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List of abbreviations and
remarks on notation

1D - one-dimensional

2D — two-dimensional

3D — three-dimensional

AF — antiferromagnetic

AO - alternating orbital

CDW - charge density wave

FM — ferromagnetic

FO - ferro-orbital

LOW - linear orbital wave

LSW — linear spin wave

SCBA - self-consistent Born approximation
VCA - variational cluster approach

Throughout the thesis:
(i) we use H (possibly with some indices) to denote any type of the Hubbard
Hamiltonian,
(ii) we use H (possibly with some indices) to denote any component of the
(standard or extended) ¢—J model,
(iii) we use Hf/ (possibly with some indices) to denote any component of
the effective model obtained from the (standard or extended) ¢t-J model by
introducing slave fermions or slave bosons,
(iv) the main Hamiltonians of the chapters (Hubbard, ¢—J, and possibly the
effective one) do not have any index,
(v) the lattice constant is set to unity,
(vi) >_(;; means taking summation over the bond formed between site i and j.
Despite the above mentioned common features of the notation used in the
thesis the notation in each chapter is independent of the other chapters and is
logically consistent only within each chapter.
We call the spin t—J model of Refs. [1, 2, 3] the standard t—J model [see
Eq. (1.22) in this thesis] to distinguish it from various other ¢t—J—type models
discussed in this thesis.






Preface

In this thesis we discuss and present solutions of three related problems which
arise in strongly correlated electron systems:

1. Ezxplaining charge order in Sri4_, Ca, Cuag O41.— The first problem con-
cerns the explanation of the peculiar charge order observed experimentally at
low temperature T = 20K in the coupled ladders CusOs5 in Sri4_,Ca;Cuss O4q
[4, 5, 6, 7, 8]. On the one hand, the resonant soft x-ray scattering shows that
the charge order there is formed by a charge density wave (CDW) phase with
odd period and is stable for x = 0 and = 11 in Sr14_,Ca,;Cus404; presumably
due to the on-site Coulomb repulsion [7, 8]. On the other hand, a CDW phase
with even period has not been observed in these systems [8]. These are striking
results as they contradict the theoretical prediction of a stable CDW phase with
even period for z = 4 and no CDW order for other values of z [9, 10, 11].

2. Verifying the idea of orbitally induced hole localization.— The next prob-
lem is more general and ‘touches’ the idea that the mere presence of orbital
degeneracy in the transition metal oxides could lead to the hole confinement in
the strongly correlated electron system. This idea can be backed by the following
facts: (i) the manganites show a colossal magnetoresistive effect [12, 13, 14, 15]
which can be attributed to the orbital degeneracy [16, 17, 18], (ii) the transition
metal oxides with orbital degeneracy (e.g. manganites or vanadates) have much
more stable insulating phases in the regime of hole doping [15, 19] than the
cuprates without orbital degeneracy [20]. However, in strongly correlated sys-
tems without orbital degeneracy (and described by the simple Hubbard model)
the hole had been thought to be localized for a very long time [21] and only
much later [22, 23] it was shown that the hole was mobile. This suggests that the
verification of the idea of orbitally induced hole localization should be performed
rather carefully.

3. Understanding hole motion in LaVOs;.— The last problem is devoted to
the understanding of the behaviour of the single hole doped into the ab plane of
LaVOgs. This system is a Mott insulator and superexchange interactions stabilize
the spin antiferromagnetic (AF) and alternating orbital (AO) ordered ground
state [19, 24, 25]. The problem which arises here can be in short formulated
as follows: upon doping this plane with holes (which is possible by substituting
lantanium for strontium in Laj_,Sr,;VO3) the orbital dynamics seems to influ-
ence the hole motion much more than the spin dynamics (see conjecture in the
Introduction to Chapter 5 of this thesis based on the experimental results from
Ref. [19]). Thus, the question is: why the spin dynamics is quenched in the
hole doped AF and AO state.

Common feature of the three problems.— Although all of the three topics
belong to the strongly correlated transition metal oxides [20], ‘at first glance’
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it is hard to imagine that there is something more which connects all three of
them.! However, a closer look (taken in the consecutive chapters) will show that
the three simplest models, formulated to solve these problems, will have a lot in
common. Actually, all three of them will turn out to be merely a more or less
elaborate version of the standard t—J model [1, 2, 3] although the standard ¢-J
model itself will become evident not to be enough to explain these phenomena.
More precisely, it will turn out that the simplest models capable of explaining
the above problems will be: (i) the t—J model for coupled ladders for the first
problem, (ii) the ¢z, orbital t—J model with three-site terms for the second one
and (iii) the to4 spin-orbital t—J model with three-site terms for the third one.
Thus, we will show that, as the title of the thesis suggests, one indeed has to go
beyond the standard t—J model to be able to understand the physics behind all
these three phenomena.

Aim of the thesis.— The purpose of this thesis is to give answers to the
three problems using the above mentioned extensions of the t—J models. As ‘a
side effect’ one will see how powerful is the concept of the t—J model and the
canonical perturbation expansion [1, 2] or the Zhang-Rice scheme [26]: merely
slight modifications of the model mean that it is still capable of explaining a
huge variety of phenomena present in the transition metal oxides.

Structure of the thesis.— The thesis is organized as follows. Chapter 1
contains a preliminary material concerning the standard t—J model: (i) the
Hubbard model, (ii) its derivation from the Hubbard model by the canonical
perturbation expansion, and finally (iii) its form and range of applicability.
This chapter may be easily skipped by the reader familiar with the standard
t—J model [1, 2, 3|, though a quick look at this chapter would be always of
great help in understanding the results presented in this thesis. Next in the
three consecutive chapters (which are called the main chapters of the thesis)
we discuss the three problems mentioned above: (i) in Chapter 2 we explain
the charge order in Sr14_,Ca,Cus404; using the t—J model for coupled ladders,
(ii) in Chapter 3 we verify the idea of orbitally induced hole localization using
the tog orbital t—J model with three-site terms, and (iii) in Chapter 4 we try
to understand hole motion in LaVOs3 using the the to spin-orbital t—J model
with three-site terms. Finally, in Summary we briefly discuss the solutions of
the problems and the common features of the new ¢—J models. The thesis is
supplemented by two appendices (which contain some mathematical derivation
needed in Chapter 3), Bibliography, ‘Streszczenie’ (summary in Polish), and the
list of publications which were published during my PhD studies. Finally, in the
end we mention those people without whose support it would have never been
possible to complete this thesis.

The organization of material serves the main idea of the thesis. First, in
each of the three main chapters: (i) we discuss the problem in more detail in
the introduction (first section), (ii) we introduce the new ¢t—J model by care-
fully discussing its differences with respect to the standard ¢t—J model (second
section), (iii) we derive the new ¢—J model from the Hubbard-type model appro-
priate for the considered problem using the canonical perturbation expansion
[1, 2] or the Zhang-Rice scheme [26] (third section). Second, as the methods of
solving each t—J model differ, we introduce the slave bosons (Chapter 2) or slave

L Although, the reader familiar with the strongly correlated electron systems will immedi-
ately note that the second and third problem has a lot in common. See also Sec. 4.7 for a
more detailed discussion of the similarities between them.



fermions (Chapters 3 and 4) to overcome the constraint of the restricted hopping
present in any t—J model and only then we solve the effective model written in
the slave particle language using the mean-field in Chapter 2 or self-consistent
Born approximation (SCBA) in Chapter 3 and 4 (fourth section). Finally, we
discuss the results including its validity (fifth section), and we draw some con-
clusions (sixth section). Furthermore, each main chapter is supplemented by a
Postscriptum (seventh section) in which we discuss some side issues which are
interesting but are not central for the main message and can be easily skipped
in first reading. We would like to stress that the ability to build a common
structure of the three main chapters reflects (practically) the above mentioned
common origin of the three problems discussed in the thesis.
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Chapter 1

Motivation: The standard t—J
model

1.1 The Hubbard model

Hamiltonian.— The (arche)typical model which describes the strongly corre-
lated electrons is the Hubbard model described by the Hamiltonian [27]

H=—t Z (CIUCJU + H.C.) + UZniTnii, (].].)

(ij),o

where (ij) denotes the bond formed between site i and j, ¢} operator creates
an electron at site i with spin o, and the electron density operator is defined
as nj, = ciTgcig. Here the first term is responsible for the hopping o« ¢ of
electrons on a hypercubic lattice while the second term describes the Coulomb
repulsion o< U between two electrons with opposite spins on the same site. This
model is introduced to describe a common situation which takes place in various
transition metal oxides [20]: the lattice potential is very strong and one needs
to calculate the Coulomb interaction between electrons in the (almost) atomic
wavefunctions. This leads to a modification of the bare Coulomb potential: it is
short range (i.e. merely on-site) but strongly amplified. This naturally means
that the physical regime of the model is when U > W (where W = 2z¢ is the
bandwidth and z is the coordination number for the hypercubic lattice) and
throughout the thesis we will assume that one is always in this regime.

Actually the more general definition of the Hubbard model (1.1) would con-
tain the chemical potential. However, it is customary to omit that term and
instead to specify the number of electrons per site n present in the system
separately. This can take the values 0 < n < 2 due to the Pauli principle.

Space dimensions of the lattice.— Finally, let us note that the model Eq.
(1.1) can be defined as well in the one-dimensional (1D), two-dimensional (2D)
and three-dimensional (3D) version. However, due to its most interesting (in
my opinion) application concerns the 2D copper oxide layers of high-T,. cuprates
[28]. Moreover, as we will be interested either in layered structures (Chapter 2)
or in situations where the orbital order (Chapter 3) or spin and orbital order
(Chapter 4) contains two spatial dimensions, we restrict the discussion to the
2D Hubbard model.
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Drawbacks and advantages of the model.— It is worth mentioning that the
model Eq. (1.1) has been indeed very successful in describing various properties
of the strongly correlated electron systems [28]. However, there are two main
drawbacks of the model. First, despite its simplicity it is hard to solve it in the
interesting regime n # 1 as the Monte Carlo simulations often break down due
to the ‘sign problem’ whereas all other methods are also not reliable due to the
huge dimensions of the Hilbert space of the model (which in the half-filled case
is [N!/(N/2)!(N/2)!]? where N is the number of lattice sites) [28]. Second, let us
remark that many systems are too complicated to have the electron correlations
described by the Hubbard model in a reliable way: e.g. the orbital degeneracy
regime can change the matters drastically [29)].

On the one hand, to overcome the first difficulty one performs the canon-
ical perturbation expansion! of the Hubbard model which hugely reduces the
dimensionality of the Hilbert space by neglecting the high-energy states in the
regime U > W. This is done in the next two sections and the model which
is obtained after such an expansion is the standard t—J model. On the other
hand, one should add extra terms and/or modify the two existing ones in Eq.
(1.1) to make the Hubbard model more realistic. Actually, in the next three
chapters of this thesis we will combine both of the approaches: we will modify
the Hubbard model to make it more realistic and reduce it to the appropriate
t—J model using the canonical perturbation expansion.

1.2 The canonical perturbation expansion

Hubbard subbands.— One of the main features of the model (1.1) is the split
of the Hilbert space (spanned by the Hubbard Hamiltonian) into the so-called
Hubbard subbands [1, 2, 31]. This can be understood in the following way. Let
us assume that n < 1 (the case n > 1 follows from the particle-hole symmetry
of the model) and switch off the hopping ¢ = 0 for a moment. Then the ground
state of the model will clearly have no sites with two electrons as each site
occupied by two electrons costs energy U. This condition defines the lowest
Hubbard subband with zero total energy which consists of all (degenerate) states
with no double occupancies. Next, all of the states with just one single site
occupied by two electrons (and the rest singly occupied or empty) define the
second Hubbard subbands with the total energy U. Repeating this procedure
further, one splits up the Hilbert space into the Hubbard subbands spanned by
the states with m doubly occupied sites and energy mU.

Switching on hopping ¢ obviously changes the situation: not only the states
within the Hubbard subband are no longer degenerate but more importantly the
Hubbard Hamiltonian are no longer ‘diagonal in the Hubbard subbands’ (more
precisely the hopping ¢ connects the states from different Hubbard subbands).
However, as long as W < U the Hubbard subbands do not overlap, in order
to obtain the behaviour of the system in the low energy limit it is enough to
concentrate on the lowest Hubbard subband and treat the hopping to the states
from higher Hubbard subbands as a perturbation.

INote that the more standard perturbation expansion of the Hubbard model [30], where
the entire hopping term is treated as a small perturbation, is very tedious for the Hubbard
model and yields results which are very hard to interpret [2].
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Deriving the Hamiltonian within the Hubbard subband.— The canonical per-
turbation expansion sets the above described procedure on the mathematical
grounds [1, 2] (see also Refs. [32, 33]). In the beginning one rewrites the Hub-
bard Hamiltonian H in the following way:

‘H="Ho+ H1, (1.2)
where H describes the physics within the Hubbard subband (7 = —0):
Ho =V + 1o,
V=U Z nipny|
= —¢ Z { (1 —nis cwcjg(l —njs) + nigcgacjgnja + H.c.} , (1.3)

(ij),o

while H; is responsible for hopping processes between different Hubbard sub-
bands:

Hl - T+ + T,,
T, =—t Z {niac;fgcjg(l —njz) + H.c.}

T = —t Z { (1 —niz) cmcjgnjg + H.c. } (1.4)

Next, the task is to construct a canonical transformation S of the Hamilto-
nian ‘H
H = e%He 5, (1.5)
where ST = —§. If H is calculated from the above equation ezactly then the
unitarity of this transformation would mean that the observables calculated
using the spectrum spanned by H will be identical to the ones calculated using
the spectrum spanned by H.

The explicit form of S is calculated from the single requirement that the
Hamiltonian H would not connect states from two different Hubbard subbands.
A priori this can always be done as long as the Hubbard subbands do not
overlap, i.e. when W < U (which is the case here). Obviously, this means
that the observables calculated using the spectrum spanned by H will not be
identical to the ones calculated using the spectrum spanned by H. However,
the bigger distances one has between the Hubbard subbands, the more similar
the observables are. Explicitly one calculates H and S using the following steps
(compare Ref. [33]):

(i) One makes the Ansatz that S is of the order of ¢/U so that one can write

t3
S=14+8+= SQ+O<U3> (1.6)
Since t < U the terms of the order O({= ) should be much smaller than 1 (e.g.

U = 12t in the high-T, cuprates [28] yields fﬂ smaller than 1073) and can be

skipped. Then Eq. (1.5) can be rewritten using Eq. (1.6) as
~ 1 t3
H=H+[S,H]+§[S, [S,H]]—i—O(m) , (1.7)
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to the order O(ItJ—Z) (which is again enough in the regime ¢ <« U) since H is
(maximally) of the order of U.
(ii) Let us first calculate S to first order in ¢/U [S™)]. Then Eq. (1.7) to the

order O(%) is

HY =H +[SM H]. (1.8)
Now, one demands that H; is not present in H(): this is due to the fact that
with one hop one leaves the Hubbard subband under consideration and one

prohibits that H in any order describes processes which couple various Hubbard
subbands. Then in this order one needs to have:

T.+7T +[SY H =0 (1.9)

However, T, + 7_ is o t while S(V) is oc ¢/U. Thus one can only have V in the
commutator:

SV V] = -7, +7T_. (1.10)
One can check that: .

S = (T - T, (1.11)
fulfills Eq. (1.10).

(iii) Having determinded S to first order in t/U [S(V)] one can now proceed
further and calculate S to the second order [S(?)]. For convenience one defines
SI

52 =5 4 g (1.12)
Then S’ is calculated from [compare Eq. (1.8)]:

- 1
H® =Ho + [N, Ty + T ]+ (S, T + 5[5V, [SD, V] + [8',V],

(1.13)

where we used the substitution [S’, H] — [S’, V] similarly as when going from
Eq. (1.9) to Eq. (1.10). Next using Eq. (1.11) we reduce Eq. (1.13) to

~ 1
H® =Ho+ gl T+ [T, To] + [$", V).
(1.14)

However, the term [S(), 75] is not allowed to appear in H® because it is re-
sponsible for transitions between Hubbard subbands and one prohibits that H
in any order describes processes between various Hubbard subbands. Thus one
needs to have

[SM, 7o) + [S",V] =0
(1.15)

which defines S’. From this equation one can calculate S’ — however it is not
needed (see below).

(iv) To determine H(?) one needs only the explicit form of S™). In fact, it is
straightforward to determine it by substituting Eq. (1.15) to Eq. (1.14). One
obtains

A® = Hy+ (T, )

(1.16)
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This describes the physics of a particular Hubbard subband up to second order
in ¢/U and one can write

t3
H= T0+V+U[T+, ]+O(U2>

(1.17)

Hamiltonian for the lowest Hubbard subband.— If one is interested in H
describing merely the lowest Hubbard subband in the case n < 1 (called H),
one can skip 7. 7_ and V terms in Eq. (1.17) and one arrives at

t3
H= 75—577++0<U2).

(1.18)

One can now plug in the explicit forms of 7y, 7., and 7_ to obtain the explicit
form of H. This is done in the next section. Note that due to the particle-hole
symmetry a similar Hamiltonian as written above describes the case n > 1.

1.3 The standard t—J Hamiltonian

Ezplicit form.— After inserting Eqs. (1.3-1.4) into Eq. (1.18) one obtains the
explicit form of the effective low-energy Hamiltonian for the lowest Hubbard
subband

H=-—t Z { (1 —nis cchU(l — Njs) —|—H.c.}
(

— ZJ Z {(1 — nmar)cLa,ciUrnigzni;,chjU(l —njz) + H.c.} ,
({(mij)),o,0”
(1.19)

where ((mij)) means the paths built of the three nearest neighbour sites. Here
the first term is responsible for hopping within the lowest Hubbard subband
while the second term, which arises from the virtual hoppings to the upper
Hubbard subband, is the so-called superexchangeb term? with the energy scale
J =4t?/U.

Equation (1.19) can be simplified by replacing the electron operators in the
superexchange term by the S = 1/2 spin operators:

1
Si =5 iy — ),
s =c .,
S; =é &, (1.20)

where we defined the constrained electron operators

ad =c (1-ni). (1.21)

l(T

2Note that we use here the term ‘superexchange’ instead of the more proper ‘kinetic ex-
change’ as typically ¢ is merely the effective hopping [33].
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Then one obtains the 2D version of the standard ¢—J Hamiltonian [1, 2, 3]
1
H=—t <; (é;fgéjg +H.c.) + J% (Si - S; — Zﬁiﬁj) , (1.22)
ij),o ij

where 7i; = ¢, &1 + & &) and we assumed that m = j in Eq. (1.19). The 1D
and 3D version of the standard ¢t—J Hamiltonian follow in a natural way from
the above equation.

The kinetic and superexchange terms.— The first term o ¢ describes the
hopping of electrons in the constrained Hilbert space with no double occupancies
(i.e. the lowest Hubbard subband). Thus, it can be viewed as an effective
hopping of holes as such a hopping of electrons is possible only if there is a hole
at the site to which the electron hops. Note that the operators 5;0 do not fulfill
the fermionic commutation rules [32]. Thus one cannot treat these objects as
electrons and e.g. one cannot introduce the Fermi energy or momentum in this
case. Therefore, even without the second term (as obtained for U — oo), Eq.
(1.22) constitutes a nontrivial problem.

The second term o J describes the interaction between the spins which is of
the AF character since J > 0. The meaning of this term can be easily seen in
the half-filled case (n = 1) when Eq. (1.22) reduces to the Heisenberg Hamilto-
nian since then there are no holes in the system and the kinetic term does not
contribute. Thus instead of having strongly correlated electrons, see Eq. (1.1),
one is left with interacting spin degrees of freedom as the charge degrees of free-
dom are integrated out. This striking result means that the interactions are so
strong in this case (due to U > W in the Hubbard model) that the electrons are
localized (charge degrees of freedom are frozen) and only the virtual hoppings
of electrons (described by 7. and 7_ processes) lead to a ‘residual’ interaction
between electron spins. This is the physical explanation of the canonical per-
turbation expansion. Note also, that naturally the dimensionality of the Hilbert
space is now reduced: e.g. in the half-filled case there are only spin degrees of
freedom and the dimension of the Hilbert space is 2%.

The three-site terms.— The assumption m = j needs further explanation.
It means that the electron, which is virtually excited to the upper Hubbard
subband by 7 process, returns (by the 7_ process) to the same site from
where it was excited in the lowest Hubbard band. Thus, one omits here the so-
called three-site terms. These contribute merely if there are holes in the lowest
Hubbard band since the electron excited from site j in the lowest Hubbard
subband can return to a different site m in the lowest Hubbard subband only
when there is a hole on site m (because otherwise a double occupancy would
be created which is prohibited in the lowest Hubbard subband). Thus similarly
as the kinetic term o ¢t in Eq. (1.22) the three-site terms will describe the
hopping of holes in the lowest Hubbard subband. However, unlike the kinetic
term they scale as o< J. Thus, altogether the three-site terms contribute to the
total energy of the system as o Jd where § is the number of holes in the system.
If § < 1 (which is the typical regime for the ¢t—J model) and since J < t (as
t < U), then this contribution to the total energy is very small. In particular,
it is much smaller than both the contribution of the kinetic term o t§ and the
superexchange term o J(1 —4)2.

Application.— The application of the t—J model follows from two facts: (i)
as shown above, in the low energy but strongly correlated regime, it describes
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essentially the same physics as the widely used Hubbard model, (ii) it is much
easier to solve than the Hubbard model since the dimensionality of its Hilbert
space is considerably reduced in comparison with the one of the Hubbard model.
The latter property means that: (i) all the numerical calculations, such as the
Lanczos or exact diagonalization techniques are more easily done, and (ii) the
spins are much easier to treat analytically as the ground states of the spin models
are typically more classical [33]. Consequently there have been a tremendous
number of papers on the t—J model, its solutions, and applications. For further
details we refer to the review articles of Ref. [28] or [20] or to Ref. [32] for the
more ‘personal perspective on the {—J model from the pioneering times’.
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Chapter 2

Explaining charge order in
Sri4_;Ca,Cugy Oy

This chapter is based on the following publications: (i) K. Wohlfeld, ‘Doped Spin
Ladder: Zhang-Rice Singlets or Rung-centred Holes?’, AIP Conference Proceed-
ings 918, 337-341 (2007); (ii) K. Wohlfeld, A. M. Oles, G. A. Sawatzky, ‘Origin
of charge density wave in the coupled spin ladders of Sriy4—, Cay Cugy Oy1’°, Phys-
ical Review B 75, 180501(R)/1-4 (2007); (iii) K. Wohlfeld, A. M. Oles, G. A.
Sawatzky, ‘The t-J-V Model for Coupled Ladders’, in preparation to be submitted
to Physical Review B (Rapid Communication,).

2.1 Introduction

Crystal structure of Sri4_,, Cay Cugg O41.— The telephone number compound, as
Sri4_,Ca,Cusy Oy is often called due to its chemical formula which resembles
a telephone number 14-24-41, is a layered material with two distinctly differ-
ent types of 2D copper oxide planes separated by Sr/Ca atoms [4]: (i) the
planes with almost decoupled CuQOy chains and (ii) the CuzO3 planes formed
by CuzOs5 coupled ladders (see Fig. 2.1). Although in principle there could
be some interaction between the ladder subsystem, the chain subsystem and
the Sr/Ca atoms' we would assume that the ladder subsystem can be treated
independently, i.e. the Hamiltonians for each subsystem are independent one
from another, except for the chemical potential which should be determined to
conserve a particular number of electrons in the whole 3D crystal (see below).

Number of carriers in Sr14—z; Cay Cuzq Oy1.— The complicated chemical for-
mula leads to the problems with determining the number of electrons present in
the system. Let us first concentrate on the z = 0 case. Actually, the ionic pic-
ture suggests that one has in the formula unit: 14 Sr?* ions, 24 Cu?* ions and
41 02~ ions with all of these ions having filled shells, except for copper (where

In particular the substitution of strontium by calcium yields structural modulations in
the ladder subsystem, see Ref. [34]. However, this modulation grows with calcium doping =
and cannot explain the onset of charge order for small z and large = (while the charge order
is unstable for intermediate ), see discussion below. Furthermore, the influence of the chain
subsystem on the ladder subsystem can be reduced to the chains being the charge reservoir
for the planes, see also Ref. [34].
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Figure 2.1: Left panel: the 3D structure of Sri4Cus404;. Right panel:
the Cuy0Oj5 coupled ladders which form one of the two types of planes in
Sr14Cu24041. The big yellow spheres depict copper atoms, the big red spheres
strontium atoms, the small blue spheres oxygen atoms. Both panels are repro-
duced after Ref. [4].

the 3d shell is naturally unfilled). Thus, one obtains from the ionic picture that
there is one hole per Cu?* ion,? similarly as in the CuQy planes of LasCuQOy
[28].

However, one sees that such ionic picture considerations lead to the 6 extra
holes present in the formula unit and the compound is self-doped already at
x = 0. As the forumula unit consists of 7 CuyO3 units in the ladder plane,
14 strontium atoms and 10 CuQOs units in the chain plane, a natural question
arises: how these 6 extra holes are distributed between the ladders and the
chains. Actually, the answer to this question is nontrivial (see Refs. [35, 36,
37] for various scenarios) and it was only recently that the x-ray absorption
spectroscopy results suggested [9] that there are 2.8 extra holes in the formula
unit in the ladders (which means that there are 0.2 holes per copper site) and
3.2 extra holes in the formula unit in the chains (i.e. 0.32 holes per copper site).
In what follows, we adopt the latter results as they seem to agree best with
other experimental data for this system [9].

Let us now turn to the x # 0 case. Here, the ionic picture suggests that
again there are 6 extra holes in the formula unit: this is because calcium is iso-
valent with strontium. However, it has been suggested that introducing calcium
leads to the gradual increase of the number of these extra holes in the ladder
subsystem [9]. Indeed the same x-ray absorption spectroscopy results as for the
x = 0 case [9] revealed that for the interesting case (see below) of z = 4 the
number of holes in the ladders is 3.4 (i.e. ca. 0.24 per copper site) and 2.6 in
the chains (i.e. ca. 0.26 per copper site) while for z = 11 the number of holes

2Since it is easier to talk about one hole per copper site than about 9 electrons per copper
site, we will use the hole language throughout this chapter.
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Figure 2.2: The intensity of the scattering at the oxygen K ‘mobile carrier
peak’ (528.6 eV, see Ref. [8] for detailed explanation) in the resonant soft x-
ray scattering for various values of calcium doping x in Sri4—,Ca,;Cug4041 at
temperature T = 20K. CDW is observed for 2z = 0 (with period A = 5, depicted
as L, = 1/5 on the figure) and = 11 (with period A\ = 3, depicted as L;, = 1/5
on the figure). A small intensity is also visible for # = 10 and even smaller for
x = 12 which also corresponds to a (small) CDW with period A = 3. For
0 < z < 6 no reflections are observed and in particular no CDW is seen at x = 4
where nj, = 1.24 would suggest a CDW with period A = 4 (L; = 1/4) to be
stable. The figure is reproduced after Ref. [8].

in the ladders is 4.4 (i.e. ca. 0.31 per copper site) and 1.6 in the chains (i.e. ca.
0.16 per copper site).

Peculiar charge order in the ladder subsystem.— While the ladder subsystem
exhibits the non-BCS superconducting phase for = 13.6 under pressure larger
than 3 GPa [38], in broad range of x and under normal pressure a spin-gaped
insulating CDW states was discovered in the ladders [5, 6]. By means of the
resonant soft x-ray scattering it was found [7] that this CDW state is driven
by many-body interactions (presumably just Coulomb on-site interactions since
the long-range interactions are screened in copper oxides [39]), and it cannot
be explained by a conventional Peierls mechanism. Hence, the observed com-
petition between the CDW phase (also referred to as the ‘hole crystal’ due to
its electronic origin) and superconducting states in spin ladders resembles the
one between stripes and the superconducting phase in CuQOs planes of a high-T,
superconductor [40]. This is why the problem of the origin of the CDW phase
in the ladder subsystem of Sri4_,Ca,Cuz40y41 is both generic and of general
interest.

Furthermore, recently it was found [8] that the only stable CDW states in
the low temperature regime (7' = 20K) are with period A = 5 for x = 0, and
with period A = 3 for = 11 (and with a much smaller intensity for x = 10
and 12), see Fig. 2.2. Even more striking results show that such a CDW order
could not be stable for 1 < z < 5, see also Fig. 2.2. These striking results,
which contradict the previous suggestion [6] that the CDW order occurs in the
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entire range of 0 < x < 10, need to be explained by considering hole density
per copper site increasing with z. As written above z = 0 case with CDW state
with period A = 5 corresponds to n, = 1.20 (total number of holes per copper
ion) while the x = 11 case with CDW order with period A = 3 corresponds to
np = 1.31. Interestingly, the z = 4 case (with no CDW phase) corresponds to
np = 1.24, i.e. to the case where the number of extra doped holes is very close
to 1/4 and where one could intuitively expect a CDW state with period A = 4.

Main goals of the chapter.— The main aim of this chapter is to explain
theoretically (at temperature T = 0K) the onset of the CDW order in the
telephone number compound for only selected values of x while using a model
which merely contains on-site Coulomb interactions. In particular the questions
to be answered in this chapter are: (i) what the proper ¢—J model for the coupled
CusO5 ladders, which would arise due to the on-site Coulomb interactions, looks
like, and (ii) whether this model can explain the onset of the CDW phase with
particular periods for particular values of x.

Structure of the chapter.— The chapter is organized as follows. In Sec.
2.2 we start the analysis by looking at the anticipated features of the new t—J
model which is derived in Sec. 2.3. Next, we solve the model for the three
interesting hole dopings n, = 4/3, n, = 5/4 and np = 6/5: (i) using the
slave boson language we reduce the model to the effective Hamiltonian with
the constraints of ‘no double occupancies’ (always present in any ¢—J model)
released — see Sec. 2.4.1, (ii) we introduce the mean-field approximation for the
effective Hamiltonian — see Sec. 2.4.2 , (iii) we solve the mean-field equations
on a finite mesh of k points (Sec. 2.4.3). In Sec. 2.5 the results are discussed,
with a particular emphasis on the approximations made in obtaining the correct
t—J model. Finally, we draw some conclusions in Sec. 2.6 and add a peculiar
example of a toy-model for coupled chains in which the even-period CDW can
become unstable in the Postscriptum in Sec. 2.7.

2.2 The t—J model for coupled ladders

‘Rough’ predictions of the new t—J model.— Let us first look at the anticipated
features of the new t—J model without going deeply into mathematical details
(such calculations will be performed in the next section). Actually, the biggest
problem with deriving such a model is that the CuyO5 coupled ladders belong
to a class of copper oxides which are classified as charge transfer systems [41].
On the one hand, in these systems the Hubbard repulsion U between holes in
the 3d orbitals on the copper sites is still the largest energy scale in the system
and it is much bigger than the largest hopping ¢, between the copper 3d,>_,>
and the oxygen 2p, orbitals [39]. On the other hand, the on-site energies A for
the holes in the oxygen 2p, orbitals are smaller than the Hubbard repulsion U
on the copper sites [39]. Therefore, when the number of holes is bigger than one
per one copper ion, some holes tend to occupy oxygen sites. Thus, unlike in the
Mott-Hubbard system, here the oxygen atoms cannot be easily integrated out
and the Hubbard model (called then the charge transfer model [42, 43]) should
not only contain orbitals on the copper sites but also the ones on the oxygen
sites [41]. Nevertheless, Zhang and Rice [26] showed that for the CuO2 plane
it is still possible to integrate out the oxygen atoms and the ¢—J model, which
results from such an itinerant model, is capable of describing the low energy
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Figure 2.3: The artist’s view of the CDW with period A = 4 for a single ladder as
obtained from the density matrix renormalization group calculations for the t—J
model on a single ladder with J = 0.25¢ [10]. Black filled circles depict a copper
site occupied by a hole, unfilled circles depict a copper site with the Zhang-Rice
singlet centred around it, i.e. where the extra hole (situated symmetrically on
the four oxygen sites surrounding the copper site) formed a singlet state with
the hole on the copper site. In this way number of holes nj, = 1.25 in the CuyOs
single ladder corresponds to the n = 0.75 filling (number of spins per site) in
the t—J model on the two-leg ladder. The figure is reproduced after Ref. [10].

physics of charge transfer systems. Note however, that the meaning of J is then
different and J # 4t2/U.

Although the above mentioned reduction of the charge transfer model to
the standard ¢—J model is done for the CuOs plane [26], a similar derivation
should in principle be possible for a single CusO5 ladder. The difference would
be that in this case one will be left with a t—J model defined on a two-leg ladder
but otherwise the ¢t—J model would be exactly the same as the standard one,
known from Chapter 1. Indeed, it is widely believed [11, 44| that a two-leg
ladder described by the ¢t—J model captures the essential physical properties of
the plane with CuyO5 ladders in Sri4_,Ca,Cus4041. Furthermore such a model
has been extensively studied (see e.g. Refs. [45, 46, 47, 48, 49]): in particular
White et al. [10] found using the density matrix renormalization group, that a
CDW of period A\ = 4 is the (possibly spin gaped) ground state at n; = 1.25
(n = 0.75 filling in the ¢t—J model, see caption of Fig. 2.3 and discussion in the
end of Sec. 2.3.3 for further details). Besides, only recently it was shown in
Ref. [11] that a CDW is possible for such a model merely for number of holes
np, = 1.25 (n = 0.75) and np = 1.5 (n = 0.5).

Reason for wrong predictions.— However, one immediately sees that the
above results are totally incompatible with the experimental ones described in
Sec. 2.1: there the CDW was stable in the CuyO5 ladders in Srq4_,Ca,;Cus4041
for np, = 1.31 (x = 11) and nj, = 1.2 (z = 0) whereas it was not stable for
np, = 1.24 (z = 4), i.e. around the only point (apart from n, = 1.5) where
the density matrix renormalization group predicted the CDW to be stable. One
may thus wonder what may be wrong with the above t—J model? Actually,
it is easy to see that the validity of the ¢t—J model for the plane with CuyOs5
ladders is far from obvious due to the specific geometry. In particular: (i)
unlike the CuOq plane of a high-T,. superconductor, a single CuyO5 ladder
lacks the Dy, symmetry which makes the Zhang-Rice derivation [26] of the
t—J model questionable and (ii) Cu2Os5 spin ladders are coupled through the
on-site Coulomb interactions between holes in different O(2p) orbitals, so new
interactions could arise.

More careful approach needed.— Thus, instead of taking the ¢—J model for
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‘granted’, i.e. assuming that the derivation of the ¢—J model from the charge
transfer model valid for the CuOs would work also for the coupled CusO5 ladders
and would give a t—J model on the two-leg ladder, one should follow the Zhang
and Rice scheme [26] step-by-step in the case of this specific ladder geometry.
More precisely, one should take the charge transfer model for copper oxide planes
[42, 43], adopt it to the coupled Cu20s5 ladders, and then following the Zhang
and Rice scheme [26] derive the proper t—J model. We present such a derivation
in the next section.

2.3 The model

2.3.1 The t—J-V;—V; Hamiltonian

The Hubbard-type model.— As the starting point we choose the Hubbard-type
model relevant for the charge transfer systems (and thus called also charge
transfer model [41]). It follows from the multiband charge transfer Hamiltonian
[41] and is adapted to the CupOs coupled ladder geometry, similarly as the
one introduced earlier for CuOs planes [42] or CuO3 chains [50], the structural
units of high-T, superconductors. As parameters the charge transfer model
includes: the energy for oxygen 2p orbital A (measured with respect to the
energy for the 3d orbital), the d-p hopping ¢,q between the nearest neighbour
copper and oxygen sites, and the on-site Coulomb repulsion U (Up,) on the copper
(oxygen) sites, respectively. Note that the charge transfer regime naturally leads
to A < U since otherwise the oxygen atoms could be easily integrated out.
Indeed, the typical parameters are U ~ 8t,q, A ~ 3tpq, and Uy, ~ 3t,4, see e.g.
Ref. [51]. Then the model in hole notation reads,

H= *tpd{ Z( - d'irLaziLa + d;rRaxiRa + d;ngbw - dzRabia + H-C-)

+Z (d;raayiao - d;rJrl,aayiaa + HC)}

oo

+A{Z (nm + niay) + sgmb}

1

+UP{Z (niaaniaml + niayTniayl) + Z nianibl}
+Up{(1 - QU)Z(niamﬁiaya + niayaﬁiaz&)

+(1— 377)2 (niazaﬁiaya + niayaﬁiam)}
+U > MiadtNiadl (2.1)

(2o}

where the phases of the orbitals were explicitly taken into account in the hopping
elements, the index o € {R, L} denotes the right or left leg of the ladder (R = L
and L = R),and 6 = —o for o € {7, |}. The parameter n = Jy /U, ~ 0.2 stands
for a realistic value of Hund’s exchange on oxygen ions (U, is the intraorbital
repulsion) [39]. Besides, ¢ ~ 0.9 yields the correct orbital energy (¢A) at bridge
positions on the rung of the ladder [52] but, unless explicitly stated differently,
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Figure 2.4: Three coupled CusOj5 ladders. Only orbitals which are included in
the model Eq. (2.1) are shown, see text. The dotted line depicts the unit cell
of the single ladder under consideration; it consists of seven orbitals.

we will assume that ¢ = 1 for simplicity (see also Sec. 2.5.3 for a detailed
discussion on this issue). The model of Eq. (2.1) includes seven orbitals per
Cup 05 ladder unit cell (see Fig. 2.4): two Cu(3d,2_,2 = d) orbitals on the R/L
leg, two O(2p, = y) orbitals on the R/L leg, two O(2p, = ) side orbitals on
the R/L leg, and one O(2p, = b) bridge orbital on the rung of the ladder.

Spatial dimension of the Hubbard-type model.— It should be emphasized that
the terms in the fifth and sixth line of Eq. (2.1) account for interladder inter-
action — the holes within two different orbitals on a given oxygen ion in a leg
belong to two neighbouring ladders (shown as white/grey orbitals in Fig. 2.4),
and are described by charge operators n;a,(y), With/without bar sign in Eq.
(2.1). Thus, in principle one should define two other Hamiltonians H which de-
scribe the two neighbouring ladders and from which one can determine 7. (y)o -
Then, these two Hamiltonians will be again coupled to two Hamiltonians and
so on. In what follows, we will implicitly assume that such Hamiltonians are
indeed defined and when needed we will use this feature to solve the coupled
ladder problem. Obviously, such a notation is not very elegant. An alternative
scenario would be to define a single Hamiltonian for all the ladders in the plane
— however, this would complicate the notation even more and, in my opinion,
would not make the physics more transparent.

Central Hamiltonian of the chapter.— Applying the Zhang-Rice procedure
[26] adopted to the geometry of coupled ladders and finite value of the interac-
tion U, we obtain the following ¢—J model with intraladder interaction V; and
interladder interaction V5 (therefore called also t—J—V;—V2 Hamiltonian):

H=H,+Hj;+ Hy, + Hy,. (2.2)

Here H, stands for the kinetic term [see Eq. (2.13) in Sec. 2.3.3], H; is the
superexchange term [see Eq. (2.5) in Sec. 2.3.2], while Hy, and Hy, are the
intraladder and interladder terms, respectively [see Eq. (2.29) in Sec. 2.3.4 and
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Eq. (2.39) in Sec. 2.3.5].

Note that, during the procedure suggested by Zhang and Rice not only the
Hamiltonian changes but also the form and number of carriers changes as the
form of the Hilbert space is changed drastically [26]. Whereas in the charge
transfer model we denote by nj, the number of holes per copper site, in the
t—J-V1-V5 model the filling (number of spins per site) is n = 2 — ny, see also
discussion in the end of Sec. 2.3.3.

2.3.2 The superexchange term

Single ladder in the undoped case.— In the so-called half-filled case (i.e. when
there is just one hole per copper site) and in the charge transfer regime (see
above), the charge transfer model (2.1) can be easily reduced to the Heisenberg
model using the perturbation theory to fourth order in ¢, [53].> This is because,
when t,4 = 0 the holes are localized on the copper sites, while for small ¢,4 in
comparison with the other energy scales in the in the charge transfer system
the holes perform merely virtual excitations which involve the doubly occupied
copper or oxygen site. Thus, the charge degrees are frozen and one is left merely
with spin degrees of freedom, somewhat similarly as in the half-filled case of the
Hubbard model of Chapter 1. One obtains [53]:

1 1
H =1)=J (Sia . Si a —) J (Sz 'Si - _)a 2.3
J(np =1) %: +la =) F zl: RSiL =7 (2.3)
where the superexchange constant for finite U, case [53] is

4t 1 2
__pdf~* L
J= Az (U+2A+Up)' (24)

Specific geometry of coupled ladders.— The reader may wonder, whether the
geometry of coupled ladders could influence the above result. Indeed, there ex-
ists a 90° superexchange process between the holes on two neighbouring ladders
which involves 7;,4(,), Operators. However, according to the Goodenough-
Kanamori-Anderson rules [54, 55, 56] such a superexchange process [which is
ferromagnetic (FM) in contrast to the above AF interaction]| is much weaker
than the superexchange along the 180° path in the single ladder and can be
neglected. Thus, Eq. (2.3) should also be valid for coupled ladders.

Coupled ladder in the doped case.— Although when the system is not half-
filled there are other processes which contribute to the low energy t—J Hamilto-
nian (see below), the above result can be extended to the doped case. Actually, if
there is no hole on one of the sites forming a bond between the copper sites, then
the superexchange process does not occur. One can easily check that Eq. (2.3)
for this particular bond does not contribute to the ¢t—J Hamiltonian provided
one changes it into:

1. 1.
Hj;= JZ (Sm “Sitl,a — ZniadniJrl,ad) + JZ (SiR -Sir — ZniRdniLd)-

2.5)

3Note that in the half-filled case there is no need to perform the canonical perturbation
expansion of Chapter 1 as there are no hopping processes within the lowest Hubbard subband.
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symmetric (|Piao)) | antisymmetric single oxygen
singlet 78(t1 + t2) + 2t3 74151 —+ 2t3 72(151 —+ tg) —+ 2t3
triplet 0 —4tq 0

Table 2.1: Binding energy of the singlet and triplet state formed by the the hole
on the copper site and the extra doped hole in one of the three various oxygen
states: (i) symmetric plaquette |Pi,) state, (ii) antisymmetric plaquette state
with a similar combination of oxygen orbitals as in |P;,,) but with the same
signs before each oxygen orbital, and (iii) single oxygen orbital state. Here
tr =123/ A~ tpaf3, te = 2,/ (U = A) ~ tpa/5, t3 = 12,U, /(A + UpA) ~ tpa/6
where the estimations follow from the typical charge transfer parameters [51].

Here tilde above the number operator denotes the fact that the double occu-
pancies on the copper sites are prohibited in the low energy limit of the charge
transfer system.

2.3.3 The kinetic energy term

Finite contribution only for doped case.— As described above, in the half-filled
case the holes localize on the copper sites with the charge degrees of freedom
entirely gone and one is left with the Heisenberg Hamiltonian for the spins.
Thus, there is no kinetic term at all in the half-filled case and it could only
contribute in the doped case due to the restricted hopping.

Zhang-Rice scheme needed.— In the doped case a significant problem arises:
where the extra hole doped into the half-filled system goes. Actually, if ¢4 = 0,
then the hole will for sure localize at one of the oxygen sites as the on-site energy
A is smaller than the repulsion between two holes at the same copper site U.
Therefore, in this regime one cannot integrate out the oxygen sites. It may be
expected that such states will dominate also for finite ¢,q4.

Actually, for finite ¢,4 in the CuOs plane, it occurs that the hole also tends
to localize on oxygen sites but forms a peculiar bound state with the nearby hole
on the copper site — the so-called Zhang-Rice singlet [26]. We now construct
such a state step-by-step for the coupled ladder case (again starting with the
single ladder and only later on discussing the coupled ladder problem), see Fig.
2.5 for an artist’s view of the result obtained in this section.

Nonorthogonal Zhang-Rice singlets.— First, it is evident that placing a hole
on the oxygen site and aligning its spin in the AF-way with respect to the spin
of the hole on the copper site, one can gain some energy due to the virtual
hopping processes by small but finite ¢,4 (in the ferromagnetic case such charge
excitations are not allowed due to Pauli principle). Second, however, one can
gain even more binding energy if one uses the possibility of forming a phase
coherent, state out of the four oxygen orbitals surrounding the copper. More
precisely it occurs that the singlet state formed by a hole on the copper site and
a hole in one of the following symmetric plaqueite state (different for the left
and right leg of the ladder):

1
|PiLo) = 5('TILO' - bla + y;r—l,La - yz]'LLa)|0>a (2.6)
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Figure 2.5: The artist’s view of the Zhang-Rice singlet formation in the single
ladder (the state depicted by a dotted ring). Large (small) arrows depict the
hole spins for +1.0 (4+0.25) charge. The red arrows stand for spins of doped
holes while the blue arrows show the spins in the undoped case.

or

1
|Ping) = 5 (=lpe +bly + 411 py = lRo)I0), (27)

has a binding energy of —8(¢; + t2) + 2t3. Actually, this binding energy is not
only negative and huge in comparison with the effective hopping (which is of
the order of t; or t2 [26]) but it is also much bigger than the binding energy
of some other possible bound states formed by a hole on the copper site and
oxygen site, see Table 2.1. It may be verified that finite U, not considered in
the Zhang and Rice paper [26], which results in finite ¢3 term (see Table 2.1)
does not change qualitatively the large binding energy of a symmetric singlet
state.

At this stage one can already imagine that all of the doped holes (if their
number is smaller than the number of copper sites) should be able to form such
symmetric singlet states in the charge transfer systems and it would be possible
to integrate out oxygen sites entirely. Although this conjecture will turn out to
be true, it cannot be done so easily. A quick look at Eqs. (2.6-2.7) reveals that
the above symmetric singlet states are nonorthogonal (they could be called the
nonorthogonal Zhang-Rice singlets) as the neighbouring states share common
oxygen orbitals.

Orthogonalized Zhang-Rice singlets.— The task is now to make the states de-
fined in Egs. (2.6-2.7) orthogonal. This is done by the following transformation
in the single ladder case:

1

|biee) =+ > e*e™* (ay|PiLo) + Bkl Piro)), (2.8)
ik
and
1 o
|biro) = + > e™e M (B[ PiLo) + ak| Piro)), (2.9)
ik
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where

(2.10)

1 1
ap = + 5
\/lf%coskf% \/17%cosk+i

and

1 1
By = - == - =. (2.11)
\/17§COS]€71 \/lf§cosk+z

One can check that the ‘extended’ symmetric states |¢;q.) are indeed orthogo-
nal.

Let us note that it is at this point that the equations are truely distinct here
than the ones considered by Zhang and Rice in Ref. [26]: there it was only shown
how to ‘orthogonalize’ symmetric states for the 2D case. While that procedure
could have been easily generalized (or one should rather say ‘reduced’) to the 1D
case, the ladder case required a more careful consideration. Actually the easiest
way to obtain equations for ay and fj is to derive them first for merely a single
rung of the ladder. In that case one can easily check oy = 1/\/§ + 1/\/3 while
Or = 1/\/§ — 1/\/5 Then one can generalize this result to the whole ladder.

Finally one can explicitly define the Zhang-Rice singlets as

1
[Yia) = 7§|¢iaTdial — Gialdiat)s (2.12)

see also Fig. 2.5 for an artist’s view of this state. In principle, one should
also check how the binding energy changes when the Zhang-Rice singlets are
orthogonalized. It was shown in Ref. [26] that the energy splitting changes
only slightly when the singlets are orthogonalized. Obviously, the results in
Ref. [26] are valid only for the 2D case. Fortunately, a similar result can be
easily obtained for the 1D case. Actually, the energy splitting between the
orthogonalized Zhang-Rice singlets and triplets can be defined as 16x?t; (for
the simplified case t; = t2 and t3 = 0) [26]. Then the crucial constant x is very
close to one — both in the 1D (y = 0.98) and in the 2D case (x = 0.96) [26].
One can safely argue that x for the ladders takes some value in between 0.96
and 0.98 as there is no physical reason that the orthogonalization procedure for
the ladders would lead to totally different behaviour than for the 1D chains or
2D case (despite the form which is slightly more complicated in the ladder case).
Thus, the orthogonalized Zhang-Rice singlets have a huge binding energy also
for the ladder. In what follows, we will refer to Zhang-Rice singlets having in
mind merely their orthogonal version.

Kinetic term for single ladder.— Having shown that the Zhang-Rice singlets
in the single ladder do not differ much from those in the 2D case, we can now
safely assume that one can apply to the ladder case all the arguments used in
Ref. [26] to derive the effective hopping of Zhang-Rice singlets due to finite ¢,4.
Thus, we obtain,

Hy ==t Y (dlopdisro0 + ) =t 3 (dlg dive + Hee.), (2.13)

oo i

where again dine = dino (1 — M4z ) is the restricted fermion operator and as
before d;,, creates a hole in the copper site ia. This follows from the effective
hopping of Zhang-Rice singlets ¢t by a hole-particle transformation. While we
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do not show her the detailed expression for the effective hopping of Zhang-Rice
singlets ¢, note that it is considerably smaller than ¢,4 (ca. 30%). Note also that
having two Zhang-Rice singlets on the same site costs energy 4ts + 2¢1 (see Ref.
[26]) and therefore we used the tilde operators above to prevent from having
two Zhang-Rice singlets on the same site.

Extension to coupled ladders.— Since the interoxygen hopping t,,» < tpq [39]
in copper oxide systems, there is no possibility of hopping between the ladders.
Thus, the above result will also be valid for coupled ladders provided the Zhang-
Rice singlets can be constructed in that case. This is indeed the case, however it
is somewhat subtle and we refer the reader to the next section for more details.

Number of carriers in the t—J-V1-V5 model.— Due to the Zhang-Rice pro-
cedure not only the nature of carriers but also their number is changed in the
effective t—J—V1—V5 model. Since the number of extra holes which occupy the
oxygen sites and form the Zhang-Rice singlets is equal to ny — 1 per copper site
(where ny, is the number of holes per copper site), there are n, = n, — 1 per
site empty states in the effective t—J—V;—V5 model. This means, that the filling
n in the t—~J-V1-V5 model (i.e. the number of spins) is n =1 —n, = 2 — ny, per
site.

2.3.4 The intraladder repulsive term V)

Finite U, and the interaction between Zhang-Rice singlets in 2D case.— In
the original Zhang and Rice paper [26] the interaction on oxygen sites U, was
entirely neglected. Here, we have already stated its rather minor role in the
stability of the Zhang-Rice singlets (see e.g. Table 2.1 where t3 is finite for
finite U,, as well as discussion in Sec. 2.3.3). However, this is not the full story
[67, 58, 59]. Actually, due to the finite U, the two nonorthogonal Zhang-Rice
singlets repel if they are situated on the nearest neighbour site. This is because
these two nonorthogonal Zhang-Rice singlets share a common oxygen site and
the two holes situated on this oxygen site and belonging to two neighbouring
nonorthogonal Zhang-Rice singlets repel.

Obviously, this interaction is quite reduced as there is just 25% proba-
bility to find a hole forming a nonorthogonal Zhang-Rice state on the par-
ticular oxygen site (which is shared with the neighbouring Zhang-Rice sin-
glet). Indeed detailed calculations for the orthogonal Zhang-Rice singlets, per-
formed in Refs. [58, 59], showed that this repulsion is of the order of 0.029U,
(while the not-considered-here finite intersite Coulomb repulsion V,q between
holes on oxygen sites and copper sites even further reduces this value [57]).
Thus, the orthogonalization procedure reduces its value from the estimated
1/2(1/4 x 1/4+1/4 x 1/4) = 1/32 ~ 0.031 (the factor 1/2 before the equa-
tion originates from the Pauli principle) for nonorthogonal Zhang-Rice singlets.
Therefore, one usually neglects the effective repulsion between holes in the t—J
model as it will be at maximum of the order of 0.2¢ (for parameters from [39]
where U, = 4.18 €V is rather large) while typically J ~ 0.4¢ in copper oxides
[23].

Intraladder and interladder repulsion.— In the coupled ladder geometry,
however, the situation changes drastically. Although, within each single ladder
the repulsion is somewhat similar as in the 2D case (this will be called the
intraladder repulsion, see Fig. 2.6), a distinct situation occurs for the coupled
ladder. Here, there is a much stronger repulsion between nearest neighbour

30



Figure 2.6: The artist’s view of the intraladder repulsion between two nearest
neighbour Zhang-Rice singlets. See Fig. 2.5 for further explanation of the
symbols used here.

Zhang-Rice singlets on neighbouring ladders. This is because, such Zhang-Rice
singlets share not one but two oxygen sites, see Fig. 2.7 in the next section.
Thus, the interladder repulsion between Zhang-Rice singlets should naively be
four times* as big as the intraladder repulsion and therefore it can happen that
it could be of the order of J.

Calculation of the intraladder repulsion.— Whereas the significance of the
interladder repulsion is discussed in the next section, let us now concentrate on
the repulsion between the Zhang-Rice singlets within a single ladder (see Fig.
2.6 for the artist’s view of the problem). Thus, the task is to calculate repulsion
between orthogonalized Zhang-Rice singlets within the ladder due to the on-site
interaction Up:

H = Up{z (niaaniami + niayTniayl) + Znimnibi}. (214)

o
Thus, one needs to calculate the following matrix elements:

<wsaa¢ra|Hl|whaawja>a <wsaa¢T&|Hllwh&a¢ja>- (215)

Let us note that the mixed terms such as for example (RL, LL) give zero in
the Zhang-Rice singlet basis — they could a priori lead to the destruction of
the Zhang-Rice singlets but fortunately are much smaller than the respective
binding energy.

Intraladder repulsion along the leg.— First, we calculate the matrix elements

4This is because here both the holes with the same and opposite spins can repel: 1/4 x
1/4 +1/4/4 = 1/8. However, this factor will multiply smaller on-site repulsion, with respect
to the intraladder case, due to Hund’s exchange and altogether it will turn out that for n = 0.2
[39] the interladder repulsion is roughly twice stronger than the intraladder repulsion.
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of H' between the orthogonal plaquette states Egs. (2.8-2.9) along the leg:

1 1 3 —r) iq(j—s) Lif(r—s
<¢saaa ¢Ta&|HI|¢hoz&; ¢jaa> :TGUPF Z elk(h )6 a( )6 I )
kqf
1
{1_6 (akaq + Bkﬁq - akﬁq - Bkaq)

(aq—fak+f + Bo—1Br+s — Qg fBrtf — 5q—fak+f)
k —f . k+ 1
n ( PNl LD _)

sin — sin = sin ——— sin
2 2 2

2 16
(aragaq-sanes + BBafy-sBrss) o (210)
and
(bsac: Srac M |hao: Bjas) = —(Gsac: Sras|H |has: bjas), (2.17)
and
(Psacs Prac|H |Phaos Pjac) = 0. (2.18)

One can evaluate numerically the above expressions. It occurs that the largest
positive element is the nearest neighbour interaction

<¢jaaa ¢j+1,a6|Hl|¢j+1,a65 ¢jaa> = 00544Up; (219)

while following Eq. (2.18) the absolute value of the largest negative element,
which corresponds to spin-flip nearest neighbour interaction, is the same. Fur-
thermore, the second largest element is the next nearest neighbour interaction
and is over 20 times smaller, which means that it can be easily neglected.

Second, we calculate the matrix elements of H’ between the nearest neigh-
bour Zhang-Rice singlets. This introduces a factor 1/2 to the above estimations
of the repulsion between orthogonal plaquette states: It is because there is
a 50% probability to have opposite spins on a particular shared oxygen site
occupied by two holes from two different Zhang-Rice singlets. Note that the
spin-flip-plaquette terms do not give any contribution to the repulsion between
Zhang-Rice singlets, although they could in principle destabilize the Zhang-Rice
states themselves. Fortunately, this is not possible since the binding energy of
the Zhang-Rice singlets is much larger. Thus altogether, we obtain

<’L/Jja, wj+17a|Hl|wj+17a, ’(/Jja> = 0.0272U,,. (2.20)

Intraladder repulsion along the rung.— Following a similar scheme, we cal-
culate the repulsion between Zhang-Rice singlets on different legs. We obtain
for the matrix elements of H' between the orthogonal plaquette states Egs.
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(2.8-2.9) on different legs

1 1 i —r) iq(j—s) ,if(r—s
<¢saav ¢T&6|HI|¢h@67 ¢jaa> :TGUPF elk(h )6 a( )6 # )
kqf

{1_16 (Oékﬂq + Brag — apag — 5k5q)

(OéqffﬂkJrf + Bg— Oy — g jOuyf — 6q7f6k+f)
k. q. q—f  k+f 1
+( )

sinisin§sin 5 smT + E
(@kBatra 1By + Brogfyponss) b (2:21)
and
($sacs bras|H'|bhao, bjas) = —(bsac, bras|M|bhas, Pjac), (2.22)
and
(bsacs bracH |Phao, Gjas) = 0. (2.23)

Evaluating numerically the above expressions one obtains that the largest el-
ement is the nearest neighbour repulsion — this time between the orthogonal
plaquette states on the same rung:

<¢jaaa ¢j,6¢6|Hl|¢j,6¢6’a ¢jo¢a> = 00529Upa (224)

while the second largest element (the next nearest neighbour interaction) but is
very small (over 15 times smaller) and can be neglected.

Finally, following the same steps we obtain the repulsion between the nearest
neighbour Zhang-Rice singlets which is twice reduced:

(Yjas YialH [Vj.a ja) = 0.0265U,. (2.25)

Intraladder repulsion between Zhang-Rice singlets.— Hence, one can note
that the interaction among the nearest neighbour Zhang-Rice singlets is almost
isotropic. Thus, one can write the effective Hamiltonian for the repulsion be-
tween Zhang-Rice singlets (compare Fig. 2.6)

HV1 = W(anmnwi+1,a + aniRnwiL)a (2'26)

where 1y, = |Via) (Yia| and

Vi ~ 0.027U,. (2.27)

Thus the constant before U, is ca. 14% smaller than the nonorthogonal value
1/32 = 0.03125. Note the trend of the renormalization factors: 0.023, 0.025,
0.027, 0.029 for single rung, 1D case, ladder, and 2D case, respectively (calcula-
tions are not shown; for 2D case a similar result was obtained in Ref. [58, 59]).
This trend originates from the fact that in lower dimensions the charge escapes
more from the main orbitals (b or y) responsible for the interaction (and the
contribution to the interaction due to the other orbitals is very small). In 2D it
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Figure 2.7: The artist’s view of the interladder repulsion between two nearest
neighbour Zhang-Rice singlets on two different ladders. See Fig. 2.5 for further
explanation of the symbols used here.

does not escape in this way as all of the orbitals suffer from the orthogonality
problem.

Intraladder repulsion in terms of copper holes.— Since Zhang-Rice singlets
are ‘particle-hole cousins’ of copper holes (i.e. Zhang-Rice singlets correspond
to empty sites on copper) one has

Ny = (1= Tjaa), (2.28)

where everything happens in the constrained Hilbert space with no double oc-
cupancies on copper holes. Substituting this equation and shifting the chemical
potential one obtains the intraladder repulsion between copper holes

Hy, = Vi (Y fiaaitisian+ Y fundiiiva), (2.29)
where V; defined as in Eq. (2.27).

2.3.5 The interladder repulsive term V5,

Calculation of interladder repulsion.— Finally, the task is to calculate the re-
pulsion between two Zhang-Rice singlets sitting next to each other (and thus
sharing the same oxygen sites but not the p orbitals, see Fig. 2.7) due to the
on-site repulsion on oxygen sites. However, again we will calculate the repul-
sion between arbitrarily located Zhang-Rice singlets and only then we will show
which elements are negligible. Note that the plaquette states on two ladders are
orthogonal to each other although they still have to be orthogonalized for the
same ladder (as before).
Explicitly one needs to calculate the following matrix elements:

<7/)sa;7/;T+%,a|H”|7/;h+%,aﬂ/}ja>a (2'30)

and
<wsa;wr+%,a|H”|¢h+%,a;wja>ﬂ (231)
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where

H” == Up{(l - 277)2 (niazaﬁi&y& + niayaﬁiazﬁ) +
(1=3n)) (nmmmayg + niaymiam) } (2.32)

oo

Note that we introduced here a bar sign over the Zhang-Rice singlet states to
denote the Zhang-Rice singlets formed on a different ladder than the one under
consideration. Besides, since the other ladder is misaligned by a lattice constant
1/2 with respect to the ladder under consideration, we count the Zhang-Rice
singlets on the neighbouring ladder with the index j+1/2 (note that the lattice
constant in the single ladder is the copper-copper distance which we assume to
be equal to 1, see Remarks at Notation in the beginning of the thesis).

Interladder repulsion between plaquettes with the same spin.— First, we cal-
culate the matrix elements of H” between the orthogonal plaquette states Eqs.
(2.8-2.9) with the same spin but situated on different legs:

_ _ 1 1
<¢7‘O¢Ua ¢s+§,aa|H”|¢h+§,aaa ¢ja0> :1_6(1 - 377)Upﬁ Z ApQqQq— fOf4 f

kqf
1 . . 1., .
{Z singsin(q — f) + 1 sin k sin(k + f)}
eik(h=r) gia(i=s) gif (r=s—3) (2.33)

while for the same legs we obtain

- - 1 1
(Pracs s t.00 M 10011 000 Giac) =761 = 30)Upss > anBoq— Bt s

kqf
1 . . 1., .
{Z singsin(q — f) + 1 sin k sin(k + f)}
pik(h=r) giq(j—s) yif (r—s—3) (2.34)

As it might have been expected, it occurs that the biggest term is the repulsion
between orthogonal plaquette states with the same spin situated on the closest
possible sites in the neighbouring ladders (see Fig. 2.7):

(G100 B3 00 H 16143 5o Grac) = 0.1355(1— 3n)U,,  (2.35)

and all other terms are of the order of 1073(1 — 3n)U,, and can be neglected.

Interladder repulsion between plaquettes with opposite spin.— Second, an
exactly similar calculation as above, but for the orthogonal plaquette states
Eqgs. (2.8-2.9) with opposite spins leads to the repulsion between orthogonal
plaquette states with opposite spins and situated on the closest possible sites in
the neighbouring ladders:

<¢ja0a ngj:%,aﬂH”@j:t%,a&a ¢ja0> = 0-1355(1 - 277)Upa (2-36)

while again all other longer-range repulsive terms can be neglected.
Interladder repulsion between Zhang-Rice singlets.— Combining the two re-
sults for the plaquette states, one can calculate repulsion between Zhang-Rice
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singlets situated on nearest neighbour sites of the neighbouring ladders (see Fig.
2.7):

Hy, =%y (nwmn@%ﬁ + nwmn%%ﬁ), (2.37)

where n.,, is defined as before and
Vo ~ 0.1355(1 — 51/2)Up. (2.38)

Note that we again neglected all spin-flip terms which are small in comparison
with the Zhang-Rice binding energy and give zero when ‘sandwiched’ in the
singlet states. Besides, the prefactor (equal to 0.1355) before the interaction
between the Zhang-Rice singlets is slightly enhanced with respect to the ex-
pected 1/8 = 0.125 value (unlike in the intraladder case). This is because quite
a lot of charge escapes from the b and y orbitals to the x orbitals due to the
orthogonalization procedure.

Interladder repulsion in terms of copper holes.— Since Zhang-Rice singlets
are ‘particle-hole cousins’ of copper holes one can easily write down the inter-
ladder repulsion in terms of copper holes:

Hy, =V ) (ﬁz‘adﬁiJr%,ad + ﬁiadﬁi—%,&d)a (2.39)

where V5 defined as in Eq. (2.38). Note that to obtain Eq. (2.39) from Eq.
(2.37) we again [see Eq. (2.29)] shifted the chemical potential.

2.4 Method and results

2.4.1 The slave-boson approach

Slave-particle formalism.— The first difficulty one encounters while trying to
solve the t—J-type of Hamiltonian is to cope with the constraint of no double
occupancies at each site [20]. While there are several methods which approxi-
mately implement these constraints (see the following chapters where the slave-
fermion approach is used), in this chapter we choose the slave boson method [60]
to obtain qualitative insights. The reason is that this method is rather reliable
in describing properties of the relatively highly doped ¢t—J models [20].
Introducing Kotliar-Ruckenstein slave bosons.— In contrast to the Barnes
slave-boson approach [61], the Kotliar-Ruckenstein slave-boson representation
[60] correctly interpolates between the U = 0 and the U = oo limit and therefore
we choose this slave-bosons approach in what follows. In this approximation
one enlarges the Fock space by introducing three auxiliary boson fields. First,

one decouples the constrained fermion creation operator d oo 1ntO a fermlon

creation operator f carrying the spin degree of freedom, a boson creation

(e %en
operator piw, and a boson annihilation operator e;, carrying the charge degree

of freedom (i.e. e} creates a charged hole):

(2.40)

ZO(G' leLO'pZOtU

This means that in order to create a fermion at site i, one first has to destroy
a hole at this site but then one also keeps track of the change of the boson
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configuration by the extra boson pzag. Consequently, one not only cannot create
a fermion at site i« if there are no holes at this site but one also ‘remembers’
which type of the fermion was created at site ic. However, in the U = 0 limit
one recovers only 25% of the value of the uncorrelated hopping, which has to
be corrected [60]. Thus, one further modifies the decoupling procedure in order
to reproduce the correct U = 0 limit:

oy = Fho?hon: (2.41)
where
Ploti
2l = lag 1o . (2.42)

a0 n t T
\/(1 — €;qCia — pia&piaﬁ)(l - piaapiaa)

Note, however, that we need to introduce the following constraints to get rid
of the nonphysical states in the enlarged Fock space:

Vi Zp;ragpiaa + ezaeia =1, (243)
o

Viaa pzagpiaa = szagfiaa- (244)

Thus, the full transformation contains not only Eq. (2.41) but also Eq. (2.44).

Bosonic condensation.— A typical next step in the slave boson approach
is to assume that the introduced auxiliary bosons condense, i.e. they could be
regarded as classical fields [with their values determined either self-consistently
or using Eq. (2.44)]. Therefore, we assume that

/ n

pjag ~ szag‘intU ~ \/;)
n

Piae ™~ \/ szag‘intU ~ \/;;

€ia ™~ 17”5

el ~vV1—n, (2.45)

where n is the already mentioned ‘filling factor’, i.e. the number of copper spins
created by d;, operators in the effective t—J—V;—V5 model.

Substituting transformations Eq. (2.41) together with Eq. (2.45) to Eq.
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(2.2) we obtain the following effective Hamiltonian for interacting fermions f

Heff — *tgt{ Z (fZTanHLaa + H.c.) + Z (fiTRgfiLa' + Hc)}

a0 10

1
_QJQJ{ Z (fiTaafianzTJrl,a(rfi'i‘laaE + f;aafj+1,a&fia5fi+17aa)

oo

+ Z (szRafiRUszL&fiLﬁ + szRgf;LﬁfiR&fiLa‘) }

+Vng{ Z (fiTaafianzTJrl,a(rfi'i‘laaE + f;aafiaafj+1,aafi+17a0)

oo

+ Z (szRgfiRaszLafiLa* + szRgfiRaszLgfiLa) }

+VY29J{ Z (szaafiaUﬂT+%7@5ﬁ+%,&5 + fjaafiaa.]glr%’@gfi-i-%,&a

oo

+ fz"raafiaafi‘r— aoc + f;aafianT 1 f_lifl 540') }7

f_li* 1—57640' 2
(2.46)

_ 1
%,aa bE

where the bar sign denotes the fact that the fermion operators act in the Hilbert
subspace of the Hamiltonian for the neighbouring ladder. Furthermore, the
factors g; and g, are:

- 2—2n
gt = 2—71,
4
g7 = 2—n? (2.47)

The reader may wonder here whether we gained a lot by introducing the
Zhang-Rice scheme and then the slave bosons: The calculations were pretty
lengthy and we ended up with a Hamiltonian describing again the interacting
problem. However, we gained quite a lot during the above procedure: (i) we
integrated out the oxygen orbital degrees of freedom entirely, (ii) the interaction
terms in Eq. (2.46) are much weaker than those in the original model since J,
V1 and V; are of the order of the effective hopping g:t while in the Hamiltonian
(2.1) the interacting terms are much bigger than the kinetic terms.

Agreement with Gutzwiller factors.— Actually, the ¢g; and g; factors are
equal to the well-known Gutzwiller factors [62, 63]. Thus, we could have intro-
duced here the Gutzwiller approach to obtain the effective Hamiltonian (2.46).
However, the slave boson approach seems to us to be more transparent.

2.4.2 The mean-field approximation

Mean-field decoupling.— To solve the effective Hamiltonian Eq. (2.46) we in-
troduce the mean-field decoupling:

f;aafiaaf;ag/ fiaa’ -

fjagfiaa' (fgag’ fiaa’) + <fz"ragfiao'>fgag’ fiaa’ - <fiTag fiaa> <f7:Tao', fiaa’ > )
(2.48)
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where the classical fields (f) _fias) are to be determined self-consistently with
the initial values for these fields chosen in the following way:
First, we assume that

<szafio¢>' (249)

N =

1
<szani0¢T> = <fiTaifio¢l> = 5 Z<szagfiaa> =

o

Second, if the number of fermions f per site is n = 2/3. then we assume
that

iy J n—p fori/3eZ
<fiafza> = { n+ %p for ’L'/3 ¢ 7 (2.50)
while if n = 3/4 then
i ey J n—p forifdcZ
(flatia) { ntlp fori/a¢Z (2.51)
and finally if n = 4/5 then we assume that
i, \_J n—p fori/s5eZ
(FiaFia) = { n+ip fori/5¢7Z - (2:52)

where p is a real number (with its value to be determined self-consistently, see
next section) such that 0 < p < n.

Decoupling for neighbouring ladder.— Actually, a similar decoupling is done
for f fermion operators. However, here we assume different initial values for the
classical fields:

If the number of fermions f per site is n = 2/3, then we assume that

t 7 [ n—p for(i+1)/3€Z
<f1—lafi*%°‘> o { n+ %p for (i+1)/3¢7Z ° (2.53)
while if n = 3/4 then
s 7 f n—p for(i+1)/4€eZ
<fi*lafi*§°‘> o { n -+ %p for (i +1)/4¢7Z (2:54)
and finally if n = 4/5 then we assume that
A7 _f n—p for(i+2)/5€Z
(iogafi-ta) = { ntlp for (i+2)/5¢Z (2.55)

Reasons for the assumed initial values of the fields.— Note that we choose
these particular values for the classical field in order to investigate the stability
of the CDW state of period A = 3 for n = 2/3 (np = 4/3), period A = 4
for n = 3/4 (np, = 5/4) and period A = 5 for n = 4/5 (np, = 6/5). Since
we are merely interested in investigating whether the interladder interaction
can at all lead to the stability of the CDW phase in the coupled ladder, we
choose the simplest possible pattern of the CDW order in the ladders [see Eqs.
(2.50)-(2.52)]. Furthermore, we choose that the CDW order in the neighbouring
ladder is such that the rungs with lower densities in that ladder are as far away as
possible from the rungs with lower densities in the ladder under consideration.?

5Tn the case of n = 3/4 we could have equally chosen (i +2) as the shift in the CDW order
in the neighbouring ladder.
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In this way the classical energy (i.e. for ¢ = 0) of the system will be minimized
for p = n with respect to the interladder interaction V5. Obviously, finite ¢
(and also finite V4 and J) could change this result and it is the task of the next
section to verify this assumption self-consistently.

Validity of the approximation.— One may wonder whether the above decou-
pling is justified since values of the interaction parameters J, V;, and V5 are
comparable with the effective kinetic energy and therefore cannot be assumed
as being small terms. However, as discussed in detail in Ref. [33] what matters
in such a mean-field decoupling is the strength of quantum fluctuations (which
are neglected in the mean-field decoupling) while the strength of the interactions
is not important at all.

2.4.3 The ground state properties

Stability of the CDW order.— We determine the value of the CDW order pa-
rameter p (2.50-2.55) self-consistently by diagonalizing the effective Hamiltonian
[Eq. (2.46)] of the model (2.2) rewritten using the mean-field decoupling (2.48).
The diagonalization is done numerically in the single-particle k£ space using 500
k points along the single leg of the ladder. The result is shown in Fig. 2.8: it
depicts the stability of the CDW order in the coupled ladders due to the inter-
ladder interaction Vs, for all three studied doping levels (n = 2/3, n = 3/4, and
n = 4/5). Besides, the CDW ground state has a small gap at the Fermi level
for n = 3/4 and n = 4/5 while the gap at the Fermi level does not open for
n = 2/3 (although the bands are flattened in the CDW state).

In particular, let us note that the CDW state with A = 4,5 is stable for
the realistic values of the parameters J = 0.4¢, V4 = 0.2t and V5 = 0.5¢ [as
calculated using Eqs. (2.4), (2.27), (2.38) and parameters from Refs. [39, 51]].
Furthermore, the CDW order state is stable for period A = 3 for a somewhat
enhanced value of the interladder interaction V5 ~ 0.9¢ which nevertheless could
be obtained using the charge transfer parameters of Ref. [64].

Role of superexchange J and intraladder interaction V3.— While the sta-
bility of the CDW order is entirely due to the interladder interaction V3, the
superexchange « J and the intraladder interaction o V; also slightly influence
the order. Actually, in all three cases turning on these interactions reduces the
magnitude of the CDW order and makes it a bit less stable (i.e. the CDW order
is stable for larger values of the interladder interaction V3). Besides, this effect
is well visible for period A = 3,5 while for period A\ = 4 it is rather suppressed,
see Fig. 2.8.

First, let us try to understand what kind of (ordered) ground state is favoured
by these interactions. On the one hand, the role of the superexchange J in the
mean-field decoupling (2.48) amounts to the Ising-like interaction. Furthermore,
we assumed that the solution is nonmagnetic (2.49). Thus, the superexchange
merely favours formation of pairs of charges along each bond. On the other hand,
the intraladder interaction V; disfavours such pairs as it is a repulsive interaction
between nearest neighbours. Since a typical value of the superexchange is J =
0.4t and of the intraladder interaction is V3 = 0.2t (see above), the joint effect of
these interactions is a suppression of pairs of charges (as they jointly contribute
as J — 4V] to the effective mean-field Hamiltonian).

Second, one can try to understand how it influences the CDW state. This,
however, strongly depends on the CDW period. In the simplest case A = 3 we
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Figure 2.8: Stability of the CDW order due to the interladder interaction V5 as
obtained self-consistently from the mean-field decoupling (2.48) of the effective
Hamiltonian [Eq. (2.46)] of the model (2.2). The panels depict the following
cases: (a) filling n = 2/3 (np = 4/3) with period A = 3 and order parameter
p as defined in Eqs. (2.50, 2.53), (b) filling n = 3/4 (np, = 5/4) with period
A = 4 and order parameter p as defined in Eqs. (2.51, 2.54), (c) filling n = 4/5
(np, = 6/5) with period A = 5 and order parameter p as defined in Eqs. (2.52,
2.55). Solid lines are for realistic values of J = 0.4t and V; = 0.2t [see Eqs.
(2.4), (2.27), (2.38) and Refs. [39, 51]] while dashed lines show results for J =0
and V; = 0.

have two rungs with enhanced charge densities and therefore the joint effect
is that the realistic J and V; disfavour formation of the CDW order, see Fig.
2.8(a). On the other hand, when A = 4 the situation is more complicated: we
have three sites with enhanced charge density along the leg, while the pairs of
charges are again formed along the rung. Together this yields that J and V;
interaction disfavour the onset of CDW states only marginally, see Fig. 2.8(b).
Finally, the case with period A = 5 is somewhat in between the two above
cases as along the leg there are four sites with enhanced charge density, see Fig.
2.8(c).

Understanding the results for J = 0 and V; = 0.— Having understood the
minor role of superexchange J and intraladder interaction V7, let us now turn
to the understanding of the onset of the CDW order due to the interladder
interaction V5 for J = 0 and V; = 0 (see Fig. 2.8). First, the basic mechanism
which supports the formation of the CDW order is rather simple. The onset
of the CDW state lowers the energy interladder interaction V5. This is because
then the CDW states in the neighbouring ladders are arranged in such a way
that the rungs with more charge in one ladder are the nearest neighbours of the
rungs with less charge in the neighbouring ladder and vice versa, see Egs. (2.50-
2.55). Obviously, the onset of the CDW order is associated with the flattening
of the bands (not shown) as then the mobility is reduced. Thus, in the CDW
state the kinetic energy is higher and therefore the total energy of the system
is lowered (and the transition to the CDW state takes place) only when the
decrease in the interaction energy is higher than the decrease in the (negative)
kinetic energy. When the nesting conditions are not satisfied (which is the case
here but compare also Sec. 2.7) this can take place for finite value of the ratio
Va/t.
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Second, there are relatively big differences between the onset of the CDW
order for different doping levels n. However, with the exception of the ‘cusp’ for
the CDW order with period A = 5 (see below), this can be understood rather
easily. The CDW state is more easily stabilized and has bigger amplitude p/n
when the number of f fermions n is bigger. This is because then the kinetic
energy is reduced as there are less carriers in the system. Thus, for example the
CDW order with period A = 4 is stable already for smaller values of the ratio
Va2 /t and has bigger amplitude p/n than the CDW state with period A = 3

Understanding the ‘cusp’ for period A\ = 5.— Finally, the ‘cusp’ in Fig. 2.8(c)
needs some explanation. Here, in the numerically most complicated case with
period A = 5, there is a competition between two different types of the CDW
order: (i) the CDW state with a small amplitude p, rather unchanged electronic
bands and small gap at the Fermi level, and (ii) the CDW state with a large
charge modulation p, almost flat bands and a large gap at the Fermi level. While
CDW state (ii) could be understood as a sort of ‘analytic continuation’ of the
results obtained for period A = 3 and A = 4, the CDW state (i) is awkward and
needs some further understanding.

In fact, the existence of the possibility (i) is the result of the complex inter-
play of the complicated band structure for the CDW state with period A = 5
(where the effective Brillouin zone is ‘five-folded’) and the complicated effective
mean-field potential from the neighbouring ladder. Actually, the latter mean-
field potential from the neighbouring ladder is due to the fact that the CDW
order in the neighbouring ladder acts as a negative potential merely on three
rungs (out of five in the unit cell) in the ladder under consideration. Thus, this
potential itself contains competing terms and therefore the ‘interpolating’ CDW
state with small amplitude p is formed.

2.5 Discussion

2.5.1 Validity of the results

Possible shortcomings of the present approach.— In order to obtain results
shown in Fig. 2.8 we introduced a number of approximations to the t—J—-V;-V5
Hamiltonian. In particular, we introduced: (i) the slave-boson approach to over-
come the problem of the constraint of double occupancies, (ii) the mean-field
decoupling. Whereas the first approximation is widely used [20], the second one
is also a reasonable approach to the ordered states in the strongly correlated
systems [33].

Still, however, both the slave-boson approach and the mean-field decou-
pling were used in one of their simplest possible versions. For example, first,
we assumed that the number of bosons which condense is equally distributed
through the lattice which led to the site-independent Gutzwiller factors. On
the one hand, we checked that the site-dependent Gutzwiller factors yield sim-
ilar results for the CDW with period A = 3 as obtained in Fig. 2.8. On the
other hand, it turned out that the self-consistent mean-field calculations did not
converge when we used the site-dependent Gutzwiller factors for the CDW with
period A = 5. Second, we assumed that the solution was nonmagnetic — clearly
introducing the possibility of finite spin polarization would improve the present
result. However, as the purpose of the calculations was to investigate the onset
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of the CDW order due to the interladder interaction, this was at least partially
justified.

Possible shortcomings of the derivation of the model.— Distinct approxima-
tions and shortcomings are related with the t—J—V;—V5 Hamiltonian itself. First,
one could verify whether the Zhang-Rice singlets do not get destroyed due to
the interladder interaction. Although the Zhang-Rice binding energy is of the
order of (4—5)tpq (see Table 2.1) which is much bigger than the biggest possible
value of the interladder interaction between them (V2 ~ 0.7t), it is internally
consistent when the explicit calculations show that this indeed cannot happen.
Second, we assumed that the on-site energy for holes on the rung orbital b is
the same as the one for holes in the other oxygen orbitals. However, due to a
different, coordination number for this site, the on-site energy of the b orbital
should be somewhat lower. Indeed, it is estimated that the ratio between these
two on-site energies is € ~ 0.9 [52]. Thus, it is interesting to verify whether
this asymmetry in the on-site energies of the oxygen orbitals can destabilize the
Zhang-Rice singlets. Hence, in the next two sections, we study in more detail
the above mentioned possible shortcomings of the derivation of the model.

2.5.2 ‘Rigidity’ of the Zhang-Rice singlets

Purpose of this section.— In order to verify whether the interladder interaction
V5 could influence the stability of the Zhang-Rice singlets we solve the charge
transfer model (2.1). In this way we will be able to check how the Zhang-Rice
singlets are influenced by the on-site interaction between holes on the same
oxygen sites but belonging to two neighbouring ladders.

The CDW solution of the charge transfer model.— We solve the Hamilto-
nian (2.1) for various values of the model parameters {U, A, U,}, and for three
different hole densities n, = 6/5,5/4,4/3 using the mean-field approximation,
i.e., we decouple

NjaptMjaul = (Mjaut)Mjapl + Mjapt (Mjapl) = (Mjapt) (Mjapul)s (2.56)

where u = d,x,y,b and a similar decoupling holds for the neighbouring lad-
ders. The ground state was found by diagonalizing the resulting one-particle
Hamiltonian in real space for a single ladder with 60 unit cells, separately for
spin up and spin down. The classical fields {(njau0)} and {(n;_1 ,,,)} were
determined self-consistently with the initial values for these fields as in Fig. 2.9.
While a uniform spin density wave is stable for n, = 1, one finds a CDW su-
perimposed on the spin density wave order for realistic hole densities nj, > 6/5.
The stability of this composite order follows from the 1D polaronic defects in
the spin density wave state. We limit the present analysis to the stability of
this particular CDW phase, while we do not study here the possible competi-
tion with other phases (see Ref. [65] and next section). Characterization of the
CDW state in the charge transfer model.— For each state we evaluate: (i) the
CDW order parameter

1
p'= Z (nia + nap + mz>*m Z (Nid + Ny + Niz)
1Erung i¢rung
2
+ Y (nay) - 2 > (niy), (2.57)
i€rung i¢rung
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Figure 2.9: Artist’s’ view of two coupled CuyOs5 ladders (white and grey) with
a CDW order of period: (a) A = 3 and (b) A = 4. Again (cf. Fig. 2.4) the
Cuz05 unit cell with two 3d,2_,2, three 2p,, and two 2p, orbitals is indicated
by dashed line. The arrows stand for hole spins in copper and oxygen orbitals,
with their (large) small size corresponding to +1.0 (+0.25) hole charge. The
ovals show rungs with enhanced hole density in the CDW phase. The dotted
ovals in the grey ladder of (b) show the two possible degenerate states, see text.

where ) is the period of the CDW state, and (ii) the second moment of the hole
density distribution with respect to the ideal non-orthogonal Zhang-Rice singlet
state (to be called also Zhang-Rice dispersion; ng = 0.25),

o’= ) {(<nib> —210)+ ((niz) — n0)*+({nay) — n0)2}. (2.58)

iETUNG

Here and in what follows by ‘rung’ we mean the ‘rung with enhanced hole
density’ which consists of seven oxygen orbitals (four y, two x and one b) and
two copper orbitals (see the ovals in Fig. 2.9). Hence, in both above definitions
the mean values of the particle number operators are calculated for these rungs
(¢ € rung) or for all remaining sites in the whole ladder (i ¢ rung). Note that
in the first term in Eq. (2.58) we subtract 2ng hole density as we assume that
there are two non-orthogonal Zhang-Rice singlets in the same rung which share
the common b oxygen orbital, see Fig. 2.9. Note also that in the ideal CDW
phase (shown in Fig. 2.9) p’ = 2 and 02 = 0, irrespectively of the actual period
A. We also introduce rung hole densities on oxygen and copper sites

np= Z (Nip + Nig + Nay), Ng= Z (nid)- (2.59)

i€ETUNg 1€ETUNg

Similarly, magnetic order parameters are

my = ‘ Z Mg +Miy —l—‘ Z Mg+ My | (2.60)
i€rungNL i€rungNRi

md= Z Imial, (2.61)
1ETUNG
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Figure 2.10: Characterization of the CDW ground states obtained with U, = 0
for increasing U (left, A = 3t,q) and A (right, U = 8tpq): (a), (b) CDW order
parameter p’, and (c), (d) ZR singlet dispersion o2, for A = 5, 4, 3 shown by solid,
dashed, and dotted lines, respectively; (e), (f) for A = 5 charge (magnetization)
in the rung on copper sites shown by solid (dotted) line and on oxygen sites
shown by dashed (dashed-dotted) line, see Eqs. (2.59)—(2.61). The realistic
values (Ref. [51]) of U = 8tpq and A = 3t,4 are marked by vertical lines.

where the magnetization for orbital 4 at site 4 is m;, = (i — 14y ). We recall
that when holes on the rungs form two localized Zhang-Rice singlets next to
each other, then ng = mgq ~ 2, n, ~ 2, and m,, ~ 1.5, see Fig. 2.9.

Results for a single ladder in the charge transfer model.— First, we inves-
tigate the onset of the CDW phase in a single ladder of Fig. 2.9 by assuming
Up = 0. In the charge transfer regime (for A = 3¢,4 following Ref. [51]) the
CDW is stable already for U > t,q with periods: A = 5 for n;, = 6/5, A =4
for np, = 5/4, and A = 3 for ny, = 4/3 [Fig. 2.10(a)]. For higher values of the
on-site Coulomb repulsion U, p’ first increases quite fast irrespectively of the
actual CDW period, and next saturates at p’ ~ 1, being only about 50% of
the maximal value p’ = 2 (a weak decrease of p’ for U > 6t,q follows from the
charge redistribution). In particular, such a CDW order is robust for the widely
accepted value of U = 8t,4 for copper oxide ladders [51].

In the strong coupling regime of U > 4t,4 the CDW state is formed by holes
distributed as in the Zhang-Rice singlets since then o2 ~ 0.05 is indeed very
small for all periods [Fig. 2.10(c)]. This is also visible in Fig. 2.10(e) where,
in this regime, both the number of holes on oxygen sites (n,) and on copper
sites (ng) in the rungs are rather close to their values in the localized Zhang-
Rice states. Note that the minimum of 0% would correspond to n, = ng which
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further motivates the definition of Eq. (2.58). We can also probe the Zhang-Rice
character of holes forming the CDW state by looking at the magnetization of
holes in the rungs, cf. Fig. 2.10(e). The magnetization mg, grows with increasing
U and for large U ~ 12t,4 it is still around 30% smaller than that for localized
Zhang-Rice singlets. However, even in this range of U the magnetization on
the oxygen sites m,, is quite small and much below the value for ideal Zhang-
Rice singlets (around 70% smaller). This confirms that the subtle (entangled)
nature of the Zhang-Rice singlets can be only partly captured within the classical
mean-field approach. Therefore, in what follows we call these states classical
Zhang-Rice singlets.

Remarkably, changing the value of A for fixed U = 8t,4 does not destabilize
the CDW state [Fig. 2.10(b)] irrespectively of the period. This suggests that
the charge order is triggered by the on-site Coulomb repulsion. However, the
character of the holes forming the CDW state changes and o? is small (0% ~
0.07) only as long as A is large [Fig. 2.10(d)]. This is also visible in Fig. 2.10(f)
where a similar discussion as the one concerning Fig. 2.10(e) applies.

To gain a deeper understanding of the results we calculated the charge gap
as a function of the Hubbard U (not shown): one finds that the CDW state
gains stability when an insulating state is formed. Altogether, one finds that:
(i) the Coulomb interaction U can stabilize the CDW in the Cus O3 ladders, (ii)
the CDW phase can be viewed as an equidistant distribution of the classical
Zhang-Rice singlet states in the relevant parameter regime, and (iii) all of the
stable periods (even and odd) behave similarly.

Results for the coupled ladders in the charge transfer model.— Next, we in-
vestigate the influence of the interladder coupling. At finite U, the ‘external’
fields {(7;_1 4,0)} in the mean-field version of Eq. (2.1) contribute and were
self-consistently determined by iterating the mean-field equations. Thereby, the
symmetry of the CDW state was chosen in such a way that the rungs were
translated by A Cu-O lattice constants (A odd) in the neighbouring ladders to
maximize the distance between them (Fig. 2.9), which minimizes the classi-
cal mean-field energy. For even A\ = 4 the numerical calculations performed
with the realistic parameters [51] for CupOs ladder (U = 8tpq and A = 3t,q)
confirmed that the two topologically equivalent possibilities of such a transla-
tion are degenerate, as expected. The effect of the interladder interaction due
to U, was identified by comparing the ground states derived separately in two
cases: (A) with {(7;_1 4u0)} = 0, i.e., using only the (intraorbital) repulsion
between oxygen holes on the considered ladder; (B) by implementing the ‘ex-
ternal’ fields {(n;_1 ,,,)} calculated self-consistently, i.e. including both the
intraorbital and interorbital Coulomb repulsion between holes on oxygen sites.

One finds that in case A the CDW order parameter p’ decreases in a similar
way for all periods, cf. Fig. 2.11(a), as well as for even period (A = 4) when the
interladder coupling is switched on (case B). Remarkably, a qualitatively dis-
tinct behaviour is found for odd periods — here the interladder coupling supports
the onset of the CDW phase and the order parameter either saturates or even
increases with increasing strength of the on-site repulsion U, (as for A = 3), see
also Fig. 2.11(c). In fact, the interladder coupling enhances the hole density in
the rungs.

Another striking effect is the qualitatively distinct behaviour of the Zhang-
Rice dispersion o2 for odd and even periods, see Fig. 2.11(b). While for period
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0.10

Figure 2.11: The CDW ground state for increasing Up,: (a) CDW order pa-
rameter p’ and (b) Zhang-Rice singlet dispersion o2, for A\ = 5,4, 3 shown by
solid, dashed, and dotted lines (squares, triangles, and circles) in case A (B), see
text; (c) for A = 3 charge on copper (oxygen) sites in the rung shown by solid
(dashed) line in case A and by squares (circles) in case B, see Eq. (2.59); (d)
for A\ = 4 charge in different y orbitals (ng, n,1, and nys, shown by diamonds,
triangles down, and up) in the rung in case (B), see text. Vertical lines mark
the realistic value (Ref. [51]) of U, = 3t,q. Parameters: A = 3tpq, U = 8tpq.

A = 4 switching on the interladder coupling (B) drastically increases o2 with
respect to the single ladder case (A), the results are precisely opposite for odd
periods A\ = 3,5. Furthermore, this increase of o with U, in case (B) is large
for even period — its value ~ 0.1 found for large (but still realistic) U, ~ 3.5tpq
is comparable to the value of the Zhang-Rice dispersion for a single ladder with
A ~ t,q [Fig. 2.10(d)], where we do not expect stable Zhang-Rice singlets.
This large increase of o2 in this case follows from the geometrical frustration
of the CDW state, as for even periods the two y orbitals in the same rung are
not equivalent [one of them (say yl) is closer than the other one (say y2) to
the rung in the neighbouring ladder], as shown in Fig. 2.11(d). We have also
verified that the mean hole density n; = 1 (ny1 + ny2) almost does not change
when the interladder coupling is switched off (not shown).

Thus, the interladder interaction: (i) supports the CDW states with odd
periods A = 3,5 and slightly disfavours the frustrated CDW state with even
period A = 4, (ii) destabilizes (strengthens) the homogeneous Zhang-Rice—type
distribution of holes in the rungs for period A =4 (A = 3,5 ), respectively.

Final conclusions.—- Altogether, the above calculations show that the Zhang-
Rice-type distribution is stable in the odd-period CDW ground state of the
charge transfer model. In particular, in such a charge ordered states it is not
destroyed due to the interladder interaction, i.e. due to the on-site repulsion
between holes on different oxygen p orbitals belonging to two neighbouring lad-
ders.

It is only in the even-period CDW (i.e. A = 4) that the interladder in-
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Zhang-Rice Rung
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bridge orbital

Figure 2.12: Artist’s view of the Zhang-Rice singlet (left panel) and rung-centred
(rung) hole (right panel) in a CuzOs cluster. Large (small) arrows depict the hole
spins for +1.0 (+0.25) charge. The red arrows stand for spins of doped holes.

teraction destabilizes the homogeneous Zhang-Rice-type distribution of holes.
Although, it is not of such an importance for us as we are mainly interested in
explaining the onset of the odd-period CDW order, this result does not mean
that the true Zhang-Rice singlets will be destabilized in this case. Actually, in
reality the Zhang-Rice singlets are even more robust than the ones discussed in
this section — the energy gain due to quantum fluctuations and phase coherence
are not captured in these classical states (see also Sec. 2.3.3 for more discussion
on the binding energy of the true Zhang-Rice singlets).

Thus, we conclude that the Zhang-Rice singlets are rather ‘rigid’ objects even
in their extremely simplified classical version. Their true quantum-mechanical
counterpart with much bigger binding energy is expected to be even more ‘rigid’
and is not destroyed due to the interladder interaction.

2.5.3 Rung states or Zhang-Rice singlets

Purpose of the section.— The purpose of this section is to investigate the in-
fluence of the lower energy of the rung (called also bridge) oxygen orbital, with
respect to the on-site energy of the other (called leg) orbitals, on the stability of
the Zhang-Rice singlets. Hence, one could expect that instead of the Zhang-Rice
state a rung-centred state (rung) could be stabilized with a doped hole residing
on the O (2p) bridge orbital and bound to the two neighbouring Cu holes via
superexchange interactions (cf. Fig. 2.12).

Zhang-Rice versus rung states in charge transfer model.— We solve the
charge transfer model (2.1) in a somewhat similar way as in the previous sec-
tion. There are two differences: (i) we do it merely for the single ladder and
for only one hole doping ny, = 4/3, (ii) we assume that the CDW state with
period A\ = 3 is formed by one Zhang-Rice singlet or rung state per rung (see
Fig. 2.12). Let us note, that this means that the corresponding CDW state has
less charge (oxygen holes) per every third rung. This stays in contrast with all
the previous calculations and with the experimental results [8, 9]. However, the
purpose here is to merely verify how the lower value of the bridge orbital energy
influences the stability of the Zhang-Rice state.

Qualitatively the results are as follows. For ¢ = 1 the hole and magnetiza-
tion distribution resembles the ones in classical Zhang-Rice state (see previous
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section): the doped hole is distributed rather isotropically among four oxygen
sites surrounding the central copper site occupied by roughly one hole. Also
the spin of the doped hole in the oxygen (2p) orbitals compensates roughly the
spin of the hole in the copper site. On the other hand, for £ = 0.8 the doped
hole enters mainly into the b orbital when the holes are transfered from the p
orbitals of the leg of the ladder, suggesting a rung character of the doped hole.
Let us also note that, in agreement with the assumption of charge order, we
find a CDW state with less charge per every third rung of the ladder for the
solution with Zhang-Rice or rung character.

In order to quantitatively investigate the role of the specific spin ladder
geometry on the stability of the Zhang-Rice and rung states we calculate the
densities and magnetization of holes involved in forming;:

() the (classical) Zhang-Rice state:

NZR = Niz + Ny, + Niys, (2.62)

for i belonging to the rung with enhanced hole density and y; as well as yo
orbitals defined as in the previous section and

Imzr| = |nzry — nzryl, (2.63)

where we exclude the b orbital from the sum to be able to distinguish between
the rung and the Zhang-Rice states;
(#4) the rung state:

NRung = Nib, (2.64)
for i belonging to the rung with enhanced hole density and

|mRung| = |nRungT - nRungll- (265)

The results are shown in Fig. 2.13(a) as a function of the on-site energy of
the bridge orbital e. We find that with the decreasing value of € doped holes
tend to occupy the b orbital, and the spins of the holes in the b orbital become
polarized. Besides, the spins of the holes involved in forming Zhang-Rice state
do not only compensate the spin of the central copper hole but for ¢ < 0.85 even
weakly align ferromagnetically with the copper spin. Hence, we suggest that for
€ < 0.85 the doped holes show a rung character while for £ > 0.9 they show
a distinctive Zhang-Rice-singlet character separated by a crossover regime. It
means that the Zhang-Rice state is stable for the value of ¢ = 0.92, calculated
in Ref. [52], though we are very close to the crossover regime.

Binding energies for the Zhang-Rice versus those for the rung states.— Let
us now pose the question to what extent our results are relevant for the stability
of the real quantum-mechanical Zhang-Rice singlets or rung states. Therefore,
using second order perturbation theory in U and U — A [26] (see also Sec. 2.3.3)
we calculate the binding energy of a single hole doped into Zhang-Rice and rung
states: in the classical case (Ezr and Erung, respectively), and in the quantum-
mechanical case (E|zry and E|rung), respectively). In the classical case, which
resembles the states obtained in the mean-field approximation (see above), one
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Figure 2.13: (a) Hole density (n) and absolute value of magnetization (|m]) for
holes involved in forming the Zhang-Rice state (nzg,|mzr|) and the rung states
(nRung; |MRung|) as a function of the ratio of the bridge orbital energy to the leg
orbital energy (¢). (b) Binding energies of a single hole in ZR and rung states in the
classical case (Ezr and Frung, respectively) and quantum-mechanical case (E‘ZR> and
E|Rung), respectively) as a function of the ratio of the bridge orbital energy to the leg
orbital energy (¢). The vertical line on both panels depicts the value of € = 0.92, cf.
Ref. [52].

finds:
EZR:1(3+5)A+J’< ) Si~So—l> , (2.66)
4 1€ZR 4/ zr
) 1
Erung = A+ J <i€§mng S, - So— Z>Rung’ (2.67)

where: the superexchange J' = 2t; + 2t5,% Sp is the spin of the doped oxygen
(2p) hole, S; is the spin of the copper (3d) hole, and the sum includes those cop-
per sites which are involved in forming a bound state with the oxygen (2p) hole
in rung or Zhang-Rice state. The expressions for the energies in the quantum-
mechanical case look similar except for the averages of the spin operators which,
unlike in the classical case, include also spin fluctuations. In addition, for the
real Zhang-Rice singlet we include the phase coherence of holes doped into the
oxygen (2p) orbitals [26] (i.e. we assume that the holes are distributed among
the oxygen orbitals in a symmetric way, see also Sec. 2.3.3). The results are
shown in Fig. 2.13(b) as a function of the energy of the bridge orbital e.

We find for the classical state that for € < 0.97 the energy difference (Ezg —
FERung) is larger than the effective hopping energy t of the oxygen (2p) hole
(=124/U or t2,/(U — A)). Hence for finite bandwidth the rung state could only
be stabilized up to the above value of the bridge orbital energy, qualitatively
in agreement with the previous mean-field results. However, in the quantum
mechanical case the rung state could never be stabilized, and due to the large
energy difference (Ejzr) — Ejrung)) the true Zhang-Rice singlet should not be
destabilized by finite bandwidth.

6Where the very small contribution due to finite Up, is neglected, see also Table 2.1. Besides,
t1 and t2 should be slightly modified for € # 1 but the change would be rather small.
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Conclusions.— In summary, this section shows again a profound stability
of the Zhang-Rice singlets in the hole doped spin ladders. First, using the
model charge transfer calculations in the mean-field approximation we obtain
that the isotropic distribution of doped holes among the oxygen (2p) orbitals
surrounding the central copper (3d) hole is stable. Second, quantum-mechanical
calculations of the binding energy of holes forming Zhang-Rice singlets and rung
states suggest the Zhang-Rice singlets to be even more stable.

2.6 Conclusions

Purpose of this chapter.— The purpose of this chapter was to explain theoret-
ically the onset of the CDW state in the telephone number compound for only
selected values of x while using a model which merely contains on-site Coulomb
interactions. In particular the questions to be answered in this chapter were: (i)
what the proper t—J model for the coupled CuzOj5 ladders, which would arise
due to the on-site Coulomb interactions, looked like, and (ii) whether this model
could explain the onset of the CDW order with particular periods for particular
values of x in Sri4_,Ca,;Cu4041. Let us now answer these questions.

Form of the proper model.— As discussed in Sec. 2.2 the standard t—J
model solved for the single ladder lead to the results which are incompatible
with the experimentally observed CDW state in the coupled CuzOj5 ladders in
Sr14—,Ca;Cuz40y1. In fact, the CuyO5 ladder is a charge transfer system and
the Zhang-Rice scheme [26], which enables the derivation of the t—J model from
the charge transfer system, has never been done (as far as we know) for a single
ladder with no Dy symmetry. In addition, the specific geometry of coupled
ladders could lead to new interactions due to the on-site repulsion between
holes on the different oxygen orbitals belonging to two different ladders (see
Fig. 2.4).

Thus, in Sec. 2.3 we derived the proper t—J model for coupled ladders,
starting from the appropriate charge transfer model (see Sec. 2.3.1) and us-
ing the Zhang-Rice scheme [26]. First, we showed that the kinetic ¢ part and
the superexchange J part of the new model were similar to the kinetic and su-
perexchange parts in the standard ¢—J model, see Sec. 2.3.3 and 2.3.2. This is
because: (i) the holes do not hop between the coupled ladders as the interoxygen
hopping can be neglected [39], (i) the superexchange processes along the 90°
bonds are rather weak (see Sec. 2.3.2).

Next, in Sec. 2.3.4 we discussed the repulsion between the Zhang-Rice sin-
glets (or effectively between the copper spins in the new ¢—J model) in the same
ladder. This term arises due to the finite on-site interaction U, between holes
on the same orbital in the oxygen sites but belonging to two nearest neighbour
Zhang-Rice singlets. Although, a similar term should also be present in the
proper t—J model for CuQO- planes, it is usually neglected as it is roughly twice
smaller then the superexchange term J. Actually, a very similar result is ob-
tained for the ladder geometry but this was not a priori so clear. Besides, this
served as a nice exercise before we we proceeded further to derive the crucial
interladder interactions (see below).

The last, but certainly not least, term which constitutes the new proper t—J
model for coupled ladders is the interladder repulsion between the Zhang-Rice
singlets (or again effectively between the copper spins in the new ¢—J model) in
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two different ladders, see Sec. 2.3.5. This term also originated from the on-site
interactions between holes situated on the same oxygen orbital sites but this
time belonging to two different orbitals in the two nearest neighbour Zhang-
Rice singlets on neighbouring ladders. Since, such Zhang-Rice singlets share
two oxygen sites such a term should be four times as big as the intraladder
interaction (as the Pauli principle does not prohibit holes with the same spin
on the same oxygen site but different orbital). In fact, a detailed check showed
that a realistic Hund’s exchange reduced this interaction and it turned out that
the interladder repulsion is twice stronger than the intraladder repulsion. This,
however, means that for realistic charge transfer parameters [39, 51] it is roughly
as strong as the superexchange J and cannot be neglected.

The stability of the CDW state.— Having derived the proper model, in order
to establish whether the CDW state could be stable in the coupled ladders, we
presented the solution of this model in Sec. 2.4. The model was solved using
the the slave-boson approach (see Sec. 2.4.1) and the mean-field decoupling
(see Sec. 2.4.2) and the ground state properties were discussed in Sec. 2.4.3).
We showed the the CDW state could be stable in the system entirely due to
the interladder interaction. In particular, rather realistic values (see detailed
discussion in Sec. 2.4.3) of this interaction led to the stability of the CDW
state: (i) with period A = 3 for the n;, = 4/3 holes (n = 2/3 filling), (ii)
with period A = 4 for the n, = 5/4 holes (n = 3/4 filling), (iii) with period
A =5 for the np, = 6/5 holes (n = 4/5 filling). Thus, the CDW phase with the
peculiar periods A = 3 or A = 5 could indeed be stable in the ladder system.
Furthermore, in the slave-boson and mean-field approach it occurred that the
CDW state with period A = 4 could not be stable in the system merely due to
the superexchange J and more sophisticated methods are needed, see Ref. [10].

Validity of the results.— In the end of the chapter, we also discussed the
validity of the results (Sec. 2.5.1) and of the model itself (Secs. 2.5.2-2.5.3).
It is interesting to note that neither (i) the on-site repulsion between holes on
different oxygen orbitals belonging to two neighbouring ladders (Sec. 2.5.2), nor
(ii) the lower on-site energy of the oxygen site in the middle of the ladder rung
(Secs. 2.5.3) lead to the destabilization of the Zhang-Rice singlets. Therefore,
the Zhang-Rice scheme indeed could have been used to derive the proper t—J
model for coupled CusO5 ladders.

Final remarks.— To conclude, let us stress that the ¢—J models for the
ladders are used frequently [10, 11, 45] as they are computationally simpler
than the 2D ¢—J models. Here we showed that for the t—J model on a ladder to
be indeed physically meaningful, and thus could well describe a realistic ladder
subsystem found in Sri4_,Ca,Cus4041, one should add the nearest neighbour
interladder repulsive term.

As a postscriptum, let us note that we have not resolved the problem of
the peculiar absence of the CDW state with even period in Sri4_,Ca,;CugsOy41.
However, in Sec. 2.7 we describe a toy-system consisting of two coupled chains
in which such a CDW could become unstable. Obviously, this does not answer
the question of the stability of the CDW state with even period and should be
rather treated as an interesting ‘side story’.
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2.7 Postscriptum: destabilizing even-period-CDW
state in a toy-model

Problem with CDW state with period A = 4.— The biggest drawback of the
results showed in this chapter is that they do not explain why the CDW order
with period A = 4 is not stable in the CuyOs5 coupled ladders in SroCasCug4 041
[8]. Indeed, as shown in Fig. 2.8 the CDW state with period A = 4 has similar
features as the CDW state with odd period A and there are no signatures that
this particular state can become unstable. In fact, we could have expected that
the CDW state with period A = 4 could have become unstable, since for the
even period it is impossible to make a CDW state in the neighbouring ladder
equally distant from the CDW state in the ladder under consideration. This is
visible in Eq. (2.54) where we have some freedom in choosing the CDW state in
the neighbouring ladder so that to satisfy the condition that it is as distant as
possible from the CDW state in the ladder under consideration. However, this
mechanism did not yield any instability, see Fig. 2.8.

On the other hand, it is visible that it is the ratio of the interladder in-
teraction Vo to the kinetic energy which plays a crucial role in the stability of
the CDW state, see discussion in Sec. 2.4.3. Since at the same time in the the
constraint of the double occupancies is treated at the mean-field level, it may be
that we overestimated the kinetic energy in our calculations. Thus, if we were
able to reduce it, then it may be that we would discover the different behaviour
of the even-period-CDW state (which is now ‘covered’ by the overestimated
kinetic energy).

Toy-model for two coupled chains.— In order to verify the above idea, we
introduce the model with merely two coupled chains. As here, we will have no
rungs, the mobility of the carriers will be reduced and perhaps we would be able
to observe a different behaviour of the CDW state with period A = 4.

The toy-model for two coupled chains is defined as follows,

Hip =—t Z (dzgdi+1,a + H-C-) + Vs Z (ﬁidﬁiJr%,d + ﬁidﬁz;%,d)a (2.68)

with all the symbols as in Sec. 2.3 and merely the leg-index « skipped (as we
have only two interacting legs). This model can be obtained from the t—J-V;-V5
model (2.2) by putting V3 =0 and J = 0 as well as by neglecting the existence
of one of the legs of the ladder. Note that taking V3 and J finite does not
introduce any new physics in our mean-field approach, see Sec. 2.4.3.

Results.— We solve the model (2.68) in a similar way as model (2.2): (i) we
introduce the slave bosons approach, (ii) assume condensation of bosons, (iii)
decouple the interaction between the new fermions f in a mean-field way, and
finally (iv) assume the existence of the CDW order parameter p (see Sec. 2.4
for more details). The result is shown in Fig. 2.14.

We see that the results resemble those found earlier for the ladder (see Fig.
2.8) with two exceptions: (i) the CDW with A = 3 is stable for much smaller
value of the ratio V5/¢, and (ii) the CDW with period A = 5 does not have a
‘cusp’. While the latter is due to a distinct (and simpler) band structure for the
chain (cf. discussion about the ’cusp’ in Sec. 2.4.3) and is not of big importance
here, the first difference is striking and needs some more studies. In particular,
this results in a very appealing interpretation of Fig. 2.8: since the CDW order
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Figure 2.14: The CDW order parameter p as a function of the interladder
interaction V4 in the two coupled chains: for filling n = 2/3 (n, = 4/3) with
period A = 3 (dashed line), for filling n = 3/4 (n), = 5/4) with period A = 4
(solid line), and for filling n = 4/5 (np = 6/5) with period A =5 (dotted line).

with period A = 3 is stable for relatively small values of V4 /t, it is possible to
choose a rather realistic value of V5 ~ 0.4t 7 that the odd-period-CDW state
are already stable while the even-period-CDW state is not yet stable (see Fig.
2.14).

The reason for this distinct behaviour of the CDW state with period A = 3
lies in the peculiar band structure for the chains for n = 2/3. In fact, this band
structure is nested, i.e. the Fermi momentum coincides with the edge of the
(folded) Brillouin zone (not shown). Therefore, the system is unstable toward
the order already for infinitely small interaction.

Conclusions.— Thus, for the toy-model for two coupled chains we indeed
obtain that there exists such a realistic value of the interladder interaction pa-
rameter V5 where the even-period-CDW state is not stable while the odd-period-
CDW states are stable. However, the mechanism for this behaviour lies entirely
in the peculiar features of this 1D system (nesting). Therefore, although the
phenomenon is interesting itself, it cannot explain the lack of the CDW state
with period A = 4 in the CuyOs5 coupled ladders in Sr1pCasCuz4041 [8].

“Which is only ca. 20% smaller than the 0.5t value calculated using Eq. (2.38) and
parameters from Ref. [39, 51].
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Chapter 3

Verifying the idea of orbitally
induced hole localization

This chapter is based on the following publications: (i) K. Wohlfeld, ‘Polaron in
the t-J models with three-site terms: the SU(2) and the Ising cases’, AIP Confer-
ence Proceedings 1014, 265-269 (2008); and (ii) K. Wohlfeld, M. Daghofer, A.
M. Oles, P. Horsch, ‘Spectral properties of orbital polarons in Mott insulators’,
Physical Review B 78, 214423/1-24 (2008).

3.1 Introduction

Doping Mott insulators with holes.— The Mott insulators, i.e. such insulators
in which electrons localize due to the strong on-site Coulomb repulsion U, are
best understood in the so-called ‘commensurate case’ [2, 54]. Then the average
number of electrons per site is an integer number and in the low-temperature
Mott insulating phase the hopping between the neighbouring sites in the lattice
is not allowed as it costs energy U > W (where, as in the previous Chapter,
W = 2zt with ¢ being the strength of the largest hopping element while z is
the coordination number in the hypercubic lattice). Actually the reason why
this state is well understood is the onset of the associated magnetic and/or
orbital ordering in such a case: the electrons in the ‘commensurate case’ can still
perform virtual hoppings which lower the total energy of the system and whose
magnitude strongly depends on the alignment of the spins of the electrons on
the neighbouring sites. Such virtual processes, called superexchange processes,
lead to some kind of magnetic ordering and/or orbital ordering.! Thus, more
precisely, it is the associated magnetic and/or orbital ordering which is well-
understood in the ‘commensurate case’ while the Mott insulating state itself is
still far from being understood (despite over 70 years of research [20, 66]).

A somewhat similar situation occurs in the ‘non-commensurate’ case, i.e.
when the number of electrons in the system is not an integer number (see Refs.
[20, 28] for a not-up-to-date but nevertheless a thorough review on this extremely
broad subject). Since always the limiting cases are the most interesting ones

IThe detailed form of the magnetic and possibly orbital ordering depends on the details of
the band structure.
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in physics (as being the easiest to study), one typically looks at the problem
when the number of electrons in the Mott insulating systems is very close to
the integer number. At this stage one should make a remark on the language:
actually when we just take out a fraction of electrons from such a ‘commensurate’
Mott insulator, then it is easier to talk about introducing holes into the Mott
system. Anyway, in these hole doped Mott insulators one again faces a similar
problem as the one described in the above paragraph. Again, it is difficult to
discuss the hole doped Mott insulating state itself. On the other hand, one can
relatively easily discuss what happens when the holes are introduced into the
associated magnetic and/or orbital ordering.

Motion of a single hole in Mott insulators.— The simplest problem which
arises when the holes are doped into Mott insulators could be stated as follows:
what happens when merely a single hole is introduced into the ‘commensurate
state’ [21, 67]. Would such a hole be confined (localized) or would it rather
move coherently through the lattice? As discussed above such a general question
would be rather difficult to answer. Instead it would be much easier to verify
what happens when a single hole is introduced into the magnetically /orbitally
ordered state which could be concomitant with the Mott insulating state itself.

Inter alia, one should mention here that there is a very attractive idea that
the mere presence of orbital degeneracy in the transition metal oxides leads to
the hole confinement in the strongly correlated electron system. As already
mentioned in the Preface to the thesis this is backed by the following facts: (i)
the manganites show a colossal magnetoresistive effect [12, 13, 14, 15] which can
be attributed to the orbital degeneracy [16, 17, 18], and (ii) the transition metal
oxides with orbital degeneracy (e.g. manganites or vanadates) have much more
stable insulating phases with hole doping [15, 19] than the cuprates without
orbital degeneracy [20].

Actually, in two simple magnetically /orbitally ordered states such a problem
was already investigated (see below) and (out of the simplest possible orderings)
it is only in a peculiar Mott insulator with t5, orbital degrees of freedom that
the answer to the problem is not yet settled — it is the purpose of this chapter
to investigate this problem. Let us first, however, give a brief overview of these
two already investigated cases of the single hole in the magnetically/orbitally
ordered states.

Absence of hole confinement in the AF phase.— If, in the Mott insulator, the
highest, occupied orbital in the ions with unfilled electronic shells is not degener-
ate with any other orbital (which could in principle happen in some particular
crystal field, see below) and if the ions themselves form a cubic lattice, then
such a Mott insulating state develops an AF order below a critical temperature
Tx in the ‘commensurate phase’ [54]. A typical example is the 2D AF plane
formed by CuOs sheets of atoms in, for example, LagCuQO, (the parent com-
pound for high-T, supereconductors) or SroCuO2Cly [68, 69]. When a single
hole is inserted into such a state then it forms a defect in the AF background
[21]. Naively, i.e., considering the fact that the AF state at temperature 7' =0
and in 2D has a classical Néel order, one expects that a propagating hole would
disturb the AF background and generate a string of broken bonds, with ever
increasing energy cost when the hole creates defects moving away from its initial
position. This suggests hole confinement as realized already four decades ago
[21]. Nevertheless, the quantum nature of this problem leads to a new quality:
a hole in the AF Mott insulator can propagate coherently on the superexchange
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Figure 3.1: The energy splitting of the 3d states of the ion placed in the cubic
crystal field into: (i) the to4 levels (3 degenerate states: dgy, d., and dy.) and (ii)
the e, levels (2 degenerate states: d,2_,2 and ds,2_,2). The figure is reproduced
after Ref. [71].

scale J which controls AF quantum fluctuations [22, 23, 70], because they heal
the defects arising on the hole path. Crucial for this observation is the presence
of transverse spin components (S;LSJT + 57 SjJr) in the effective low-energy
Heisenberg model derived from the appropriate superexchange interactions.

Orbital degeneracy.— Quite often the highest occupied orbital on the ions
with unfilled shells in the Mott insulators is energetically degenerate with one
or more other orbitals. This gives rise to a rich variety of phenomena [72, 73, 74|
which could jointly be termed as ‘orbital physics’. For example, if the ions are
placed in the cubic crystal field, then for instance the 3d levels are split into
two distinct degenerate levels: (i) the lower lying to4 levels (3 degenerate states:
dgy, de and dy.) and (ii) the e, levels with higher energy (2 degenerate states:
dy2_y2 and dg,2_,2); cf. Fig. 3.1. This is due to the high symmetry of the
crystal field: obviously in the spherically symmetric field of the nucleus (as is
the case of the single hydrogen atom) all 3d orbitals are degenerate whereas
the less symmetric crystal field could in principle remove the degeneracy of the
tag or e4 levels. In the ‘textbook’ example of the orbitally degenerate system
LaMnO3 the manganese ions have 3d* configuration and, in the ionic picture,
the highest occupied level is the degenerate e4 level: in the absence of any other
processes (see below) there would be 50% probability to find the electron in the
state d,2_,2 and 50% probability to find the electron in the state dz,2_,2.

Furthermore, in the orbitally degenerate Mott insulators the superexchange
processes are more complicated as they have to involve the orbital and spin
degrees of freedom on equal footing [72, 73]. This could lead to the onset of both
the magnetic and orbital order in the system. The particular kind of this order
depends on the symmetries of the orbitally degenerate orbitals. This in turns
means that the behaviour of the single hole doped into the Mott insulator with
orbital degrees of freedom would depend on the kind of the orbital degeneracy
present in the system [75].

Absence of hole confinement in systems with e, AO order.— As already
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mentioned above one of the most prominent examples of the orbitally degenerate
systems is LaMnQs. There, in this ‘commensurate case’, the superexchange
processes lead to the development of the AO order concomitant with the FM
spin alignment in the ab plane and the FO order with spin AF order along the
c direction [76].? Similarly as in the purely spin case (hole in the AF state, see
above), one could think that the doped hole would be confined in the plane of
such an ordered state. This time the reason is that the superexchange processes
which lead to the AO order are much more classical and the AO order is much
more robust than in the spin AF case [29]. However, also here the hole finds a
way to propagate: the coherent propagation arises not only due to the very small
but still finite quantum fluctuations present in the system but predominantly
due to the possibility of the e, interorbital hopping which allows for the hole
motion without disturbing the AO background (which in the spin language
would correspond to the spin-flip hopping) [77].

Main goals of the chapter.— As the to4 orbitals have naturally distinct sym-
metries than the e, orbitals one expects a different behaviour when the hole is
doped to the system with to, orbital degrees of freedom. A natural question
arises then: would the hole be confined in such a Mott insulator? This question
is of high theoretical importance since the hole confinement in such a system
would mean that it is possible to have orbitally induced hole localization in
Mott insulators. Of course the reverse is not true: negative answer to the above
question would not mean that the hole confinement in the orbital systems were
impossible. One could imagine that there exist other mechanisms which localize
the hole in the orbital systems — for example due to the interactions induced by
the lattice. However, the simplest possible mechanism, as the one discussed in
this chapter, would be outruled.

Therefore, the main goals of the chapter are: (i) to establish what the min-
imal ¢t—J model, which contains the ¢y, orbital degrees of freedom and bears its
truly distinctive features, looks like, (i) what is the undoped ground state of this
model (e.g. whether the quantum fluctuations exist in the ground state), and
(iii) whether the doped hole can move coherently in such an undoped ground
state.

Structure of the chapter.— The chapter is organized as follows. In Sec. 3.2
we start the analysis by looking at the anticipated features of the new ¢-J model
which is derived in Sec. 3.3. Next, the model in the case of the one hole added to
the undoped ground state is solved: (i) we reduce the model to the polaron-type
Hamiltonian using the slave fermion approach in Sec. 3.4.1, (ii) we derive the
equations for the Green’s functions using the SCBA method in Sec. 3.4.2, (iii)
we solve the equations obtained in point (ii) numerically on a finite mesh of the
momentum k points (Sec. 3.4.3). Then, in Sec. 3.5 the results are discussed:
(i) its validity, see Sec. 3.5.1, (ii) the explanation why the dispersion relation
of the doped holes is strictly 1D, see Sec. 3.5.2 (see also Appendix A), and (iii)
we analyse how the three-site terms lead to the renormalized dispersion of the
dressed hole in Sec. 3.5.3. Finally, the conclusions are written in Sec. 3.6 while
in the Postscriptum in Sec. 3.7 the experimental consequences of the obtained
results are studied (see also Appendix B).

2While the Jahn-Teller effect only further stabilizes such an order.
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Figure 3.2: The possible hopping elements between the ¢y, orbitals when the
oxygen p orbitals are placed between them: (a) the hopping between different
to4 orbitals is zero, (b) the hopping between the same ¢o, orbital is possible only
in the particular plane (the choice of the plane depends on the orbital under
considerations: e.g. for the dg, orbital is is the ab plane). Both panels are
reproduced after Ref. [71].

3.2 The ty, orbital t—J model with three-site terms

‘Rough’ predictions of the new t—J model.— Let us look at the anticipated
features of the new ¢—J model. Actually, the choice of the new t—J model was
somewhat left arbitrary: we have merely noted in the introduction that we
intend to study the features of such an orbital t—~J model that the symmetries
of the to, orbitals would be demonstrated ‘at most’. Actually, this not a very
transparent condition and thus let us firstly describe what we mean by these
distinctive features. In Fig. 3.2 we show the possible hopping elements between
various to, orbitals. Whereas Fig. 3.2(a) merely shows that the interorbital
hopping is prohibited the most striking feature is shown in Fig. 3.2(b): the
electrons in d;, = c orbital can hop in the ab plane whereas they cannot hop
along the ¢ direction. A similar phenomenon occurs for d., = b (hopping only
in the ac plane) and d,. = a (hopping only in the bc plane) orbitals. This
means that choosing that the ¢ orbital has higher energy (which could happen
in realistic systems, cf. SroVO,) and looking at the plane with electrons only
in the a and b orbitals one can get rid of all the quantum fluctuations in the
superexchange processes: this is because then the exchange process is impossible
as the same electron which performs a virtual hop to the neighbouring site has
then to return to the original site. Thus, without any calculations, one can
immediately see that the ground state at half-filling of the appropriate t—J
model for spinless electrons would be the Néel AO state (i.e. an ordered state
with two sublattices: one with electrons localized in a orbitals and the other
one with electrons in b orbitals) and is an exact ground state, i.e. it does not
contain any quantum fluctuations.

What happens when one adds a single hole to such a state? This has already
been partially discussed in the Introduction but is also shown schematically in
Fig. 3.3. It presents in a schematic way a few first steps in the motion of a
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Figure 3.3: Schematic view of the anticipated hole motion in the ¢y, orbital
t—J model with AO order formed by a and b orbitals. Circles depict holes while
horizontal (vertical) rectangles depict occupied b (a) orbitals with electrons that
can move only horizontally (vertically), respectively. The hole inserted in the
AO state (a) can move via nearest neighbour hopping ¢, and interchanges its
position with an electron, so that it has to turn by 90° in each step along its
path and leaves behind broken bonds leading to string excitations with ever
increasing energy (b) and (c). After moving by 270° around a plaquette (d),
the hole cannot return to its initial position as would be necessary to complete
the Trugman path [78].

hole inserted at a selected site into such a Néel ordered ground state with no
quantum fluctuations. When the hole moves via the nearest neighbour hopping
t, it creates string excitations in each step that cannot be healed by orbital
flips because the orbital superexchange is purely Ising-like. Moreover, it can
even not heal the defects by itself because it cannot complete a Trugman loop
[78] when the orbital defects are created and three occupied orbitals are moved
anticlockwise on a plaquette after the hole moved clockwise by three steps, see
Fig. 3.3(d). Thus, the hole is confined in the ¢, orbital t—J model.

Reasons for wrong predictions.— A priori there should be no reason why not
to believe in the conjecture written above: provided, the detailed mathematical
calculations confirm the above analysis one could indeed make a claim that ‘the
hole is confined in the t; AO ordered state’. However, in the last section we
discussed in detail how a hole could move in the spin AF state or in the e, AO
state. In both cases the hole at first could be thought to be immobile and only
the detailed study and inclusion of some neglected processes (such as quantum
fluctuations or interorbital hopping) leads to the conclusion that the coherent
hole motion is possible. This ‘historical perspective’ suggests that also this time
one has to be very careful while neglecting any processes which could be essential
in the Hamiltonian to faithfully describe the properties of the system.

There is yet, another, more physical, reason. In Ref. [23] it is shown that
when one studies the motion of a hole in the model without quantum spin fluctu-
ations, then some approximations which are valid in the SU(2) symmetric case
no longer apply. More precisely, in the Ising case the violation of the so-called
C1 constraint (see Ref. [23]), stating that no hole and magnon can be present
at the same site in the effective polaron-model, leads to serious underestimation
of the incoherent bandwidth while the same violation of this constraint in the
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SU(2) symmetric case does not cause any problem. Thus in the case when the
SU(2) symmetry is absent in the model one has to be more careful with all the
approximations made.

More careful approach meeded.— There exists one serious approximation
which is already a generic feature of the standard ¢—J model: the so-called
three-site terms are neglected there, see Chapter 1. These terms are present
in any meaningfull canonical perturbation theory derivation of the t—J from
the Hubbard model [1, 2]. Actually, ‘why the full strong-coupling model [i.e.
t—J model with three-site terms — note added by K. W.] has received far less
attention than the ¢—J model is unclear’ as Eskes and Eder write in Ref. [79].
Most probably the reason can be that the three-site terms give a much smaller
contribution to the total energy than the superexchange term or the constrained
hopping term: the latter two scale as oc J(1 — §)? or o t§ (where § < 1 is the
number of doped holes) while the three-site terms are < J¢. Indeed, including
the three-site terms in the standard ¢—J model does not yield any new quali-
tative results concerning the hole motion in the AF state [80]. Here, however,
in what follows it will be shown that these terms are indeed needed to give a
physically relevant answer to the problem of orbitally induced hole confinement.
Thus, let us now present the derivation of the physically relevant to, orbital ¢t—J
model with three-site terms.

3.3 The model

3.3.1 The ¢y, orbital t—J Hamiltonian

Hubbard-like model.— As the starting point we consider the Hubbard-like model
describing electrons in transition metal oxides with active 5, orbitals when the
crystal field splits them into e, and a; states, and the doublet e, is filled by
one electron per site. This occurs for the d' configuration (e.g. in the titanates)
when the e, doublet has lower energy than the a; state, or for d? configuration
when the e, states have higher energy and are considered here, while the a;
state is occupied by one electron at each site and thus inactive (as in the high-
spin ground state of the RVOg3 perovskites [81] where R stands for a rare earth
element). More precisely, we consider electrons with two ¢z, orbital flavours, a
and b, moving within the ab plane. The electrons in such orbitals can propagate
conserving the orbital flavour by the nearest neighbour hopping ¢, but only along
one direction in the ab plane, see also Fig. 3.2. Furthermore, we assume that
the system has an FM order which means that all the spins are the same and for
the purpose of the studies presented below one can safely skip the spin index,
see also [82]. This results in the following orbital Hubbard model

H = —tz (b;rbiJré + a;raiJrf) + H.C.) + UZ NiaMib, (3.1)

where aI (b:‘) creates a spinless electron with orbital flavour a(b) at site i, {niq, nip }
are electron density operators, and ¢ is the hopping element along b or a axis.
Similarly as in the Introduction U stands for the on-site interaction energy for
a doubly occupied configuration. At the filling of one electron in {a, b} orbitals
per site this interaction corresponds to the high-spin d? (or d*) state (i.e. it cor-
responds to U — 3Jy in terms of element of the Coulomb interaction between 3d
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electrons, where U is the intraorbital on-site interaction between two electrons
and Jy is the on-site exchange element which causes the Hund’s rule energy
gain due to the FM alignment of two spins on the same site). As discussed in
detail in Sec. 3.2 such a choice of active ¢y, orbitals guarantees that the t—J
model would bear all of the desired and distinctive features of the t—J model
for correlated electrons in to4 orbitals.

Canonical perturbation expansion.— The task is now to apply to Eq. (3.1)
the canonical perturbation expansion similarly as the one introduced in Chapter
1 for the spin Hubbard model. Actually these calculations are done in the same
way as in that chapter and the only difference now is that the parts of the
Hamiltonian which describe processes within/between the Hubbard subbands
are defined differently. Namely

H = Ho + Hi, (3.2)
where Hg describes the physics within the Hubbard subband:

Ho =V + 1,
vV :Uznianiba
To=—1t) {(1 — nia)bbisa(l — miyae) + (1 —nmiw)afag, o (1 —nyyp )

+ niab;fbHénHé,a + nibaIaHBnHB,b + H.c.}, (3.3)

while H; is responsible for hopping processes between different Hubbard sub-
bands:

Hl :T++T,,

T, =—t Z {niabgbi+é(1 — ’I’Li+éﬁa) + nibagaiﬂg(l — ni+f),b) + H.C.} ,

T_=—t Z {(1 — nia)b;fbi+éni+é,a + (1 - nib)aIai—i-Bni-i-B,b + H.C.} . (34)

Central Hamiltonian of the chapter.— Then following the same steps as in
Chapter 1 we obtain the appropriate to, orbital —J model:®

H=H;+ H;+ Hs;, (35)

where the H; is the kinetic energy in the constrained Hilbert space with no
double occupancies (see Sec. 3.3.2), H; describes the superexchange terms (see
Sec. 3.3.3), and finally Hss are the three-site terms which were neglected in the
final ¢—J Hamiltonian in Chapter 1 (see Sec. 3.3.4).

3.3.2 The kinetic energy term

Ezplicit form.— Using Eq. (3.3) and the canonical perturbation expansion of

3In the literature the t—J model with three-site terms is also called the strong-coupling
model [80]. However, to avoid confusion we will not use this name since throughout this thesis
we deal with several different extensions of the standard ¢t—J model and the strong-coupling
model is just another variation of such extended version of the ¢t—J model.
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Chapter 1 one obtains the kinetic energy term,

Hy ==t (bbiva + afag, g+ He.), (3.6)
where the use of the operators
Bj = b;r(l - nia); (37)
and
af = a(1 - nw), (3.8)

mean that the hopping is allowed only in the constrained Hilbert space with no
doubly occupied sites.

3.3.3 The Ising superexchange term

Ezplicit form.— Following the same steps as in Chapter 1 and using Eq. (3.4)
we obtain that the superexchange processes for the Hubbard model under con-
sideration take the form

1 1
H; = §J; <TiTj - me) : (3.9)
ij

where the summation goes over the pairs formed by the nearest neighbour sites
i and j. The parameter J is defined as

42
J=— 3.10
g (3.10)
while the pseudospin operators 17 is
1 ~
17 = 5(7’Lia — nib). (3.11)

Here n; = nj, + nip and the superexchange vanishes when two electrons with
the same orbital flavour occupy sites i and j.

The Ising character.— Note the total absence of the pseudospin-flip terms
x (Ti+TJ7 +TfTJ.+) in the superexchange interactions which are now purely Ising
type. This is because along each particular direction only one orbital flavour can
hop: the virtual exchange process oc 7_7 in which an electron with for example
a orbital flavour makes a virtual excursion to the neighbouring site (which costs
energy U) and then an electron with b orbital flavour returns is impossible
[see the form of Eq. (3.4)]. Since only such virtual processes contribute to
the pseudospin-flip terms, the latter terms are absent. The same phenomenon
explains also the prefactor 3 in Eq. (3.9). Nevertheless, the strictly 1D kinetic
energy of the electrons in the two orbitals leads to the 2D superexchange.

Let us also note, that the pseudospin-flip processes o (Ti+TJ._ + Ti_TjJr)
would be present in the (not considered here) model for strongly correlated a
and b electrons along the ¢ axis. In fact, this is the case in a somewhat more
complicated spin-orbital model for cubic vanadates [83] where such pseudospin
fluctuations are responsible for the onset of the AF order in the ab plane and
the FM order along the ¢ axis in LaVO3 (see Ref. [83] and discussion in Chapter
4).
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3.3.4 The three-site terms

Origin of the three-site terms.— As discussed in Chapter 1 when one derives
the t—J model from the Hubbard model one obtains also the so-called three-site
terms which also originate from the o« 7_7, virtual processes. These terms are
often neglected [e.g. in the standard ¢—J model, see Eq. (1.22)] but here they
will turn out to be important and lead to qualitative changes, see discussion in
Sec. 3.2.

Explicit form.— We cast the three-site terms into two different classes:

Hss = H3g) + Has(ay (3.12)

where Hsy(py are the three-site terms along the line and Hsyy) are along the
diagonal. It is relatively straightforward [using Eq. (3.4) and Eq. (1.18) from
Chapter 1] to obtain their explicit form:

Hyoy=—7 > (0] afsbiia +He) = 7> (@l iigd, o +He),  (3.13)

Hyyay=—7»_(al, ;a:blba +He) — 7 Z(aiT:FBaiz}iTz}iié +He), (3.14)

T=—. (3.15)

Note that in principle we could have used J as the energy scale of the three-
site terms but for didactic reasons we define a different constant which will be
connected solely with the three-site terms. In what follows this will enable us
to distinguish between the processes related to the superexchange terms and to
the three-site terms.

3.4 Method and results

3.4.1 The slave-fermion approach

Slave-fermion approach.— It is widely recognized that the central difficulty in
solving any t—J model is the problem of fulfilling the constraint of no double
occupancies at each site. There are several methods suggested to overcome
this difficulty in an approximate way. One of them is called the slave-boson
method and is typically used for systems which are relatively highly doped
[20], cf. Chapter 2. On the other hand, for the very lightly doped system the
method of choice is the slave-fermion approach as it is quite good in describing
the half-filled ground state and its excitations (where it merely amounts to the
introduction of Schwinger bosons for spins and/or pseudospins [20]). As in the
present chapter we are interested in the properties of the system in the extremely
low doped regime we introduce the latter method in what follows and transform
the Hamiltonian H into the effective Hamiltonian H¢//.

Undoped case: low energy excitations.— It is easy to verify that the classical
undoped ground state of the Hamiltonian Eq. (3.5) is the Néel ordered AO

state:
®o) = [ af [] ¥} 10), (3.16)

icA jeB
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with a orbitals occupied on the sublattice A and b orbitals occupied on the
sublattice B is an exact ground state. Here |0) is the true vacuum state with no
electrons, while |®() is the physical vacuum at half filling. Next, let us consider
the low energy states. Below, we will calculate the orbital excitations (orbitons —
see Ref. [84]) at half filling by transforming the pseudospins into the Schwinger
bosons and then using the linear orbital wave (LOW) approximation.

First, in the classical state we introduce two sublattices A and B such that
all a (b) orbitals are occupied in the perfect AO state in sublattice A (B). Next
we rotate pseudospins on sublattice A so that the symmetry of the lattice is
recovered, all the pseudospins in the whole lattice take positive values now,
(T¥) = 1/2, and the Hamiltonian changes appropriately.

Second, we introduce Schwinger bosons ¢ such that:

1

Iy = §(nitb — Ntita) (3.17)

with the local constraint at each site i
Sty =1 (3.18)
y=a,b

Third, we transform the Schwinger boson operators into the Holstein-Primakoff
bosons G:*

tirb = \/1 - tg‘atia = \/1 - Bi'rﬁia (319)
4 — g, (3.20)

where the above constraint is now no longer needed.

Next, we substitute the above transformations into the Hamiltonian H;
and skip higher order terms (LOW approximation). The latter approximation
physically means that the number of bosons § is small (which is naturally the
case for low energy states). This results in the effective substitution

Iy = % — Bf B (3.21)

Finally, we introduce Fourier transformation separately for each sublattice
(N is the total number of sites on both sublattices while N/2 is the number of
sites in each sublattice):

Bia = \/% > Mg, (3.22)

jeA
2 -
Bz =1\~ > "5 (3.23)
JjeB

Then, after neglecting constant terms which merely give the classical energy
of the undoped ground state, the LOW Hamiltonian for orbitons reads:

ijf = JZ(ﬂlAﬂkA + ﬁlgﬂkB), (3.24)
K

4We denote the orbital excitations with 3 since it is very common in the literature [23] to
use « for spin excitations.
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where the orbiton energy does not depend on momentum k. The fact that
the excited states have higher energy than the ground state proves the stabil-
ity ground state. In fact, the dispersionless excitations do not generate any
quantum corrections and the classical ground state is exact.

Doped hole: coupling with orbitons.— We expect that a doped hole does not
modify significantly the classical ground state stable for the half-filled case (see
above). The situation could be different in the lightly doped regime but in the
case of one hole in the whole plane such a modification is negligible and will be
neglected below. Instead, the doped hole may modify its neighbourhood by its
coupling to the excitations of the classical ground state — orbitons — which
renormalize the hole motion. In order to describe it mathematically, we rewrite
H, (see next paragraph) and Hss (see below) using similar transformations as
performed for the half-filled case.

First, we rotate spins and pseudospins on sublattice A. Next, using the slave-
fermion approach we express the electron operators in terms of the Schwinger
bosons introduced above and in terms of the (constrained) fermionic operators
representing holes:
al =t hi, (3.25)

1

b} = th, hi. (3.26)

Here the constraint on the bosonic operators is as in Eq. (3.18) while hI h;
denotes the number of holes at site i.

Next, similarly as above, we transform the Schwinger bosons into the Holstein-
Primakoff bosons, skip all terms containing more than two bosons, and perform
Fourier transformation for bosons and (additionally) for holons to arrive at the
Hamiltonian:

eff Z{ k ql)hkAhk qi, B6q1A+M (k ql)thhk ai, AﬂqlB‘i’H C}
kq1
(3.27)

where z = 4 is the coordination number for the 2D square lattice and

1
—cos(k, — qip) (3.28)

M#(ka ql) = 9

is the vertex function with u = z,y. Thus, the hopping term H;, Eq. (3.6),
transforms into a scattering of holons on orbitons (orbital excitations), with the
momentum conserved in each scattering process.

Doped hole: free dispersion.— After performing similar transformations as
the ones introduced for the ¢ part of the Hamiltonian one obtains that the linear
three-site terms, Eq. (4.13), lead to the following Hamiltonian for the holes

H3l! = TZ {EB )l phis + EA(k)hLAhkA} ; (3.29)

where the free dispersion relations are

ea(k) = 2cos(2ky), (3.30)
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and
ep(k) = 2cos(2k,). (3.31)

Note that we entirely neglect the diagonal three-site terms which lead to the
coupling between holes and orbitons. This approximation will be discussed
further in the next sections.

Thus, in the lightly doped case, when the classical orbital ordered ground
state present in the half-filled case survives, the t—J model (3.5) can be reduced
to an effective model:

qell = gt 1S+ mg (3.32)

see Eqgs. (3.24), and (3.27)-(3.29). Actually, this is a polaron-type model with
the coupling between fermions (holes) and bosonic excitations (orbitons) which
is rather straightforward to solve, cf. next Section. Besides, the validity of the
mapping between the two models will be discussed in Sec. 3.5.1.

3.4.2 The self-consistent Born approximation

Green’s functions.— The spectral properties of the hole doped into the AO
ground state |®o) with energy Ey [see Eq. (3.16)] of the t—J model Eq. (3.5) at
half-filling, treated here as a physical vacuum, follow from the Green’s functions:

1
Gullew) = (@o]al g 20) (3.33)
1
k = d Dy ) . .34
Gb( ,w) < 0 bk JerEObk 0> (33 )

However, due to the mapping of the ¢—J model onto polaron model (3.32) per-
formed in the last section, it is now convenient to express the above Green’s
functions in terms of the polaron Hamiltonian H//. This requires that one
first writes down the electron operators in terms of the operators used in Eq.
(3.32):

1 . .
ae = = | 2 MR+ > Mg ) (3.35)
jeA jeB
1 . .
b = Vi > Ml + " einl | (3.36)
jEA jeB

Second, the ground state |®o) is now a physical vacuum |0) with respect to
the orbiton operators (B with energy E calculated in the LOW approximation.
Then, one arrives at the following relations:

1 1 1
_1 i =2
Ga(k,w) = ) <0 hkAw+ oFf —EhkA 0> = ) GAA(k,w), (3.37)
Gy (k )—10h ! Wolo)=1ta (k,w) (3.38)
A AN By ol AR T ‘
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Figure 3.4: Diagrammatic representation of the perturbative procedure used
within the SCBA: top — the Dyson’s equation for the Gpp(k,w) and G4 (k,w)
Green’s functions; bottom — the summation of diagrams for the self-energy
Ypp(k,w). Dashed (dashed-dotted) lines stand for Green’s functions for or-
bitons on sublattice B (A). Equation for ¥4 (k,w) is similar (not shown).

where the above set of equations follows from the fact that Ox|0) = 0 and the
factor 1/2 is due to the operators hixa (hxg) being defined separately for each
sublattice. Note that here the ground state energy F is taken as a reference in
order to be able to compare results of the present approach with those obtained
using the variational cluster approach (VCA) for the Hubbard model, see Sec.
3.5.1.

Equations for the self-energy.— We calculate the above Green’s functions by
summing over all possible non-crossing diagrams (i.e. neglecting closed loops),
cf. lower part of Fig. 3.4. However, the crossing diagrams do not contribute
here since the closed loops (Trugman processes) do not occur, see Fig. 3.3.
Since the structure of the present problem makes it necessary that two Green’s
functions and two self-energies are considered, we obtain the following SCBA
equations for the self-energies (see also Fig. 3.4):

22t?
Laalk,w) = T;Mj(k,q)GBB(k—q,w+J), (3.39)
22t?
Sppkw) = = ) Mk @)Gaa(k —a,w+ ). (3.40)
a
The above equations should always be supplemented by the Dyson’s equations:
1
G k = 3.41
aalk W) = e Ty W) (3.41)
1
Gpr(k,w) (3.42)

T o+ J+71epk) — Xpplk,w)’

They, together with Eqgs (3.39-3.40), form a self-consistent set, of equations which
has to be solved numerically.

68



(10) (10)
(@ K (b)
om om
3 3
< (0,0 < (00
< <
(em) (rem)
(0’")-4 -3 -2 -1 0 1 2 (0’”)—4 -3 -2 -1 0 1 i 2
w/t w/t

Figure 3.5: The spectral functions as obtained in the SCBA for the ¢o, orbital t—
J model (8.5) for a hole doped into: (a) a orbital, and (b) b orbital. Parameters:
J = 0.4t and 7 = 0.1¢. Broadening § = 0.01¢ and cluster size 20 x 20.

Finally, once the Green’s functions are known, one can calculate the spectral
functions for a hole created in a and b orbital:

2 . 1. .
Aqk,w) = — ;(%12(1) ImG,(k,w+id) = *;éli% ImGaalk,w+1id), (3.43)

Apk,w) = — 2 lim Im Gy (k,w +40) = 2L lim ImGpp(k,w+1id), (3.44)
T 6—0 T 6—0

where we introduce a factor of 2 in front of the definition of the spectral function
A, (k,w) for convenience.

Note that the intersublattice Green’s function Gap(k,w) vanishes since it
would imply that at least one defect was left in the sublattice B after the hole
was annihilated in the sublattice A, resulting in orthogonal states as there are
no processes in the Hamiltonian which cure such defects [cf. the form of the
Hamiltonian Eq. (3.32) and Fig. 3.4].

3.4.3 The spectral functions and quasiparticle properties

Spectral functions.— The system of SCBA equations (3.39)-(3.42) was solved
self-consistently on a mesh of 20 x 20 k-points (besides, the convergence was
checked by comparing the results with those obtained for the cluster with 32 x 32
k-points). The spectral functions are displayed in Fig. 3.5. Surprisingly, the
spectral density consists of dispersive ladder-like spectrum suggesting that the
hole doped into any of the two orbitals is mobile. The dispersion is particularly
pronounced for the first (low-energy) excitation which can be identified as a
quasiparticle state. One finds that the dispersion is strictly 1D and is dictated
by the orbital flavour at the site where the hole is originally added, i.e. no
dispersion occurs in the complementary direction. For example, a hole added
to the a orbital moves only along the b direction.

Hole propagation due to three-site terms.— Since removing the three-site
terms from the Hamiltonian (3.5) leads to the disappearance of the dispersion
(not shown) one can immediately ascribe the onset of this small dispersion o 7
to the hole motion via the three-site terms. Furthermore, then the spectral
functions (which consist of dispersionless ladder-type peaks) are qualitatively
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Figure 3.6: Quasiparticle properties obtained for the 2D t5, model within the
SCBA for increasing superexchange J (with 7 = J/4): (a) the bandwidth of the
quasiparticle W1 (solid line) and the second dispersive feature Wy (dotted line),
(b) the spectral weight aqp, and (c) the distance between the first two peaks
in the spectra (pseudogap) A. The solid (dashed) lines in (b) and (c) give the
results for k = (0,0) [k = (7/2,7/2)], respectively. The light solid line in (c)
indicates A = t(J/t)?/3 law (see text).

similar to the results obtained for a hole doped into the spin t—J model with
Ising only interaction, see e.g. Fig. 3 of Ref. [23], where the hole is trapped in a
string-like potential [22]. This confirms the ideas presented in Sec. 3.2 — indeed
in case the three-site terms were not included in the ¢t—J model the hole would
be immobile, as shown in Fig. 3.3. Furthemore, as predicted in Sec. 3.2, the
inclusion of the three-site terms changes this picture qualitatively as the hole
can then become mobile and the spectral functions acquire a small dispersion.

Quasiparticle properties.— Let us analyse now the characteristic features of
the quasiparticle state such as: the bandwidth W and the quasiparticle spectral
weight aqp. The energy of incoherent excitations (string states) is to some
extent characterized by the separation between the quasiparticle state and the
next (second) spectral feature at higher energy — it is called here a pseudogap
A. All these quantities increase with increasing superexchange energy J (here
T = J/4), see Fig. 3.6. One finds that: (i) the bandwidth W; of the first
quasiparticle peak, see Fig. 3.6(a), is proportional to J? for small J (J < 0.7)
and to J in the regime of large J (J > 0.7) — the bandwidth renormalization
is here distinct from the one found either in the spin SU(2) (see Ref. [23]) or in
the orbital e, models [77], (ii) the bandwidth W5 of the second largest dispersive
peak [Fig. 3.6(a)] is smaller than that for the first peak and tends to saturate
at a value Wy ~ 0.25¢ obtained for larger J > ¢ (not shown), (iii) the spectral
weight aqp of the quasiparticle peak, shown in Fig. 3.6(b), grows with J, and
(iv) the pseudogap A shown in Fig. 3.6(c) grows generally like #(.J/t)%/3, while
for higher J values some deviation from this law is observed for the k = (0,0)
point.

Two problems left, to be studied in next sections.— Firstly, the lack of the
quasiparticle dispersion in one direction, e.g. along the a direction for a hole
doped into the a orbital (see Fig. 3.5), is at first instance counterintuitive: One
could imagine that it should be allowed that the hole doped into the a orbital
switches to a neighbouring site of the B sublattice by the ¢ process, and then
propagates freely along the a axis by the three-site effective hopping 7 without
generating any further defects. This might in principle lead to some dispersion
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in the spectra along the k, direction. In Sec. 3.5.2 we study this problem in
detail.

Secondly, one finds that the bandwidth of the quasiparticle is strongly renor-
malized as it is much smaller than its free value (calculated from the free three-
site term dispersion) W = 2z7 = 2J. Furthermore, the totally different mech-
anism of hole motion in the considered here ¢», orbital model and in the spin
model [23, 85, 86] suggest that one cannot explain the renormalization of the
quasiparticle bandwidth using any of the ideas proposed previously. In fact, the
mere dependence of the bandwidth on the superexchange energy scale J is a
convex function of J (see Fig. 3.6) whereas in the spin t—J model the band-
width is a concave function of J [23, 85, 86]. Thus, one needs to understand
microscopically how the three-site terms, which lead to the dispersion here, are
renormalized — we investigate this issue in Sec. 3.5.3.

3.5 Discussion

3.5.1 Validity of the results

General remarks.— As there are a number of approximations employed while
reducing the to4 orbital —J model (3.5) to the polaron Hamiltonian (3.32) and
then a slightly new approach was used to solve the latter model using the SCBA
method (see below), in what follows: (i) we look at three particular problems
connected with the approximations and methods employed in the previous sec-
tions, and (ii) we compare the results obtained using the SCBA method for the
tog orbital t—J model (3.5) with those obtained in the numerical VCA method
for the Hubbard model (3.1).

Sublattice-dependence of the Green’s functions.— Firstly, as it has been al-
ready noted in the previous section, if one skips the flavour-conserving three-site
terms (3.13), the calculated spectral functions (not shown) reproduce the well-
known ladder spectra and are equivalent to those calculated for the Ising limit
of the spin ¢-J model [23]. This means that the zig-zag-like hole trapping in
the orbital case is physically similar to the standard hole trapping in the spin
case (apart from the modified energy scale due to a different value of the su-
perexchange, the ladder spectra are similar in both cases), whereas for the free
hole movement obviously it matters whether the dispersion relation is 1D or
2D. Moreover, this also means that in this special case (7 = 0) the spectra are
the same for holes doped into either of the orbitals as the Green’s functions are
the same for both sublattices. However, even in this case it is not allowed to
assume a priori that A = B and Gaa(k,w) = Gpp(k,w). In fact, these are two
sublattices with two distinct orbital states occupied in the ground state at half
filling, and each orbital has entirely different hopping geometry. This does not
happen in the standard spin case with isotropic hopping, and for this reason
one can eliminate there the sublattice indices.

Neglected three-site terms.— Secondly, the result shown in Fig. 3.5 is ob-
tained by neglecting the three-site terms with 90° hopping, see Eq. (3.14). One
may wonder whether this approximation is justified whereas the formally quite
similar forward hopping term (3.13) is crucial and is responsible for the absence
of hole confinement in the ground state with the AO order [85]. Hence, let us
look in more detail at these two different kinds of three-site terms, shown in Fig.
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Figure 3.7: Schematic representation of two three-site terms in the ¢y, orbital
model (3.5). Circles depict holes while horizontal (vertical) rectangles depict
occupied orbitals with electrons that can move only horizontally (vertically),
respectively. Processes shown in panels (a)—(c) result from forward propagation
(3.13), while the ones shown in panels (d)—(f) and given by Eq. (3.14) create a
defect in the AO order with the energy cost indicated by the lines for the bonds
connecting two identical orbital states (broken bonds) in (f).

3.7. The first (linear) hopping term (3.13) transports an a electron along the
b axis over a site occupied by a b electron. Such processes are responsible for
the 1D coherent hole propagation. As one can see in Figs. 3.7(a)—(c), the AO
order remains then undisturbed, so these processes determine the low-energy
features in the spectra. Hopping by the other three-site term (3.14), shown in
Fig. 3.7(d)—(f), involves an orbital flip at the intermediate site, destroys the
AO order on six neighbouring bonds, and thus costs additional energy. As two
orbitals are flipped and two excited states are generated, these processes go be-
yond the lowest order perturbation theory, and it is consistent to neglect them
in the SCBA. In any case, they could contribute only to the incoherent processes
at high energy and not to the low-energy quasiparticle. Indeed, this interpre-
tation is confirmed by exact diagonalization performed for the tp, orbital {—J
Hamiltonian (3.5) on 4 x 4 and 4 x 6 clusters, which give the same results for the
quasiparticle dispersion, no matter whether the orbital-flipping terms (3.14) are
included or not. In addition, the quasiparticle dispersion found in the SCBA
agrees with the numerical results obtained by the VCA (see below), which gives
further support to the SCBA approach in the present problem.

Vertex function in the polaron model.— Lastly, despite several other approx-
imations made in writing down the Hamiltonian Eq. (3.32), the vertex part H;
is ezact, in contrast to the Ising interaction in the spin t—J* model [23]. The
reason is that the constraint C'1 mentioned in Ref. [23], which states that a hole
and a boson excitation are prohibited to occur simultaneously at the same site,
cannot be violated here, because hopping ¢ is strictly 1D. This can be verified
by considering one hole excitation spectra in the limit of J — 0. Indeed, for
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Figure 3.8: Spectral function A(k,w) obtained with the VCA method for the
2D ¢4 Hubbard model (3.1) for: (a) a orbitals, and (b) b orbitals. Parameter:
U = 10¢. This result was obtained by Maria Daghofer.

J = 0 one obtains the incoherent spectrum with a bandwidth of Wi, = 4v/2t
(not shown), which (unlike in the spin case) perfectly agrees with the retrace-
able path approximation result Wi, = 4v/z — 2t from Ref. [67], where z — 2
is the number of possible forward going steps in the model. However, still the
three-site terms H3s and the orbiton terms H; are not exact in Eq. (3.32) and
thus it is necessary to check the present results by comparing them with the
numerical spectra obtained for the orbital Hubbard model (3.1) — the results
are presented below.

Comparison with VCA results.— Since the problem of a hole added to the
background with the AO order of ¢y, orbitals cannot be solved exactly using
analytic methods and the SCBA had to be employed in the last section, the
numerical VCA calculations are presented below.? Actually, we compare the
analytic results for the ¢4 orbital t—J Hamiltonian (3.5) presented in Sec. 3.4.3
with those obtained for the ¢, Hubbard model (3.1) using the VCA method.
This enables us to compare not only the methods employed but also the two
models which stand for the same physics in the strongly correlated regime.

Before we analyse the spectral functions, let us recall that the VCA method
[87] is appropriate for models with on-site interactions, as for instance the
present Hubbard model (3.1) for to, orbitals, but cannot be easily implemented
for models where the interacting part connects different sites, like in the ¢-J
model. For the present to, model (3.1) the VCA method is used with the
open boundary conditions [87], which leads to the spectral densities depicted in
Fig. 3.8. The results resemble very much the SCBA results of Fig. 3.5 for ty
orbital t—J model (3.5), suggesting that not only both models are indeed equiv-
alent in the strongly correlated regime, but also that the implemented SCBA
method of Sec. 3.4.3 is of a very good quality. The differences between them,
almost exclusively affecting high-energy features, are discussed below.

On the one hand, one sees that the high-energy part of the spectral density
in Fig. 3.8 is composed of a number of peaks with a dispersion almost parallel to
that of the quasiparticle state. In fact, the spectrum corresponds almost exactly
to the ladder spectrum of the spin ¢-J model with Ising superexchange [22, 23]
but with a weak dispersion added to the peaks. The peaks at higher-energy
are dispersive for the same reason as the quasiparticle state: After hopping a

5These calculations were performed by Maria Daghofer.
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few times by nearest neighbour hopping ¢ — and creating string excitations,
see Fig. 3.7 — the hole can exhibit coherent propagation via three-site terms,
leading to the observed dispersion. On the other hand, the VCA spectrum (Fig.
3.8) does not show these distinct peaks and the structure of A(k,w) is richer.
However, the first moments calculated in separate intervals of w follow similar
dispersions to those found for the first three peaks obtained in A(k,w) within
the SCBA [85].

The above difference can be understood as following from the full Hilbert
space used in the VCA calculations which results in excitations of doubly oc-
cupied sites, weakening of the AO order even for relatively large U = 10¢t.
Therefore the spectra of Fig. 3.8 have more incoherent features. In addition,
the three-site terms which create two orbiton excitations (3.14) that were ne-
glected in the SCBA, might also influence the high-energy part of the spectrum.
The difference to the SCBA results might also be due to the fact that states
with longer strings including several orbital excitations, which occur when the
hole moves by a few steps via t, cannot be directly accommodated within the
10-site cluster solved here, and cannot be therefore reproduced with sufficient
accuracy.

Apart from the differences in the high-energy part of the spectrum, one
also observes differences in the spectral weight distribution: In the VCA re-
sults (Fig. 3.8) the total weight found in photoemission part (hole excitation)
strongly depends on momentum k, while no such variation can be seen in the
SCBA results in Fig. 3.5. This difference does not originate from different ap-
proximate methods used, but stems from the different models: In Hubbard-like
models, the number of electron states occupied depends on the momentum k
[88]. In contrast, undoped t—J-like models have exactly one electron per site,
which enforces a different sum rule and eliminates the k-dependence from the
photoemission part.

3.5.2 Understanding the 1D dispersion

Purpose of the section.— In order to understand why the dispersion of the hole
doped into 2D t2, AO state is strictly 1D (both for the quasiparticle and for the
excited states) we introduce below the 1D orbital Hubbard model.

1D orbital Hubbard model.— The 1D orbital Hubbard model is defined as

Hip = —t Z(GI%H +H.c.) + Uznianib ; (3.45)

where (similarly as in 2D case) aj (bj) creates a spinless electron with orbital
flavour a (b) at site 4, and {nq,nsp} are electron density operators. On-site
Coulomb repulsion U is the energy of a doubly occupied state (it arises as a
linear combination of the Coulomb and Hund’s exchange in the respective high-
spin configuration [84]), and ¢ is the nearest neighbour hopping element. Only
electrons with orbital flavour a are mobile while the other ones with flavour b
cannot hop. To simplify, we call below the a and b orbitals mobile and immobile
ones, respectively. This situation not only describes a toy-model defined for the
purpose of understanding better the spectral functions of the 2D ¢y, orbital
model but also corresponds to (spinless) interacting e, electrons in the FM
chain (as along the ¢ direction in the manganites, see Ref. [89]) or to the 1D
(spinless) Falicov-Kimball model with degenerate orbitals.
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Figure 3.9: Hole propagation in the 1D orbital t—J model (3.46). Two top panels
show a hole doped into: (a) mobile a orbitals (empty boxes), and (b) immobile b
orbitals (filled boxes). Solid (dashed) arrows indicate possible hopping processes
with hopping elements ¢ and 7, respectively; in case of a hole added to the b
orbital the latter process occurs only after the initial hopping by ¢, see panel
(c). Panel (d) shows the exact spectral functions AlP(k,w) and A}P(k,w) of
a hole added into the a orbital (middle dispersive feature between w = —0.4¢
and w = 0) and the b orbital (two side dispersionless maxima) as obtained from
the 1D orbital t+~J model (3.46). Parameters: J = 0.4¢, 7 = 0.1¢, and peak
broadening § = 0.01¢.

1D orbital t-J model.— In the regime of large U, i.e. for ¢t <« U, the
canonical perturbation expansion discussed in Chapter 1 (see Sec. 3.3 for a
similar derivation in the 2D case) leads to the effective ¢t—J Hamiltonian with
Ising-like superexchange and three-site terms

N 1 1
Hip=-— tz (a;‘aiH + H-C-) + §JZ <TiZTiZ+1 - Z”i”iﬂ)

—3 (ajﬁlmbam + H.c.) , (3.46)

where (again) a tilde above a fermion operator indicates that the Hilbert space
is restricted to unoccupied and singly occupied sites and the pseudospin 77 =
(e — Mip)/2. The superexchange constant J and the three-site term hopping
7 are defined as in Eq. (3.10) and Eq. (3.15), respectively. The 1D ¢-J orbital
model defined without the three-site hopping 7, was solved exactly before [89]
and all excitations occurred to be dispersionless. Here we generalize this exact
solution to the full Hamiltonian (3.46) including the three-site terms, and show
how the spectral functions change then.

Spectral function for a hole in the mobile orbital. — We start with calculating
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the Green’s function for the hole doped into the a (mobile) orbital,’

n 1

o
w4 Hip — E§P

P (k) = <<1>5D ar

@3D> , (3.47)

where E2P is the energy of the ground state. As in case of o, orbitals considered
above, the occupied orbitals alternate and at half filling form sublattices { A, B}.
The physical vacuum is

[26°) = [ of T b1 10). (3.48)

icA  jeB

where (again) |0) is the true vacuum state with no electrons. Besides, the hole
with momentum k is created by the operator

1 »
a, = — ea,, 3.49

with N being the number of sites in the chain. Then one can easily verify
that the state ax|®.P) in Eq. (3.47) is an eigenstate of the Hamiltonian (3.46).
The hopping o t is blocked by the constraint of no double occupancy in the
Hilbert space and the only two terms that contribute in this state are: (i) the
superexchange term (o J) which gives the energy %J of two missing bonds as a
correction to E¢P, and (ii) the three-site hopping term (oc 7) which contributes
to the k dependence due to the processes shown in Fig. 3.9(a) after Fourier
transformation. As a result, one finds

1

1
GlD ka =35 )
o (k) 2w+ J + 27 cos(2k)

(3.50)

where the factor 1/2 originates from the fact that (®P|ala|®LP) = 1/2. Note
that n; = 1 in the three-site terms, as in this case all the sites with j € B are
occupied by b electrons in the ground state (3.16). The hole spectral function,

2
AP (k,w) = -= imo Im GP(k,w +id), (3.51)

1

T é—
consists of a single dispersive state, shown as the middle peak in Fig. 3.9(d).
As expected, the hole is mobile thanks to the three-site terms and it propagates
coherently with the unrenormalized bandwidth W = 47. The result obtained
here is identical with the one found using the VCA for the corresponding Hub-
bard model (3.45) (see also Fig. 5 of Ref. [85]). This confirms that both the
orbital Hubbard model (3.45) and its t—J model with three-site terms (3.46) are
equivalent and precisely describe the same physics in the regime of t < U.

Spectral function for a hole doped into the immobile orbital.— The calcula-
tion of the Green’s function for the hole doped into the b (immobile) orbital is
considerably more involved as one needs to use the continued fraction method.

6We calculate the ‘mobile case’ for didactic reasons. It will be the ‘immobile case’ (see
below) from which we will draw some conclusions concerning the understanding of the 1D
dispersion in the 2D case.
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Thus, we perform these calculations in Appendix A. We obtain k-independent
Green’s function [compare Eq. (A.10)]

-1
2
GiP(w) = 1 {w Ly it } , (3.52)

2 20 wHiIFV(w+J)? 472

from which we calculate the the hole spectral function

AP (w) = 2 lim Tm GLP(w +i6), (3.53)
shown in Fig. 3.9(d). It also does not depend on k and for the realistic pa-
rameters with 7 < ¢ it consists of two poles and the incoherent part centred
around w = —J. This latter contribution has rather low intensity and is thus
invisible on the scale of Fig. 3.9(d) and the two peaks absorb almost the entire
intensity. This result resembles the case of 7 = 0 (see Ref. [89]) and might
appear somewhat unexpected — we analyse it below.

Why the three-site terms are suppressed in the immobile case.— First, we
comment on the absence of the k dependence in the spectral function A}P(w)
(3.53). To understand this result It suffices to analyse the hole doped into the b
orbital at any finite value of J which induces the AO ground state (3.48). The
hole can only move incoherently, because once it moves away from the initial site
j by the hopping ¢ [see Fig. 3.9(b) and (c)], it creates a defect in the AO state
which blocks its hopping by the three-site processes over site j. Consequently,
the hole may hop only in the other direction, i.e. away from the defect in the
AO state, and in order to absorb eventually this orbital excitation it has to
come back to its original position, retracing its path. In this way a forward and
backward propagation along the 1D chain interfere with each other, resulting in
the fully incoherent spectrum of Fig. 3.9(d).

Looking at the spectral function A{P(w) of a hole doped into the b orbital
at finite 7 = 0.1¢ shown in Fig. 3.9(d) one may be somewhat surprised that the
result indicates only two final states of the 1D chain. These are the bonding and
the antibonding state of a hole confined within a three-site box and discussed
in detail in Ref. [89] in the limit of 7 = 0. One finds that the two excitation
energies obtained for the present parameters, w = —1.67¢t and w = 1.17¢, are
indeed almost unchanged from those given by Eq. (A.9) at 7 = 0. We note
that the third nonbonding state has a different symmetry and thus gives no
contribution to AP (w).

Altogether, one finds that in the realistic regime of parameters with 7 = J/4,
the incoherent part of the spectrum is extremely small and thus invisible in the
scale of Fig. 3.9(d). This implies that the hole is still practically trapped within
the three-site box depicted in Fig. 3.9(b), in spite of the potential possibility of
its delocalization by finite 7. Only when the value of the three-site hopping 7
is considerably increased, the hole can escape from the three-site box and may
delocalize over the entire chain.

A systematic evolution of the spectral function A}P(w) with increasing 7 is
depicted in Fig. 3.10. One observes that the incoherent spectral weight grows
with increasing 7 and is already visible in between the two maxima for 7 = 0.5¢.
When the three-site hopping term approaches 7 = ¢, the spectrum changes
in a qualitative way — both peaks are absorbed by the continuum and the
spectral density resembles the density of states of the 1D chain with the nearest
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Figure 3.10: Spectral function AP (w) of a hole doped into the b orbital in the
1D model with: (a) 7 = 0, (b) 7 = 0.5¢, (c) 7 = ¢, and (d) 7 = 2¢. Dashed
(solid) lines for J = 0 (J = 0.4t), respectively, with broadening § = 0.01¢.

neighbour hopping. For the extremely large effective hopping 7 ~ 2t the two
peaks corresponding to the energies given by Eq. (A.9) from Appendix A are
absorbed by the continuum centered at w ~ 0, and the spectrum corresponds
to the incoherent delocalization of the hole over the 1D chain. Note also that
finite J results only in an overall shift of the spectra due to the energy cost of
the hole excitation in the ordered ground state (3.16).

Understanding the 1D dispersion in the 2D model.— Having understood the
1D case in detail one can now try to understand why the dispersion relation
for the hole doped into the 2D ¢y, AO state is strictly 1D. More precisely, the
question which arises here is: why, in the 2D case, a hole doped for example into
the b orbital cannot hop along the b direction. In principle one could imagine
that the hole doped into the b orbital in the 2D lattice hops by the t process
to the neighbouring site, creates one defect in the AO site and then propagates
freely along the b direction via the three-site terms. This, however, cannot
contribute to any k-dependent motion: as shown in the above 1D example the
hole always has to return to the original site where it has been doped as it has
to erase the defect it has created in the first ¢ step while moving to the other
sublattice (otherwise, the hole annihilation operator would not permit to return
to the ground state).

A similar phenomenon occurs in the 2D case. One should only note that
strictly speaking, in the 1D model there are actually two interrelated reasons
why the hole cannot move coherently when it is doped into the b orbital: (i)
the creation of the defect after the first ¢ step which has to be erased by the
hole before the hole itself is annihilated by the aL operator in Eq. (3.47), and
(ii) the fact that this defect blocks the hole motion by three-site terms in one
direction. However, in the SCBA treatment the latter constraint is neglected,
so it is the point (i) which suffices alone to confine the hole.

Furthermore, the spectrum associated with such a propagation, as described
in the above paragraph, is not only k-independent but also its spectral weight
is extremely small both in the 2D model in the realistic range of parameters
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(where it is invisible at the scale of Fig. 3.5) and in the 1D case (as discussed
above). Again, the reason why this spectral weight is so small in the 2D case
can be understood using the 1D model: the value of the three-site hopping is
too small to delocalize the hole from the three-site box.

3.5.3 Renormalization of the three-site terms

Purpose of the section.— In what follows we will study the extended version
of the 1D model, called the ‘centipede model’, with electrons hopping between
dy. and d.; orbitals in ab plane — the model includes two neighbours on every
second site and thus has 2N sites for the chain of length N, see Fig. 3.11. We
will show that even the shortest possible strings with the length of one bond
which can be excited here when the hole moves in this geometry are sufficient
to generate some characteristic features recognized in the spectral properties of
the 2D toy model (see Sec. 3.4.3). In particular, using this toy-model we will
show how the renormalization of the three-site terms in the 2D to, orbital t—J
model arises due to the peculiar interrelation between the coherent propagation
via the three-site terms and the incoherent motion due to the creation of the
strings by the nearest neighbour hopping ¢.

Introducing the centipede model.— The centipede model of Fig. 3.11(a)
consists of a chain along b axis, with the Hamiltonian as described by Eq.
(3.45), and two sites being the nearest neighbours of every second site of the
chain along the a axis, which could represent radicals added to a linear molecule.
We use here the convention introduced already in the previous sections, that a
and b orbitals stand for d,, and d., to4 orbitals, respectively, that permit the
electron hopping along the b and a axis in the ab plane. The Hamiltonian of
the present model is

Hee=—t3 {b;(bm + by g) + H.c.} — 1) (@l + He) + U nina.
Z l l (3.54)

The hopping along the bonds parallel to the a axis is allowed only to the orbitals
b, with the corresponding creation operators {b;i,u’ b;,d}a see Fig. 3.11(a). To
simplify notation, we call these orbitals v and d, and introduce the following
operators:

To=pf

Ug; 26, d;i = b;i,d . (3.55)

In the limit of large U (U > t) the occupied orbitals form AO order along
the chain and we select the Néel state with b (u and d) orbitals occupied on
the external sites, as shown in Fig. 3.11, since we are interested in their effect
on the hole propagation when the hole is doped to an a orbital. This leads to
the following 1D centipede ¢—J model (derived using the canonical perturbation
expansion discussed in Chapter 1, see also Sec. 3.3 for a similar derivation in
the 2D case) :

Hee=—1 Z{(ﬂ’;z +di)by; +He} -7 Z(d;iﬁmﬂ,bdmw +H.c.)

3 L i
-7/ Z(ngum +ddy;). (3.56)
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Figure 3.11: Propagation of a hole added into the a orbital in the centipede t—J
model (3.56): (a) schematic picture of a hole doped at site a and its possible
delocalization via hopping ¢ (solid lines) and three-site effective 7 term (dashed
lines); (b) spectral function AS?(k,w). Parameters: J = 0.4¢, 7 = 0.1¢, peak
broadening 6 = 0.01¢. The chain is oriented along the b axis, and non-equivalent
positions of the orbitals which do not permit hopping along this direction are
labelled b, u and d in panel (a).

On the one hand, the superexchange interaction for all the bonds within the
centipede is not included in Eq. (3.56) as it results only in a rather trivial
energy shift of the spectra obtained from the Green’s function G¢¢(k,w) which
is of interest here,” cf. Sec. 3.5.2. On the other hand, the last term in Eq.
(3.56) is added to to include the energy loss when the hole delocalizes to one of
the side sites and a short string is created which as well occurs in the full 2D
model of Sec. 3.4.3 (see also discussion below).

Whereas the second term in Eq. (3.56) is once again the three-site hopping
derived before in the 1D model (3.46) [cf. Fig. 3.9(a)], the other two terms
describe the possibility of creating defects in the AO order when the hole leaves
the spine of the centipede (i.e. moves away from the a sites) by creating strings
of length one, just as it may happen in the ¢, 2D model. Here the hole can
leave the chain to its nearest neighbour orbital ug; or do; [cf. sites attached
to the chain along the a axis shown in Fig. 3.11(a)]. Such defects are created
by hopping ¢ and cost energy 3.J/4 in each case. Hence, the present 1D model
represents an extreme reduction of the full {5, 2D model, allowing only the
strings of length one, and each defect has to be deexcited before the hole can
hop to another three-site unit along the chain. Note, however, that the energies
of these string excitations are properly chosen and are just the same as in the
full 2D model.

The model given by Eq. (3.56) constitutes a one-particle problem (after
inserting 7g;41,, = 1 which is consistent with the Ising nature of the superex-
change) and hence can be solved exactly. We will consider the Green’s function
Ge¢(k,w) for a orbitals, defined similarly as in Eq. (3.47), and a hole excitation
is created again by the operator a; of Eq. (3.49). The continued fraction (see
also Appendix A for a more elaborate version of the method) terminates after

"The Green’s function G3°(k,w) does not show new qualitative features as compared with
the solution obtained for the 1D orbital chain of Sec. 3.5.2.
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Figure 3.12: Characteristic features in the spectra obtained for the 1D centipede
model (Fig. 3.11) for increasing J: (a) the bandwidth Wy o, (b) the spectral
weight aqp, and (c) the distance A between the two peaks. The solid (dotted)
line in (a) corresponds to the first (second) dispersive peak in A, (k,w) whereas
the solid (dashed) lines in the lower panels show results for £ = 0 (k = 7/2),
respectively. The light solid line in (a) is merely a guideline for the eye to
show that the bandwidth of the first peak is a function with a positive second
derivative. Parameter: 7 = J/4.

the second step and one finds the exact Green’s function
1

T 2054 27 cos(2k) — _2::]
wT g

Gee (k, w) , (3.57)

leading to the corresponding spectral function AS¢(k,w), defined as in Eq.
(3.51). The numerical results obtained with J = 0.4¢ are shown in Fig. 3.11(b).
Instead of a single dispersive state of Fig. 3.9(d), the spectral function consists
here of two dispersive peaks separated by a gap of roughly 21/2¢t. This demon-
strates that the larger hopping ¢ suppresses at first instance the hopping along
the chain by the element 7, and a hole doped into the a orbital delocalizes in
the first place over the three-site unit, discussed in Sec. 3.5.2, consisting of a
hole and two b (u and d) orbitals. Therefore the hole behaves effectively as
a defect created at a b site in the 1D chain of Sec. 3.5.2. This explains that
the maxima of AS(k,w) are found again for the local bonding and antibonding
state, similar to the structure of A}P(w) in Sec. 3.5.2. However, at present the
corresponding states gain weak dispersion because the hole may as well delocal-
ize along the chain by the three-site hopping 7. Note also that the low-energy
(right) peak has slightly higher dispersion (leading to a broader band) than the
left one. This case illustrates that the 1D dispersion is broader for the (low
energy) quasiparticle state but is also shared by the feature at higher energy.
This observation will help us to interpret the spectra for the 2D ¢y, model (see
below).

In addition, we also calculate some characteristic features of the spectra of
the centipede model, cf. Fig. 3.12. They will mostly serve for a comparison with
the respective results of the 2D ¢2, model in the next paragraph. However, let us
only remark that the renormalization of the bandwidth, shown in Fig. 3.12(a),
follows from an intricate interplay between coherent hole propagation and the
string excitations. With increasing 7 = J/4 the free bandwidth increases but at
the same time the energies of the defects (generated by the hole when it moves
to ‘lower’ or ‘upper’ sites) are o J; hence, the bandwidth does not depend in a
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linear way on J, cf. Fig. 3.12(a). Physically this means that the hole motion
is gradually more and more confined to just the 1D path along the chain with
increasing J (and keeping 7 = J/4).

Renormalization of the three-site terms in the tag orbital t—J models.— As
already noted in Sec. 3.4.3 [see also Fig. 3.6(a)] the quasiparticle bandwidth in
the 2D ta, orbital t—J model, arising from the superexchange three-site terms, is
renormalized as it was found to be much smaller than the respective free value,
W « 2J. Even at J = t, the quasiparticle bandwidth is only W ~ J/2, i.e. it
is here reduced by a factor of 4.

A similar but considerably weaker reduction of the 1D dispersion by string
excitations can be seen in the present centipede model, see Fig. 3.12(a). In
addition, the dispersion of the second peak is weaker than that of the quasipar-
ticle. Interestingly, the bandwidth corresponding to the dispersion of the second
peak in the centipede model is not only weaker than that of the quasiparticle
itself but is also renormalized in a similar way to that found for the full 2D ¢,
model.

Although it should be noted that in the centipede case the renormalization
is almost linear as the length of the string excitations is limited to a single step
(within one of the three-atom units along the chain), the centipede model can
indeed explain microscopically how the renormalization of the three-site terms
in the 2D model arises: The renormalization of the coherent hole propagation
in the 2D t54 model, leading to a reduced bandwidth, follows from the creation
of string states during the 1D hole propagation via three-site terms. Note that
the latter processes were absent in the 1D model, and therefore the hole moved
there freely by three-site hopping terms and the bandwidth was unrenormalized
[see Eq. 3.50].

Further comparison between the centipede and the tag orbital t—J model.—
Actually, the other quasiparticle properties in the 2D 3, model and in the
centipede model are much more different than the bandwidth: It is only the
increase of aqp(w/2,7/2) with respect to aqp(0,0) in the 2D case [see Fig.
3.6(b)] which resembles the increase of the spectral weight for the low-energy
peak at k = 7/2 over the one at k = 0 in the centipede model [see Fig. 3.12(b)].
These differences are due to the fact that both the quasiparticle spectral weight
and the pseudogap are heavily related to the string excitations in the system
which are entirely different in the 2D case (infinitely long strings possible) and
in the centipede model (where only strings of length one are possible).

3.6 Conclusions

Purpose of this chapter.— The purpose of this chapter was to investigate whether
a single hole added to the Mott insulating ground state at half-filling can be
confined due to the presence of the orbital degeneracy. Actually, more precisely
the idea was to study the simplest possible example, where one could naively ex-
pect hole confinement: a 2D Mott insulator with ¢5, orbital degrees of freedom.
It occurred that the hole can never be confined in such a system but instead
can move there on a renormalized scale due to the so-called three-site terms.
Obviously, this does not imply that the hole confinement in the Mott insula-
tor with orbital degrees of freedom is impossible: one can imagine that there
may exist another phenomenon in orbitally degenerate systems which leads to
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hole confinement. However, the simplest possible mechanism, as shown here, is
outruled.?

In what follows, we will now show why the hole is not confined in such an
orbitally degenerate system by giving answers to the three questions posed in
the introduction to this chapter.

Form of the t—J model with to, orbital degrees of freedom.— As discussed in
Sec. 3.2 one had some choice in defining the {—J model with ¢, orbital degrees
of freedom. However, the idea was to formulate the model in such a way that
the characteristic symmetries of the ¢y, orbitals, which leads to the lack of the
interorbital hopping and the 2D hopping of electrons between a particular ta4
orbital, could be visible ‘as far as possible’. This is not a very precise statement
but nevertheless we demonstrated in Sec. 3.2 that a model with only two active
{dsz,dy.} orbitals in the ab plane and spinless strongly correlated electrons
would indeed bear all these distinctive features.

Altogether this led (see Sec. 3.3) to the t—J model with an Ising-type inter-
action between orbital pseudospins and 1D hopping of electrons with particular
orbital flavour. However, it occurred that due to the absence of the SU(2)
symmetry in such a model one had to be more careful with any approximations
made during the derivation of the model or while solving it. Thus, the frequently
neglected three-site terms had to be included in the model.

Undoped ground state.— In the half-filled case the above discussed t5, orbital
t—J model with three-site terms reduced to the Ising-like interaction between
pseudospins. As the superexchange constant J was positive in this model, the
ground state consisted of alternating pseudospins between two sublattices and
had no pseudospin quantum fluctuations, see Sec. 3.4.1. Consequently, the
ground state turned out to be a classical AO state with d, and d,, alternating
orbitals.

Motion of the hole in the undoped ground state.— In order to investigate
motion of a single hole doped into the half-filled AO ground state we reduced
the to4 orbital t—J model to the effective polaron Hamiltonian using the slave-
fermion approach (Sec. 3.4.1). The latter one was rather easy to solve using the
SCBA method and we obtained the spectral functions which consisted of the
dispersive ladder-like peaks (Sec. 3.4.3). While the onset of the ladder spectrum
revealed the fact that the hole was trapped in string-like potential, the small
dispersive features suggested that the hole was not truely confined. This result
was thoroughly checked and confirmed in Sec. 3.5.1 where (in particular) we
showed that the Hubbard model led to similar spectral functions with a small
1D dispersion. Furthermore, in Sec. 3.5.2 we explained the lack of the 1D
character of the dispersion relations using the auxiliary orbital 1D model.

We emphasize that the mechanism of coherent hole propagation which oc-
curs in the 2D t54 orbital model is completely different from the one known in
the spin case. Generally, in orbital systems (with conserved orbital flavours) it
originates entirely from the three-site hopping processes, similarly to the dis-
cussed 1D case in Sec. 3.5.2. But unlike in the latter case, in the 2D ¢y, case
the quasiparticle bandwidth is strongly reduced from the value given by the am-
plitude of bare three-site hopping. In order to investigate this problem in more
detail, we discussed the subtle interplay between the coherent hole propagation

8Note that a different mechanism present in systems with orbital degeneracy (orbital po-
larization), shown in Ref. [90], leads to the strong reduction of the bandwidth — but the
bandwidth is still finite and additional effects are needed to truely localize the hole.
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and string excitations in the 1D centipede model (Sec. 3.5.3), where polaronic
hole confinement competed with coherent propagation along the chain, which
to some extent resembled the realistic 2D t9, case. Indeed, this explained the
renormalization as following from incoherent string excitations which dressed
the coherent propagation and did not contribute additional momentum depen-
dence.

Final remarks.— In the whole chapter we discussed a highly theoretical
problem of the hole confinement induced by the presence of the orbital degrees of
freedom. However, a natural question arises: could such a problem be relevant
for any experiment. Actually, introduction of a single hole to the half-filled
system corresponds to the photoemission experiment on the half-filled system:
there the photon removes the electron from the crystal (somewhat similarly as
in the well-known photoelectric effect), i.e. it creates a hole in the system [69].
Thus, the only problem with which still arises is: can one find a crystal with
a plane with two active {d.,,d,,} orbitals in the ab plane. As shown in the
Postscriptum (Sec. 3.7) there exists a certain class of vanadates and fluorides
whose photoemission spectra should bear all of the characteristic features of
the spectral functions shown in Figs. 3.5 or 3.8. It remains a challenge for the
experimental community to verify this conjecture.

3.7 Postscriptum: photoemission spectra of vana-
dates and fluorides

Realistic systems with longer range hopping.— In this section we discuss the
possible implications of the results obtained for the ¢y, orbital model of this
chapter on future experiments and make predictions concerning the photoemis-
sion spectra of strongly correlated fluorides and vanadates. The first important
feature to consider is the interplay of the three-site hopping with the longer-
range {tq, t3} hopping to second and third neighbours which contributes to the
electronic structure and may always be expected in any realistic system (for
instance, due to hybridization with oxygen orbitals). These hopping elements
were neglected in both the Hubbard model (3.1) and in the t—J model (3.5) but
they could significantly influence the spectral weight distribution. One will see,
however, that although features induced by longer-range hopping are small as
long as [ty(3)| < t, they can be clearly distinguished from the effects of three-site
hopping.

Next nearest neighbour hopping.— The same requirements for orbital symme-
try that are necessary to obtain nearest neighbour hopping, as discussed in this
work, also strongly restrict the range of allowed longer-range hopping terms.
It is important to recall that the d-d hopping elements involve intermediate
oxygen orbitals. For next nearest neighbour hopping, the orbital phases of the
involved oxygen 2p, orbitals make all terms vanish that conserve orbital flavour
[75], and only orbital-flipping terms

HNNN = 7t2 Z (a:ﬂ:f)biié + al;f)biié + H.C.) , (3.58)

given by hopping element to, are finite. With realistic parameters one arrives at
the estimation of |ta| ~ 20 meV, i.e., |t2| ~ J/3. Similar to the orbital flipping
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Figure 3.13: Spectral density A,(k,w) obtained within the VCA method for a
hole inserted into b orbitals of the ¢2, model (3.1), supplemented by finite next
nearest neighbour hopping (3.58). Parameters: U = 10¢, and t5 = 0.15¢. This
result was obtained by Maria Daghofer.

three-site term (3.14), such a hopping process disturbs the AO order stabilized
by the superexchange and induces string excitations. For this reason, its impact
is largely confined to the high-energy part of the spectrum and is rather small for
the low-energy quasiparticle state. This can be seen in Fig. 3.13 where we show
the spectral density for ¢t = 0.15¢ and J = 0.4¢: While the higher energy part
is somewhat affected by finite to, the intensity and dispersion of the low-energy
quasiparticle is almost the same as obtained for to = 0, see Fig. 3.8(b).

Third neighbour hopping.— The quasiparticle dispersion could also be in-
fluenced by the third-neighbour hopping terms t3, where the orbital symmetry
leads to the same anisotropy as for nearest neighbour hopping: a orbitals allow
only hopping along the a axis, and b orbitals only along the b one:

Hy=—ts ) bbj—ts D alg. (3:59)

{imj}|la {imj}||b

Here the unit consisting of three sites {imj}, shown in Fig. 3.3(a), is parallel
to one of the cubic axes in the ab plane. In contrast to t5 terms, these terms
do not induce any string excitations but contribute only to the dispersion of
the quasiparticle state itself, so they mix with the three-site effective hopping
7. To illustrate this effect, one can choose t3 = +.J/4 for the spectra shown in
Fig. 3.14. Note that the value of |¢3] is here larger than expected in transition
metal oxides where it is in general smaller than the three-site hopping term
T = J/4. The spectral density A(k,w) contains now the combined effects of the
three-site terms o< 7 and third-neighbour hopping  t3 and one finds that ts,
depending on its sign, can either amplify or weaken the quasiparticle dispersion
which stems from the effective three-site hopping, see Fig. 3.14.

Third versus next nearest neighbour hopping.— From the above example one
can see that the longer-range hopping violates the particle-hole symmetry of the
spectral functions. The spectra obtained for the original orbital Hubbard model
(3.1) with nearest neighbour hopping ¢t obey the particle-hole symmetry. The
three-site superexchange terms arise from this model and therefore these terms
also have to follow the particle-hole symmetry. This is in marked contrast to
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Figure 3.14: Photoemission [(w—p) < 0] and inverse photoemission [(w—u) > 0]
part of the spectral density Ap(k,w) for a hole inserted into b orbitals ob-
tained within VCA for the ¢5, model (3.1) with an additional longer-range
third-neighbour hopping t3 (3.59). The value t3 is selected so that to suppress
dispersion arising from the three-site effective hopping in: (a) the hole (pho-
toemission) sector with ¢3 = 0.1t = J/4, and (b) in the inverse photoemission
sector with t3 = —0.1t = —J/4. Parameter: U = 10¢. This result was obtained
by Maria Daghofer.

the to terms that do not respect it [91] or to ¢35 terms, see Fig. 3.14. As a result,
the spectra exhibit a striking particle-hole asymmetry — reduced dispersion in
the particle (inverse photoemission) sector corresponds to enhanced dispersion
in the hole (photoemission) sector and vice versa.

It will be shown now that the above asymmetry indeed follows from the
difference between the nearest neighbour and next nearest neighbour hopping
under particle-hole transformation. While this is transparent for the Hubbard
model acting in the full Hilbert space, it is somewhat subtle for the t—J-like
models. Thereby let us focus on the t3 hopping which influences directly the
quasiparticle dispersion. The operator for nearest neighbour hopping can be
transformed from {c;, c}} electron operators to {h;, h;} hole operators, and one
arrives at an identical form for the kinetic energy as long as a phase shift between
the two sublattices is introduced:

hl = (—1)Ustivle by = (=)0 0] (3.60)

where j = (jz, jy) is the lattice site. Hopping along the a axis then becomes

Ko = et
J

Z { (= 1) 4 oy (1) 14 hJTJré 4 (—1)Fet iy hj+é(_1)jm+jyh:ii. }
J
;
-2 (hthé + hyvah] )
J

S (Bihgra+ hlahy ) (3.61)
J

and analogously along the b axis. The minus sign for one of the sublattices
corresponds to a momentum shift by q = (7, 7) as can be easily verified in the
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The on-site density-density interaction is not affected by the particle-hole trans-
formation apart from a shift in the chemical potential.

Since the three-site hopping emerges from the Hubbard-like model with near-
est neighbour hopping, it respects particle-hole symmetry. Hence it obeys the
same rules concerning particle-hole transformation i.e., momentum (0,0) for
electrons is mapped to (mw,7) for holes. For the third-neighbour hopping ts
(3.59), however, the above transformation does not work any longer, because
both the creation and the annihilation operator act on the same sublattice.
Instead the transformation vector would have to be q' = (7/2,7/2). Conse-
quently, the combined effect of explicit next nearest neighbour hopping and
three-site terms stemming from nearest neighbour processes turns out to be
strongly particle-hole asymmetric. For example, negative t3 gives a band in
the electron sector with the largest distance from the Fermi energy at momenta
(0,0) and (,7), and the values nearest to it at (w/2,7/2), and the same is true
for the three-site hopping. Consequently, the two dispersions add together and
lead to increased total dispersion, see the photoemission part in Fig. 3.7. On the
contrary, in inverse photoemission the direct next nearest neighbour hopping ¢3
gives a maximal distance at (7/2,7/2), while maximal energy is still found at
(0,0) and (7, 7) for the three-site terms. Therefore, now t3 and three-site hop-
ping 7 compete with each other and the dispersion is weaker. For a particular
choice of the model parameters they can even cancel each other, as shown in
the inverse photoemission part in Fig. 3.7. Positive t3 leads to the opposite
result, see Fig. 3.7. Thus, even large and unphysical values of ¢3 not only do not
destroy the qualitative spectra predicted in the previous sections but generate
asymmetry between the photoemission and inverse photoemission part of the
spectra, so their contribution can easily be resolved.

Conclusions concerning the realistic spectra.— The symmetry arguments
leading to Eq. (3.58) and Eq. (3.59) remain valid also for systems with specific
eq orbital degeneracy as observed in certain fluorides with 2D AO order which
involves alternating 22 —y? and 22 — 22 orbitals [92]. In fact, the effective polaron
model Eq. (3.32) describes also this case, as we show by a detailed derivation
in Appendix B. Hence, we conclude that the photoemission and inverse pho-
toemission spectra for the planar vanadium oxide SroVO4 and for the planar
KyCuFy or CsyAgF, fluorides should be qualitatively similar to the spectral
functions shown in Figs. 3.5 or 3.8.
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Chapter 4

Understanding hole motion in
LaV03

This chapter is based on the following publications: (i) K. Wohlfeld, A. M. Oles,
P. Horsch, ‘Orbitally induced string formation in the spin-orbital polarons’, to
appear in Physical Review B 79 (2009); and (ii) K. Wohlfeld, ‘Spin, orbital, and
spin-orbital polarons in transition metal oxides’, to appear in AIP Conference
Proceedings (2009).

4.1 Introduction

Cubic vanadates.— Among the rich class of transition metal oxides, the cubic
vanadium oxides (vanadates) are one of the less known ‘families’ — especially in
comparison with their much better investigated ‘cousins’: the high-T, cuprate
superconductors or the colossal magnetoresistive manganites [20]. Nevertheless,
the cubic vandates are worth to look at: As it will be shown below they exhibit
the tremendously interesting orbital physics phenomena since in this class of
compounds spins and orbitals do not decouple and may fluctuate together [93].

Undoped case.— Let us be more specific and concentrate on one of the most
prominent examples of the cubic vandates: LaVOs. This crystal has a typical
perovskite structure in which the vanadium ions can be viewed as effectively
forming an almost undistorted cubic lattice [19]. The nominal valence of the
vanadium ions is V4+ whereas all other ions have filled shells. Thus, the 3d
orbitals on the vanadium ions are occupied by two electrons and the electronic
bands near the Fermi level should be predominantly formed due to the effective
hopping ¢t between these orbitals via oxygen ions. In the ‘graduate condensed-
matter textbook’ this would typically mean that such a system would be consid-
ered metallic. However, due to the very large on-site Coulomb repulsion U > W
between electrons in the 3d orbitals the electrons localize and a Mott-Hubbard
insulating state is formed [19] (where as before W = 8¢ while ¢ stands for the
effective hopping of 3d electrons).

So far, however, LaVO3 can be considered just as another example of the
Mott insulators, which, at least to the author, do not seem to be particularly
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Figure 4.1: Panel (a), reproduced after Ref. [94], shows the magnetic and orbital
order stable below ca. 140 K in LaVOs3. One electron occupies either the d.,
or the d,, orbitals (shown in a very simplified, yet distinguishable, form in the
figure) while the other one always occupies the d,, orbital (not shown). Both of
them form the S = 1 spins which are depicted by arrows. Furthermore, the dzx
and d, occupied orbitals alternate and form the G-AQO order whereas the S = 1
spins are aligned along the ¢ axis and alternating along the a and b directions
forming the C-AF phase (see also text). Panel (b), reproduced after Ref. [19],
shows the phase diagram of Laj_,Sr,VOs. Note the differences between the
notation used in the figure (Ref. [94]) and in the text: the temperature in
which the G-AO orbital order sets in is depicted in the figure by ‘T's’ whereas
the C-AF phase is denoted with the ‘AF’ letters in the figure.

interesting, mainly for being very hard to understand.! What makes this com-
pound indeed very interesting is the proximity of the onset of the magnetic and
orbital ordering which sets in at Ty ~ 143 K and Tp ~ 141 K, respectively
[24, 25], with both of these orderings of relatively complex type. Namely, the
magnetic phase is of a C-AF—type (AF ab plane with a FM order along the ¢
direction) whereas the orbital order is of a G-AO—type (AO order of d., = b
and d,, = a orbitals in all three cubic directions and always occupied d, or-
bital); see also Fig. 4.1(a). Since the Jahn-Teller coupling in cubic vanadates is
very weak the magnetically and orbitally ordered states could only be explained
by some sort of purely electronic mechanism. Indeed, as shown in Ref. [83],
the electrons in the Mott insulating phase, although localized, perform virtual
hoppings between neighbouring sites leading to such superexchange interactions
that the observed experimentally ordered phases could be stable.

Hole doped case.— Although these phenomena associated with LaVO3 would
alone suffice to justify the above mentioned ‘existence of interesting orbital
physics phenomena in the cubic vanadates’ there are yet even more peculiar
experimental observations associated with this class of compounds. They con-
cern the properties of the lightly doped cubic vanadate Laj_,Sr, VO3 [19]. Tt
occurs that in this strongly correlated compound the C-AF and G-AO ordered
Mott insulating phase is not only stable for z = 0 but also persists to a rela-
tively high value of hole doping = = 0.178 [19]. Rather surprisingly, the C-AF
phase remains stable up to an even higher value of x = 0.26 although in this

IDaniel I. Khomskii (unpublished lecture notes on condensed matter theory for graduate
students at the University of Groningen).
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regime the insulating and orbital ordered phase has already disappeared; see
also Fig. 4.1(b) [19]. As, in the ionic picture, = stands for the introduction of
holes into the 3d orbitals of the vanadium ions (where a nominal valence upon
doping changes as 3d?>~%) it remains a challenge to explain why the ordered
and insulating states persist to such high dopings.? Besides, somewhat sim-
ilar phase diagrams have been observed in other doped cubic vanadates such
as Pr;_,Ca,VOs, Nd;_,Sr, VO3 or even to some extent in Y;_,Ca,VOs3 [25].
In fact, in all these cases the lattice distortions contribute significantly [25] to
the hole localization and thus we would like to concentrate on the (almost)
undistorted compound La;j_,Sr, VO3 in the further analysis.

Actually, one might in principle expect to resolve some of these puzzles by
comparing the phase diagram of the doped cubic vanadates to those of the
high-T, superconducting cuprates or the colossal magnetoresistive manganites.
However, such a comparison only further enhances the lack of understanding
of the doped cubic vanadates. First, in the cuprates such as Las_,Sr,CuQy4
the AF order disappears very quickly with doping z, i.e. already for z ~ 0.02
[20]. This is despite the fact that the value of the superexchange constant
J is relatively high there which would lead to larger magnetic energy in the
cuprates than in the vanadates. This suggests that, among other factors, it is
the orbital dynamics which could be responsible for the difference between the
totally distinct behaviour upon hole doping of these two classes of compounds.
Second, a similar conjecture can be drawn from the comparison between the
vanadates and the manganites. In the latter ones, e.g. in Laj_,Sr,MnOs the
AO orbital Mott insulating state is stable up to x ~ 0.18 [97], i.e. almost to the
same level as in La;_,Sr, VO3. However, La;_,Sr,MnO3 has FM order already
in the insulating planes but La;_,Sr, VO3 has AF planes — this again suggests
that it is the orbital dynamics which governs the behaviour of the doped holes
in the doped cubic vanadates.

Main goals of the chapter.— Summarizing, perhaps the most important fea-
ture of the experimental phase diagram of the lightly (z < 0.18) hole doped
La;_;Sr; VO3 is that: the orbital dynamics seems to drive the hole motion
there whereas the spins seem to be somewhat ‘hidden’. Since the problem of
the lightly hole doped cubic vanadates has, with one exception (see below),
never been studied before, even the simplest theoretical studies on the hole
doped cubic vanadates should shed some light on this issue. Therefore, in this
chapter of the thesis, we look at the problem of the motion of a single hole in-
troduced into the orbitally and magnetically ordered plane of LaVO3. It should
be noted that the studies presented in Ref. [94] revealed the role of the AO
and FM order stable along the third (not studied here) direction in the doped
Laj;_,Sr; VO3, and explained the differences between the doped Y;_,Ca,VO3
and Laj_,Sr, VO3 but, by the very nature of that 1D model, could not address
the problems mentioned above. This is because, contrary to the problem solved
in this chapter, the hole moving along the third (¢) cubic direction couples to
spin and orbital dynamics separately: either orbitons (orbital excitations) in the
lightly doped C-AF phase of La;_,Sr, VO3, or magnons (spin excitations) in
the very lightly doped G-AF phase of Y;_,Ca,VOs3 [94].

Thus, the main goals are to investigate: (i) what the proper ¢—J model, which

20n the other hand, the unusual coexistence of the C-AF phase and the metallic phase
in the intermediate hole-doped regime is to some extent explained using the classical double
exchange model adopted to the t24 orbital symmetries, see Refs. [95, 96].
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governs the hole motion in the 2D AF spin- and AO orbitally-ordered state of
LaVOs, looks like, (ii) whether the hole can move coherently in LaVOs, (iii)
whether the orbital dynamics indeed seems to influence the hole motion much
more than the spin dynamics, and (iv) what is the impact of the results obtained
here on the understanding of the experimental phase diagram of the lightly
doped cubic vandates. Actually, it will occur that by working out the answers to
the above questions we will also predict the main features of the photoemission
spectra of the cleaved samples of LaVO3 with polarization corresponding to the
ab planes.

Structure of the chapter.— The chapter is organized as follows. In Sec. 4.2
we start the analysis by looking at the anticipated features of the new ¢-J model
which is derived in Sec. 4.3. Next, we solve the model in the case of the one hole
added to the undoped ground state: (i) we reduce the model to the polaron-type
Hamiltonian using the slave fermion approach in Sec. 4.4.1, (ii) we derive the
equations for the Green’s functions using the SCBA in Sec. 4.4.2, (iii) we solve
the equations obtained in point (ii) analytically (in some range parameters) and
numerically on a finite mesh of the momentum k points (Sec. 4.4.3). Then, in
Sec. 4.5 the results are discussed where, in particular, we analyse the composite
interplay of spin and orbital dynamics on the hole motion. Finally, we draw
some conclusions in Sec. 4.6 and add some general statements concerning the
hole motion in various spin and/or orbitally ordered states in the Postscriptum
in Sec. 4.7.

4.2 The ty, spin-orbital t—J model with three-site
terms

‘Rough’ predictions of the new t-J model.— It is clear that due to the to4 orbital
degeneracy present in the 3d states on the vanadium ions in La;_,Sr, VO3 even
the simplest low energy model for correlated electrons should include the orbital
degrees of freedom [73, 74]. Thus, the simple Hubbard model which describes
the correlated electrons within the s orbitals would not be sufficient and conse-
quently also the standard ¢-J model cannot describe properly the phenomena
present in lightly doped cubic vanadates (compare appropriate discussion in
Chapter 1 and Chapter 3.2). However, before we move on and derive such a
model step-by-step (see Sec. 4.3) let us try to anticipate the results obtained
there.

Actually, the J part of this new ¢-J model is presented in Ref. [83] where
the undoped classical ground state is also discussed. This state agrees with the
one observed experimentally and is precisely the same as discussed in Sec. 4.1:
the C-AF and the G-AO ordered phase. Next, one can try to imagine what
happens when a single hole is doped into the ab plane of such a state (this is the
limit in which we want to study the solutions of the new ¢-J model), cf. Fig.
4.2. In the beginning this seems to be not very hard — one only needs to recall
the discussion of Chapter 3. There it was shown that a hole in the AF state is
mobile due to spin quantum fluctuation (compare also Ref. [23]) whereas a hole
in the 3, AO state was mobile only after the three-site terms were included
in the model (see also Ref. [85]). However, then an interesting problem arises:
would a hole in a state with both orderings behave rather like the one in an AF
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Figure 4.2: Artist’s view of a single hole introduced into the spin and orbitally
ordered ab plane of LaVOs3 [the 3D order present in LaVOs is shown in Fig.
4.1(a)]. The electrons occupy the d,. and d,, degenerate orbitals forming the
classical AO state (their projections along the a and b axis are shown) whereas
the electron spins alternate on the neighbouring sites forming the classical AF
state. Note that the electrons in the always occupied d, orbitals are not shown
for clarity although their spins couple via the Hund’s rule to the electron spins
in d., and d,. orbitals and contribute to total spins S = 1 in the AF state
(besides, at the hole position spin 1/2 is left).

state or rather like the one in an AQO state or in a totally different way? This
cannot be answered easily and suggests that a new approach to the solution of
this new ¢—J model in the ‘one-doped-hole’ regime is needed. But let us now
try to analyze first why such a problem arises at all.

Reasons for no ‘rough’ predictions.— In fact, here the mere coexistence of
the AF and AO order in the undoped case represents a very exotic physics: it
formally violates [93] the Goodenough-Kanamori rules [56, 55] that state com-
plementary spin and orbital order in the ground state of a crystal with magnetic
and orbital ordering, i.e. either FM spin coexisting with AO order, or AF spin
coexisting with FO order. Although these rules are valid on the condition that
the orbitals cannot fluctuate and cannot be treated as the dynamical variables
they have been very successfull in the prediction of the ordered phase of various
compounds, such as e.g. KCuF3 with FM and AO order in the ab planes and the
AF and FO order along the c axis. As in the cubic vanadates the Goodenough-
Kanamori rules are violated this suggests that most probably® the reason for
the violations is that the orbitals should be treated as dynamical variables. Ac-
tually, indeed there are strong quantum fluctuations of the {d,.,d,,} orbitals
along the ¢ direction [83] which are responsible for the coexistence of the AO
and AF order in the plane [83] which further supports the above claim.

More careful approach to the problem needed.— The main lesson from the
last paragraph is that a more careful approach to obtain the solutions of the
new t-J model is needed: one has to take into account the spins and orbitals on
equal footing as both types of degrees of freedom have to be treated as dynamical
variables. Obviously, such approach was not needed for the standard ¢-J model
without orbital degrees of freedom but more interestingly it was also not needed

3Logically one cannot exclude other reasons for the violation of these rules.
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for the t-J model describing the situation in the ab planes of the manganites.
In the latter case the Goodenough-Kanamori rules were not violated and the
undoped ground state was the FM and AO state which meant that the hole could
move freely in the spin sector and it solely coupled to the orbital dynamics [82].

Thus not only we need a new ¢-J model to describe the physics present in
the lightly doped cubic vanadates but also we need a new approach to get the
solutions of this model. More precisely, in the case of the one hole doped to the
half-filled state this means that the hole will couple both to the excitations of
the AO ordered state (orbitons) and the AF ordered state (magnons). In the
following sections we will present the mathematical framework to investigate
the ideas of this section.

4.3 The model

4.3.1 The t,, spin-orbital ¢~/ Hamiltonian

Hubbard-like model.— The starting point is the multiorbital Hubbard model
relevant for the ¢4 orbitals in the transition metal oxides with the perovskite
structure [98, 99],

H = -t Z Z (d;ﬂadjug—l—H.C.) —I—UZnimniw

Ay p(v),o i
5
+(U - §JH) Z NipoNive’ — 2JH Z Si,u : Siv
i,u<v,oo’ iu<v
g Y ddl, diydig, (4.1)
ipn#v

where U is the intraorbital Coulomb repulsion and Jg is the on-site Hund’s
exchange interaction. Here the dI » operator stands for creation of an electron
with spin o in one of the three ¢o4 orbitals, u € {dzy,dy-,d.2}. Note that the
hopping is allowed only between the same to4 orbitals and p(7y) (where v = a, b, ¢
is a cubic direction) is chosen in such a way that the electron in each ¢, orbital
hops only in the allowed plane, cf. Ref. [71] or the more detailed discussion on
this issue in Chapter 3. Besides, the summations in the interaction terms are
done in such a way that each pair of the orbitals is included only once and the
spin operator is defined as:

1
Siy = {d;rmdiul’ dgmdima 5(”im — Nipl)} (4.2)

Let us also note, that this Hamiltonian describes rigorously the multiplet struc-
ture of the d* and d® ions in the ¢35, subspace as only one Hund’s exchange
element is involved [99].

Central Hamiltonian of this chapter.— Applying the canonical perturbation
expansion of Chapter 1 to the Hamiltonian Eq. (4.1) for the case of the two
electrons per site, relevant for the planes of lightly doped cubic vanadates, we
obtain the Hamiltonian of the spin-orbital ¢t—J model with the three-site terms:*

H = Hy + Hy + Hy, (4.3)

4In the literature the ¢t—J model with three-site terms is also called the strong-coupling
model [80]. However, we will not use this name since throughout this thesis we deal with
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where the H; is the kinetic energy in the constrained Hilbert space with no
‘double occupancies’ (see Sec. 4.3.2), H; describes the superexchange terms (see
Sec. 4.3.3) and finally Hs, are the three-site terms (see Sec. 4.3.4). Please note
that unlike in the previous chapter we will not give here the explicit expressions
for the 7y, 7;, and 7_ processes (see Chapter 1 for their definition) as they
are rather tedious. This is further backed by the fact that the complicated J
part of the ¢—J model has been already derived [100] while for the kinetic and
three-site terms will not be needed (see below).

4.3.2 The kinetic energy term

FEzplicit form.— The kinetic energy term of the ¢54 spin-orbital ¢-J model, which
describe the hopping of the electrons in the constrained Hilbert space, i.e. in
the space with singly occupied or doubly occupied sites (the lowest Hubbard
subband of the model), follow in a straightforward way from the unconstrained
hopping of electrons residing in the ¢y, orbitals. Thus in the ab plane, which
is under consideration here, electrons in d,. = a (d., = b) orbitals can hop
only along the b (a) direction. Besides, we will assume here that the dg, orbital
does not contribute to hopping elements as it lies lower in energy and is always
occupied by one electron in the half-filled and lightly hole-doped regime of cubic
vanadates [101]. Hence, we arrive at

Hy =t Y P (b bivao +af a5, +He ) P. (4.4)

Here the use of the constrained operators

bl = bl (1 — nipe) (1 — 1ias) (1 — Nigo), (4.5)
and
i, = af, (1 = nias) (1 = nivs) (1 = nise), (4.6)

means that the hopping is allowed only in the constrained Hilbert space. Be-
sides, since the Hund’s coupling dominates over the kinetic processes, Jg > t,
in the cubic vanadates [102] we project the final states resulting from the elec-
tron hopping onto the high spin states, which is denoted by the P operators in
Eq. (4.4). Note that Eq. (4.4) is a generalization of Eq. (3.6) valid only for
spinless fermions in the ¢y, system under consideration.

4.3.3 The spin-orbital superexchange terms

Exzxplicit form.— The spin-orbital superexchange in cubic vanadates is derived
in Ref. [100] [see Eqs. (6.5)-(6.7) there]. It reads,

Hjy = Hjuy + Hji2) + Hjys), (4.7)

many different extensions of the standard ¢—J models and the strong-coupling model is just
another variation of such extended version of the ¢t—J model. See also a similar footnote in
Chapter 3.3.1.
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where

1 1 z z
(ij)
1 19 1, 1, 1.
HJ(2):§JZ(Si'Sj_1) (EIFQTi ?57} —ngTj) ; (4.9)
(ij)
HJ(s):§JT3Z(Si'Sj*1) Z:F§Ti :FiTj + T7T5 ) (4.10)

(ij)

Here: S; is a spin S = 1 operator, 1Y = (R — i )/2 is a pseudospin T' = 1/2
operator, and the superexchange constant J = 4t? /U with U being the effective
repulsion between electrons on the same vanadium site and in the same orbital
and with t < U being the effective hopping between vanadium ions, see Eq.
(4.1). The factorsry = 1/(1—3n) and r3 = 1/(1+2n) (where n = Jg /U) account
for the Hund’s coupling Jy and originate from the energy splitting of various
d? excited states due to the various possible spin and orbital configurations
(multiplet structure) [83]. Let us recall, that superexchange Hamiltonian (4.7)
was derived [100] with the assumption that the d, orbital was singly occupied
at each vanadium ion (see also discussion in Sec. 4.3.2. Besides, in principle
Hamiltonian (4.7) was originally derived for the undoped case and should be
modified for the doped case by adding the superexchange interactions due to
the existence of the djdj and d}d; nearest neighbour configurations. However,
the contributions of these terms should be very small in the discussed here small
doping regime and they will be neglected.

4.3.4 The three-site terms

Identification of ‘important’ three-site terms.— The three-site terms have not
been derived before for the case of the d? systems with spin and orbital degrees
of freedom. These terms, although frequently neglected, can play an important
role in the coherent hole propagation in orbital systems (see Chapter 3 or Ref.
[85]). However, in the present case the derivation of all possible three-site terms
is relatively tedious and leads to a complex expression. Fortunately, it was
shown in Chapter 3 or Ref. [85] (for orbital systems) and in Ref. [80] (for
spin systems) that the only three-site terms which occurred to be relevant for
the lightly doped systems were these which did not contribute to the coupling
between hole and orbital or spin excitation but merely contributed to the free
hole motion (see also Sec. 4.4.1). Nevertheless, we discuss first the possible role
of the neglected three-site terms in Sec. 4.5.1.

Derivation of the ‘important’ three-site terms.— In what follows, using the
canonical perturbation theory of Chapter 1, we derive the three-site terms which
would contribute to such a motion of a single hole that it does not disturb the
AO and AF order present in the undoped ground state (see also discussion in
the beginning of Sec. 4.4.1). We start the analysis by looking at the possibility
of the free hole motion along the a direction, see Fig. 4.3. We would like to
move the electron in the b orbital (the one in the a orbital does not hop along
this direction) from the right site to the left site over the middle site in such a
way that the spin and orbital order present before the process stays intact (in
the language of Chapter 1 this means transfering the electron first with the 7.
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a orbital
b orbital

c orbital : : :
I—a | I+a

Figure 4.3: Three neighbouring sites along the a direction with such an AO and
AF order that the electron on site i + & can move over the intermediate site 4
via the superexchange process o< J to site i — a without disturbing the AO and
AF order.

and then with the 7_ process). This confines the choice of the possible high
energy intermediate d} configurations at the middle site to the states with the
total spin |3/2, —1/2) (see Fig. 4.3) and the possible states: (i) A, with energy
U — 3Jy, (ii) 2E$0 state with energy U, (iii) 2E3¢ state with energy U. Note
that all the intermediate states with orbital singlets are excluded as they would
require orbital excitations. Thus, one arrives at the following contribution (see
Chapter 1 for more details) to the free hole motion which arises due to the
three-site term processes along the a direction,

11 2\ 12 -
|\ P bT ~1a(’rbi a,o P. 4.11
<31—3n+3>U i-a,0acli+a, (4.11)

A similar consideration but for the processes along the b direction yields

11 2\ 2
_ (gm + §> % Pal o fied; g, P (4.12)
However, the 90° processes, called also around ‘the corner’ (see Chapter 3), such
as e.g. first the hopping of an electron along the b direction and then along the
a direction would not contribute to the free motion. This is because an electron
in a particular orbital can hop only along one particular cubic direction and
thus one would have to interchange the hopping of electrons at the intermediate
high energy site which would lead to the orbital excitation.

Hence, after adding the sums over all sites ¢ and spins ¢ and the conjugate
terms to Egs. (4.11)-(4.12) one ends up with:

Hay=— —J (1 +2) ZP (B4 otasbirao + He.) P
_ _J (r1+2) ZP( o T, T ) P (413)

Note that these terms are oc J and hence are of the same order in t?/U as
superexchange terms (4.7).

Finally, one may wonder how Eq. (4.13) could contribute to the free hole
motion since it contains four electron operators. However, the number operators
which stand in the middle of this equation only reflect the relevant configurations
and in fact can be dropped out in the assumed here AO and AF order. More
precisely, let us introduce two sublattices {A, B} in such a way that e.g. the
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intermediate site in Fig. 4.3 belongs to the sublattice A (with all a orbitals
occupied and the spins pointing ‘downwards’); let us also concentrate on Eq.
(4.11). Since we assumed that in this sublattice the electrons have spin ‘down’
and are located in the a orbital thus if, in addition, one assumes that ¢ =7 in
Eq. (4.11), then one is allowed to write i,y = 1 and drop out this operator.
Obviously, if one assumed ¢ =| or that ¢ € B, then one would not get any
contribution. Thus for some particular choices of ¢ and the sublattice indices
Eq. (4.11) would describe the free hole motion whereas in some other cases this
equation would not contribute at all. While writing down Eq. (4.45) in Sec.
4.4.1 we take care of this problem.

4.4 Method and results

4.4.1 The slave-fermion approach

Slave-particle formalism.— Similarly as in Chapter 3 also here we will calculate
the properties of the half-filled system with one doped hole using the slave
fermion method which takes care of the constraint of ‘no double occupancies’
in the kinetic energy term of the {—J model. In fact, this is a method of choice
for low doped ¢—J models [20] with some kind of magnetic/orbital order in the
half-filled ground state.

Undoped case: low energy ezxcitations.— It was shown in Ref. [83] that the
classical ground state of the 3D version of the Hamiltonian Eq. (4.7) is a C-AF
state and G-AO ordered state. Thus, the classical undoped ground state of the
Hamiltonian Eq. (4.3) is the (Néel ordered) AF state and AO state. Certainly,
this is not the eigenstate of the Hamiltonian and thus the full description of
the system should also take into account the quantum fluctuations around such
a classical ground state. Below, we will calculate them by transforming the
spins and pseudospins into the appropriate Schwinger bosons and then using
the linear spin wave (LSW) and linear orbital wave (already denoted as LOW,
see previous Chapter) approximation. In addition from the LSW and LOW
approach, we will obtain the spectrum of the low energy excited states.

First, in the classical state we introduce two sublattices A and B such that:
(i) all @ (b) orbitals are occupied in the perfect AO state in sublattice A (B),
and (ii) spins pointing ‘downwards’ (‘upwards’) are located on sublattice A (B).
Next we rotate spins and pseudospins on sublattice A so that all the spins
and pseudospins in the whole lattice are in the same local eigenstates with
eigenvalues of S7 and T7.

Second, we introduce Schwinger bosons ¢ and f such that:

1

Iy = 5 (b — ntia), (4.14)
L1

S = 5 = nyip), (4.15)

S = fiTTfii, (4.16)

Se = fl fir, (4.17)
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with the constraints
Z t:'ytiﬁ’ = 1’ Z fit;—fio’ =2 (418)
y=a,b o=1,1

Third, we transform the Schwinger boson operators into the Holstein-Primakoff
bosons a and f:

th = /1 - tlti = /1 - 81, (4.19)
tl, = o}, (4.20)
= \/2*fﬂfu = \/2*043% (4.21)
fi =, (4.22)

where the above constraints are now no longer needed.

Next, we substitute the above transformations into the Hamiltonian H ; and
skip higher order terms (LSW and LOW approximation). The latter approx-
imation physically means that the number of bosons « and (3, which describe
the fluctuations around the ordered state, is small. This results in the effective
substitutions:

Ty = % - Al (4.23)
S; =1—ala, (4.24)
=20, (4.25)

T =24 (4.26)

Finally, we introduce Fourier transformation separately for each sublattice
(N is the total number of sites on both sublattices):

Prea = \/726“9@, (4.27)

jeA
s = 1 & e, (4.28)

JGB
A = ,/ Z eMay, (4.29)

JEA
QkB = \/ Z Zk‘]%, (4.30)

JEB

define operators

aks = (axa £ axp)/V2, (4.31)

and perform the standard Bogoliubov transformation for magnons [23]

Gt = ukOks — vial (4.32)
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where

1+ vy -
= = — 4.33
Uk o Vi sgn(vk) S ( )

with v = /1 — 7 and the structure factor for the square lattice

1
Y = §(cos kg + cosky). (4.34)

Then, after neglecting constant terms which merely give the classical energy
of the undoped ground state, the LSW and LOW Hamiltonian for magnons and
orbitons reads:

HS = Bl + HILL, (4.35)
HL = Js > wil@] Gacy +af_dne +1), (4.36)
k
Hell = Jo Z(ﬂlAﬂkA + Bl pBen), (4.37)
k
where )
-7
Jo=nr——m~7 5 (4.38)
(1 —=3n)(1+2n)
and ,
52 —3n+1
Js /el s (4.39)

TEED

in agreement with Eq. (6.11) of Ref. [100] and Eq. (11) of Ref. [103]. Besides,
the dispersion relation for the magnons is

wk = 254/1 =12 (4.40)

where z = 4 is the coordination number, S = 1 is the value of the spin. Let
us note that in the regime of reasonable values of n € [0,0.20]: Eo is negative
whereas Jo > 0 and Jg > 0, which means that the classical ground state indeed
has coexisting AO and AF order. Furthermore, at temperature 7' = 0 the
considered here classical 2D AO and AF ground state is stable with respect
to the quantum fluctuations, both in spin and orbital channel. In fact, the
orbital order is undisturbed by local Ising excitations, while the quantum AF
ground state is modified and the order parameter is renormalized with magnon
excitations [23].

Doped hole: coupling with magnons and orbitons.— We expect that a doped
hole does not modify significantly the classical ground state stable for the half-
filled case (see above). This could play a role in the lightly doped regime, but
in the case of one hole in the whole plane such a modification is negligible and
will be neglected below. Instead, the doped hole may modify its neighborhood
by its coupling to the excitations of the classical ground state — magnons and
orbitons — which renormalize the hole motion. In order to describe it mathe-
matically, we rewrite H; (see next paragraph) and Hs, (see below) using similar
transformations as performed for the half-filled case.

First, we rotate spins and pseudospins on sublattice A. Next, using the slave-
fermion approach we express the electron operators in terms of the Schwinger
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bosons introduced above and in terms of the (constrained) fermionic operators
representing holes:

1
al, = —= it (4.41)
l(T \/_ 10 "1a

bl = 7% flTO_tlbh (4.42)

Here the constraints on the bosonic operators are as in Eq. (4.18) while h;rhi
denotes the number of holes at site i.

Note that the factor \/5 is not added ‘ad hoc’ but originates from a detailed
check of the validity of the above equations: it should always be present in the
spin S = 1 case because e.g. when one annihilates one boson in a two-boson
state with the f operator, then a factor v/2 appears. Due to this factor and the
above constraint on the number of bosons the high spin projection operators
P in H, are no longer needed (i.e. quantum double exchange [104] factors are
implicitly included in this formalism).

Next, similarly as above, we transform the Schwinger bosons into the Holstein-
Primakoff bosons, skip all terms containing more than two bosons, perform
Fourier transformation for bosons and (additionally) for holons here, introduce
ap+ operators, and finally perform Bogoliubov transformation to arrive at the
Hamiltonian:

2t - -
2N Z {Mm(k;qlaq2)hLAhl_(B(a(h+ +aCh—)ﬁQ2A

k,q1,q2
+ My (k, q1, q2)hf g hia(Gqy, — G, )Basn
+ My(k, a1, q2)h] 4 hip(@l g, — diql )Banit
+ My (K, a1, G2 phia (@l g, + 6l g, )oqn +He ), (443)

Heff

where

M#(k’ qi1, (312) = Uqy Vkp—aq1—q2u =+ Va1 Vkp—qou (4'44)

with = x,y. Here k = k — q; — qz follows from momentum conservation, and
the coefficients {uq,vq, } are the standard Bogoliubov factors (4.33).

Doped hole: free dispersion.— After performing similar transformations as
the ones introduced for the t part of the Hamiltonian one obtains that the
three-site terms, Eq. (4.13), lead to the following Hamiltonian for the holes

Hl! =+ Z {EB Vhl s + EA(k)hLAhkA} : (4.45)
where
11-2p
=7 4.46
41-3n ’ ( )

and the free hole dispersion relations on the sublattices are

ca(k) = 2cos(2ky), (4.47)
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Figure 4.4: The effective spin and orbital exchange interaction Jg (dashed line)
and Jo (dotted line) as a function of the Hund’s rule coupling n = Jg /U,
respectively. The solid line shows the dependence of the three-site term 7 on 7.
The realistic value of 7 = 0.15 (cf. Ref. [83]) is indicated by the light dotted
line.

and
ep(k) = 2cos(2k;). (4.48)

Note that, we have neglected all of the three-site terms which lead to the cou-
pling between holes and magnons and/or orbitons. This is physically justified
since then such terms would be of the order of J/4, i.e. much smaller than the
terms in Eq. (4.43). See also Sec. 4.5.1 for further discussion.

Thus in the lightly doped case, when the classical spin and orbital ordered
ground state present in the half-filled case is not destroyed, the t—J model (4.3)
can be reduced to an effective model

" =g g+ mgl, (4.49)

see Eqgs. (4.35), and (4.43)-(4.45). Actually, this is a polaron-type model with
the coupling between fermions (holes) and bosonic excitations (orbitons and
magnons), which is relatively easy to solve (see next section). The validity of
the mapping between the two models was thoroughly discussed in Ref. [23] and
Chapter 3.

Note that the original ¢-J model with three-site terms (4.3) has three param-
eters {J,n,t}, whereas the effective polaron model given by Eq. (4.49) is more
conveniently analysed when using four parameters {Jgs, Jo, T, t}, which deter-
mine the scale of spin and orbital excitations as well as free hole propagation
(due to the three-site terms) and the vertex function (t), see below. In what
follows we will use either one of these two parameter sets (and only sometimes
both of them) depending on the context. Hence, we plot in Fig. 4.4 the func-
tional relation between the parameters {Jg, Jo, 7} on Hund’s exchange . While
the magnon energies «x Jg decrease with 7, the energy scale of orbitons «x Jo
increases rapidly, so the latter excitations are expected to play an important
role in the realistic regime of parameters.

4.4.2 The self-consistent Born approximation

Green’s functions.— The spectral properties of the hole doped into the AF/AO
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ground state |®g) with energy Fy of the t—J model Eq. (4.3) at half-filling follow
from the Green’s functions:

Gay(kw) = <‘I)0 aLlw—i—H;—ankl ‘I)0> ) (4.50)
Gork,w) = <<I>0 aLTﬁakT <I)0> , (4.51)
Gy (k,w) = <<1>0 bLlﬁbki q>O> , (4.52)
Gor(k,w) = <<1>0 bLTmka cpo>. (4.53)

However, due to the mapping of the ¢t—J model onto the polaron model per-
formed in the last section, it is now convenient to express the above Green’s
functions in terms of the polaron Hamiltonian H¢f/. This requires that one
first writes down the electron operators in terms of the operators used in Eq.
(4.49):

1
ax] = — Ze“‘JhT + Ze“‘JhTa , (4.54)
VN jeA jeB
1 ikjr T ikjr T
akt = —= Ze Thj oy +Ze ThiB | (4.55)
VN \V2 & =
1 .
by = — | Y _e™nlg + — Ze”ﬂh}aj , (4.56)
VN jeA \/_JEB
b = = > eMnla;B+> " e™nl | (4.57)
jeA jeB

Second, the ground state |®g) is now a physical vacuum |0), with respect to the
Bogoliubov operators ayx+ and the operators [, with the ground state energy
FE calculated now in the LSW and LOW approximation. Then, one arrives at
the following relations:

1 1 1

Gal(k,w) = 5 <0 hkAthkA 0> = 5 GAA(k,W), (458)
1 1

GbT (k,w) = 5 <0 thmhLB 0> = 5 GBB(k,u}), (459)

where the factor 1/2 is due to the operators hxa (hikp) being defined separately
for each sublattice. Furthermore, the Green’s functions
Gar(k,w) < Gy (k,w), (4.60)
Gy (kw) < Gyt (k,w), (4.61)

correspond to excited states and thus can be skipped. Note that the above set
of equations follows from the fact that 8x|0) = 0 and the inequalities are due to

OATOQ'
<0 :

2

0> ~ % ~0.1, (4.62)
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Figure 4.5: Diagrammatic representation of the SCBA equations: top — the
Dyson’s equation for the G4 (k,w) and Ggp(k,w) Green’s functions; bottom
— calculation of the respective self-energies. Note the appearance of the two
wiggly lines in the calculation of the self-energies coming from the orbiton and
the magnon excitations.

where ng is the average number of spin deviations in the 2D ground state |0).
Note that below we will eliminate the ground state energy F to simplify equa-
tions.

Equations for the self-energy.— As seen in Section 4.4.1 the vertices in the
spin-orbital model are more complex than for the standard spin case [23]: (i)
one always has two boson and two holon lines at each vertex (instead of just one
boson and two holons lines in the standard lowest SCBA order), (ii) one has the
sublattice structure (this resembles the orbital case), (iii) one has two kinds of
magnons (which we had to introduce in order to keep track of the lattice index).
Also, in the LSW and LOW order all the terms o 04;‘61- do not contribute (the
self-energies for them would require altogether four boson lines instead of just
two for o< a;3;).% Hence, we largely follow the route which was proposed for the
orbital £, model in Chapter 3 and obtain the following SCBA equations for the
self-energies (see also Fig. 4.5):

2242
EAA(k,W) = 24N2 Z Mzz(k7 Q17 QZ)
q1,92
x Gpplk —q1 — qz2,w + Jswq, + Jo) (4.63)
2212 9
(ko w) =25 > Mk a1, q2)
q1,q2
X Gaalk —d1 — q2,w + Jswq, + Jo), (4.64)

5We have verified analytically that these terms would not lead to any k-dependence in the
spectra as in the self-energies describing such processes one can shift the summation over the
momenta in such a way that the self-energies are momentum independent (See also Sec. 4.5.1
for a similar calculation concerning the self-energies for two boson lines). Thus, these terms
would not change the qualitative feature of the calculated spectra, i.e. that the k-dependence
of the quasiparticle states originates entirely from the three-site terms. Besides, one can note
that inclusion of such terms would require going beyond the LSW and LOW approximation,
i.e. one would have to include the interactions between magnons and/or orbitons.
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where the factor 2 in front of the vertex comes from the fact that one has two
kinds of magnons (and hence two distinct diagrams). Fortunately, this factor
cancels with one of the 2 in the denominator and we obtain that the coupling
constant is simply (¢/v/2)2, i.e. we recover the factor 1/4/2 which comes out
from the quantum double exchange. The above equations should always be
supplemented by the Dyson’s equations,

1
k = 4.
GAA( ’w) erTEA(k)fZAA’ (4.65)
Crn(k,w) = 1 (4.66)

W+T€B(k)7233.

Altogether, Eqs. (4.63)-(4.66) form a self-consistent set of equations which can
be solved numerically.

Finally, one can calculate the spectral functions for a hole created in a and
b orbital:

2 1

Agk,w)=—— }E% ImG,(k,w+id) = —— }E% ImGaalk,w+1i0), (4.67)
2 1

Ab(k,w) =— - %EX}) ImeT(k,w +19) = —;(%1_% ImGBB(k,w +25), (4.68)

where we introduced a factor of 2 in front of the definition of the spectral
functions A, (k,w) for convenience.

4.4.3 The spectral functions and quasiparticle properties

Analytic calculations.— Tt occurs that in the case when the three-site terms are
absent (i.e. for 7 = 0) one can easily prove two important properties obtained
with the SCBA Eqs. (4.63)-(4.64): (i) the self-energies are k-independent, (ii)
the spectral functions contain the quasiparticle state for finite value of the ex-
change parameter J (equivalently Jg or Jo).

First, we show property (i). Since we have assumed that 7 = 0 we can rewrite
SCBA equations (4.63)-(4.64) together with Dyson’s equations (4.65)-(4.66) in
the following manner:

22t2 M2 k, ,
Yaalk,w) = -~ Z 2 (k,q1,q2) |
2N ar.a2 w + JSqu + JO — ZBB(k —q1 —q2,w + szql ¥ JO)
(4.69)
ZQtQ MQ(k,OILOIz)
enlkw) = 555 D . ;
2N avas ¥ T Jswq, +Jo —Xaalk — a1 — qz,w + Jswq, + Jo)
(4.70)
which after substitution qz — k — g2 in the sums leads to
22t2 2(qq,
Sankw)=—— > J(qi,q2) |
2N anaz © + Jswq, +Jo — EBB(q2 — q1,w + Jswq, + Jo)
(4.71)
22t2 2(q,
Sppkw) =5 > g°(d1,92) |
2N ar.az ¢ + Jswq, +Jo — Xaa(qz — q1,w + Jswq, + Jo)
(4.72)
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where we defined

f(qla q2) = Uq1Yg20 —q1 + Va1 Vq2q g(qla q2) = Uqy Vq2y —q1y + Vg1 Vqay» (473)

with v defined as in Eq. (4.34). Since the right hand side of the equations
for the self-energies do not depend on k [see Eqs. (4.71)-(4.72)], one is allowed
to drop the momentum dependence of the self-energies. Hence, the spectral
functions are also momentum independent in the case of 7 = 0 and the only
dependence on k may originate from the three-site terms.

Second, using the dominant pole approximation [22] we show that the quasi-
particle state exists [property (ii)] if J is finite (i.e. Jg or Jo are finite). Hence,
following Kane et al. we assume that the Green’s function can be separated
into the part containing the pole and the part responsible for the incoherent
processes:

aA

Gaalw) = + G5 (w) (4.74)
w—wa
Gpp(w) = —L 4 Gine () (4.75)
BB TR BBW), :
where
1
apn = T’ (476)
el
W=wA
1
ap = 55 5 (477)
L= 5 o=
w=wpg
and the pole positions:
wa=Xaa(wa), (4.78)
wp = Y4(wp), (4.79)

are to be determined self-consistently following Eqs. (4.74)-(4.75).
Next, following Ref. [22] it is straightforward to derive the upper bound for
the residues (spectral weights) {a4,ap}:

-1
<1+ 20 S Plgnq) 2 (4.80)
te 2N? q1,92 an (sz(h + ‘]0)2 ’ -
242 -1
z aA
ap <14+ — 2 , —_— . 4.81
B = { IN2 q;zg (Ch q2) (JSqu T JO)2} ( )

If the sums in the above equations are divergent, then the upper bounds for the
residues are equal zero and the Green’s functions do not have the quasiparticle
pole. Hence, one needs to check the behaviour for small values of the momenta
qi- Then Wqy ™~ |q1| but €.g. (U’Ch’ythy—lhy +UQ17qzy)2 ~ |q1|(/7q2y - ;]\1 : vquy)Q'
Thus, if at least either Jg or Jo is finite, then there are no divergences in Eqs.
(4.80)-(4.81). Consequently, under the same conditions the quasiparticle state
exists.
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Figure 4.6: The spectral functions for the hole doped into the a (left panel) and
b orbital (right panel). Parameters: J = 0.2t and n = 0.15 (i.e. Jg = 0.03t,
Jo = 0.08t, and 7 = 0.06t). Broadening § = 0.01¢ and cluster size 16 x 16.

Numerical calculations.— We calculate the spectral functions A, (k,w) and
Ap(k,w) by solving SCBA equations (4.63)-(4.64) on a mesh of 16 x 16 k-points.
The results for two different values of the superexchange constant J = 0.2¢ and
J = 0.6t are shown in Figs. 4.6 and 4.7, respectively. Also we assume the Hund’s
coupling to be quite strong, i.e. n = 0.15.5 However, such a value of the Hund’s
coupling is not only realistic but together with the observed value of J = 0.2t
gives a reasonable value of the spin-only exchange constant Jg = 0.03¢ (which
is in agreement with the observed Néel temperature in LaVO3), cf. Sec. VIB of
Ref. [100] for more detailed discussion on this issue. Thus, the spectral functions
shown in Fig. 4.6 are calculated for the the realistic values of parameters in
LaVOs3 whereas those shown in Fig. 4.7 are merely calculated for comparison.

Let us first discuss the results in Fig. 4.6. The quasiparticle peak in the
low energy part of the spectrum is clearly visible and confirms the analytic
predictions presented above. However, the quasiparticle state has a small 1D
dispersion: along the k, direction for holes doped into the b orbitals and along
the k, direction for holes doped into the a orbital. Since such a dispersion is
not present when the three-site terms are neglected (compare the above analytic
considerations) one can immediately ascribe the onset of the 1D dispersion in
the spectra to the three-site terms. Furthermore, this phenomenon is quite well
understood and we refer to Chapter 3 or Refs. [85] for a more detailed discussion
of this problem.

Besides, the excited states form a ladder-like spectrum, also with a small 1D
dispersion. Similarly as for the quasiparticle state the excited states resemble
qualitatively the spectral functions calculated for the purely orbital model, see
Chapter 3 or Ref. [85]. However, here one sees that quantitatively the spin-
orbital spectra are different than the orbital ones. In particular, they are quite
similar to those obtained for J = 0.4¢ in the purely orbital model (see Fig. 3.5
in Chapter 3) although this observation has no physical meaning since all of
the exchange constants used in the spin-orbital model (J, Jg or Jo) are much

6Note that only for didactic purpose in Secs. 4.5.2-4.5.3 we calculate the spectral functions
for n = 0. However, one should bear in mind that such a value is unphysical and inconsistent
with the assumed infinite value of the Hund’s coupling in Eq. (4.4).
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Figure 4.7: The spectral functions for the hole doped into the a (left panels)
and b orbital (right panel). Parameters: J = 0.6t and n = 0.15 (i.e. Js = 0.09¢,
Jo = 0.23t, and 7 = 0.19¢). Broadening 6 = 0.01¢ and cluster size 16 x 16.

smaller than 0.4%.

Looking at the spectral functions shown in Fig. 4.7 one notes that the
ladder-like spectrum almost disappears when the value of the superexchange
constant is increased to J = 0.6t. However, the qualitative properties of the
dispersive quasiparticle peak stay mostly unchanged and the 1D character of
the dispersion relation is preserved. Quantitatively, the quasiparticle spectral
weight and the bandwidth increases quite drastically.

To conclude, the spin-orbital spectral functions form ladder-like spectra with
a small 1D dispersion and have many similarities with the purely orbital spectra
of the tay, model, cf. Chapter 3 or Ref. [85]. Still, however, there are a few
relatively important differences with the orbital model which suggest that the
spin-orbital is definitely more complex than the purely orbital model. For the
understanding of this problem we refer to Sec. 4.5 whereas in what follows we
will further investigate the properties of the spectral functions of the spin-orbital
model.

Quasiparticle properties.— Now we analyze in more detail the quasiparticle
properties of the spectral functions of the spin-orbital model, cf. Fig. 4.8. In
addition, we compare these properties with those calculated for the spin t—J
model with three-site terms of Ref. [80] and the orbital ¢—J model with three-
site terms of Ref. [85] or Chapter 3.

By looking at the results for the spin-orbital model in Fig. 4.8 one sees that:
(i) the quasiparticle bandwidth W is strongly renormalized from its respective
free value (W = 87 as it may only originate from the three-site term dispersion
relation, see above) and is proportional to .J? for small J (J < 0.6t) and to J
in the regime of large J (J > 0.6t); (ii) the quasiparticle spectral weight agp
grows considerably with increasing J; (iii) the pseudogap A (the energy distance
between the quasiparticle state and the first excited state) exists and roughly
scales as t(.JJ/t)?/3 although for larger values of superexchange J there are some
discrepancies from this law.

Thus, one sees that the quasiparticle properties of the spin-orbital model
differ qualitatively from than those of the spin model. We should stress that
although the spin model used here is the S = 1/2 ¢-J model with the three-site
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Figure 4.8: Dependence on J of the quasiparticle properties: for the spin-orbital
model discussed in the present chapter with the Hund’s coupling n = 0.15 (solid
line), for the spin model of Ref. [80] (dashed line), and for the orbital model
of Ref. [85] or Chapter 3 (dotted line). Panel (a) shows the quasiparticle
bandwidth W, (b) — the quasiparticle spectral weight agp averaged over the 2D
Brillouin zone, (c) — the pseudogap A (energy distance between the quasiparticle
state and the first excited state) at k = (7/2,7/2). Note that A is not shown
for the spin model as it cannot be defined there. The two light solid lines on
panel (c) show the (.J/t)?/® curves fitted to the data for the orbital and the
spin-orbital model.

terms [80] but one expects similar generic behaviour in the case of spin S =1
(see also Sec. 4.5.2). Hence, as there is no qualitative agreement with the model
for spin S = 1/2 there would neither be a qualitative agreement with the model
for spin S = 1.

On the other hand, we should note significant similarities between the present
model and the orbital model (see also Fig. 4.8); the generic behaviour of the
bandwidth, the spectral weight, and of the pseudogap seems to be the same
in both models. There are, however, two differences. First, the #(.J/t)%/3 law
does not describe the behaviour of the spin-orbital pseudogap so well as in
the orbital case. Second, if one assumes that the spin-orbital model is just
qualitatively similar to the orbital model, then it should be possible to rescale all
the quasiparticle properties with such an effective value of the superexchange J
that they would coincide with the results for the orbital model. This, however, is
not possible. For example, from the fits to the #(.JJ/¢)?/3 law one can deduce that
such an effective value of the superexchange would be J.;; = (aso/a0)?/® =
0.79J, where ago = 1.94 (ap = 1.66) is the fitted coefficient which multiplies
the t(J/t)?/3 law in the spin-orbital (orbital) case. On the other hand, a similar
fit to the quasiparticle spectral weight would require that such a J.ss would be
bigger than J.

In summary, the properties of the quasiparticle state in the spin-orbital
model resemble those found for the quasiparticle in the purely orbital to; model
of Chapter 3. However, some detailed analysis presented in this section reveals
that such a correspondence is rather ‘superficial’ and that few of the qualitative
features of both models are different. We refer to the next section for the
thorough understanding of this phenomenon.
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4.5 Discussion

4.5.1 Validity of the results

General remarks.— In order to solve the ¢y, spin-orbital t—J model in the case
of one hole doped in the half-filled ground state we have introduced several
approximations. Actually, they can be cast into two distinct classes: (i) those
related with the introduction of the slave fermions, and (ii) those related with
the SCBA method. However, the shortcomings of these two approximations
were studied in detail by many authors (cf. Refs. [28, 105, 106] or Chapter
3 of this thesis) and it occurred that none of them were severe. On the other
hand, there could potentially be a problem with the ¢-J model itself: although,
following suggestion in Chapter 3 or Ref. [85], we included those three-site terms
which lead to the free hole dispersion (see Sec. 4.3.4) we neglected all of the
others. Thus, below we take a closer look at this problem.

Neglected three-site terms.— A careful analysis leads to the conclusion that
all the three-site terms which do not contribute to the free hole motion would
lead to the coupling between a hole and either two magnons or two orbitons.
Since orbitons are local excitations, see Eq. (4.37), the latter contribution would
only slightly enhance the string potential in the present model and consequently
the spectral functions would bear even more signatures of the ladder spectrum.
However, this effect will be quantitatively very small as the three-site terms
would contribute to the vertex as « (J/4) (see below) whereas the magnon-
orbiton vertices considered in this chapter are of the order of . Thus, one can
safely neglect these terms.

On the other hand, neglecting the terms which would lead to the interaction
between a hole and two magnons is not a priori justified. One could imagine that
it might lead to the hole motion by coupling to the quantum spin fluctuations
— similarly as in the standard spin case with the coupling between a hole and a
single magnon. Thus, we investigate this problem in detail: (i) we derived the
respective three-site terms, and (ii) we performed all the transformations as in
Sec. 4.4.1 which lead to the Hamiltonian written in the polaron representation.
Since all these calculations are relatively tedious we do not explicitly write
down all the steps but merely present the final Hamiltonian which describes the
coupling between a hole and two magnons

1 nJz 1
H2e'rj;f = a1 — 3 2N Z {Vly (k, Q17qz)hkAhkA
k,q1,q2
X (dCI1+dCI2+ + O‘CI1+O‘CI27 - achfdcuf - dQ176‘Q2+)

+ Vlﬂﬁ(k; q1, q2)hLBhEB(&Q1+6‘q2+ + dQ1+6‘Q27

- dqlfdou - dql dCI2+) + H.C.}
1 Jz
R — 3 2N Z {V2y (k, Q17q2)hkAhkA
k,q1,q2

X (O‘CI1+O‘CI2+ + O‘CI1+O‘CI27 + CYq17 aqu + aqlf O‘CI2+)

+ Vo (k; q1, q2)hLBhl_<B (dq1+5‘qz+ - dQ1+6‘Q27
+ g, Gqy — g, dq,)+He), (4.82)
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where

1 1
Vip(k,d1,92) =§uq1uq2 cos(2ky — 2q1u — qop) + §vq1vq2 cos(2k, — q2u),
(4.83)

and

1
VQ,LL (k, q1, QZ) = Zuqlqu COS(2k# - 2Q1u)7 (484)
with all the symbols defined as those in Eq. (4.43). Note that above we have
neglected all terms of the type o< &'@ as they would lead to the four boson line
diagrams (the self-energies with two magnon lines are very small, see below, and
hence the self-energies with four magnon diagrams would be even smaller).
Next, we implement the processes derived above into the SCBA method and
obtain the following equations for the additional self-energies:
’ Z2A2 2
EAA(kﬂw) - Z {ley(k7 qlqu)i‘/Q’y(kv qlqu)}

2N?2
d1,92

XGaa(k—q1— gz, w+ Jswq, + Jswqs,)

22

A2 2
o D ik an ) + Vay (K. a2)}
q1,q92

xGaa(k— q1— gz, w+ Jswg, + Jswa,) } (4.85)

’ Z2A2 2
Yppkw) = N2 Z {nV12(k, q1,q2) = Vau(k, q1,92) }

q1,92
xGppk—d1— q2,w+ Jswq, + Jswq, )

+ ;2]\)7\2 q;;z{nVu(k, q1,49z2) + Vau (k, a1, Q2)}2
xGpp(k—q1— qz,w+ Jswg, + Jswq,), (4.86)
where
1 J

=1_ e (4.87)

This requires that one substitutes for the self-energies:
Saalk,w) = 24k, w) + Saalk,w), (4.88)
Sppk,w) — Sk w) + Spsk,w), (4.89)

in the Dyson’s equations (4.65)-(4.66) which changes the SCBA equations.
Finally, we solve the modified SCBA equations on a mesh of 16 x 16 points. It
occurs that the spectral functions obtained with the additional self-energies Eqs.
(4.85)-(4.86) are virtually similar to those obtained without them (unshown).
The only small difference is the very small enhancement of the incoherent part.
This can be understood in the following way. First, the added contributions scale
as (J/4)* and are very small as J < t. Second, the vertices, Eqs. (4.83)-(4.84),
are singular at e.g. q; = (0,0) and q2 = (0,0) points. Therefore, the self-
energies associated with these vertices could only contribute to the incoherent
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Figure 4.9: Spectral function along the I' — M direction of the Brillouin zone
for: the spin-orbital model (top panels), spin toy-model (middle panels), orbital
toy-model (bottom panels). J = 0.2t and n = 0 (i.e. Js = 0.05¢, Jo = 0,
but 7 = 0, see text) on the left panels whereas J = 0.2t and n = 0.15 (i.e.
Js = 0.03t, Jo = 0.08t, but 7 = 0, see text) on the right panels. Note that
7 = 0 implies (see Chapter 3) A,(k,w) = Ap(k,w) = A(k,w). Broadening
d = 0.01¢ [6 = 0.02¢ on panel (f)] and cluster size 16 x 16.

part of the spectrum [the divergent vertices lead to the divergences in denomi-
nators of equations (4.80)-(4.81) yielding the upper bounds for the quasiparticle
residues in the dominant pole approximation]. The physical interpretation of
this phenomenon is as follows: (i) the hole produces two magnon excitations at
each step it moves forward, (ii) the hole always moves by two sites in a single
step (as the three-site terms lead to the next nearest neighbour hopping), (iii)
magnons ‘travel’ in the system and cure the defects created by the hole at a
‘velocity’ one site per each step. Thus, the magnons are not ‘fast’ enough to
erase the defects created by the hole.

In conclusion, neglecting the three-site terms which do not lead to the free
hole motion is entirely justified. Such processes are not only quantitatively small
but also they do not change the physics qualitatively.

4.5.2 The role of the joint spin-orbital dynamics

Purpose of this section.— The main task of this and the next section is to under-
stand the spectral functions and the quasiparticle properties of the spin-orbital
model. In particular, we not only want to understand the peculiar similarities
or rather small differences between the spin-orbital model and its purely orbital
counterpart, which were discussed in Sec. 4.4.3, but also we want to understand
why the spin physics seems to be ‘hidden’ in the present spin-orbital system.
Note that for the sake of simplicity in this section we will entirely neglect the
three-site terms (4.13) in the spin-orbital model (4.3) (or in other words we will
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Figure 4.10: Spectral function along the I' — M direction of the Brillouin zone
for: the spin-orbital model (top panels), spin toy-model (middle panels), orbital
toy-model (bottom panels). J = 0.6t and n = 0 (i.e. Jg = 0.15¢, Jo = 0,
but 7 = 0, see text) on the left panels whereas J = 0.6t and n = 0.15 (i.e.
Js = 0.09¢, Jo = 0.23t, but 7 = 0, see text) on the right panels. Note that
7 = 0 implies (see Chapter 3) A,(k,w) = Ap(k,w) = A(k,w). Broadening
d =0.01¢ [6 = 0.02¢ on panel (f)] and cluster size 16 x 16.

put 7 = 0). This is motivated by the fact that the role of the three-site terms is
solely to provide dispersion in the spectra (see Sec. 4.4.3) and the mechanism
of this dispersion is quite well understood, see Chapter 3.

Introducing auziliary toy-models.— We start the analysis with the introduc-
tion of two artificial toy-models whose results will be later compared to those of
the t—J spin-orbital model. First, we define the following ¢—Jg spin toy-model

Hs=—t Y P(&],é0 + He)P+Js Y Si-S;, (4.90)
(ij).o (ij)

where spin S = 1, the constrained operators ¢ = cga(lfnig), and the operators
P project onto the high spin states. Note that here the superexchange energy
scale is Jg [see Eq. (4.39)] and not J. Hence, it is defined in such a way
that it mimics the formation of the AO order. On the other hand, the kinetic
energy is blind to the AO here and Eq. (4.4) reduces to the kinetic part of
Eq. (4.90) only if the orbitals form an orbital liquid state. This is an obvious
logical inconsistency but the aim here is to see what happens when the joint
spin-orbital dynamics in the kinetic energy is entirely neglected. It is also the
reason why we call model (4.90) the toy-model.
Second, we define the following ¢-Jo orbital toy-model

Ho=—tY (blbipa+afa, q+He) +Jo »  TFTY, (4.91)
i (ij)
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with pseudospin operator T' = 1/2, and the constrained operators l;iT = b: (1-
nig) and @ = aI(l — ng). Similarly as in the spin toy-model defined above,
the superexchange energy scale is not J but Jo [Eq. (4.38)] which mimics the
formation of the AF order. Also, the kinetic energy is blind now to the AF order
and Eq. (4.4) reduces to the kinetic part of Eq. (4.91) only if the spins form the
FM order. This again is logically inconsistent — see, however, discussion above.

Next, we solve these models using the SCBA method in the case of the one
hole doped into the AF (AO) state for the spin (orbital) toy-model. We do not
show here the respective SCBA equations as these follow from those written in
Ref. [23] (Chapter 3) in the case of the spin (orbital) toy-model. One only has
to substitute in the respective SCBA equations J — —Jg, S — 1 and (due to
the double exchange factor) also ¢t — t/+/2 in Ref. [23] in the spin case and
J — —Jo, By — 0, and 7 — 0 in Chapter 3 in the orbital case. We then
calculate the respective spectral functions on a mesh of 16 x 16 k-points. Note
that since 7 = 0 the spectral functions for both orbital flavours are equal, i.e.
Aqk,w) = Apk,w) = A(k,w).

Finally, we compare the results obtained for the above toy-models with those
obtained for the spin-orbital model ¢-J model, Eq. (4.4)-(4.7). We show the
results for two different values of J, see Figs. 4.9 and 4.10. In addition, we
calculate the results for two different values of the Hund’s coupling n = 0 and
1n = 0.15 (see left and right panels of each figure).

Comparison between toy-models and the spin-orbital model.— Let us first
look at the physical regime of n = 0.15 and J = 0.2¢, see Fig. 4.9(d)-4.9(f). One
sees that the spin-orbital spectral function [panel (d)] resembles qualitatively the
ladder spectrum found in the orbital model [panel (f)] although the quantitative
comparison reveals strong differences between the two models. Still, the spin-
orbital spectral function is entirely different from the k-dependent spin spectral
function [panel (e)]. Next, somewhat similar behaviour is found for the case of
n=10.15 and J = 0.6, see Fig. 4.10(d)-4.10(f). Here, however, the spin-orbital
spectrum is qualitatively different than the orbital spectrum.

Even more inquiring behaviour is found in the unphysical regime of n = 0
(which, however, is an interesting limit, see also footnote 6 in this chapter).
Then neither of the panels shown in Fig. 4.9(a)-4.9(c) or Fig. 4.10(a)-4.10(c)
is similar to each other. This means that even the orbital model is entirely
different in this regime than the spin-orbital model. This is because in this
limit the hole moves in the orbital model incoherently as Jo = 0 for n = 0, see
e.g. Fig. 4.9(c). However, apparently in the spin-orbital model with Jo = 0 and
small but finite Jg the hole moves in string-like potential, see e.g. Fig. 4.9(a).
This means that the onset of the ladder-like spectrum in the spin-orbital model
in this regime cannot be explained easily in terms of the purely orbital model.

In addition, one sees that whereas one gets similar spin-orbital spectra for
different values of 1 but the same values of J, the spectra found for the orbital
model are different. On the contrary, for different values of J and the same
values of 7 the spin-orbital spectra are rather distinct but the spin spectra do
not change much. This is another argument which suggests that neither the
spin toy-model nor the orbital toy-model can explain the properties of the spin-
orbital spectra.

Conclusions.— To conclude, we note that the joint spin-orbital dynamics
in the kinetic part of the spin-orbital model plays a significant role for the
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Figure 4.11: Comparison between the spectral functions of the classical limit
(dashed lines) and full quantum (solid lines) version of the spin-orbital model
at a single point in the Brillouin zone. Panel (a) shows results for J = 0.2¢ and
n =20 (ie. Jg =0.05¢t, Jo =0, but 7 = 0, see text) whereas panel (b) shows
results for J = 0.6t and n = 0 (i.e. Jg = 0.15¢, Jo = 0, but 7 = 0, see text).
Note that 7 = 0 implies (see Chapter 3) A,(w) = Ap(w) = A(w). Broadening
§ =0.01¢ (6 = 0.015¢) in panel (a) [(b)] and cluster size 16 x 16.

coherent hole motion. The purely spin or orbital toy-models cannot reproduce
the spectral function found for the spin-orbital ¢-J model. Hence, indeed the
spin-orbital spectral functions resemble the orbital ones only superficially and
it is the peculiar interplay of the spins and orbitals, studied in the next section,
which leads to the calculated spectra.

4.5.3 Suppression of quantum fluctuations

Classical limit.— In this section we attempt to understand the spin-orbital spec-
tra by assuming that the spins S = 1 are purely classical objects. Hence, we
skip all the spin flip terms o S;FSJ._ in the Hamiltonian Eq. (4.7), we rewrite
SCBA equations (4.63)-(4.64) in this case, and finally try to compare the spec-
tral functions calculated in this regime with the ones obtained for the full model,
Eq. (4.3). In addition, we not only assume 7 = 0 as in the previous section but
we also take n = 0 (which implies Jo = 0 in particular), see also footnote 6 in
this chapter. In the end of this section we discuss the impact of the finite value
of these parameters on the results obtained here.

Since uq, = 1, vq, = 0, and wq, = 4 for the S = 1 classical spins [23] we can
rewrite self-energy equations (4.69)-(4.70),

22t2 ’72
E k _ diz 4.92
aa(k,w) N2 qlz;ZerJSzS—EBB(OIl,wﬁLJSZS), 492)
2212 ’73
5 N _ 1y 4.93
BB( ’w) IN?2 qlzq2w+Jszs_EAA(qlaw+Jszs), ( )

where we already substituted q; — k — q1 — q2 in the sums. Then the above
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self-consistent equations are momentum independent and one obtains

RS z/2
Baalw) = (ﬁ) w+ Jsz8 — Ypp(w + Jsz5)’ (4.94)

ot z/2
Epp(w) = (E) w—i—JszS—EAA(w—i-JszS)’ (4.95)

since 1/N 35 72, = 1/2z, where v = z,y.

Classical and quantum limits coincide.— We solve Eqs. (4.94)-(4.95) selfcon-
sistently. The respective spectral functions are shown in Fig. 4.11 for J = 0.2¢
(i.e. Jg = 0.05t) and J = 0.6t (i.e. Jg = 0.15¢). As expected, one obtains a
typical ladder spectrum. However, one sees that the results resemble those ob-
tained for the full spin-orbital model Eq. (4.3) with = 0 and 7 = 0: Although
the spectrum of the full spin-orbital model contains some incoherent part, the
ladder peaks of the full spin-orbital model and of its classical version almost
coincide. In addition, the incoherent bandwidth in the J = 0 limit is W = 4¢
in the classical case whereas it is only slightly reduced in the quantum model
(W ~ 3.7t). 7 For finite J this results in the small shift of the peaks in the full
spin-orbital model with respect to its classical counterpart. This all suggests
that the classical and the full (quantum) versions of the spin-orbital models are
to a large extent equivalent.

Interpretation of the classical limit.— On the other hand, Eqs. (4.94)-(4.95)
are almost identical to the SCBA equations for the hole moving in the S = 1/2
spin Ising model [cf. Eq. (20) in Ref. [23]]. The only differences are: the
self-consistent dependence of the self-energies on two different sublattices, the
reduction of the nearest neighbours by a factor 1/2 (in the numerator), a factor
1/4/2 in the hopping element, and the increase of the magnon excitation energy
by a factor of 2. Whereas the first two imply the zig-zag hole motion in the
ordered state (see Chapter 3) the two others merely mean that the hole moves in
the spin S = 1 system. Thus altogether, the hole motion in the full spin-orbital
model with n = 0 and 7 = 0 can be quite well approximated by the zig-zag hole
motion in the S = 1 spin Ising model.

Orbitally induced spin strings.— The whole analysis written above leads us
to conclusion that in the limit of Jo = 0 and 7 = 0 the hole moves in the spin
and orbitally ordered plane in the following way: (i) the orbitals force the hole
to move along the zig-zag paths even in the limit of Jo = 0, (ii) the orbitals force
the hole to retrace its path again even in the limit of Jo = 0 — this is similar to
the situation discussed by Brinkman and Rice [67] where the hole in the Ising
spin model with J = 0 always has to retrace its path, (iii) the coherent hole
motion by coupling to the spin fluctuations is impossible in the ground state as
then the hole would not retrace its path, (iv) instead the hole creates strings
in the spin sector which are erased when the hole retraces its path. Thus, one

"The obtained value of the incoherent bandwidth W = 4t in the classical limit well agrees
with the retracebale path approximation formula W = 4t.g+v/1, where the effective hopping
tef = t/v/2 due to the double exchange and | = 2 is the number of possible forward going
steps in the classical spin-orbital model, cf. discussion in Chapter 3.4.3. Note also that the
narrowing of the bandwidth in the quantum case is due to the fact that the effective number
of forward going steps, which the hole can make so that the spins become misaligned (which
is the essence of retraceable path approximation), is slightly reduced. This is because some
of the spins are already overturned due to the quantum spin fluctuations in the full quantum
model.
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notes here a complex interplay of spins and orbitals. In particular, due to point
(ii) the orbitals constrain the spin dynamics and force the spins to effectively
act on the hole as the classical objects.

Subtle issues.— Finally, there are only two subtle issues. First, the model
of the zig-zag hole motion in the S = 1 spin Ising model does not explain the
appearance of the small momentum independent incoherent part in the excited
part of the spectrum in the quantum spin-orbital model. This can be understood
in the following way: although the hole has to return to the original site (due
to the orbitals) the magnons present in the excited states can travel freely in
the system. Hence, the energies of the excited states can no longer be classified
merely by the length of the retraceable paths (as it would be the case in the
classical model with no dispersion in the magnon spectrum). This results in
the small incoherent spectrum which surrounds each of the peak of the ladder
spectrum, cf. Fig. 4.11. Furthermore, this incoherent spectrum grows with
increasing Jg as then the velocity of the magnons increases.

Second, one may wonder how to extend the above understanding of the
spin-orbital polarons to the case of finite values of orbital exchange interaction
7 (which results in the finite value of Jo, see Fig. 3.4) or finite three-site
hopping term 7. Actually, including the nonzero value of Jo merely leads to
the substitution of JszS — JgzS + Jo in Eqgs. (4.92)-(4.93) and consequently
(4.94)-(4.95); this means that an additional string-like potential, coming this
time from the orbital sector, acts on the hole. On the other hand, including
the three-site term results in the shift w — w4+ e4(k) and w — w + ep(k) in
Eqs. (4.92)-(4.93) which means that these equations cannot be reduced to the
momentum-independent equations (4.94)-(4.95). However, one can still solve
the model. The results (not shown) resemble those found in Figs. 4.6 and
4.7: it is again only the incoherent part which is slightly enhanced in the full
spin-orbital model (4.3) whereas in its classical counterpart it is suppressed.
Furthermore, all of the quasiparticle properties of the full spin-orbital model
shown in Fig. 4.8 are almost perfectly reproduced by the classical spin-orbital
model (not shown) — with the only slight discrepancy being in the region of the
slight deviation from the t(.J/t)?/% law for the pseudogap of the full spin-orbital
model.

Conclusions.— To conclude, one should note that the quantum spin fluctu-
ations are to a large extent suppressed in the spin-orbital model by the simul-
taneous coupling of the hole to both spin and orbital excitations. In particular,
they do not affect the quasiparticle state and merely add as a small incoherent
spectrum in the incoherent high-energy part of the ladder spectrum. This is
due to the classical character of the orbitals which confine the hole motion and
prohibit its coherent motion by the coupling to the quantum spin fluctuations.
On the other hand, the hole still couples to the spin degrees of freedom, mostly,
in a classical way, i.e. by generating string potential due to defects created by
hole motion. Thus, the string which acts on the hole moving in the plane with
AO and AF order is of the composite orbital and spin character. This not only
explains the peculiar correspondence between the orbital and spin-orbital model
but also explains that the spins ‘do not hide behind the orbitals’ but play an
active role in the lightly doped spin-orbital system.
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4.6 Conclusions

Purpose of this chapter.— The purpose of this chapter was to study the motion
of a single hole doped into the Mott insulating AF and AO ordered plane of
LaVOs3 [83], shown schematically in Fig. 4.2. In what follows we will answer
this problem by discussing in subsequent paragraphs the answers to the four
tasks posed in the introduction to this chapter.

Form of the proper model.— First, in Sec. 4.3 we showed that such a hole
motion is governed by the respective t—J model [100] with S = 1 spin and tq,
orbital degrees of freedom supplemented by the required here three-site terms,
see Ref. [85] or Chapter 3 (which were derived in Sec. 4.3.4 and 4.5.1) and we
used this model as the starting point of the analysis. Similarly as in Chapter 2
and 3 one had to be very careful while studying the newly derived extended t—J
model. As discussed in detail in Sec. 4.2 due to the violation of the Goodenough-
Kanamori rules [93] we had to take into account the spin and orbital dynamics
on equal footing. This was explicitly showed in Sec. 4.4.1 where we reduced
this model to the polaron-type model and showed that indeed the hole couples
simultaneously to the collective excitations of both the AF state (magnons) and
the AO state (orbitons).

Coherent hole motion in LaVOs;.— Second, we solved the model using the
SCBA method and calculated both analytically using the dominant pole approx-
imation and numerically using the SCBA equations that the spectral functions
contain a stable quasiparticle peak, provided the value of the superexchange J
was finite (see Sec. 4.4.2-4.4.3. Thus, the added hole can move coherently in
LaVOs3. Let us note that this was not a trivial result as it was not a priori clear
whether a coupling between a hole and two excitations would lead to a stable
quasiparticle state — e.g. the coupling between hole and two magnons does not
lead to the stable quasiparticle peak, cf. Ref. [80] and Sec. 4.5.1. However,
since the orbitons are massive excitations the hole does not scatter too much on
the excitations and the quasiparticle solution exists.

Influence of the spin and orbital dynamics on the hole motion.— Further-
more, apart from verifying all the approximations leading to the obtained results
(Sec. 4.5.1) we studied in detail the properties of the quasiparticle states (see
second part of Sec. 4.4.3). In particular, we looked at the differences between
the well-known spin [23] or the t5, orbital (see Chapter 3 or Refs. [82, 85]) po-
larons and the obtained here spin-orbital polarons. We checked that all of the
typical quasiparticle properties of the spin-orbital polarons such as the band-
width, the quasiparticle spectral weight, and the pseudogap (the distance be-
tween the quasiparticle peak and the next excited state) are qualitatively similar
to those of the o, orbital polarons and it is the string picture which dominates
in the quasiparticle properties. For example the bandwidth scales as t(J/t)?
and arises solely due to the renormalization of the three-site terms, similarly as
in the purely orbital ¢, model, see chapter 3. 8

However, a more detailed investigation (Secs. 4.5.2- 4.5.3) led to the con-
clusion that microscopically the spin-orbital polarons are much more complex
and resemble the orbital polarons only superficially. Actually, we showed that
the spin degrees of freedom also play a significant role in the formation of the

8Note that the occurrence of the small but still finite bandwidth confirms the idea of the
absence of hole confinement in transition metal oxides with orbital degeneracy presented in
Chapter 3 or Ref. [85].
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spin-orbital polarons although they are forced by the orbitals to act on the hole
as the classical Ising spins. This is because the orbitals confine the hole motion
by forcing the hole to retrace its path which means that the hole motion by cou-
pling to the quantum spin fluctuations is prohibited. Thus, the string picture
which dominates in the spin-orbital polarons is enforced by the orbitals but it
is of a joint spin-orbital nature. Lastly, it occurred that it is only in the excited
spectrum that the quantum spin fluctuations contribute and are responsible for
a small incoherent dome in the spectral function.

Let us also make a side but important remark: actually, the suppression
of quantum spin fluctuations by orbitals could be understood as a topological
effect. This is due to the fact that it happens even if the energy of the orbital
excitations is turned to zero, i.e. when the hole can move in the orbital sector
freely. Hence, the mere presence of orbitals is enough to obtain the (almost)
classical behaviour of a hole doped into the ground state with AF and AO order.

Eztensions to finite doping.— Certainly, the extension of the one-hole result
to the finite doping is always ‘shaky’ and, thus, to further verify the problem
why the orbital dynamics seems to drive the hole motion in the lightly hole-
doped La;j_,Sr, VO3 more theoretical studies on the doped cubic vanadates are
needed. Still, the results presented here seem to capture the generic role of the
orbital and spin dynamics in the lightly doped cubic vanadates.

Final remarks.— An important prediction of this chapter is that if a pho-
toemission spectrum was measured on the cleaved LaVO3; sample, then it would
look as the one obtained in Fig. 4.6. The reader may wonder whether (apart
from the matrix-elements effects responsible for certain redistribution of spectral
intensity) any other processes, such as for example the electron-phonon inter-
action, would affect hole motion to such an extent that the spectral functions
calculated here would change qualitatively. Although we have not made any
calculations for such a more complex case so far, we suggest that they would
only enhance the ladder spectrum obtained here, since typically the studied
mechanisms are only responsible for further localization of the hole.”

4.7 Postscriptum: spin, orbital and spin-orbital
polarons

General considerations.— In this section we intend to give a brief overview of
what happens when a single hole is doped to one of the following magnetically
and/or orbitally ordered ground states: (i) the AF-type of order, (ii) the AO-
type of order with e, alternating orbitals, (iii) the AO-type of order with ¢,
alternating orbitals, (iv) the coexisting AF and to, AO ordered state. Actually,
the last two cases were thoroughly discussed in the previous and this chapter
(respectively) while the first two cases were studied in Ref. [23] and Ref. [82]
(respectively). Thus, here we only repeat the results already obtained — in order
to get a better insight into various processes which lead to the hole motion in
the spin and/or magnetically ordered states.

Spin polaron.— A single hole doped into the half-filled Mott insulating
ground state with AF order (which could correspond to the undoped planes

9 Apart from considered here processes connected with the hopping ¢ (string formation)
other coupling mechanisms, e.g. due to the electron-phonon interaction, may contribute to
orbital polaron formation, see e.g. Ref. [90].
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Figure 4.12: Panel (a): Artist’s view of the defects created by a single hole
doped into the spin AF ordered state. Red arrows denote the AF ordered ground
state at half-filling, while black arrows denote overturned spins due to the hole
propagation from the point where it was originally doped (dashed empty circle)
to the arbitrarily chosen point at the upper-left corner (full circle). Note that
the quantum spin fluctuations can flip the spins and (pairwise) erase the defects
created by the hole (therefore, in the figure, the overturned black spins have
the red arrows as well). Panel (b): spectral density A(k,w) (independent of the
spin of the removed electron) of the spin t—J model [23] with J = 0.4t along the
particular directions of the 2D Brillouin zone.

of the high-T. cuprates such as e.g. LasCuQOy or SroCu05Cly [20]) does not
move freely as its motion disturbs the spin order [21]. Instead, it couples to the
collective (delocalized) excitations of the AF ordered phase (magnons), and it
propagates through the lattice together with a ‘cloud’ of magnons [22]. Thereby
the energy scale of the ‘coherent’ hole propagation is strongly renormalized and
is given by the AF superexchange constant J. In this way a quasiparticle is
formed which is frequently called in the literature a spin polaron [23]. Figure
4.12 shows in more detail the most characterstic type of motion here [i.e. how
the hole moves by coupling to the spin fluctuations, see panel (a)] and what the
corresponding spectral function looks like [panel (b)].

eg orbital polaron.— A slightly different behaviour can be found in the planes
with FM spin order and e, AO orbital order (as in the ab planes of LaMnOs,
see Ref. [76]). It has been shown [82] that although the hole introduced into
such a state does not disturb the FM spin order, it couples to the collective
excitations of the AO state (orbitons). Here again a quasiparticle is formed
which is called this time an eq orbital polaron. It should be noted, however,
that the orbital polaron has an even smaller bandwidth than the spin polaron
[82], as the orbitons are in general much less mobile than the magnons (or
even immobile) due to the lack of the SU(2) symmetry in the orbital systems
[107] and almost directional Ising-like superexchange [76, 84]. Actually, one can
understand the hole motion in this case in terms of the string picture:'° The
hardly mobile orbitons cannot repair the string of the misaligned orbitals in
the AO state, which arises due to the hole propagation on the corresponding
path. Thus, it is the hole which has to return to the original site and cure

10Note that although the string picture alone cannot explain the previously mentioned hole
motion in the AF ordered state, it may serve as a perfect starting point for the investigation
of the behaviour of holes doped into the AF phase, see Ref. [108].
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Figure 4.13: Panel (a): Artist’s view of the defects created by a single hole doped
into the e, AO state (with alternating ds,>_,» and d,2_,» orbitals. Black or-
bitals denote the AO ordered ground state at half-filling. The hole moves from
the point where it was originally doped (dashed empty circle) to the arbitrarily
chosen point at the upper-left corner (full circle). Note that the AO order at
half-filling can in principle stay unchanged due to the possibility of the very
small interorbital hopping (shown) although the hole also moves by creating
defects in the AO state which can be ‘sometimes’ cured by the very small quan-
tum pseudospin fluctuations (not shown). Panel (b): spectral density A(k,w)
(independent on the orbital flavour of the removed electron) of the e, orbital
t—J model [82] with J = 0.1¢ (i.e. J = 0.4¢ in the convention used in this thesis)
along the particular directions of the 2D Brillouin zone.

the defects by retracing its path, unless it propagated due to small off-diagonal
hopping in an e, system [82] and no defects were created on its path (the latter
process also contributes to the above mentioned very small bandwidth of the
orbital polaron). Figure 4.13 shows in more detail the most characteristic type
of motion here [i.e. how the the hole moves by the small interorbital hopping,
see panel (a)] and what the corresponding spectral function looks like [panel
o

tag orbital polaron.— In the previous chapter an even more extreme situation
of the system with orbital order was investigated: The case of a hole doped into
the plane with FM spin order accompanied by the ¢, AO order (which could
correspond not only to the hole introduced into the ordered ground state of
SroVO4 with o4 orbitals but also, surprisingly, to those of KoCuFy4 or CsoAgFy
with d,2_,2» and d,2_,2 active orbitals). Also here a quasiparticle (tz, orbital
polaron) is formed due to the dressing of a hole by the collective excitations of the
ground state with AO order. However, due to the specific t54 orbital symmetries
the orbitons are not mobile at all, the off-diagonal hopping is prohibited, and the
quasiparticle acquires a finite bandwidth only due to the frequently neglected
three-site terms. Thus, the string picture dominates the character of the ta4
orbital polarons even more than in the case of systems with e, orbital degrees
of freedom. Figure 4.14 shows in more detail a representative path arising due
to hole propagation [i.e. the hole trapping due to the creation of strings by the
hole motion, see a representative path on panel (a)] and what the corresponding
spectral function looks like [panel (b)].

tag spin-orbital polaron.— Finally, in this chapter we investigated what hap-
pens when a hole is introduced into the plane with both 5, AO order and AF
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Figure 4.14: Panel (a): Artist’s view of the defects created by a single hole
doped into the 5, AO state. Blue orbitals denote the AO ordered ground state
at half-filling, while black orbitals denote overturned pseudospins due to the hole
motion from the point where it was originally doped (dashed empty circle) to
the arbitrarily chosen point at the upper-left corner (full circle). Note that there
are no quantum pseudospin fluctuations which can erase the defects created by
the hole. Panel (b): spectral density A, (k,w) of the to, orbital t—J model (3.5)
with J = 0.4t along the particular directions of the 2D Brillouin zone.
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Figure 4.15: Panel (a): Artist’s view of the defects created by a single hole
doped into the t3; AO and S = 1 spin AF ordered state. Red arrows and
blue orbitals denote the AF and AO ordered ground state at half-filling, while
black arrows and black orbitals denote overturned spins and pseudospins due
to the hole motion from the point where it was originally doped (dashed empty
circle) to the arbitrarily chosen point at the upper-left corner (full circle). Note
that there are no quantum pseudospin fluctuations which can erase the defects
created by the hole while the quantum spin fluctuations are suppressed by the
orbitals. Panel (b): spectral density A, (k,w) of the o4 spin-orbital ¢-J model
(4.3) with J = 0.2t and n = 0.15 along the particular directions of the 2D
Brillouin zone.

spin order (which corresponds to the hole introduced into the ab planes of cu-
bic vanadates such as e.g. LaVO3). Here, the quasiparticle is also formed (2,
spin-orbital polaron) but unlike in all of the above cases the hole is dressed here
by two types of bosons: orbitons and magnons. Surprisingly, it occurs that the
orbital physics dominates here and the spin-orbital polaron resembles the or-
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bital polaron to a large extent. This is due to the fact that the orbitals force the
hole to retrace its path and hole motion by coupling quantum spin fluctuations
is here blocked. Figure 4.15 shows in more detail a representative path arising
due to hole propagation [i.e. the hole trapping due to the creation of strings by
the hole motion, see panel (a)] | and what the corresponding spectral function
looks like [panel (b)].

Conclusions.— The common feature of all these four polarons (quasiparti-
cles) is that all of them have rather large spectral weights (i.e. the incoherent
processes are rather small for hole doped into the spin/orbitally ordered states)
and small dispersion. However, it is easily visible that the dispersion is signifi-
cantly larger for the spin polaron than for all of the orbital-type polarons. This
is due to the fact that it is much harder for the hole to move in the orbitally
ordered state as the latter one is more classical (robust).
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Summary

Main result.— The main result of this thesis is the solution of the three strongly
correlated electron problems posed in the Preface, which was done using three
distinct extended versions of the standard t—J model of Chapter 1 or Refs.
[1, 2, 3]. More precisely we studied in three consecutive Chapters of the thesis
the following problems:

1. Ezplaining charge order in Sris—, Cay Cugg Oq1.— Since the CusO5 cou-
pled ladder plane in Sri4—,Ca,;Cuz4041[4] is a charge-transfer system [41], one
needs to use the Zhang-Rice scheme [26] to derive the t—J model which would
describe the low-energy physics. However, the obtained model (which merely is
a t—J model on a single ladder) did not reproduce the charge order observed ex-
perimentally in Sri4—,Ca,;Cu24041 [5, 6, 7, 8]. The reason was that this model
omits the repulsion between holes at the same oxygen sites but on different or-
bitals belonging to two different ladders. Including this term in the Zhang-Rice
scheme is crucial — it led to adding the effective interladder interaction between
holes in two neighbouring ladders in the new ¢—J model for coupled ladders.

The new extended spin ¢—J model was then solved, using the slave-boson
approach [20], in the mean-field approximation. The results showed that due to
the interladder Coulomb interaction between holes the charge density wave of
the peculiar odd period (A = 3,5) could indeed be stable in the CuzO5 coupled
ladders in Sri4—,Ca,;Cuz4041 in agreement with the experiment [7, 8].

2. Verifying the idea of orbitally induced hole localization.— When one
chooses a 2D strongly correlated electron system with ¢y, degenerate orbitals
with the d,, orbital having higher energy, then one is left with a system where
along each direction in the ab plane only electrons with one orbital flavour can
hop [72, 71]. Therefore, the obtained orbital ¢—J model did not contain pseu-
dospin quantum fluctuation, its J part was purely of the Ising-type, and the
model could be regarded as a prototypical example where the orbitals induce
hole localization [21, 67]. However, one can have some doubts concerning this
result since for instance if the SU(2) symmetry is absent in the system (as is
the case here), then one should be more careful with all approximations used
(see Sec. 2.2 for more detailed discussion). One of the approximations used in
this orbital t—J model was the ommitance of the three-site terms which should
always be present in any t—J model [1, 2] but since their contribution to the total
energy is small, one often neglects them. Adding the properly derived three-site
terms to the model led to the new 4 orbital t—J model with three-site terms.

The new extended orbital t—J model was then solved, using the slave-fermion
approach [20], in the SCBA approximation [23]. The results showed that the
hole added to the half-filled AO ordered ground state of the orbital model moved
coherently through the lattice due to the three-site terms. Thus, in the simplest
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model, in which the orbitally induced hole localization naively would be possible,
the added hole was not localized.

3. Understanding hole motion in LaVO3.— Due to the ¢4 orbital degeneracy
in the vanadium ions in La;_,Sr, VO3, the proper t—J model for the ab planes
of cubic vanadates had to include not only the spin but also orbital degrees
of freedom. Furthermore, it should also contain the three-site terms which are
required for a faithful represention of the low energy physics in the t—J models
with the Ising-type interaction between pseudospins (cf. the problem discussed
in point 2.). This led to the new to, spin-orbital t—J model with three-site terms.

The new extended spin-orbital t—J model was then solved, using the slave-
fermion approach [20], in the SCBA approximation [23]. This, however, was not
so straightforward since one had to take the spin and orbital degrees of freedom
on equal footing. The reason for that was that the Goodenough-Kanamori rules
[55, 56] are violated in the planes of cubic vanadates [93] and both the orbitals
and spins should be treated as dynamical variables. Therefore, the SCBA [23]
had to be modified to include the coupling between the added hole and the
orbital as well as spin excitations simultaneously. The results showed that the
hole added to the half-filled AO ordered ground state of the spin-orbital model
was not localized but could move merely due to the three-site terms. Since
this result resembled the one obtained in point 2. (purely orbital problem, see
above), one could easily explain the conjecture from the experiment [19] that
the orbital dynamics played a significant role in the doped cubic vanadates.
On the other hand, a detailed investigation showed that the spin dynamics was
quenched and the spins were forced to act on the hole like orbital pseudospins
(i.e. more classical) merely by the orbitals.

Careful approach needed.— Tt is visible from the above discussion that one
indeed had to go ‘beyond the standard ¢t—J model’ to obtain reasonable expla-
nations of the problems. However, as just discussed this had to be done rather
carefully. First, one had to take into account the charge transfer regime (in the
first case) or the orbital degrees of freedom (in two other cases) in the derivation
of the respective i—J model. Notably, in all three cases this did not turn out
to be the ‘full story’. Therefore, in order to get physical insights into these
situations, one also had to include additional interactions due to the specific ge-
ometry of coupled ladders (in the first case), the three-site terms (in two other
cases) or develop a new theoretical approach to solve the model (in the third
case).

‘Powerfulness’ of the t—J concept.— A ‘side’ but perhaps very important
result of the thesis is that it shows how powerful the concept of the ¢t—J model
is based either on the canonical perturbation expansion [1, 2] or on the Zhang-
Rice scheme [26]. Although all of these three problems could have been solved
(and at least the first two of them were solved) using the Hubbard-like model, it
was demonstrated that the extended ¢t—J models gave a better insight into them
— the problems of Chapter 2 and 3 were solved also using the Hubbard-like
model but it was much harder to deduce from these solutions the microscopic
picture. For example: (i) to study the role of the interladder interaction in the
Hubbard-like model one had to introduce rather complicated order parameters
in Chapter 2, or (ii) from the Hubbard-like model it was hard to reveal the
peculiar (‘three-site-term-type’) nature of the hole motion in the AO ordered
state in Chapter 3.

The natural question which arises in this context is whether there is a deeper
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reason for this ‘powerfulness’. Why the concept of the t—J model is so successful?
Some first hints were already given in Chapter 1 where we stated that any t—J
model is easier to solve than the Hubbard model as it spans a smaller Hilbert
space [28]. Obviously such a feature helps a lot but there is still some deeper
(i.e. qualitative) reason — the fermionic systems can be best understood: (i) if
they are not interacting (Fermi gas) or (ii) if they are transformed to some kind
of bosonic/classical matter [109]. Otherwise the fermion sign problem means
that is is hard to obtain reasonable solutions [110] and merely the Fermi liquid
phenomenology can be applied [109].

Here, this second possibility needs some clarification and therefore let us give
some examples of such transformations ‘available on the market’ [33, 109, 111,
112]: (a) the weak-coupling scheme in which one introduces (using the mean-
field decoupling or the variational Ansatz) the classical ground state which is not
the eigenstate of the Hamiltonian at the cost of introducing collective bosonic
excitations of the system; then these two together describe the quantum ground
state (e.g. BCS theory of superconductivity, spin- or charge- density waves in the
Hubbard-like model) [33, 111]; (b) the strong-coupling scheme in which one per-
forms the canonical perturbation expansion [1, 2] or the Zhang-Rice scheme [26]
to reduce the dimension of the Hilbert space by introducing spin/pseudospins
and then one performs all the steps as in point (a) (e.g. antiferromagnetism in
the Hubbard model or much of this thesis) [33, 111]; (c) the true bosonization
procedure, valid only for 1D systems [113]; or (d) reduction of the fermionic
interacting problem to the Kondo-type impurity problems (the fundament of
the dynamical mean-field theory) [114]. Hence, if one wants to understand the
interacting fermions, one is anyway bound to introduce some kind of the trans-
formation to classical and/or bosonic matter. It is then a matter of convenience
which way to choose and it merely occurs that for example the strong-coupling
scheme is more convenient than the weak-coupling scheme. This is because the
transformation suggested in point (a) is more complicated in the momentum-
space (in the weak coupling regime) than in the real space (in the strong coupling
regime) [33]. Here lies the success of the t—J model concept.

Thus, summarizing, this thesis is just a canonical example of the paradigm
that to explain peculiar phenomena found in the strongly interacting fermions
(electrons) one needs to somehow ‘get rid as much as possible’ of the Fermi
statistics. It is the t—J model that does it in one of the easiest and most
transparent possible ways.

Postscriptum.— Let us note that for the detailed discussion of the peculiar
connections between the problems studied in Chapter 3 and Chapter 4 we refer
to Sec. 4.7. There we compare four distinct types of spin and orbital polarons
— the well-known spin polaron [23], the e, orbital polaron [82], and the two
polarons discussed in this thesis. The latter ones are: (i) the ¢o, orbital polaron
which is formed when a single hole is doped into the plane with the d,;/d,.
alternating orbitals and which is dressed with the excitations of the AO ordered
ground state (Chapter 3), and (ii) the to, spin-orbital polaron which is formed
when a single hole is doped into the plane with the d,,/d, . alternating orbitals
and the AF order spins and which is dressed with the excitations of the AO and
AF ordered ground state (Chapter 4). It is shown there that the dispersion for
the spin polarons is significantly larger than for all of the orbital-type polarons.
This is because the orbital order is more classical (robust) and it is much harder
for the hole to move in such a state.
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Appendix A

The continued fraction
method for the 1D orbital
model

Purpose of the appendiz.— This appendix shows how to calculate the Green’s
function for the hole doped into the immobile b orbital in the 1D AO ground
state (3.16) of the model Eq. (3.46) of Sec. 3.5.2.

Choice of convenient basis.— When one attempts to calculate the Green’s
function for a hole doped in the immobile b orbital

1
GyP (k,w) = <q’(1>D b;im by, @$D> : (A.1)
one finds immediately that the state
1 o
i) = bel @) = —= > b |95P). (A2)
VN 2

is not an eigenstate of the Hamiltonian Hip. Here a hole is doped in each
Fourier component in an occupied b orbital at site j in the ground state |®3P)
with AO order (3.16). When a hole is doped, it can delocalize to its neighbours
in the 1D chain, as depicted in Fig. 3.9(b), so one has to introduce appropriate
basis of states obtained when the single hole delocalizes along the 1D chain.
The hopping term o ¢ acting on |1/),(€1)> generates the state

1 L
|1/’1(CQ)> = AN Z e’ (a;_, + aj+1)a;[bj|q)(1)D> ) (A-3)
J

with the hole delocalized to the neighbouring j — 1 (§ + 1) sites of the A sub-
lattice, i.e. to the the left (right) from the initial hole position j in each Fourier
component b;|®{P) included in Eq. (A.2). The remaining states {|1/Jl(€"))} with
n > 2, which occur in the continued fraction expansion needed to evaluate the
Green’s function GiP(k,w) (see below), are generated by acting (n — 2) times
on |¢,(f>) with the three-site hopping term oc 7. In this way one finds the set of
symmetric states, with a superposition of the hole propagating forward (either
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to the left or to the right from the initial defect), i.e. along the same direction as
that given by the first hop which leads to |7,/1,(€2)>, cf. Fig. 3.9(c). This structure
of the basis set explains the absence of the k dependence in the Green’s function
for b orbitals, so we adopt the simplified notation G}P(w) below.

Continued fraction method.— In the infinite basis generated by the above
described procedure, the Hamiltonian matrix of the Hamiltonian (3.46) reads:

<7/)1(€m)|w + Hip — E3D|1/);(€n)> =

wH+J/2 V2 0 0
V2t w+3J/4 T 0
=- 0 T wt+dJ T (A.4)
0 0 T w+J

In order to obtain the relevant Green’s function G;P (w), it suffices to calculate
the (1,1) element of the inverse of this matrix.! Due to the tridiagonal form
of the Hamiltonian, this can be done even for an infinite Hilbert space and one
arrives at a continued fraction result:

m -1 n
= ({7 o+ )56},
—1
1 1 212
5 w+§<]* 3J 2 5
w+Z _W+J*W+T]72,M

(A.5)

where the whole self-similar part can be summed up to the self-energy which
does not depend on k [67]:

7_2 7_2

S , A6
WS- —T o wtJ-T(w) —

wt+J ==

E(w)

This, together with Eq. (A.10), leads to a quadratic equation for ¥ (w) with two
solutions:

E@):%{@Hnﬂi PRy (A7)

The proper sign may be determined using the Green’s function G} (w) obtained
before [89] in the limit of 7 = 0,

-1
),y _ 1 1,2
eh @gQ{w+2J e (A.8)

In this limit the self-energy vanishes, ¥(w) = 0, and the Green’s function has
two poles at energies

5 AN
= 2TV 1+ — (=) . A.
w=-—2J V2 +128<t> (A.9)

I This relation holds up to a constant due to the fact that the basis {\w,(cn))} is not normal-
ized — however, we take care of this problem.
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Finally, one arrives at the general result for 7 > 0:

-1
1 1 412
GPP(w) = w+=J — - , (A.10)
2 2 w+iiFJ(w+J)?—4r?

where the sign convention is fixed by comparing this result with the Green’s
function G;D(O) (w) (A.8) — this implies that one has to select — (+) sign for

w < —J (w > —J), respectively.
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Appendix B

The effective polaron model
for fluorides

Purpose of the appendiz.— Here we show that the effective polaron model de-
veloped in Chapter 3 (see Eq. 3.32) may also be applied to certain fluorides
with FM planes and e; AO order. Thus, we will prove that the experimental
predictions concerning the photoemission spectra of certain vanadates (see Sec.
3.7) are also valid for a particular class of fluorides.

Dependence of e, AO order on the crystal field.— In contrast to the to
orbitally degenerate systems, in the systems with e, orbital degeneracy the
lattice distortions in the cubic phases are usually quite large. In particular,
the static distortions may counteract to some extent the AO order favoured by
the superexchange interactions as e.g. in undoped manganites RMnOs3 [76] or
fluorides CsyAgF,4 [92]. However, the crystal field does not suppress the orbital
order present in these systems but instead it only modifies the occupied orbitals
which form the AO state. They have to be optimized in a microscopic model
by choosing particular linear combinations of the e, orbitals, which form the
AO order, in order to fit best to the superposition of the superexchange and
the Jahn-Teller terms generated by ligand fields [100]. In certain situations this
‘modification’ could be quite substantial and could even lead to such a selection
of e, orbitals that the resulting state is modified towards a FO-type order [84].

At finite crystal field splitting o< F., it is convenient to describe the changes
in the occupied orbital states by making two complementary transformations at
both sublattices [84], rotating the orbitals by an angle § = 7 —¢ on sublattice A,
and by an angle § = 7 +¢ on sublattice B, so that the relative angle between the
occupied orbitals is 5 — 2¢ and decreases with increasing ¢, i.e. with increasing

i > , (B.1)

)
)
Lo mE) () m

where the ‘old’ orthogonal (basis) orbitals are defined as |x); = \/Li|x2 —4?%); and
|2)i = —=[32% —1?); for every sublattice site i. Due to the above transformation
the AO order is formed now by |u); and |v); occupied orbitals at sublattices, i €
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A and j € B, respectively. Let us stress that although the transformation defined
by Egs. (B.1-B.2) is orthogonal, this does not imply that orbitals on different
sublattices, such as e.g. the occupied orbitals |p); and |v); are orthogonal — in
fact they would be orthogonal only for certain discrete values of ¢, for instance
for ¢ = /4.

For the 2D FM systems with active e, orbitals which are considered here,
the relation between the crystal field F, and the optimal orbital configuration
defined by the angle ¢ [see Eqgs. (12) and (13) of Ref. [84]] is given by:

E. = 4J sin2¢, (B.3)

where J is the superexchange constant. In the case of fluorides such as Cs;AgF,
(Ref. [92]) or KoCuF4 (Ref. [115]) discussed here, the filling is one e, electron
per site and the crystal field would select the angle ¢ = 7/12 (for the reason of
looking at this angle see below) since the convenient basis adapted to the actual
AO order looks as follows:

vio==)) = —=l® —2%; = |2);, (B.4)
12)/57 3

where the occupied (empty) orbitals for this type of AO order are denoted as
|z) (|z)) on both sublattices.

‘Particular’ e, AO order similar to tag AO order.— The reason why these
particular pairs of basis orbitals (B.4) are interesting here is that this is the
only choice of occupied e4 flavours which forms a two-sublattice AO order with
the interorbital hopping between occupied orbitals vanishing by symmetry and
where the interactions described by pseudospin operators do not allow for any
quantum fluctuations. This resembles the ¢o4 case discussed in Chapter 3. There
is, however, one subtle difference: two occupied {|z);,|z);} orbitals on sublat-
tices A and B are not orthogonal and do not form the global basis in the e,
orbital space. The choice made in Eq. (B.4) means that one considers two
different, pairs of orbitals for both sublattices and the interorbital hopping be-
tween the unoccupied orbitals is also rather small but remains finite.! Hence,
the respective t—J Hamiltonian is richer than the one for the ¢, case and we
need to check under which conditions it can be reduced to a similar polaron
Hamiltonian as the one given by Eq. (3.32).

t—J model for ‘particular’ eq orbitals.— The e, orbital t—J Hamiltonian for
the FM planes without the three-site terms but including the crystal field is given
e.g. in Ref. [116]. Here we rewrite the kinetic term in a slightly different form
(there it is already written in the slave-fermion representation) and substitute
¢ = /12 to obtain:

H.,=H+H;+H., (B.5)

IThe physical reason for this is just that the crystal field does not fully prohibit interorbital
hopping.
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where

¥

Ht:f—tZzzl_kaquz bJFHC)*—tZZ£E1+a+zT$1+b+HC>
icA
V3 ts
- Tti;g(xgzﬁa + i {Z44p +He), (B.6)
1 z z z xr 1 z z xr z
Hy=3] 3 (BT + VBRI 4+ 57 3 (TT5 - V3RTf) . (B)

(ij)lla (ij) 16

H.=— %JZ(Tf +V3TY) + %JZ(Tf —V3TY) . (B.8)

icA ieB

Here Ty = 5(Ri. — nag) for i € A, T = 3(Rjx — 0y.) for j € B, and T{" =
%(i:‘él + Ei Z;) for every site i, see Ref. [84]. As before, a tilde above a fermion
operator indicates that the Hllbert space is restricted to unoccupied and singly
occupied sites, e.g. ZET = x, (1 — ni,). The last term H, represents the above
mentioned crystal ﬁeld w1th the strength of the interaction written according to
Eq. (B.3) with ¢ = 7/12.

Three-site terms for ‘particular’ ey orbitals.— As far as we know, the three-
site terms have not been derived for the e, orbital systems. Thus, we use again
the canonical perturbation theory of Chapter 1 applied to the Hubbard model
for spinless e4 electrons in a FM plane [107] with the basis rotated by ¢ = 7/12,
following Eqs. (12) and (13) of Ref. [84]. This leads to the following three-site

terms for the e, orbital ¢—J model with ¢ = m/12:

H3s = H3s,a + HSs,b + H3s,ab; (Bg)
where
HBS,a =
1 L P P o
-1 Z [Zj,énizzné + 3$g,éniz$i+é + \/gwlénimzué + \/gzi'r,énimxi+é:|
icA
— —TZ [ i_aNizZita + 321 alizZiya — \/_zl a IZL' Zita — \/géité:igéiéi_,_é}
ieB
+H.c., (B.10)
HSs,b =
1 4o~ - ST
_ ZT {zlgnimzﬂg + 3z:76nizz \/_z z TiZ b \/_z :I: ZiZ 1+b}
iecA
1 ~
_ ZT {zj bnmsz + 395 nmx b + \/gx nwz b + \/gz 7’Lm$1+b}
icB
+He., (B.11)
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H3s,ab =

1 4 = s “f atzs N F =tz
- ZTZ [Ziia”iwziﬂ} =334y 4 ] Ay + V3T LMo By — V3E LT A
icA —_—

T I L N - Y LT
+ ZipaliaZipp = 3Ti447; 2124 T \/g‘ri:ténllziﬂFb YEEG lei$b:|

1 o = s o simos 4 = = ot sims
- ZTZ [Ziia”iwziﬂ} =35 B Bily g + V& el — V3HLE Ty
ieB —_—

+ ’giT:téﬁizgi:FB - 353155;55@@5 + \/gziitéﬁizfi:FB - \/gggiéggjigizpfa}
+H.c.. (B.12)

Here we underline (doubly underline) terms which do not require orbital exci-
tations (require orbital excitations), respectively, i.e.

His(0) = Hss, Hyy(1) = Hs. (B.13)

The physical reason for this is just that the crystal field does not fully prohibit
interorbital hopping.

Effective polaron model.— Next, we perform the same standard transforma-
tion to obtain the polaron Hamiltonian from the ¢—J model [23] for the lightly
doped ordered states as done in Chapter 3, i.e. we introduce Schwinger boson
operators {tiTa,tin} and fermion operators h; (holons) which are related to the
QEI and ZIT operators in the following way:

# =t h, 2= th . (B.14)

1

Please note, however, that here we do not have to perform rotation of the
pseudospins since we define distinct electron operators for the occupied and
empty orbitals, cf. Eq. (B.4).

Again, as in Chapter 3, we introduce the Holstein-Primakoff bosons 3 and
skip higher-order terms in the Hamiltonian (the LOW approximation for bosons
and only three-particle interaction in the mixed boson-holon terms). This means
that e.g. the three-site terms are reduced only to the terms which were either
underlined or doubly underlined in Egs. (B.10)-(B.12), i.e. to either Hsy() or
Hsg1y. Here, however, we have to use yet another approximation which was
unnecessary for the ¢, model: as these terms were absent in Chapter 3 we skip
H3g(1y. This approximation is allowed since these terms contribute to the vertex
as o« 7 and not as « ¢, resulting typically in much reduced energy scale for the
new vertex contributions. Furthermore, we showed in Sec. 3.7 that such terms
[cf. Eq. (3.59) and Fig. 3.13] did not change the energy of the quasiparticle and
merely modify the incoherent spectrum. Eventually, one arrives at the polaron
Hamiltonian for the holes doped into the e, orbitals of the fluorides with the
hopping terms:

1
off _ t
H, V3t ~ qu {cos(kzm — qz)hkAhquﬁBﬁqA
+COS(ky_qy)hLBhk_q7AﬁqB +H.c.}, (B.15)

. 3
H3Sff =57 Z {COS(Qky)hLAhkA + COS(Qkx)hLBth} ) (B.16)
k
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and the remaining terms resulting in the energy renormalization
e e 3
HJff +H = ZJZ (ﬂlAﬂkA + ﬂchBﬂkB) : (B.17)
k

Therefore, the Hamiltonian given by Eqs. (B.15)—(B.17) reduces to the polaron
Hamiltonian (3.32) after substituting v/3t/2 — t, and consequently 3.J/4 — .J
and 37/4 — 7. This substitution stems from the different definitions of the
hopping ¢ in the e, and in the ¢y, systems — in the former case it is the (ddo)
hopping between the 322 — r? orbitals along the ¢ direction, whereas in the
latter case it is the hopping element between a pair of active ¢, orbitals, e.g.
yz orbitals in the (a,b) plane.

Conclusions.— In summary, we have shown that the Hamiltonian given by
Eqgs. (B.15)-(B.17) provides the framework to analyse the behaviour of certain
lightly doped e, systems with FM planes and AO order which suppresses the
interorbital hopping between occupied orbitals. Its equivalence to the polaron
model (3.32) demonstrates that the results obtained and discussed in Chapter
3 should also apply to the case of a hole doped into the fluoride plane with the
AO order of e, orbitals.
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Streszczenie

W niniejszej pracy zostaly poruszone trzy problemy dotyczace silnie oddzia-
tujacych elektronéw w tlenkach metali przej$ciowych. Pierwszy z nich doty-
czyl wyjasnienia obecnosci fali gestosci tadunku o nieparzystym okresie (3 oraz
5) w plaszczyznie zlozonej z zachodzacych na siebie drabin CuyOs w zwigzku
Sri4—.Ca,Cu240y41 (przy domieszkowaniu odpowiadajacym zwigzkom z = 0
oraz x = 11). Drugie zagadnienie, poruszone w niniejszej pracy, dotyczyto (po-
tencjalnej) mozliwosci lokalizacji pojedynczej dziury w tlenkach metali przej-
Sciowych z degeneracja orbitalna. Trzeci problem to podanie odpowiedzi na
pytanie w jaki sposéb moze poruszac¢ sie pojedyncza dziura w plaszczynie ab
ze wsoblistniejacym uporzadkowaniem spinowym (antyferromagnetycznym) oraz
orbitalnym (z alternujacymi orbitalami) w zwiazku LaVOs3.

W celu rozwiazanie wyzej wymienionych probleméw zostaty wyprowadzone
rozszerzone wersje modelu ¢—J dla kazdej z tych sytuacji: dla pierwszego za-
gadnienia — model ¢—J dla zachodzacych na siebie drabin, dla drugiego pro-
blemu — orbitalny model ¢t—J z oddzialywaniem typu Isinga pomiedzy orbital-
nymi pseudospinami oraz z wyrazami tréjweztowymi, dla trzeciego zagadnienia
— spinowo-orbitalny model ¢—J z wyrazami tréojweztowymi. Okazalto sie, ze roz-
wigzania powyzszych modeli w formalizmie niewolniczych czastek oraz w przy-
blizeniu §redniego pola lub samozgodnym przyblizeniu Borna doprowadzito do
wyjasnienia probleméw postawionych w niniejszej pracy: (1) na skutek efek-
tywnego odpychania pomiedzy dziurami znajdujacymi sie na sasiadujacych ze
soba miejscach w zachodzacych na siebie dwoch sasiednich drabinach fala ge-
stodci tadunku o nieparzystym okresie okazala sie stanem podstawym uktadu;
(2) wlaczenie wyrazow trojweztowych do orbitalnego modelu t—J pokazalo, ze
mozliwy jest koherentny ruch dziury w tlenkach metali przej$ciowych z degene-
racja orbitalna; oraz (3) szczegdlowa analiza oddziatywania pomiedzy dziurg a
kolektywnymi wzbudzeniami (w porzadku antyferromagnetycznym oraz z alter-
nujacymi orbitalami) pokazala, ze dziura w ptaszczyznie ab w LaVO3 zachowuje
sie podobnie jak dziura dodana do ptaszczyzny jedynie z porzadkiem orbital-
nym ale bez porzadku spinowego. Lacznie w niniejszej pracy zostalo pokazane,
ze pewne niewielkie rozszerzenia modelu t—J prowadza do wyjasnienia szerokiej
klasy zjawisk w tlenkach metali przejSciowych z silnie oddziatujagcymi elektro-
nami.
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