: (a) the hole (pho-toemission) se
tor with t3 = 0.1t = J/4, and (b) in the inverse photoemissionse
tor with t3 = −0.1t = −J/4. Parameter: U = 10t. This result was obtainedby Maria Daghofer.the t2 terms that do not respe
t it [91℄ or to t3 terms, see Fig. 3.14. As a result,the spe
tra exhibit a striking parti
le-hole asymmetry � redu
ed dispersion inthe parti
le (inverse photoemission) se
tor 
orresponds to enhan
ed dispersionin the hole (photoemission) se
tor and vi
e versa.It will be shown now that the above asymmetry indeed follows from thedi�eren
e between the nearest neighbour and next nearest neighbour hoppingunder parti
le-hole transformation. While this is transparent for the Hubbardmodel a
ting in the full Hilbert spa
e, it is somewhat subtle for the t�J-likemodels. Thereby let us fo
us on the t3 hopping whi
h in�uen
es dire
tly thequasiparti
le dispersion. The operator for nearest neighbour hopping 
an betransformed from {cj, c
†
j} ele
tron operators to {h†j , hj} hole operators, and onearrives at an identi
al form for the kineti
 energy as long as a phase shift betweenthe two sublatti
es is introdu
ed:

h†j = (−1)(jx+jy)cj , hi = (−1)(jx+jy)c†j , (3.60)where j = (jx, jy) is the latti
e site. Hopping along the a axis then be
omes
Kx =

∑

j

(c†j cj+â + c†j+âcj)

=
∑

j

{
(−1)jx+jyhj(−1)jx+1+jyh†j+â + (−1)jx+1+jyhj+â(−1)jx+jyh†j

}

= −
∑

j

(
hjh

†
j+â + hj+âh

†
j

)

=
∑

j

(
h†jhj+â + h†j+âhj

)
, (3.61)and analogously along the b axis. The minus sign for one of the sublatti
es
orresponds to a momentum shift by q = (π, π) as 
an be easily veri�ed in the86



Fourier transform.
h†k =

1

N

∑

j

eikj(−1)(jx+jy)cj

=
1

N

∑

j

ei(k+q)jcj = ck+q . (3.62)The on-site density-density intera
tion is not a�e
ted by the parti
le-hole trans-formation apart from a shift in the 
hemi
al potential.Sin
e the three-site hopping emerges from the Hubbard-like model with near-est neighbour hopping, it respe
ts parti
le-hole symmetry. Hen
e it obeys thesame rules 
on
erning parti
le-hole transformation i.e., momentum (0, 0) forele
trons is mapped to (π, π) for holes. For the third-neighbour hopping t3(3.59), however, the above transformation does not work any longer, be
auseboth the 
reation and the annihilation operator a
t on the same sublatti
e.Instead the transformation ve
tor would have to be q′ = (π/2, π/2). Conse-quently, the 
ombined e�e
t of expli
it next nearest neighbour hopping andthree-site terms stemming from nearest neighbour pro
esses turns out to bestrongly parti
le-hole asymmetri
. For example, negative t3 gives a band inthe ele
tron se
tor with the largest distan
e from the Fermi energy at momenta
(0, 0) and (π, π), and the values nearest to it at (π/2, π/2), and the same is truefor the three-site hopping. Consequently, the two dispersions add together andlead to in
reased total dispersion, see the photoemission part in Fig. 3.7. On the
ontrary, in inverse photoemission the dire
t next nearest neighbour hopping t3gives a maximal distan
e at (π/2, π/2), while maximal energy is still found at
(0, 0) and (π, π) for the three-site terms. Therefore, now t3 and three-site hop-ping τ 
ompete with ea
h other and the dispersion is weaker. For a parti
ular
hoi
e of the model parameters they 
an even 
an
el ea
h other, as shown inthe inverse photoemission part in Fig. 3.7. Positive t3 leads to the oppositeresult, see Fig. 3.7. Thus, even large and unphysi
al values of t3 not only do notdestroy the qualitative spe
tra predi
ted in the previous se
tions but generateasymmetry between the photoemission and inverse photoemission part of thespe
tra, so their 
ontribution 
an easily be resolved.Con
lusions 
on
erning the realisti
 spe
tra.� The symmetry argumentsleading to Eq. (3.58) and Eq. (3.59) remain valid also for systems with spe
i�

eg orbital degenera
y as observed in 
ertain �uorides with 2D AO order whi
hinvolves alternating z2−y2 and x2−z2 orbitals [92℄. In fa
t, the e�e
tive polaronmodel Eq. (3.32) des
ribes also this 
ase, as we show by a detailed derivationin Appendix B. Hen
e, we 
on
lude that the photoemission and inverse pho-toemission spe
tra for the planar vanadium oxide Sr2VO4 and for the planarK2CuF4 or Cs2AgF4 �uorides should be qualitatively similar to the spe
tralfun
tions shown in Figs. 3.5 or 3.8.
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Chapter 4Understanding hole motion inLaVO3This 
hapter is based on the following publi
ations: (i) K. Wohlfeld, A. M. Ole±,P. Hors
h, `Orbitally indu
ed string formation in the spin-orbital polarons', toappear in Physi
al Review B 79 (2009); and (ii) K. Wohlfeld, `Spin, orbital, andspin-orbital polarons in transition metal oxides', to appear in AIP Conferen
ePro
eedings (2009).4.1 Introdu
tionCubi
 vanadates.� Among the ri
h 
lass of transition metal oxides, the 
ubi
vanadium oxides (vanadates) are one of the less known `families' � espe
ially in
omparison with their mu
h better investigated `
ousins': the high-Tc 
upratesuper
ondu
tors or the 
olossal magnetoresistive manganites [20℄. Nevertheless,the 
ubi
 vandates are worth to look at: As it will be shown below they exhibitthe tremendously interesting orbital physi
s phenomena sin
e in this 
lass of
ompounds spins and orbitals do not de
ouple and may �u
tuate together [93℄.Undoped 
ase.� Let us be more spe
i�
 and 
on
entrate on one of the mostprominent examples of the 
ubi
 vandates: LaVO3. This 
rystal has a typi
alperovskite stru
ture in whi
h the vanadium ions 
an be viewed as e�e
tivelyforming an almost undistorted 
ubi
 latti
e [19℄. The nominal valen
e of thevanadium ions is V 4+ whereas all other ions have �lled shells. Thus, the 3dorbitals on the vanadium ions are o

upied by two ele
trons and the ele
troni
bands near the Fermi level should be predominantly formed due to the e�e
tivehopping t between these orbitals via oxygen ions. In the `graduate 
ondensed-matter textbook' this would typi
ally mean that su
h a system would be 
onsid-ered metalli
. However, due to the very large on-site Coulomb repulsion U > Wbetween ele
trons in the 3d orbitals the ele
trons lo
alize and a Mott-Hubbardinsulating state is formed [19℄ (where as before W = 8t while t stands for thee�e
tive hopping of 3d ele
trons).So far, however, LaVO3 
an be 
onsidered just as another example of theMott insulators, whi
h, at least to the author, do not seem to be parti
ularly89



Figure 4.1: Panel (a), reprodu
ed after Ref. [94℄, shows the magneti
 and orbitalorder stable below 
a. 140 K in LaVO3. One ele
tron o

upies either the dzxor the dyz orbitals (shown in a very simpli�ed, yet distinguishable, form in the�gure) while the other one always o

upies the dxy orbital (not shown). Both ofthem form the S = 1 spins whi
h are depi
ted by arrows. Furthermore, the dzxand dyz o

upied orbitals alternate and form the G-AO order whereas the S = 1spins are aligned along the c axis and alternating along the a and b dire
tionsforming the C-AF phase (see also text). Panel (b), reprodu
ed after Ref. [19℄,shows the phase diagram of La1−xSrxVO3. Note the di�eren
es between thenotation used in the �gure (Ref. [94℄) and in the text: the temperature inwhi
h the G-AO orbital order sets in is depi
ted in the �gure by `TS' whereasthe C-AF phase is denoted with the `AF' letters in the �gure.interesting, mainly for being very hard to understand.1 What makes this 
om-pound indeed very interesting is the proximity of the onset of the magneti
 andorbital ordering whi
h sets in at TN ∼ 143 K and TO ∼ 141 K, respe
tively[24, 25℄, with both of these orderings of relatively 
omplex type. Namely, themagneti
 phase is of a C-AF�type (AF ab plane with a FM order along the cdire
tion) whereas the orbital order is of a G-AO�type (AO order of dzx ≡ band dyz ≡ a orbitals in all three 
ubi
 dire
tions and always o

upied dxy or-bital); see also Fig. 4.1(a). Sin
e the Jahn-Teller 
oupling in 
ubi
 vanadates isvery weak the magneti
ally and orbitally ordered states 
ould only be explainedby some sort of purely ele
troni
 me
hanism. Indeed, as shown in Ref. [83℄,the ele
trons in the Mott insulating phase, although lo
alized, perform virtualhoppings between neighbouring sites leading to su
h superex
hange intera
tionsthat the observed experimentally ordered phases 
ould be stable.Hole doped 
ase.� Although these phenomena asso
iated with LaVO3 wouldalone su�
e to justify the above mentioned `existen
e of interesting orbitalphysi
s phenomena in the 
ubi
 vanadates' there are yet even more pe
uliarexperimental observations asso
iated with this 
lass of 
ompounds. They 
on-
ern the properties of the lightly doped 
ubi
 vanadate La1−xSrxVO3 [19℄. Ito

urs that in this strongly 
orrelated 
ompound the C-AF and G-AO orderedMott insulating phase is not only stable for x = 0 but also persists to a rela-tively high value of hole doping x = 0.178 [19℄. Rather surprisingly, the C-AFphase remains stable up to an even higher value of x = 0.26 although in this1Daniel I. Khomskii (unpublished le
ture notes on 
ondensed matter theory for graduatestudents at the University of Groningen). 90



regime the insulating and orbital ordered phase has already disappeared; seealso Fig. 4.1(b) [19℄. As, in the ioni
 pi
ture, x stands for the introdu
tion ofholes into the 3d orbitals of the vanadium ions (where a nominal valen
e upondoping 
hanges as 3d2−x) it remains a 
hallenge to explain why the orderedand insulating states persist to su
h high dopings.2 Besides, somewhat sim-ilar phase diagrams have been observed in other doped 
ubi
 vanadates su
has Pr1−xCaxVO3, Nd1−xSrxVO3 or even to some extent in Y1−xCaxVO3 [25℄.In fa
t, in all these 
ases the latti
e distortions 
ontribute signi�
antly [25℄ tothe hole lo
alization and thus we would like to 
on
entrate on the (almost)undistorted 
ompound La1−xSrxVO3 in the further analysis.A
tually, one might in prin
iple expe
t to resolve some of these puzzles by
omparing the phase diagram of the doped 
ubi
 vanadates to those of thehigh-Tc super
ondu
ting 
uprates or the 
olossal magnetoresistive manganites.However, su
h a 
omparison only further enhan
es the la
k of understandingof the doped 
ubi
 vanadates. First, in the 
uprates su
h as La2−xSrxCuO4the AF order disappears very qui
kly with doping x, i.e. already for x ∼ 0.02[20℄. This is despite the fa
t that the value of the superex
hange 
onstant
J is relatively high there whi
h would lead to larger magneti
 energy in the
uprates than in the vanadates. This suggests that, among other fa
tors, it isthe orbital dynami
s whi
h 
ould be responsible for the di�eren
e between thetotally distin
t behaviour upon hole doping of these two 
lasses of 
ompounds.Se
ond, a similar 
onje
ture 
an be drawn from the 
omparison between thevanadates and the manganites. In the latter ones, e.g. in La1−xSrxMnO3 theAO orbital Mott insulating state is stable up to x ∼ 0.18 [97℄, i.e. almost to thesame level as in La1−xSrxVO3. However, La1−xSrxMnO3 has FM order alreadyin the insulating planes but La1−xSrxVO3 has AF planes � this again suggeststhat it is the orbital dynami
s whi
h governs the behaviour of the doped holesin the doped 
ubi
 vanadates.Main goals of the 
hapter.� Summarizing, perhaps the most important fea-ture of the experimental phase diagram of the lightly (x < 0.18) hole dopedLa1−xSrxVO3 is that: the orbital dynami
s seems to drive the hole motionthere whereas the spins seem to be somewhat `hidden'. Sin
e the problem ofthe lightly hole doped 
ubi
 vanadates has, with one ex
eption (see below),never been studied before, even the simplest theoreti
al studies on the holedoped 
ubi
 vanadates should shed some light on this issue. Therefore, in this
hapter of the thesis, we look at the problem of the motion of a single hole in-trodu
ed into the orbitally and magneti
ally ordered plane of LaVO3. It shouldbe noted that the studies presented in Ref. [94℄ revealed the role of the AOand FM order stable along the third (not studied here) dire
tion in the dopedLa1−xSrxVO3, and explained the di�eren
es between the doped Y1−xCaxVO3and La1−xSrxVO3 but, by the very nature of that 1D model, 
ould not addressthe problems mentioned above. This is be
ause, 
ontrary to the problem solvedin this 
hapter, the hole moving along the third (c) 
ubi
 dire
tion 
ouples tospin and orbital dynami
s separately: either orbitons (orbital ex
itations) in thelightly doped C-AF phase of La1−xSrxVO3, or magnons (spin ex
itations) inthe very lightly doped G-AF phase of Y1−xCaxVO3 [94℄.Thus, the main goals are to investigate: (i) what the proper t�J model, whi
h2On the other hand, the unusual 
oexisten
e of the C-AF phase and the metalli
 phasein the intermediate hole-doped regime is to some extent explained using the 
lassi
al doubleex
hange model adopted to the t2g orbital symmetries, see Refs. [95, 96℄.91



governs the hole motion in the 2D AF spin- and AO orbitally-ordered state ofLaVO3, looks like, (ii) whether the hole 
an move 
oherently in LaVO3, (iii)whether the orbital dynami
s indeed seems to in�uen
e the hole motion mu
hmore than the spin dynami
s, and (iv) what is the impa
t of the results obtainedhere on the understanding of the experimental phase diagram of the lightlydoped 
ubi
 vandates. A
tually, it will o

ur that by working out the answers tothe above questions we will also predi
t the main features of the photoemissionspe
tra of the 
leaved samples of LaVO3 with polarization 
orresponding to the
ab planes.Stru
ture of the 
hapter.� The 
hapter is organized as follows. In Se
. 4.2we start the analysis by looking at the anti
ipated features of the new t-J modelwhi
h is derived in Se
. 4.3. Next, we solve the model in the 
ase of the one holeadded to the undoped ground state: (i) we redu
e the model to the polaron-typeHamiltonian using the slave fermion approa
h in Se
. 4.4.1, (ii) we derive theequations for the Green's fun
tions using the SCBA in Se
. 4.4.2, (iii) we solvethe equations obtained in point (ii) analyti
ally (in some range parameters) andnumeri
ally on a �nite mesh of the momentum k points (Se
. 4.4.3). Then, inSe
. 4.5 the results are dis
ussed where, in parti
ular, we analyse the 
ompositeinterplay of spin and orbital dynami
s on the hole motion. Finally, we drawsome 
on
lusions in Se
. 4.6 and add some general statements 
on
erning thehole motion in various spin and/or orbitally ordered states in the Posts
riptumin Se
. 4.7.4.2 The t2g spin-orbital t�J model with three-siteterms`Rough' predi
tions of the new t-J model.� It is 
lear that due to the t2g orbitaldegenera
y present in the 3d states on the vanadium ions in La1−xSrxVO3 eventhe simplest low energy model for 
orrelated ele
trons should in
lude the orbitaldegrees of freedom [73, 74℄. Thus, the simple Hubbard model whi
h des
ribesthe 
orrelated ele
trons within the s orbitals would not be su�
ient and 
onse-quently also the standard t-J model 
annot des
ribe properly the phenomenapresent in lightly doped 
ubi
 vanadates (
ompare appropriate dis
ussion inChapter 1 and Chapter 3.2). However, before we move on and derive su
h amodel step-by-step (see Se
. 4.3) let us try to anti
ipate the results obtainedthere.A
tually, the J part of this new t-J model is presented in Ref. [83℄ wherethe undoped 
lassi
al ground state is also dis
ussed. This state agrees with theone observed experimentally and is pre
isely the same as dis
ussed in Se
. 4.1:the C-AF and the G-AO ordered phase. Next, one 
an try to imagine whathappens when a single hole is doped into the ab plane of su
h a state (this is thelimit in whi
h we want to study the solutions of the new t-J model), 
f. Fig.4.2. In the beginning this seems to be not very hard � one only needs to re
allthe dis
ussion of Chapter 3. There it was shown that a hole in the AF state ismobile due to spin quantum �u
tuation (
ompare also Ref. [23℄) whereas a holein the t2g AO state was mobile only after the three-site terms were in
ludedin the model (see also Ref. [85℄). However, then an interesting problem arises:would a hole in a state with both orderings behave rather like the one in an AF92



Figure 4.2: Artist's view of a single hole introdu
ed into the spin and orbitallyordered ab plane of LaVO3 [the 3D order present in LaVO3 is shown in Fig.4.1(a)℄. The ele
trons o

upy the dyz and dzx degenerate orbitals forming the
lassi
al AO state (their proje
tions along the a and b axis are shown) whereasthe ele
tron spins alternate on the neighbouring sites forming the 
lassi
al AFstate. Note that the ele
trons in the always o

upied dxy orbitals are not shownfor 
larity although their spins 
ouple via the Hund's rule to the ele
tron spinsin dzx and dyz orbitals and 
ontribute to total spins S = 1 in the AF state(besides, at the hole position spin 1/2 is left).state or rather like the one in an AO state or in a totally di�erent way? This
annot be answered easily and suggests that a new approa
h to the solution ofthis new t�J model in the `one-doped-hole' regime is needed. But let us nowtry to analyze �rst why su
h a problem arises at all.Reasons for no `rough' predi
tions.� In fa
t, here the mere 
oexisten
e ofthe AF and AO order in the undoped 
ase represents a very exoti
 physi
s: itformally violates [93℄ the Goodenough-Kanamori rules [56, 55℄ that state 
om-plementary spin and orbital order in the ground state of a 
rystal with magneti
and orbital ordering, i.e. either FM spin 
oexisting with AO order, or AF spin
oexisting with FO order. Although these rules are valid on the 
ondition thatthe orbitals 
annot �u
tuate and 
annot be treated as the dynami
al variablesthey have been very su

essfull in the predi
tion of the ordered phase of various
ompounds, su
h as e.g. KCuF3 with FM and AO order in the ab planes and theAF and FO order along the c axis. As in the 
ubi
 vanadates the Goodenough-Kanamori rules are violated this suggests that most probably3 the reason forthe violations is that the orbitals should be treated as dynami
al variables. A
-tually, indeed there are strong quantum �u
tuations of the {dyz, dzx} orbitalsalong the c dire
tion [83℄ whi
h are responsible for the 
oexisten
e of the AOand AF order in the plane [83℄ whi
h further supports the above 
laim.More 
areful approa
h to the problem needed.� The main lesson from thelast paragraph is that a more 
areful approa
h to obtain the solutions of thenew t-J model is needed: one has to take into a

ount the spins and orbitals onequal footing as both types of degrees of freedom have to be treated as dynami
alvariables. Obviously, su
h approa
h was not needed for the standard t-J modelwithout orbital degrees of freedom but more interestingly it was also not needed3Logi
ally one 
annot ex
lude other reasons for the violation of these rules.93



for the t-J model des
ribing the situation in the ab planes of the manganites.In the latter 
ase the Goodenough-Kanamori rules were not violated and theundoped ground state was the FM and AO state whi
h meant that the hole 
ouldmove freely in the spin se
tor and it solely 
oupled to the orbital dynami
s [82℄.Thus not only we need a new t-J model to des
ribe the physi
s present inthe lightly doped 
ubi
 vanadates but also we need a new approa
h to get thesolutions of this model. More pre
isely, in the 
ase of the one hole doped to thehalf-�lled state this means that the hole will 
ouple both to the ex
itations ofthe AO ordered state (orbitons) and the AF ordered state (magnons). In thefollowing se
tions we will present the mathemati
al framework to investigatethe ideas of this se
tion.4.3 The model4.3.1 The t2g spin-orbital t�J HamiltonianHubbard-like model.� The starting point is the multiorbital Hubbard modelrelevant for the t2g orbitals in the transition metal oxides with the perovskitestru
ture [98, 99℄,
H = −t

∑

〈ij〉||γ

∑

µ(γ),σ

(
d†iµσdjµσ + H.c.

)
+ U

∑

iµ

niµ↑niµ↓

+(U − 5

2
JH)

∑

i,µ<ν,σσ′

niµσniνσ′ − 2JH
∑

i,µ<ν

Siµ · Siν

+JH
∑

iµ6=ν
d†iµ↑d

†
iµ↓diν↓diν↑, (4.1)where U is the intraorbital Coulomb repulsion and JH is the on-site Hund'sex
hange intera
tion. Here the d†iµσ operator stands for 
reation of an ele
tronwith spin σ in one of the three t2g orbitals, µ ∈ {dxy, dyz, dzx}. Note that thehopping is allowed only between the same t2g orbitals and µ(γ) (where γ = a, b, cis a 
ubi
 dire
tion) is 
hosen in su
h a way that the ele
tron in ea
h t2g orbitalhops only in the allowed plane, 
f. Ref. [71℄ or the more detailed dis
ussion onthis issue in Chapter 3. Besides, the summations in the intera
tion terms aredone in su
h a way that ea
h pair of the orbitals is in
luded only on
e and thespin operator is de�ned as:

Siµ = {d†iµ↑diµ↓, d
†
iµ↓diµ↑,

1

2
(niµ↑ − niµ↓)} (4.2)Let us also note, that this Hamiltonian des
ribes rigorously the multiplet stru
-ture of the d2 and d3 ions in the t2g subspa
e as only one Hund's ex
hangeelement is involved [99℄.Central Hamiltonian of this 
hapter.� Applying the 
anoni
al perturbationexpansion of Chapter 1 to the Hamiltonian Eq. (4.1) for the 
ase of the twoele
trons per site, relevant for the planes of lightly doped 
ubi
 vanadates, weobtain the Hamiltonian of the spin-orbital t�J model with the three-site terms:4

H = Ht +HJ +H3s, (4.3)4In the literature the t�J model with three-site terms is also 
alled the strong-
ouplingmodel [80℄. However, we will not use this name sin
e throughout this thesis we deal with94



where the Ht is the kineti
 energy in the 
onstrained Hilbert spa
e with no`double o

upan
ies' (see Se
. 4.3.2), HJ des
ribes the superex
hange terms (seeSe
. 4.3.3) and �nally H3s are the three-site terms (see Se
. 4.3.4). Please notethat unlike in the previous 
hapter we will not give here the expli
it expressionsfor the T0, T+, and T− pro
esses (see Chapter 1 for their de�nition) as theyare rather tedious. This is further ba
ked by the fa
t that the 
ompli
ated Jpart of the t�J model has been already derived [100℄ while for the kineti
 andthree-site terms will not be needed (see below).4.3.2 The kineti
 energy termExpli
it form.� The kineti
 energy term of the t2g spin-orbital t-J model, whi
hdes
ribe the hopping of the ele
trons in the 
onstrained Hilbert spa
e, i.e. inthe spa
e with singly o

upied or doubly o

upied sites (the lowest Hubbardsubband of the model), follow in a straightforward way from the un
onstrainedhopping of ele
trons residing in the t2g orbitals. Thus in the ab plane, whi
his under 
onsideration here, ele
trons in dyz ≡ a (dzx ≡ b) orbitals 
an hoponly along the b (a) dire
tion. Besides, we will assume here that the dxy orbitaldoes not 
ontribute to hopping elements as it lies lower in energy and is alwayso

upied by one ele
tron in the half-�lled and lightly hole-doped regime of 
ubi
vanadates [101℄. Hen
e, we arrive at
Ht = −t

∑

i,σ

P
(
b̃†i,σ b̃i+â,σ + ã†i,σãi+b̂,σ + H.c.

)
P. (4.4)Here the use of the 
onstrained operators

b̃†iσ = b†iσ(1 − nibσ̄)(1 − niaσ̄)(1 − niaσ), (4.5)and
ã†iσ = a†iσ(1 − niaσ̄)(1 − nibσ̄)(1 − nibσ), (4.6)means that the hopping is allowed only in the 
onstrained Hilbert spa
e. Be-sides, sin
e the Hund's 
oupling dominates over the kineti
 pro
esses, JH ≫ t,in the 
ubi
 vanadates [102℄ we proje
t the �nal states resulting from the ele
-tron hopping onto the high spin states, whi
h is denoted by the P operators inEq. (4.4). Note that Eq. (4.4) is a generalization of Eq. (3.6) valid only forspinless fermions in the t2g system under 
onsideration.4.3.3 The spin-orbital superex
hange termsExpli
it form.� The spin-orbital superex
hange in 
ubi
 vanadates is derivedin Ref. [100℄ [see Eqs. (6.5)-(6.7) there℄. It reads,

HJ = HJ(1) +HJ(2) +HJ(3), (4.7)many di�erent extensions of the standard t�J models and the strong-
oupling model is justanother variation of su
h extended version of the t�J model. See also a similar footnote inChapter 3.3.1. 95



where
HJ(1) = −1

6
Jr1

∑

〈ij〉
(Si · Sj + 2)

(
1

4
− T zi T

z
j

)
, (4.8)

HJ(2) =
1

8
J

∑

〈ij〉
(Si · Sj − 1)

(
19

12
∓ 1

2
T zi ∓ 1

2
T zj − 1

3
T zi T

z
j

)
, (4.9)

HJ(3) =
1

8
Jr3

∑

〈ij〉
(Si · Sj − 1)

(
5

4
∓ 1

2
T zi ∓ 1

2
T zj + T zi T

z
j

)
. (4.10)Here: Si is a spin S = 1 operator, T zi = (ñib − ñia)/2 is a pseudospin T = 1/2operator, and the superex
hange 
onstant J = 4t2/U with U being the e�e
tiverepulsion between ele
trons on the same vanadium site and in the same orbitaland with t ≪ U being the e�e
tive hopping between vanadium ions, see Eq.(4.1). The fa
tors r1 = 1/(1−3η) and r3 = 1/(1+2η) (where η = JH/U) a

ountfor the Hund's 
oupling JH and originate from the energy splitting of various

d3 ex
ited states due to the various possible spin and orbital 
on�gurations(multiplet stru
ture) [83℄. Let us re
all, that superex
hange Hamiltonian (4.7)was derived [100℄ with the assumption that the dxy orbital was singly o

upiedat ea
h vanadium ion (see also dis
ussion in Se
. 4.3.2. Besides, in prin
ipleHamiltonian (4.7) was originally derived for the undoped 
ase and should bemodi�ed for the doped 
ase by adding the superex
hange intera
tions due tothe existen
e of the d1
i d

1
j and d1

i d
2
j nearest neighbour 
on�gurations. However,the 
ontributions of these terms should be very small in the dis
ussed here smalldoping regime and they will be negle
ted.4.3.4 The three-site termsIdenti�
ation of `important' three-site terms.� The three-site terms have notbeen derived before for the 
ase of the d2 systems with spin and orbital degreesof freedom. These terms, although frequently negle
ted, 
an play an importantrole in the 
oherent hole propagation in orbital systems (see Chapter 3 or Ref.[85℄). However, in the present 
ase the derivation of all possible three-site termsis relatively tedious and leads to a 
omplex expression. Fortunately, it wasshown in Chapter 3 or Ref. [85℄ (for orbital systems) and in Ref. [80℄ (forspin systems) that the only three-site terms whi
h o

urred to be relevant forthe lightly doped systems were these whi
h did not 
ontribute to the 
ouplingbetween hole and orbital or spin ex
itation but merely 
ontributed to the freehole motion (see also Se
. 4.4.1). Nevertheless, we dis
uss �rst the possible roleof the negle
ted three-site terms in Se
. 4.5.1.Derivation of the `important' three-site terms.� In what follows, using the
anoni
al perturbation theory of Chapter 1, we derive the three-site terms whi
hwould 
ontribute to su
h a motion of a single hole that it does not disturb theAO and AF order present in the undoped ground state (see also dis
ussion inthe beginning of Se
. 4.4.1). We start the analysis by looking at the possibilityof the free hole motion along the a dire
tion, see Fig. 4.3. We would like tomove the ele
tron in the b orbital (the one in the a orbital does not hop alongthis dire
tion) from the right site to the left site over the middle site in su
h away that the spin and orbital order present before the pro
ess stays inta
t (inthe language of Chapter 1 this means transfering the ele
tron �rst with the T+96



i−a i i+a

b orbital

a orbital

c orbitalFigure 4.3: Three neighbouring sites along the a dire
tion with su
h an AO andAF order that the ele
tron on site i + â 
an move over the intermediate site ivia the superex
hange pro
ess ∝ J to site i− â without disturbing the AO andAF order.and then with the T− pro
ess). This 
on�nes the 
hoi
e of the possible highenergy intermediate d3
i 
on�gurations at the middle site to the states with thetotal spin |3/2,−1/2〉 (see Fig. 4.3) and the possible states: (i) 4A2 with energy

U − 3JH , (ii) 2E 1
2θ state with energy U , (iii) 2E 1

2ε state with energy U . Notethat all the intermediate states with orbital singlets are ex
luded as they wouldrequire orbital ex
itations. Thus, one arrives at the following 
ontribution (seeChapter 1 for more details) to the free hole motion whi
h arises due to thethree-site term pro
esses along the a dire
tion,
−

(
1

3

1

1 − 3η
+

2

3

)
t2

U
P b̃†i−â,σñiaσ̄ b̃i+â,σ P. (4.11)A similar 
onsideration but for the pro
esses along the b dire
tion yields

−
(

1

3

1

1 − 3η
+

2

3

)
t2

U
P ã†

i−b̂,σ
ñibσ̄ãi+b̂,σ P. (4.12)However, the 900 pro
esses, 
alled also around `the 
orner' (see Chapter 3), su
has e.g. �rst the hopping of an ele
tron along the b dire
tion and then along the

a dire
tion would not 
ontribute to the free motion. This is be
ause an ele
tronin a parti
ular orbital 
an hop only along one parti
ular 
ubi
 dire
tion andthus one would have to inter
hange the hopping of ele
trons at the intermediatehigh energy site whi
h would lead to the orbital ex
itation.Hen
e, after adding the sums over all sites i and spins σ and the 
onjugateterms to Eqs. (4.11)-(4.12) one ends up with:
H3s=−

1

12
J (r1 + 2)

∑

i,σ

P
(
b̃†i−â,σñiaσ̄ b̃i+â,σ + H.c.

)
P

− 1

12
J (r1 + 2)

∑

i,σ

P
(
ã†
i−b̂,σ

ñibσ̄ãi+b̂,σ + H.c.
)
P. (4.13)Note that these terms are ∝ J and hen
e are of the same order in t2/U assuperex
hange terms (4.7).Finally, one may wonder how Eq. (4.13) 
ould 
ontribute to the free holemotion sin
e it 
ontains four ele
tron operators. However, the number operatorswhi
h stand in the middle of this equation only re�e
t the relevant 
on�gurationsand in fa
t 
an be dropped out in the assumed here AO and AF order. Morepre
isely, let us introdu
e two sublatti
es {A,B} in su
h a way that e.g. the97



intermediate site in Fig. 4.3 belongs to the sublatti
e A (with all a orbitalso

upied and the spins pointing `downwards'); let us also 
on
entrate on Eq.(4.11). Sin
e we assumed that in this sublatti
e the ele
trons have spin `down'and are lo
ated in the a orbital thus if, in addition, one assumes that σ =↑ inEq. (4.11), then one is allowed to write ñia↓ ≡ 1 and drop out this operator.Obviously, if one assumed σ =↓ or that i ∈ B, then one would not get any
ontribution. Thus for some parti
ular 
hoi
es of σ and the sublatti
e indi
esEq. (4.11) would des
ribe the free hole motion whereas in some other 
ases thisequation would not 
ontribute at all. While writing down Eq. (4.45) in Se
.4.4.1 we take 
are of this problem.4.4 Method and results4.4.1 The slave-fermion approa
hSlave-parti
le formalism.� Similarly as in Chapter 3 also here we will 
al
ulatethe properties of the half-�lled system with one doped hole using the slavefermion method whi
h takes 
are of the 
onstraint of `no double o

upan
ies'in the kineti
 energy term of the t�J model. In fa
t, this is a method of 
hoi
efor low doped t�J models [20℄ with some kind of magneti
/orbital order in thehalf-�lled ground state.Undoped 
ase: low energy ex
itations.� It was shown in Ref. [83℄ that the
lassi
al ground state of the 3D version of the Hamiltonian Eq. (4.7) is a C-AFstate and G-AO ordered state. Thus, the 
lassi
al undoped ground state of theHamiltonian Eq. (4.3) is the (Néel ordered) AF state and AO state. Certainly,this is not the eigenstate of the Hamiltonian and thus the full des
ription ofthe system should also take into a

ount the quantum �u
tuations around su
ha 
lassi
al ground state. Below, we will 
al
ulate them by transforming thespins and pseudospins into the appropriate S
hwinger bosons and then usingthe linear spin wave (LSW) and linear orbital wave (already denoted as LOW,see previous Chapter) approximation. In addition from the LSW and LOWapproa
h, we will obtain the spe
trum of the low energy ex
ited states.First, in the 
lassi
al state we introdu
e two sublatti
es A and B su
h that:(i) all a (b) orbitals are o

upied in the perfe
t AO state in sublatti
e A (B),and (ii) spins pointing `downwards' (`upwards') are lo
ated on sublatti
e A (B).Next we rotate spins and pseudospins on sublatti
e A so that all the spinsand pseudospins in the whole latti
e are in the same lo
al eigenstates witheigenvalues of Szi and T zi .Se
ond, we introdu
e S
hwinger bosons t and f su
h that:
T zi =

1

2
(ntib − ntia), (4.14)

Szi =
1

2
(nf i↑ − nf i↓), (4.15)

S+
i = f †

i↑fi↓, (4.16)
S−

i = f †
i↓fi↑, (4.17)98



with the 
onstraints
∑

γ=a,b

t†iγtiγ = 1,
∑

σ=↑,↓
f †
iσfiσ = 2. (4.18)Third, we transform the S
hwinger boson operators into the Holstein-Primako�bosons α and β:

t†ib =

√
1 − t†iatia ≡

√
1 − β†

i βi, (4.19)
t†ia = β†

i , (4.20)
f †
i↑ =

√
2 − f †

i↓fi↓ ≡
√

2 − α†
iαi, (4.21)

f †
i↓ = α†

i , (4.22)where the above 
onstraints are now no longer needed.Next, we substitute the above transformations into the Hamiltonian HJ andskip higher order terms (LSW and LOW approximation). The latter approx-imation physi
ally means that the number of bosons α and β, whi
h des
ribethe �u
tuations around the ordered state, is small. This results in the e�e
tivesubstitutions:
T zi =

1

2
− β†

i βi, (4.23)
Szi = 1 − α†

iαi, (4.24)
S+

i =
√

2αi, (4.25)
S−

i =
√

2α†
i . (4.26)Finally, we introdu
e Fourier transformation separately for ea
h sublatti
e(N is the total number of sites on both sublatti
es):

βkA =

√
2

N

∑

j∈A
eikjβj, (4.27)

βkB =

√
2

N

∑

j∈B
eikjβj, (4.28)

αkA =

√
2

N

∑

j∈A
eikjαj, (4.29)

αkB =

√
2

N

∑

j∈B
eikjαj, (4.30)de�ne operators

αk± = (αkA ± αkB)/
√

2, (4.31)and perform the standard Bogoliubov transformation for magnons [23℄
α̃k± = ukαk± − vkα

†
−k±, (4.32)99



where
uk =

√
1 + νk
2νk

, vk = −sgn(γk)

√
1 − νk
2νk

, (4.33)with νk =
√

1 − γ2
k and the stru
ture fa
tor for the square latti
e

γk =
1

2
(cos kx + cos ky). (4.34)Then, after negle
ting 
onstant terms whi
h merely give the 
lassi
al energyof the undoped ground state, the LSW and LOW Hamiltonian for magnons andorbitons reads:

Heff
J = HeffLSW +HeffLOW, (4.35)

HeffLSW = JS
∑

k

ωk(α̃†
k+α̃k+ + α̃†

k−α̃k− + 1), (4.36)
HeffLOW = JO

∑

k

(β†
kAβkA + β†

kBβkB), (4.37)where
JO = η

2 − η

(1 − 3η)(1 + 2η)
J, (4.38)and

JS =
−5η2 − 3η + 1

4(1 − 3η)(1 + 2η)
J. (4.39)in agreement with Eq. (6.11) of Ref. [100℄ and Eq. (11) of Ref. [103℄. Besides,the dispersion relation for the magnons is

ωk = zS
√

1 − γ2
k (4.40)where z = 4 is the 
oordination number, S = 1 is the value of the spin. Letus note that in the regime of reasonable values of η ∈ [0, 0.20]: EO is negativewhereas JO > 0 and JS > 0, whi
h means that the 
lassi
al ground state indeedhas 
oexisting AO and AF order. Furthermore, at temperature T = 0 the
onsidered here 
lassi
al 2D AO and AF ground state is stable with respe
tto the quantum �u
tuations, both in spin and orbital 
hannel. In fa
t, theorbital order is undisturbed by lo
al Ising ex
itations, while the quantum AFground state is modi�ed and the order parameter is renormalized with magnonex
itations [23℄.Doped hole: 
oupling with magnons and orbitons.� We expe
t that a dopedhole does not modify signi�
antly the 
lassi
al ground state stable for the half-�lled 
ase (see above). This 
ould play a role in the lightly doped regime, butin the 
ase of one hole in the whole plane su
h a modi�
ation is negligible andwill be negle
ted below. Instead, the doped hole may modify its neighborhoodby its 
oupling to the ex
itations of the 
lassi
al ground state � magnons andorbitons � whi
h renormalize the hole motion. In order to des
ribe it mathe-mati
ally, we rewrite Ht (see next paragraph) and H3s (see below) using similartransformations as performed for the half-�lled 
ase.First, we rotate spins and pseudospins on sublatti
e A. Next, using the slave-fermion approa
h we express the ele
tron operators in terms of the S
hwinger100



bosons introdu
ed above and in terms of the (
onstrained) fermioni
 operatorsrepresenting holes:
ã†iσ =

1√
2
f †
iσt

†
iahi, (4.41)

b̃†iσ =
1√
2
f †
iσt

†
ibhi. (4.42)Here the 
onstraints on the bosoni
 operators are as in Eq. (4.18) while h†ihidenotes the number of holes at site i.Note that the fa
tor 1√

2
is not added `ad ho
' but originates from a detailed
he
k of the validity of the above equations: it should always be present in thespin S = 1 
ase be
ause e.g. when one annihilates one boson in a two-bosonstate with the f operator, then a fa
tor √2 appears. Due to this fa
tor and theabove 
onstraint on the number of bosons the high spin proje
tion operators

P in Ht are no longer needed (i.e. quantum double ex
hange [104℄ fa
tors areimpli
itly in
luded in this formalism).Next, similarly as above, we transform the S
hwinger bosons into the Holstein-Primako� bosons, skip all terms 
ontaining more than two bosons, performFourier transformation for bosons and (additionally) for holons here, introdu
e
αk± operators, and �nally perform Bogoliubov transformation to arrive at theHamiltonian:

Heff
t =

zt

2N

∑

k,q1,q2

{
Mx(k,q1,q2)h†kAhk̄B(α̃q1+

+ α̃q1−
)βq2A

+My(k,q1,q2)h†kBhk̄A(α̃q1+
− α̃q1−

)βq2B

+Mx(k,q1,q2)h†kAhk̄B(α̃†
−q1+

− α̃†
−q1−

)βq2A

+My(k,q1,q2)h†kBhk̄A(α̃†
−q1+

+ α̃†
−q1−

)βq2B + H.
.}, (4.43)where
Mµ(k,q1,q2) = uq1

γkµ−q1µ−q2µ
+ vq1

γkµ−q2µ
, (4.44)with µ = x, y. Here k̄ = k − q1 − q2 follows from momentum 
onservation, andthe 
oe�
ients {uq1

vq1
} are the standard Bogoliubov fa
tors (4.33).Doped hole: free dispersion.� After performing similar transformations asthe ones introdu
ed for the t part of the Hamiltonian one obtains that thethree-site terms, Eq. (4.13), lead to the following Hamiltonian for the holes

Heff
3s = τ

∑

k

{
εB(k)h†kBhkB + εA(k)h†kAhkA

}
, (4.45)where

τ =
1

4

1 − 2η

1 − 3η
J, (4.46)and the free hole dispersion relations on the sublatti
es are

εA(k) = 2 cos(2ky), (4.47)101
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Figure 4.4: The e�e
tive spin and orbital ex
hange intera
tion JS (dashed line)and JO (dotted line) as a fun
tion of the Hund's rule 
oupling η = JH/U ,respe
tively. The solid line shows the dependen
e of the three-site term τ on η.The realisti
 value of η = 0.15 (
f. Ref. [83℄) is indi
ated by the light dottedline.and
εB(k) = 2 cos(2kx). (4.48)Note that, we have negle
ted all of the three-site terms whi
h lead to the 
ou-pling between holes and magnons and/or orbitons. This is physi
ally justi�edsin
e then su
h terms would be of the order of J/4, i.e. mu
h smaller than theterms in Eq. (4.43). See also Se
. 4.5.1 for further dis
ussion.Thus in the lightly doped 
ase, when the 
lassi
al spin and orbital orderedground state present in the half-�lled 
ase is not destroyed, the t�J model (4.3)
an be redu
ed to an e�e
tive model

Heff = Heff
t +Heff

J +Heff
3s , (4.49)see Eqs. (4.35), and (4.43)-(4.45). A
tually, this is a polaron-type model withthe 
oupling between fermions (holes) and bosoni
 ex
itations (orbitons andmagnons), whi
h is relatively easy to solve (see next se
tion). The validity ofthe mapping between the two models was thoroughly dis
ussed in Ref. [23℄ andChapter 3.Note that the original t-J model with three-site terms (4.3) has three param-eters {J, η, t}, whereas the e�e
tive polaron model given by Eq. (4.49) is more
onveniently analysed when using four parameters {JS , JO, τ, t}, whi
h deter-mine the s
ale of spin and orbital ex
itations as well as free hole propagation(due to the three-site terms) and the vertex fun
tion (t), see below. In whatfollows we will use either one of these two parameter sets (and only sometimesboth of them) depending on the 
ontext. Hen
e, we plot in Fig. 4.4 the fun
-tional relation between the parameters {JS , JO, τ} on Hund's ex
hange η. Whilethe magnon energies ∝ JS de
rease with η, the energy s
ale of orbitons ∝ JOin
reases rapidly, so the latter ex
itations are expe
ted to play an importantrole in the realisti
 regime of parameters.4.4.2 The self-
onsistent Born approximationGreen's fun
tions.� The spe
tral properties of the hole doped into the AF/AO102



ground state |Φ0〉 with energy E0 of the t�J model Eq. (4.3) at half-�lling followfrom the Green's fun
tions:
Ga↓(k, ω) =

〈
Φ0

∣∣∣∣a
†
k↓

1

ω +H − E0
ak↓

∣∣∣∣ Φ0

〉
, (4.50)

Ga↑(k, ω) =

〈
Φ0

∣∣∣∣a
†
k↑

1

ω +H − E0
ak↑

∣∣∣∣ Φ0

〉
, (4.51)

Gb↓(k, ω) =

〈
Φ0

∣∣∣∣b
†
k↓

1

ω +H − E0
bk↓

∣∣∣∣Φ0

〉
, (4.52)

Gb↑(k, ω) =

〈
Φ0

∣∣∣∣b
†
k↑

1

ω +H − E0
bk↑

∣∣∣∣Φ0

〉
. (4.53)However, due to the mapping of the t�J model onto the polaron model per-formed in the last se
tion, it is now 
onvenient to express the above Green'sfun
tions in terms of the polaron Hamiltonian Heff . This requires that one�rst writes down the ele
tron operators in terms of the operators used in Eq.(4.49):

ak↓ =
1√
N




∑

j∈A
eikjh†j +

∑

j∈B
eikjh†jαjβj



 , (4.54)
ak↑ =

1√
N



 1√
2

∑

j∈A
eikjh†jαj +

∑

j∈B
eikjh†jβj



 , (4.55)
bk↓ =

1√
N




∑

j∈A
eikjh†jβj +

1√
2

∑

j∈B
eikjh†jαj



 , (4.56)
bk↑ =

1√
N




∑

j∈A
eikjh†jαjβj +

∑

j∈B
eikjh†j



 . (4.57)Se
ond, the ground state |Φ0〉 is now a physi
al va
uum |0〉, with respe
t to theBogoliubov operators α̃k± and the operators βk, with the ground state energy
E 
al
ulated now in the LSW and LOW approximation. Then, one arrives atthe following relations:

Ga↓(k, ω) =
1

2

〈
0

∣∣∣∣hkA
1

ω +Heff − E
h†kA

∣∣∣∣ 0

〉
≡ 1

2
GAA(k, ω), (4.58)

Gb↑(k, ω) =
1

2

〈
0

∣∣∣∣hkB
1

ω +Heff − E
h†kB

∣∣∣∣ 0

〉
≡ 1

2
GBB(k, ω), (4.59)where the fa
tor 1/2 is due to the operators hkA (hkB) being de�ned separatelyfor ea
h sublatti
e. Furthermore, the Green's fun
tions

Ga↑(k, ω) ≪ Ga↓(k, ω) , (4.60)
Gb↓(k, ω) ≪ Gb↑(k, ω) , (4.61)
orrespond to ex
ited states and thus 
an be skipped. Note that the above setof equations follows from the fa
t that βk|0〉 = 0 and the inequalities are due to

〈
0

∣∣∣∣∣
α†
iαi
2

∣∣∣∣∣ 0

〉
∼ n0

2
∼ 0.1 , (4.62)103
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=ΣAAFigure 4.5: Diagrammati
 representation of the SCBA equations: top � theDyson's equation for the GAA(k, ω) and GBB(k, ω) Green's fun
tions; bottom� 
al
ulation of the respe
tive self-energies. Note the appearan
e of the twowiggly lines in the 
al
ulation of the self-energies 
oming from the orbiton andthe magnon ex
itations.where n0 is the average number of spin deviations in the 2D ground state |0〉.Note that below we will eliminate the ground state energy E to simplify equa-tions.Equations for the self-energy.� As seen in Se
tion 4.4.1 the verti
es in thespin-orbital model are more 
omplex than for the standard spin 
ase [23℄: (i)one always has two boson and two holon lines at ea
h vertex (instead of just oneboson and two holons lines in the standard lowest SCBA order), (ii) one has thesublatti
e stru
ture (this resembles the orbital 
ase), (iii) one has two kinds ofmagnons (whi
h we had to introdu
e in order to keep tra
k of the latti
e index).Also, in the LSW and LOW order all the terms ∝ α†
iβi do not 
ontribute (theself-energies for them would require altogether four boson lines instead of justtwo for ∝ αiβi).5 Hen
e, we largely follow the route whi
h was proposed for theorbital t2g model in Chapter 3 and obtain the following SCBA equations for theself-energies (see also Fig. 4.5):

ΣAA(k, ω) = 2
z2t2

4N2

∑

q1,q2

M2
x(k,q1,q2)

×GBB(k − q1 − q2, ω + JSωq1
+ J0) (4.63)

ΣBB(k, ω) = 2
z2t2

4N2

∑

q1,q2

M2
y (k,q1,q2)

×GAA(k − q1 − q2, ω + JSωq1
+ J0), (4.64)5We have veri�ed analyti
ally that these terms would not lead to any k-dependen
e in thespe
tra as in the self-energies des
ribing su
h pro
esses one 
an shift the summation over themomenta in su
h a way that the self-energies are momentum independent (See also Se
. 4.5.1for a similar 
al
ulation 
on
erning the self-energies for two boson lines). Thus, these termswould not 
hange the qualitative feature of the 
al
ulated spe
tra, i.e. that the k-dependen
eof the quasiparti
le states originates entirely from the three-site terms. Besides, one 
an notethat in
lusion of su
h terms would require going beyond the LSW and LOW approximation,i.e. one would have to in
lude the intera
tions between magnons and/or orbitons.104



where the fa
tor 2 in front of the vertex 
omes from the fa
t that one has twokinds of magnons (and hen
e two distin
t diagrams). Fortunately, this fa
tor
an
els with one of the 2 in the denominator and we obtain that the 
oupling
onstant is simply (t/
√

2)2, i.e. we re
over the fa
tor 1/
√

2 whi
h 
omes outfrom the quantum double ex
hange. The above equations should always besupplemented by the Dyson's equations,
GAA(k, ω) =

1

ω + τεA(k) − ΣAA
, (4.65)

GBB(k, ω) =
1

ω + τεB(k) − ΣBB
. (4.66)Altogether, Eqs. (4.63)-(4.66) form a self-
onsistent set of equations whi
h 
anbe solved numeri
ally.Finally, one 
an 
al
ulate the spe
tral fun
tions for a hole 
reated in a and

b orbital:
Aa(k, ω) = − 2

π
lim
δ→0

ImGa↓(k, ω + iδ) = − 1

π
lim
δ→0

ImGAA(k, ω + iδ) , (4.67)
Ab(k, ω) = − 2

π
lim
δ→0

ImGb↑(k, ω + iδ) = − 1

π
lim
δ→0

ImGBB(k, ω + iδ) , (4.68)where we introdu
ed a fa
tor of 2 in front of the de�nition of the spe
tralfun
tions Aγ(k, ω) for 
onvenien
e.4.4.3 The spe
tral fun
tions and quasiparti
le propertiesAnalyti
 
al
ulations.� It o

urs that in the 
ase when the three-site terms areabsent (i.e. for τ ≡ 0) one 
an easily prove two important properties obtainedwith the SCBA Eqs. (4.63)-(4.64): (i) the self-energies are k-independent, (ii)the spe
tral fun
tions 
ontain the quasiparti
le state for �nite value of the ex-
hange parameter J (equivalently JS or JO).First, we show property (i). Sin
e we have assumed that τ = 0 we 
an rewriteSCBA equations (4.63)-(4.64) together with Dyson's equations (4.65)-(4.66) inthe following manner:
ΣAA(k, ω) =

z2t2

2N2

∑

q1,q2

M2
x(k,q1,q2)

ω + JSωq1
+ JO − ΣBB(k − q1 − q2, ω + JSωq1

+ J0)
,(4.69)

ΣBB(k, ω) =
z2t2

2N2

∑

q1,q2

M2
y (k,q1,q2)

ω + JSωq1
+ JO − ΣAA(k − q1 − q2, ω + JSωq1

+ J0)
,(4.70)whi
h after substitution q2 → k − q2 in the sums leads to

ΣAA(k, ω) =
z2t2

2N2

∑

q1,q2

f2(q1,q2)

ω + JSωq1
+ JO − ΣBB(q2 − q1, ω + JSωq1

+ J0)
,(4.71)

ΣBB(k, ω) =
z2t2

2N2

∑

q1,q2

g2(q1,q2)

ω + JSωq1
+ JO − ΣAA(q2 − q1, ω + JSωq1

+ J0)
,(4.72)105



where we de�ned
f(q1,q2) = uq1

γq2x−q1x
+ vq1

γq2x
, g(q1,q2) = uq1

γq2y−q1y
+ vq1

γq2y
, (4.73)with γk de�ned as in Eq. (4.34). Sin
e the right hand side of the equationsfor the self-energies do not depend on k [see Eqs. (4.71)-(4.72)℄, one is allowedto drop the momentum dependen
e of the self-energies. Hen
e, the spe
tralfun
tions are also momentum independent in the 
ase of τ = 0 and the onlydependen
e on k may originate from the three-site terms.Se
ond, using the dominant pole approximation [22℄ we show that the quasi-parti
le state exists [property (ii)℄ if J is �nite (i.e. JS or JO are �nite). Hen
e,following Kane et al. we assume that the Green's fun
tion 
an be separatedinto the part 
ontaining the pole and the part responsible for the in
oherentpro
esses:

GAA(ω) =
aA

ω − ωA
+GincAA(ω) (4.74)

GBB(ω) =
aB

ω − ωB
+GincBB(ω), (4.75)where

aA =
1

1 − ∂ΣA

∂ω

∣∣
ω=ωA

, (4.76)
aB =

1

1 − ∂ΣB

∂ω

∣∣
ω=ωB

, (4.77)and the pole positions:
ωA = ΣAA(ωA), (4.78)
ωB = ΣAA(ωB), (4.79)are to be determined self-
onsistently following Eqs. (4.74)-(4.75).Next, following Ref. [22℄ it is straightforward to derive the upper bound forthe residues (spe
tral weights) {aA, aB}:

aA ≤
{

1 +
z2t2

2N2

∑

q1,q2

f2(q1,q2)
aB

(JSωq1
+ J0)2

}−1

, (4.80)
aB ≤

{
1 +

z2t2

2N2

∑

q1,q2

g2(q1,q2)
aA

(JSωq1
+ J0)2

}−1

. (4.81)If the sums in the above equations are divergent, then the upper bounds for theresidues are equal zero and the Green's fun
tions do not have the quasiparti
lepole. Hen
e, one needs to 
he
k the behaviour for small values of the momenta
q1. Then ωq1

∼ |q1| but e.g. (uq1
γq2y−q1y

+ vq1
γq2y

)2 ∼ |q1|(γq2y
− q̂1 ·∇γq2y

)2.Thus, if at least either JS or JO is �nite, then there are no divergen
es in Eqs.(4.80)-(4.81). Consequently, under the same 
onditions the quasiparti
le stateexists. 106
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(0, π)Figure 4.6: The spe
tral fun
tions for the hole doped into the a (left panel) and
b orbital (right panel). Parameters: J = 0.2t and η = 0.15 (i.e. JS = 0.03t,
JO = 0.08t, and τ = 0.06t). Broadening δ = 0.01t and 
luster size 16 × 16.Numeri
al 
al
ulations.� We 
al
ulate the spe
tral fun
tions Aa(k, ω) and
Ab(k, ω) by solving SCBA equations (4.63)-(4.64) on a mesh of 16×16 k-points.The results for two di�erent values of the superex
hange 
onstant J = 0.2t and
J = 0.6t are shown in Figs. 4.6 and 4.7, respe
tively. Also we assume the Hund's
oupling to be quite strong, i.e. η = 0.15.6 However, su
h a value of the Hund's
oupling is not only realisti
 but together with the observed value of J = 0.2tgives a reasonable value of the spin-only ex
hange 
onstant JS = 0.03t (whi
his in agreement with the observed Néel temperature in LaVO3), 
f. Se
. VIB ofRef. [100℄ for more detailed dis
ussion on this issue. Thus, the spe
tral fun
tionsshown in Fig. 4.6 are 
al
ulated for the the realisti
 values of parameters inLaVO3 whereas those shown in Fig. 4.7 are merely 
al
ulated for 
omparison.Let us �rst dis
uss the results in Fig. 4.6. The quasiparti
le peak in thelow energy part of the spe
trum is 
learly visible and 
on�rms the analyti
predi
tions presented above. However, the quasiparti
le state has a small 1Ddispersion: along the kx dire
tion for holes doped into the b orbitals and alongthe ky dire
tion for holes doped into the a orbital. Sin
e su
h a dispersion isnot present when the three-site terms are negle
ted (
ompare the above analyti

onsiderations) one 
an immediately as
ribe the onset of the 1D dispersion inthe spe
tra to the three-site terms. Furthermore, this phenomenon is quite wellunderstood and we refer to Chapter 3 or Refs. [85℄ for a more detailed dis
ussionof this problem.Besides, the ex
ited states form a ladder-like spe
trum, also with a small 1Ddispersion. Similarly as for the quasiparti
le state the ex
ited states resemblequalitatively the spe
tral fun
tions 
al
ulated for the purely orbital model, seeChapter 3 or Ref. [85℄. However, here one sees that quantitatively the spin-orbital spe
tra are di�erent than the orbital ones. In parti
ular, they are quitesimilar to those obtained for J = 0.4t in the purely orbital model (see Fig. 3.5in Chapter 3) although this observation has no physi
al meaning sin
e all ofthe ex
hange 
onstants used in the spin-orbital model (J , JS or JO) are mu
h6Note that only for dida
ti
 purpose in Se
s. 4.5.2�4.5.3 we 
al
ulate the spe
tral fun
tionsfor η = 0. However, one should bear in mind that su
h a value is unphysi
al and in
onsistentwith the assumed in�nite value of the Hund's 
oupling in Eq. (4.4).107
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(0, π)Figure 4.7: The spe
tral fun
tions for the hole doped into the a (left panels)and b orbital (right panel). Parameters: J = 0.6t and η = 0.15 (i.e. JS = 0.09t,
JO = 0.23t, and τ = 0.19t). Broadening δ = 0.01t and 
luster size 16 × 16.smaller than 0.4t.Looking at the spe
tral fun
tions shown in Fig. 4.7 one notes that theladder-like spe
trum almost disappears when the value of the superex
hange
onstant is in
reased to J = 0.6t. However, the qualitative properties of thedispersive quasiparti
le peak stay mostly un
hanged and the 1D 
hara
ter ofthe dispersion relation is preserved. Quantitatively, the quasiparti
le spe
tralweight and the bandwidth in
reases quite drasti
ally.To 
on
lude, the spin-orbital spe
tral fun
tions form ladder-like spe
tra witha small 1D dispersion and have many similarities with the purely orbital spe
traof the t2g model, 
f. Chapter 3 or Ref. [85℄. Still, however, there are a fewrelatively important di�eren
es with the orbital model whi
h suggest that thespin-orbital is de�nitely more 
omplex than the purely orbital model. For theunderstanding of this problem we refer to Se
. 4.5 whereas in what follows wewill further investigate the properties of the spe
tral fun
tions of the spin-orbitalmodel.Quasiparti
le properties.� Now we analyze in more detail the quasiparti
leproperties of the spe
tral fun
tions of the spin-orbital model, 
f. Fig. 4.8. Inaddition, we 
ompare these properties with those 
al
ulated for the spin t�Jmodel with three-site terms of Ref. [80℄ and the orbital t�J model with three-site terms of Ref. [85℄ or Chapter 3.By looking at the results for the spin-orbital model in Fig. 4.8 one sees that:(i) the quasiparti
le bandwidth W is strongly renormalized from its respe
tivefree value (W = 8τ as it may only originate from the three-site term dispersionrelation, see above) and is proportional to J2 for small J (J < 0.6t) and to Jin the regime of large J (J > 0.6t); (ii) the quasiparti
le spe
tral weight aQPgrows 
onsiderably with in
reasing J ; (iii) the pseudogap ∆ (the energy distan
ebetween the quasiparti
le state and the �rst ex
ited state) exists and roughlys
ales as t(J/t)2/3 although for larger values of superex
hange J there are somedis
repan
ies from this law.Thus, one sees that the quasiparti
le properties of the spin-orbital modeldi�er qualitatively from than those of the spin model. We should stress thatalthough the spin model used here is the S = 1/2 t-J model with the three-site108
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Figure 4.8: Dependen
e on J of the quasiparti
le properties: for the spin-orbitalmodel dis
ussed in the present 
hapter with the Hund's 
oupling η = 0.15 (solidline), for the spin model of Ref. [80℄ (dashed line), and for the orbital modelof Ref. [85℄ or Chapter 3 (dotted line). Panel (a) shows the quasiparti
lebandwidth W , (b) � the quasiparti
le spe
tral weight aQP averaged over the 2DBrillouin zone, (
) � the pseudogap ∆ (energy distan
e between the quasiparti
lestate and the �rst ex
ited state) at k = (π/2, π/2). Note that ∆ is not shownfor the spin model as it 
annot be de�ned there. The two light solid lines onpanel (
) show the (J/t)2/3 
urves �tted to the data for the orbital and thespin-orbital model.terms [80℄ but one expe
ts similar generi
 behaviour in the 
ase of spin S = 1(see also Se
. 4.5.2). Hen
e, as there is no qualitative agreement with the modelfor spin S = 1/2 there would neither be a qualitative agreement with the modelfor spin S = 1.On the other hand, we should note signi�
ant similarities between the presentmodel and the orbital model (see also Fig. 4.8); the generi
 behaviour of thebandwidth, the spe
tral weight, and of the pseudogap seems to be the samein both models. There are, however, two di�eren
es. First, the t(J/t)2/3 lawdoes not des
ribe the behaviour of the spin-orbital pseudogap so well as inthe orbital 
ase. Se
ond, if one assumes that the spin-orbital model is justqualitatively similar to the orbital model, then it should be possible to res
ale allthe quasiparti
le properties with su
h an e�e
tive value of the superex
hange Jthat they would 
oin
ide with the results for the orbital model. This, however, isnot possible. For example, from the �ts to the t(J/t)2/3 law one 
an dedu
e thatsu
h an e�e
tive value of the superex
hange would be Jeff = (aSO/aO)2/3 =
0.79J , where aSO = 1.94 (aO = 1.66) is the �tted 
oe�
ient whi
h multipliesthe t(J/t)2/3 law in the spin-orbital (orbital) 
ase. On the other hand, a similar�t to the quasiparti
le spe
tral weight would require that su
h a Jeff would bebigger than J .In summary, the properties of the quasiparti
le state in the spin-orbitalmodel resemble those found for the quasiparti
le in the purely orbital t2g modelof Chapter 3. However, some detailed analysis presented in this se
tion revealsthat su
h a 
orresponden
e is rather `super�
ial' and that few of the qualitativefeatures of both models are di�erent. We refer to the next se
tion for thethorough understanding of this phenomenon.109



4.5 Dis
ussion4.5.1 Validity of the resultsGeneral remarks.� In order to solve the t2g spin-orbital t�J model in the 
aseof one hole doped in the half-�lled ground state we have introdu
ed severalapproximations. A
tually, they 
an be 
ast into two distin
t 
lasses: (i) thoserelated with the introdu
tion of the slave fermions, and (ii) those related withthe SCBA method. However, the short
omings of these two approximationswere studied in detail by many authors (
f. Refs. [28, 105, 106℄ or Chapter3 of this thesis) and it o

urred that none of them were severe. On the otherhand, there 
ould potentially be a problem with the t-J model itself: although,following suggestion in Chapter 3 or Ref. [85℄, we in
luded those three-site termswhi
h lead to the free hole dispersion (see Se
. 4.3.4) we negle
ted all of theothers. Thus, below we take a 
loser look at this problem.Negle
ted three-site terms.� A 
areful analysis leads to the 
on
lusion thatall the three-site terms whi
h do not 
ontribute to the free hole motion wouldlead to the 
oupling between a hole and either two magnons or two orbitons.Sin
e orbitons are lo
al ex
itations, see Eq. (4.37), the latter 
ontribution wouldonly slightly enhan
e the string potential in the present model and 
onsequentlythe spe
tral fun
tions would bear even more signatures of the ladder spe
trum.However, this e�e
t will be quantitatively very small as the three-site termswould 
ontribute to the vertex as ∝ (J/4) (see below) whereas the magnon-orbiton verti
es 
onsidered in this 
hapter are of the order of t. Thus, one 
ansafely negle
t these terms.On the other hand, negle
ting the terms whi
h would lead to the intera
tionbetween a hole and two magnons is not a priori justi�ed. One 
ould imagine thatit might lead to the hole motion by 
oupling to the quantum spin �u
tuations� similarly as in the standard spin 
ase with the 
oupling between a hole and asingle magnon. Thus, we investigate this problem in detail: (i) we derived therespe
tive three-site terms, and (ii) we performed all the transformations as inSe
. 4.4.1 whi
h lead to the Hamiltonian written in the polaron representation.Sin
e all these 
al
ulations are relatively tedious we do not expli
itly writedown all the steps but merely present the �nal Hamiltonian whi
h des
ribes the
oupling between a hole and two magnons
Heff

2m =
1

4

ηJz

1 − 3η

1

2N

∑

k,q1,q2

{
V1y(k,q1,q2)h†kAhk̄A

× (α̃q1+
α̃q2+

+ α̃q1+
α̃q2−

− α̃q1−
α̃q2−

− α̃q1−
α̃q2+

)

+ V1x(k,q1,q2)h†kBhk̄B(α̃q1+
α̃q2+

+ α̃q1+
α̃q2−

− α̃q1−
α̃q2−

− α̃q1−
α̃q2+

) + H.
.}
− 1

4

Jz

1 − 3η

1

2N

∑

k,q1,q2

{
V2y(k,q1,q2)h†kAhk̄A

× (α̃q1+
α̃q2+

+ α̃q1+
α̃q2−

+ α̃q1−
α̃q2−

+ α̃q1−
α̃q2+

)

+ V2x(k,q1,q2)h†kBhk̄B(α̃q1+
α̃q2+

− α̃q1+
α̃q2−

+ α̃q1−
α̃q2−

− α̃q1−
α̃q2+

) + H.
.} , (4.82)110



where
V1µ(k,q1,q2) =

1

2
uq1

uq2
cos(2kµ − 2q1µ − q2µ) +

1

2
vq1

vq2
cos(2kµ − q2µ),(4.83)and

V2µ(k,q1,q2) =
1

4
uq1

vq2
cos(2kµ − 2q1µ), (4.84)with all the symbols de�ned as those in Eq. (4.43). Note that above we havenegle
ted all terms of the type ∝ α̃†α̃ as they would lead to the four boson linediagrams (the self-energies with two magnon lines are very small, see below, andhen
e the self-energies with four magnon diagrams would be even smaller).Next, we implement the pro
esses derived above into the SCBA method andobtain the following equations for the additional self-energies:

Σ
′

AA(k, ω) =
z2λ2

2N2

∑

q1,q2

{
ηV1y(k,q1,q2)−V2y(k,q1,q2)

}2

×GAA(k− q1− q2, ω+ JSωq1
+ JSωq2

)

+
z2λ2

2N2

∑

q1,q2

{
ηV1y(k,q1,q2) + V2y(k,q1,q2)

}2

×GAA(k− q1− q2, ω+ JSωq1
+ JSωq2

)
}
, (4.85)

Σ
′

BB(k, ω) =
z2λ2

2N2

∑

q1,q2

{
ηV1x(k,q1,q2)−V2x(k,q1,q2)

}2

×GBB(k− q1− q2, ω+ JSωq1
+ JSωq2

)

+
z2λ2

2N2

∑

q1,q2

{
ηV1x(k,q1,q2) + V2x(k,q1,q2)

}2

×GBB(k− q1− q2, ω+ JSωq1
+ JSωq2

), (4.86)where
λ =

1

1 − 3η

J

4
. (4.87)This requires that one substitutes for the self-energies:

ΣAA(k, ω) → Σ
′

AA(k, ω) + ΣAA(k, ω), (4.88)
ΣBB(k, ω) → Σ

′

BB(k, ω) + ΣBB(k, ω), (4.89)in the Dyson's equations (4.65)-(4.66) whi
h 
hanges the SCBA equations.Finally, we solve the modi�ed SCBA equations on a mesh of 16×16 points. Ito

urs that the spe
tral fun
tions obtained with the additional self-energies Eqs.(4.85)-(4.86) are virtually similar to those obtained without them (unshown).The only small di�eren
e is the very small enhan
ement of the in
oherent part.This 
an be understood in the following way. First, the added 
ontributions s
aleas (J/4)4 and are very small as J < t. Se
ond, the verti
es, Eqs. (4.83)-(4.84),are singular at e.g. q1 = (0, 0) and q2 = (0, 0) points. Therefore, the self-energies asso
iated with these verti
es 
ould only 
ontribute to the in
oherent111
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Figure 4.9: Spe
tral fun
tion along the Γ −M dire
tion of the Brillouin zonefor: the spin-orbital model (top panels), spin toy-model (middle panels), orbitaltoy-model (bottom panels). J = 0.2t and η = 0 (i.e. JS = 0.05t, JO = 0,but τ ≡ 0, see text) on the left panels whereas J = 0.2t and η = 0.15 (i.e.
JS = 0.03t, JO = 0.08t, but τ ≡ 0, see text) on the right panels. Note that
τ ≡ 0 implies (see Chapter 3) Aa(k, ω) = Ab(k, ω) ≡ A(k, ω). Broadening
δ = 0.01t [δ = 0.02t on panel (f)℄ and 
luster size 16 × 16.part of the spe
trum [the divergent verti
es lead to the divergen
es in denomi-nators of equations (4.80)-(4.81) yielding the upper bounds for the quasiparti
leresidues in the dominant pole approximation℄. The physi
al interpretation ofthis phenomenon is as follows: (i) the hole produ
es two magnon ex
itations atea
h step it moves forward, (ii) the hole always moves by two sites in a singlestep (as the three-site terms lead to the next nearest neighbour hopping), (iii)magnons `travel' in the system and 
ure the defe
ts 
reated by the hole at a`velo
ity' one site per ea
h step. Thus, the magnons are not `fast' enough toerase the defe
ts 
reated by the hole.In 
on
lusion, negle
ting the three-site terms whi
h do not lead to the freehole motion is entirely justi�ed. Su
h pro
esses are not only quantitatively smallbut also they do not 
hange the physi
s qualitatively.4.5.2 The role of the joint spin-orbital dynami
sPurpose of this se
tion.� The main task of this and the next se
tion is to under-stand the spe
tral fun
tions and the quasiparti
le properties of the spin-orbitalmodel. In parti
ular, we not only want to understand the pe
uliar similaritiesor rather small di�eren
es between the spin-orbital model and its purely orbital
ounterpart, whi
h were dis
ussed in Se
. 4.4.3, but also we want to understandwhy the spin physi
s seems to be `hidden' in the present spin-orbital system.Note that for the sake of simpli
ity in this se
tion we will entirely negle
t thethree-site terms (4.13) in the spin-orbital model (4.3) (or in other words we will112
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tral fun
tion along the Γ −M dire
tion of the Brillouin zonefor: the spin-orbital model (top panels), spin toy-model (middle panels), orbitaltoy-model (bottom panels). J = 0.6t and η = 0 (i.e. JS = 0.15t, JO = 0,but τ ≡ 0, see text) on the left panels whereas J = 0.6t and η = 0.15 (i.e.
JS = 0.09t, JO = 0.23t, but τ ≡ 0, see text) on the right panels. Note that
τ ≡ 0 implies (see Chapter 3) Aa(k, ω) = Ab(k, ω) ≡ A(k, ω). Broadening
δ = 0.01t [δ = 0.02t on panel (f)℄ and 
luster size 16 × 16.put τ ≡ 0). This is motivated by the fa
t that the role of the three-site terms issolely to provide dispersion in the spe
tra (see Se
. 4.4.3) and the me
hanismof this dispersion is quite well understood, see Chapter 3.Introdu
ing auxiliary toy-models.� We start the analysis with the introdu
-tion of two arti�
ial toy-models whose results will be later 
ompared to those ofthe t�J spin-orbital model. First, we de�ne the following t�JS spin toy-model

HS = −t
∑

〈ij〉,σ
P (c̃†iσ c̃jσ + H.c.)P + JS

∑

〈ij〉
Si · Sj, (4.90)where spin S = 1, the 
onstrained operators c̃†iσ = c†iσ(1−niσ̄), and the operators

P proje
t onto the high spin states. Note that here the superex
hange energys
ale is JS [see Eq. (4.39)℄ and not J . Hen
e, it is de�ned in su
h a waythat it mimi
s the formation of the AO order. On the other hand, the kineti
energy is blind to the AO here and Eq. (4.4) redu
es to the kineti
 part ofEq. (4.90) only if the orbitals form an orbital liquid state. This is an obviouslogi
al in
onsisten
y but the aim here is to see what happens when the jointspin-orbital dynami
s in the kineti
 energy is entirely negle
ted. It is also thereason why we 
all model (4.90) the toy-model.Se
ond, we de�ne the following t-JO orbital toy-model
HO = −t

∑

i

(b̃†i b̃i+â + ã†i ãi+b̂
+ H.c.) + JO

∑

〈ij〉
T zi T

z
j , (4.91)113



with pseudospin operator T = 1/2, and the 
onstrained operators b̃†i = b†i (1 −
nia) and ã†i = a†i (1 − nib). Similarly as in the spin toy-model de�ned above,the superex
hange energy s
ale is not J but JO [Eq. (4.38)℄ whi
h mimi
s theformation of the AF order. Also, the kineti
 energy is blind now to the AF orderand Eq. (4.4) redu
es to the kineti
 part of Eq. (4.91) only if the spins form theFM order. This again is logi
ally in
onsistent � see, however, dis
ussion above.Next, we solve these models using the SCBA method in the 
ase of the onehole doped into the AF (AO) state for the spin (orbital) toy-model. We do notshow here the respe
tive SCBA equations as these follow from those written inRef. [23℄ (Chapter 3) in the 
ase of the spin (orbital) toy-model. One only hasto substitute in the respe
tive SCBA equations J → −JS, S → 1 and (due tothe double ex
hange fa
tor) also t → t/

√
2 in Ref. [23℄ in the spin 
ase and

J → −JO, E0 → 0, and τ → 0 in Chapter 3 in the orbital 
ase. We then
al
ulate the respe
tive spe
tral fun
tions on a mesh of 16 × 16 k-points. Notethat sin
e τ ≡ 0 the spe
tral fun
tions for both orbital �avours are equal, i.e.
Aa(k, ω) = Ab(k, ω) ≡ A(k, ω).Finally, we 
ompare the results obtained for the above toy-models with thoseobtained for the spin-orbital model t-J model, Eq. (4.4)-(4.7). We show theresults for two di�erent values of J , see Figs. 4.9 and 4.10. In addition, we
al
ulate the results for two di�erent values of the Hund's 
oupling η = 0 and
η = 0.15 (see left and right panels of ea
h �gure).Comparison between toy-models and the spin-orbital model.� Let us �rstlook at the physi
al regime of η = 0.15 and J = 0.2t, see Fig. 4.9(d)-4.9(f). Onesees that the spin-orbital spe
tral fun
tion [panel (d)℄ resembles qualitatively theladder spe
trum found in the orbital model [panel (f)℄ although the quantitative
omparison reveals strong di�eren
es between the two models. Still, the spin-orbital spe
tral fun
tion is entirely di�erent from the k-dependent spin spe
tralfun
tion [panel (e)℄. Next, somewhat similar behaviour is found for the 
ase of
η = 0.15 and J = 0.6t, see Fig. 4.10(d)-4.10(f). Here, however, the spin-orbitalspe
trum is qualitatively di�erent than the orbital spe
trum.Even more inquiring behaviour is found in the unphysi
al regime of η = 0(whi
h, however, is an interesting limit, see also footnote 6 in this 
hapter).Then neither of the panels shown in Fig. 4.9(a)-4.9(
) or Fig. 4.10(a)-4.10(
)is similar to ea
h other. This means that even the orbital model is entirelydi�erent in this regime than the spin-orbital model. This is be
ause in thislimit the hole moves in the orbital model in
oherently as JO = 0 for η = 0, seee.g. Fig. 4.9(
). However, apparently in the spin-orbital model with JO = 0 andsmall but �nite JS the hole moves in string-like potential, see e.g. Fig. 4.9(a).This means that the onset of the ladder-like spe
trum in the spin-orbital modelin this regime 
annot be explained easily in terms of the purely orbital model.In addition, one sees that whereas one gets similar spin-orbital spe
tra fordi�erent values of η but the same values of J , the spe
tra found for the orbitalmodel are di�erent. On the 
ontrary, for di�erent values of J and the samevalues of η the spin-orbital spe
tra are rather distin
t but the spin spe
tra donot 
hange mu
h. This is another argument whi
h suggests that neither thespin toy-model nor the orbital toy-model 
an explain the properties of the spin-orbital spe
tra.Con
lusions.� To 
on
lude, we note that the joint spin-orbital dynami
sin the kineti
 part of the spin-orbital model plays a signi�
ant role for the114
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Figure 4.11: Comparison between the spe
tral fun
tions of the 
lassi
al limit(dashed lines) and full quantum (solid lines) version of the spin-orbital modelat a single point in the Brillouin zone. Panel (a) shows results for J = 0.2t and
η = 0 (i.e. JS = 0.05t, JO = 0, but τ ≡ 0, see text) whereas panel (b) showsresults for J = 0.6t and η = 0 (i.e. JS = 0.15t, JO = 0, but τ ≡ 0, see text).Note that τ ≡ 0 implies (see Chapter 3) Aa(ω) = Ab(ω) ≡ A(ω). Broadening
δ = 0.01t (δ = 0.015t) in panel (a) [(b)℄ and 
luster size 16 × 16.
oherent hole motion. The purely spin or orbital toy-models 
annot reprodu
ethe spe
tral fun
tion found for the spin-orbital t-J model. Hen
e, indeed thespin-orbital spe
tral fun
tions resemble the orbital ones only super�
ially andit is the pe
uliar interplay of the spins and orbitals, studied in the next se
tion,whi
h leads to the 
al
ulated spe
tra.4.5.3 Suppression of quantum �u
tuationsClassi
al limit.� In this se
tion we attempt to understand the spin-orbital spe
-tra by assuming that the spins S = 1 are purely 
lassi
al obje
ts. Hen
e, weskip all the spin �ip terms ∝ S+

i S
−
j in the Hamiltonian Eq. (4.7), we rewriteSCBA equations (4.63)-(4.64) in this 
ase, and �nally try to 
ompare the spe
-tral fun
tions 
al
ulated in this regime with the ones obtained for the full model,Eq. (4.3). In addition, we not only assume τ ≡ 0 as in the previous se
tion butwe also take η = 0 (whi
h implies JO = 0 in parti
ular), see also footnote 6 inthis 
hapter. In the end of this se
tion we dis
uss the impa
t of the �nite valueof these parameters on the results obtained here.Sin
e uq1

= 1, vq1
= 0, and ωq1

= 4 for the S = 1 
lassi
al spins [23℄ we 
anrewrite self-energy equations (4.69)-(4.70),
ΣAA(k, ω) =

z2t2

2N2

∑

q1,q2

γ2
q1x

ω + JSzS − ΣBB(q1, ω + JSzS)
, (4.92)

ΣBB(k, ω) =
z2t2

2N2

∑

q1,q2

γ2
q1y

ω + JSzS − ΣAA(q1, ω + JSzS)
, (4.93)where we already substituted q1 → k − q1 − q2 in the sums. Then the above115



self-
onsistent equations are momentum independent and one obtains
ΣAA(ω) =

( t√
2

)2 z/2

ω + JSzS − ΣBB(ω + JSzS)
, (4.94)

ΣBB(ω) =
( t√

2

)2 z/2

ω + JSzS − ΣAA(ω + JSzS)
, (4.95)sin
e 1/N

∑
q1
γ2
q1ν

= 1/2z, where ν = x, y.Classi
al and quantum limits 
oin
ide.�We solve Eqs. (4.94)-(4.95) self
on-sistently. The respe
tive spe
tral fun
tions are shown in Fig. 4.11 for J = 0.2t(i.e. JS = 0.05t) and J = 0.6t (i.e. JS = 0.15t). As expe
ted, one obtains atypi
al ladder spe
trum. However, one sees that the results resemble those ob-tained for the full spin-orbital model Eq. (4.3) with η = 0 and τ = 0: Althoughthe spe
trum of the full spin-orbital model 
ontains some in
oherent part, theladder peaks of the full spin-orbital model and of its 
lassi
al version almost
oin
ide. In addition, the in
oherent bandwidth in the J = 0 limit is W = 4tin the 
lassi
al 
ase whereas it is only slightly redu
ed in the quantum model(W ∼ 3.7t). 7 For �nite J this results in the small shift of the peaks in the fullspin-orbital model with respe
t to its 
lassi
al 
ounterpart. This all suggeststhat the 
lassi
al and the full (quantum) versions of the spin-orbital models areto a large extent equivalent.Interpretation of the 
lassi
al limit.� On the other hand, Eqs. (4.94)-(4.95)are almost identi
al to the SCBA equations for the hole moving in the S = 1/2spin Ising model [
f. Eq. (20) in Ref. [23℄℄. The only di�eren
es are: theself-
onsistent dependen
e of the self-energies on two di�erent sublatti
es, theredu
tion of the nearest neighbours by a fa
tor 1/2 (in the numerator), a fa
tor
1/

√
2 in the hopping element, and the in
rease of the magnon ex
itation energyby a fa
tor of 2. Whereas the �rst two imply the zig-zag hole motion in theordered state (see Chapter 3) the two others merely mean that the hole moves inthe spin S = 1 system. Thus altogether, the hole motion in the full spin-orbitalmodel with η = 0 and τ = 0 
an be quite well approximated by the zig-zag holemotion in the S = 1 spin Ising model.Orbitally indu
ed spin strings.� The whole analysis written above leads usto 
on
lusion that in the limit of JO = 0 and τ = 0 the hole moves in the spinand orbitally ordered plane in the following way: (i) the orbitals for
e the holeto move along the zig-zag paths even in the limit of JO = 0, (ii) the orbitals for
ethe hole to retra
e its path again even in the limit of JO = 0 � this is similar tothe situation dis
ussed by Brinkman and Ri
e [67℄ where the hole in the Isingspin model with J = 0 always has to retra
e its path, (iii) the 
oherent holemotion by 
oupling to the spin �u
tuations is impossible in the ground state asthen the hole would not retra
e its path, (iv) instead the hole 
reates stringsin the spin se
tor whi
h are erased when the hole retra
es its path. Thus, one7The obtained value of the in
oherent bandwidth W = 4t in the 
lassi
al limit well agreeswith the retra
ebale path approximation formula W = 4teff

√
l, where the e�e
tive hopping

teff = t/
√

2 due to the double ex
hange and l = 2 is the number of possible forward goingsteps in the 
lassi
al spin-orbital model, 
f. dis
ussion in Chapter 3.4.3. Note also that thenarrowing of the bandwidth in the quantum 
ase is due to the fa
t that the e�e
tive numberof forward going steps, whi
h the hole 
an make so that the spins be
ome misaligned (whi
his the essen
e of retra
eable path approximation), is slightly redu
ed. This is be
ause someof the spins are already overturned due to the quantum spin �u
tuations in the full quantummodel. 116



notes here a 
omplex interplay of spins and orbitals. In parti
ular, due to point(ii) the orbitals 
onstrain the spin dynami
s and for
e the spins to e�e
tivelya
t on the hole as the 
lassi
al obje
ts.Subtle issues.� Finally, there are only two subtle issues. First, the modelof the zig-zag hole motion in the S = 1 spin Ising model does not explain theappearan
e of the small momentum independent in
oherent part in the ex
itedpart of the spe
trum in the quantum spin-orbital model. This 
an be understoodin the following way: although the hole has to return to the original site (dueto the orbitals) the magnons present in the ex
ited states 
an travel freely inthe system. Hen
e, the energies of the ex
ited states 
an no longer be 
lassi�edmerely by the length of the retra
eable paths (as it would be the 
ase in the
lassi
al model with no dispersion in the magnon spe
trum). This results inthe small in
oherent spe
trum whi
h surrounds ea
h of the peak of the ladderspe
trum, 
f. Fig. 4.11. Furthermore, this in
oherent spe
trum grows within
reasing JS as then the velo
ity of the magnons in
reases.Se
ond, one may wonder how to extend the above understanding of thespin-orbital polarons to the 
ase of �nite values of orbital ex
hange intera
tion
η (whi
h results in the �nite value of JO, see Fig. 3.4) or �nite three-sitehopping term τ . A
tually, in
luding the nonzero value of JO merely leads tothe substitution of JSzS → JSzS + JO in Eqs. (4.92)-(4.93) and 
onsequently(4.94)-(4.95); this means that an additional string-like potential, 
oming thistime from the orbital se
tor, a
ts on the hole. On the other hand, in
ludingthe three-site term results in the shift ω → ω + εA(k) and ω → ω + εB(k) inEqs. (4.92)-(4.93) whi
h means that these equations 
annot be redu
ed to themomentum-independent equations (4.94)-(4.95). However, one 
an still solvethe model. The results (not shown) resemble those found in Figs. 4.6 and4.7: it is again only the in
oherent part whi
h is slightly enhan
ed in the fullspin-orbital model (4.3) whereas in its 
lassi
al 
ounterpart it is suppressed.Furthermore, all of the quasiparti
le properties of the full spin-orbital modelshown in Fig. 4.8 are almost perfe
tly reprodu
ed by the 
lassi
al spin-orbitalmodel (not shown) � with the only slight dis
repan
y being in the region of theslight deviation from the t(J/t)2/3 law for the pseudogap of the full spin-orbitalmodel.Con
lusions.� To 
on
lude, one should note that the quantum spin �u
tu-ations are to a large extent suppressed in the spin-orbital model by the simul-taneous 
oupling of the hole to both spin and orbital ex
itations. In parti
ular,they do not a�e
t the quasiparti
le state and merely add as a small in
oherentspe
trum in the in
oherent high-energy part of the ladder spe
trum. This isdue to the 
lassi
al 
hara
ter of the orbitals whi
h 
on�ne the hole motion andprohibit its 
oherent motion by the 
oupling to the quantum spin �u
tuations.On the other hand, the hole still 
ouples to the spin degrees of freedom, mostly,in a 
lassi
al way, i.e. by generating string potential due to defe
ts 
reated byhole motion. Thus, the string whi
h a
ts on the hole moving in the plane withAO and AF order is of the 
omposite orbital and spin 
hara
ter. This not onlyexplains the pe
uliar 
orresponden
e between the orbital and spin-orbital modelbut also explains that the spins `do not hide behind the orbitals' but play ana
tive role in the lightly doped spin-orbital system.117



4.6 Con
lusionsPurpose of this 
hapter.� The purpose of this 
hapter was to study the motionof a single hole doped into the Mott insulating AF and AO ordered plane ofLaVO3 [83℄, shown s
hemati
ally in Fig. 4.2. In what follows we will answerthis problem by dis
ussing in subsequent paragraphs the answers to the fourtasks posed in the introdu
tion to this 
hapter.Form of the proper model.� First, in Se
. 4.3 we showed that su
h a holemotion is governed by the respe
tive t�J model [100℄ with S = 1 spin and t2gorbital degrees of freedom supplemented by the required here three-site terms,see Ref. [85℄ or Chapter 3 (whi
h were derived in Se
. 4.3.4 and 4.5.1) and weused this model as the starting point of the analysis. Similarly as in Chapter 2and 3 one had to be very 
areful while studying the newly derived extended t�Jmodel. As dis
ussed in detail in Se
. 4.2 due to the violation of the Goodenough-Kanamori rules [93℄ we had to take into a

ount the spin and orbital dynami
son equal footing. This was expli
itly showed in Se
. 4.4.1 where we redu
edthis model to the polaron-type model and showed that indeed the hole 
ouplessimultaneously to the 
olle
tive ex
itations of both the AF state (magnons) andthe AO state (orbitons).Coherent hole motion in LaVO3.� Se
ond, we solved the model using theSCBA method and 
al
ulated both analyti
ally using the dominant pole approx-imation and numeri
ally using the SCBA equations that the spe
tral fun
tions
ontain a stable quasiparti
le peak, provided the value of the superex
hange Jwas �nite (see Se
. 4.4.2-4.4.3. Thus, the added hole 
an move 
oherently inLaVO3. Let us note that this was not a trivial result as it was not a priori 
learwhether a 
oupling between a hole and two ex
itations would lead to a stablequasiparti
le state � e.g. the 
oupling between hole and two magnons does notlead to the stable quasiparti
le peak, 
f. Ref. [80℄ and Se
. 4.5.1. However,sin
e the orbitons are massive ex
itations the hole does not s
atter too mu
h onthe ex
itations and the quasiparti
le solution exists.In�uen
e of the spin and orbital dynami
s on the hole motion.� Further-more, apart from verifying all the approximations leading to the obtained results(Se
. 4.5.1) we studied in detail the properties of the quasiparti
le states (seese
ond part of Se
. 4.4.3). In parti
ular, we looked at the di�eren
es betweenthe well-known spin [23℄ or the t2g orbital (see Chapter 3 or Refs. [82, 85℄) po-larons and the obtained here spin-orbital polarons. We 
he
ked that all of thetypi
al quasiparti
le properties of the spin-orbital polarons su
h as the band-width, the quasiparti
le spe
tral weight, and the pseudogap (the distan
e be-tween the quasiparti
le peak and the next ex
ited state) are qualitatively similarto those of the t2g orbital polarons and it is the string pi
ture whi
h dominatesin the quasiparti
le properties. For example the bandwidth s
ales as t(J/t)2and arises solely due to the renormalization of the three-site terms, similarly asin the purely orbital t2g model, see 
hapter 3. 8However, a more detailed investigation (Se
s. 4.5.2- 4.5.3) led to the 
on-
lusion that mi
ros
opi
ally the spin-orbital polarons are mu
h more 
omplexand resemble the orbital polarons only super�
ially. A
tually, we showed thatthe spin degrees of freedom also play a signi�
ant role in the formation of the8Note that the o

urren
e of the small but still �nite bandwidth 
on�rms the idea of theabsen
e of hole 
on�nement in transition metal oxides with orbital degenera
y presented inChapter 3 or Ref. [85℄. 118



spin-orbital polarons although they are for
ed by the orbitals to a
t on the holeas the 
lassi
al Ising spins. This is be
ause the orbitals 
on�ne the hole motionby for
ing the hole to retra
e its path whi
h means that the hole motion by 
ou-pling to the quantum spin �u
tuations is prohibited. Thus, the string pi
turewhi
h dominates in the spin-orbital polarons is enfor
ed by the orbitals but itis of a joint spin-orbital nature. Lastly, it o

urred that it is only in the ex
itedspe
trum that the quantum spin �u
tuations 
ontribute and are responsible fora small in
oherent dome in the spe
tral fun
tion.Let us also make a side but important remark: a
tually, the suppressionof quantum spin �u
tuations by orbitals 
ould be understood as a topologi
ale�e
t. This is due to the fa
t that it happens even if the energy of the orbitalex
itations is turned to zero, i.e. when the hole 
an move in the orbital se
torfreely. Hen
e, the mere presen
e of orbitals is enough to obtain the (almost)
lassi
al behaviour of a hole doped into the ground state with AF and AO order.Extensions to �nite doping.� Certainly, the extension of the one-hole resultto the �nite doping is always `shaky' and, thus, to further verify the problemwhy the orbital dynami
s seems to drive the hole motion in the lightly hole-doped La1−xSrxVO3 more theoreti
al studies on the doped 
ubi
 vanadates areneeded. Still, the results presented here seem to 
apture the generi
 role of theorbital and spin dynami
s in the lightly doped 
ubi
 vanadates.Final remarks.� An important predi
tion of this 
hapter is that if a pho-toemission spe
trum was measured on the 
leaved LaVO3 sample, then it wouldlook as the one obtained in Fig. 4.6. The reader may wonder whether (apartfrom the matrix-elements e�e
ts responsible for 
ertain redistribution of spe
tralintensity) any other pro
esses, su
h as for example the ele
tron-phonon inter-a
tion, would a�e
t hole motion to su
h an extent that the spe
tral fun
tions
al
ulated here would 
hange qualitatively. Although we have not made any
al
ulations for su
h a more 
omplex 
ase so far, we suggest that they wouldonly enhan
e the ladder spe
trum obtained here, sin
e typi
ally the studiedme
hanisms are only responsible for further lo
alization of the hole.94.7 Posts
riptum: spin, orbital and spin-orbitalpolaronsGeneral 
onsiderations.� In this se
tion we intend to give a brief overview ofwhat happens when a single hole is doped to one of the following magneti
allyand/or orbitally ordered ground states: (i) the AF-type of order, (ii) the AO-type of order with eg alternating orbitals, (iii) the AO-type of order with t2galternating orbitals, (iv) the 
oexisting AF and t2g AO ordered state. A
tually,the last two 
ases were thoroughly dis
ussed in the previous and this 
hapter(respe
tively) while the �rst two 
ases were studied in Ref. [23℄ and Ref. [82℄(respe
tively). Thus, here we only repeat the results already obtained� in orderto get a better insight into various pro
esses whi
h lead to the hole motion inthe spin and/or magneti
ally ordered states.Spin polaron.� A single hole doped into the half-�lled Mott insulatingground state with AF order (whi
h 
ould 
orrespond to the undoped planes9Apart from 
onsidered here pro
esses 
onne
ted with the hopping t (string formation)other 
oupling me
hanisms, e.g. due to the ele
tron-phonon intera
tion, may 
ontribute toorbital polaron formation, see e.g. Ref. [90℄.119
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Figure 4.12: Panel (a): Artist's view of the defe
ts 
reated by a single holedoped into the spin AF ordered state. Red arrows denote the AF ordered groundstate at half-�lling, while bla
k arrows denote overturned spins due to the holepropagation from the point where it was originally doped (dashed empty 
ir
le)to the arbitrarily 
hosen point at the upper-left 
orner (full 
ir
le). Note thatthe quantum spin �u
tuations 
an �ip the spins and (pairwise) erase the defe
ts
reated by the hole (therefore, in the �gure, the overturned bla
k spins havethe red arrows as well). Panel (b): spe
tral density A(k, ω) (independent of thespin of the removed ele
tron) of the spin t�J model [23℄ with J = 0.4t along theparti
ular dire
tions of the 2D Brillouin zone.of the high-Tc 
uprates su
h as e.g. La2CuO4 or Sr2CuO2Cl2 [20℄) does notmove freely as its motion disturbs the spin order [21℄. Instead, it 
ouples to the
olle
tive (delo
alized) ex
itations of the AF ordered phase (magnons), and itpropagates through the latti
e together with a `
loud' of magnons [22℄. Therebythe energy s
ale of the `
oherent' hole propagation is strongly renormalized andis given by the AF superex
hange 
onstant J . In this way a quasiparti
le isformed whi
h is frequently 
alled in the literature a spin polaron [23℄. Figure4.12 shows in more detail the most 
hara
tersti
 type of motion here [i.e. howthe hole moves by 
oupling to the spin �u
tuations, see panel (a)℄ and what the
orresponding spe
tral fun
tion looks like [panel (b)℄.
eg orbital polaron.� A slightly di�erent behaviour 
an be found in the planeswith FM spin order and eg AO orbital order (as in the ab planes of LaMnO3,see Ref. [76℄). It has been shown [82℄ that although the hole introdu
ed intosu
h a state does not disturb the FM spin order, it 
ouples to the 
olle
tiveex
itations of the AO state (orbitons). Here again a quasiparti
le is formedwhi
h is 
alled this time an eg orbital polaron. It should be noted, however,that the orbital polaron has an even smaller bandwidth than the spin polaron[82℄, as the orbitons are in general mu
h less mobile than the magnons (oreven immobile) due to the la
k of the SU(2) symmetry in the orbital systems[107℄ and almost dire
tional Ising-like superex
hange [76, 84℄. A
tually, one 
anunderstand the hole motion in this 
ase in terms of the string pi
ture:10 Thehardly mobile orbitons 
annot repair the string of the misaligned orbitals inthe AO state, whi
h arises due to the hole propagation on the 
orrespondingpath. Thus, it is the hole whi
h has to return to the original site and 
ure10Note that although the string pi
ture alone 
annot explain the previously mentioned holemotion in the AF ordered state, it may serve as a perfe
t starting point for the investigationof the behaviour of holes doped into the AF phase, see Ref. [108℄.120
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Figure 4.13: Panel (a): Artist's view of the defe
ts 
reated by a single hole dopedinto the eg AO state (with alternating d3z2−r2 and dx2−y2 orbitals. Bla
k or-bitals denote the AO ordered ground state at half-�lling. The hole moves fromthe point where it was originally doped (dashed empty 
ir
le) to the arbitrarily
hosen point at the upper-left 
orner (full 
ir
le). Note that the AO order athalf-�lling 
an in prin
iple stay un
hanged due to the possibility of the verysmall interorbital hopping (shown) although the hole also moves by 
reatingdefe
ts in the AO state whi
h 
an be `sometimes' 
ured by the very small quan-tum pseudospin �u
tuations (not shown). Panel (b): spe
tral density A(k, ω)(independent on the orbital �avour of the removed ele
tron) of the eg orbital
t�J model [82℄ with J = 0.1t (i.e. J = 0.4t in the 
onvention used in this thesis)along the parti
ular dire
tions of the 2D Brillouin zone.the defe
ts by retra
ing its path, unless it propagated due to small o�-diagonalhopping in an eg system [82℄ and no defe
ts were 
reated on its path (the latterpro
ess also 
ontributes to the above mentioned very small bandwidth of theorbital polaron). Figure 4.13 shows in more detail the most 
hara
teristi
 typeof motion here [i.e. how the the hole moves by the small interorbital hopping,see panel (a)℄ and what the 
orresponding spe
tral fun
tion looks like [panel(b)℄.

t2g orbital polaron.� In the previous 
hapter an even more extreme situationof the system with orbital order was investigated: The 
ase of a hole doped intothe plane with FM spin order a

ompanied by the t2g AO order (whi
h 
ould
orrespond not only to the hole introdu
ed into the ordered ground state ofSr2VO4 with t2g orbitals but also, surprisingly, to those of K2CuF4 or Cs2AgF4with dz2−y2 and dx2−z2 a
tive orbitals). Also here a quasiparti
le (t2g orbitalpolaron) is formed due to the dressing of a hole by the 
olle
tive ex
itations of theground state with AO order. However, due to the spe
i�
 t2g orbital symmetriesthe orbitons are not mobile at all, the o�-diagonal hopping is prohibited, and thequasiparti
le a
quires a �nite bandwidth only due to the frequently negle
tedthree-site terms. Thus, the string pi
ture dominates the 
hara
ter of the t2gorbital polarons even more than in the 
ase of systems with eg orbital degreesof freedom. Figure 4.14 shows in more detail a representative path arising dueto hole propagation [i.e. the hole trapping due to the 
reation of strings by thehole motion, see a representative path on panel (a)℄ and what the 
orrespondingspe
tral fun
tion looks like [panel (b)℄.
t2g spin-orbital polaron.� Finally, in this 
hapter we investigated what hap-pens when a hole is introdu
ed into the plane with both t2g AO order and AF121
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Figure 4.14: Panel (a): Artist's view of the defe
ts 
reated by a single holedoped into the t2g AO state. Blue orbitals denote the AO ordered ground stateat half-�lling, while bla
k orbitals denote overturned pseudospins due to the holemotion from the point where it was originally doped (dashed empty 
ir
le) tothe arbitrarily 
hosen point at the upper-left 
orner (full 
ir
le). Note that thereare no quantum pseudospin �u
tuations whi
h 
an erase the defe
ts 
reated bythe hole. Panel (b): spe
tral density Aa(k, ω) of the t2g orbital t�J model (3.5)with J = 0.4t along the parti
ular dire
tions of the 2D Brillouin zone.
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Figure 4.15: Panel (a): Artist's view of the defe
ts 
reated by a single holedoped into the t2g AO and S = 1 spin AF ordered state. Red arrows andblue orbitals denote the AF and AO ordered ground state at half-�lling, whilebla
k arrows and bla
k orbitals denote overturned spins and pseudospins dueto the hole motion from the point where it was originally doped (dashed empty
ir
le) to the arbitrarily 
hosen point at the upper-left 
orner (full 
ir
le). Notethat there are no quantum pseudospin �u
tuations whi
h 
an erase the defe
ts
reated by the hole while the quantum spin �u
tuations are suppressed by theorbitals. Panel (b): spe
tral density Aa(k, ω) of the t2g spin-orbital t�J model(4.3) with J = 0.2t and η = 0.15 along the parti
ular dire
tions of the 2DBrillouin zone.spin order (whi
h 
orresponds to the hole introdu
ed into the ab planes of 
u-bi
 vanadates su
h as e.g. LaVO3). Here, the quasiparti
le is also formed (t2gspin-orbital polaron) but unlike in all of the above 
ases the hole is dressed hereby two types of bosons: orbitons and magnons. Surprisingly, it o

urs that theorbital physi
s dominates here and the spin-orbital polaron resembles the or-122



bital polaron to a large extent. This is due to the fa
t that the orbitals for
e thehole to retra
e its path and hole motion by 
oupling quantum spin �u
tuationsis here blo
ked. Figure 4.15 shows in more detail a representative path arisingdue to hole propagation [i.e. the hole trapping due to the 
reation of strings bythe hole motion, see panel (a)℄ ℄ and what the 
orresponding spe
tral fun
tionlooks like [panel (b)℄.Con
lusions.� The 
ommon feature of all these four polarons (quasiparti-
les) is that all of them have rather large spe
tral weights (i.e. the in
oherentpro
esses are rather small for hole doped into the spin/orbitally ordered states)and small dispersion. However, it is easily visible that the dispersion is signi�-
antly larger for the spin polaron than for all of the orbital-type polarons. Thisis due to the fa
t that it is mu
h harder for the hole to move in the orbitallyordered state as the latter one is more 
lassi
al (robust).
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SummaryMain result.� The main result of this thesis is the solution of the three strongly
orrelated ele
tron problems posed in the Prefa
e, whi
h was done using threedistin
t extended versions of the standard t�J model of Chapter 1 or Refs.[1, 2, 3℄. More pre
isely we studied in three 
onse
utive Chapters of the thesisthe following problems:1. Explaining 
harge order in Sr14−xCaxCu24O41.� Sin
e the Cu2O5 
ou-pled ladder plane in Sr14−xCaxCu24O41[4℄ is a 
harge-transfer system [41℄, oneneeds to use the Zhang-Ri
e s
heme [26℄ to derive the t�J model whi
h woulddes
ribe the low-energy physi
s. However, the obtained model (whi
h merely isa t�J model on a single ladder) did not reprodu
e the 
harge order observed ex-perimentally in Sr14−xCaxCu24O41 [5, 6, 7, 8℄. The reason was that this modelomits the repulsion between holes at the same oxygen sites but on di�erent or-bitals belonging to two di�erent ladders. In
luding this term in the Zhang-Ri
es
heme is 
ru
ial � it led to adding the e�e
tive interladder intera
tion betweenholes in two neighbouring ladders in the new t�J model for 
oupled ladders.The new extended spin t�J model was then solved, using the slave-bosonapproa
h [20℄, in the mean-�eld approximation. The results showed that due tothe interladder Coulomb intera
tion between holes the 
harge density wave ofthe pe
uliar odd period (λ = 3, 5) 
ould indeed be stable in the Cu2O5 
oupledladders in Sr14−xCaxCu24O41 in agreement with the experiment [7, 8℄.2. Verifying the idea of orbitally indu
ed hole lo
alization.� When one
hooses a 2D strongly 
orrelated ele
tron system with t2g degenerate orbitalswith the dxy orbital having higher energy, then one is left with a system wherealong ea
h dire
tion in the ab plane only ele
trons with one orbital �avour 
anhop [72, 71℄. Therefore, the obtained orbital t�J model did not 
ontain pseu-dospin quantum �u
tuation, its J part was purely of the Ising-type, and themodel 
ould be regarded as a prototypi
al example where the orbitals indu
ehole lo
alization [21, 67℄. However, one 
an have some doubts 
on
erning thisresult sin
e for instan
e if the SU(2) symmetry is absent in the system (as isthe 
ase here), then one should be more 
areful with all approximations used(see Se
. 2.2 for more detailed dis
ussion). One of the approximations used inthis orbital t�J model was the ommitan
e of the three-site terms whi
h shouldalways be present in any t�J model [1, 2℄ but sin
e their 
ontribution to the totalenergy is small, one often negle
ts them. Adding the properly derived three-siteterms to the model led to the new t2g orbital t�J model with three-site terms.The new extended orbital t�J model was then solved, using the slave-fermionapproa
h [20℄, in the SCBA approximation [23℄. The results showed that thehole added to the half-�lled AO ordered ground state of the orbital model moved
oherently through the latti
e due to the three-site terms. Thus, in the simplest125



model, in whi
h the orbitally indu
ed hole lo
alization naively would be possible,the added hole was not lo
alized.3. Understanding hole motion in LaVO3.� Due to the t2g orbital degenera
yin the vanadium ions in La1−xSrxVO3, the proper t�J model for the ab planesof 
ubi
 vanadates had to in
lude not only the spin but also orbital degreesof freedom. Furthermore, it should also 
ontain the three-site terms whi
h arerequired for a faithful represention of the low energy physi
s in the t�J modelswith the Ising-type intera
tion between pseudospins (
f. the problem dis
ussedin point 2.). This led to the new t2g spin-orbital t�J model with three-site terms.The new extended spin-orbital t�J model was then solved, using the slave-fermion approa
h [20℄, in the SCBA approximation [23℄. This, however, was notso straightforward sin
e one had to take the spin and orbital degrees of freedomon equal footing. The reason for that was that the Goodenough-Kanamori rules[55, 56℄ are violated in the planes of 
ubi
 vanadates [93℄ and both the orbitalsand spins should be treated as dynami
al variables. Therefore, the SCBA [23℄had to be modi�ed to in
lude the 
oupling between the added hole and theorbital as well as spin ex
itations simultaneously. The results showed that thehole added to the half-�lled AO ordered ground state of the spin-orbital modelwas not lo
alized but 
ould move merely due to the three-site terms. Sin
ethis result resembled the one obtained in point 2. (purely orbital problem, seeabove), one 
ould easily explain the 
onje
ture from the experiment [19℄ thatthe orbital dynami
s played a signi�
ant role in the doped 
ubi
 vanadates.On the other hand, a detailed investigation showed that the spin dynami
s wasquen
hed and the spins were for
ed to a
t on the hole like orbital pseudospins(i.e. more 
lassi
al) merely by the orbitals.Careful approa
h needed.� It is visible from the above dis
ussion that oneindeed had to go `beyond the standard t�J model' to obtain reasonable expla-nations of the problems. However, as just dis
ussed this had to be done rather
arefully. First, one had to take into a

ount the 
harge transfer regime (in the�rst 
ase) or the orbital degrees of freedom (in two other 
ases) in the derivationof the respe
tive t�J model. Notably, in all three 
ases this did not turn outto be the `full story'. Therefore, in order to get physi
al insights into thesesituations, one also had to in
lude additional intera
tions due to the spe
i�
 ge-ometry of 
oupled ladders (in the �rst 
ase), the three-site terms (in two other
ases) or develop a new theoreti
al approa
h to solve the model (in the third
ase).`Powerfulness' of the t�J 
on
ept.� A `side' but perhaps very importantresult of the thesis is that it shows how powerful the 
on
ept of the t�J modelis based either on the 
anoni
al perturbation expansion [1, 2℄ or on the Zhang-Ri
e s
heme [26℄. Although all of these three problems 
ould have been solved(and at least the �rst two of them were solved) using the Hubbard-like model, itwas demonstrated that the extended t�J models gave a better insight into them� the problems of Chapter 2 and 3 were solved also using the Hubbard-likemodel but it was mu
h harder to dedu
e from these solutions the mi
ros
opi
pi
ture. For example: (i) to study the role of the interladder intera
tion in theHubbard-like model one had to introdu
e rather 
ompli
ated order parametersin Chapter 2, or (ii) from the Hubbard-like model it was hard to reveal thepe
uliar (`three-site-term-type') nature of the hole motion in the AO orderedstate in Chapter 3.The natural question whi
h arises in this 
ontext is whether there is a deeper126



reason for this `powerfulness'. Why the 
on
ept of the t�J model is so su

essful?Some �rst hints were already given in Chapter 1 where we stated that any t�Jmodel is easier to solve than the Hubbard model as it spans a smaller Hilbertspa
e [28℄. Obviously su
h a feature helps a lot but there is still some deeper(i.e. qualitative) reason � the fermioni
 systems 
an be best understood: (i) ifthey are not intera
ting (Fermi gas) or (ii) if they are transformed to some kindof bosoni
/
lassi
al matter [109℄. Otherwise the fermion sign problem meansthat is is hard to obtain reasonable solutions [110℄ and merely the Fermi liquidphenomenology 
an be applied [109℄.Here, this se
ond possibility needs some 
lari�
ation and therefore let us givesome examples of su
h transformations `available on the market' [33, 109, 111,112℄: (a) the weak-
oupling s
heme in whi
h one introdu
es (using the mean-�eld de
oupling or the variational Ansatz) the 
lassi
al ground state whi
h is notthe eigenstate of the Hamiltonian at the 
ost of introdu
ing 
olle
tive bosoni
ex
itations of the system; then these two together des
ribe the quantum groundstate (e.g. BCS theory of super
ondu
tivity, spin- or 
harge- density waves in theHubbard-like model) [33, 111℄; (b) the strong-
oupling s
heme in whi
h one per-forms the 
anoni
al perturbation expansion [1, 2℄ or the Zhang-Ri
e s
heme [26℄to redu
e the dimension of the Hilbert spa
e by introdu
ing spin/pseudospinsand then one performs all the steps as in point (a) (e.g. antiferromagnetism inthe Hubbard model or mu
h of this thesis) [33, 111℄; (
) the true bosonizationpro
edure, valid only for 1D systems [113℄; or (d) redu
tion of the fermioni
intera
ting problem to the Kondo-type impurity problems (the fundament ofthe dynami
al mean-�eld theory) [114℄. Hen
e, if one wants to understand theintera
ting fermions, one is anyway bound to introdu
e some kind of the trans-formation to 
lassi
al and/or bosoni
 matter. It is then a matter of 
onvenien
ewhi
h way to 
hoose and it merely o

urs that for example the strong-
ouplings
heme is more 
onvenient than the weak-
oupling s
heme. This is be
ause thetransformation suggested in point (a) is more 
ompli
ated in the momentum-spa
e (in the weak 
oupling regime) than in the real spa
e (in the strong 
ouplingregime) [33℄. Here lies the su

ess of the t�J model 
on
ept.Thus, summarizing, this thesis is just a 
anoni
al example of the paradigmthat to explain pe
uliar phenomena found in the strongly intera
ting fermions(ele
trons) one needs to somehow `get rid as mu
h as possible' of the Fermistatisti
s. It is the t�J model that does it in one of the easiest and mosttransparent possible ways.Posts
riptum.� Let us note that for the detailed dis
ussion of the pe
uliar
onne
tions between the problems studied in Chapter 3 and Chapter 4 we referto Se
. 4.7. There we 
ompare four distin
t types of spin and orbital polarons� the well-known spin polaron [23℄, the eg orbital polaron [82℄, and the twopolarons dis
ussed in this thesis. The latter ones are: (i) the t2g orbital polaronwhi
h is formed when a single hole is doped into the plane with the dzx/dyzalternating orbitals and whi
h is dressed with the ex
itations of the AO orderedground state (Chapter 3), and (ii) the t2g spin-orbital polaron whi
h is formedwhen a single hole is doped into the plane with the dzx/dyz alternating orbitalsand the AF order spins and whi
h is dressed with the ex
itations of the AO andAF ordered ground state (Chapter 4). It is shown there that the dispersion forthe spin polarons is signi�
antly larger than for all of the orbital-type polarons.This is be
ause the orbital order is more 
lassi
al (robust) and it is mu
h harderfor the hole to move in su
h a state. 127
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Appendix AThe 
ontinued fra
tionmethod for the 1D orbitalmodelPurpose of the appendix.� This appendix shows how to 
al
ulate the Green'sfun
tion for the hole doped into the immobile b orbital in the 1D AO groundstate (3.16) of the model Eq. (3.46) of Se
. 3.5.2.Choi
e of 
onvenient basis.� When one attempts to 
al
ulate the Green'sfun
tion for a hole doped in the immobile b orbital
G1D
b (k, ω) =

〈
Φ1D

0

∣∣∣∣ b
†
k

1

ω +H1D − E1D
0

bk

∣∣∣∣Φ
1D
0

〉
, (A.1)one �nds immediately that the state

|ψ(1)
k 〉 ≡ bk|Φ1D

0 〉 =
1√
N

∑

j

eikjbj|Φ1D
0 〉 , (A.2)is not an eigenstate of the Hamiltonian H1D. Here a hole is doped in ea
hFourier 
omponent in an o

upied b orbital at site j in the ground state |Φ1D

0 〉with AO order (3.16). When a hole is doped, it 
an delo
alize to its neighboursin the 1D 
hain, as depi
ted in Fig. 3.9(b), so one has to introdu
e appropriatebasis of states obtained when the single hole delo
alizes along the 1D 
hain.The hopping term ∝ t a
ting on |ψ(1)
k 〉 generates the state

|ψ(2)
k 〉 ≡ 1√

2N

∑

j

eikj(aj−1 + aj+1)a
†
jbj |Φ1D

0 〉 , (A.3)with the hole delo
alized to the neighbouring j − 1 (j + 1) sites of the A sub-latti
e, i.e. to the the left (right) from the initial hole position j in ea
h Fourier
omponent bj |Φ1D
0 〉 in
luded in Eq. (A.2). The remaining states {|ψ(n)

k 〉} with
n > 2, whi
h o

ur in the 
ontinued fra
tion expansion needed to evaluate theGreen's fun
tion G1D

b (k, ω) (see below), are generated by a
ting (n − 2) timeson |ψ(2)
k 〉 with the three-site hopping term ∝ τ . In this way one �nds the set ofsymmetri
 states, with a superposition of the hole propagating forward (either129



to the left or to the right from the initial defe
t), i.e. along the same dire
tion asthat given by the �rst hop whi
h leads to |ψ(2)
k 〉, 
f. Fig. 3.9(
). This stru
tureof the basis set explains the absen
e of the k dependen
e in the Green's fun
tionfor b orbitals, so we adopt the simpli�ed notation G1D

b (ω) below.Continued fra
tion method.� In the in�nite basis generated by the abovedes
ribed pro
edure, the Hamiltonian matrix of the Hamiltonian (3.46) reads:
〈ψ(m)
k |ω +H1D − E1D

0 |ψ(n)
k 〉 =

=
1

2





ω + J/2
√

2t 0 0 ...√
2t ω + 3J/4 τ 0 ...
0 τ ω + J τ ...
0 0 τ ω + J ...
... ... ... ... ...




. (A.4)In order to obtain the relevant Green's fun
tion G1D

b (ω), it su�
es to 
al
ulatethe (1, 1) element of the inverse of this matrix.1 Due to the tridiagonal formof the Hamiltonian, this 
an be done even for an in�nite Hilbert spa
e and onearrives at a 
ontinued fra
tion result:
G1D
b (ω) =

{〈
ψ

(m)
k

∣∣∣
(
ω +H1D − E1D

0

)−1
∣∣∣ψ(n)

k

〉}

1,1

=
1

2




ω +
1

2
J − 2t2

ω + 3
4J − τ2

ω+J− τ2

ω+J−...






−1

, (A.5)where the whole self-similar part 
an be summed up to the self-energy whi
hdoes not depend on k [67℄:
Σ(ω) ≡ τ2

ω + J − τ2

ω+J− τ2

ω+J−...

=
τ2

ω + J − Σ(ω)
. (A.6)This, together with Eq. (A.10), leads to a quadrati
 equation for Σ(ω) with twosolutions:

Σ(ω) =
1

2

{
(ω + J) ±

√
(ω + J)2 − 4τ2

}
. (A.7)The proper sign may be determined using the Green's fun
tion G1D

b (ω) obtainedbefore [89℄ in the limit of τ = 0,
G

1D(0)
b (ω) =

1

2

{
ω +

1

2
J − 2t2

ω + 3
4J

}−1

. (A.8)In this limit the self-energy vanishes, Σ(ω) = 0, and the Green's fun
tion hastwo poles at energies
ω = −5

8
J ±

√
2t

√

1 +
1

128

(
J

t

)2

. (A.9)1This relation holds up to a 
onstant due to the fa
t that the basis {|ψ(n)
k

〉} is not normal-ized � however, we take 
are of this problem.130



Finally, one arrives at the general result for τ > 0:
G1D
b (ω) =

1

2

{
ω +

1

2
J − 4t2

ω + 1
2J ∓

√
(ω + J)2 − 4τ2

}−1

, (A.10)where the sign 
onvention is �xed by 
omparing this result with the Green'sfun
tion G1D(0)
b (ω) (A.8) � this implies that one has to sele
t − (+) sign for

ω < −J (ω > −J), respe
tively.
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Appendix BThe e�e
tive polaron modelfor �uoridesPurpose of the appendix.� Here we show that the e�e
tive polaron model de-veloped in Chapter 3 (see Eq. 3.32) may also be applied to 
ertain �uorideswith FM planes and eg AO order. Thus, we will prove that the experimentalpredi
tions 
on
erning the photoemission spe
tra of 
ertain vanadates (see Se
.3.7) are also valid for a parti
ular 
lass of �uorides.Dependen
e of eg AO order on the 
rystal �eld.� In 
ontrast to the t2gorbitally degenerate systems, in the systems with eg orbital degenera
y thelatti
e distortions in the 
ubi
 phases are usually quite large. In parti
ular,the stati
 distortions may 
ountera
t to some extent the AO order favoured bythe superex
hange intera
tions as e.g. in undoped manganites RMnO3 [76℄ or�uorides Cs2AgF4 [92℄. However, the 
rystal �eld does not suppress the orbitalorder present in these systems but instead it only modi�es the o

upied orbitalswhi
h form the AO state. They have to be optimized in a mi
ros
opi
 modelby 
hoosing parti
ular linear 
ombinations of the eg orbitals, whi
h form theAO order, in order to �t best to the superposition of the superex
hange andthe Jahn-Teller terms generated by ligand �elds [100℄. In 
ertain situations this`modi�
ation' 
ould be quite substantial and 
ould even lead to su
h a sele
tionof eg orbitals that the resulting state is modi�ed towards a FO-type order [84℄.At �nite 
rystal �eld splitting ∝ Ez , it is 
onvenient to des
ribe the 
hangesin the o

upied orbital states by making two 
omplementary transformations atboth sublatti
es [84℄, rotating the orbitals by an angle θ = π
4 −φ on sublatti
e A,and by an angle θ = π

4 +φ on sublatti
e B, so that the relative angle between theo

upied orbitals is π
2 − 2φ and de
reases with in
reasing φ, i.e. with in
reasing

Ez (
|µ〉i
|ν〉i

)
=

(
cos(π4 − φ) sin(π4 − φ)

− sin(π4 − φ) cos(π4 − φ)

)(
|z〉i
|x〉i )

, (B.1)
(

|µ〉j
|ν〉j

)
=

(
cos(π4 + φ) sin(π4 + φ)

− sin(π4 + φ) cos(π4 + φ)

)(
|z〉j
|x〉j )

, (B.2)where the `old' orthogonal (basis) orbitals are de�ned as |x〉i = 1√
2
|x2−y2〉i and

|z〉i = 1√
6
|3z2− r2〉i for every sublatti
e site i. Due to the above transformationthe AO order is formed now by |µ〉i and |ν〉j o

upied orbitals at sublatti
es, i ∈133



A and j ∈ B, respe
tively. Let us stress that although the transformation de�nedby Eqs. (B.1�B.2) is orthogonal, this does not imply that orbitals on di�erentsublatti
es, su
h as e.g. the o

upied orbitals |µ〉i and |ν〉j are orthogonal � infa
t they would be orthogonal only for 
ertain dis
rete values of φ, for instan
efor φ = π/4.For the 2D FM systems with a
tive eg orbitals whi
h are 
onsidered here,the relation between the 
rystal �eld Ez and the optimal orbital 
on�gurationde�ned by the angle φ [see Eqs. (12) and (13) of Ref. [84℄℄ is given by:
Ez = 4J sin 2φ, (B.3)where J is the superex
hange 
onstant. In the 
ase of �uorides su
h as Cs2AgF4(Ref. [92℄) or K2CuF4 (Ref. [115℄) dis
ussed here, the �lling is one eg ele
tronper site and the 
rystal �eld would sele
t the angle φ = π/12 (for the reason oflooking at this angle see below) sin
e the 
onvenient basis adapted to the a
tualAO order looks as follows:

∀ i ∈ A :
∣∣∣µ

(
φ =

π

12

)〉

i
=

1√
2
|y2 − z2〉i ≡ |x〉i ,

∣∣∣ν
(
φ =

π

12

)〉

i
=

1√
6
|3x2 − r2〉i ≡ |z〉i ,

∀ j ∈ B :
∣∣∣µ

(
φ =

π

12

)〉

j
=

1√
6
|3y2 − r2〉j ≡ |z〉j ,

∣∣∣ν
(
φ =

π

12

)〉

j
=

1√
2
|x2 − z2〉j ≡ |x〉j , (B.4)where the o

upied (empty) orbitals for this type of AO order are denoted as

|x〉 (|z〉) on both sublatti
es.`Parti
ular' eg AO order similar to t2g AO order.� The reason why theseparti
ular pairs of basis orbitals (B.4) are interesting here is that this is theonly 
hoi
e of o

upied eg �avours whi
h forms a two-sublatti
e AO order withthe interorbital hopping between o

upied orbitals vanishing by symmetry andwhere the intera
tions des
ribed by pseudospin operators do not allow for anyquantum �u
tuations. This resembles the t2g 
ase dis
ussed in Chapter 3. Thereis, however, one subtle di�eren
e: two o

upied {|x〉i, |x〉j} orbitals on sublat-ti
es A and B are not orthogonal and do not form the global basis in the egorbital spa
e. The 
hoi
e made in Eq. (B.4) means that one 
onsiders twodi�erent pairs of orbitals for both sublatti
es and the interorbital hopping be-tween the uno

upied orbitals is also rather small but remains �nite.1 Hen
e,the respe
tive t�J Hamiltonian is ri
her than the one for the t2g 
ase and weneed to 
he
k under whi
h 
onditions it 
an be redu
ed to a similar polaronHamiltonian as the one given by Eq. (3.32).
t�J model for `parti
ular' eg orbitals.� The eg orbital t�J Hamiltonian forthe FM planes without the three-site terms but in
luding the 
rystal �eld is givene.g. in Ref. [116℄. Here we rewrite the kineti
 term in a slightly di�erent form(there it is already written in the slave-fermion representation) and substitute

φ = π/12 to obtain:
Heg

= Ht +HJ +Hz , (B.5)1The physi
al reason for this is just that the 
rystal �eld does not fully prohibit interorbitalhopping. 134



where
Ht = − 1

2
t
∑

i

(z̃†i z̃i+â + z̃†i z̃i+b̂
+ H.
.) − √

3

2
t

∑

i ∈A
(z̃†i x̃i+â + z̃†i x̃i+b̂

+ H.
.)
−

√
3

2
t

∑

i ∈B
(x̃†i z̃i+â + x̃†i z̃i+b̂

+ H.
.) , (B.6)
HJ =

1

2
J

∑

〈ij〉||â

(
T zi T

z
j +

√
3T zi T

x
j

)
+

1

2
J

∑

〈ij〉||b̂

(
T zi T

z
j −

√
3T xi T

z
j

)
, (B.7)

Hz = − 1

4
J

∑

i∈A
(T zi +

√
3T xi ) +

1

4
J

∑

i∈B
(T zi −

√
3T xi ) . (B.8)Here T zi = 1

2 (ñiz − ñix) for i ∈ A, T zj = 1
2 (ñjx − ñjz) for j ∈ B, and T xi =

1
2 (x̃†i z̃i + z̃†i x̃i) for every site i, see Ref. [84℄. As before, a tilde above a fermionoperator indi
ates that the Hilbert spa
e is restri
ted to uno

upied and singlyo

upied sites, e.g. x̃†i = x†i (1 − niz). The last term Hz represents the abovementioned 
rystal �eld with the strength of the intera
tion written a

ording toEq. (B.3) with φ = π/12.Three-site terms for `parti
ular' eg orbitals.� As far as we know, the three-site terms have not been derived for the eg orbital systems. Thus, we use againthe 
anoni
al perturbation theory of Chapter 1 applied to the Hubbard modelfor spinless eg ele
trons in a FM plane [107℄ with the basis rotated by φ = π/12,following Eqs. (12) and (13) of Ref. [84℄. This leads to the following three-siteterms for the eg orbital t�J model with φ = π/12:

H3s = H3s,a +H3s,b +H3s,ab, (B.9)where
H3s,a =

− 1

4
τ

∑

i∈A

[
z̃†i−âñixz̃i+â + 3x̃†i−âñixx̃i+â +

√
3x̃†i−âñixz̃i+â +

√
3z̃†i−âñixx̃i+â

]

− 1

4
τ

∑

i∈B

[
z̃†i−âñixz̃i+â + 3z̃†i−âñiz z̃i+â −

√
3z̃†i−âz̃

†
i x̃iz̃i+â −

√
3z̃†i−âx̃

†
i z̃iz̃i+â

]

+ H.
. , (B.10)
H3s,b =

− 1

4
τ

∑

i∈A

[
z̃†
i−b̂

ñixz̃i+b̂
+ 3z̃†

i−b̂
ñiz z̃i+b̂

−
√

3z̃†
i−b̂

z̃†i x̃iz̃i+b̂
−
√

3z̃†
i−b̂

x̃†i z̃iz̃i+b̂

]

− 1

4
τ

∑

i∈B

[
z̃†
i−b̂

ñixz̃i+b̂
+ 3x̃†

i−b̂
ñixx̃i+b̂

+
√

3x̃†
i−b̂

ñixz̃i+b̂
+
√

3z̃†
i−b̂

ñixx̃i+b̂

]

+ H.
. , (B.11)135



H3s,ab =

− 1

4
τ

∑

i∈A

[
z̃†i±âñixz̃i±b̂

− 3x̃†i±âx̃
†
i z̃iz̃i±b̂

+
√

3x̃†i±âñixz̃i±b̂
−
√

3z̃†i±âx̃
†
i z̃iz̃i±b̂

+ z̃†i±âñixz̃i∓b̂
− 3x̃†i±âx̃

†
i z̃iz̃i∓b̂

+
√

3x̃†i±âñixz̃i∓b̂
−
√

3z̃†i±âx̃
†
i z̃iz̃i∓b̂

]

− 1

4
τ

∑

i∈B

[
z̃†i±âñixz̃i±b̂

− 3z̃†i±âz̃
†
i x̃ix̃i±b̂

+
√

3z̃†i±âñixx̃i±b̂
−
√

3z̃†i±âz̃
†
i x̃iz̃i±b̂

+ z̃†i±âñixz̃i∓b̂
− 3z̃†i±âz̃

†
i x̃ix̃i∓b̂

+
√

3z̃†i±âñixx̃i∓b̂
−
√

3z̃†i±âz̃
†
i x̃iz̃i∓b̂

]

+ H.
. . (B.12)Here we underline (doubly underline) terms whi
h do not require orbital ex
i-tations (require orbital ex
itations), respe
tively, i.e.
H3s(0) = H3s, H3s(1) = H3s. (B.13)The physi
al reason for this is just that the 
rystal �eld does not fully prohibitinterorbital hopping.E�e
tive polaron model.� Next, we perform the same standard transforma-tion to obtain the polaron Hamiltonian from the t�J model [23℄ for the lightlydoped ordered states as done in Chapter 3, i.e. we introdu
e S
hwinger bosonoperators {t†ia, t†ib} and fermion operators hi (holons) whi
h are related to the

x̃†i and z̃†i operators in the following way:
x̃†i ≡ t†iahi, z̃†i ≡ t†ibhi. (B.14)Please note, however, that here we do not have to perform rotation of thepseudospins sin
e we de�ne distin
t ele
tron operators for the o

upied andempty orbitals, 
f. Eq. (B.4).Again, as in Chapter 3, we introdu
e the Holstein-Primako� bosons β andskip higher-order terms in the Hamiltonian (the LOW approximation for bosonsand only three-parti
le intera
tion in the mixed boson-holon terms). This meansthat e.g. the three-site terms are redu
ed only to the terms whi
h were eitherunderlined or doubly underlined in Eqs. (B.10)�(B.12), i.e. to either H3s(0) or

H3s(1). Here, however, we have to use yet another approximation whi
h wasunne
essary for the t2g model: as these terms were absent in Chapter 3 we skip
H3s(1). This approximation is allowed sin
e these terms 
ontribute to the vertexas ∝ τ and not as ∝ t, resulting typi
ally in mu
h redu
ed energy s
ale for thenew vertex 
ontributions. Furthermore, we showed in Se
. 3.7 that su
h terms[
f. Eq. (3.59) and Fig. 3.13℄ did not 
hange the energy of the quasiparti
le andmerely modify the in
oherent spe
trum. Eventually, one arrives at the polaronHamiltonian for the holes doped into the eg orbitals of the �uorides with thehopping terms:

Heff
t =

√
3t

1√
N

∑

k,q

{
cos(kx − qx)h

†
kAhk−q,BβqA

+ cos(ky−qy)h†kBhk−q,AβqB + H.c.
}
, (B.15)

Heff
3s =

3

2
τ

∑

k

{
cos(2ky)h

†
kAhkA + cos(2kx)h

†
kBhkB

}
, (B.16)136



and the remaining terms resulting in the energy renormalization
Heff
J +Heff

z =
3

4
J

∑

k

(
β†
kAβkA + β†

kBβkB

)
. (B.17)Therefore, the Hamiltonian given by Eqs. (B.15)�(B.17) redu
es to the polaronHamiltonian (3.32) after substituting √

3t/2 → t, and 
onsequently 3J/4 → Jand 3τ/4 → τ . This substitution stems from the di�erent de�nitions of thehopping t in the eg and in the t2g systems � in the former 
ase it is the (ddσ)hopping between the 3z2 − r2 orbitals along the c dire
tion, whereas in thelatter 
ase it is the hopping element between a pair of a
tive t2g orbitals, e.g.
yz orbitals in the (a, b) plane.Con
lusions.� In summary, we have shown that the Hamiltonian given byEqs. (B.15)�(B.17) provides the framework to analyse the behaviour of 
ertainlightly doped eg systems with FM planes and AO order whi
h suppresses theinterorbital hopping between o

upied orbitals. Its equivalen
e to the polaronmodel (3.32) demonstrates that the results obtained and dis
ussed in Chapter3 should also apply to the 
ase of a hole doped into the �uoride plane with theAO order of eg orbitals.
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Stresz
zenieW niniejszej pra
y zostaªy poruszone trzy problemy doty
z¡
e silnie oddzia-ªuja
y
h elektronów w tlenka
h metali przej±
iowy
h. Pierwszy z ni
h doty-
zyª wyja±nienia obe
no±
i fali g�sto±
i ªadunku o nieparzystym okresie (3 oraz5) w pªasz
zyznie zªo»onej z za
hodz¡
y
h na siebie drabin Cu2O5 w zwi¡zkuSr14−xCaxCu24O41 (przy domieszkowaniu odpowiadaj¡
ym zwi¡zkom x = 0oraz x = 11). Drugie zagadnienie, poruszone w niniejszej pra
y, doty
zyªo (po-ten
jalnej) mo»liwo±
i lokaliza
ji pojedyn
zej dziury w tlenka
h metali przej-±
iowy
h z degenera
j¡ orbitaln¡. Trze
i problem to podanie odpowiedzi napytanie w jaki sposób mo»e porusza¢ si� pojedyn
za dziura w pªasz
zynie abze wsóªistniej¡
ym uporz¡dkowaniem spinowym (antyferromagnety
znym) orazorbitalnym (z alternuj¡
ymi orbitalami) w zwi¡zku LaVO3.W 
elu rozwi¡zanie wy»ej wymieniony
h problemów zostaªy wyprowadzonerozszerzone wersje modelu t�J dla ka»dej z ty
h sytua
ji: dla pierwszego za-gadnienia � model t�J dla za
hodz¡
y
h na siebie drabin, dla drugiego pro-blemu � orbitalny model t�J z oddziaªywaniem typu Isinga pomi�dzy orbital-nymi pseudospinami oraz z wyrazami trójw�zªowymi, dla trze
iego zagadnienia� spinowo-orbitalny model t�J z wyrazami trójw�zªowymi. Okazaªo si�, »e roz-wi¡zania powy»szy
h modeli w formalizmie niewolni
zy
h 
z¡stek oraz w przy-bli»eniu ±redniego pola lub samozgodnym przybli»eniu Borna doprowadziªo dowyja±nienia problemów postawiony
h w niniejszej pra
y: (1) na skutek efek-tywnego odpy
hania pomi�dzy dziurami znajduj¡
ymi si� na s¡siaduj¡
y
h zesob¡ miejs
a
h w za
hodz¡
y
h na siebie dwó
h s¡siedni
h drabina
h fala g�-sto±
i ªadunku o nieparzystym okresie okazaªa si� stanem podstawym ukªadu;(2) wª¡
zenie wyrazów trójw�zªowy
h do orbitalnego modelu t�J pokazaªo, »emo»liwy jest koherentny ru
h dziury w tlenka
h metali przej±
iowy
h z degene-ra
j¡ orbitaln¡; oraz (3) sz
zegóªowa analiza oddziaªywania pomi�dzy dziur¡ akolektywnymi wzbudzeniami (w porz¡dku antyferromagnety
znym oraz z alter-nuj¡
ymi orbitalami) pokazaªa, »e dziura w pªasz
zyznie ab w LaVO3 za
howujesi� podobnie jak dziura dodana do pªasz
zyzny jedynie z porz¡dkiem orbital-nym ale bez porz¡dku spinowego. �a
znie w niniejszej pra
y zostaªo pokazane,»e pewne niewielkie rozszerzenia modelu t�J prowadz¡ do wyja±nienia szerokiejklasy zjawisk w tlenka
h metali przej±
iowy
h z silnie oddziaªuj¡
ymi elektro-nami.
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